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Abstract

Optimizing complex SQL queries by rewriting them into simpler, more efficient forms has long

been a cornerstone of database performance tuning. Transforming inefficient SQL queries into

optimized yet semantically equivalent versions can greatly improve database performance as

well as developer’s comprehensibility. Although significant progress has been made in devel-

oping rewriting techniques and query optimizers, certain challenges still persist. Traditional

approaches primarily operate within the execution plan space, applying heuristic or cost-based

transformation rules. While these strategies have proven effective in certain scenarios, they

are often rigid, limited in scope, and struggle to generalize across diverse query patterns and

database systems

This study explores how the advanced reasoning capabilities of LLMs can be utilized for

efficient and reliable query rewriting directly at query level without going in to the plan

space. We introduce a structured methodology that combines a foundational suite of generic

prompts, along with database-aware prompts tailored for eliminating redundancies and apply-

ing selectivity-based rules.

A unique challenge in this setting is that, unlike tasks such as Text-to-SQL—where some

degree of ambiguity is inherent—SQL-to-SQL rewriting involves transforming a precisely de-

fined and unambiguous query. Therefore, there is no margin for semantic errors; the rewritten

query must be logically and functionally identical to the original. To address this, our system

incorporates a set of statistical and logic-based validation mechanisms that rigorously verify

the correctness of each transformation. Furthermore, to bridge the gap between optimizer-

estimated costs and actual runtime performance, we use an analytical framework to detect and

mitigate any instances of potential runtime performance regression during the rewriting process

itself.

Testing on industry-standard and real-world benchmarks shows our system outperforms

SOTA techniques by an order of magnitude. For instance, with TPC-DS on PostgreSQL, the

geometric mean of the runtime speedups for slow queries was as high as 13.2 over the native

optimizer, whereas SOTA delivered 4.9 in comparison. Beyond performance improvements, our
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Abstract

tool also excels in query readability metric, significantly performing better than SOTA. This

LLM-driven solution functions as a reliable intermediary tool between enterprise applications

and databases, ensuring efficiency and performance. It can also help upcoming database sys-

tems lacking high-quality optimizers cheaply circumvent their initial limitations. Notably, our

experiments also reveal that our LLM-driven solution delivers substantial benefits even for the

industrial-grade optimizers, further highlighting its versatility and robustness.

This study is a joint project with another M.Tech CSA student, Sriram Dharwada. In

this thesis, I will focus on detailing the components and work implemented by me, while the

remaining aspects of the project are covered in the technical report [16].
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Chapter 1

Introduction

SELECT t.Key, SUM(t.Rating) AS PostRating,

(SELECT SUM(b0.Rating)

FROM (SELECT p0.PostId, p0.BlogId, p0.Content,

p0.CreatedDate, p0.Rating, p0.Title,

b1.BlogId AS BlogId0,

b1.Rating AS Rating0,

b1.Url, p0.day AS Key

FROM Posts AS p0 INNER JOIN Blogs AS b1 ON p0.BlogId = b1.BlogId

WHERE b1.Rating > 5) AS t0

INNER JOIN Blogs AS b0 ON t0.BlogId = b0.BlogId

WHERE t.Key = t0.Key )AS BlogRating

FROM (SELECT p.Rating, p.day AS Key

FROM Posts AS p INNER JOIN Blogs AS b ON p.BlogId = b.BlogId

WHERE b.Rating > 5) AS t

GROUP BY t.Key;

Figure 1.1: Complex SQL Representation

SQL queries in enterprise applications are often burdened with inefficiencies and unnecessary

complexity, particularly when generated by tools like ORM frameworks. A clear illustration

of this issue is the blog-processing query [32] presented in Figure 1.1, which was created using

the widely used Entity Framework [32]. This complex query, intended to generate a daily

summary of rating metrics for highly-rated blogs, can be simplified into a more efficient flat

query (assuming NOT NULL column constraints and key-joins), as demonstrated in Figure 1.2.
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SELECT p.day AS Key, SUM(p.Rating) AS PostRating

,SUM(b.Rating) AS BlogRating

FROM Posts AS p INNER JOIN Blogs AS b ON p.BlogId = b.BlogId

WHERE b.Rating > 5

GROUP BY p.day;

Figure 1.2: Lean Equivalent Query

Simplifying complex query structures into lean equivalents offers numerous advantages.

First, it significantly enhances query readability, making it easier to debug and maintain queries

in industrial settings. Second,while query optimizers are theoretically capable of eliminating

redundancies to create efficient execution plans, in practice, they often struggle with overly

complex query structures, leading to suboptimal performance. In fact, one of the most popular

database optimizers, PostgreSQL [2], failed to optimize the query shown in Figure 1.1.

This issue arises because the optimizer typically performs optimizations at the node level

in the execution plan, where it lacks the context to fully understand the declarative meaning

of the query. As a result, it cannot perform meaningful transformations at the query level.

In contrast, large language models (LLMs)[39], with their advanced context understanding,

can interpret the query semantically and transform it into more efficient SQL instructions.

Therefore, a LLM based query re-writer can serve as an effective and non-invasive mechanism

for delivering good performance despite inherent optimizer limitations. The non-invasive nature

of LLM-based query rewriting can also empower new or open-source optimizers to achieve

performance on par with commercial database optimizers, where modifying the optimizer itself

is a complex and time-consuming task.

Building on this context, we have designed an effective SQL-to-SQL query transformer

which meets the following essential criteria: (1) The transformed query should be semantically

equivalent to the original; (2) The rewrite should ideally improve performance, but at least not

cause regression; and (3) The transformation overheads must be practical for deployment.

1.1 Related Work

Rule-based SQL rewriting. Most of the recent work on SQL query rewriting is rule-

based [49, 43, 10, 45, 12, 33]. For instance, WeTune [43] uses a rule generator to enumerate a

set (up to a maximum size) of logically valid plans for a given query to create new rewrite rules,

and uses an SMT solver to prove the correctness of the generated rules. While this approach

can generate a large set of new rewrite rules, it often fails in coming up with transformation

rules for complex queries due to the computational overheads of verifying rule correctness. As
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such, it is unable to rewrite any of the TPC-DS queries [20, 30].

Learned Rewrite [49] uses existing Calcite [11] rules and aims to learn the optimal subset of

rules along with the order in which they must be applied. Since the rewrite search space grows

exponentially with the number of rules, it uses MCTS scheme to efficiently navigate this space

and find the rewritten query with maximum cost reduction.

LLM-R2 [29] is also rule-based but takes a different approach to identify the order for rewrite

rule applications: it uses an LLM to find the best Calcite rules and the order in which to apply

them to improve the query performance. R-Bot [36] also leverages an LLM to optimize the order

of Calcite rules, but employs advanced contemporary techniques such as retrieval-augmented

generation (RAG) and step-by-step self-reflection to improve the outcomes.

Query Booster [10] implements human-centered rewriting – it provides an interface to specify

rules using an expressive rule language, which it generalizes to create rewrite rules to be applied

on the query. There are also rule-based rewrite approaches designed for specific types of rewrites

such as optimizing correlated window aggregations [45] and common expression elimination [12].

All of the above approaches operate via the query plan space, which can restrict the kind

of rewrites that can be accomplished. Whereas, LITHE uses a small set of general rewrite rules

that work directly in the query space.

LLM-based rewriting. GenRewrite [30] is the first LLM-based approach to use the LLM for

end-to-end query rewriting. Instead of using predefined rules from Calcite [11], they employ

the LLM to create Natural Language Rewrite Rules (NLR2s) to be used as hints, and perform

several iterations of prompting to get the rewritten query. They show that LLMs can outperform

rule-based approaches due to their ability to understand contexts, and demonstrate a significant

improvement in query rewriting compared to prior methods.

