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Abstract

Blockchain technology has taken the computing world by storm over the past decade and has

been widely addressed and researched in today’s era of Computer Science. Blockchain tech-

nology provides the essential semantic properties of immutability, verifiability, authenticity,

non-repudiation, and data integrity in a very efficient and reliable manner. Being an emerging

technology, blockchain has gained wide-spread use cases, covering finance, health care, govern-

ment, supply chain, and lots more. With the blockchain logical concepts developed, there has

always been a question regarding its implementation method, i.e., whether it should be built

fresh bottom-up or developed adopting the extremely-optimized relation database platforms.

In this research, a non-invasive methodology of building a blockchain platform on top of

relational DBMS is studied - in particular, Credereum [23]. Credereum is a permissioned

centralized blockchain implementation designed to be run on top of native PostgreSQL, and

retains all the essential blockchain properties and functionalities. Further, to help generate the

evidence for transaction modification and provenance, Credereum uses an immutable trusted

storage repository, referred to as Ethereum [2, 14]. The principal reason to choose the Cred-

ereum platform is that it is among the few public-domain permissioned blockchain systems

developed on an RDBMS platform. However, while exploring the Credereum platform, two

significant issues were examined - basically, server-held malicious activities and performance.

We address both these issues in our work, as described in the sequel.

With regard to malicious activities, the server might perform fraudulent actions in block

Merkle formation, which remains unacknowledged to the clients. To address this, we propose

SecCred, which adds to the functionalities provided by the base Credereum software, and indeed

helps overcome the malicious activity in Merkle formation.

SecCred addresses the functionality enhancement proposed to the Credereum software, via

the virtue of which every client can verify the correctness of the block formed by the server in

an encrypted form. The client can perform the verification once the block gets created and is

made public. The SecCred led changes in the hash calculation methodology of the nodes of

the Merkle tree. Additionally, improvements to the Credereum held provenance function were
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Abstract

made by computing only the desired results.

Now, concerning performance, the blockchain semantics implemented on top of the Post-

greSQL via Credereum was certain to have a definite impact on the PostgreSQL performance.

To identify this, we checked for its pitfall intensity, and on analysis, considering the native

PostgreSQL throughput as the yardstick, a huge – about 3 orders-of-magnitude! dip was wit-

nessed. Even with relaxing the intrinsic overheads, i.e., the heavy-duty blockchain semantics’

computational load, the decay was heavy – about 2 orders-of-magnitude! In the research, we

examined the primary reasons for this pitfall in performance, and with the help of simple but

potent programming (ProgCred) and algorithmic changes (PerfCredA and PerfCredB) to the

Credereum software, a substantial performance gain of an order-of-magnitude was achieved.

ProgCred dealing with programming changes can be considered to be the first step towards

performance improvements. The credereum longest prefix() function, being called about

hundred times more often than the next most frequent function in Credereum, was converted

from SQL to its C equivalent with programming changes. This transition reflected in ProgCred

has led to a decrement in the function execution time by a huge factor of 99.93%.

Further, in Credereum, for each transaction fired, a Merkle tree gets constructed by de-

pending upon the previous block in the ledger. With the second phase of performance im-

provements made in PerfCredA, we propose an independent high-performance design, leading

to a substantial rise in performance and also efficiently summarizing the modifications made.

With PerfCredA, we achieved a performance gain, but with the dependency removal, changes

in provenance verification logic were needed and hence was re-designed.

An alternative and more radical optimization were with the development of the hash com-

puting function, i.e., modification hash value(), due which we can altogether drop the

Merkle tree formation at the per-transaction level. With this strategy in PerfCredB, an even

higher performance gain was witnessed; however, there’s a downside to this approach, that it

leaks the row counts updated by a transaction. But, since the leakage deals with quantity and

not identity, no serious security implications are expected. With the new methodology involved

in PerfCredB for summarizing the transaction modifications, it led to generating the evidence

for provenance with certain changes, which indeed motivated us to re-design the provenance

verification logic for PerfCredB.

The proposed versions - SecCred, ProgCred, PerfCredA, and PerfCredB handling function-

ality addition and performance improvements to the base Credereum, retain all the blockchain

semantics and properties offered initially by the Credereum. The work also details the prove-

nance handling mechanism and is explained with sample scenarios for each Credereum proposed

version. On performance analysis, the SecCred, even with the additional work in the Merkle tree
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hash computation, was observed to have an approximately similar performance compared to

the Credereum. The PerfCredB was found to achieve the highest performance amongst all the

proposed versions. Additionally, PerfCredB has a comparatively low provenance response time

than the Credereum and the rest proposed versions. Lastly, the thesis concludes by detailing

significant points through which more advancements in performance can be researched.
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Chapter 1

Introduction

The chapter introduces Blockchain and Credereum, a blockchain platform that runs on

top of native PostgreSQL. A brief history of the blockchain and the underlying motivation

and capabilities have been explained. The chapter additionally outlines core blockchain

properties and types. A brief discussion of the relevant works on the blockchain system

design and development, including the underlying architecture, has been made. Finally,

the Credereum retaining blockchain properties get introduced.

1.1 Blockchain

Blockchain is a time-stamped collection of immutable and permanent digital records in entities

called Blocks, where each block is linked using cryptographic standards. Once recorded within

a block, the data cannot be changed retroactively without modifying all subsequent future

blocks and involves the majority of the network entities’ agreement. The transaction details

verified contain every single modification being made and get validated by the maximum. The

low transaction fee, reduction in transaction waiting time, enhance trust, no 3-rd party in-

volvement, advanced traceability are certain benefits linked to blockchain systems. Blockchain

is an exceptionally assuring and innovative technology that possess clients’ trust by resisting

fraudulent activities and enabling transparency for innumerable use cases in a scalable man-

ner. Furthermore, blockchain has widespread use cases, incorporating asset and real estate

management, global trade and enterprise, cryptocurrency and payment handling, real-time IoT

OS development, polling mechanism, keeping track of supply chain and logistics, insurance,

banking and monetary businesses, media, healthcare, and lots more. By securing the digital

connection, blockchain, a revolutionary technology, achieves the unattainable.
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1.1.1 History

The evolution of blockchain began with the work published by research scientists Stuart Haber

and W. Scott Stornetta in 1991 [15], introducing timestamp in generating digital records to

resist tampering and avoid backdating. They designed a cryptographically secured system to

store the timestamp records in the forms of blocks linked in a chain, and the concept has been

used to date in the design of blockchain systems. Additionally, to integrate a list of records

within the block, in 1992, researchers incorporated system designs with the Merkle trees [5].

In 2004, computer scientist Hal Finney designed a system named Reusable Proof-of-Work

(RPoW) [12]. The system generates an RSA-signed token, which is peer-to-peer transfer-

able and works by intaking a Hashcash based Proof-of-Work (PoW) token, which is non-

fungible/cannot be exchanged. The fundamental double-spending 1 problem [1] was resolved

using RPoW, where the token’s right registered on the authentic servers gets retained, allowing

clients to verify its fidelity.

With the author/group being pseudonym as Satoshi Nakamoto, a white paper was published

in late 2008 [27], which proposed a decentralized peer-to-peer e-cash system and introduced

distributed blockchain. The double-spending was handled using the decentralized peer-to-peer

network, and the transactions were mined by miners earning rewards through PoW methodolo-

gies. With Satoshi Nakamoto, on January 3, 2009, mining the first bitcoin block, and making

a reward of 50 bitcoins, led to establishing the public Bitcoin network.

In 2013, computer programmer Vitalik Buterin, apart from cryptocurrency, started forming

a new distributed blockchain computing system, named Ethereum [2, 37, 20], featuring and

introducing scripts, being named as Smart Contracts [3]. Smart contracts are coded protocols

that execute automatically when the specified conditions according to contract terms are met.

Smart contracts draw other assets like services, certificates, mortgages, and so forth to be shared

similarly to cryptocurrency. Furthermore, Ethereum was designed with a focus on providing

support to the blockchain applications.

2014, and onward, began an era where blockchain and Bitcoin were sought differently,

diverging from the earlier concept that keyed them one. Blockchain 2.0 seeded up looking into

applications apart from cryptocurrency, like healthcare, polling, security, supply chains, and

more. Ethereum, Ripple [32], and HyperLedger [4] are specific applications developed in the

Blockchain 2.0 initiative.

1In a digital payment system, double-spending is a potential risk where the same digital currency can get
spent multiple times.
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1.1.2 Motivation and Capabilities

The immutability and providing trust to the clients in a trustless society form the significant

reason for adopting blockchain technology. With earlier methods, deploying a 3-rd party firm

and considering it to be trustworthy, the entire set of transactions was being managed between

the clients. With the evolution of blockchain technology, possessing a distributed and dense

peer-to-peer network required no such middle 3-rd party firm involvement, and it provides

clients an assurance/certainty of a better system with enhanced security and concreteness. In

the blockchain network, each transaction fired gets verified and mined by a miner, competing

with the rest. With the low fraudulent miners’ malicious actions, the honest miners can readily

reject such activities. Thus, the system provides a diffused trust to the clients, where a joint

assemblage of miners is believed/trusted.

The secured recording of transactions in immutable blockchain ledgers drives corporations,

governments, social sections, institutions, museums, etc., to widespread adoption of blockchain

technology. The protocols strengthening blockchain, like the transparency and maintenance of

the public distributed ledger, makes it more resilient and robust. The decentralized environment

helps overcome traditional issues like single server dependency and failure, faster transaction

settlement, security concerns, etc. The blockchain networks being resistant to malevolent and

counterfeiting actions lead as the backbone to multi applications, and due flexibility, allows

groups to decide the usage as per requirements.

The blockchain network provides provenance proof, which helps acknowledge the modifica-

tion history/supply-chain to the desirables, making it a significant system functionality. The

introduction of smart contracts in blockchain helps form automatic executable legal documents

that operate on the specific conditions being met and is competent in deploying large-scale

applications with the design necessities. With traditional systems relying on 3-rd party firms,

the blockchain can provide an upgraded level of security and accuracy in a P2P network with

no intermediate firms. The blockchain networks are capable of providing access control, via

which a client can list the others who are allowed to access a particular asset registered on

the ledger, using Access Control List’s (ACLs). In a blockchain, each client possesses a set of

Public, and Private keys, which helps form a digital signature of modifications made, and by

being anonymous, can prove the ownership of a specific record/asset registered on the ledger.

Since the blockchain network in a distributed environment has multiple servers connected, it

can handle or is resilient to data damage and loss. Further, the breakdown server can fetch the

records from the rest entities connected. These lists a set of system capabilities underlying the

blockchain network.
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1.1.3 Properties and Types

The following outlines some of the blockchain’s core properties:

1. Immutability: The blockchain holds an essential property of immutability, which implies

anything if it has written in a ledger (or blockchain), it cannot be modified/tampered with.

The blockchain attains this property with the help of cryptographic hash functions [16].

Cryptography being mathematical and holding complex computation, aids in resistance

to malicious attacks and provides a unique descriptor to every data. With each block

linked with the previous in blockchain, any malevolent modifications made within a block

will lead the ledger to be re-evaluated and approved by majority network entities.

2. Decentralized and Distributed Ledger: The blockchain system operating in a decen-

tralized environment has multiple entities connected locally/globally, and all retain the

information about the network. The block ledger remains the same, and for every new

block appendage to the ledger, a consensus gets achieved. Because of being decentral-

ized, it is fault-tolerant and does not have to rely on one single entity. The platform’s

decentralized and distributed design helps form a dense P2P network with lower transac-

tion computation cost and time. Blockchain, being decentralized and due consensus, can

handle malicious attacks efficiently.

3. Transparency: In a blockchain system, every entity can examine the transactions being

fired to the system and respond to their validity. If the transaction is found valid, it is

committed and gets used in the block formation. Furthermore, a client’s individuality

in the network is obscured via complex cryptography and uses its public address for

identification in a permissionless blockchain system.

4. Verification: In a blockchain network, for every transaction fired, each miner verifies the

correctness of the modifications made by the transaction, and if found valid, is accounted

for in the block formation. With max honest miners, any malicious actions get detected,

and the transaction gets dropped.

5. Authenticity: Many blockchain deployments ask the clients to submit a digital signature

using its private key to authenticate the transaction. The clients can also be asked to

sign the smart contracts to provide evidence of an agreement. Like PBFT [8], consensus

algorithms encourage the clients/nodes to submit digital signatures with the current block

formation agreement.

4



With the blockchain system requiring digital signature submission, the non-repudiation and

data integrity property gets conserved.

Public, Private, and Hybrid blockchain networks are the three forms. The public blockchain

network is open and accessible with no restrictions, and any individual can join the network, fire

transactions, and become a validator. The private blockchain network is more permissioned,

where an individual needs to get approval from the network admins. The public blockchain

network works in a decentralized environment, while the private blockchain network shows

more centrality. The hybrid network possesses features of both centralized and decentralized

environments.

1.2 Related Work

Blockchain with underlying RDBMS has been a center of attraction for numerous enterprises

dealing with issues related to 3-rd party dependency, seeking faster and low-cost transac-

tion management, holding immutable and auditable records, providing trust, etc. With the

blockchain adoption rate spanning worldwide, many countries/organizations invest resources to

research and incorporate the technology. This section explains a few blockchain systems working

along with databases and briefs of their underlying architecture. In particular, BlockchainDB,

BigchainDB, ForkBase, etc., have been addressed.

1.2.1 Blockchain meets database

The research work by IBM, Blockchain meets database [28], demonstrates the designing and

deployment of decentralized-replicated relational database systems with blockchain assets. A

permissioned blockchain model is considered, with mutually distrustful organizations each oper-

ating their own replicated database instance. The paper addresses two approaches, specifically,

order-then-execute and execute-and-order-in-parallel, shown in Figure 1.1 (referred from Fig-

ure 1 of [28]). With the transactions committing order being settled before execution in the

illustrated order-then-execute approach, the researchers in the execute-and-order-in-parallel

procedure proposed methodologies where the transaction execution is made without any as-

sumption/information of the commit order. Further, at the same time, the ordering gets im-

plemented in parallel. During block processing in both approaches, all the transaction details

(with commit/abort status) and the block number get automatically stored in the ledger ta-

ble to sustain recovery from failure. Further, the PostgreSQL database with abort during the
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Figure 1.1: From Figure 1 of ‘Blockchain Meets Database’ [28]

commit SSI variant [29] gets used to implement and construct a blockchain relational database

management system.

1.2.2 BlockchainDB

The BlockchainDB [10] is designed to run the DB layer on top of the blockchain network,

as shown in Figure 1.2 (referred from Figure 2 of [10]). The BlockchainDB to circumvent

the consensus overhead doesn’t replicate the records with all entities/peers. The relations are

partitioned and replicated to a few entities. Each partition is being referred to as a shard

and gets implemented as an independent blockchain network. Focusing performance boost,

all entities do not store data locally, and on-demand will redirect the request to local/global

storage. For modifications made by the client on the BlockchainDB network, an entity can host

the database with a replica of at least one shard referred to as Full Peer (e.g., Full Peer A, Full

Peer B, Full Peer C in Figure 1.2), or those possessing inadequate means can connect with the

rest entities to obtain the shard information and are referred as Thin Peer (e.g., Thin Peer D

in Figure 1.2). BlockchainDB, like private blockchains, assumes authenticated entities in the

blockchain network and are identifiable.
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Figure 1.2: From Figure 2 of ‘BlockchainDB - A Shared Database on Blockchains’ [10]

1.2.3 BigchainDB

BigchainDB [6, 25], with distributed database and traditional blockchain concepts, try to gain

high throughput, huge capacity, lower latency, immutability, strong querying, and ample au-

thority providence. BigchainDB system has two underlying distributed database components,

named S and C, as shown in Figure 1.3 (referred from Figure 3 of [25]). The S and C are con-

nected via BigchainDB Consensus Algorithm (BCA) and made to run on each signing entity.

To retain consistency, an internal Paxos-like Consensus Algorithm gets run on each database.

With the transactions allocated, each signing node moves the unordered transaction set from

S to an ordered list, creates a block referring to the parent block, and places it in the ordered

blocks’ list at C. Each signing node votes for a valid/invalid block, and with the maximum

valid votes, the block moves from undecided state to valid state, else is termed invalid, and the

voting concludes. Each block B has an ID, timestamp, transactions, and polling details. With

requirement for database possessing Paxos or its descendant, ElasticSearch [11], Cassandra [7],

Riak [24], MongoDB [26], Redis [30], RethinkDB [31], and HBase [17], were selected for imple-

mentation. With strong consistency assurance [13] and auto change alerts [18], the developers

built the first BigchainDB version on top of RethinkDB.
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Figure 1.3: From Figure 3 of ‘BigchainDB: A Scalable Blockchain Database’ [25]

1.2.4 ChainifyDB

ChainifyDB [9, 34, 33] introduces the Whatever-LedgerConsensus (WLC) processing model,

which helps establish a permissioned blockchain layer on top of the heterogeneous database

systems. Figure 1.4 illustrates the execution workflow of ChainifyDB (referred from Figure

4 of [34]). The order-subphase and execute-subphase define the two subphases of the W-

phase. The transactions batch gets globally ordered and grouped together within a block

in the order-subphase, while the execution of the authentic block transactions in the local

database gets handled in the execute-subphase. Further, a consensus gets achieved through

a lightweight voting mechanism by all the participating organizations in the ledger consensus

phase. Each organization verifies its LedgerBlockHash with the consenting LedgerBlockHash

(having occurrence of at least predefined constant c times), and if it matches, the organization

commits and appends the block to the local ledger. Else, the organization enters a recovery

phase. ChainifyDB uses an ‘Optimized Partial Replay from a (Logical) Snapshot’ recovery

mechanism.
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Figure 1.4: From Figure 4 of ‘ChainifyDB: How to Blockchainify...’ [34]

1.2.5 ForkBase

ForkBase [36] deals with designing and developing a storage engine that focuses on immense per-

formance and lessens expansion efforts for blockchain and forkable applications. With duplicate

entry discovery and aid for effective queries, ForkBase is intended to be space-efficient. The

fork semantics and multi-version tamper-evident data types possessed by ForkBase promote

blockchain framework creation and application development. The data types retained helps

form complex blockchain designs with low development costs and eliminates integrity concerns.

Figure 1.5 (referred from Figure 7 of [36]), shows the architecture involved in ForkBase with

major components as master, dispatcher, servlet, and chunk storage. Master maintains infor-

mation generated during run time, and the dispatcher receives and sends the request to the

particular servlet. The access controller sub-module in a servlet before execution confirms ap-

proval, and branch heads get saved in the branch table. With concealed internal data design,

the object manipulations get supervised by the object manager. The data chunks are obtained

via chunk storage and are available to remote servlets.
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Figure 1.5: From Figure 7 of ‘ForkBase: An Efficient Storage Engine for Blockchain...’ [36]

1.3 Credereum

Credereum [19] is a public-domain software that layers blockchain semantics on native Post-

greSQL. Specifically, Credereum is intended for delivering cryptographically verifiable consensus

and provenance in a permissioned centralized setting, using an Ethereum smart contract as an

immutable trusted storage repository. Credereum possesses a wide range of features, ranging

from Merkle tree formation to the usage of trusted storage, that helps provide resistance to

malevolent actions and makes the system concrete. Immutability, verification, authentication,

and non-repudiation are a set of blockchain properties that Credereum retains. Our motiva-

tion for choosing Credereum is that it is amongst a few public-domain permissioned blockchain

implementations on a relational database platform.

However, Credereum having enriching features and blockchain properties is currently cen-

tralized, unlike most systems having a decentralized environment. Despite being centralized,

with the involvement of trusted storage and retention of blockchain semantics, it guarantees the

users the data values, which can be easily verified. A system with a decentralized environment

would have performed such activities via consensus.

In Credereum, for each transaction a Merkle tree, namely, Transaction Merkle Tree (TMT)
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BMT Block Merkle Tree
TMT Transaction Merkle Tree
RHV Root Hash Value
DS Digital Signature
PK Public Key

MHV MODIFICATION-HASH-VALUE

Table 1.1: Abbreviations used

gets created. Further, for each node of TMT, a hash is computed. The hash of the root node

of the Merkle tree is referred to as Root Hash Value (RHV). The TMT RHV summarizes the

modifications made by the transaction. Additionally, in Credereum, at block-level, a Merkle

tree is created, referred to as Block Merkle Tree (BMT). The BMT RHV computed summarizes

the entire modification made by the transactions within a block. Further, Credereum supports

provenance, by which the client can check for the modification history of a row/set-of-rows from

the initial block 0 (known as the Genesis block).

Table 1.1 list the set of abbreviations used in this document. Now, before moving ahead,

we define the following terms:

1. key: In Credereum, the nodes of a Merkle tree (TMT/BMT) are represented using bit-

strings. These bit-strings associated with a node are referred to as key/node-key. Here,

key and node-key are synonymous and used interchangeably throughout this document.

2. node-value: The leaf nodes of TMT and BMT hold data values associated with the row

of a relation. These data values related to the node of the Merkle tree are represented as

node-value. Internal nodes of TMT and BMT, doesn’t have any node-value.

3. node-hash: With Merkle tree (TMT/BMT) creation, the hash of each node is computed.

The hash value of the node is referred to as node-hash. Further, part 3 of section 2.2,

defines the node-hash calculation methodology.

4. transaction-hash: For each transaction in Credereum, a transaction-level hash is com-

puted, which considers the associated TMT RHV, previous block BMT RHV, the public

key, and the digital signature of the client. This transaction-level hash is represented as

transaction-hash.

5. block-hash: For each block in Credereum, a block-level hash is computed, which consid-

ers the associated BMT RHV, previous block block-hash and all associated transaction’s

transaction-hash. This block-level hash is represented as block-hash. Further, the
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accounting of the previous block block-hash in the current block block-hash helps es-

tablish the ledger chain. The block-hash computed gets archived to the trusted storage.

Now, Credereum running on a centralized environment does possess certain limitations

(section 2.8), but despite that, as mentioned, it retains the following set of blockchain properties:

1. Immutability: In Credereum, at periodic intervals, a block process arrives, forms a block

from the committed transactions set within the block period, and computes block-hash.

The computed block-hash gets stored in the trusted storage, which cannot be modified

once fed. Credereum provides an immutability property, considering that even a single bit

modification within a block, at transaction-level or block-level, will alter the block-hash

and the newly obtained block-hash will differ from the one stored in the immutable

trusted storage.

2. Verification: In Credereum, for every transaction fired by the client, proof for the old

and new data values of the modified relation rows are shown to the client. The client

verifies the evidence generated by the server and checks whether it is valid or invalid. The

client can also check the modification history for a queried row from the Genesis block

using provenance. Credereum thus retains verification property.

3. Authentication: The clients in Credereum, after verification of proofs and modifications,

need to digitally sign the transaction and submit it to the server. The digital signature

gets verified by the server, and if found valid, the server commits the transaction. Hence,

Credereum retains an authentication property.

4. Non-repudiation: In Credereum, since each client submits the digital signature to the

server after verifying the modifications, the client can never make false claims or deny

the authorship of the changes being made by him. Thus, the non-repudiation property is

maintained by Credereum.

Presently, many blockchain systems, along with Credereum, uses SHA-256 cryptographic

hash function [35, 16], which retains the following properties:

1. SHA-256 is deterministic, which means for a given message M, the same hash H gets

always generated.

2. SHA-256 is irreversible, which means from a given hash H, the message M cannot be

derived.
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Figure 1.6: Sample of credereum block relation

3. SHA-256 is collision-resistant, which means for messages M1 and M2, the respective

hashes H1 and H2 have negligible probability for being the same.

4. SHA-256 is very sensitive, which means even a single bit change will modify the entire

hash, and the newly obtained hash remains uncorrelated to the previous old hash.

5. SHA-256 is quick, which means the computational time is low and hence is immediately

calculated.

Relation Attributes
credereum block block num, hash, prev hash,

root hash
credereum tx log block num, transaction id, tx hash,

root hash, prev root hash, pubkey,
sign

credereum merklix key, block num, transaction id,
children, leaf, hash, value

Table 1.2: Credereum - Relation and attributes
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Figure 1.7: Sample of credereum tx log relation

Further, the Credereum keeps the blockchain records in three relations, shown in Table 1.2.

