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Abstract

We investigate here the query reverse-engineering problem of unmasking SQL queries hidden
within database applications, a problem with use-cases ranging from legacy code to server
security. As a first step in addressing this challenge, we present UNMASQUE, an extraction
algorithm that is capable of identifying a substantive class of complex hidden queries. A special
feature of our design is that the extraction is non-invasive w.r.t. the application, examining
only the results obtained from its executions on databases derived with a combination of data
mutation and data generation techniques.

Further, potent optimizations, such as database size reduction to a few rows, are incorpo-
rated to minimize the extraction overheads. A detailed evaluation over benchmark databases
demonstrates that UNMASQUE is capable of correctly and efficiently extracting a broad spec-
trum of hidden queries. We also show UNMASQUE’s capability to convert imperative code

into equivalent SQL queries for some famous blogging applications.
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Chapter 1
Introduction

Over the past decade, query reverse-engineering (QRE) has evinced considerable interest from
both the database and programming language communities (e.g. [14, 11, 10, 9, 5, 3, 2, 7, 4, 13]).
The generic problem tackled in this stream of work is the following: Given a database instance
D, and a populated result R;, identify a candidate SQL query Q. such that Q.(D;) = R;. The
motivation for QRE stems from a variety of use-cases, including: (i) reconstruction of lost
queries; (ii) query formulation assistance for naive SQL users; (iii) enhancement of database
usability through a slate of instance-equivalent candidate queries; and (iv) explanation for
unexpectedly missing tuples in the result.

Impressive progress has been made on addressing the QRE problem, with potent tools such
as Talos[11], Regal[10] and Scythe[13] having been developed over the years. Notwithstanding,
there are intrinsic challenges underlying the problem framework: First, the choice of candidate
query is organically dependent on the specific (D;,R;) instance provided by the user, and can
vary hugely based on this initial sample. As an extreme case in point, if the result has only
a single row, the generated candidates are likely to be trivial queries, although the ideal an-
swer may be an aggregation query. Second, given the inherently exponential search space of
alternatives, identifying and selecting among the candidates is not easily amenable to efficient
processing. Third, the precise values of filter predicates, as well as advanced SQL constructs
(e.g. LimiT, LikKE, UDFSs), are fundamentally impossible to deduce since the candidate query
is constructed solely from the instance.

In this report, we consider a variant of the QRE problem, wherein a ground-truth query is ad-
ditionally available, but in a hidden form that is not easily accessible. For example, the original
query may be explicitly hidden in a black-box application executable. Moreover, encryption or
obfuscation may have been additionally incorporated to further protect the application logic.

An alternative scenario is that the application is visible but effectively opaque because it is
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comprised of hard-to-comprehend SQL (such as those arising from machine-generated object-
relational mappings), or poorly documented imperative code that is not easily decipherable.
Such “hidden-executable” situations could arise in the context of legacy code, where the original
source has been lost or misplaced over time (prominent instances of such losses are recounted
in [22]), or when third-party proprietary tools are part of the workflow, or if the software has
been inherited from external developers.

Formally, we introduce the hidden-query extraction (HQE) variant of QRE as follows: Given
a black-box application A containing a hidden SQL query Qp, and a database instance D; on

which Qp produces a populated result R;, unmask Qg to reveal the original query.

We leverage the presence of the hidden ground-truth to deliver a variety of advantages:
e The outcome now becomes independent of the initial (D;,R;) instance.

e Since the application can be invoked repeatedly on different databases, efficient and fo-

cused mechanisms can be designed to precisely identify the hidden query.

e It allows for capturing difficult SQL constructs (we show here how LiKE, LiMIiT, HAVING

and scalar UDF's can be extracted).

e As a collateral benefit, the unmasked query can serve as a definitive seed input to database

usability tools like Talos[11] which create an array of instance-equivalent queries.

e New use-cases become feasible — for instance, a security agency may wish to ascertain
offline the real intent of encrypted queries that were refused entry due to concerns about

their origins.

At first glance it may appear that the existing QRE techniques could be used to provide a
seed query for HQE, followed by refinements to precisely identify the hidden query. However, as
explained later, this is not a viable approach, forcing us to design the extraction procedures from
scratch. Our experience in this effort is that HQE proves to be a challenging research problem
due to factors such as (a) acute dependencies between the various clauses of the hidden query,

(b) possibility of schematic renaming, (c) result compression due to aggregration functions, and

(d) presence of UDFs.