A limitation, however, is that LLM-generated rewrite rules often fail to generalize beyond

specific query pairs. Even when generalized rules are present, LLMs can struggle to apply

rules correctly if not provided with accompanying examples. Finally, it must be noted that

LLMs are unaware of the underlying database which restricts their ability to produce efficient

metadata-aware rules.

LLMs for Database Modules. LLM technologies have been advocated for a variety of

database modules. For instance, they have been extensively used for Text-to-SQL transforma-

tions [27, 46, 5, 4, 37, 50]. The main focus of these techniques is to correctly ascertain the

information necessary to formulate the SQL query [40, 34, 37]. On the other hand, the goal of

S2S rewriting is on improving the performance of an existing SQL query. Thus, unlike Text-to-

SQL transformations where the input text is inherently ambiguous, SQL queries are precisely

defined, and therefore equivalence to a precise ground-truth has to be provably maintained.
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In recent times, LLMs have also been considered for plan-hinting [9], join-order optimiza-

tion [38], index selection [50], data pipelines [23], data management [26], etc. An LLM-enabled

multi-modal query optimizer [42], where data spans text, image, audio and video domains, has

also been proposed recently. These approaches can be used in conjunction with the LITHE

system since they address orthogonal segments of the query processing pipeline.

1.2 The LITHE Rewriter

A recent vision paper [50] advocates the use of LLMs for such query rewriting. The state-of-the-

art (SOTA) techniques have also foregrounded the potential benefits of using LLMs for query

rewriting. However, these benefits are often limited due to: (a) a restricted scope of rewrites, (b)

vulnerability to semantic and syntactic errors, and (c) reliance on plan-space transformations

(i.e., optimizing over execution plan nodes) rather than operating directly in the query space

(i.e., transforming the query structure itself).

To address these limitations, we present LITHE (LLM-Infused Transformation of Hefty

Queries), an LLM-based query rewriter. LITHE employs a range of prompting strategies aug-

mented with domain-specific hints and underlying database metadata to guide the LLM in

rewriting queries. LITHE applies transformation directly in the query space which provides

greater scope for candidate rewrites since only intent, and not implementation, is expressed,

and this multiplicity of rewrites in turn results in a broader coverage of the underlying plan

space.

We conducted a calibrated study to understand how different types of prompting strategies

affect the LLM’s rewriting capabilities. In addition, we incorporated specific guardrails to

ensure that the rewrites remain semantically equivalent and beneficial in practical, real-world

settings.

In summary, our study makes the following contributions:

1. Assesses LLM suitability for S2S transformation.

2. Transforms directly in query space instead of plan space intermediates, leading to perfor-

mant rewrites.

3. Incorporates database-sensitive rules in LLM prompts, covering both schematic and sta-

tistical dimensions.

4. Evaluates rewrite quality over a broad range of database environments, demonstrating

substantial benefits over both SOTA and the native optimizer.
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5. Identifies learnings that could help guide research directions for industrial-strength query

rewriting.

1.3 Results

Our first set of experiments to evaluate LITHE’s performance is carried out on the industry

standard TPC-DS benchmark [14], hosted on the PostgreSQL platform with GPT-4o used

as the LLM. The evaluation focuses on slow queries taking more than a threshold time to

complete. We compare the performance of LITHE against SOTA techniques (specifically, Learned

Rewrite [49], LLM-R2 [29], GenRewrite [30], as well as a baseline LLM prompt [30]). The

primary metrics are (a) reductions in optimizer-estimated costs, (b) run-time speedups, and (c)

rewriting overheads. For LLM-based techniques, the number of tokens used is also monitored

since the financial charges for LLM usage are typically dependent on this number. In our

second stage of experiments, we evaluate generalizability of the above outcomes in a variety of

new scenarios, including (a) Additional benchmarks, (b) commercial database engines and (c)

unseen database schemas.

Our experiments demonstrate that LITHE achieves, for many slow queries, semantically

correct transformations that significantly reduce the abstract costs. In particular, for TPC-DS,

LITHE constructed “highly productive” (> 1.5x estimated speedup) rewrites for as many as 26

queries, whereas SOTA promised such rewrites for only about half the number. Further, the

GM (Geometric Mean) of LITHE’s cost reductions reached 11.5, almost double the 6.1 offered

by SOTA.

We also evaluated whether the above cost reductions translated into real execution speedups.

Here, we find that LITHE is indeed often substantively faster at run-time as well. Specifically,

the geometric mean of the runtime speedups for slow queries was as high as 13.2 over the native

optimizer, whereas SOTA delivered 4.9 in comparison.

Overall, LITHE is a promising step toward viable LLM-based advisory tools for ameliorating

enterprise application performance.

1.4 Organization

The remainder of this thesis is organized as follows: Chapter 2 presents the architecture and

overview of LITHE. Chapter 3 discusses the different prompting strategies used in LITHE.

Chapter 4 highlights LITHE’s implementation choices. Chapter 5 provides a detailed experi-

mental evaluation. Finally, Chapter 6 summarizes our conclusions and outlines directions for

future research.

5



Chapter 2

LITHE Architecture

Figure 2.1: High-level architecture of LITHE

We propose LITHE (LLM Infused Transformations of HEfty queries), an LLM-based query

rewriting assistant to aid DBAs in tuning slow-running queries that have entailed their inter-

vention. As illustrated in the architectural diagram of Figure 2.1, LITHE takes as input the user

query QU and outputs a transformed query QT , together with (a) the expected performance

improvement, in terms of optimizer estimated cost, of QT ; (b) a verification label indicating

the mechanism (provable or statistical) used to determine that QT is semantically equivalent

to QU ; and (c) a reasoning for why the LLM expects QT to be helpful wrt performance.
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A query will be tagged as provable if it is verified by a logic-based tool that guarantees

correctness; otherwise, if it passes verification on a sampled database, it will be marked as

statistical.

Armed with this information, DBAs can leverage their expertise to decide whether or not

to use QT . Note that having the DBA in the loop is a common practice in commercial query

advisory systems [15].

2.1 LITHE Overview

The LITHE architecture, illustrated in Figure 2.1, consists of the following five-stage pipeline:

1. Prompt-based rewriting. This component consists of two modules: LLM Prompting

and Syntax Verification. In the prompting module a user query with a crafted prompt is fed to

LLM asking for rewrite. The different kind of prompts used in the LITHE are described below:

Basic Prompts. We begin with a suite of generic prompts that cover a spectrum of detail,

ranging from a single summary sentence to detailed instructions running to several paragraphs.

Interestingly, we find that more information is not necessarily better wrt rewriting quality, and

that the best prompt granularity is query-specific. Moreover, this basic prompt ensemble was

found to itself deliver performance similar to the SOTA techniques.

Database-sensitive Prompts. To help the model adapt to different query patterns and

structures, we next introduce rules in the prompts. Our rules are invoked directly in query

space, providing the LLM with the latitude to generalize the rule usage to a wide range of

queries. This is in contrast to the hardwired and narrow rule application mechanisms (e.g.

Calcite [11] rules) typically used in existing rewrite systems, which operate in plan space.

In particular, we work with two classes of rules – 1. Redundancy Removal Rules : These

rules eliminate repeated and redundant computations of the same output; and 2. Metadata-

infused Rules : These rules make use of the rich metadata available in database environments,

such as the logical schema (table definitions and constraints) and predicate selectivities, and

include this information in the LLM prompts. To our knowledge, such metadata inclusion in

prompts has not been considered before in the SQL rewrite context. As shown later in our

experiments, it proves to be a powerful mechanism for ensuring performant rewrites across

database environments.

The LLM is prompted using each of the different prompts or rules described in Chapter 3.

Once a rewrite is generated by the LLM, it is passed to the database parser for syntax verifica-

tion. If the rewrite is found to be syntactically correct, it is forwarded to the next module—the

query costing module. Otherwise, the syntax error is fed back to the LLM for correction.