Exploring the details stored in these relations, from Table 1.2, we have:

1. The credereum block table stores the per block information whenever a block gets

created. A snapshot of the details present in the credereum block table is shown in

Figure 1.6. The attributes present in credereum block relation include block num,

hash, prev hash and root hash, with block num as primary key. Here, the current block’s

block number is stored in block num, the current block block-hash is stored in hash, the

previous block block-hash is stored in prev hash and current block BMT RHV is stored

in root hash.

2. The credereum tx log table stores the per transaction information whenever a trans-

action is committed. Figure 1.7 shows the sample details present in the credereum tx log

table. The attributes present in credereum tx log relation include block num, trans-

action id, tx hash, root hash, prev root hash, pubkey and sign. Here, block num and trans-

action id pair forms the primary key. Now, the current block’s block number is stored in

block num, the current transaction’s transaction-id is stored in transaction id, the current

transaction transaction-hash is stored in tx hash, the current transaction TMT RHV
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Figure 1.8: Sample of credereum merklix relation

is stored in root hash, the previous block BMT RHV is stored in prev root hash, while the

public key and the digital signature submitted by the client is stored in pubkey and sign,

respectively.

3. The credereum merklix table stores each of the transactions and blocks, TMT and

BMT details, respectively. The sample details stored in the credereum merklix table,

is shown in the Figure 1.8. The attributes present in credereum merklix table are

key, block num, transaction id, children, leaf, hash and value. Here, the key/node-key

of a Merkle tee node is stored in key, the current block’s block number is stored in

block num, the current transaction’s transaction-id is stored in transaction id, the node-

key of children’s of a Merkle tree node is stored in children, indicates whether or not

a node is a leaf node by leaf, while the node-value and node-hash associated with a

Merkle tree node is stored in value and hash, respectively. For a BMT, the transaction id is

NULL. Further, from above, as mentioned, the node-key, node-value and node-hash

associated with a Merkle tree node is kept in the credereum merklix table.
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1.4 Summary

The blockchain network has miners connected in a decentralized and distributed environment

through P2P links, responsible for accumulating transactions, and at intervals end, creating

blocks. For every block created, a reward gets generated to the miner for the PoW. The

blockchain core properties include immutability, distributed and decentralized ledger, verifi-

cation, authentication, data integrity, and non-repudiation. Ethereum, and the HyperLedger,

were the systems designed under the Blockchain 2.0 initiative. Also, Ethereum led to the

evolution of the smart contract, an automatic executable legal document. Credereum, being

a blockchain platform, has enhanced features like TMT and BMT formation, trusted storage

usage, and more. Credereum application areas include educational institutions, private or-

ganizations, assets management, secured voting mechanism, healthcare management, logistics

monitoring, and lots more. Despite possessing high-grade qualities, Credereum is currently

centralized and carries certain traditional and blockchain-based limitations.
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Chapter 2

Credereum

The chapter introduces and explains the internals and the architecture sustained by the

Credereum. The internals covering key generation, Merkle tree formation, and Merkle

hash calculation has been explained. With being a blockchain implementation, the chapter

highlights and defines the blockchain properties retained by Credereum. The chapter also

discusses the minimal-disclosure feature of Credereum in providing proofs and explains

handling of the double-spending problem using trusted storage. Credereum drawbacks

are studied and gets described in later sections.

2.1 Introduction

Blockchain is a transaction-based system that provides a mathematical promise of guaranteeing

security, anonymity, and immutability to the data. The essential properties of immutability,

verifiability and authenticity can be applied to relational database systems. Credereum [19, 23]

is a private, centralized blockchain implementation that provides features of non-repudiation,

enhanced security, and data provenance to the traditional RDBMS PostgreSQL. Importantly,

pg credereum [23] is a PostgreSQL extension being used to implement Credereum over Postgres

and adds a cryptographically verifiable audit capability to the PostgreSQL databases.

Whenever a client fires a transaction to a server in a typical client-server DBMS, the server

doesn’t provide proof for the generated output data. Indeed for data integrity and authentic-

ity, the client blindly relies upon the server. Even with the server’s audit features, the server

administrator can forge the audit data and show incorrect results. Digital signatures for authen-

tication allow blockchain users to track down their state from the origin with the correctness

guarantee. With the stated blockchain functionality, Credereum endeavors to incorporate these

into the client-server relational database systems. Further, Credereum generates proof of cor-
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rectness when a transaction fired by the client results in database modification. The client

verifies the proof generated and checks the correctness of the modified data. In Credereum in-

dividual actions are authenticated by their respective digital signatures, and a client can trace

the history of all the records without inherently trusting the server. The client, after verifying

the proof and modifications, needs to sign the transaction digitally.

Credereum uses immutable trusted storage, facilitating any data fed into the trusted storage

becomes impossible to modify or alter retroactively. The trusted storage provides confidence and

assurance to the client for stored data non-alteration and stabilization. The pg credereum uses

an Ethereum smart contract as trusted storage. Credereum being a blockchain application, also

has to overcome the familiar double-spending problem. A situation may arise where multiple

forks of the database are maintained by the malevolent database administrator and return

output from different forks to different users, producing fraudulent results. Credereum creates

a block digest and is uploaded to the trusted storage periodically with public read access to

tackle this situation.

In Credereum, the transactions fired by multiple clients to PostgreSQL processes parallelly

under Read Committed (RC) isolation level. Hence, two transactions modifying distinct rows

can parallelly access the lock and process in Postgres and the Credereum engine. However, if

two transactions A and B, want to alter the same rows, only one transaction, say A, is granted

the lock, and the other transaction B waits for the lock release. Transaction A first process in

the Postgres engine, and then in the Credereum engine. Once transaction A commits/aborts,

the lock gets released, and the waiting transaction B starts processing.

2.2 Credereum Internals

The following are the underlying internal logic retained within Credereum:

1. Digitally-signed DBMS: Whenever a client/user fires a transaction to the Credereum,

a Merkle proof is generated by the server. The user verifies the modification and evidence,

and if found correct, digitally signs the transaction. The server verifies the digital signa-

ture, and if found valid, commits the transaction. A commit acknowledgment further gets

sent as a receipt to the client. Figure 2.1 shows multiple users signing their respective

transactions and receiving an acknowledgment. With the digital signature submission,

the client agrees to the current database state, resulting from its modifications.

2. Merkle Tree Formation: Each row of a relation in the database gets represented by a

unique differentiator, say key-id, defined as the concatenation of relation name (varying
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Figure 2.1: Digitally-signed DBMS

length) and 64-bit row identifier. A limitation of having at max 264 rows within a relation,

set as a drawback to the Credereum. A set of rows modified by the transaction fired by

the client results in the generation of a group of key-id values. These key-id values

are used to form a transaction/block Merkle tree based on the previous BMT structure.

Figure 2.2 shows a Merkle tree developed using rows of Table 1, 2, 3, and 4. The Merkle

tree leaf nodes (green nodes) represent the modified rows. Therefore, in general, for a

leaf node of the Merkle tree, the key/node-key is the key-id. Now, regarding Table 1,

three rows are shown being changed, i.e., Row 1, Row 2, and Row 3. Let’s say Row 1,

Row 2, and Row 3 of Table 1 have the following key-id representations:

(a) Row 1: ...000000000000000000000000000000000000000000000000000000000011

(b) Row 2: ...000000000000000000000000000000000000000000000000000000001010

(c) Row 3: ...000000000000000000000000000000000000000000000000000000001011

For the above, the initial bits representing Table 1 being the same; only the 64-bit row

identifier of each Row 1, Row 2, and Row 3 is displayed. Row 1 differentiates Row 2 and

Row 3 early at the 4th right bit, hence forming a level below compared to Row 2 and
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Figure 2.2: Merkle key presentation

Row 3 in the Merkle tree formation. Row 2 and Row 3 having more common bits get

differentiated at the last right bit. Node A, being the parent node of Row 2 and Row 3,

has key as bit-strings common to Row 2 and Row 3 key-ids. Node B, being the parent

node of Row 1 and node A, has key as bit-strings common to Row 1 and node A keys.

3. Merkle Tree Hash Calculation: In Credereum, for every transaction fired, a TMT gets

developed. At unit intervals, the block process begins and creates a BMT by accounting

for each modification, being performed by all the committed transactions within the

block period. For each TMT and BMT, the Merkle tree RHV gets calculated. The TMT

RHV and BMT RHV are then used in the transaction-hash and block-hash value

computation, respectively. The leaf nodes of the TMT and BMT have node-value data

associated with them. Figure 2.3 shows a Merkle tree with leaf nodes (green nodes) and

internal nodes (red nodes). Each leaf node’s node-hash is computed by concatenating the

row key-id (i.e., key) and associated node-value and further passing to the SHA-256

hash function. Each internal node’s node-hash gets found by concatenating the child’s

key value and the returned node-hash’s of each child and forwarding to the SHA-256

hash function. With each node’s hashes stored, the Merkle tree’s root node node-hash
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Figure 2.3: Credereum Merkle hash computation

summarizes the complete database contents.

4. Merkle Proof Generation: When a user fires a transaction, it results in a set of

updated/inserted/deleted rows. For each row modification, the server needs to provide

proof for the old and new value of the modified row; hence comes the Merkle proof concept.

For the provenance proof requests, the server needs to show all the modifications made

to a particular row from the Genesis block along with proof. The Merkle proof provides

the validity and evidence of one specific value represented by a Merkle tree’s leaf node

without revealing the entire Merkle tree’s contents. The Merkle proof gets formed by

considering the sub-tree of the Merkle tree that contains the leaf nodes to be proven

(focused leaf node), the path from the leaves to the root node, and the supporting nodes

(with sibling’s aide, help calculate and verify parent node node-hash). Figure 2.4 shows

a Merkle tree with focused leaf nodes (grey nodes), path nodes (purple nodes), and the

supporting nodes (blue nodes). Only for the focused leaf nodes, the key-id (i.e., key) and

associated node-value get displayed, and for the rest nodes, only their key and node-

hash values are shown. Using the provided data, the user can compute the leaf node

node-hash and recursively Merkle tree RHV using node-hash’s of supporting nodes
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Figure 2.4: Merkle proof

and verifying with the path nodes. The Merkle tree RHV generated gets used to compute

block-hash value, which the user can further confirm from the trusted storage. If the

match occurs, then the leaf node’s node-value shown can be trusted to be valid.

5. Trusted Storage: In Credereum, whenever a block forms, a block-hash gets calcu-

lated. This block-hash summarizes each information present within a block. If any

fraudulent event happens within a block, then the block-hash value changes. In Cred-

ereum, the block-hash value calculated is archived to the trusted storage, which clients

can read and rely upon. With being immutable, the trusted storage assures clients with

any deletion/modification to the record/digest put forward to it. Due to this cause, any

retroactive/malevolent database contents alteration can be easily identified, thanks to the

trustworthy storage. Further, the application of trusted storage in Credereum helps solve

the double-spending problem. Credereum uses Ethereum smart contract as the trusted

storage to store all the block-hash digest values.
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Figure 2.5: Credereum workflow

2.3 Architecture

In Credereum, whenever a client fires a transaction X, the transaction first processes in the

Postgres engine with the Read Committed isolation level. Figure 2.5 shows that after Postgres

processing, the control gets handed over to the Credereum engine. In the Credereum engine, the

transaction X process first builds its TMT depending upon the previous block BMT structure,

and using recursion, the TMT RHV gets calculated.

For example, using Figure 2.6, we display the TMT formation process to make the notions

concrete. Dissecting transaction X fired by the client in the current block (B), the transaction

constructs a TMT (Figure 2.6, part ‘b’) referring to the existing BMT structure of the previous

block (Figure 2.6, part ‘a’). The TMT leaf nodes [D, I, J] represent rows updated [D, I] and

inserted [J] by transaction X in the database (green nodes), whereas the remaining leaves, called

‘hanging nodes’ (yellow nodes), are virtual and shows the connections to the unmodified parts

of the database via linkages to the previous BMT. The current block TMT hanging nodes,

i.e., node 1, node 2, node 3, node 4, node 5, and node 6, are the nodes of the previous block

BMT, i.e., node 1, node ‘C’, node ‘E’, node 4, node ‘H’, and node 6, respectively. Additionally,
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Figure 2.6: Credereum Merkle tree

from Figure 2.6, the dashed arrow helps explain the previous block BMT node, portrayed as a

hanging node in TMT. The TMT’s leaf nodes, along with the hanging nodes, are incorporated

in the RHV calculation of the TMT.

For modifications made by transaction X, an old Merkle proof and new Merkle proof get

generated for the client. Figure 2.7 shows the old Merkle proof (left tree) and new Merkle

proof (right tree), say generated by the server for transaction X. The old Merkle proof presents

the data values of a row before modification with evidence and is verifiable. The new Merkle

proof shows the latest data values after changes made by transaction X. The left tree contains

modified leaf nodes (grey nodes), path nodes from leaf to root nodes (purple nodes), and

supporting nodes (blue nodes). Similarly, the right tree contains new altered leaf nodes (green

nodes), altered internal nodes (red nodes), and supporting nodes (blue nodes). Conceptually,

the supporting nodes comprise internal nodes, leaf nodes, and the hanging nodes of a Merkle

tree. Now, except for modified leaf nodes (grey nodes) and new altered leaf nodes (green nodes),

for each node, only the node-key, and node-hash values are shown, which helps compute the

RHV. While for the modified leaf nodes (grey nodes) and new altered leaf nodes (green nodes),

key-id (i.e., node-key) and associated node-value are shown. Hence, the user can check
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Figure 2.7: Credereum Merkle proof generation

whether the transaction fired by him resulted in changes from the modified leaf node to the

respective new altered leaf node.

Further, the user can compute the block-hash value by calculating the Merkle tree RHV

of old Merkle proof and compare it with the trusted storage. The client, after modification’s

verification, authenticates the transaction by signing with its digital signature. The digital

signature is made by concatenating the old Merkle proof (left tree) RHV and new Merkle proof

(right tree) RHV and signing it using the private key. The server verifies the signature, and if

valid, computes the transaction-hash and commits the transaction, else abort.

In Figure 2.8, we can see that the transaction-hash is computed concatenating the pre-

vious block BMT RHV, current TMT RHV, public key, and the digital signature. At unit

intervals, the block formation process waits for all the transactions within the block period

to commit. The block process then begins collecting all the rows modified by all the trans-

actions within the block. A BMT is developed, depending upon the previous block BMT

structure, and the current block BMT RHV gets calculated. Further, as presented in the Fig-

ure 2.8, the block-hash value is computed considering the previous block block-hash value,

all constituent transaction’s transaction-hash value, and the current block BMT RHV. The
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Figure 2.8: Credereum block creation

inclusion of the previous block block-hash value in the current block block-hash value helps

establish the ledger chain. The current block-hash value calculated gets archived to the

trusted storage.

2.4 Blockchain Properties

The following are a set of blockchain properties owned by Credereum:

1. Immutability: In Credereum, whenever a fraudulent person succeeds in modifying trans-

action T details of block B, then the TMT RHV of transaction T will change. The

transaction T TMT RHV is accounted in transaction T transaction-hash value cal-

culation. Hence, with any transaction T changes, the TMT RHV and transaction T

transaction-hash value gets changed. Further transaction-hash value of transac-

tion T is accounted for block B block-hash calculation. Thus, with any changes in

transaction T transaction-hash value, the block B block-hash value will vary. Now,

the block B+1 block-hash value accounts for the previous block B block-hash value.

Hence, with changes in block B block-hash value, the block-hash value of block B+1

26



will change. Similarly, all the forward blocks’ block-hash value needs to be re-calculated

to validate the ledger. Let’s say the fraudulent person succeeds in validating the chain

by re-calculating the block-hash digest of all the forward blocks. However, the newly

calculated block-hash digest of block B and all the successive blocks will differ from the

stored original block-hash digest at the immutable trusted storage. Hence, any retroac-

tive modification of the database contents by a fraudulent person can be easily detected.

Thus, Credereum ensures and possesses the immutability property.

2. Verification: In Credereum, whenever a client fires a transaction to the Postgres engine,

an old data value proof and the associated new data value proof is being shown to the

client. The previous block BMT is acknowledged for the old data value proof, and for

the new data value proof, the current transaction TMT gets displayed. Credereum also

facilitates the provenance query, through which the client can check the modifications of

a row/set-of-rows from the Genesis block. The client verifies the above proofs and checks

whether the fired transaction’s transmutation is correct or not. If the change made is

valid, the client validates the transaction by signing with his digital signature. Thus,

Credereum maintains the verification property.

3. Authentication: The transaction fired by a client in Credereum needs to be authenti-

cated, using the client’s digital signature to commit the transaction. After verification of

old and new data proof, the client digitally signs the value obtained by concatenating old

data proof RHV and the new data proof RHV, using its private key, and submits it to

the server. The server verifies the digital signature, and if valid, commits the transaction;

else, it aborts the transaction. Hence, Credereum holds the authentication property.

4. Non-repudiation: In Credereum, a client submits his digital signature to authenticate

the transaction. Upon successfully verifying the signature, the submitted digital signature

is accounted for calculating the transaction-hash value of transaction T and is stored.

Finally, the transaction commits. Hence, a situation can never occur where a client can

deny the authorship or the validity of the transaction fired by him. Therefore, Credereum

retains the non-repudiation property.

2.5 RC Isolation Level: Safe

In Read Committed (RC) mode, if multiple transactions attempt to modify the same row of a

table simultaneously, only one transaction acquires the lock, and the rest transactions wait for
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the lock access. The waiting transactions get lock access sequentially, each after lock release.

In Read Committed mode, whenever a transaction gets processed, in Credereum, an old

Merkle proof and new Merkle proof are generated to the client for verification. With the help

of old data of modified rows, a client can check whether the fired transaction results in modified

rows’ new state. If some issue occurs, the client can always abort the transaction after verifying

the old and new Merkle proof and will not sign the transaction. Hence, the control lies in the

client’s hand to specify whether the transaction fired by him has been correctly processed or

not. If not, then the client can always abort the transaction and fire a new one. Else, the

client can digitally sign the transaction and submit the digital signature to the server. The

server verifies the digital signature, and if found valid, commits the transaction. Hence, the

Credereum property of showing old and new data proof to the client prevents anomalies, if any,

occur through the Read Committed isolation level.

2.6 Merkle Proof and Minimal Disclosure

In Credereum, whenever a client fires a transaction, a Merkle proof is generated, namely old

Merkle proof and new Merkle proof, providing evidence for the old data values and the new

modified data values, respectively. However, while generating the old Merkle proof, the client

is only shown the details corresponding to the modifications made by his transaction. A client

can’t see the details of all the other committed transactions used in the Merkle tree formation

or the ones stored in the database. Hence, other clients’ whole data set is not shown in general

while generating the old Merkle proof.

Let’s say the client fires a transaction T, and on successful commit will be considered in

block B’s block formation. The transaction T, say it modifies rows

r1, r2, r3, r4, ..., rm

and a subset of these rows say

r1, r2, r3

were being modified recently at block B-k, where 1 ≤ k ≤ B-1. Let the complete set of rows

being modified by all the transactions at block B-k be

r1, r2, r3, r
′

1, r
′

2, r
′

3, r
′

4, ..., r
′

n
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rows. Hence, while generating the old data proof for transaction T of block B, only the modified

row values

r1, r2, r3

of block B-k are shown to the client. The rest row values

r
′

1, r
′

2, r
′

3, r
′

4, ..., r
′

n

modified at block B-k is kept hidden, and if required (supporting node), only the node-hash

value is shown. Thus, for the old Merkle proof, the output shown constitutes the key-id (i.e.,

node-key) and node-value of the leaf nodes of BMT corresponding to rows

r1, r2, r3

and only the node-key and node-hash values for the path nodes (leading to the root node)

and the supporting nodes. Hence, for generating the old Merkle proof, only a subset of modified

row values of block B-k is shown, not the complete set. Hence minimal disclosure of other client’s

data is being made for generating the old Merkle proof.

Suppose the transaction T of block B fired by the client modifies key-id’s [A, D, F, H].

Let’s say the key-id’s [A, D] was last modified in block B-x (k=x, x 6=1), and key-id’s [F, H]

was last modified in block B-1 (k=1). The section ‘a’ and section ‘b’ of Figure 2.9 shows the

BMT of block B-x (k=x, x 6=1) and BMT of block B-1 (k=1), with the entire set of modifications

made within the blocks. The BMT of block B-x shows key-ids [A, B, C, D, E] being modified

in block B-x and displays the hanging nodes. The BMT of block B-1 shows key-ids [F, G,

H] being modified in block B-1 and displays the hanging nodes. Node 1 of BMT of block B-1

being hanging node links to node 1 of BMT of block B-x.

The transaction T of block B, since modifies rows recently being modified at block B-x and

block B-1, the entire BMT entries of block B-x and block B-1 are not shown to generate the old

Merkle proof. Figure 2.10 details the old Merkle proof being shown to the client for the fired

transaction T at block B. Figure 2.10 shows that for only key-ids [A, D, F, H] the entire details

(green nodes) containing associated node-value are shown. For the rest, internal nodes, and

the supporting nodes, the node-key and node-hash gets shown.

Hence, a minimal disclosure of data values gets made in generating the old Merkle proof. To

check the old Merkle proof’s correctness, the user can compute the Merkle tree RHV and block

B-1 block-hash value. The block-hash value calculated can be matched with the database

and the trusted storage.
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Figure 2.9: Credereum block BMT

Figure 2.10: Credereum old Merkle proof

30



For the new Merkle proof, the TMT of transaction T gets displayed to the client. The leaf

nodes of TMT of transaction T show the new altered values. The client verifies whether the

transaction fired by him results in modifying old values to the current values. If the modification

is found correct, the client signs a digital signature and forwards it to the server.

Considering provenance queries, let’s say transaction T’ of block B-k modified the rows

r1, r2, r3, r
′

1, r
′

2, r
′

3, r
′

4, ..., r
′

x

where x≤n. Hence, while generating the provenance proof for rows

r1, r2, r3

modified by transaction T of block B, only the relevant portion of TMT of transaction T’ of

block B-k is displayed for verification purposes. The output shown constitutes the key-id (i.e.,

node-key) bit-strings and node-value of the leaf nodes of transaction T’ TMT corresponding

to the rows

r1, r2, r3

and, only the node-key bit-strings and node-hash value for the path nodes (leading to the

root node) and supporting nodes. Hence, while generating the provenance proof, the common

modified row-set respective node-value is revealed, and the disjoint rest row-set respective

node-value is kept hidden. The same scenario occurs while generating BMT of block B-k

for showing the provenance proof. The key-id (i.e., node-key) bit-strings and node-value

associated are shown only for the common modified row-set (leaf nodes), while for the path

nodes, and supporting nodes, node-key bit-strings and node-hash values get shown. Hence,

minimal disclosure of other client’s data gets made while generating provenance proof. The

provenance handling by Credereum has been explained in Chapter 7.

2.7 Handling Double-spending

In Credereum, as shown in Figure 2.11, a situation may occur where withholding multiple

database forks, the database server/administrator may return responses to different queries

fired by the clients from different forks. For prevention from such activities, Credereum creates

a cryptographic block-hash digest per block as a representation of the modified database.

Further, the immutable trusted storage repositories the computed block-hash digest at peri-
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Figure 2.11: Double-spending problem

odic intervals. With feeding done to the trusted storage, the client can remain assured of the

non-modification to the stored digest.

In Credereum, whenever a client fires a transaction T for block B to the Postgres engine,

an old Merkle proof and new Merkle proof is generated by the server to the client, as shown

in Figure 2.12. The old Merkle proof is built based upon the previous block B-1 BMT. The

validity of the old Merkle proof, shown by the server, can be obtained by calculating the block

B-1 block-hash digest using the displayed block B-1 BMT RHV. The client can compare the

computed block-hash digest with the stored digest at the trusted storage. If a match occurs,

then the old Merkle proof shown by the server to the client is valid, and hence client can further

do the verification, and authentication step, as shown in the Figure 2.12. Thus, the immutable

property of the trusted storage helps solve the double-spending problem in Credereum.