Select min(|_orderkey), sum(l_extendedprice) as revenue,

Create Procedure tpch_HQ with Encryption BEGIN Select |_orderkey, sum(l_extendedprice * (1 - |_discount)) o_orderdate, min(o_shippriory)
Select |_orderkey, sum(|_extendedprice * (1 - |_discount)) as revenue, o_orderdate, o_shippriority - ! —. Y
as revenue, o_orderdate, o_shippriority From customer, lineitem, orders From  customer, bders, nitem
From customer, orders, lineitem Where c_custkey = o_custkey and |_orderkey = o_orderkey Where c_custkey = o_custkey
Where c_custkey = o_custkey and |_orderkey = o_orderkey and c_mktsegment = 'BUILDING' and |_orderkey = o_orderkey
and ¢_mktsegment = '‘BUILDING' and o_orderdate <= date '1995-03-14' and o_orderdate between '1994-11-19'
and o_orderdate < date '1995-03-15' and |_shipdate >= date '1995-03-16' and '1995-03-10" and ¢_mkisegment = ‘BUILDING'
and |_shipdate > date '1995-03-15' group by |_orderkey, o_shippriority, o_orderdate and |_shipdate between '1995-03-20'
group by |_orderkey, o_orderdate, o_shippriority order by revenue desc, o_orderdate asc  limit 10; and '1995-07-12'
order by revenue desc, o_orderdate limit 10; END group by o_orderdate
(a) Hidden Query (Qp) (b) Extracted Query (Qf) (c) Sample Regal Query

Figure 1.1: Hidden Query Extraction Example (TPC-H Q3)

1.1 UNMASQUE Algorithm
We take a first step towards addressing the HQE problem here by presenting UNMASQUE!,

an algorithm that uses a judicious combination of database mutation and synthetic database
generation to identify the hidden query Qp. The extraction is completely non-invasive wrt
the application code, examining only the results obtained from its executions on carefully
constructed databases. As a result, platform-independence is achieved wrt the underlying
database engine.

Currently, UNMASQUE is capable of extracting a substantive class of SPJGHAOL? queries.
As an exemplar, consider Qg in Figure 1.1a, which encrypts TPC-H [25] query Q3 in a stored
procedure, and features most of these clauses. Our extracted equivalent, Qg, is shown in
Figure 1.1b, clearly capturing all semantic aspects of the original query, including the scalar
revenue UDF. Only syntactic differences, such as a different grouping column order, remain in
the extraction.

As a reference point, the candidate query produced by Regal+[10] for this scenario is shown
in Figure 1.1c. While the query tables and joins are detected correctly, there are significant
discrepancies in the filters, grouping columns and aggregation functions. Moreover, the query is
produced after removing limit, order and UDF clauses and converting character and date type
columns to integers to suite their environment. Finally, producing even this limited outcome

took considerable time and resources.

1.2 Extraction Workflow

UNMASQUE operates according to the pipeline shown in Figure 1.2, where it unmasks the hid-
den query elements in a structured manner. It starts with the FROM clause, continues on to the

JOIN and FILTER predicates, follows up with the PROJECTION and GROUP BY+AGGREGATION

!Unified Non-invasive MAchine for Sql QUery Extraction
2SELECT, PROJECT, JOIN, GROUPBY, HAVING, AGG, ORDER, LIMIT
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Figure 1.2: UNMASQUE Architecture

columns, and concludes with the ORDER BY and LIMIT functions (as explained in Section 6.2,
a different pipeline structure is required to extract HAVING clause). The initial elements are
extracted using database mutation strategies, whereas the subsequent ones are extracted lever-
aging database generation techniques. Further, while some of the elements are relatively easy to
extract (e.g. FROM), there are others (e.g. GROUP BY) that require carefully crafted methods
for unambiguous identification. The final component in the pipeline is the QUERY ASSEM-
BLER which puts together the different elements of Oz and performs canonification to ensure a

standard output format.

1.3 Extraction Efficiency

To cater to extraction efficiency concerns, UNMASQUE incorporates a variety of optimizations.
In particular, it solves a conceptual problem of independent interest: Given a database instance
D on which a hidden query Qg produces a populated result R, identify the smallest subset D,,in
of D such that the result of Qg continues to be populated.

At first glance, it may appear that D,,;, can be easily obtained using well-established
provenance techniques (e.g. [6]). However, due to the hidden nature of Qp, these approaches
are no longer viable. Therefore, we design alternative strategies based on a combination of
sampling and recursive database partitioning to achieve the minimization objective.

The database minimization is applied immediately after the FROM clause has been identified,
as shown in Figure 1.2. And the reduction is always to the extent that the subsequent SPJ
extraction is carried out on miniscule databases containing just a handful of rows. In an
analogous fashion, the synthetic databases created for the GAOL extraction are also carefully

designed to be very thinly populated. Overall, these reductions make the post-minimization



processing to be essentially independent of database size.