To prevent runaway correction loops, we apply a threshold on the number of allowed syntax

7



correction attempts.

2. Query Costing. The costs of candidate rewrites are evaluated via the database engine’s

optimizer. Rewrites whose costs are greater than that of the original query are immediately

discarded. Whereas, the potentially beneficial rewrites (if any) are checked for semantic equiv-

alence to the original query.

3. Fast Semantic Equivalence. Statistical (result-based equivalence on sampled databases)

techniques (as described in Section 4.2) are employed to quickly and cheaply assess the semantic

equivalence of a recommended rewrite. If the rewrite is deemed valid by this module, it is

returned along with the prompt that generated it; otherwise an invalid label is returned.

4. Token probability-driven rewrite. The prompt producing the most beneficial (and valid)

rewrite is used as input to a Monte-Carlo tree search (MCTS)-based procedure to further refine

the rewrite quality (details in techreport [16]). The query costing and semantic equivalence

modules are also used internally within this procedure.

5. Final Checks and Output. Once a least expensive valid rewrite(as identified after the

MCTS module) is obtained, it has to go through two checks:

1. Equivalence Check : The least expensive valid rewrite is evaluated using a suite of logic-based

techniques (as described in Section 4.2) to assign a final equivalence label—either provable or

statistical. If the rewrite is verified by the logic-based tool, it is labeled as provable; otherwise,

it is considered statistical. Following this, the cost benefit of the rewrite over the original query

is computed.

2. Regression Check : Further, the execution “brittleness” of least expensive rewrite is assessed

using the robustness heuristics( as described in Section 4.1).

If no valid rewrite is identified, or if the rewrite is expected to be a regression, the original

query itself is returned to the DBA. Whereas, if a beneficial rewrite is recommended, an LLM-

generated reasoning for the expected performance improvement is also extracted.

2.2 Performance Framework

We consider a query that takes more than T seconds to complete on the native database engine

as a “slow query”, potentially triggering intervention by the DBA. Based on common industry

perception (e.g. [3]), T is set at 10 seconds in our study. For this context, we define a Cost

Productive Rewrite (CPR) as a rewrite that improves a slow query’s performance by at

least 1.5 times wrt the optimizer-estimated cost – this aggressive choice of threshold is so that:

(a) there is enough headroom in the optimizer prediction that a runtime regression is unlikely;

and (b) the benefits of the rewrite substantively outweigh the transformation overheads.

The overall benefit provided by a rewriting tool is quantified by the number of CPR obtained
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on the slow query workload. Additionally, we also measure CSGM, the geometric mean (GM)

of the cost speedups obtained by these rewrites. Finally, to assess the actual run-time benefits,

we evaluate TSGM, the geometric mean (GM) of the response-time speedups obtained by

these rewrites.

2.3 Query Micro-benchmark

To motivate the progression of prompting strategies incorporated in LITHE, we create an initial

micro-benchmark comprising 10 diverse TPC-DS queries for which we were able to hand-craft

high-quality CPRs. These queries are processed on GPT-4o, the popular OpenAI LLM, and

the rewrites are evaluated on the PostgreSQL v16 database engine. The human rewrites deliver

a CSGM of 11.84, serving as an aspirational target to attain computationally. Later, in

Chapter 5, we extend the evaluation to complete benchmarks.

Further, for ease of presentation, we focus on the CSGM metric in Chapter 3. The TSGM

performance is subsequently discussed in Chapter 5.
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Chapter 3

Prompting Strategies

In this chapter, we explore the simplest interface to LLMs, namely prompting, for query rewrit-

ing. Our work involved exploring a range of prompting strategies to understand their effective-

ness in guiding LLMs for query rewriting. These strategies were grouped into two categories:

3.1 Basic Prompts

We evaluate four basic prompts, enumerated in Figure 3.1, which cover a progressive range of

instructional detail and test the effectiveness of the LLM’s base knowledge.

Prompt 1: This is the baseline prompt used in [30], which simply asks the LLM to rewrite a

given query to improve performance.

Prompt 2: Explicit instructions are included to maintain semantic and functional equivalence

while rewriting.

Prompt 3: Verbose instructions are given to rewrite the query, providing step-by-step guidance

to the LLM to think rationally. It is first asked to pick out potential inefficiencies in the input

query, and then tasked to identify approaches to address these inefficiencies. Finally, it is

instructed to apply the identified solution. Essentially, the prompt tries to make the LLM

reason akin to human experts.

Prompt 4: The sequence of instructions in Prompt 3 is split into sub-prompts, and provided

to the LLM in an iterative manner instead of all at once. The idea is to break down the complex

instructions given in Prompt 3 into digestible steps that help the LLM focus on individual tasks.

Performance

Table 3.1 shows the performance of the four prompt templates on the micro-benchmark. We

find that less than half the rewrites are productive with individual prompts. However, a drill-

down shows that the best prompt in the ensemble is query-specific – this opens up the possibility

10



of using all four prompts in parallel, and then choosing the best among them. This ensemble

approach raises the CPRs to 6 (Row 5 in Table 3.1) – however, there remain four queries that

are not productively rewritten by these prompts.

Figure 3.1: Templates used for Basic Prompts

The CSGM, shown in the last column of Table 3.1, is at most 3 for the individual prompts,

while the ensemble reaches 3.23. But these speedups, although productive, are all lower than

those delivered by the human rewrites.
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Prompt # CPR CSGM

Prompt 1 3 1.99

Prompt 2 2 1.85

Prompt 3 4 2.83

Prompt 4 4 3.00

Prompt Ensemble 6 3.23

SOTA Ensemble 3 2.49

Table 3.1: Performance of Basic Prompts on micro-benchmark.

Finally, an ensemble of SOTA techniques (described in Chapter 5) was also processed on the

same platform. They delivered 3 CPRs with a CSGM of 2.49 (last row in Table 3.1), indicating

the wide gap between the current reality and what is humanly possible.

3.2 Database-Sensitive Prompts

As discussed above, basic prompting needs to be improved on two fronts: (1) Ensuring produc-

tive rewrites where feasible; and (2) Maximizing the impact of these productive rewrites. To

address these issues, we incorporate database domain knowledge. Specifically, we design a one

shot-based prompting template, augmented with a set of database-aware rewrite rules. The

rules are based on common practices followed by DBAs that are widely applicable, and aug-

mented with precise instructions and useful examples to help guide the LLM in the rewriting

process.

As a proof of concept, we explore two categories of rewrites here: (a) Rules that eliminate

redundancy in the input queries; and (b) Predicate selectivity-based rules that implicitly guide,

via query space reformulations, the query optimizer towards efficient query execution plans. Of

course, this basic set of rules can be expanded further, but as shown by our experiments, even

this minimal set is capable of delivering substantive improvements over a broad set of database

environments.

3.2.1 Redundancy Removal

There are different types of redundancy that can occur in a SQL query – repeated computations,

superfluous filter predicates, unnecessary joins, etc. Rules R1 through R4 in Table 3.2 are

designed to tackle such redundancies. The relevant schematic information (e.g. table names,

column names, constraints) required by these rules is also provided in the prompt.

The template for such rule-based prompts is shown in Figure 3.2(a) and includes an example
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Redundancy Removal Rules
R1 Use CTEs (Common Table Expressions) to avoid repeated

computation of a given expression.
R2 When multiple subqueries use the same base table, rewrite to

scan the base table only once.
R3 Remove redundant conjunctive filter predicates.
R4 Remove redundant key (PK-FK) joins.

Statistics-based Rules
R5 Choose EXIST or IN from subquery selectivity (high/low).
R6 Pre-filter tables involved in self-joins and with low selectivities

on their filter and/or join predicates. Remove any redundant
filters from the main query. Do not create explicit join state-
ments.