2.8 Drawbacks

Credereum, a permissioned blockchain platform, provides essential properties of immutability,

verification, authentication, and non-repudiation. However, Credereum, being centralized, has

following downsides:
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Figure 2.12: Solving double-spending problem using trusted storage

1. If the client fires a transaction in the blockchain network, the transaction gets verified by

all the servers connected in a decentralized environment. The servers confirm whether the

transaction is correctly processed or not and if found valid, is included in the blockchain

ledger. However, Credereum currently being centralized whenever a client fires a transac-

tion to the server, the server, after database modification, needs to prove the old values

and the new values. The client has to verify the proof and check for the authentication of

the old data values shown. The server generating evidence and the client-end verification

can consume significant time.

2. In a blockchain network, whenever a block gets constructed, multiple servers come to a

consensus on whether the block formed is valid/invalid. If the block formed is agreed

by maximum, then the block is added to the ledger and is made public. However, in

Credereum, whenever the server forms a block by creating the BMT and calculating BMT

RHV and block-hash value, the BMT details are kept hidden from the clients. Hence,

the client relies on the server for the correctness of the current block BMT formation.

Due to this cause, the server can perform malicious activities (section 3.2.1.1) that will

remain unnoticed to the clients.
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3. Transparency being a key factor for the blockchain network, the transactions fired are

viewable to each node present in the system. Every modification made in the blockchain

network is noticeable, providing more resistance to malicious activities, and makes system

concrete. Comparatively, in Credereum, such transparency is avoided. The transaction

fired by client A remains unnoticed by another client. Hence, a client doesn’t know

what transaction modifications are involved in the current block BMT formation. Due to

opaqueness in the committed transaction details in Credereum, the clients can’t perform

the per-block BMT verification. Hence, enabling transparency and holding consensus

become necessary at per-transaction and per-block level in Credereum.

4. The decentralization of the blockchain network makes it less prone to failure and shut

down. Since multiple servers are connected in a blockchain network, even if a server

fails, the rest servers can handle the transactions and keep the blockchain network active.

However, Credereum, being centralized, is entirely dependent on one server. If the server

fails, no client will be able to process any transaction, and the system will halt.

2.9 Summary

Credereum is a blockchain-based system designed on top of the PostgreSQL database. For

every transaction fired by the user, the server builds proof for each modification using Merkle

trees. The client verifies the evidence and checks the modified data’s correctness to confirm no

data tampering was initiated, and finally authenticates the transaction. The digital signature

submission signifies the client’s agreement to the current database state resulting from his

previous actions. Further, at periodic intervals, the block block-hash value is computed,

which summarizes the entire modification made within the block and gets fed into the trusted

storage. Also, the Credereum handles the provenance queries raised by the client and generates

the provenance proof. Finally, Credereum having enriching blockchain features has certain

drawbacks compared to a general blockchain network.
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Chapter 3

Limitations and Proposal

The chapter explains the functionality limitation present within Credereum and also stud-

ies its performance compared to PostgreSQL. The functional insufficiency led us to explore

the Credereum attack endurance, which further motivated to design SecCred. The per-

formance comparison details the Credereum throughput and provides summarized knowl-

edge of the methodology involved to boost the performance. In particular, ProgCred,

PerfCredA, and PerfCredB seeking performance improvements are addressed.

3.1 Introduction

Credereum, possessing enriching features (section 2.2) and blockchain properties (section 2.4),

had certain functional limitations (section 2.8) that are being researched and improved. With

the hidden full BMT details, the client can’t verify the whole BMT formed by the server, which

weakens the system’s resistance towards malicious activities. Despite showing the old Merkle

proof, new Merkle proof, and provenance proof to the client for a queried row R, the system

gets prone to fraudulent exercises. Furthermore, SecCred retaining the same architecture, and

with additional functionality and variations in the TMT RHV/BMT RHV computation, has

been designed to address this issue. Credereum on comparison with PostgreSQL had orders of

magnitude dip in the transaction throughput. The reason behind such poor performance has

been studied and explained, with a few being TMT/BMT formation, TMT RHV/BMT RHV

computation, waiting for lock access, etc. The programming and algorithmic improvements were

made to uplift the performance. ProgCred deal with programming modifications, moreover,

PerfCredA/PerfCredB deals with the algorithmic changes.
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3.2 Functional Limitation

The Credereum, despite owning enriching features, for example, TMT/BMT formation, usage

of trusted storage to support immutability, has certain functional limitations that are needed

to be addressed to make the system more concrete towards malicious attacks. With the hidden

complete BMT details, the server can perform fraudulent actions to destroy the blockchain

ledger, and the client remains unaware of it. With the growing timeline and the ledger invalid,

the TMT/BMT RHV computation for subsequent blocks gets computed incorrectly, and the

fraudulence disseminates ahead. Furthermore, in Credereum, the clients could know the mod-

ification history for a row/set-of-rows, using the provenance query functionality. But, certain

search space optimization was required to avoid redundant information and its processing in

the provenance query. Additionally, the unique indexing constraint in Credereum prevents mul-

tiple transactions within the same block from modifying a particular row, which can be further

researched to be relaxed. The functionality limitations are addressed in detail in section 3.2.1

to section 3.2.3.

3.2.1 Merkle Tree Display

Credereum, for every transaction fired, generates an old Merkle proof and the new Merkle proof

to the clients. The old Merkle proof shows the old row value of the modified row key-id’s, and

the new Merkle proof displays the respective modified new row value. The client, post verifying

the proof’s needs to sign the transaction digitally. Credereum, at a periodic interval, forms

the block B BMT (say), aggregating all the modifications made by the transactions within the

block period. The BMT RHV and block-hash are computed and gets stored in the database

and trusted storage.

In Credereum, once block B gets built, the clients cannot verify the accounted rows in the

block B BMT formation. Using the provenance query, client A of block B can investigate

whether or not the respective modified rows have been considered for block B BMT formation.

But, since client A does not know the rows modified by the other transactions within block B,

client A can easily get tricked for any malicious activity in the BMT creation. In Credereum, the

client only has transaction information from the public credereum tx log table. The next

section, 3.2.1.1, describes a simple scenario in Credereum, where the server performs malicious

activity in BMT formation, which remains unacknowledged to the clients. Additionally, with

the stated scenario, the reason behind the provenance query displaying each block detail, despite

whether or no modifications to the queried row is present, has been addressed.
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Figure 3.1: Block 1 and Block 2 BMT

3.2.1.1 Malicious Attack

With the hidden complete BMT details, the section details a server performed malevolent

action, via which the server gets successful in exercising fraudulence by destroying the ledger.

Let, for a BMT shown, we have:

1. The green nodes represent the new modified rows by the transactions within the block.

2. The red nodes represent the BMT internal nodes.

3. The yellow nodes represent the hanging nodes of the BMT.

4. The sky-blue node represents the malicious node of the BMT.

The following explains the malicious attack performed, block-by-block:

1. Block 1 BMT: In block 1, let’s say a set of transactions arrive and modified distinct

row key-ids [1, 2, 3, 5, 6, 7]. After the block interval, the server forms a block 1 BMT

using the six distinct modified row key-ids, as shown in the section ‘a’ of Figure 3.1.

The block 1 BMT has no previous BMT to be dependent upon; hence it possesses no
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Figure 3.2: Block 3 BMT

hanging nodes. The server computes the BMT RHV and block-hash value, and feeds

the database and the trusted storage. Considering nodes 6 and 7 of block 1 BMT, the

parent node’s node-hash computed be ‘a’, as shown. Let the modified row 7, new row

value be 1000, and thus, the block 1 BMT node 7 has node-value as 1000.

2. Block 2 BMT: After block 1 formation, the set of rows modified by transactions gets

accounted for in the block 2 formation. Let’s say the transactions in block 2 modify

rows with key-ids [2, 3, 5, 7]. The server, after the block interval, forms block 2 BMT

depending upon the previous block 1 BMT structure and using row key-ids [2, 3, 5, 7],

as shown in Figure 3.1, section ‘b’. The server computes the block 2 BMT RHV and

block-hash value and feeds into the database and the trusted storage. Let the row 7,

new row value be 500, and thus, the block 2 BMT node 7 has node-value as 500. In

block 2, BMT node 7 has been updated, so the node-hash value of the leaf node 7 and its

parent node gets changed. The parent node of node 7, having node-hash as ‘a’ in BMT

of block 1, now gets changed to node-hash as ‘b’ in BMT of block 2, shown in Figure

3.1. The sibling hanging node of node 7 in block 2 BMT, denoted as node x, points to

node 6 of BMT block 1, and thus their node-hash remains identical.
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3. Block 3 BMT: The block 3 accounts, the set of rows being modified by the transaction

after block 2 gets built. In block 3, say the transactions modified rows [1, 3, 5], and

at interval end, the server forms block 3 BMT depending upon block 2 BMT structure

and using the row key-ids [1, 3, 5], displayed in Figure 3.2. In block 3, the server also

maliciously updates the block 3 BMT leaf node 7 with node-value as defined in node

7 of block 1 BMT (section ‘a’ of Figure 3.1), i.e., with node-value as 1000. However,

the server doesn’t modify the key-id 7 row value in the database, and it remains 500.

The sibling hanging node of node 7, i.e., node x being unmodified, points to node 6 of

block 1 BMT. Now, the node-hash value of the parent node of node 7 in block 1 and

block 3 BMT remains the same, i.e., ‘a’. The server computes the block 3 BMT RHV

and block-hash value and feeds into the database and the trusted storage. Once the

block 3 block-hash value gets fed into the trusted storage, the clients verify whether the

respective modified row key-ids were being included in the BMT formation using the

provenance query and get satisfied. However, being unknown of the entire rows modified

by all the transactions in block 3, the clients can’t identify the server’s malicious activity

in including row key-id 7 for the block 3 BMT creation. The server with false BMT

has computed false BMT RHV and block-hash and has archived it to the immutable

trusted storage.

With the growing timeline, each TMT/BMT of future blocks gets formed depending upon

the previous block BMT structure, and due to malevolence in block 3, the false TMT RHV

and false BMT RHV gets computed for each ahead blocks. The obtained block-hash with

being incorrect gets stored into the immutable trusted storage. Now, say at block B+n (where

n>>>3), if a client queries for row key-id 7 value from the database, the server will show the

value as 1000, hiding the real database row value of 500. The client further fires a transaction to

modify row key-id 7 after block 3. The server will generate an old Merkle proof showing block

3 BMT node 7 details (having node-value of 1000). Further, the client verifies the old Merkle

proof BMT RHV and notices it matching with the database. Seeking evidence valid, the client

authenticates by signing with the digital signature, and the server commits the transaction. In

Credereum, a client doesn’t need to verify the provenance before signing the transaction. The

client needs to merely substantiate the old and new Merkle proof, showing old and new data

values for the modifications made, thus leading to an attack by the server that went successful.

Further, as stated previously, the entire BMT/TMT details of a block doesn’t get displayed

in provenance. Now, if the client asks for the provenance of key-id 7, and if each block details

were not mandatory to be displayed, the server would only show the related TMT and BMT

details of block 1, having row key-id 7 value as 1000. The server will hide the row key-id
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7 modification in block 2, and the client remains unacknowledged about it. Hence, each block

detail is mandatorily displayed in provenance, proving the modifications made or not to the

queried rows.

With provenance, even though the client will get to know the aforementioned malicious

activity, the server successfully destroyed the ledger. To re-calculate the transaction-hash,

each client needs to re-submit the digital signature for all forward block transactions with

vexatious verification. With the new TMT/BMT RHV, the trusted storage being immutable,

the stored value can’t get updated even if re-calculated. Now, likewise, say the server has

done malevolent actions to multiple rows, with low hit probability, then the newly computed

ledger may still be invalid, and the iteration continues. Without the BMT’s complete verifica-

tion, the client will always be in a dubious stage with the ledger’s correctness in a centralized

environment.

3.2.1.2 SecCred: Exhibit Merkle Data

In Credereum, a client remains incapable to verify the correctness of the BMT formed by

the server due to the absence of per-block transaction modification information. To tackle

this situation, SecCred (section 4.2) designed, retains the Credereum architecture but includes

changes in the node-hash calculation methodology of TMT/BMT nodes and supplements

functionality to generate the TMT/BMT details for verification in SHA-256 hash forms. Due

hash form, the verifying clients remain unknown about the row key-id’s modified and its

associated row value. Using the transaction’s details output, the client can compute the TMT

RHV and transaction-hash value and match with the database. The BMT shown can

be verified for accounting for each modification made by the transactions within the block and

computes BMT RHV and block-hash value. The computed block-hash value gets equalized

with the database and the trusted storage. Hence, with the TMT/BMT display in hash forms,

any client can detect malicious activities. SecCred maintains entire blockchain properties held

by Credereum and handles provenance.

3.2.2 Provenance Space

The clients in Credereum can query the modification history of a row/set-of-rows, displaying

and proving the series of modifications being made by exploring from the Genesis block. The

provenance query design helps the client verify whether the current state of a row R is the

resultant of past modifications and gives add-on support to the old Merkle proof results revealing
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Figure 3.3: Block B BMT

the row R old values. The clients in Credereum can query for any row, and the server generates

the provenance proof for the clients to verify. Hence, the displaying of provenance proof signifies

beneficial functionality provided by the Credereum. The provenance query in Credereum gets

handled by the credereum merkle proof() function [22], with only input the list of row

key-ids, for which the provenance has been desired. However, with the growing timeline and

the ever-increasing number of block’s, the client if had already verified the modification history

for a specific row R from the Genesis block till block X, then the client might not want to

re-verify the modification history for row R, starting from the Genesis block. With time, the

provenance search space increases, and thus the provenance proof result’s generation engrosses

time by generating the same results for row R up till block X from the Genesis block. The

client verification also becomes cumbersome and is undesirable. Therefore, we needed specific

optimizations in the search space and result generation for the provenance query. Moreover,

the provenance engine designed for Credereum proposed versions addresses and overcomes the

above-explained scenario.

3.2.3 Unique Indexing

In Credereum, for every relation A, the instance/row R has a fixed unique key-id and is

being generated concatenating the relation name A bit-strings with row R identity (primary
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key) bit-strings (ref. 2). In the TMT/BMT formation, each leaf node represents the modified

row key-id by-the-transaction/within-the-block. For the set of transactions modifying unique

row key-ids, say [1, 3, 5, 7, 10, 12, 14] in block B, the BMT shown in Figure 3.3 is created.

If multiple same row key-ids, say 5, are allowed to modify by-the-transaction/within-the-

block, then a TMT/BMT leaf node can’t represent multiple modifications to row 5 by-the-

transaction/within-the-block. Hence, each node [1, 3, 5, 7, 10, 12, 14] of BMT represents a

single modification made to the respective rows [1, 3, 5, 7, 10, 12, 14] in block B. To prevent

multiple alterations to the same row R, Credereum adds a constraint that prohibits modifying

R more than once by-the-transaction/within-the-block. Due to this constraint, if ‘n’ clients are

firing to alter a particular row R within a block, only one transaction is allowed to commit, and

the rest gets aborted. The failed client’s competing with the rest needs to re-fire the transaction

with a lower likelihood of getting committed.

3.3 Performance Limitation

Credereum on being a blockchain platform, the performance figures play an essential part in

its real-world adoption. This section deals with comparing the performance of Credereum with

PostgreSQL. With extra work performed in Credereum after Postgres processing, a drop in

transaction rate was reasonable, but due to heavy pitfall intensity noticed in throughput, we

explored the principal reasons behind such behavior. Further, methodologies focusing on perfor-

mance boost via programming and algorithmic modifications have additionally been addressed.

3.3.1 Performance Evaluation

Figure 3.4 compares the performance of PostgreSQL with Credereum. The experimentation en-

vironment consists of 10 terminals firing transactions to a PG-Tuned PostgreSQL 10.5 database,

where each transaction at max modifies 25-rows of the relation with hundred thousand entries.

The transaction throughput or performance is measured in tpe, which stands for transactions-

per-epoch. Here, epoch length is considered 10 minutes. From the figure, when Credereum

gets compared with PostgreSQL, a heavy – approx 3 orders magnitude dip! in the performance

can be witnessed. Further, the Credereum only with an optimal computational load of the

heavy-duty blockchain semantics and no transaction wait-time has been represented as Cred-

ereum UpperBound (Credereum UB). The figure depicts a high – approx 2 orders magnitude

dip! in the performance of Credereum UB compared to PostgreSQL. With the performance
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Figure 3.4: PostgreSQL v/s Credereum (TPE)

figures shown for Credereum, its utility in a real-world environment becomes questionable.

Hence, significant research has been conducted focusing on boosting the Credereum system’s

throughput performance.

3.3.2 Credereum Shortcomings

The Credereum retained blockchain properties (section 2.4) including immutability, verification,

authentication and non-repudiation. However, the addition of these properties to PostgreSQL

via Credereum resulted in heavy orders of the system’s performance degradation. With the

Credereum engine being examined, the primary reasons for the performance degradation were

analyzed.

The following are the set of compelling reasons behind the performance dip in Credereum:

1. In Credereum, for every transaction fired by the client, the transaction process after Post-

gres processing is handed over to the Credereum. The transaction process in the Cred-

ereum first needs to acquire a lock on the credereum block table in ROW-EXCLUSIVE-

MODE. Since ROW-EXCLUSIVE-MODE doesn’t conflict with self, multiple transactions can
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process parallelly after obtaining the lock. However, at the unit intervals, the block

process arrives and attempts to procure a lock on the credereum block table in

SHARE-ROW-EXCLUSIVE-MODE. Now, SHARE-ROW-EXCLUSIVE-MODE conflicts with the

ROW-EXCLUSIVE-MODE and self, signifying the block process works in an isolated man-

ner, with no parallel running transaction or other block processes. Hence, with the block

process being active, the transaction process needs to wait for the block process to commit

and release the lock. The block process collects and forms a block using the modifications

made by the committed-transactions within the block interval, which consumes time.

During this time duration, the transaction process waits for the lock access and doesn’t

get committed or processed. This forms a significant reason, leading to a pitfall in the

transaction throughput.

2. In Credereum, after a transaction acquires ROW-EXCLUSIVE-MODE lock on the cred-

ereum block table, the server generates key-id for the all the rows modified and

forms a TMT, depending upon the structure of the previous block BMT. With TMT

created, the server finds node-hash of each node and computes TMT RHV. The TMT

RHV summarizes the modifications made by the transaction. The TMT creation and

TMT RHV calculation consume time, and this increases the overall computation cost.

With the increase in lock handing time by a transaction process, the waiting transac-

tions in the Read Committed isolation level need to wait longer, resulting in the pitfall

of committed-transactions compared to the PostgreSQL.

3. For every transaction fired in Credereum, the server generates a modification proof to the

client, displaying the row old values and the corresponding row new values. The row old

values get proved using the old Merkle proof, and the row new values are displayed using

the new Merkle proof. The old Merkle proof gets built considering the previous block

BMT, and for new Merkle proof, the current transaction TMT details are presented. The

old Merkle proof and new Merkle proof generation and display at per-transaction level

consumes time, leading to an increase in the transaction process’s execution time. The

increasing computation cost leads to the late lock release and pitfall in the committed-

transaction count.

4. For the aforementioned old Merkle proof and new Merkle proof generated by the server,

the client needs to verify the evidence. For verification, the client computes the old Merkle

proof BMT RHV and the new Merkle proof TMT RHV and matches it with the database.

If found equal, the client verifies each supporting node’s node-hash value of the BMT
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with the respective supporting node node-hash value from the TMT. The client further

checks for no free nodes (orphan nodes) in the BMT and TMT, and if found valid, verify

whether the modifications made to the row key-id’s from old data value to the new data

value is a resultant of the transaction fired. If the client is satisfied with the modifications

made, he creates a digital signature and submits it to the server. Thus, the verification

workload at the per-transaction level, consumes time and increases the computation cost.

With an increase in the transaction execution time, a transaction throughput drop gets

witnessed.

5. In Credereum, unique indexing (section 3.2.3) is being created, which avoids two transac-

tions modifying the same row key-id within a block. Hence, if transaction A allocated

to block B gets committed and has altered row X of table T, any future transactions

that modify the same row X of table T in block B interval will eventually get aborted.

The constraint also prevents a transaction from changing the same row key-id twice

within a block. Due to this unique indexing, transactions get aborted, leading to a fall in

committed transaction count.

3.3.3 Proposed Modifications

The Credereum, as illustrated, has orders of magnitude dip in the performance compared to

PostgreSQL, and a list of potential reasons behind possessing such behavior has been explained.

With the focus on uplifting the transaction throughput rate, programming and algorithmic

modifications were proposed for Credereum. The changes made need to retain the Credereum

supported blockchain properties (section 2.4) and shouldn’t violate any blockchain semantics.

Section 3.3.3.1 to 3.3.3.3 details a set of modifications being made to raise the performance.

3.3.3.1 ProgCred: Programming Modification

In Credereum, the functions written in SQL and C were investigated based on parameters,

like holding the maximum number of calls, and having higher execution time (or self-time)

per call. These functions were analyzed and further checked for optimization. The cred-

ereum longest prefix() function [21] initially written in SQL was improved with algorith-

mic changes and re-programmed in C. The modification made no blockchain semantics violation

and boosted the system’s performance. Additionally, ProgCred retains the improvement pro-

posed in SecCred (section 3.2.1.2).
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3.3.3.2 PerfCredA: Algorithmic Modification 1

PerfCredA deals with the first version, focusing on algorithmic modifications, and gets built con-

sidering the ProgCred engine. In ProgCred or earlier versions, a TMT is developed based upon

the previous block BMT structure whenever a client fires a transaction. The server generates

an old Merkle proof and new Merkle proof, proving the old and new data values. The Perf-

CredA relaxed this architecture by creating an autonomous TMT and further generating an old

Merkle proof and new Merkle proof. The TMT built accounts for each database modification,

i.e., UPDATE/INSERT/DELETE, being made by the transaction. The TMT RHV computed is

used in the transaction-hash value calculation. The relaxed architecture helped raise the

transaction throughput without violating any blockchain semantics. The provenance functions

were designed and re-written to support the provenance queries in PerfCredA.

3.3.3.3 PerfCredB: Algorithmic Modification 2

PerfCredB deals with an alternative and more radical approach by focusing on algorithmic

improvements to the ProgCred engine. In PerfCredB, for each transaction fired, the TMT

formation is left aside. Instead, using an iterative methodology, the MODIFICATION-HASH-

VALUE (MHV) is computed. The MHV accounts for each modification, i.e., UPDATE/IN-

SERT/DELETE made by the block’s transaction. An old Merkle proof and New-Row-Value

proof is generated, and further transaction-hash value gets computed. The MHV calculated

is accounted in the transaction-hash value computation. The PerfCredB relaxed architec-

ture uplifted the transaction throughput without violating any blockchain semantics. However,

new methodologies and provenance functions were designed to help support provenance proofs.

While the MHV computation approach, implemented in PerfCredB, delivers even more signifi-

cant performance benefits, a down-side is that there is information leakage in provenance proof

related to the number of rows updated by a transaction. However, since this leakage deals with

quantity and not identity, it is not expected to have profound security implications.

3.4 Pointed Queries

The Credereum, possessing enriching features, has certain shortcomings, with one being the

clients facing database visibility issues. With the transaction fired by clients, the server doesn’t

provide proof for the database state on which the transaction statement executes. The server

might use malicious database state D’ compared to the original database D and run the clients’

fired transactions on it. For the rows modified by the fired transaction in D’, the server only
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shows the old data values proof for the modified key-ids while generating the old Merkle proof.

The server never proffers evidence for the entire database state on which the transaction gets

executed. Hence fraudulent actions can be easily practiced by the server, and the clients get

tricked. The Credereum, being centralized, is designed to handle transactions where the client

focuses on modifying a particular row of a relation determined using its primary key (distinct).