1.4 Performance Evaluation

We have evaluated UNMASQUE’s behavior on a suite of complex decision-support queries, and
on imperative code sourced from blogging tools. The performance results of these experiments,
conducted on a vanilla PostgreSQL [20] platform, indicate that UNMASQUE precisely identifies
the hidden queries in our workloads in a timely manner. As a case in point, the extraction
of the example Q3 on a 100 GB TPC-H database was completed within 10 minutes. This
performance is especially attractive considering that a native execution of Q3 takes around 5

minutes on the same platform.

1.5 Organization

The rest of the report is organized as follows: In Chapter 2, a precise description of the HQE
problem is provided, along with the notations. The following chapters — Chapter 3 and 4
— present the components of the UNMASQUE pipeline, which progressively reveal different
facets of the hidden query. The experimental framework and performance results are reported
in Chapter 5. Extraction of the HAVING clause and other extensions are discussed in Chapter 6.
Chapter 7 summarizes some theoretical results about HQE. Finally, our conclusions and future

research avenues are summarized in Chapter 8.



Chapter 2
Problem Framework

We assume that an application executable object file is provided, which contains either a single
SQL query or imperative logic that can be expressed in a single query. If there are multiple
queries in the application, we assume that each of them is invoked with a separate function
call, and not batched together, reducing to the single query scenario. This assumption is
consistent with open source projects such as Wilos [27], which contain code segments wherein
each function implements the logic of a single relational query.

If the hidden SQL query is present as-is in the executable, it can be trivially extracted
using standard string extraction tools (e.g. Strings [17]). However, if there has been post-
processing, such as encryption or obfuscation, for protecting the application logic, this option is
not feasible. An alternative strategy is to re-engineer the query from the execution plan at the
database engine. However, this knowledge is also often not accessible — for instance, the SQL
Shield tool[23] blocks out plan visibility in addition to obfuscating the query. Finally, if the
query has been expressed in imperative code, then neither approach is feasible for extraction.

Moving on to the database contents, there is no inherent restriction on column data types,
but we assume for simplicity, the common numeric (int, bigint and float with fixed precision),
character (char, varchar, text), date and boolean types. The database is freely accessible
through its API, supporting all standard DML and DDL operations, including creation of a

test silo in the database for extraction purposes.

2.1 Extractable Query Class

The QRE literature has primarily focused on constructing generic SPJGA queries that do not
feature non-equi-joins, nesting, disjunctions or UDFs. We share some of the restrictions but

have been able to extend the query extraction scope to include HOL constructs, as well as



Symbol Meaning H Symbol Meaning(wrt query Q)

A Application Tg Set of tables in query
F Application Executable Cg Set of columns in Tg
D Initial Database JGE Join graph
R Result of F on D JE Set of join predicates
T Set of all tables in D Fg Set of filter predicates
QO Hidden Query Pr Set of native projections with mapped result columns
O Extracted Query Ap Set of aggregations with mapped result columns
Dpin Reduced Database Gg Set of group by columns
SG Schema Graph of database Hp Set of having predicates
(’)_E) Sequence of ordering result columns
g limit value

Table 2.1: Notations

simple scalar UDFs. Further, we expect join graph to be a subgraph of schema graph. There
are additional mild constraints on some of the constructs — for instance, the LIMIT value must
be at least 3, there are no filters on key attributes — and they are mentioned in the relevant
locations in the following chapters. We hereafter refer to this class of supported queries as
FEztractable Query Class (EQC). Our subsequent description of UNMASQUE on EQC uses the
sample TPCH Query 3 of the Introduction (Figure 1.1a) as the running example.

For ease of exposition and due to space limitations, we initially present UNMASQUE for
SPJGAOL queries, and defer the HAVING clause to Section 6.2. Further, we assume a slightly
simplified framework in the subsequent description — for instance, that all keys are positive
integer values — the extensions to the generic cases are provided at the end.

The notations used in our description of the extraction pipeline are summarized in Table 2.1.
To highlight its black-box nature, the application executable is denoted by F, while O—>E has a

vector symbol to indicate that the ordering columns form a sequence.

2.2 Overview of the Extraction Approach

To set up the extraction process, we begin by creating a silo in the database that has the same
table schema as the original user database. Subsequently, all referential integrity constraints
are dropped from the silo tables, since the extraction process requires the ability to construct
alternative database scenarios that may not be compatible with the existing schema. We then
create the following template representation for the to-be extracted query Qg:

Select ( Pg, Ap ) From Tp Where Jp A Fg

Group By Gg Order By O—>E Limit [z;
and sequentially identify each of the constituent elements,; as per the pipeline shown in Fig-
ure 1.2.

The initial segment of the pipeline is based on mutations of the original /reduced database




and is responsible for handling the SPJ features of the query which deliver the raw query
results. The modules in this segment require targeted changes to a specific table or column
while keeping the rest of the database intact.

In contrast, the second pipeline segment is based on the generation of carefully-crafted
synthetic databases. It caters to the GAOL query clauses, which are based on manipulation of
the raw results. The modules in this segment require generation of new data for all the query-
related tables under various row-cardinality and column-value constraints. We deliberately
depart from the mutation approach here since these constraints may not be satisfied by the
original database instance.