Table 3.2: Rules for Database-sensitive prompts.

to demonstrate the rule application to the LLM – the specific examples used with our rules are

available in Appendix. Note that this prompt template allows for only a single rule to be present

in the prompt. This was a conscious design choice because LLMs are often overwhelmed by

excessive information given in monolithic form. Therefore, we apply each rule using a separate

prompt, finally returning the rewrite providing the best performance improvement.

Performance

The performance improvement achieved on the micro-benchmark by an ensemble that adds the

redundancy-removing prompts to the basic set (Section 3.1) is shown in Table 3.3. We observe

that the CPR increases to 7, and CSGM grows to 6.85.

Prompt # CPR CSGM

Basic Prompts
⋃

{R1, . . ., R4} 7 6.85

Table 3.3: Performance with Redundancy Removal Rules on micro-benchmark.

A natural question here would be whether, while retaining the one-rule-per-prompt design,

the rules could be progressively applied with the output of one prompt provided as input to

the next, and so on. This approach would benefit queries with multiple types of redundancies.

However, it also introduces significant computational overheads due to the vast number of

possible rule application orders, making it expensive to explore. So, for simplicity, we have

chosen to process them individually rather than cumulatively.
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Figure 3.2: Templates for Database-sensitive Prompts

3.2.2 Selectivity-based Guidance

We now turn our attention to rules whose applicability to a query is conditional on the specific

database environment, specifically its statistical aspects. For example, consider the alternative

rewrites shown in Figure 3.3 using the EXIST and IN clauses (highlighted in red), respectively

– here the appropriate choice is dictated by the selectivity of the inner subquery – EXISTS

for high selectivity values and IN for low values. Rule R5 basically encodes this argument as
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a rule in Table 3.2. Similarly rule R6, which pre-filters tables that are involved in self-joins

and have low selectivity filter and/or join predicates, is also used to guide a rewrite. Note that

a specific instruction to not create explicit joins had to be added in rule R6. This is because

in the presence of CTEs, the LLM is prone to schematic confusion regarding which attribute

belongs to which table, leading it to construct invalid joins.

Figure 3.3: Example Queries illustrating Rule 5

The input prompt for these rules, as shown in Figure 3.2(b), is modified to include the

following:

1. Estimated selectivities of columns appearing in the WHERE and JOIN clauses – these values

are obtained via calls to the cardinality estimation modules of the query optimizer.

2. Clause rewrite rules and instructions based on statistics.

15



3. Examples relevant to the chosen rewrite rules.

Performance

The performance improvements following addition of selectivity-guided prompts are shown in

Table 3.4. We observe that CPRs are now obtained for 9 of the ten micro-benchmark queries.

Moreover, the resulting CSGM increases to 10.57, quite close to the human target of 11.84.

Prompt # CPR CSGM

Basic Prompts
⋃

{R1, . . ., R6} 9 10.57

Table 3.4: Performance of Metadata-infused Prompts on micro-benchmark.

We note in closing that rules R1 through R6 not only add queries to the productive category,

but also deliver greater improvement for those already deemed to be productive via the stan-

dard prompts of Section 3.1. These performance gains can further be improved using MCTS

technique discussed in technical report [16].
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Chapter 4

Implementation Choices

In this section, we briefly discuss the design choices made in our implementation of LITHE.

4.1 Regression Detection Mechanism

In addition to refining the rules, we explored two strategies for proactively detecting runtime

regressions for LITHE’s rewrite.

(a) Identifying robust plan: Query optimizers often make mistakes in selectivity estimation

at various points within the execution plan due to inadequate modeling. These inaccuracies

frequently lead to suboptimal plans. In our experiments, we observed that the optimizer tends

to favor nested loop joins—even in scenarios where a hash join would be more suitable—because

of flawed selectivity estimations.

Such discrepancies are common across query optimizers. To ensure that LITHE ’s rewritten

queries do not suffer from runtime regressions, we draw inspiration from the well-established

SEER algorithm [21], which offers a analytical framework for identifying robust execution plans.

In our approach, we consider a user query QU and its rewritten counterpart QT . Let PU

and P T be the plans corresponding to the original query, QU , and the recommended rewrite,

QT , respectively. We construct parametrized versions of these queries, where the constants in

the filter predicates are replaced by variables. Then, by assigning appropriate values to these

parameters, we construct queries that are located at the corners of the selectivity space. The

plans PU and P T are forced at each of these corner locations. Figure 4.1 illustrates this process

for original query in a 2-dimensional selectivity space, where the x-axis represents the selectivity

of the predicate Age > m and the y-axis represents the selectivity of Salary > n. A selectivity

of 0% indicates a filter that excludes all tuples during execution, while 100% represents no

filtering.
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Figure 4.1: Robust plan identification

Here, QU is the original query, and QU
1 , Q

U
2 , Q

U
3 , and QU

4 represent the four corner points in

the selectivity space. We force the original query’s plan PU at each of these corner points, and

apply the same procedure for the rewritten query QT . The underlying intuition is that if the

rewritten query’s plan consistently outperforms the original at extreme points in the selectivity

space, it is likely to deliver robust performance over broader selectivity space. Hence, if the

rewrite’s cost is lower than the original at all of them, the rewrite is deemed to be robust.

The foreign plan forcing feature is supported by industrial-strength optimizers, including

DB2(Optimization Profile)[6], SQL Server(XML Plan)[1] and Sybase(Abstract Plan)[7].

(b) Runtime Heuristics: Although the SEER algorithm has proven highly effective in iden-

tifying robust execution plans, its applicability is currently limited by the lack of plan forcing

support across all database engines. In such environments, we must design alternative heuristics

to detect potential regressions.

Up to this point, our decision to accept or reject a query rewrite has been based solely on the

optimizer’s estimated cost. However, a promising extension is to incorporate actual runtime

behavior into this decision-making process. Executing queries on the full-scale database to

gather such data is often prohibitively expensive—particularly when dealing with database at
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the terabyte scale. To address this, we propose leveraging sampled versions of the database.

Notably, we already run queries on the sampled database to verify semantic equivalence

between the original and rewritten versions. During this process, we can also collect runtime

measurements for both versions. These measurements serve as lightweight runtime heuristics.

By comparing the execution times across multiple runs on the sampled database, we can es-

timate the robustness of a rewrite. If the rewritten query consistently performs better—i.e.,

shows lower execution times in all sampled runs—it is considered a strong candidate for being

robust in the full-scale environment as well.

Section 5.5.1 highlights, the effectiveness of our regression identification mechanism in ac-

curately flagging significant runtime regressions.

4.2 Query Equivalence Testing

Maintaining query equivalence is a fundamental requirement in any query rewriting frame-

work. Ensuring equivalence is relatively straightforward when using rule-based optimizers like

Calcite[11], where rewrites are grounded in formally verified transformations. However, with

LLM-generated rewrites, there is no such guarantee—the rewritten query may not always be

semantically equivalent to the original.

We use a multi-stage approach, described below, to help the DBA test semantic equivalence

between the original query and a recommended rewrite.

4.2.1 Result Equivalence via Sampling

We use a sampling-based approach to quickly test equivalence in the rewrite generation stages

of the pipeline. The idea here is to execute the queries on several small samples of the database

and verify equivalence based on the sample results.

However, while this test is a necessary condition for query equivalence, it is not a sufficient

condition. That is, there are no false negatives, but there can be false positives. This is because

the sampled database may not cover all the predicates present in the query. This can cause

two types of problems:

1. If the underlying sample does not satisfy any of the predicates in either query, then an

empty result will be returned by both queries. This again does not imply that the queries

are equivalent.

2. It is possible for two different queries to return same non-empty result. This can happen

when, for example, the entirety of the sampled data satisfies a predicate of one query,

while the same predicate is not present in the other.
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To minimize the occurrence of the first problem (empty results), the following approach is

taken:

1. We use correlated sampling [47] to sample the database. This technique leverages the join

graph of the schema to produce a sample that maintains join integrity between the tables

participating in the query.