With the whole database being highly infeasible for verification, a client in Credereum can’t

exercise transactions with single/multi-row modification using non-primary key attributes. The

client can fire multiple instructions/statements within a transaction in Credereum, where each

aims a specific row, determined by its primary key. For m instructions, m distinct row modifi-

cations are made.

3.5 Summary

In Credereum, the server keeps hidden the whole BMT information from the clients, due to

which the clients can’t verify the BMT created. With the help of a provenance query, a client

might confirm the inclusion of the respective modified row-set in the BMT formation but,

with lacking other transaction’s row modification information, the client can’t distinguish the

malicious activities if exercised. SecCred design helps overcome the scenario and strengthens

the systems’ resistance towards malevolent actions. The reason behind Credereum’s orders of

magnitude dip in transaction throughput has been addressed and explained. The programming

and algorithmic improvements proposed showed a positive impact in boosting the Credereum

systems’ performance.
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Chapter 4

Functional Improvement

The chapter deals with explaining the functionality advancements made to Credereum.

The revealing of the Merkle tree details to the users/clients and reducing the provenance

engine’s search space have been addressed. Methodology involving the display of Merkle

tree details gets introduced in the SecCred. The modifications were made without violating

blockchain semantics and retain blockchain properties held initially by the Credereum.

4.1 Introduction

Credereum, being a blockchain platform, has certain functional limitations that need to be

addressed to enhance security, system performance, and resistance to malicious activities. The

Merkle tree display gets handled to improve system security, and by which the clients can

verify the correctness of each block BMT formed. These prevent malicious activities that the

server can perform in the BMT formation, and without the Merkle tree display, it would have

remained unacknowledged to the clients. The Merkle display technique uses the SHA-256 hash

to display the TMT and BMT information, which can be verified and trusted by the clients.

The functionality improvement also includes the optimal execution of the provenance query

engine and is discussed later in this chapter.

4.2 SecCred: Exhibit Merkle Data

In Credereum, whenever a transaction/set-of-transactions gets committed within the current

block period, at intervals end, a block process begins. For any active uncommitted transaction

X that arrived before the block process, the block process needs to wait for the transaction X

to commit/abort. The active uncommitted transactions that appear after the block process
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will wait for the block process to commit and get accounted for in the next block formation.

The block process for the current block creates a BMT depending upon the previous block

BMT structure. The BMT formation accounts for each row modified by all the transactions

within the block. Once the block’s BMT gets developed, the BMT RHV and, subsequently,

block-hash value is computed.

In Credereum, the above block’s BMT formed does not get displayed to the user and is kept

hidden. Hence, the server can practice certain malicious activities in the BMT creation without

getting noticed, as explained in section 3.2.1.1. So, the user inherently trusts the server with

per block BMT formation.

A feature addition of displaying a block’s BMT and all the allocated transaction’s TMT in

the Credereum engine is performed by preserving privacy and using the SHA-256 hash. The

new Credereum design, with TMT and BMT display, is named as SecCred. In Credereum,

some unfreed pointers P, resulting in memory leaks, were also witnessed. In SecCred, those

pointers P were also freed and deallocated.

4.2.1 Merkle Tree: Hash Computation

In Credereum, a TMT and BMT are formed for a transaction process and a block process, re-

spectively, depending upon the previous block BMT structure. In SecCred, the TMT and BMT

structure formation remains the same as of Credereum. However, on Merkle tree formation,

the Merkle tree RHV calculation methodology in SecCred differs.

In Credereum for a given Merkle tree, either TMT or BMT, as shown in Figure 4.1, the

node-hash of each node (if not known), is computed as:

• hash(leaf node) = SHA256 (row key-id + ‘:’ + node-value)

• hash(internal node) = SHA256 (children-1 node-key + ‘:’ + node-hash of children-1 +

‘,’ + children-2 node-key + ‘:’ + node-hash of children-2)

In SecCred, for a given Merkle tree, either TMT or BMT, as shown in Figure 4.1, the

node-hash of each node (if not known), is computed as:

• hash(leaf node) = SHA256 (row key-id + ‘:’ + node-value)
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Figure 4.1: Transaction/Block Merkle tree

• hash(internal node) = SHA256 (SHA256 (children-1 node-key) + ‘:’ + node-hash of

children-1 + ‘,’ + SHA256 (children-2 node-key) + ‘:’ + node-hash of children-2)

In the above formula, the key-id bit-strings represents the row R modified by the transac-

tion. Further, the leaf nodes’ node-value retains the row R new data. Also, as stated earlier,

for a leaf node, the node-key is the row key-id. Now, as shown in Figure 4.1, the Merkle tree

might possess hanging nodes (yellow nodes), which links the current Merkle tree to the previous

block’s BMT. The node-hash value for such hanging nodes is already known and gets used in

the node-hash calculation of its associated parent node in the Merkle tree. In SecCred, each

internal node, as shown, considers the hash of node-key of each child, rather than just the

node-key, and the rest remains the same.

4.2.2 transaction and block data relation

The feature addition of displaying a block’s TMT and BMT in Credereum with preserving pri-

vacy lead SecCred to display the details of the attributes in the transaction and block data

relation, shown in Table 4.1. The server displays all the associated TMT’s and BMT details for
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the queried block via transaction and block data table entries. The block num attribute

denotes the block to which the TMT/BMT belongs, and the leaf attribute denotes whether a

node is a leaf node or not. Also, for a BMT, the transaction id is NULL. Now, the remaining

blue-highlighted attributes from Table 4.1, i.e., key hash, nhash, left child, and right child are

represented in their SHA-256 hash forms. The key hash attribute denotes the hash of node-

key (i.e., node-key hash), and nhash attribute indicates a nodes’ node-hash value. Attributes

left child and right child denotes both the children of a specific node, and retains the hash of

respective children’s node-key.

Relation Attributes
transaction and block data block num, transaction id, key hash,

nhash, left child, right child, leaf

Table 4.1: transaction and block data schema

With the given details from the transaction and block data relation, any client can

compute the TMT and BMT structure in its hash-forms. Due to hash, the verifying clients

can’t infer from TMT/BMT, the rows modified by another client (via leaf node’s node-key)

and their associated node-value; hence it remains hidden.

4.2.3 Execution and BMT Proof

In SecCred, similar to Credereum, whenever a client fires a transaction, a TMT gets built with

the previous block BMT dependency. The TMT RHV is computed as discussed in section 4.2.1.

An old Merkle proof and new Merkle proof gets generated detailing the modified rows old and

new values, respectively. After verifying the proof, the client digitally signs the transaction and

sends the digital signature to the server. The server, after verifying the signature, computes

the transaction-hash value as:

• transaction-hash = SHA256 (previous block BMT RHV + current transaction’s TMT

RHV + public key + digital signature)

The transaction-hash value is updated in the credereum tx log table, and the server

commits the transaction. Similarly, say a set of transactions fired by multiple client’s commits.

At unit intervals, the block process arrives and computes a BMT depending upon the previous
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block BMT structure. The BMT RHV is computed, as stated in section 4.2.1, and the block-

hash value is further calculated as:

• block-hash = SHA256 (previous block block-hash + all transaction’s transaction-

hash + BMT RHV)

The computed BMT RHV and block-hash value is further stored in the credereum block

table and the block process commits. The block-hash value gets finally archived to the trusted

storage.

Unlike Credereum, the SecCred on request displays the above formed TMT’s and BMT

information, with node-key’s in hash formats, and is verifiable by all the clients, making the

system more secure and concrete. For proof, the transaction and block data relation

(Table 4.1) details (say, set S), introduced in section 4.2.2, gets displayed. Given the details,

any client can construct the TMT and BMT structure and know the TMT and BMT leaf nodes.

Section 4.2.4 states the reason why displaying the TMT is crucial in proving the block’s BMT.

For a particular TMT, the client can compute the TMT RHV from the details output and

match it with S and digital signature (obtained from public credereum tx log relation). For

the BMT displayed, the client can likewise compute the BMT RHV and check with S. While

verification, the TMT/BMT internal nodes’ node-hash (nhash, Table 4.1) can be calculated

and verified using:

• hash(internal node) = SHA256 (left child + ‘:’ + nhash of Left-Child + ‘,’ + right child

+ ‘:’ + nhash of Right-Child)

From the above formula, the blue-highlighted texts represent the attributes of transac-

tion and block data relation (Table 4.1), where left child, right child and nhash are repre-

sented in SHA-256 hash forms.

Now, while computing TMT RHV/BMT RHV, each node’s node-hash is matched with the

details from set S. The clients with the TMT details from S can verify no multiple modifications

to same rows made intra-transaction and inter-transaction, by seeking TMT’s leaf node whether

or not holding distinct key hash values. Further, each TMT leaf node details are checked whether

or not matched with the current block BMT and vice-versa. A check for no orphan nodes is

additionally made in the TMT and BMT displayed.
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Now, very-importantly, for the hanging nodes of TMT and BMT, the server additionally

shows through transaction and block data relation (Table 4.1), the path nodes and sup-

porting nodes of the previous block BMT. The path nodes contain nodes from the to-be-verified

hanging nodes to the previous block BMT root node. And, the supporting nodes with the

sibling’s aide help calculate the node-hash of the parent node. The clients can verify the cor-

rectness of the node-hash of TMT and BMT hanging nodes by computing the previous block

BMT RHV and further block-hash value. The block-hash value computed is matched with

the database and the immutable trusted storage.

Further, now with hanging nodes verified, the clients can compute all the transaction’s

transaction-hash and block’s block-hash value and confirm with the one stored in the

credereum tx log table and credereum block table, respectively. The computed block-

hash is mandatorily matched with the trusted storage, and if valid, this signifies S to be authen-

tic. With even a single bit-modification, a change in the block-hash can be easily witnessed.

Hence, with given TMT and BMT details, any client can verify the BMT and check its validity.

4.2.4 TMT Display Necessity

For proving the block B BMT created to be authentic, the transaction’s TMT associated with

block B needs to be displayed. With an option being to show only the modifications made

by a particular transaction (leaf nodes of TMT) in hash forms and make it public, the server

might display a client, the different set of alterations related to a transaction, and the client

remains victimized. By just revealing the modifications made, the client can’t compute the

TMT RHV to verify whether the server’s details with respect to a transaction are valid or not.

To overcome this, the per transaction TMT structure needs to be displayed. With the TMT

structure revealed, the client can verify TMT RHV and transaction-hash and check hanging

nodes authenticity. The orphan nodes’ presence in TMT can be additionally checked. Further,

the client can compute the block-hash value and compare it with the trusted storage.

From section 3.2.1.1, a case arises where the server maliciously updates a leaf node (Figure

3.2) of BMT and holds it hidden to practice malicious actions. Without TMT display, even if

the server has shown the BMT structure, the server might show client A that the malicious node

has been the result of the modifications made by client B and vice-versa. Now without TMT

display, client A/client B needs to trust the server for its authenticity and fall into the trap. If

client A/client B gets shown the TMT structure related to client B/client A, then because of

the client’s verification, the server can’t cheat and the fraudulent actions get prevented. Hence,

to verify BMT’s authenticity, the associated TMT must be displayed to make proof complete.
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4.2.5 BMT Sample Results

Say, there are four transactions T1, T2, T3, and T4, which users were firing, one after the

other, and on commit, were used in the block formation of block 1, block 2, block 2, and block

3, respectively. The query-set related to each transaction is:

T1:

INSERT INTO warehouse (id, w tax) VALUES (1, 24.50);

INSERT INTO warehouse (id, w tax) VALUES (5, 22.95);

INSERT INTO warehouse (id, w tax) VALUES (3, 27.85);

INSERT INTO warehouse (id, w tax) VALUES (6, 25.65);

INSERT INTO warehouse (id, w tax) VALUES (12, 28.90);

T2:

UPDATE warehouse set w tax=w tax-0.007 where id=6;

UPDATE warehouse set w tax=w tax-0.007 where id=12;

INSERT INTO warehouse (id, w tax) VALUES (8, 29.50);

INSERT INTO warehouse (id, w tax) VALUES (4, 28.25);

T3:

INSERT INTO customer (id, c discount) VALUES (3, 24.50);

INSERT INTO customer (id, c discount) VALUES (4, 21.20);

INSERT INTO customer (id, c discount) VALUES (5, 26.10);

INSERT INTO customer (id, c discount) VALUES (6, 23.55);

INSERT INTO customer (id, c discount) VALUES (7, 29.55);

T4:

UPDATE warehouse set w tax=w tax+0.001 where id=3;

UPDATE warehouse set w tax=w tax+0.001 where id=6;

UPDATE warehouse set w tax=w tax+0.001 where id=12;

INSERT INTO warehouse (id, w tax) VALUES (7, 18.75);

INSERT INTO warehouse (id, w tax) VALUES (2, 15.95);

UPDATE customer set c discount=c discount+0.05 where id=3;

UPDATE customer set c discount=c discount+0.05 where id=7;
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The above transaction’s either INSERT/UPDATE the warehouse table, or the customer

table, or both. For each UPDATE/INSERT/DELETE, a node in the TMT and BMT is created,

with the new value. Using the above example, after the transaction’s commit and post block

formation, any user can verify the BMT correctness and the block’s block-hash value com-

putation made by the server.

For a block B BMT, we have the following:

1. Red nodes represent the BMT internal nodes or path nodes (nodes that lead to the root

node from leaf nodes).

2. Green nodes represent the new modified rows by the transactions within block B.

3. Yellow nodes represent the hanging nodes in BMT of block B, which references the pre-

vious block B-1 BMT node.

4. Orange node represents the referenced node in block B-1 BMT, corresponding to the

hanging node of BMT of block B.

5. Blue nodes represent the supporting nodes in block B-1 BMT, provided for calculating

the parent node’s node-hash.

Using the above information, whenever a client queries for block B BMT proof, all transac-

tion’s TMT and BMT of block B are output, as explained in section 4.2.3. Now, the following

details the formation and client-end verification for each block’s BMT. For simplicity purpose,

let’s say for each block B BMT-Query (discussed below), with the evidence presented, the client

has computed all the respective transaction’s TMT RHV and transaction-hash value and

verified with the credereum tx log table. Further, the client has also checked the authen-

ticity/correctness of the hanging nodes of each TMT by verifying it with the previous block

BMT details.

1. Block 1 BMT-Query: When the fired transaction T1 gets committed, the block process

forms a BMT depending upon the previous block BMT structure. Block 1, being the first

data block of the ledger, has no previous BMT to be dependent upon. Hence, the block

process, after autonomously forming block 1 BMT, computes the BMT RHV and the

block-hash value and feeds into the database. The block process eventually commits
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Figure 4.2: Block 1 BMT-Query Output - BMT of block 1

and the computed block 1 block-hash value gets archived to the trusted storage.

Now, any user can query the server to display the block 1 BMT proof. Apart from T1

TMT details, the server displays the previous block 0 entry and current block ‘block 1’

BMT, shown in Figure 4.2. For each node shown in Figure 4.2, as stated, from Table 4.1,

the server displays the associated block number, the hash of node-key, the node-hash

value, the hash of node-key of children’s node, and indicates whether the node is a leaf

or not.

The green nodes of the BMT of block 1 denote the five different rows modified by trans-

action T1. Block 1, being the first data block of the ledger and having no previous BMT,

doesn’t possess any hanging nodes. Now, once all the leaf nodes of block 1 BMT is cross-

verified with TMT of T1, the user can compute the block 1 BMT RHV from the details

given and match it with the value stored in the database/transaction and block data

table. If valid, the user further computes the block 1 block-hash value and compares

it with the database and the trusted storage. If match occurs, this signifies the BMT

formation of block 1 made by the server is valid.

2. Block 2 BMT-Query: When the fired transactions T2 and T3 gets committed, the
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Figure 4.3: Block 2 BMT-Query Output

block process forms a BMT for block 2 depending upon the previous block ‘block 1’ BMT

structure. The block process obtains the BMT RHV, computes the block 2 block-hash,

and stores it in the database. The block process commits and adds the block 2 block-

hash to the trusted storage.

After block formation of block 2, any user can query the server to display block 2

BMT proof. The server, apart from T2 and T3 TMT structure, as shown in section ‘b’ of

Figure 4.3, displays the current block ‘block 2’ BMT structure. Since the BMT formation

of block 2 depends upon the BMT structure of block 1, block 2 BMT retains hanging

nodes, illustrated in section ‘b’ of Figure 4.3. For each node in Figure 4.3, the server

displays the associated block number, the hash of node-key, the node-hash value, the

hash of node-key of the children’s nodes, and indicates whether the node is a leaf or not,

as stated in Table 4.1.

For the green nodes of section ‘b’ of Figure 4.3, any user can cross-verify the node-key

hash and the node-hash from the respective details of T2 and T3 TMT leaf nodes. The

BMT green nodes of block 2 denote the nine distinct rows, modified by transaction T2 and

T3 combined. Additionally, block 2 BMT holds hanging nodes (marked 1 and 2), shown in
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section ‘b’ of Figure 4.3. The hanging nodes’ existence in the previous block BMT needs

to be proven to establish the hanging nodes’ validity. For this purpose, the previous block

‘block 1’ BMT details containing the referenced node (marked 1 and 2) corresponding to

the hanging node, and supporting nodes and path nodes are displayed. If the reference

node is an internal node of the BMT, then the details comprising node-key hash and

node-hash of both the children’s are output, as shown for reference node (marked 1) in

the section ‘a’ of Figure 4.3. Else, if the reference node is a leaf node of the BMT, then

the node-key hash and node-hash details of the reference node are output, as shown

for reference node (marked 2) in the section ‘a’ of Figure 4.3. Using the given details, the

user can compute the BMT RHV and block-hash value of block 1 and match it with the

database and the trusted storage. If the match occurs, this signifies the hanging nodes

exist and are valid. The user can now verify the leaf nodes of block 2 BMT, compute the

block 2 BMT RHV, and match it with the database/transaction and block data

table. If found matching, the user can further calculate the block 2 block-hash value

and confirms it with the database and the trusted storage. Once verified, the client can

be assured of the BMT formation of block 2 to be valid.

3. Block 3 BMT-Query: When the fired transaction T4 gets committed, the block process

forms a BMT for block 3 depending upon the previous block ‘block 2’ BMT structure.

The block process finds the BMT RHV and computes the block 3 block-hash, which

gets stored in the database. The block process commits and adds the block 3 block-hash

to the trusted storage.

With the block creation of block 3, any user can query for block 3 BMT proof. Apart

from T4 TMT structure, the server displays the current block ‘block 3’ BMT, as shown

in Figure 4.4. Since the BMT formation of block 3 depends upon the BMT structure of

block 2, block 3 BMT retains hanging nodes. For each node in Figure 4.4 and Figure 4.5,

the server displays the block number, the node-key hash, the node-hash, the node-key

hash of the children’s nodes, and indicates whether the node is a leaf/not from Table 4.1.

The green nodes of the BMT of block 3 (Figure 4.4) denote the seven distinct rows,

being modified by transaction T4, and any client can cross-verify the BMT leaf node’s

node-key hash and the node-hash value from the respective T4 TMT leaf nodes. Block 3

BMT formation depends upon the previous block ‘block 2’ BMT structure, hence possesses

hanging nodes (marked 1, 2, 3, 4, and 5), shown in Figure 4.4. To prove the validity of

the hanging nodes, the previous block ‘block 2’ BMT details containing the referenced

node (marked 1, 2, 3, 4, and 5) corresponding to the hanging node, and supporting nodes
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Figure 4.4: Block 3 BMT-Query Output (Part-1) - BMT of block 3

and path nodes are displayed, as shown in Figure 4.5. Using the given details, the user

can compute the BMT RHV and block-hash value of block 2 and match it with the

database and the trusted storage. If the match occurs, this signifies the hanging nodes are

authentic. However, it can be observed that, while comparing the block 2 BMT shown

in section ‘b’ of Figure 4.3 and Figure 4.5 remains the same, except for an extra addition

of reference node (marked 3) and it’s sibling in Figure 4.5. This happens because the

hanging node (marked 1) in section ‘b’ of Figure 4.3 refers to the block 1 BMT referenced

node (marked 1) in the section ‘a’. Hence, the reference node (marked 3) and its sibling

in Figure 4.5 corresponds to both the children of the referenced node (marked 1) in the

section ‘a’ of Figure 4.3. The hanging nodes of a BMT, thus, link one block BMT to the

previous block BMT.

The user can now verify the leaf nodes of block 3 BMT, compute the block 3 BMT

RHV, and match it with the database/transaction and block data table. If the

match occurs, the user can further calculate the block 3 block-hash value and compare

it with the database and the trusted storage. If found valid, this signifies the block 3

BMT creation by the server is correct.
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Figure 4.5: Block 3 BMT-Query Output (Part-2) - Block 2 BMT

4.2.6 BMT Validity

The section details a simple scenario of a malicious activity being performed by the server

within a block and addresses how a client can trace and acknowledge such an act.

Say, at unit intervals, a block process arrives and forms a block B considering all the mod-

ifications made by the committed transactions within the block period. Figure 4.6 displays

the block B BMT created by the server. From Figure 4.6, all the green nodes are valid mod-

ifications, being made by the transactions allocated to block B. However, say the server has

exercised malicious activity in block B BMT formation by updating the node value of a leaf

node corresponding to the row key-id R, which has not been modified by any transaction in

block B. Further, say node A represents the row key-id R in block B BMT formation, shown

in Figure 4.6. The server computes the BMT RHV and block-hash value for block B and

feeds it into the database. The block process commits, and the block-hash value gets archived

into the trusted storage.

Now, whenever the client queries for the block B BMT proof, the server apart from TMT

details shows the BMT data as internal nodes (red nodes), leaf nodes (green nodes), and the
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Figure 4.6: Block B BMT

hanging nodes (yellow nodes) shown in Figure 4.6. The server doesn’t display node A and its

sibling and shows only the parent node 4. The client verifies block B transaction’s TMT RHV,

and transaction-hash and check the authenticity of its each hanging node. Now, using the

shown details, the client will first check whether each BMT green node and the node-hash

details associated are matched with the TMT leaf node, and vice-versa. After verification, with

the details displayed, the client further computes the block B BMT RHV and block-hash

value and matches with the database and trusted storage. The client will discover the details

matching, and lastly, check for the hanging nodes’ authenticity before declaring the BMT to

be valid.

Now, for each hanging node of BMT of block B, its reference node in the previous block

B-1 BMT has to be shown by the server. Hence, for each hanging node of BMT of block B,

the output shown in Figure 4.7 are displayed. Figure 4.7 shows the BMT of block B-1 with

reference nodes (orange nodes), internal nodes (red nodes), and supporting nodes (blue nodes).

The client using block B-1 BMT details obtains the BMT RHV and block-hash value of block

B-1 and matches with the database and trusted storage. The node-hash value for each hanging

node [1, 2, 3, 4] of BMT of block B, shown in Figure 4.6, is matched with the node-hash of

respective reference node [1, 2, 3, 4] of BMT of block B-1 in Figure 4.7. If the node-hash
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Figure 4.7: Block B-1 BMT - Hanging node verification

of each hanging node matches, this signifies the hanging node node-hash used in the BMT

formation of block B is authentic. However, in the current case, only the node-hash of hanging

node [1, 2, 3] of block B BMT will match with the respective reference node of BMT of block

B-1. Because of the modification made in the right child of node 4 of block B BMT (Figure

4.6), the node-hash of node 4 gets changed. Thus, the node-hash of hanging node 4 of block

B BMT will differ from the reference node 4 of block B-1 BMT (Figure 4.7). Hence, the client

will witness a change in the node-hash value of node 4 in block B BMT compared to block

B-1 BMT and acknowledge malicious activity practiced.