We hereafter refer to these two segments as the Mutation Pipeline and the Generation

Pipeline, respectively, and present them in detail in the following chapters.



Chapter 3
Mutation Pipeline

The SPJ core of the query, corresponding to the FROM (T%), WHERE (Fg, Jg) and SELECT
(Pg) clauses, is extracted in the Mutation Pipeline segment of UNMASQUE. Aggregation
columns in the SELECT clause are only identified as projections here, and subsequently refined

to aggregations in Generation Pipeline.

3.1 From Clause

To identify whether a base table ¢ is present in Qpg, the following elementary procedure is
applied: First, t is temporarily renamed to temp. Then, F is executed on this mutated schema
and we check whether it throws an error — if yes, t is part of the query; Finally, temp is reverted
to its original name t.

By doing this check iteratively over all the tables in the schema, T is identified. With Q3,
the procedure results in

Tr = {customer, lineitem, orders}.

3.2 Database Minimization

For enterprise database applications, it is likely that D is huge, and therefore repeatedly exe-
cuting J on this large database during the extraction process may take an impractically long
time. To tackle this issue, before embarking on the SPJ extraction, we attempt to minimize
the database as far as possible while maintaining a populated result. Specifically, we address
the following row-minimality problem:

Given a database instance D and an executable F producing a populated result on D, derive
a reduced database instance D, from D such that removing any row of any table in Tg results

i an empty result.



With this definition of D,,;,, we can state the following strong observation for EQC~#
(EQC without HAVING):

Lemma 3.1: For the EQC~, there always ewists a D,y,;, wherein each table in Ty contains
only a single row.

Proof: Firstly, since the final result is known to be populated, the intermediate result
obtained after the evaluation of the SPJ core of the query is also guaranteed to be non-empty.
This is because the subsequent GAOL elements only perform computations on the intermediate
result but do not add to it. Now, if we consider the provenance for each row r; in the interme-
diate result, there will be exactly one row as input from each table in T because: (i) if there
is no row from table ¢, r; cannot be derived because the inner equi-join (as assumed for the
query class EQC) with table ¢ will result in an empty result; (ii) if there are k : (k > 1) rows
from t, (k— 1) rows either do not satisfy one or more join/filter predicates and can therefore be
removed from the input, or they will produce a result of more than one row since there is only
a single instance of ¢ in the query. In essence, a single-row R can be traced back to a single-row
per table in D,,;,. O
We hereafter refer to this single-row D,,;, as D'~ the reduction process to identify this database

is explained next.

Reducing D to D!

At first glance, it might appear trivial to identify a D'- simply pick any row from the R
obtained on D and compute its provenance using the well-established techniques in the literature
(e.g. [6]) — the identified source rows from Ty constitute the single-row D'. However, these tuple
provenance techniques in the literature are predicated on prior knowledge of the query. This
makes them unviable for identifying D! in our case where the query is hidden. Therefore,
we implement the following iterative-reduction process instead: Pick a table t from Tg that
contains more than one row, and divide it roughly into two halves. Run J on the first half,
and if the result is populated, retain only this first half. Otherwise, retain only the second
half, which must, by definition, have at least one result-generating row (due to Lemma 3.1).
When eventually all the tables in Tz have been reduced to a single row by this process, we have
achieved D!.

In principle, the tables in T can be progressively halved in any order. However, note that
after each halving, F is executed to determine which half to retain, and therefore we would
like to minimize the time taken by these executions. Accordingly, we choose a policy of always

halving the currently largest table in the set. This is because this policy can be shown to

10



c_custkey | c_mkisegment | ... customer
363053% BUILDING

orders

o_orderkey | o_custkey | o_orderdate | o_shippriority

322337 3630539 1994-12-31 0
|_orderkey | |_extendedprice I_shipdate | ... | lineitem
322337 31392.48 1995-05-01

HIP:FI

|_orderkey revenue | o_orderdate | o_shippriority
322337 31392.48 1994-12-31 0

Figure 3.1: D! for Q3

require, in expectation, the least amount of data processing to reach the D! target.
To make the above concrete, a sample D! for Q3 (created from an initial 100 GB instance)

is shown in Figure 3.1.

3.3 Join Predicates

To extract the join predicates Jg of Qp, we start with SG, the original schema graph of the
database. Note that, the nodes in SG are key columns (and not tables which is usually the
case with the term, schema graph) and each edge (u,v) denotes an equi-join predicate u = v.
From SG, we create an (undirected) induced subgraph whose vertices are the key columns in
Tg, and edges are the possible join edges between these columns. In the case of composite keys,
each column within the key is treated as a separate node.