2. Given a pair of queries to test for equivalence, we adjust the constants in the filter predi-

cates to reduce the chances of an empty result. For example, say an equality predicate is

present in the query and the associated constant is absent in the sampled database. We

then replace the query constant with a value already present in the sample.

To address the second problem (false positives), following approach is taken:

1. We create multiple samples of the database with different seeds, and run the test on all

these samples. The goal is to reduce the likelihood of non-equivalent queries returning

the same results.

2. Injecting query-specific synthetic tuples in the sample, similar to the XData mutant-

killing tool [35], to cover predicate boundary conditions (e.g., inserting tuples with values

exactly at the boundary, such as salary = 50000, to distinguish between salary > 50000

and salary >= 50000).

Although testing on carefully curated samples proved highly effective in our experiments—

yielding no false positives—there is still no absolute guarantee. Therefore, we introduce logic-

based tools in the second stage for additional verification.

4.2.2 Logic-based Equivalence

Although verifying equivalence between arbitrary SQL queries is known to be NP-complete[8],

several logic-based tools—such as Cosette[13], SQLSolver[19], VeriEQL[22], and QED[41]—have

been developed to prove equivalence over restricted classes of queries. The advantage of such a

logic-based approach is that it is definitive in outcome. In our evaluation, we explored whether

combining multiple tools could increase our coverage of verified rewrites.

We excluded Cosette from our experiments, as prior studies have shown it to be less ef-

fective than more recent tools. VeriEQL, while promising, is restricted to proving bounded

equivalence—i.e., equivalence only under a limited number of tuples per table—which does not

meet our requirements. This narrowed our choice of logic-based tools to SQLSolver and QED,

which together cover a broader range of queries compared to the other tools considered. The
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advantage of such a logic-based approach is that it is definitive in outcome. Note that this

rewrite has already passed the sampling-based tests described above.

To broaden our verification coverage, we also evaluated the behavioral equivalence tool

UNMASQUE [24]. However, it failed to verify any additional rewrites. Given its low success

rate and high computational overhead, we chose not to integrate UNMASQUE directly into

the LITHE pipeline.

Result Equivalence on the Entire Database. If the logic-based test is inconclusive, result

equivalence is evaluated on the entire database itself. The DBA may choose to prematurely

terminate this test in case the checking time is found to be excessive.
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Chapter 5

Experimental Evaluation

In this chapter, we report on LITHE’s performance profile. We first describe the experimental

setup, including comparative baselines, query suites and evaluation platforms. Then we present

the speedup results for both aggregate benchmark and individual queries, followed by charac-

terization of the rewrite overheads in computational and financial terms. We finally discuss the

impact of alternative platforms wrt database engine, database schema and LLMs.

Rewrite Baselines. We compare LITHE with a collection of contemporary rewrite techniques,

collectively referred to as SOTA – the details of these techniques are provided in Section 1.1.

Specifically, the SOTA collection consists of the following approaches:

1. Baseline LLM prompt [30]: This is Prompt 1 from Section 3.1.

2. Learned Rewrite [49], a purely rule-based rewriter.

3. LLM-R2 [29], an LLM-guided rule-based rewriter.

4. GenRewrite [30], a purely LLM-based rewriter.

Given an input query, each of the SOTA approaches is independently invoked to perform a

rewrite, and the rewrite with the best performance is used as the baseline for comparison. Note

that these approaches may occasionally generate rewrites that are expected by the optimizer’s

costing module to regress the performance. For safety, we immediately discard such rewrites,

similar to LITHE.

Query Set. Our evaluation includes diverse set of industry standard synthetic benchmarks

i.e TPC-DS [14], DSB [17], ARCHER [48], JOB [25] as well as a real world benchmarks i.e,

StackOverflow [31].
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Testbed. The majority of our experiments were carried out on the following data processing

platform: Sandbox server with Intel(R) Xeon(R) CPU E5-1660 v4 @ 3.20GHz x 16, 32 GB

RAM, and 12TB HDD, running Ubuntu 22.04 LTS; PostgreSQL v16 database engine; and GPT-

4o LLM for both LITHE and SOTA. Variations on this platform are considered in Sections 5.5.1.

Note that all experiments were conducted in a cold cache environment.

Metrics. For each rewrite technique, we identified the number of queries for which a CPR (cost

productive rewrite with > 1.5 speedup) could be constructed. Subsequently, we computed

the CSGM (Cost Speedup Geometric Mean) and TSGM (Time Speedup Geometric Mean)

performance obtained by each technique over the set of all CPRs (i.e. CPRs arising from either

LITHE or SOTA).

From the investment perspective, we measured the average rewrite time per query, and

additionally for the LLM-based techniques, the number of tokens used in the rewrite process.

5.1 Overall Benchmarks Result

Table 5.1 shows the speedup achieved by LITHE and SOTA on the CPR queries across differ-

ent benchmarks. Impressively, LITHE achieves CPR for significant number of queries in both

TPC-DS ( 26 queries) and DSB (9 queries). A large number of these rewrites are highly pro-

ductive, with CSGM values exceeding 11.5 for TPC-DS and 7.7 for DSB. Furthermore, LITHE

significantly outperforms SOTA in terms of CPR coverage, with a factor of 3 for DSB and 2 for

TPC-DS.

Benchmark CPR CSGM

(CPR) LITHE SOTA LITHE SOTA

TPC-DS (27) 26 13 11.5 6.1

DSB (9) 9 3 7.7 1.7

ARCHER (22) 22 19 2.1 1.9

JOB (4) 4 2 1.9 1.4

StackOverflow (2) 2 1 8.7 7.5

Table 5.1: Comparing LITHE with SOTA on CPR queries

Turning our attention to the other benchmarks (ARCHER, JOB, StackOverflow), the num-

ber of CPR queries is smaller due to the predominance of flat SPJ formulations in these bench-

marks, which limits the scope for productive rewriting at query space. Nevertheless, LITHE

continues to achieve CPR even in constraint settings, whereas SOTA misses quite a few oppor-

tunities. Further, the CSGM of LITHE is visibly better than SOTA.
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SELECT amc/pmc AS am_pm_ratio

FROM (

SELECT COUNT(*) AS amc

FROM web_sales, household_demographics, time_dim td, web_page

WHERE ws_sold_time_sk = td.t_time_sk

AND ws_ship_hdemo_sk = house_demographics.hd_demo_sk

AND ws_web_page_sk = web_page.wp_web_page_sk

AND td.t_hour BETWEEN 8 AND 8+1

AND house_demographics.hd_dep_count = 6

AND web_page.wp_char_count BETWEEN 5000 AND 5200

)AS at,

(SELECT COUNT(*) AS pmc

FROM web_sales, household_demographics, time_dim td, web_page

WHERE ws_sold_time_sk = td.t_time_sk

AND ws_ship_hdemo_sk = house_demographics.hd_demo_sk

AND ws_web_page_sk = web_page.wp_web_page_sk

AND td.t_hour BETWEEN 19 AND 19+1

AND house.hd_dep_count = 6

AND web_page.wp_char_count BETWEEN 5000 AND 5200

)AS pt

ORDER BY am_pm_ratio

LIMIT 100;

Figure 5.1: Original TPC-DS Q90

5.2 Query Readability

We now turn our attention to evaluating how query rewrites affect readability—an often over-

looked but crucial aspect of query quality. Specifically, we aim to examine whether the com-

monly held belief that “more efficient queries are also more readable” holds true in the context

of rewrites produced by LITHE.

To assess this, we adopt a straightforward yet intuitive metric for readability: the number

of joins present in a query. The rationale is that a higher number of joins generally increases

structural complexity, making the query harder to interpret, debug, and maintain. Fewer joins,

on the other hand, often lead to more compact and understandable queries, especially for users

manually inspecting the SQL.