Now, if the node-hash for node 4 of the block B-1 BMT (Figure 4.7) and node 4 of

block B BMT (Figure 4.6) is shown equal by the server, then the calculated BMT RHV and

block-hash value of block B-1 BMT will differ from the database and the trusted storage,

and the client gets alarmed. The client can also query for the provenance to judge for any

malicious activity performed by the server. Hence, if the server performs malicious activity by

not acknowledging any row being modified by the committed transaction within the block in

BMT formation or performing malicious activities in BMT creation, then the client can easily

witness such exercises with the BMT information and proof displayed.
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4.3 Provenance Engine

In Credereum, whenever a client fires provenance queries for any particular row key-id, the

provenance engine always searches the records from the Genesis block. However, as explained,

if a client has already verified the row key-id R provenance results up to block B-K (1 ≤
K ≤ B-1), the client might not want/require to re-verify the provenance results for the row

key-id R from Genesis block to block B-K. Instead, the client might want to verify the

provenance results for row key-id R only from block B-K+1 to the latest formed block B. Since

the provenance result generation and verification consume time, optimization in the search

was required. The optimization made help the provenance engine to search for records in

a particular block bandwidth with a lower bound and upper bound as block number being

input. The modifications made to the Credereum, i.e., SecCred (section 4.2), ProgCred (section

5.2), PerfCredA (section 5.3), and PerfCredB (section 5.4), all have the provenance engine

functionality of receiving block number from the clients, specifying the block start and end, for

which the provenance search is desired. If no block number is specified, the provenance engine

by default searches from the Genesis block to the current block B. The discussed functionality

added led to the modifications in the provenance engine code.

4.4 Summary

The Credereum on the block’s BMT formation doesn’t display the whole BMT and is hid-

den, leading to the server’s malicious activities, which remain unacknowledged to the clients.

The SecCred (section 4.2) shows the BMT in hash forms on the client’s request, which the

client can verify, and any malicious activity can get easily detected. The BMT is displayed,

keeping the other client’s privacy protected and with the application of SHA-256 hash. The

SecCred can be stated as Credereum with additional functionality to display the BMT details.

Further, SecCred led changes in TMT/BMT RHV calculation methodology and displays the

transaction and block data relation. The provenance engine (section 4.3) search space

was reduced to boost provenance query response time and lower the client’s verification time.
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Chapter 5

Performance Improvement

This chapter explains the performance improvements made to Credereum, focusing on pro-

gramming optimization and algorithmic modifications. The proposed versions, namely,

ProgCred, PerfCredA, and PerfCredB, are explained. ProgCred introduces programming

improvements, while PerfCredA and PerfCredB explain algorithmic changes. The pro-

gramming/algorithmic modification was made without violating blockchain semantics and

retains the blockchain properties held by the Credereum. The changes proposed made a

positive impact in boosting the committed-transaction throughput.

5.1 Introduction

In a blockchain system, the speed-efficiency/transaction-rate is one of the key parameters

through which the system utility gets examined. The Credereum, as stated, has orders of

magnitude degradation in transaction throughput compared to the native PostgreSQL. Re-

search was performed to increase the throughput performance in Credereum, thus leading to

programming and algorithmic modifications. The functions were analyzed, and optimization

was proposed to uplift the transaction count. The TMT/BMT formation at per transaction-

level/block-level was researched, and modifications were aimed without violating blockchain

semantics. With TMT RHV used natively to summarize the transaction’s alterations, new

methodologies were designed to hold the same accompanying a rise in performance. The algo-

rithmic changes have led to alterations in the handling of the provenance query raised by the

client. With all the changes proposed, a boost in transaction throughput was witnessed, along

with all the blockchain properties held.
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5.2 ProgCred: Programming Modification

This section deals with the first phase of changes made with a focus on performance enhance-

ment. ProgCred retains the modifications made in SecCred and deals with the programming

changes to the Credereum functions/procedures. The Credereum functions were written in SQL

and C language. Based on the total execution-time per call (or total self-time per call) and the

total number of calls made (obtained from PostgreSQL Statistics Collector), the functions were

analyzed, seeking optimization to enhance the performance. The function with the maximum

call counts was considered with the highest priority for optimization analysis. The modifica-

tions made in ProgCred showed a positive impact without violating blockchain semantics and

retains the blockchain properties sustained initially by the Credereum. In ProgCred, similar to

the Credereum (section 2.5), the transactions fired by multiple clients to PostgreSQL processes

parallelly under Read Committed (RC) isolation level.

Function Calls Total Time Per Call
(micro-secs)

Self Time Per Call
(micro-secs)

credereum longest prefix 9684313 140 140
credereum sha256 527334 1 1

credereum merklix get hash 310924 54 52
credereum merklix insert 40768 6469 653

credereum acc trigger 20595 19 19
credereum get relation id 20544 3 3

... ... ... ...
credereum sign transaction 1025 545 542

credereum apply transaction 1025 4677239 4486824
credereum pack block 105 5684609 4887006

Table 5.1: Credereum - Functions list

In Credereum, as stated, the functions were written in SQL and C language. These functions

were analyzed and ordered based on the total number of calls made to them for a given time

frame. Table 5.1 details the list of some Credereum functions (SecCred incorporated), being

arranged in decreasing order of Calls. The Calls indicate the number of times the function X

being called, the Self Time Per Call denotes the function X average self-execution time excluding

the execution-time of any further called sub-function by X, and the Total Time Per Call signifies

the average execution time of a function X summing the self-execution time and execution-time

of any further called sub-function by X. The Total Time Per Call and the Self Time Per Call
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shown in Table 5.1 are measured in micro-seconds.

Table 5.1 shows that the credereum longest prefix() function got the maximum num-

ber of calls and was initially written in SQL. The credereum longest prefix() function

computes the longest common prefix between the two given bit-strings. In ProgCred, the cred-

ereum longest prefix() with algorithmic changes and inclusion of bitwise-level operations

was re-written in C language. These changes made a positive impact and improved through-

put. The credereum sha256() function (Table 5.1) computes the hash of any data using

SHA-256 and has a self-execution time of 1 microsecond. The credereum merkle insert()

function (Table 5.1), with the help of the credereum longest prefix() function, forms

TMT/BMT structure by depending upon the previous block BMT structure. The cred-

ereum merkle get hash() function (Table 5.1) helps compute the TMT RHV and BMT

RHV after the TMT and BMT formation, respectively. The credereum sign transaction()

function (Table 5.1) checks the digital signature submitted by the client to the server. After

verification, the function computes the transaction-hash, stores it in the database, and

commits the transaction.

The Self Time Per Call can be found at high peaks for credereum apply transaction()

function and credereum pack block() function, from Table 5.1. The major reason for such

high self-execution time is the lock’s access by these functions. Each transaction process before

TMT formation acquires a ROW-EXCLUSIVE lock on the credereum tx log table in cred-

ereum apply transaction() function. Each block process before BMT formation, acquires

a SHARE-ROW-EXCLUSIVE lock on the credereum tx log table and credereum block

table in credereum pack block() function. Because of the ROW-EXCLUSIVE lock, mul-

tiple transactions can process parallelly. However, if a block process executes and acquires

SHARE-ROW-EXCLUSIVE lock, no other transaction/block process (if exist) can execute simul-

taneously/parallelly.

If a transaction process acquires the ROW-EXCLUSIVE lock, the block process waits for the

lock release. Similarly, if a block process acquires the SHARE-ROW-EXCLUSIVE lock, the trans-

action process waits for the lock release. Because of the waiting time, the Self Time Per Call for

credereum apply transaction(), and credereum pack block(), is massive compared

to other functions.

5.2.1 Function Optimization

The ProgCred deals with programming changes to the credereum longest prefix() func-

tion (from Table 5.1) and was initially written in SQL. In particular, the SQL version of the
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credereum longest prefix() function [21] takes two key bit-strings as input and output

the longest common prefix between the keys. The SQL variant checks each bit of the two key

bit-strings until the shortest length between the two key’s. If the bit matches, it’s appended

to the resultant bit-string, and on un-matched bits/end-of-loop, the SQL returns the resultant

bit-string. Hence, in the initial SQL version of the credereum longest prefix() function

comparison between two keys is made at the bit-by-bit level to generate the longest common

prefix. The provided code for the credereum longest prefix() function SQL version [21]

is shown below:

1 CREATE OR REPLACE FUNCTION credereum_longest_prefix(k1 varbit , k2 varbit)

RETURNS varbit AS $$
2 DECLARE

3 len int;

4 i int;

5 prefix varbit;

6 BEGIN

7 len := least(length(k1), length(k2));

8 i := 1;

9 prefix := ’’:: varbit;

10 WHILE substring(k1, i, 1) = substring(k2, i, 1) AND i <= len LOOP

11 prefix := prefix || substring(k1 , i, 1);

12 i := i + 1;

13 END LOOP;

14 RETURN prefix;

15 END;

16 $$ LANGUAGE plpgsql STRICT;

The above credereum longest prefix() function, SQL version, was converted to C func-

tion, with programming changes and bitwise-level operations. The C variant, similar to SQL,

inputs two key bit-strings and computes the keys’ longest common prefix. With a well-known

approach, the credereum longest prefix() C version compares the two keys in a byte-by-

byte fashion, with upper bounds computed considering the shortest length between the keys.

Commencing from MSB (Most Significant Byte), the two keys’ corresponding bytes get com-

pared using the bitwise Exclusive-OR (XOR) operation. If the compared byte of the two keys

matches, the prefix length is incremented by 8. If the byte does not match, then the bitwise-

level operations are performed to obtain the mismatch bit location for the given byte and the

number of bits before the mismatched bit gets added to the prefix. The C version cred-
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ereum longest prefix() function, at the mismatch byte occurrence/upper-bound, outputs

the bits up till the prefix counts.

With long length bit-strings, on average 125 bits, used for evaluation, the conversion of the

credereum longest prefix() function from SQL to C made a positive impact and improved

the performance. The ProgCred retains all the blockchain properties held by Credereum and

is described in section 6.3. Section 7.2 explains the provenance query handling by ProgCred.

5.3 PerfCredA: Algorithmic Modification 1

This section deals with the second phase of changes made, focusing on performance enhance-

ment. In ProgCred (and, preceding), when a client fires a transaction to the Postgres, a TMT

gets developed with the previous block BMT structure dependency. As proof of database modi-

fication, an old Merkle proof and new Merkle proof get generated to the client. The new Merkle

proof constitutes the current transaction TMT details. The PerfCredA deals with algorithmic

improvements to the ProgCred system. In PerfCredA, the aforementioned architectural com-

plexity is eased by eliminating the previous block BMT dependency for per-transaction TMT

creation. However, the proposed methodology has led to changes in the provenance output, and

further, verification at the client-end. By relaxing the architecture, the blockchain semantics

initially possessed by Credereum gets retained, and the modification made a positive impact in

boosting the transaction throughput. In PerfCredA, similar to ProgCred/Credereum (section

2.5), the transactions fired by multiple clients to PostgreSQL processes parallelly under Read

Committed (RC) isolation level.

5.3.1 Architecture Design

In PerfCredA, whenever a client fires a transaction X, the transaction first processes in the

Postgres engine with the Read Committed isolation level, and the control is handed over to

the PerfCredA engine shown in Figure 5.1. In the PerfCredA engine, the transaction X process

first builds its TMT independently, i.e., without depending upon the previous block BMT

structure. The independent building of TMT per transaction level leads to modifications in

the credereum merkle insert() function (Table 5.1), responsible for building the Merkle

tree. With TMT independent, the TMT only accounts for the client’s alterations, with new

row value entries. Upon completing the TMT structure, the TMT RHV gets computed in
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Figure 5.1: PerfCredA workflow

the naive recursive methodology. For computing the TMT each node’s node-hash value, the

methodology remains the same as discussed in SecCred (section 4.2.1).

For each UPDATE/INSERT/DELETE made by transaction X, an old Merkle proof and new

Merkle proof get generated to the client. The old Merkle proof presents the data values of a

row before modification with evidence and is verifiable. The old Merkle proof gets constructed

using the previous block BMT, similar to Credereum (Figure 2.7). The new Merkle proof shows

the new row values after modifications made by transaction X. The new Merkle proof displays

the current transaction X TMT details. Figure 5.2 shows the old Merkle proof (left tree) and

new Merkle proof (right tree), say generated by the server for transaction X. The left tree

contains modified leaf nodes (grey nodes), path nodes from leaf to root nodes (purple nodes),

and supporting nodes (blue nodes). Similarly, the right tree contains new altered leaf nodes

(green nodes) and internal nodes (red nodes). Except for modified leaf nodes (grey nodes)

and new altered leaf nodes (green nodes), for each node, only the node-key, and node-hash

values are shown, which helps compute the Merkle tree RHV. While, for modified leaf nodes

(grey nodes) and new altered leaf nodes (green nodes), all the details constituting key-id (i.e.,

node-key) and associated node-value are shown.
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Figure 5.2: PerfCredA Merkle proof generation

Now, for each modified leaf node (grey node), showing the old data values, the client

first checks its validity by computing the previous block BMT RHV and matches it with the

database. If the match occurs, the client calculates and verifies the transaction X TMT RHV

shown. The client examines for orphan nodes’ existence in the BMT and TMT of old Merkle

proof and new Merkle proof, respectively. For ‘n’ modified leaf nodes (grey node), there will

be respective ‘n’ altered leaf nodes (green node), signifying each UPDATE/DELETE performed

by transaction X. If there are any extra altered leaf nodes (green node) present in transaction

X TMT, then those nodes signify the INSERT performed by the transaction X. For such an

INSERT operation, the old Merkle proof gives proof of its non-existence in the database.

The user post verifying whether the transaction fired by him resulted in changes from the

modified leaf node to the new altered leaf node authenticates the transaction by signing with his

digital signature. The digital signature gets generated by concatenating the old Merkle proof

(left tree) BMT RHV and new Merkle proof (right tree) TMT RHV and is signed using its

private key. The server verifies the signature, and if found valid, computes the transaction-

hash similar to ProgCred/SecCred (section 4.2.3) and commits the transaction.

From Figure 5.3, we can see that the transaction-hash gets computed concatenating the
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Figure 5.3: PerfCredA block creation

previous block BMT RHV value, current transaction TMT RHV, public key, and the digital

signature. At unit intervals, the block formation process waits for all the transactions within

the block period to commit. The block process then begins collecting all the rows altered by

all the transactions within the block period. For constructing the BMT, the block process calls

the credereum block merkle insert() function, which forms the current block’s BMT

by depending upon the previous block’s BMT structure. Hence, the block’s BMT formation

methodology remains the same for the Credereum, SecCred, ProgCred, and PerfCredA. On

completion of the current block BMT structure, the BMT RHV is computed recursively. For

calculating the BMT each node’s node-hash value, the approach remains the same as discussed

in SecCred (section 4.2.1). The computed BMT RHV is accounted in the current block block-

hash value, along with each allocated transaction’s transaction-hash value and previous

block block-hash value. The previous block block-hash value accounting in the current

block block-hash value helps establish the ledger chain. The current block block-hash

value calculated is stored in the database and the trusted storage. The client can further query

the block’s BMT formed, similar to the SecCred (section 4.2.3), and verify the results.

PerfCredA retains all the blockchain properties held by Credereum and has been addressed
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in section 6.4. The algorithmic alteration has led to modifications in handling the PerfCredA

provenance queries and is explained in section 7.3.

5.3.2 Architecture Validity

Let’s say the transaction T fired by the client A, UPDATE/DELETE ‘n’ rows, and INSERT ‘m’

rows, where each row is distinct and on commit will get accounted in the block formation of

block B.

In Credereum, SecCred, and ProgCred, for each UPDATE/INSERT/DELETE made by trans-

action T, an old Merkle proof and new Merkle proof is displayed to client A. The old Merkle

proof gets developed using the previous block B-1 BMT and displays the old data values of

distinct rows being UPDATE/DELETE by transaction T. And, for INSERT, a proof of non-

existence gets shown. For ‘n’ unique rows that client A wants to UPDATE/DELETE, the old

Merkle proof should show the respective ‘n’ old values. Client A verifies the ‘n’ targeted row

values shown in old Merkle proof and confirms it by obtaining the block B-1 BMT RHV. The

new Merkle proof shows the transaction T TMT details. For each UPDATE/INSERT/DELETE

performed by transaction T, a respective leaf node in TMT gets created. The TMT being

dependent also had hanging nodes, which links to the previous block B-1 BMT node. The

previous block B-1 BMT dependency, in transaction T TMT formation, symbolizes n+m rows

being modified by transaction T, and the rest of the database rows remain unmodified. Hence,

the main idea of the previous block BMT dependency in TMT formation was to show that

the non-targeted database rows remain unchanged/unaltered. The user verifies the old Merkle

proof and the new Merkle proof. If found valid, then client A digitally signs the transaction.

In PerfCredA architectural design, the per transaction TMT created was made independent

and had no structural dependency on the previous block B-1 BMT. The ideology is the client

A is only accountable/responsible for the modifications being made by him. In PerfCredA,

for each UPDATE/INSERT/DELETE made by transaction T, an old Merkle proof and new

Merkle proof is displayed to client A. The old Merkle proof generation remains the same as

discussed above for Credereum, SecCred, and ProgCred. However, in new Merkle proof, the

transaction T TMT is developed independently using n+m modified rows. Hence, client A is

accountable to only n+m distinct rows targeted by him. If the server makes any additional

row modification, then that row has to be added in the transaction T TMT. Client A can

easily catch any extra row modification with changes in the TMT, and with variations than

the intended TMT, it will not sign the transaction and the transaction gets aborted. Hence, if

the server modifies fewer/more rows than the targeted, such malicious activity will be reflected
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in the TMT formed, and the server will get caught. If the TMT formed by the server is valid

and has leaf nodes only corresponding to targeted n+m modified distinct rows, then client A

will verify the modifications and create a digital signature using his private key. The digital

signature is sent to the server and gets accounted for in the transaction T transaction-

hash computation. The transaction-hash computed is used in block B block-hash value

computation. Once block B gets formed, client A can verify the transaction T TMT and its

inclusion in block B BMT formation through provenance. If any malicious activity gets found,

client A can raise the alarm.

Even if the server forms a false TMT and computes it RHV, and keeps it hidden from

client A, the server can’t generate the digital signature for the modifications made because it

doesn’t have the private key of client A. Hence, without a digital signature, the transaction T

transaction-hash can’t be computed and made public for other clients to verify. Therefore,

the server gets bound from performing malicious activities in PerfCredA.

5.4 PerfCredB: Algorithmic Modification 2

The section deals with an alternative improvement to ProgCred, compared to PerfCredA, fo-

cusing on boosting committed-transaction throughput. In ProgCred, when a client fires a

transaction, a TMT is developed depending upon the previous block BMT structure. As proof

of database modification, an old Merkle proof and new Merkle proof get generated to the client

for the transaction fired. The PerfCredB deals with an alternative algorithmic modification

to the ProgCred. In PerfCredB, the above architectural complexity gets relaxed by remov-

ing the per-transaction TMT formation, and alternatively, using an iterative methodology for

summarizing the transaction modifications. Further, the changes made in PerfCredB led to

modification in handling and providing proof for the provenance queries raised by the client.

By relaxing the architecture, the blockchain semantics initially possessed by Credereum is re-

tained, and modification made a positive impact in uplifting the transaction throughput. In

PerfCredB, similar to PerfCredA/ProgCred/Credereum (section 2.5), the transactions fired by

multiple clients to PostgreSQL, processes parallelly under Read Committed (RC) isolation level.

5.4.1 Architecture Design

Whenever a client fires a transaction T in PerfCredB, the transaction first processes in the

Postgres engine with the Read Committed isolation level. The control is later handed over
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Figure 5.4: PerfCredB workflow

to the PerfCredB engine, as shown in Figure 5.4. In the PerfCredB engine, the transaction

T processes by iterative methodology and calculate the sub-hash and hash value of each

modified row key-id and computes the MODIFICATION-HASH-VALUE (explained section 5.4.2).

The MODIFICATION-HASH-VALUE (MHV) accounts for the key-id and data value pairs of each

modified row and summarizes the transaction T’s modifications.

For modifications made by transaction T, an old Merkle proof and New-Row-Value proof

get generated to the client. Figure 5.5 shows the old Merkle proof (left section) and New-

Row-Value proof (right section), generated by the server for transaction T. The old Merkle

proof presents the data values of a row before modification with evidence and is verifiable. The

New-Row-Value proof shows the new data values after changes made by transaction T. The

left section contains a Merkle tree with modified leaf nodes (grey nodes), path nodes from leaf

to root nodes (purple nodes), and supporting nodes (blue nodes). Similarly, the right section

contains new altered row value details (green circles), and the MHV (orange circles) details

of transaction T. For the old Merkle proof, except for the modified leaf nodes (grey nodes) of

the Merkle tree, for each node, only the node-key, and node-hash are shown, which helps

compute the Merkle tree RHV. While for modified leaf nodes (grey nodes) of the Merkle tree
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Figure 5.5: PerfCredB proof generation

and new altered row data (green circles), all details, including the key-ids and associated

value, get shown.

With the given old-values of rows modified, the client first validates the old Merkle proof

shown by computing and verifying each node’s node-hash value. The computed previous

block BMT RHV is matched with the database. If the match is valid, the client using the

New-Row-Value proof details, calculate the MHV and compares it with the given (orange

circle, Figure 5.5). If the match occurs, for each UPDATE/DELETE made by transaction T,

the client further compares the leaf nodes of old Merkle proof with the respective row data

displayed in the New-Row-Value proof. For each INSERT, the new values are checked and

verified for inclusion in the MHV calculation. If the modifications made by the server for

the transaction T are found valid, the client authenticates the transaction by signing with his

digital signature. The digital signature is generated by concatenating the old Merkle proof (left

section) RHV and New-Row-Value proof (right section) MHV and signing it using a private

key. The server verifies the signature, and if valid, computes the transaction-hash value

varying PerfCredA/ProgCred/SecCred.

From Figure 5.6, we can perceive that the transaction-hash is computed by concate-
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Figure 5.6: PerfCredB block creation

nating the previous block BMT RHV, current transaction MHV, public key, and the digital

signature. The transaction-hash value calculated is fed into the database, and the server

commits the transaction. At periodic intervals, the block process begins and waits for all the

transactions within the block period to commit. The block process then begins collecting all

the rows modified by all the transactions within the block. The block BMT formation takes

place by depending upon the previous block BMT structure, and further, the current block

BMT RHV is calculated similarly to SecCred (section 4.2.1). It can be observed that, for each,

Credereum, SecCred, ProgCred, PerfCredA, and PerfCredB, the BMT structure formation of

the current block depends upon the previous block BMT structure, and hence remains iden-

tical. The block-hash value calculation of the current block in PerfCredB remains the same

for PerfCredA, ProgCred, SecCred (section 4.2.3) and is shown in Figure 5.6. The accounting

of the previous block block-hash value helps establish the ledger chain. The current block

block-hash value calculated is stored in the database and the trusted storage. The client can

further query the block’s BMT formed and verify the results similar to SecCred (section 4.2.3).

The PerfCredB preserves all Credereum possessed blockchain properties and has been described
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in section 6.5. The architectural redesign in PerfCredB resulted in adjustments to the handling

and providing proof for the client’s provenance queries and is explained in section 7.4.

5.4.2 MHV Algorithm

In PerfCredB, let the transaction T fired by a client, modifies the rows row 1, row 2, row

3, ..., row N of a table in the Postgres engine. After Postgres processing, the control gets

handed over to the PerfCredB engine. In PerfCredB, an MHV is being calculated iteratively

for transaction T, as shown in Algorithm 1. The hash, sub-hash, and previous variable are

initialized, and a loop is executed for each modified row. Within each loop, after computing

the hash of row key-id (i.e., key-hash), a sub-hash value is calculated (by computing hash

of concatenated row key-id and associated value). Finally, the hash variable is computed

considering the previous computed hash value, key-hash, and sub-hash calculated for the

modified row key-id. The hash value obtained with other associated details is fed into the

credereum merklix table (with key hash, sub hash, and previous attributes added), and post

updating previous, the loop resumes from the start. Now, once the loop gets executed for each

modified row key-id, an MHV is computed. The MHV calculation accounts for the current

transaction transaction-id and the calculated hash. The MHV computed with other associated

details is fed into the credereum merklix table.