After that, each connected component in the subgraph is converted to a corresponding cycle
graph, hereafter referred to as a cycle, with the same set of vertices. Note that the elementary
graph with two nodes and and an edge connecting them is also considered to be a cycle. The
motivation for this graph conversion step is the following: Checking for the presence of a
connected component in the query join graph JGpg, is equivalent to checking the presence of
the corresponding cycle. Therefore the collection of all the cycles put together is referred to as
candidate join-graph, or CJGg.

We now individually check for the presence of each CJGE cycle in JG g, using the iterative

11



procedure shown in Algorithm 1. The check is done in the following three steps: (i) Using
the Cut procedure, remove a pair of edges from a candidate cycle C'C'; this partitions C'C' into
two connected components; these new components are converted into cycles (C; and Cy) by
adding the missing edge; (ii) Negate in D! all the values in the columns corresponding to the
vertices in C, using the Negate procedure; (iii) Run F on this mutated database — if the result
is empty, we conclude the edges are present in JGg and the edges are returned to the parent
cycle CC'; otherwise, C'; and (5 are included as fresh candidates in CJGg. If a candidate cycle
has reduced to a single edge, then the check is carried out only with the Negation step using
one of the two vertices.

In the above procedure, the motivation behind removing a pair of edges is the observation
that for JGg to not contain a cycle CC, at least two edges of C'C' should be absent from
JGg. The reason is that, in the above context, if an edge is removed from a cycle, the resultant
graph is still equivalent to the cycle due to transitivity property of inner-equi join over columns.
Further, the algorithm is bound to terminate because in each iteration, a cycle is either removed
or partitioned into smaller cycles.

With regard to 3, C' JG g contains only two connected components — specifically, (I_orderkey, o_order
and (o_custkey, c_custkey). Each component has a single edge that returns true when checked
for presence by Algorithm 1. So, in this case, JGg = C'JGEg. In the final step, each edge in
JG g is converted into a predicate in Jg. Therefore, for Q3, the join predicates turn out to be:

Jg = {l.orderkey=o0_orderkey, o_custkey=c_custkey}.

Lemma 3.2: For a hidden query Qp € EQC, UNMASQUE correctly extracts JGg, or
equivalently, Jg.

Proof: It is easy see that when there is only one edge in the cycle, it will be correctly
extracted as the output after removing it will be empty iff this edge is present in the join graph.
For the edges that belong to bigger cycles, we prove the claim by contradiction. Consider an
edge (u,v) that belongs to JG g but UNMASQUE fails to extract it (i.e. a false negative). This
implies that when the edge (u,v) is removed by value negation (with any other edge) the result
continues to be populated. This is not possible if (u,v) € JGg as one of the nodes from u and
v is negated.

On the other hand, consider an edge (u,v) € C that is not part of JGr but UNMASQUE
extracts it (i.e. a false positive). This implies that when the edge (u,v) is explicitly removed
along with any other edge (x,y) by value negation, the result becomes empty. As there is no
other filter on key attributes and (u,v) ¢ JGg, every other edge in C' must belong to the join

graph. Now due to inner-equi joins (u,v) also belongs to the join graph as it can be inferred
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by other edges of cycle C, a contradiction.

Algorithm 1: Extracting Join Graph JGg

1 CJGEg + Candidate Cycles, JGE < ¢

2 while There is at least one cycle in CJGEg do

3 CC + Any candidate cycle from CJGg

4 if CC contains a single edge (v1,v2) then

5 DL . < Negate(D', {v1})

6 If § (D}.;) = ¢ then JGg + JGg U CC
7 CJGg + CJGg | CC

8 else

9 foreach pair of edges (e1,e3) € CC do

10 Cl,CQ = Cut(CC,el,eg)

11 D} .. + Negate(D!, Cy)

12 if ¥ (D},.) = ¢ then

13 ‘ Add eq, and ey back to CC

14 else

15 CJGg +— CJGg U C1 UCy

16 break  //Go to the start of while loop
17 end
18 end
19 JGg + JGg U CC; CJGE%CJGE/CC
20 end
21 end

3.4 Filter Predicates

We start by assuming that all columns in Cg (set of columns in Tg) are potential candidates
for the filter predicates Fg in Q. Each of them is then checked in turn with the following
procedure: First, we evaluate whether there is a nullity predicate on the column. If an IS NULL

predicate is not present, we investigate whether there is an arithmetic predicate, and if yes, the

filter value(s) for the predicate are identified.

data types with small finite domains (e.g. Boolean), by simply mutating the attribute with
each possible value in its domain and observing the result — empty or populated — of running

F on these mutations. The procedure for general numeric and textual attributes is, however,

It is relatively easy to check for nullity predicates and, more generally, predicates on any

more involved, as explained below.