Table 5.2 reports the average number of joins before and after rewriting for both SOTA and
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SELECT SUM(CASE WHEN td.t_hour BETWEEN 8 AND 9 THEN 1 ELSE 0 END)) /

SUM(CASE WHEN td.t_hour BETWEEN 19 AND 20 THEN 1 ELSE 0 END) AS am_pm_ratio

FROM web_sales, household_demographics, time_dim td, web_page

WHERE ws_sold_time_sk = td.t_time_sk

AND ws_ship_hdemo_sk = house_demographics.hd_demo_sk

AND ws_web_page_sk = web_page.wp_web_page_sk

AND (td.t_hour BETWEEN 8 AND 9 OR td.t_hour BETWEEN 19 AND 20)

AND house_demographics.hd_dep_count = 6

AND web_page.wp_char_count BETWEEN 5000 AND 5200

ORDER BY am_pm_ratio

LIMIT 100;

Figure 5.2: Rewritten TPC-DS Q90

Benchmark (CPR)
Average # JOINS

Original SOTA LITHE

TPC-DS (26) 4.8 4.4 4
DSB (9) 4.9 5.3 4.7

ARCHER (22) 1.44 1 0.8
JOB (4) 7 7 7

StackOverflow (2) 8 8 8

Table 5.2: LITHE vs SOTA readability comparison

LITHE across multiple benchmark suites. The results clearly show that LITHE consistently re-

duces the number of joins, most prominently for the TPC-DS, DSB, and ARCHER benchmarks.

This indicates a strong alignment between LITHE ’s optimizations and improved readability. In

contrast, SOTA sometimes increases the join count—most notably in the DSB benchmark—thus

making the rewritten queries harder to comprehend than the original versions.

For the JOB and StackOverflow benchmarks, where the potential for transformation is

inherently limited due to simpler query structures, both the original and rewritten versions

remained largely the same in terms of join count. This suggests that LITHE avoids unnecessary

rewrites when they do not offer meaningful benefits.

Importantly, LITHE never performs worse than the original or SOTA-rewritten queries in terms

of readability, always maintaining or improving the metric. A concrete example is illustrated

in Figures 5.1 and 5.2, which depict Query 90 before and after rewriting by LITHE. In this

case, the number of joins was reduced from 6 to 3, resulting in a significantly simpler and more

readable query.

In summary, LITHE not only delivers strong performance gains but also enhances query

clarity—an essential trait for developers and DBAs working with complex analytical SQL.
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5.3 Individual Queries

The above results were for entire benchmarks. We now drill down into the performance at

the granularity of individual queries. Due to space limitations, we focus only on the TPC-DS

benchmark here.

Figure 5.3: Plan Cost Speedups via Rewrites
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5.3.1 Estimated Cost

LITHE produces 26 CPRs for the 88 slow TPC-DS queries, resulting in a highly productive

CSGM of 11.5, whereas SOTA delivers only 13 CPRs with a CSGM of 6.1. All but one of the

SOTA CPRs also feature in the LITHE CPRs, making total number of CPRs being considered to

be 27.

LITHE produces a rewrite with a positive cost speedup ( 1x) for 46 of the 88 TPC-DS

queries deemed to be slow by our threshold. Of these 46, there were 26 CPRs resulting in a

highly productive CSGM of 11.5. On the other hand, SOTA delivers only 13 CPRs (out of 42

positive rewrites) with a CSGM of 6.1. All but one of the SOTA CPRs also feature in the LITHE

CPRs, making the total number of CPRs considered to be 27. Of these 27, we were able to

formally verify 11 using the logic-based tools, whereas the remaining 16 passed our statistical

tests. Furthermore, we also manually verified the correctness of these rewritten queries.

A drill-down into the cost speedup performance at the granularity of individual queries is

shown in Figure 5.3, which compares LITHE (orange bars) and SOTA (blue bars) on each of the

27 CPR queries – note that the cost speedups on the x-axis are tabulated on a log10 scale, and

the queries are sequenced in decreasing order of LITHE speedup. The vertical dotted line at 1

represents the normalized baseline cost of the original query with the native optimizer, while

the vertical line at 1.5 is the CPR threshold.

We first observe, gratifyingly, that rewrites are indeed capable of promising dramatic cost

speedups – take, for instance, Q41, which improves by a whopping five orders-of-magnitude for

both SOTA and LITHE. This improvement in query performance is due to replacing the “WHERE

(SELECT COUNT(*) from ...) > 0” clause with “WHERE EXIST (SELECT 1 from ...)” –

the latter is a more efficient check for result existence in an inner subquery since it removes the

computationally expensive aggregation function.

Second, in most queries, LITHE’s cost speedup either exceeds or matches SOTA. In fact, for

several queries (e.g. Q45, Q25, Q4), LITHE produces a highly beneficial CPR but SOTA returns

the original query. Conversely, the opposite is true for one query (Q57) where SOTA projects

a large speedup but LITHE settles for the original query. And in Q88 and Q95, SOTA performs

only marginally better.

At this stage, one might expect that adding more rules to LITHE could bring it on par with

SOTA for queries like Q57. However, we deliberately include only broad-brush rules in LITHE

to ensure generalizability and efficiency. As the following timing section shows, due to this

conservative approach LITHE actually outperforms SOTA on these queries (Q57, Q88, Q95) in

terms of runtime.
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5.3.2 Execution Time

Figure 5.4: Execution Time Speedups via Rewrites

So far, our evaluation has focused on optimizer-estimated execution costs. However, from a

user’s perspective, what truly matters is the improvement in actual response time—the time it

takes for a query to execute and return results.
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This makes it essential to evaluate LITHE’s performance gains in terms of actual run time.

Figure 5.4 shows the runtime speedups (on a log10 scale) achieved by both LITHE and SOTA,

offering a direct comparison of real-world performance.

We observe that, LITHE ’s performance gains have indeed translated from the estimated

cost domain to actual execution time. Gratifyingly, several queries show substantial runtime

improvements due to the rewrites—some even achieving order-of-magnitude speedups. For

instance, LITHE improves Query 45 by an astonishing factor of 700. Second, in all the cases,

LITHE outperforms or matches SOTA, including as mentioned above, the queries where SOTA’s

optimizer costs were better.

From a modeling standpoint, the gap between optimizer estimates and actual runtimes

persists in the rewrite space. For example, Q1’s projected 30x speedup jumps to 6000x at

runtime, while Q41 drops from 105x to 200x. But for SOTA, the reductions can be severe

– a striking case in point is Q57, where SOTA actually causes regression despite a speedup

projection of close to 100x.

Encouragingly, LITHE showed no regressions among its CPR rewrites, even if projections

weren’t always matched. Overall, LITHE achieved a robust TSGM of 13.2, compared to SOTA

’s 4.9.

5.4 Rewrite Overheads (Time/Money)

Having established that LITHE can consistently deliver performance-beneficial rewrites, we now

shift focus to analyzing the overheads associated with the rewriting process itself.

Benchmark
Avg. Time (min) Avg. Tokens

LITHE SOTA LITHE SOTA

TPC-DS 5 1.7 18427 20076

DSB 9 4.0 15602 15699

ARCHER 2.5 0.6 7284 5465

JOB 5 1.3 13742 13692

StackOverflow 7.3 3.2 20931 12759

Table 5.3: LITHE and SOTA Rewrite time overhead

Table 5.3 presents the average processing time per CPR query across benchmarks. While

the rewriting process takes a few minutes on average, such an overhead is generally acceptable

in practical deployment scenarios—especially considering that the execution benefits typically

far outweigh the compilation overheads.
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For instance, with Q11, the original query took nearly an hours to complete, whereas the

LITHE rewrite executed in just 3 minutes, yielding a massive runtime reduction. In this case,

even a rewrite time of several minutes becomes negligible in comparison to the performance

gain.