Algorithm 1 : MODIFICATION-HASH-VALUE Calculation

hash = ‘′

sub-hash = ‘′

previous = None
while each row in row 1, row 2, row 3, ..., row N : do
key-hash = SHA256 (row key-id)
sub-hash = SHA256 (row key-id + ‘:′ + row value)
hash = SHA256 (hash + key-hash + sub-hash)
store (key-id, key-hash, value, sub-hash, hash, previous)
previous = row key-id

end while
MHV = SHA256 (hash + transaction−id)
store (MHV, previous)

Unlike ProgCred, which uses the transaction’s TMT RHV in transaction-hash value

calculation, the PerfCredB uses MHV in the transaction-hash value calculation. The MHV

calculation complexity is simpler compared to the TMT formation and TMT RHV calculation.
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5.5 Performance Evaluation

Figure 5.7: Comparative TPE Analysis

The Credereum, SecCred, ProgCred, PerfCredA, and PerfCredB performances were evalu-

ated with 10 terminals firing to a database with hundred thousand entries and are shown in

the Figure 5.7. Each transaction fired by terminals to the database modifies at max 25-rows.

Each writes get accompanied by a read operation to perform verification of the modification

proof generated. From the figure, we can perceive that the performance of SecCred lies approx-

imately equal to the Credereum performance. The primary reason is the low-lying processing

time to generate the SHA-256 hash, and due to which no heavy dip gets witnessed in through-

put rate. The ProgCred with programming modifications achieves a significant boost to the

system performance. The PerfCredA with independent TMT lightens the transaction process

work in TMT creation, TMT RHV computation, modification proof generation, and verifica-

tion, leading to a positive impact on performance improvements. A further performance rise

can be witnessed with MHV computation in PerfCredB. It has been observed that with varying

settings, PerfCredB beats PerfCredA in achieving better system performance.

78



5.6 Summary

The Credereum has shown massive magnitude degradation in committed-transaction through-

put when compared to PostgreSQL. Methodologies were developed focusing on programming

and algorithmic modifications to enhance performance. ProgCred focuses on programming op-

timization to the maximum called credereum longest prefix() function. PerfCredA, and

PerfCredB, deals with relaxing and improving the architecture without violating blockchain

semantics. PerfCredA explains removing the previous block BMT dependency in the per TMT

formation, while PerfCredB simplifies further by using MHV calculation in generating the

transaction-hash. The MHV calculated summarizes the modification made by the transac-

tion in PerfCredB. The performance results of each ProgCred, PerfCredA, and PerfCredB have

been additionally discussed.
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Chapter 6

Blockchain Semantics Retention

The chapter explains the blockchain properties retention by the Credereum proposed

versions, responsible for functionality addition and performance improvements. Sec-

Cred, ProgCred, PerfCredA, and PerfCredB are explained to maintain the Credereum

held blockchain properties, namely immutability, verification, authentication, and non-

repudiation. The retention and correctness of the blockchain properties remain crucial for

the proposed versions to be termed valid.

6.1 Introduction

Credereum, possessing enriching features (section 2.2), needed improvements seeking security

advancement and performance hike. The functionality enhancement made by displaying the

TMT and BMT in hash forms provides resistance to the malicious activities and is dealt with

in SecCred (section 4.2). The changes in Merkle tree node-hash computation in SecCred is

explained to retain the Credereum held blockchain properties. Further, ProgCred (section 5.2),

dealing with programming alterations to the credereum longest prefix() function has

been addressed. PerfCredA (section 5.3) with dependency removal on previous block BMT per

TMT formation, and PerfCredB (section 5.4) instead of TMT formation using MHV calculation

(section 5.4.2), are explained for non-violating any Credereum held blockchain properties.

6.2 SecCred: Blockchain Properties

The following details the blockchain properties held by the SecCred, which deals with the

functionality improvement:
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1. Immutability: The SecCred, designed with functionality advancement to the Cred-

ereum, proposes changes in the node-hash computation of TMT/BMT nodes (sec-

tion 4.2.1). Each TMT/BMT formed in SecCred depends upon the previous block

BMT structure. Unlike Credereum, the internal nodes’ node-hash computation of

TMT/BMT considers the children node-key in SHA-256 hash form. For each UP-

DATE/INSERT/DELETE made by transaction T, a leaf node in TMT exists, and TMT

RHV gets computed. The TMT RHV is used in the transaction-hash computation.

Hence, whenever a fraudulent person modifies any TMT leaf nodes, then the TMT RHV

and transaction T transaction-hash changes. With alteration in transaction-hash

value, the block-hash value of block B and all forward blocks gets changed. Even if the

fraudulent person gets successful in re-computing the block-hash value of block B and

all forward blocks, the computed block-hash remains different from the stored original

block-hash digest at the immutable trusted storage. Hence, any retroactive modifica-

tion made to the database contents by a fraudulent person can be easily detected. Thus,

SecCred with functionality improvements ensures the immutability property.

2. Verification: In SecCred, for every transaction fired by the client, a modification proof,

namely old Merkle proof and new Merkle proof, is generated by the server to the client.

The old Merkle proof shows the old data values of rows, UPDATED/DELETED by the

client, using the previous block B-1 BMT. For each INSERT, the old Merkle proof also

proves the non-existence of such rows in the database. The new Merkle proof shows the

transaction T TMT, displaying each UPDATE/INSERT/DELETE performed by transac-

tion T. The client first verifies the old Merkle proof BMT by computing each nodes’

node-hash value and confirms with the given. With the nodes’ node-hash computa-

tion logic changes in SecCred, the client needs to calculate the nodes’ node-hash with

the proposed technique in SecCred; else, it will remain unmatched. The client verifies

the new Merkle proof TMT by computing and matching the nodes’ node-hash with

the provided. For computing the TMT nodes’ node-hash, the client needs to use the

proposed technique in SecCred. Further, the orphan nodes check is made in BMT and

TMT displayed. The client verifies the supporting nodes of old Merkle proof BMT with

the respective supporting nodes of new Merkle proof TMT and vice-versa. If the match

occurs, the client confirms the modifications from old Merkle proof BMT leaf nodes to

the respective new Merkle proof TMT leaf nodes. If found valid, the client validates the

transaction by signing with his digital signature. In SecCred, the client has also been

given the provision of provenance queries with added search space optimization (section
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4.3, section 7.2). SecCred, thus retains the verification property.

3. Authentication: In SecCred, for every transaction fired, the client needs to submit the

digital signature to the server to authenticate the modifications. The digital signature

is generated by concatenating the old Merkle proof BMT RHV and new Merkle proof

TMT RHV and signing using the client’s private key. The server verifies the digital

signature, and if found valid, commits the transaction; else, it aborts the transaction.

Hence, SecCred preserves the authentication property.

4. Non-repudiation: In SecCred, the client post verifying the old Merkle proof, and the

new Merkle proof needs to authenticate the transaction by signing with his digital sig-

nature. The digital signature uses the client’s private key. Hence, a situation can never

occur where a client can deny the authorship or the transaction’s validity being fired by

him. Thus, SecCred holds the non-repudiation property.

Hence, with the above analysis, SecCred retains all the blockchain semantics held ini-

tially by the Credereum.

6.3 ProgCred: Blockchain Properties

The following details the blockchain properties held by the ProgCred, which deals with the

programming modifications:

1. Immutability: In ProgCred, whenever a transaction gets fired, a TMT is developed

depending upon the previous block BMT structure. The TMT formation requires deter-

mining the longest common prefix between the two given key bit-strings. The cred-

ereum longest prefix() function (Table 5.1) initially in SQL was re-written in C to

output the longest common prefix using byte-level comparison and bit-wise operations

for the unmatched byte. The output of the credereum longest prefix() C variant

remains the same as the initial but holds quick computation. Hence, similar to Cred-

ereum (explained section 2.4), with changes in transaction T details of block B by a

fraudulent person, the TMT RHV and transaction-hash value of transaction T alters.

In ProgCred, the transaction-hash value is accounted for in the block B block-

hash computation. Hence, with changes in the transaction-hash of transaction T,

the block-hash of block B and all forward blocks gets changed. However, the newly
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calculated block-hash digest of block B and all the forward blocks will differ from the

stored original block-hash digest at the immutable trusted storage. Hence, any retroac-

tive modification of the database contents by a fraudulent person can be easily detected.

Thus, ProgCred ensures and retains the immutability property.

2. Verification: In ProgCred, with programming modifications proposed to the cred-

ereum longest prefix() function, the architecture remains the same as of Credereum.

Hence, in ProgCred, whenever a client fires a transaction to the Postgres engine, an old

Merkle proof and the new Merkle proof is output. The client verifies the old Merkle

proof shown by computing each node’s node-hash value and BMT RHV and matches

the evidence. The client further verifies the new Merkle proof TMT RHV, orphan nodes,

the supporting nodes and checks the modifications. If the modification made is correct,

the client validates the transaction by signing with his digital signature. In ProgCred,

the client has also been given the provision of provenance queries with added search space

optimization (section 4.3, section 7.2). Thus, ProgCred retains the verification property.

3. Authentication: In ProgCred, the modification made by programming changes to the

credereum longest prefix() function has no impact on the authenticity feature pos-

sessed by the Credereum. Hence, in ProgCred, for every transaction being fired, after

verification of proof’s generated by the server, the client needs to authenticate by signing

with his digital signature, using a private key. The server verifies the digital signature,

and if found valid, commits the transaction else, aborts. Hence, ProgCred holds the

authentication property.

4. Non-repudiation: In ProgCred, with modifications to credereum longest prefix()

function, the non-repudiation feature remains unchanged. In ProgCred, for each transac-

tion fired, the client needs to submit the digital signature, reflecting the client’s approval

in the modifications made by the server to be valid, and signs using its private key. Hence,

a situation can never occur where a client can deny the authorship or the validity of the

transaction fired by him. Therefore, ProgCred retains the non-repudiation property.

Thus, with the above explanation, ProgCred retains all the blockchain semantics held

initially by the Credereum.
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6.4 PerfCredA: Blockchain Properties

The following details the blockchain properties possessed by PerfCredA, which deals with the

algorithmic modifications:

1. Immutability: In PerfCredA, for every transaction T being fired by the client, a TMT is

developed without depending upon the previous block BMT. The TMT leaf nodes account

for each of the UPDATE/INSERT/DELETE performed by the transaction T. The TMT

RHV is computed and considered in the transaction T transaction-hash value calcu-

lation. Hence, whenever a fraudulent person modifies any TMT leaf nodes representing

UPDATE/INSERT/DELETE, then the TMT RHV and transaction T transaction-hash

changes. Moreover, the transaction-hash value of transaction T is accounted for block

B block-hash calculation. Hence, with changes in the transaction T transaction-

hash, block B and all forward block’s block-hash gets changed. Even if the fraudulent

person succeeds in validating the chain by re-calculating the block-hash digest of all the

subsequent blocks, the newly calculated block-hash digest will differ from the stored

original block-hash digest at the immutable trusted storage. Hence, any retroactive

modification of the database contents by a fraudulent person can be easily detected.

Thus, PerfCredA with algorithmic improvements ensures and retains the immutability

property.

2. Verification: In PerfCredA, with independent TMT formation for each transaction fired,

the verification logic for the old Merkle proof and new Merkle proof changes. Now, for

the old Merkle proof generated, the client first obtains each node’s node-hash and BMT

RHV. The node-hash computed is matched with the evidence displayed. If valid, the

client likewise obtains and verifies the new Merkle proof TMT RHV. Orphan node checks

are made in the BMT and TMT shown. In PerfCredA, since the TMT doesn’t depend

upon the previous block BMT structure, the TMT doesn’t retain any hanging nodes.

Hence, no comparison of supporting nodes is made, with old Merkle proof BMT, differing

Credereum, SecCred, and ProgCred. Finally, the client for each UPDATE/DELETE checks

the validity of the modifications from the leaf nodes of the old Merkle proof BMT to the

respective leaf nodes of the new Merkle proof TMT. The client further checks for each

INSERT the value in new Merkle proof TMT being made by T. If found valid, the client

validates the transaction by signing with his digital signature. In PerfCredA, the client has

also been given the provision of provenance queries with added search space optimization

(section 4.3, section 7.3). Thus, PerfCredA holds the verification property.
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3. Authentication: The client in PerfCredA, similar to Credereum, after verification of the

old Merkle proof and new Merkle proof, needs to authenticate the transaction with his

digital signature using a private key. The digital signature gets generated, concatenating

the old Merkle proof BMT RHV and new Merkle proof TMT RHV. The TMT RHV

summarizes the modifications made by transaction T and has been validated by the client.

The server verifies the digital signature, and if found valid, commits the transaction; else,

it aborts the transaction. Hence, PerfCredA retains the authentication property.

4. Non-repudiation: In PerfCredA, with algorithmic modifications proposing the inde-

pendent TMT formation per transaction, it doesn’t led changes in the client’s digital

signature submission to the server to commit the transaction. The digital signature gen-

erated reflects the client’s approval in the server’s modifications to be termed valid and it

uses the client’s private key. Hence, a situation can never occur where a client can deny

the authorship or the validity of the transaction being fired by him. Thus, PerfCredA

preserves the non-repudiation property.

Hence, with the above analysis, PerfCredA retains all the blockchain semantics retained

initially by the Credereum.

6.5 PerfCredB: Blockchain Properties

The following details the blockchain properties being retained by PerfCredB, which deals with

algorithmic modifications:

1. Immutability: For every transaction being fired in PerfCredB, unlike the Credereum/Sec-

Cred/ProgCred/PerfCredA, no TMTs are formed. Instead, an MHV (section 5.4.2)

gets calculated, which accounts for each UPDATE/INSERT/DELETE performed by the

transaction T. The MHV gets calculated using the SHA-256 hash and summarizes the

modifications made. Whenever a fraudulent person modifies any of the UPDATE/IN-

SERT/DELETE performed by T, the MHV calculation gets changed. The MHV gets

accounted for in the transaction-hash computation; hence any change in MHV leads

the transaction T transaction-hash value to get changed. The transaction-hash of

transaction T is further accounted for block B block-hash calculation. With changes in

the transaction-hash, the block-hash of block B and all the forward blocks get

changed. Even though, if the fraudulent person gets successful in re-computing the

85



block-hash of block B and all forward blocks, and validating the chain, the newly

calculated block-hash digest of block B and all the forward block’s will differ from the

stored original block-hash digest at the immutable trusted storage. Hence, any retroac-

tive modification of the database contents by a fraudulent person can be easily detected.

Thus, PerfCredB ensures and retains the immutability property.

2. Verification: In PerfCredB, the server generates an old Merkle proof and the New-Row-

Value proof for every transaction fired. The old Merkle proof uses the previous block BMT

to display and prove the row’s old values, which were being UPDATED/DELETED by the

client. For each INSERT, a non-existence proof gets shown. The New-Row-Value proof

shows the new values for each UPDATE/INSERT/DELETE, being performed by transac-

tion T, and summarizes the modification by displaying the MHV. The client first verifies

the leaf nodes of old Merkle proof BMT by calculating each node’s node-hash and BMT

RHV. The node-hash gets matched with the evidence shown. If valid, the client fur-

ther checks the value of new modified row from New-Row-Value proof and computes and

compares the MHV with the displayed. The client further, for each UPDATE/DELETE,

checks the modifications from the leaf nodes of old Merkle proof BMT to the respective

entry in the New-Row-Value proof and vice-versa. The client for each INSERT checks

the respective entry in the New-Row-Value proof. If found valid, the client validates the

transaction by signing with his digital signature. In PerfCredB, the client has also been

given the provision of provenance queries with quick computation and added search space

optimization (section 4.3, section 7.4). Thus, PerfCredB retains the verification property.

3. Authentication: The client in PerfCredB, after the server’s modifications are verified,

the client needs to authenticate the transaction by signing with his digital signature.

The digital signature is computed by concatenating the old Merkle proof BMT RHV and

the New-Row-Value MHV and signing with the client’s private key. The server verifies

the digital signature, and if found valid, commits the transaction; else, it aborts the

transaction. Hence, PerfCredB preserves the authentication property.

4. Non-repudiation: The replacement of TMT formation per transaction with MHV com-

putation per transaction in PerfCredB, does not change the digital signature submission

requirement to commit the transaction. The digital signature generation requires the

client’s private key. Hence, a situation can never occur where a client can deny the au-

thorship or the validity of the transaction being fired by him. Thus, PerfCredB holds the

non-repudiation property.
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Therefore, with the above analysis, PerfCredB retains all the blockchain semantics held

initially by the Credereum.

6.6 Summary

The SecCred dealing with functionality enhancement, and ProgCred, PerfCredA, PerfCredB

dealing with performance improvements, has been shown to retain the immutability, verifi-

cation, authentication, and non-repudiation property, held initially by the Credereum. The

immutability property assures any malicious activity performed at the per transaction/block

level can be easily detected. The verification property explain the displaying of the modifi-

cation proofs and methodology indulge in verifying and validating the generated proof. The

authentication property involves submitting a digital signature using the client’s private key,

which helps support the non-repudiation property.
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Chapter 7

Provenance Handling

With provenance, the queried data authenticity and source can be proved using the au-

ditable records of the modifications made from the Genesis block. The chapter deals

with explaining the methodology involved in handling the provenance query raised by the

client. The Credereum, SecCred dealing functionality additions, and ProgCred holding

the programming improvements, deals provenance query likewise. Further, the provenance

handling by PerfCredA and PerfCredB retaining algorithmic modifications has been ad-

dressed. The algorithmic improvements lead to alterations in the handling and output

generation of the provenance query. Each section details sample results of the provenance

query output in the respective system and has been analyzed and compared.

7.1 Introduction

Provenance query handling plays an essential role in the blockchain system design. With

this, a particular row’s existence gets proved by displaying and providing evidence for the

historical set of modifications made. Credereum, being a blockchain system, provides this

functionality through which the client can query and verify the history of alterations performed

on a particular row/set-of-rows. The trusted storage, being immutable, plays an essential

role in proving the modifications. The different phases of changes made to Credereum all

provide the provenance query handling functionality. SecCred and ProgCred, retaining the

same architecture as Credereum, establishes the same methodology but with stated provenance

search optimizations. The PerfCredA and PerfCredB provide provenance query functionality,

but due to variation in architectures, their provenance output differs. The autonomous TMT

creation in PerfCredA and MHV (section 5.4.2) computation in PerfCredB led to changes in

the algorithm to handle and verify provenance proof.
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7.2 Credereum/SecCred/ProgCred

The client in Credereum, SecCred, and ProgCred has been facilitated to query the modification

history of a row/set of rows with evidence through provenance query. The methodology involved

in displaying the provenance query results for Credereum/SecCred/ProgCred remains the same,

but with added functionality in SecCred and ProgCred, as explained in section 4.3. SecCred

and ProgCred with functionality advancement and programming changes, respectively, have no

variation in their architecture; hence their provenance engine remains same.

7.2.1 Provenance Explanation

In Credereum, SecCred, and ProgCred, the credereum merkle proof() function handles

the client’s provenance query. For each row key-id R being queried, the mentioned cred-

ereum merkle proof() function searches and outputs all the [key, transaction id, block num,

children, leaf, hash, value] attribute entries by probing the credereum merklix relation (Table

1.2), where the key is R and transaction id is NOT NULL. The credereum merkle proof()

function for each entry above, with transaction id as T, block num as B, and key as K:

1. outputs [key, block num, transaction id, children, leaf, hash] details by searching the cred-

ereum merklix table for transaction id equal to T, block num equal to B, and key not

equal to K. The details fetched belongs to the path nodes (nodes from leaf nodes to the

root node) and supporting/hanging nodes of transaction T TMT.

2. outputs [key, block num, transaction id, children, leaf, hash, value] details by searching the

credereum merklix table for the transaction id as NULL, block num equal to B, and

key equal to K. The details fetched belongs to the block B BMT leaf nodes. Thus for a

hit block, it shows the value (i.e., node-value) of modified K present in the BMT.

3. outputs [key, block num, transaction id, children, leaf, hash] details by searching the cred-

ereum merklix table for the transaction id as NULL, block num equal to B, and key not

equal to K. The details fetched belongs to the path nodes (nodes from leaf nodes to the

root node), and the supporting nodes of BMT for the given block number.

For each hit block B, the server also generates TMT of the rest transactions (where trans-

action id 6= T). For block M, where a queried row key-id K has not been modified, the server

additionally generates proof by displaying the block M BMT and all the related TMT details.
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Thus for a queried row R, the server for each block generates the BMT and each TMT to

prove whether R has been modified/not. While displaying the proofs, the minimal disclosure

retention property (section 2.6) is maintained.

The client queries and stores the public credereum block table and credereum tx log

table entries. For each transaction-id, the client verifies the previous block BMT RHV details.

With the credereum tx log results, the client computes and verifies each transaction-id X

transaction-hash value, as:

• transaction-hash = SHA256 (previous block BMT RHV + transaction X TMT RHV

+ public key + digital signature)

Once the transaction-hash of each transaction-id matches, the client for each block

Y verifies whether the previous block Y-1 block-hash accounted is valid/not. If valid, the

client computes the block-hash of Y and matches it with the details fetched from the cred-

ereum block table and trusted storage. The client can compute and verify the block-hash,

as:

• block-hash = SHA256 (previous block Y-1 block-hash + all constituting transaction’s

transaction-hash + block Y BMT RHV)

With provenance proof displaying the row key-id (key) r1 was modified by the transaction

Tt of block number Bk, the client using the provenance results can verify its authenticity. To

validate that the modification was made by transaction Tt of block number Bk, the client can

compute the transaction Tt TMT each node’s node-hash value (i.e., hash) and verify RHV

with the proof provided. If found valid, the computed RHV is matched with the verified details

from the credereum tx log table. Similarly, for the rest transaction-id of Bk, the client

verifies and expects the same old value of r1.

From the proof provided, the client needs to further verify the BMT of block Bk, to see

the accounting of row r1 in the block Bk formation and block-hash calculation. The client

can compute each BMT node’s node-hash value (i.e., hash) and match it with the provenance

results. The computed BMT RHV is used to calculate the block Bk block-hash value and

compare with the verified credereum block table entries. If the value matches, this signifies

that row r1 was being modified and used in the block formation of block Bk. Likewise, for block

M, which doesn’t have any modification to row r1, the client can verify the block M BMT and

each associated transaction-id TMT details, expecting the same old value of r1.

90



With the given output from the credereum merkle proof() function, a client has ver-

ified that the transaction Tt of block number Bk has modified row r1 and has been used in the

BMT formation and block-hash calculation for block Bk. Similarly, the client can verify the

rest queried rows result from the provenance output.

7.2.2 Sample Results

In Credereum/SecCred/ProgCred, let’s consider there are four transactions T1, T2, T3, and T4,

which were being fired by the clients, one after the other, and on commit, were used in the block

formation of block 1, block 2, block 2, and block 3, respectively. Each transaction, T1, T2, T3,

and T4 remains the same, as defined in section 4.2.5. The transactions either INSERT/UPDATE

the warehouse table, or the customer table, or both. For each UPDATE/INSERT/DELETE,

a node in the TMT and BMT is created, with the new node-value entries. For DELETE, the

node-value is NULL, for INSERT, the node-value is the new fed data in the relation, and

for an UPDATE, the node-value is the new modified data.

For a TMT, we have the following:

1. The green nodes display provenance queried rows (leaf nodes) within a transaction TMT.

2. The red nodes exhibit the TMT internal nodes.

3. The blue and yellow nodes represent the supporting and hanging nodes, respectively,

which gets used to compute and verify the parent node’s node-hash.

4. The dashed edges mean the child details can be fetched from the previously shown

TMT/BMT details from the provenance results. Hence duplicate entries are avoided.

For a BMT, we have the following:

1. The green nodes illustrate provenance queried rows (leaf nodes) within a block BMT.

2. The red nodes display the BMT internal nodes.

3. The blue nodes represent the supporting nodes used for calculating and verifying the

node-hash of the parent node.