13




Cas&% Ri=¢ ‘ Ry =¢ Predicate Type Action Required

1 No No imin < A < imaz No Predicate
2 Yes No I < A<imaz Find |
3 No Yes tmin < AL Find r
4 Yes Yes I<A<Zr Find [ and r

Table 3.1: Filter Predicate Cases

3.4.1 Numeric Predicates

For ease of presentation, we start by explaining the process for integer columns. Let [imin, imaz)
be the value range of column A’s integer domain, and assume a range predicate [ < A < r, where
[ and r need to be identified. Note that all the comparison operators (=, <, >, <, >, between)
can be represented in this generic format — for example, A < 25 can be written as i,,;, < A < 24.

To check for presence of a filter predicate on column A, we first create a D} . instance by
replacing the value of A with 4,,,, in D!, then run F and get the result — call it R;. We get
another result — call it Ry — by applying the same process with 4,,,,. Now, the existence of a
filter predicate is determined based on one of the four disjoint cases shown in Table 3.1.

If the match is with Case 2 (resp. 3), we use a binary-search-based approach over (i, al
(resp. [a,imaz)), to identify the specific value of I (resp. r), where a is the value of column
A that is present in D'. After this search completes, the associated predicate is added to F.
Finally, Case 4 is a combination of Cases 2 and 3, and can therefore be handled in a similar
manner.

We can easily extend the integer approach to float data types with fized precision, by first
identifying the integral bounds with the above procedure and then executing a second binary
search to identify the fractional bounds. For example, with [; and r; as the integral bounds
identified in the first step, and assuming a precision of 2, we search [ in ((I; — 1).00,/;.00] and

r in [r;.00,7;.99) in the second step.

3.4.2 Date Columns

Extracting predicates on date columns is identical to that of integers, with the minimum and
maximum expressible dates in the database engine serving as the initial range, and days as
the difference unit. For example, after identifying filter of type A < r on o_orderdate, we
apply binary search strategy in range [1994-12-31°, r| (assuming ‘1994-12-31’ is the value
of o_orderdate in D') and r is the greatest allowed date value in the database engine (for
PostgreSQL, r = 5874897AD). Note that the same strategy can be applied to other datetime

type columns with the corresponding change in the resolution of values.
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3.4.3 Boolean Columns

With a single row, a boolean column can have only one of True or False values. Therefore, to

1

L . by replacing its value in D' with True

identify a filter on boolean column t.A, we create a D
(resp. False) if the current value in D' is False (resp. True) and get the result. If the result is

empty, add “A = False” (resp. “A = True”) to FE.

3.4.4 Textual Predicates

The extraction procedure for character columns is significantly more complex because (a) strings
can be of variable length, and (b) the filters may contain wildcard characters (‘_" and ‘%’). To
first check for the existence of a filter predicate, we create two different D! . instances by
replacing the value of A initially with an empty string and then with a single character string
—say “a”. JF is invoked on both these instances, and we conclude that a filter predicate is in
operation iff the result is empty in one or both cases. To prove the if part, it is easy to see
that if the result is empty in either of the cases, there must be some filter criteria on A. For
the only if part, the result will be populated for both cases in only one extreme scenario — A
like ‘%, which is equivalent to no filter on A.

Upon confirming the existence of a filter predicate on A, we extract the specific predicate
in two steps. Before getting into the details, we define a term called Minimal Qualifying String
(M@S). Given a character/string expression val, its MQS is the string obtained by removing
all occurrences of ‘%’ from wal. For example, “UP_” is the MQS for "% UP_%”. Note that
each character of MQS, with the exception of wildcard ’_’, must be present in the data string
to satisfy the filter predicate. With this notation, the first step is to identify M@S using the
actual value of A in D!, denoted as the representative string, or rep_str. The formal procedure
to identify M@S is detailed in Algorithm 2. The basic idea here is to loop through all the
characters of rep_str and determine whether it is present as an intrinsic character of the MQS
or invoked through the wildcards (‘2> or ‘%’). This distinction is achieved by replacing, in
turn, each character of rep_str in D' with some other character, executing F on this mutated
database, and checking whether the result is empty — if yes, the replaced character is part of
MQS; if no, this character was invoked through wildcards. In this case, further action is taken
to identify the correct wildcard character. Note that in case the character in rep_str occurs
more than once without any intrinsic character in between, and only one of them is part of

MQS, our procedure puts the rightmost character in MQS.
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Lemma 3.3: For a query in EQC, Algorithm 2 correctly identifies MQS for a filter predicate
on character attribute.