The average number of LLM tokens consumed by both LITHE and SOTA during the rewriting

process is also reported in Table 5.3. This token count directly correlates with the inference

cost, as LLM usage is typically priced per million tokens.

Encouragingly, even though LITHE may involve more extensive prompting due to its deeper

rewrite exploration, the overall inference cost per query remains quite modest. Based on current

pricing1, the cost of rewriting a single query amounts to just a few cents.

That said, it is important to note that LITHE ’s rewriting process currently incurs higher

latency compared to SOTA. This difference primarily stems from LITHE ’s design choice to issue

multiple prompt-based interactions with the LLM to explore diverse rewrite options. While

this enhances the quality and robustness of rewrites, it also increases inference time. However,

the rewrite latency can potentially be reduced using techniques such as classifier-based filtering

and early pruning, as discussed in the technical report [16].

5.5 Alternative Platforms(Engine/Schema)

5.5.1 Commercial DBMS

A legitimate question could be whether the rewrites made amends for the PostgreSQL optimizer

but may fail to be useful in highly-engineered database engines. To evaluate this issue, we

performed TPC-DS rewrites on a pair of popular commercial DBMS, OptA and OptB.

# CPR

OptA OptB

LITHE 12 9

SOTA 3 5

Table 5.4: Rewrite Performance (# CPRs) on Commercial Database

1As of this writing, GPT-based inference costs approximately USD 2.50 per million tokens.
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CSGM TSGM

OptA OptB OptA OptB

LITHE 3.6 4.1 2.1 1.9

SOTA 1.5 1.3 1.4 1.2

Table 5.5: Rewrite Performance (CSGM and TSGM) on Commercial Database

The performance of LITHE and SOTA on these two systems is shown in Table 5.4 and 5.5, with

LITHE continuing to do better than SOTA. Despite the apparent lack of optimization headroom,

LITHE still produces 12 and 9 CPRs resulting in a healthy CSGM of 3.6 and 4.1, respectively.

Further, the TSGM provided by these rewrites are a useful 2.1 and 1.9, respectively.

Interestingly, although we did not observe any regressions with PostgreSQL, a few did surface

in the commercial systems. Nevertheless, our regression identification mechanisms effectively

caught these brittle rewrites. As a case in point, a promising rewrite, as estimated by the

optimizer, for Q23, actually takes 37 minutes to complete as compared to 18 minutes for the

original query – this doubling slowdown was successfully flagged by the SEER heuristic, and

the rewrite was abandoned.

We also conducted a preliminary study of LITHE on an internal real-world benchmark with

more realistic data and query characteristics than TPC-DS. Even on this benchmark, LITHE

produced 8 CPRs (out of 45 queries tested) with CSGM of 2 and TSGM of 3.3.

The above results suggest LITHE has a useful role to play in industrial environments. From

a different perspective, a company building a new database engine could use LITHE to non-

invasively overcome the limitations of early versions of its optimizer.

5.5.2 Masked Database

An interesting question that arises is whether the performance gains observed so far might

simply be a result of GPT-4o having been extensively trained on the TPC-DS benchmark,

which is widely available in the public domain.

To examine this possibility, we constructed a masked version of the TPC-DS database

schema, in which all table and column names were replaced with meaningless identifiers—thereby

eliminating any semantic cues that might aid the model in understanding the underlying data

or intent of the query.
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SELECT dt.d_year, item.i_brand_id AS brand_id, item.i_brand brand,

SUM(ss_sales_price) AS sum_agg

FROM date_dim dt, store_sales, item

WHERE dt.d_date_sk = store_sales.ss_sold_date_sk

AND store_sales.ss_item_sk = item.i_item_sk

AND item.i_manufact_id = 816 AND dt.d_moy = 11

GROUP BY dt.d_year, item.i_brand, item.i_brand_id

ORDER BY dt.d_year, sum_agg DESC, brand_id;

Figure 5.5: Original Query on TPC-DS schema

Figure 5.5 illustrates a representative query using the standard TPC-DS schema, where

the table and column names carry clear and descriptive semantics (e.g., catalog sales, item,

sale price). In contrast, Figure 5.6 shows the same query expressed using the masked schema.

As evident, the obfuscated version is based on a randomized schema that offers no intuitive

insight into the query’s purpose.

SELECT dt.tx4_7, tx10.tx10_8 AS brand_id, tx10.tx10_9 AS brand,

SUM(tx25_14) AS sum_agg

FROM tx4 dt, tx25, tx10

WHERE dt.tx4_1 = tx25.tx25_1

AND tx25.tx25_3 = tx10.tx10_1

AND tx10.tx10_14 = 816 AND dt.tx4_9 = 11

GROUP BY dt.tx4_7, tx10.tx10_9, tx10.tx10_8

ORDER BY dt.tx4_7, sum_agg DESC, brand_id;

Figure 5.6: Obfuscated Query on Masked schema

We then constructed rewrites for the CPR queries (after syntactic changes to reflect the

new masked schema) on this version.

Approach
# CPR

TPC-DS Masked

LITHE 26 24

SOTA 13 12

Table 5.6: Rewrite Performance (# CPR) on Masked Database.
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The results are summarized in Table 5.6 and 5.7, and we observe that the performance

profiles for both LITHE and SOTA exhibit only a marginal decline under the masked schema.

This highlights the robustness and generalizability of both rewriting approaches. These findings

demonstrate that, irrespective of their prior training exposure, LLMs can serve as practical and

effective tools for query rewriting—even in environments with obfuscated or non-descriptive

database schemas.

Approach
CSGM TSGM

TPC-DS Masked TPC-DS Masked

LITHE 11.5 10.5 13.2 11.8

SOTA 6.1 5.3 4.9 4.2

Table 5.7: Rewrite Performance ( CSGM and TSGM) on Masked Database.
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Chapter 6

Conclusions

Based on our study, we now present a few observations with implications for the future design

and deployment of rewriting tools.

6.1 Rewrite Space Coverage by LLMs

Given the decades-long body of research dedicated to database query optimization, our ini-

tial expectation was that there would be limited room for further performance enhancements

through query rewriting. What came as a surprise was the substantial scope for improvement

still available, as showcased by the large CSGM and TSGM values, even on commercial plat-

forms. These results suggest that LLMs explore optimization spaces that are well outside the

purview of contemporary database engines. Further, this enhanced space could be augmented,

in a two-stage process, with the recent proposals for LLM-based “plan hints” that steer the

optimizer in fruitful directions within a plan space [9]. This combination of structural rewrites

and plan-space guidance offers a powerful framework for realizing performance gains beyond

what traditional systems can achieve on their own.

6.2 Rewrite Migration to Optimizer

The above demonstrated the potent exploratory power of LLMs. But from an overheads per-

spective, such rewrites should ideally be within the optimizer’s native search space rather than

recommended from outside. Therefore, it would be a useful exercise to try and distill fresh

optimization rules from these instances, leveraging the extensibility features of contemporary

optimizers [18] to facilitate their incorporation in existing systems.

On the flip side, there appears to be an “impedance mismatch” against such integration for

certain classes of rewrites. For example, consider the TPC-DS Q90 rewrite in Figure 5.2. The
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original query individually computed AM (morning) sales and PM (evening) sales, which were

then used to compute the AM to PM ratio. The rewrite, however, extracted all relevant rows

in one shot and computed the ratio using CASE statements – encoding such transformations

as generic rules in the optimizer appears challenging, given the combinatorial ways in which

such transformations can occur.

Therefore, a fruitful area of future research could be achieving a middle-ground between the

disparate world-views of LLMs and traditional optimizers.