4. The dashed edges mean the child details can be fetched from the previously shown BMT

details from the provenance results. Hence duplicate entries are avoided.
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Figure 7.1: Provenance outcome for transaction T1 of block 1

With the above, say the client for each transaction T1, T2, T3, and T4 before commit, queries

the provenance for respective each modified (inserted/updated/deleted) row key-ids:

1. Block 1, Transaction T1: For the transaction T1 fired by the client, a TMT gets

formed, and an old Merkle proof and new Merkle proof are generated. For the provenance

proof of the modified row key-ids, a block 0 entry and the outcome shown in Figure 7.1

are displayed. Now, with block 1 being the first block, there are no previous modifications

to the rows of the warehouse table with id equal to 1, 5, 3, 6, and 12. Further, the

provenance output displays the current transaction T1 TMT to output the new data

values after modification and is shown in Figure 7.1. The TMT’s leaf node show the

warehouse rows, with id equal to 1, 5, 3, 6, and 12 modified. The client can verify the

modifications, and if found correct, digitally signs the transaction.

2. Block 2, Transaction T2: For the transaction T2 fired by the client, a TMT gets

formed, and an old Merkle proof and new Merkle proof are generated. The provenance

outcome for the modified row key-ids queried by the client is shown in Figure 7.2.

Additionally, an initial block 0 entry also gets output. Now, the transaction T2 modifies
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Figure 7.2: Provenance outcome for transaction T2 of block 2

warehouse rows with id values 6 and 12, which was earlier modified by the transaction

T1 at block 1. So the provenance query displays the commonly modified rows, i.e.,

warehouse rows with id values 6 and 12, of the TMT of T1 and the BMT of block 1,

as shown in section ‘a’ and ‘b’ of Figure 7.2, respectively. The BMT of block 1 displays

the inclusion of warehouse rows with id values 6 and 12 in the block formation. For the

TMT shown, the client can compute the TMT RHV and the transaction-hash value.

Given a BMT, the client can compute the BMT RHV and block-hash value and match

it with the database and the trusted storage. As shown in the section ‘c’ of Figure 7.2,

the provenance proof also outputs the current transaction T2 TMT and displays the new

modified data values. The leaf nodes of TMT of T2 shows the warehouse rows with

id equal to 6, 12, 8, and 4 modified. The TMT of T2 depends upon the previous block,

i.e., block 1 BMT structure, and hence holds hanging nodes (yellow nodes) attached to

it. The client, after verifying proofs and changes, sends a digital signature to the server.

3. Block 2, Transaction T3: For the transaction T3 fired by the client, a TMT gets formed

and, an old Merkle proof and new Merkle proof are generated. The provenance outcome

for the past data values of the modified row key-ids, being queried by the client, includes
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Figure 7.3: Provenance outcome for transaction T3 of block 2

block 0 entry, Merkle tree details of block 1, and the output shown in Figure 7.3. Now,

the transaction T3 modifies the customer table rows, which were not altered by any

transaction earlier. Considering block 1, because of no common prefix with queried key-

ids, only the root node and the child attached to the root node of TMT of T1 and BMT

of block 1 are displayed. With the details output, the client can respectively compute T1

TMT RHV and block 1 BMT RHV. Further, using the computed T1 transaction-hash

value and block 1 BMT RHV, the block-hash of block 1 can be calculated and matched

with the database and the trusted storage. Further, the server also outputs the current

transaction T3 TMT as shown in Figure 7.3. The leaf node entries of TMT show the

customer rows with id equal to 3, 4, 5, 6, and 7 modified. The TMT of transaction T3

depends upon the previous block, i.e., block 1 BMT structure, and hence has a hanging

node (yellow node) attached to it. The client verifies the proofs and modifications, and if

found valid, submits the digital signature to the server.

4. Block 3, Transaction T4: For the transaction T4 fired by the client, a TMT is formed

and, an old Merkle proof and new Merkle proof gets generated. The provenance results

for the preceding data values of the modified row key-ids, queried by the client, are
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Figure 7.4: Provenance outcome for transaction T4 of block 3 (Part-1)

displayed in Figures 7.4 to 7.7. Additionally, an initial block 0 entry also gets output by

the server. Now, transaction T4 alters warehouse rows with id equal to 3, 6, 12, 7, and

2, and the customer rows with id equal to 3 and 7. Commencing the search from initial

block, transaction T1 in block 1 has modified warehouse rows with id equal to 3, 6, and

12. As shown in section ‘a’ and ‘b’ of Figure 7.4, the TMT of T1 and BMT of block 1

are displayed, showing the value details of warehouse id entries equal to 3, 6, and 12.

In block 2, transaction T2 has modified warehouse rows with id equal to 6 and 12.

Further, transaction T3 of block 2 has changed customer rows with id equal to 3 and

7. From section ‘a’ and ‘b’ of Figure 7.5, the TMT of T2 and T3 is shown, respectively,

with commonly modified rows with T4. The BMT of block 2 gets further displayed in

Figure 7.6 to show the inclusion of commonly modified rows of T2 and T3 with T4 in the

block 2 formation. The leaf nodes of BMT have entries written in red (customer table

modifications made by T3) and black (warehouse table modifications made by T2).

For each transaction’s TMT shown, the client can compute the TMT RHV and

the transaction-hash value. For each block’s BMT shown, the client can compute

the BMT RHV and block-hash value and match it with the database and the trusted
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Figure 7.5: Provenance outcome for transaction T4 of block 3 (Part-2)

Figure 7.6: Provenance outcome for transaction T4 of block 3 (Part-3)
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Figure 7.7: Provenance outcome for transaction T4 of block 3 (Part-4)

storage. The provenance proof results also display the current transaction T4 TMT as

shown in Figure 7.7. The leaf node entries of TMT of transaction T4 show the customer

rows with id values 3 and 7 (red entries) and warehouse rows with id values 3, 6, 12, 7,

and 2 (black entries) modified by T4. The TMT of T4 depends upon the previous block,

i.e., block 2 BMT structure, and hence has hanging nodes (yellow nodes) attached to it.

The client, after verifying the proofs and modifications, digitally signs the transaction.

7.3 PerfCredA

The PerfCredA, dealing with algorithmic changes, provides the clients with evidence for the

queried rows’ past modifications using provenance. The search space optimization, as is ex-

plained in section 4.3, is facilitated in PerfCredA. Any client can raise the provenance query by

providing the set of row key-ids for which the proof is desired.
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7.3.1 Provenance Explanation

The PerfCredA design has no previous block BMT dependency at the per transaction TMT

formation. In PerfCredA, the provenance query is handled by the provenance proof pca()

function, which intakes the set of row key-ids for which the provenance is desired and the

range block number’s (section 4.3) with default as Genesis block and the current block. The

provenance proof pca() function output remains similar to section 7.2.1 but with varia-

tions in the TMT display. With the TMT structure modifications in PerfCredA, the TMT holds

no hanging nodes. With its absence, the exploration of the TMT hanging nodes in the verifica-

tion logic gets avoided. While probing provenance results in PerfCredA, if within a block, the

queried row R has not been modified, then the block BMT is explored expecting the same old

value of R, and the TMT’s in the block gets surveyed expecting no-entry for row R. Further, in

PerfCredA, the transaction-hash, and block-hash calculation formula remains the same.

The client can likewise (section 7.2.1) verify the details from the public credereum block

and credereum tx log relations.

7.3.2 Sample Results

The transactions being fired by the clients sequentially to PerfCredA, be T1, T2, T3, and T4,

which on commit will be accounted in block 1, block 2, block 2, and block 3 formations, respec-

tively. The transaction details of T1, T2, T3, and T4 remain the same as defined in section

4.2.5. In PerfCredA, for each UPDATE/INSERT/DELETE, a node in the TMT and BMT is

created with the new node-value entries. For DELETE, the node-value is NULL, for IN-

SERT, the node-value is the new fed data in the table, and for an UPDATE, the node-value

is the new modified data. In Credereum/SecCred/ProgCred, the per transaction TMT and per

block BMT depend upon the previous block BMT structure. But, in PerfCredA, as we will

see, a transaction’s TMT will be constructed independently, i.e., without being dependent on

the previous block BMT. Hence, there won’t be any hanging nodes in any of the transaction’s

TMT. However, each block in the PerfCredA develops its structure depending upon the previ-

ous block BMT structure and will retain hanging nodes.

For a TMT, we have the following:

1. The green nodes exhibit provenance queried rows (leaf nodes) within transaction’s TMT.

2. The red nodes display the TMT internal nodes.
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3. The blue nodes represent the supporting nodes used to calculate and verify the node-

hash of the parent node.

For a BMT, we have the following:

1. The green nodes exhibit provenance queried rows (leaf nodes) within block’s BMT.

2. The red nodes represent the BMT internal nodes.

3. The blue nodes display the supporting nodes used to calculate and verify the node-hash

of the parent node.

4. The dashed edges mean the child details can be fetched from the previously shown BMT

details from provenance proof. Hence duplicate entries are avoided.

With above details, say the client for each transaction T1, T2, T3, and T4 before commit, fires

the provenance query for each respective modified (inserted/updated/deleted) row key-ids:

1. Block 1, Transaction T1: For the transaction T1, fired by the client, a TMT gets

formed, and an old Merkle proof and new Merkle proof are generated. The client, when

queries the provenance for the row key-id’s modified, the block 0 entry and outcome

shown in Figure 7.8 gets displayed. Now, since block 1 is the first data block, there

are no previous modifications to the rows of the warehouse table with id equal to 1,

5, 3, 6, and 12. Further, the provenance displays the current transaction T1 TMT to

exhibit the new data values after modification, shown in Figure 7.8. The TMT’s leaf

node entries show the warehouse rows with id equal to 1, 5, 3, 6, and 12 modified.

We can observe that the transaction T1 TMT of PerfCredA shown in Figure 7.8 remains

the same as of transaction T1 TMT in Credereum/SecCred/ProgCred shown in Figure

7.1. The reason is, in Credereum/SecCred/ProgCred, T1 being the transaction of block

1, it has no previous block’s BMT to be dependent upon, hence designs autonomously.

Therefore, in general, all the transactions of block 1 in Credereum/SecCred/ProgCred

and PerfCredA will develop its TMT independently and remain the same. The client,

after verifying the proofs, and modifications can digitally sign the transaction.

2. Block 2, Transaction T2: For the transaction T2 fired by the client, a TMT gets

formed, and an old Merkle proof and new Merkle proof are generated. Now, for the

provenance query fired by the client concerning the modified row key-id’s, the output
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Figure 7.8: PerfCredA provenance outcome for transaction T1 of block 1

shown in Figure 7.9 is displayed. Additionally, an initial block 0 entry also gets shown.

Now, the warehouse rows with id values 6 and 12 were earlier modified in block 1 by

T1. Thus, the provenance query displays the value of the commonly modified rows, i.e.,

warehouse id equal to 6 and 12, of the TMT of T1 and the BMT of block 1, as shown

in section ‘a’ and ‘b’ of Figure 7.9, respectively.

The BMT of block 1 shows the inclusion of warehouse rows with id values 6

and 12 in the block formation. From the TMT, the client can compute TMT RHV

and transaction-hash value. Given a BMT, the client can compute BMT RHV and

block-hash value and match it with the database and the trusted storage. The server for

provenance proof, as shown in section ‘c’ of Figure 7.9, also outputs the current transaction

T2 TMT to display the new modified data values. The leaf nodes of TMT of transaction

T2 show the warehouse rows with id equal to 6, 12, 8, and 4 modified. The TMT of

transaction T2 doesn’t depend upon the previous block, i.e., block 1 BMT structure, and

hence holds no hanging nodes. The TMT of transaction T2 of PerfCredA can be observed

differently from the TMT of transaction T2 of Credereum/SecCred/ProgCred shown in

Figure 7.2, which depends on the previous block BMT structure and contains the hanging
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Figure 7.9: PerfCredA provenance outcome for transaction T2 of block 2

nodes (yellow nodes). The client, after verifying the transaction’s modification and proof

displayed, can authenticate the transaction.

3. Block 2, Transaction T3: For the transaction T3 fired by the client, a TMT gets

formed, and an old Merkle proof and new Merkle proof are generated. Now, with regard

to the provenance queried for the modified row key-ids, the generated result includes

block 0 entry, block 1 Merkle details, and the output shown in Figure 7.10. The relation

modified by transaction T3 was not altered by any transaction since the Genesis block.

Now, concerning block 1, with no common prefix matching with the queried key-ids, the

provenance outputs the root node and the child attached, for TMT of T1 and BMT of

block 1. The client using details can compute TMT RHV and transaction-hash of T1,

and further BMT RHV and block-hash value of block 1. The computed block-hash

can be matched with the database and trusted storage. The server for provenance also

displays the current transaction T3 TMT, shown in Figure 7.10. The leaf nodes of TMT

of T3 show the customer rows with id equal to 3, 4, 5, 6, and 7 modified. The TMT

of transaction T3 doesn’t depend upon the previous block, i.e., block 1 BMT structure,

and hence has no hanging node attached to it. The TMT of transaction T3 of PerfCredA
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Figure 7.10: PerfCredA provenance outcome for transaction T3 of block 2

can be seen differently from the TMT of transaction T3 of Credereum/SecCred/ProgCred

shown in Figure 7.3, having hanging node (yellow node) attached to it. The client, after

verifying the proofs and modifications made, can digitally sign the transaction.

4. Block 3, Transaction T4: For the transaction T4 fired by the client, a TMT gets

formed, and an old Merkle proof and new Merkle proof are generated. For the client’s

provenance query, to determine the history of modified row key-ids, the details shown in

Figures 7.11 to 7.14 are displayed. Additionaly, an initial block 0 entry also gets shown.

Now, transaction T4 modifies warehouse rows with id equal to 3, 6, 12, 7, and 2, and

the customer rows with id equal to 3 and 7. Seeking from Genesis block, the transaction

T1 in block 1 has modified warehouse rows with id equal to 3, 6, and 12. The prove-

nance query outputs T1 TMT and block 1 BMT, with the value details of warehouse

id equal to 3, 6, and 12, shown in section ‘a’ and ‘b’ of Figure 7.11, respectively. It can be

observed that the provenance proof results containing block 1 information for transaction

T4 in PerfCredA remain the same as of transaction T4 in Credereum/SecCred/ProgCred,

shown in Figure 7.4 section ‘a’ and ‘b’. The reason behind such behavior, as explained, is

the block 1 each transaction’s TMT and the block’s BMT in Credereum/SecCred/Prog-
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Figure 7.11: PerfCredA provenance outcome for transaction T4 of block 3 (Part-1)

Cred getting developed in the absence of a previous block BMT structure, and thus, builds

independently. Hence, in Credereum/SecCred/ProgCred, the Merkle tree structure for

each TMT and BMT for block 1 remains the same as for PerfCredA.

In block 2, transaction T2 has modified warehouse rows with id equal to 6 and 12.

Also, transaction T3 of block 2 has changed customer rows with id equal to 3 and 7. As

shown in section ‘a’ and ‘b’ of Figure 7.12, the TMT of T2 and T3 is shown, respectively,

with commonly modified rows with T4. The BMT of block 2 is further displayed in Figure

7.13 to demonstrate the inclusion of commonly modified rows of T2 and T3 with T4 in

the block formation. The leaf node of BMT has entries written in red (customer table

modifications made by T3) and black (warehouse table modifications made by T2). For

the TMT of T1, T2, and T3, the client can calculate the TMT RHV and transaction-

hash value. With given BMT of block 1, and block 2, the client can compute the BMT

RHV and block-hash and match it with the database and trusted storage.

The server for provenance also outputs the current transaction T4 TMT details dis-

played in Figure 7.14. The leaf node entries of T4 TMT shows the customer rows with

id value 3 and 7 (red entries) and warehouse rows with id value 3, 6, 12, 7, and 2
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Figure 7.12: PerfCredA provenance outcome for transaction T4 of block 3 (Part-2)

Figure 7.13: PerfCredA provenance outcome for transaction T4 of block 3 (Part-3)
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Figure 7.14: PerfCredA provenance outcome for transaction T4 of block 3 (Part-4)

(black entries) modified. The T4 TMT does not depend upon the previous block, i.e.,

block 2 BMT structure, and hence has no hanging nodes attached to it. The TMT of

transaction T4 of PerfCredA can be seen differently from the TMT of transaction T4

of Credereum/SecCred/ProgCred shown in Figure 7.7, which has a dependency on the

previous block BMT structure and holds hanging nodes (yellow nodes). It can also be ob-

served, in PerfCredA with a growing timeline, the transaction’s TMT structure is simpler

compared to a similar transaction’s TMT structure in Credereum/SecCred/ProgCred.

Hence, per transaction computation cost in TMT formation and TMT RHV calculation

decrements. The client in PerfCredA, after verifying the proofs and modifications from

Figures 7.11 to 7.14, can digitally sign the transaction.

7.4 PerfCredB

The algorithmic modifications in PerfCredB have led to changes in the displaying and proving of

the clients’ provenance query results. As mentioned, with no TMT formation, the PerfCredB

with MHV calculation (section 5.4.2) summarizes the transaction’s alterations. The MHV
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computation has simplified the provenance result generation, and additionally, has reduced the

provenance response time (section 8.2.3). Any client can raise the provenance queries, and the

server gives proof for the modification history of queried row key-ids. PerfCredB retains the

search space optimization (section 4.3) proposed for the provenance query.

7.4.1 Provenance Explanation

The provenance proof pcb() function in PerfCredB handles the provenance query raised

by the client. The provenance proof pcb() function inputs row key-ids for which the

provenance is desired, and the range block numbers (section 4.3) with default as Genesis block

and the current block. For each row key-id X being queried, the provenance proof pcb()

function generates and displays the [key, transaction id, block num, sub hash, previous, hash,

value] attribute entries by probing the credereum merklix table, where key is X and trans-

action id is NOT NULL. The provenance proof pcb() function for each entry above, with

transaction id as T, block num as B, and key as K:

1. outputs [key hash, block num, transaction id, sub hash, previous, hash] entries by probing

the credereum merklix table for the transaction id as T, block num equal to B, and

key not equal to K. The details fetched belongs to the other row key-id’s modified by T

at block B.

2. outputs [key, block num, transaction id, children, leaf, hash, value] entries by probing the

credereum merklix table for the transaction id as NULL, block num equal to B, and

key equal to K. The details fetched belongs to the BMT leaf nodes of block B.

3. outputs [key, block num, transaction id, children, leaf, hash] entries by probing the cred-

ereum merklix table for the transaction id as NULL, block num equal to B, and key not

equal to K. The details fetched belongs to the path nodes and supporting nodes of BMT

of block B.

The PerfCredB, for each transaction id (6= T) of block B, the server also displays the row

key-id details in their hash formats, i.e., [key hash, block num, transaction id, sub hash, previous,

hash]. For block M, where the queried key-ID has not been modified, the server displays the

BMT details with minimal disclosure retention property (section 2.6). Each transaction details

of block M is also additionally shown in their hash formats. Hence, for the provenance proof

generation, each block and its respective transaction details are utilized.
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Similar to Credereum (section 7.2.1), the client queries and verifies the credereum block

and credereum tx log table details. The details verified and stored helps evaluate the

correctness of the provenance query results.

The client with the provenance results, say it verifies the queried row key-id (key) R, with

details showing the modification being made by the transaction Tt of block number Bk. From

the row-set S modified by Tt of Bk, only row R key and value are shown, and for the rest of rows

(S-R), the key hash, sub hash and hash values are displayed by the provenance proof pcb()

function. The client from the Tt details verifies no-duplicate/multi-modification by equalizing

the shown key hash’s with those of R. If found valid, the client can compute the MHV and

transaction-hash value of transaction Tt in Bk, using Algorithm 2.

Algorithm 2 : MHV and transaction hash verification

hash = ‘′

sub hash = ‘′

while each row being modified by Tt i.e. r
′
1, r

′
2, r

′
3, ..., r

′
m in order do

if sub hash is known then
hash = SHA256 (hash + key hash + sub hash)

else
key hash = SHA256 (row key-id)
sub hash = SHA256 (row key-id + ‘:′ + row value)
hash = SHA256 (hash + key hash + sub hash)

end if
end while
MHV = SHA256 (hash + transaction id)
transaction hash = SHA256 (Bk-1 BMT RHV + MHV + PK + DS)

Algorithm 2 uses an iterative methodology to compute the hash of each row in S being

modified by Tt in an order obtained from the previous attribute shown. For row R, the client

verifies the key-id (key) bit-string and the value associated and computes key hash, sub hash

and hash. For row-set S-R, the client, with the known key hash and sub hash value, compute

the hash. The MHV is being calculated after the iterative loop ends and further gets used to

calculate the Tt transaction-hash value. The block Bk-1 BMT RHV, the public key (PK),

and the digital signature (DS) are also included in the transaction-hash value computation.

If the MHV and transaction-hash for Tt matches the verified credereum tx log table

entries, then the client further verifies the rest of Bk transactions, shown in provenance results

for non-inclusion/non-modification of R.
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In PerfCredB likewise, unique indexing is created with the constraint that a row can be

modified at most once within a block. The client verifies the BMT of block Bk being output by

provenance proof pcb() function to check the involvement of row R in the Bk formation.

With the details output, the client verifies the R key-id (key) bit-string and the value associated

with the BMT leaf node and computes the Bk BMT RHV. The BMT RHV gets matched with

the verified credereum block entries. With BMT RHV verified, the client can further

calculate and verify the block-hash value of Bk as:

• block-hash = SHA256 (previous block Bk-1 block-hash + all constituting transaction’s

transaction-hash + BMT RHV)

If the BMT RHV and block-hash match with the verified base relations, then this signifies

that row R has been modified and is accounted for in the block formation of block Bk.

Similarly, the client for non-hit block’s M verifies the BMT and each related transaction

details for the non-modification of row R. For block M, the BMT gets explored expecting the

same old value of R, and each transaction of M are examined expecting no-entry for row R.

The client using the same above technique can confirm the provenance proof results of each

queried row key-id.

PerfCredB, with the removal of TMT, and replacement with MHV, has led to a rise in

performance. However, while displaying the provenance, the non-queried row counts modified

within a transaction are visible. With only the counts visible and not the identity of the

non-queried key-ids of a transaction, no serious security breaches are expected.

7.4.2 Sample Results

In PerfCredB, say transaction T1, T2, T3, and T4, is being sequentially fired by the clients,

and on commit will be accounted in block 1, block 2, block 2, and block 3, respectively. Each

transaction is detailed in section 4.2.5. For each UPDATE/INSERT/DELETE, an entry with the

new value is made in credereum merklix table, and further considered in the transaction’s

MHV calculation. For DELETE, the value is NULL, for INSERT, the value is the new fed data in

relation, and for an UPDATE, the value is the new modified data. In Credereum/SecCred/Prog-

Cred/PerfCredA, for each transaction, a TMT was developed and TMT RHV was computed.

However, as will see, in PerfCredB, no such TMT gets formed, and instead, the modification

rows are accounted for in the MHV calculation at the per-transaction level. The per-block BMT

formation remains the same for Credereum, SecCred, ProgCred, PerfCredA, and PerfCredB,
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with being dependent upon the previous block BMT structure, and thus retains hanging nodes.

For a transaction’s MHV verification, we have the following:

1. The green circles demonstrate the provenance queried rows (altered rows) and displays

all the details, i.e., block num, transaction id, row key, value, previous, sub hash, and hash

value from the credereum merklix relation.

2. The orange circle represents the transaction’s MHV.

3. The light-blue circles represent the supporting key hashs (hidden rows), used in proofs for

helping to compute and verify the transaction MHV.

4. The dark-blue inverted triangle indicate the hash calculation stage of each row.

For a BMT, we have the following:

1. The green nodes display the provenance queried rows (leaf nodes) within block’s BMT.

2. The red nodes exhibit the BMT internal nodes.

3. The blue nodes represent the supporting nodes used to calculate and verify the parent

node node hash.

4. The dashed edges mean the child details can be fetched from the previously shown BMT

details from the provenance results. Hence duplicate entries are avoided.