Proof: The correctness of the algorithm 2 can be established using contradiction for each
of the possible failed cases. For example, let us say a character ‘a’ belonged to M@S but the
procedure fails to identify it. This means that after removing ‘a’ from rep_str, the result is still
non-empty (the filter condition was satisfied). This is possible when ‘a’ occurs more than once
in rep_str and there is at least one occurrence which is part of the replacement for wildcard
‘%’. However, the procedure will keep removing ‘a’ until there is no occurrence left which is
part of replacement for wildcard ‘%’. After that, removing ‘a’ will lead the corresponding filter
predicate to fail. If this is not the case, ‘a’ is not present in the MQ)S, a contradiction. Similarly,

the correctness for other cases can be proved.
O

Algorithm 2: Identifying MQS
1 Input: Column A, rep_str, D!
2 itr=0; MQS =
3 while itr < len(rep_str) do
4 temp = rep_str
5 templitr] = ¢ where ¢ # rep_strlitr]
6 D! . <« D' with value temp in column A
7 | if F(D],.)= ¢ then
8 | MQS.append(rep_strlitr])
9 else
10 temp.remove_char_at(itr)
11 D! .« D' with value temp in column A
12 if ¥ (D} ,.) = ¢ then
13 ‘ M@ S.append(’); itr+
14 else
15 | rep_str.remove_char_at(itr)
16 end
17 end
18 end

After obtaining the MQS, we need to find the locations (if any) in the string where ‘%’ is
to be placed to get the actual filter value. This is achieved with the following simple linear

procedure: For each pair of consecutive characters in MQS, we insert a random character that
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is different from both these characters and replace the current value in column A with this new
string. A populated result for F on this mutated database instance indicates the existence of
‘%’ between the two characters. The inserted character is removed after each iteration and we
start with the initial MQS for each successive pair of consecutive characters. This makes sure
that we correctly identify the locations of ‘%’ without exceeding the character length limit for
A. In the specific case of ()3, the predicate value for c_mktsegment turns out to be the MQS
itself, namely ‘BUILDING".
Overall, for query 3, the following numeric and textual filter predicates are identified by
the above procedures:
Fr = { o_orderdate < date ‘1995-03-14" ,
I_shipdate > date ‘1995-03-16’ ,
c_mktsegment = ‘BUILDING’ }

3.5 Projections

The identification of projections is rendered tricky since they may appear in a variety of different
forms — native columns, renamed columns, aggregation functions on the columns, or UDFs with
column variables. To have a unified extraction procedure, we begin by treating each result
column as an (unknown) constrained scalar function of one or more database columns. We
explain here the procedure for identifying this function, assuming linear dependence on the
column variables and at most fwo columns featuring in the function — the extension to more
columns is discussed at last.

Let O denote the output column, and A, B the (unknown) database columns that may affect
O. Given our assumption of linearity, the function connecting A and B to O can be expressed

with the following equation structure:

aA+bB+cAB+d=0 (3.1)

where a, b, ¢, d are constant coefficients. With this framework, the extraction process proceeds,
as explained below, in two steps: (i) Dependency List Identification, which identifies the iden-

tities of A, B, and (ii) Function Identification, which identifies the values of a,b, ¢, d.

3.5.1 Dependency List Identification

In this step, for each On, the set of database columns which affect its value is discovered via

iterative column exploration and database mutation. Specifically, the value of each database
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column in Cg (the set of columns in Tx) is mutated in turn to see whether or not it affects the
value of O. However, a subtle point here is that even in the simplified two-variable scenario, a
single pass through all the database columns may not always be sufficient to obtain the complete
dependency list of O. To make it more concrete, if the value of column A in D! happen to be
’Tb, then the entry in column B has no impact on O, irrespective of its value. We say that A
is a blocking column and B is the blocked column for that database instance. Similarly, if the
value of column B in D! happen to be =%, then column A is blocked by column B. To address
such boundary conditions, we perform a second iteration in case the dependency list contains
less than two columns after first iteration. However, before the second iteration, the values in
all the database columns are changed to new values keeping filter predicates in consideration.
Now, if a column A was blocked before by another column B, it will no longer be blocked due
to the change in the value in column B, and hence - it will be identified in the second iteration.

Finally, as a special case, if the output column represents COUNT(*), its dependency list
will be empty.

For )3, the following dependency lists are obtained with the above procedure: [_orderkey:
[lLorderkey], o_orderdate: [l_orderkey], o_shippriority: [o_shippriority], and revenue: [l_extendedprice,

[_discount].

3.5.2 Function Identification

With reference to Equation 3.1, at this stage we are aware of the identities of A and/or B
for each of the output columns, and what remains is to obtain the coefficient values a, b, c, d.
Since we have a non-homogeneous equation in 4 unknowns, it can be easily solved by creating
4 different D} . instances such that the resultant equations are linearly independent. This
is achieved by randomly mutating the values of A and B, checking whether the new vector
[A, B, AB, 1] is linearly independent from the vectors generated so far, and stopping when four
such vectors have been found. With regard to Q3, the revenue output column depends on A
= l_extendedprice and B = l_discount. The sample four equations, corresponding to output

column revenue, generated in our experiments are as below:

la+2b+2.ct+d=—1 (3.2)
2a+1b+2.c+d=0 (3.3)
2.a+3b+6.c+d=—4 (3.4)
la+4b+4.c+d=-3 (3.5)
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Solving the above system results in coefficient values: a = 1,b = 0,¢c = —1,d = 0, producing
the function seen in Q3. For the remaining output columns, which are all dependent on only
a single database column, we get the function of the form a¢A + d with a = 1,d =0 —ie. a
native column.