6.3 Revisiting Optimizer Plan Costing

As highlighted in Section 5.3.2, there were instances of substantive differences between the

promised speedup and that delivered at run-time. In fact, to the extent that speedups could

even turn out to be regressions! This is due to the brittleness of optimizer plan costing in the

new spaces explored by the LLM. During our LITHE design process, the prefiltering in Rule R6

(Table 3.2) had initially not been restricted to self-joins. It resulted in the number of CPRs (on

PostgreSQL) being as high as 65, with an astonishing CSGM of 30.6! However, upon execution,

most of these rewrites turned out to be regressions, which led to our inclusion of the restriction.

The old rule R6 is shown in Figure 6.1.

Selectivity Guided Rules

Old R6 Pre-filter fact tables in a CTE using dimension tables with low selectivi-

ties. Retain dimension table filters in main query. Do not create explicit

join statements.

New R6 Pre-filter tables involved in self-joins and with low selectivities on their

filter and/or join predicates. Remove any redundant filters from the main

query. Do not create explicit join statements.

Table 6.1: Modified rule R6

But note that we are incorporating guardrails to flag such cases, rather than fixing the plan

costing module, which is the principled solution. In sum, while plan cost modeling has been

a long-standing area of research, there is now even more reason given the new rewrite spaces

to study this topic further – for instance, the operator cost model could be extended using

calibration techniques similar to those advocated in [44], while the operator cardinality model

could be improved with attention-based techniques [28].
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6.4 Scope of Semantic Equivalence Tools

As seen in the experiments section, logic-based query equivalence testing covers industrial-

strength queries only to a limited extent. On the other hand, while it is highly likely that

the statistics-verified rewrites are valid, it still requires the DBA to make a final call on the

correctness. This limitation restricts the use of LITHE in a fully automated scenario, i.e., as a

direct preprocessor to the query engine. Therefore, a key challenge is to improve logic-based

coverage.

6.5 Road Ahead

We investigated how the latent power of LLM technologies can be productively materialized

in the context of SQL-to-SQL rewriting. Our study progressively infused database domain

knowledge, such as redundancy removal rules and schematic+statistical metadata, into the

LLM prompts. To address discrepancies between the optimizer’s cost model and real execution

behavior, we also implemented an efficient mechanism for regression detection. Finally, a

combination of logic-based and statistical tests was employed to verify the equivalence of the

rewrites.

An empirical evaluation over common database benchmarks showed that rewriting is a

potent mechanism to improve query performance. In fact, even order-of-magnitude speedups

were routinely achieved with regard to both abstract costing and execution times. However,

our results also showed a significant semantic distance between foundation models and query

optimizers, with regard to both scope and precision, which would have to be bridged to fully

leverage the latent power of LLMs. Further, our focus here was primarily on prompting-based

strategies – a future line of research could be to investigate how domain-specific fine-tuning

could be leveraged to provide GPT-4o-like rewrites on small open models.
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Appendix

Examples used in Prompts for Rules 1–6

R1: Use CTEs (Common Table Expressions) to avoid repeated
computation.

Original Query

SELECT emp.employee_name,

mgr.manager_name

FROM employees emp,

managers mgr

WHERE emp.manager_id = mgr.manager_id

AND emp.employee_id IN (SELECT manager_id

FROM (SELECT manager_id,

manager_name

FROM managers

WHERE job_id = ’IT_PROG’

AND manager_id > 100))

AND mgr.manager_name IN (SELECT manager_name

FROM (SELECT manager_id,

manager_name

FROM managers

WHERE job_id = ’IT_PROG’

AND manager_id > 100));

Rewritten Query

WITH cte
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AS (SELECT manager_id,

manager_name

FROM managers

WHERE job_id = ’IT_PROG’

AND manager_id > 100)

SELECT emp.employee_name,

mgr.manager_name

FROM employees emp,

managers mgr

WHERE emp.manager_id = mgr.manager_id

AND emp.employee_id IN (SELECT manager_id

FROM it_prog_managers)

AND mgr.manager_name IN (SELECT manager_name

FROM it_prog_managers);
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R2: When multiple subqueries use the same base table, rewrite to
scan the base table only once.

Original Query

SELECT (SELECT Avg(salary)

FROM employees

WHERE department = ’Sales’

AND experience_years BETWEEN 1 AND 5

AND salary BETWEEN 50000 AND 60000) AS Sales_Avg,

(SELECT Avg(salary)

FROM employees

WHERE department = ’HR’

AND experience_years BETWEEN 5 AND 10

AND salary BETWEEN 80000 AND 90000) AS HR_Avg;

Rewritten Query

SELECT avg(

CASE

WHEN department = ’Sales’ THEN salary) AS sales_avg,

avg(

CASE

WHEN department = ’HR’ THEN salary) AS hr_avg

FROM employees

WHERE (

department = ’Sales’

AND experience_years BETWEEN 1 AND 5

AND salary BETWEEN 50000 AND 60000)

OR (

department = ’HR’

AND experience_years BETWEEN 5 AND 10

AND salary BETWEEN 80000 AND 90000);
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R3: Eliminate overlapping subqueries.

Original Query

SELECT c.*

FROM customer c

WHERE c.address_id IN (SELECT a.address_id

FROM address)

AND c.address_id IN (SELECT a.address_id

FROM address

WHERE a.pin_code = ’560012’);

Rewritten Query

SELECT c.*

FROM customer c

WHERE c.address_id IN (SELECT a.address_id

FROM address

WHERE a.pin_code = ’560012’);
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R4: Remove unnecessary joins between a primary key and a foreign
key.

Schema

CREATE TABLE products

(

p_product_id INTEGER NOT NULL,

PRIMARY KEY (p_product_id)

);

CREATE TABLE fact_sales

(

f_sales_id INTEGER NOT NULL,

f_units_sold INTEGER NOT NULL,

f_product_id INTEGER NOT NULL,

PRIMARY KEY (f_sales_id),

FOREIGN KEY (f_product_id) REFERENCES products(p_product_id)

);

Original Query

SELECT p_product_id,

f_units_sold

FROM fact_sales,

products

WHERE f_product_id = p_product_id;

Rewritten Query

SELECT f_product_id,

f_units_sold

FROM fact_sales;
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R5: Choose EXIST or IN based on subquery selectivity.

Original Query

Select item.id, item.code, item.price

from item

where item.sourceid in (

Select element.sourceid

from element

where element.zip > 1100

)

order by item.id;

Statistics

Selectivity of different predicates is given below :

( 1 ) source_id > 1100 on table element :: 0.7385

Rewritten Query

Select item.id, item.code, item.price

from item

where exists(select 1

from element

where item.sourceid = element.sourceid

and element.sourceid > 1100

)

order by item.id;
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R6: Pre-filter tables that are involved in self-joins and have low
selectivities on their filter and/or join predicates. Remove any
redundant filters from the main query. Do not create explicit join
statements.

Original Query

with total_price_cte as (

select item.id, colour.colorcode, sum(item.price) total_price

from item, color

where item.colorcode = colour.colorcode

group by item.id, colour.colorcode

)

select t_sec.id, t_first.colorcode

from total_price_cte t_first, total_price_cte t_sec

where t_sec.id = t_first.id

and t_first.colorcode = ‘R’

and t_sec.colorcode = ‘R’

and t_first.total_price > 0

order by t_sec.id

limit 100;

Statistics

Selectivity of different predicates is given below :

( 1 ) colour.colorcode = ‘R’ :: 0.01

Rewritten Query

with total_price_cte as (

select item.id, colour.colorcode, sum(item.price) total_price

from item, color

where item.colorcode = colour.colorcode

group by item.id, colour.colorcode

),

filtered_total_price_cte as (

select * from total_price_cte
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where colorcode = ‘R’

)

select t_sec.id, t_first.colorcode

from filtered_total_price_cte t_first, filtered_total_price_cte t_sec

where t_sec.id = t_first.id

and t_first.total_price > 0

order by t_sec.id

limit 100;
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hamed Ziauddin. Automatic SQL tuning in oracle 10g. In Mario A. Nascimento,
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