For the simplicity of explanation, corresponding to a transaction T, we define MHV-set as

the output generated by the server, using transaction T details (from credereum merklix

relation), to provide proofs to the clients for provenance. Now, with all the above information

mentioned, say the client for each transaction T1, T2, T3, and T4 before commit, fires the

provenance query for respective each modified (inserted/updated/deleted) row key-ids:

1. Block 1, Transaction T1: For the transaction T1, fired by the client, after making the

database’s modifications, an MHV gets calculated, and an old Merkle proof and New-

Row-Value proof are generated. Now, considering the provenance raised by the client

for the modified row key-id’s, the block 0 entry and the details shown in Figure 7.15

are displayed. With block 1 being the first data block, no previous modifications to the

rows of the warehouse table with id equal to 1, 5, 3, 6, and 12 was made. Further, for
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Figure 7.15: PerfCredB provenance outcome for transaction T1 of block 1

provenance query to display the new data values from changes made, shows the current

transaction T1 MHV-set, which includes all modified row entries (green circles) along-

with the MHV entry (orange circle), shown in Figure 7.15. The details displayed for

each modified row entry include block num, transaction id, key (key-id), value, previous,

sub hash, and hash.

From Figure 7.15, we can see that the green circles represent each modified ware-

house row with id equal to 1, 5, 3, 6, and 12. Considering the warehouse id value 1,

its hash value is calculated in the dark-blue inverted triangle and checked with the prove-

nance results. The verified hash is further forwarded and included in the hash calculation

of the next modified row, i.e., warehouse row with id as 5. Hence, in this manner, the

hash value of each modified row is computed and verified. The final obtained hash of

warehouse id value 12 is passed for the MHV calculation. The calculated MHV sum-

marizes all the modifications made by the transaction T1. The client, after verifying the

changes, digitally signs the transaction.

2. Block 2, Transaction T2: For the transaction T2 fired, after making modifications in

the database and with MHV calculated, an old Merkle proof and New-Row-Value proof
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Figure 7.16: PerfCredB provenance outcome for transaction T2 of block 2

gets generated. The provenance outcome for the modified row key-ids, queried by the

client, is displayed in Figure 7.16. Additionally, an initial block 0 entry also gets shown.

Now, the transaction T2 modifies warehouse rows with id values 6 and 12, which was

earlier modified by transaction T1 at block 1. So the provenance query displays all details

of the commonly modified rows, i.e., warehouse rows with id values 6 and 12, in the

MHV-set of T1 (green circles) and the BMT of block 1, as shown in section ‘a’ and ‘b’

of Figure 7.16, respectively. We can also observe from the section ‘a’ of Figure 7.16 that

while proving the modification of warehouse rows with id values 6 and 12 by T1, the

rest row’s (light-blue circles) modified by T1 is kept hidden, and only their key hash and

sub hash/hash are shown.

The BMT of block 1 shows the inclusion of warehouse rows with id values 6 and 12 in

the block formation. Given a BMT, the client can compute block-hash value and match

it with the one stored in the database and the trusted storage. As stated earlier, for each

Credereum, SecCred, ProgCred, PerfCredA, and PerfCredB, a block’s BMT depends on

the previous block BMT structure. Hence, the section ‘b’ of Figure 7.16 displaying the

inclusion of warehouse id values 6 and 12 in BMT formation of block 1 remains the
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Figure 7.17: PerfCredB provenance outcome for transaction T3 of block 2

same as of section ‘b’ of Figures 7.2 and 7.9. The provenance proof to display the new

modified data values also outputs the current transaction T2 all modified rows entries

(green circles) along-with the MHV entry (orange circle), as shown in the section ‘c’ of

Figure 7.16. The client, after verifying the proofs, and modification can digitally sign the

transaction.

3. Block 2, Transaction T3: For T3, with modifications made and MHV calculated, an

old Merkle proof and New-Row-Value proof gets generated. For the provenance proof of

the modified row key-ids, block 0 entry, BMT of block 1, and the details shown in Figure

7.17 are displayed to the client. Now, the transaction T3 modifies the customer table

rows, which were not altered by any transaction earlier. Searching from the initial block,

at block 1, with T1 having no common row modification with T3, all the rows modified

by T1 are displayed by provenance in their hash form, shown in section ‘a’ of Figure 7.17.

Now, considering BMT of block 1, with no common prefix with queried key-ids, only

the root node and the child attached to the root node gets displayed.

Using block 1 BMT RHV and MHV details from section ‘a’ of Figure 7.17, the client

can compute the block-hash value of block 1 and match it with the database and the
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Figure 7.18: PerfCredB provenance outcome for transaction T4 of block 3 (Part-1)

immutable trusted storage. Further, the provenance also displays the new modified data

values, which includes current transaction T3 all modified row entries (green circles) along

with the MHV entry (orange circle), as shown in the section ‘b’ of Figure 7.17. The client,

with proofs and modifications verified, digitally signs the transaction.

4. Block 3, Transaction T4: For the transaction T4, after database modification and

MHV computation, an old Merkle proof and New-Row-Value proof gets generated. For

the provenance proof of the modified row key-ids, the details shown in Figures 7.18 to

7.20 are displayed to the client. Additionally, an initial block 0 entry also gets output.

Now, transaction T4 modifies warehouse rows with id equal to 3, 6, 12, 7, and 2, and

the customer rows with id equal to 3 and 7. Searching from the Genesis block, the

transaction T1 in block 1 has modified warehouse rows with id equal to 3, 6, and

12. So the provenance query displays all details of the commonly modified rows, i.e.,

warehouse rows with id values 3, 6, and 12, in the MHV-set of T1 (green circles) and

the BMT of block 1, as shown in section ‘a’ and ‘b’ of Figure 7.18, respectively. It can

also be observed, from the section ‘a’ of Figure 7.18, that while proving the modification

of warehouse rows with id values 3, 6, and 12 by T1, the rest row’s (light-blue circles)
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Figure 7.19: PerfCredB provenance outcome for transaction T4 of block 3 (Part-2)

modified by T1 is kept hidden, and only their key hash and sub hash/hash gets shown.

Now in block 2, transaction T2 has modified warehouse rows with id equal to 6 and

12. Also, transaction T3 of block 2 has changed customer rows with id equal to 3 and

7. So, as shown in section ‘a’ and ‘b’ of Figure 7.19, all details of the commonly modified

rows, i.e., warehouse rows with id values 6 and 12 in the MHV-set of T2 (green circles),

and customer rows with id values 3 and 7 in the MHV-set of T3 (green circles), are

displayed respectively. From section ‘a’ of Figure 7.19, we can notice that while proving

the modification of warehouse rows with id values 6 and 12 by T2, the rest row’s (light-

blue circles) modified by T2 is kept hidden. Similarly, from section ‘b’ of Figure 7.19, it

can be observed that, while proving modification of customer rows with id values 3 and

7 by T3, the rest row’s (light-blue circles) modified by T3 is kept hidden.

The BMT of block 2 is further displayed in section ‘a’ of Figure 7.20 to show the

inclusion of commonly modified rows of T2 and T3 with T4 in the block formation. The

leaf node of BMT has entries written in red (customer table modifications made by

T3) and black (warehouse table modifications made by T2). We can also observe that

the BMT of block 2 shown in section ‘a’ of Figure 7.20 remains the same as BMT of
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Figure 7.20: PerfCredB provenance outcome for transaction T4 of block 3 (Part-3)

block 2 shown in Figures 7.6 and 7.13, because in each case the BMT of the current block

(block 2) depends upon the previous block (block 1) BMT structure. Hence, for each,

Credereum, SecCred, ProgCred, PerfCredA, and PerfCredB, the BMT structure for each

block will remain same.

For each T1, T2, and T3, the client can compute the respective MHV and the

transaction-hash value using the details provided. For each block, block 1 and block 2

BMT, the client can compute BMT RHV, and further calculate the block-hash value and

match it with the database and the immutable trusted storage. Further, the provenance

query to display the new modified data values also outputs the current transaction T4 all

modified row entries (green circles) along-with the MHV entry (orange circle), as shown

in section ‘b’ of Figure 7.20. The entries written in red represents customer table

modifications, while the black entries represent warehouse table modifications made by

T4. The client after verifying the proofs and modification from Figures 7.18 to 7.20 can

digitally sign the transaction.
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7.5 Summary

The Credereum provides provenance query functionality, by which the clients can query the

modification history for a row/set-of-rows. With TMTs and BMT help, the client computes

the block digest and matches the database and the trusted storage. SecCred and ProgCred

show similar provenance output as Credereum because of the same underlying architecture.

Further, considering provenance proof generated, PerfCredA, with algorithmic modifications,

has variations in the display of TMT when compared with the native Credereum. Additionally,

PerfCredB uses MHV to summarize the transaction alterations, which led us modify existing

algorithms to check the authenticity of the generated provenance results.
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Chapter 8

Experiment and Analysis

This chapter details the experiments conducted to evaluate the performance of the Cred-

ereum, and the different modification versions, i.e., SecCred, ProgCred, PerfCredA, and

PerfCredB. Varying row modification counts made by transactions are used to create dif-

ferent experimental settings to evaluate the performances. Furthermore, the provenance

response time for different systems has been analyzed and discussed.

8.1 Experimentation Setup and Details

The experiments performed in HP Z440 Workstation have Intel Xeon CPU E5-1660 v4 @

3.20GHz, 32 GB memory, and Ubuntu 16.04 LTS. With transaction firing from terminals to

PG-Tuned PostgreSQL 10.5, the average committed-transaction throughput is examined, with

a time interval of 10 minutes. Moreover, a synthetic transaction generator was developed for

targeted row alterations. Row numbers are chosen uniformly and randomly. If the row exists

in the relation, it gets deleted 25% of the time and updated 75% of the time. If not, the row

gets inserted. Each transaction fired modifies a maximum of n number of rows. For each of the

m (m ≤ n) write operations conducted, respective m reads were made for verification.

8.2 Performance Analysis

The section shows and compares the performance of Credereum, SecCred, ProgCred, Perf-

CredA, and PerfCredB using different experiment settings in a closed system environment. A

varying number of row modifications made by a transaction are used to study the proposed sys-

tems’ performance. Additionally, the performances of the Credereum and its proposed versions
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are evaluated in an open system setting. Further, the response time of provenance queries for

each design has been analyzed and discussed.

8.2.1 Varying Row Alteration (Closed System)

This section evaluates and compares the Credereum and proposed system’s performance in a

closed setting. Previously, it was shown in Figure 3.4 that the Credereum blockchain semantics

are obtained at an enormous cost in performance – an orders-of-magnitude degradation in trans-

action throughput as compared to the native PostgreSQL. With the performance of Credereum

considered a base, the modification made helped achieve a high transaction throughput by re-

taining all the essential functionalities of providing modification and provenance proofs. With

varying systems and varying max-modified rows by a transaction, the performances evaluated

are illustrated in Table 8.1.

Row Modified → 1 row max
5-rows

max
10-rows

max
15-rows

max
25-rows

PostgreSQL TPE → 2420406 1682993 1391740 1092442 739096

Credereum TPE → 55398 14642 5758 3258 1491

SecCred TPE → 55252 14592 5613 3236 1451

ProgCred TPE → 104483 50949 32792 23670 15303

PerfCredA TPE → 241754 106690 63438 45437 27615

PerfCredB TPE → 245389 111546 67900 48102 30412

Table 8.1: TPE Analysis (Closed System)

Table 8.1 shows the performance of Credereum, SecCred, ProgCred, PerfCredA, and Perf-

CredB for 1-row and a maximum of 5-rows, 10-rows, 15-rows, and 25-rows alterations made by

a transaction. For an addressed system, the exponential distribution gets observed. Now, each

case’s transactions were being fired from 10 terminals to a database with hundred thousand en-

tries. From the table, we can observe a performance boost compared to Credereum. With cheap

SHA-256 cryptographic hash calculation, SecCred can be observed to attain a similar perfor-

mance number compared to Credereum. Hence, the functionality addition hasn’t led to a decre-

ment in the transaction throughput with huge counts. The ProgCred holding SQL to C transla-

tion of credereum longest prefix() function with programming changes can be observed

to have positively boosted the performance numbers. With credereum longest prefix()

being the maximum called function, any optimization rectifications were very likely to have
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drastic performance improvements. The PerfCredA with independent TMT has lightened the

transaction’s exercise to sustain blockchain semantics, leading to a massive rise in performance

numbers. With MHV proposed, the PerfCredB can be perceived to have better performance

compared to PerfCredA. For varying settings, PerfCredB has been frequently observed to have

better performance compared to PerfCredA.

8.2.2 Varying Row Alteration (Open System)

The Credereum and its proposed versions were evaluated in an open system setting to examine

their throughput rate. With transactions firing at a rate of 100 tps to a database with hundred

thousand entries and with max connection parameter set to 2500, the performances of Cred-

ereum, SecCred, ProgCred, PerfCredA, and PerfCredB has been evaluated. For Credereum and

SecCred, due to the heavy time-consuming block formation process, the new transactions are

made to wait, and subsequently, thrashing gets observed. The rest proposed version system’s

performance has been demonstrated in Figure 8.1. Each transaction fired modifies a single

row of the relation. From the figure, we can observe a performance boost with the proposed

versions. PerfCredB delivers the highest performance number compared to all the rest available

peer systems.

Figure 8.1: TPE Analysis (Open System)
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8.2.3 Provenance Analysis

With equal counts of thousands of transactions committed, the response time of a provenance

query fired by the client has been evaluated. The experiment setting includes transactions

firing from 10 terminals to a database with hundred thousand entries, where each transaction

at max modifies distinct 25-rows. Table 8.2 illustrates the response time of a query asking

provenance for distinct 1-row, 10-rows and 25-rows in the Credereum, ProgCred, PerfCredA,

and PerfCredB system. On experiments, SecCred is observed to have a similar provenance

response time compared to Credereum. With PerfCredA holding small autonomous TMT and

with iterative methodology in PerfCredB, we can witness a notable difference in provenance

execution. Further, PerfCredB, due to avoiding TMTs, beats Credereum by huge margins in

provenance response time.

Row Queried → 1 row 10-rows 25-rows

Credereum → 823 3035 7516

ProgCred → 1514 2496 3297

PerfCredA → 781 1709 2228

PerfCredB → 111 273 426

Table 8.2: Average Provenance Response Time (secs)

8.3 Summary

The Credereum, to sustain the blockchain semantics, had led to a massive transaction through-

put degradation compared to the naive PostgreSQL. With the performance being a vital pa-

rameter for acceptance and deployment of the blockchain model in a real-world environment,

the Credereum with poor performance was highly inadequate. With the research focused on

functionality and performance improvements, SecCred, ProgCred, PerfCredA, and PerfCredB

proposed were evaluated in terms of committed transactions in a given time interval. The

chapter depicts the performance of each varying modification model with experimental param-

eter variations. The PerfCredA and PerfCredB are seen to have a comparatively very high

performance compared to Credereum. Further, the PerfCredB can be observed to outperform

PerfCredA in all the experiments evaluated. Additionally, PerfCredB has very low provenance

response time compared to the rest addressed peers.
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Chapter 9

Conclusions and Future Work

The chapter presents an abstracted glimpse of the research work and lists potential future

works. Additionally, the Credereum positives and limitations have been addressed. Fur-

ther, the exercises to uplift the barriers are summarized, detailing security enhancement

methodologies and performance up-gradation techniques. Concerning future works, the

chapter proposes making the system distributed and decentralized, holding no transaction-

type constraints, unique indexing relaxation, and so forth.

Credereum, being a private blockchain-enabled platform, is designed to be implemented on top

of native PostgreSQL. With notable features like forming Merkle tree at the per transaction

and block level, generating old Merkle proof and new Merkle proof (to prove the old data values

and the respective new data values), usage of trusted storage, provenance query handling, etc.,

the Credereum attains significant blockchain properties, specifically, immutability, verification,

authentication, and non-repudiation. Now, with a single bit malicious modification made within

block B at TMT/BMT level, the block-hash of block B and all subsequent forward blocks need

to be recalculated to validate the ledger. However, the newly computed block-hash will differ

from the stored digest at the immutable trusted storage, and thus immutability gets guaranteed

in Credereum. Also, for every row being altered by the transaction, the server-generated old

Merkle proof and new Merkle proof needs to be verified by the client. The client can also query

for the modification history of a row/set-of-rows using provenance query. Additionally, for the

transaction to commit, the client needs to submit a digital signature using its private key to

authenticate the transaction, which further helps attain non-repudiation property. With most

well-known blockchain platforms being decentralized and distributed, Credereum is currently

centralized. Due to this, Credereum, suffering from poor transaction throughput performance,

encounters some traditional and blockchain-based consequences, like single server dependency,

no resilience to data loss, no consensus, and so forth.
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9.1 Conclusions

Credereum, despite holding valuable features has certain shortcomings, covering resistance to

malicious actions, system optimization and performance numbers. In Credereum, for each

BMT built, the server keeps the entire BMT details hidden. Although, with the help of a

provenance query, the client can verify whether or not the respective modifications made have

been accounted in the BMT creation. However, this functionality doesn’t provides prevention

from all the malicious exercises practiced. Examining the client is unaware of the modifications

being performed by the rest clients within a block, to provide prevention from fraudulent

activities, the server needs to public the TMT and BMT details, which outlines the core trait

of SecCred. The SecCred generates the per block TMT and BMT structure in the SHA-256

hash form, which is easily verifiable. Further, the SecCred has led to changes in the Merkle tree

node’s node-hash computation methodology. Moreover, with the stated changes in SecCred,

the SecCred retains all the blockchain properties held by the Credereum.

Now, when the performance of Credereum was evaluated and compared with PostgreSQL,

a substantial orders of magnitude degradation in transaction throughput was witnessed. The

research was being conducted focusing on performance improvement, leading to specific pro-

gramming optimization and algorithmic alterations. Considering programming optimization,

the Credereum functions were analyzed based on maximum call counts, execution-time/call,

and self-time/call metrics. The credereum longest prefix() function with the algorithm

to determine the longest common prefix among the given two bit-strings was observed to achieve

the maximum calls. ProgCred dealing with programming optimization has led to modifications

in the credereum longest prefix() function, with byte-level comparison and engagement

of bitwise operations. The stated improvements had made a positive impact on performance

up-gradation. Further, ProgCred retains the alterations made in SecCred and maintains all the

Credereum held blockchain properties.

Modifications dealing with algorithmic changes focus on optimizing transaction handling in

the Credereum architecture. In Credereum, for every transaction being fired, a TMT is being

developed by depending upon the previous block BMT structure. Exploring a redundancy

with the previous BMT dependency, PerfCredA, with inheriting alterations made in ProgCred,

have made TMT develop autonomously. PerfCredA retains all the blockchain properties and

semantics held by the Credereum. Further, PerfCredB deals with an alternative algorithmic

modification to ProgCred, where instead of TMT formation per transaction, an MHV gets

calculated. The MHV summarizes all the modifications being made by the transaction, and also

additionally eases the handling of provenance queries. The MHV computed is accounted for in
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the transaction transaction-hash value computation. For every client’s modification, an old

Merkle Proof and New-Row-Value proof are shown to the client. Further, the PerfCredB retains

all the blockchain properties being possessed by Credereum. The algorithmic modifications in

PerfCredA and PerfCredB, positively led to an increase in the evaluated performance. Also,

the algorithmic alterations proposed led to changes in the provenance output for PerfCredA

and PerfCredB. A search space optimization has been included in the provenance query engine

for all the proposed Credereum versions.

9.2 Future Work

The following lists the set of future works which could be further researched to enhance the

system performance, utility and security:

1. Decentralized and Distributed Environment: The Credereum and the proposed

versions deal with the centralized server, leading to certain limitations, like single server

dependency, scalability issues, transaction-type constraint, no consensus, no resilience to

data loss, etc. Whereas, in a decentralized environment, even if a server fails, the rest

active servers can handle the live transactions, and the data loss can get retrieved from

the rest. Further, the decentralized environment uses consensus to judge the transaction’s

modifications, which leads to relaxing transaction-type constraints and also enhances the

client’s trust. The distributed environment can help scale the system’s performance and

lower response time.

Credereum is a permissioned centralized blockchain implementation that uses im-

mutable trusted storage to store the per block cryptographic digest. Being a central-

ized system, the Credereum currently operates with a single server and multiple clients.

However, considering a distributed database environment with multiple servers working

in Credereum, we, apart from client and server, propose an additional data-server entity.

The data-server is responsible for handling replicated distributed databases and achiev-

ing consensus. In a permissioned setting, whenever a client wants to fire a transaction,

it broadcasts its transaction along with the digital signature to all the available servers.

Each server verifies the transactions, orders the transaction, and achieves a consensus on

the transaction order within the block. Further, for each transaction in the block, a server

broadcasts the transaction to each associated data-server entity and awaits its response.

The data-server entity for its generated result obtains a consensus with the rest of the

data-server entities possessing the same database. Further, the consensus achieved result

123



is returned by the data-server to the server. On the complete execution of each transaction

within a block, the server computes the block digest and achieves a consensus with the

rest servers. In this manner, distributed databases with the decentralized setting can be

applied for Credereum. However, efficient methods of handling the distributed database

environment for Credereum are kept for study in future research work.

Considering a decentralized environment in Credereum with multiple servers con-

nected, we propose holding an additional ordering-servers set (similar to the order-then-

execute approach of Blockchain Meets Database paper [28] by Senthil Nathan et.al.). The

ordering-server will be responsible for collecting the transactions, checking their authen-

ticity, ordering them for a block, and achieving a consensus. So, in a decentralized setting,

Credereum has the client, server, and ordering-server entity. Now, whenever a client fires

a transaction to a server, it also submits its digital signature to the server. On success-

ful verification, the server broadcasts the client-fired transaction to the ordering-server

entities. Further, the ordering-server forms a block B from the transactions received

and holds a consensus on the ordering of the transactions within the block. Then, the

ordering-server entities broadcast this block B to each server, where every server executes

and commits in order the transactions listed within block B. Further, the server computes

the block digest of block B and broadcasts it to the ordering-server. The ordering-server

performs a consensus and adds the valid block digest to the next block B+1. Each server

can verify the consensus-held block digest of block B after receiving block B+1 from the

ordering-server. In this manner, all the servers can retain the same ledger with the help of

consensus. However, the efficient design of the decentralized environment for Credereum

will be of high focus for future research work.

2. Locking Mechanism: The transaction fired in Credereum and proposed versions needs

to acquire a lock, with conflicting behavior, from the locks possessed by the block process.

Thus, the transaction process needs to wait for the block process completion to acquire

the lock and process. The waiting time of a transaction process to acquire a lock from

the block process consumes a significant portion of transaction execution time. This

environment can be researched forward, where block and transaction processes can execute

in parallel. With a parallel environment, there will be no longer a wait for accessing the

locks, thus leading to a hike in performance numbers.

3. Merkle Proof Generation: A proof for the database modification is generated for

every fired transaction, providing evidence for the row’s old data values and new data

values. The old Merkle proof displaying the old data values uses the previous block BMT
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structure and is expensive. With better techniques for the old data proof generation, a

reduction in transaction computation cost can be achieved.

4. Block Creation: For every block created, a BMT is constructed depending upon the

previous block BMT structure, which is expensive. Research can be done forward in

designing new efficient methodologies for displaying and proving the modifications made

within a block. With this cause, the per-block formation will be quick, and due to the

isolated running environment required by the block process, it will lead to an early release

of the held locks, and thus more transactions can get efficiently processed.

5. Unique Indexing Relaxation: The Credereum and proposed versions each possess a

unique indexing constraint, explained in section 3.2.3. Due to this, multiple transactions

cannot modify the same row within a block. Research can be done further where new

BMT architecture is designed, allowing multiple modifications to a row within a block.

With this, numerous transactions can modify the same row, and with no aborts due to

constraint, the performance will hike.

6. SSI Complaint Architecture: Considering Credereum and proposed versions, each

underlying architecture of the system is designed for processing transactions in a Read

Committed (RC) isolation level. New architectures can be researched to handle more

secure SERIALIZABLE SNAPSHOT ISOLATION (SSI) locks. With SSI, all the concerns

held by RC isolation can be avoided.

Apart from the aforementioned possibilities, research directed towards modifying underlying

architecture should be motivated to upgrade system performance and security.
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