Thus for query Q3, we obtain:

]3;; = {l.orderkey: 1 orderkey, o_orderdate: o_orderdate,
o_shippriority: _shippriority,
revenue: 1 _extendedprice * (1 - 1.discount) }.

The reason we show the above set as I?E, and not Pg, is that some of these projections are
subsequently refined as aggregations (Ag) in the Generation Pipeline — for instance, revenue
becomes a sum. We did not have to concern ourselves with these aggregation functions in the
current stage because our extraction techniques operated on single-row databases, in which
case all aggregation functions are identical with regard to their values.

A closing note regarding the scope of scalar UDFs currently covered in UNMASQUE: Firstly,
the above process can be generalized to m column variables in the function if we are able to
generate 2™ different D}, . instances. Secondly, we can handle the CASE switch statements
on categorical domains, such as those seen in TPCH Q12. Finally, ancillary functions such as

substring, casting, median, etc. can also be extracted.
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Chapter 4
Generation Pipeline

The GAOL part of the query, corresponding to the GROUP BY (Gg), AGGREGATION (Ag),
—

ORDER BY (Og) and LIMIT (Ig) clauses, is extracted in the Generation Pipeline segment of

UNMASQUE. Here, synthetically generated miniscule databases are used for all the extractions,

as described in the remainder of this chapter.

4.1 Group By Columns

For each column t.A in Cf (the set of columns in Tx), we generate a database instance D,
and analyze F (D) for the existence of .4 in G, the columns in the GROUP BY clause. How-
ever, we skip this check for columns with equality filter predicates (as determined in Mutation
Pipeline) since their presence or absence in GG makes no difference to the query output.
Assume for the moment that we have generated a Dy, such that the (invisible) intermediate
result produced by the SPJ part of Qp contains 3 rows satisfying the following condition: ¢.A
has a common value in exactly two rows, while all other columns have the same value in all
three rows. Now, if the final result contains 2 rows, it means that this grouping is only due
to the two different values in ¢t. A, making it part of Gg. This approach to intermediate result

generation is similar to the techniques presented in [8, 12].

Generating D,

We now explain how to produce the desired Dy, for checking the G membership of a generic
column ¢.A. In our description, assigning (p, ¢, 7, ...) to t.A means assigning value p in the first
row, q in the second row, r in the third and so on. The database generation is performed
differently for the following two disjoint cases related to the presence or absence of t.A in the

JG g, the query join graph identified in Mutation Pipeline:
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c_cust |... |_order | I_extended I_Ereder revenue °a‘:;i:r or_I:a':iliP
key key price y coreedenreeren i.P y
1 1 1.00 | 1990-03-12 !
995-03-13 ¢ 1
customer lineitem ]
i §1995:03-14 1 P
o_order | o_cust o_order o_ship Jl 5PJ intermediate result
key key date priority
|_order | revenue o_order o_ship
1 1 1995-03-13 1 key date priority
1 1 1995-03-13 | 1 2.00 1995-03-13 1
1 1 1995-03-14 ! 1 1.00 1995-03-14 1
orders R

Figure 4.1: D, for Grouping on o_orderdate (Q3)

(Case 1) t.A ¢ JGE In this case, 3 rows are generated for table ¢ and only one row in each
of the other tables in Tg. For column t.A, any two different values p and ¢ that satisfy all
associated filter predicates are assigned. If no filter exists, any two values from ¢.A’s domain
are taken (e.g. p =1 and ¢ = 2 for numeric). After that, we assign (p,p, q) to t.A.

For all other columns in ¢, such as t.X, a single value r that satisfies its associated filter
predicates (if any) is selected, and (r, r, ) is assigned to t.X. If there is no filter, any value from
its domain (e.g. r = 1 for numeric) is assigned. Finally, if ¢.X € JGg, a fixed value of r = 1 is
assigned (consistent with the assumption of integral keys). A similar assignment policy is used
for all columns belonging to the remaining tables in 1.

An example Dy, for checking the presence of o_orderdate in Gg is shown in Figure 4.1.
Here, the ORDERS table features 3 rows with p = ‘1995-03-13" and ¢ = ‘1995-03-14’, while the
remaining tables, LINEITEM and CUSTOMER, have a single row apiece. (We hasten to add that
these intermediate results are shown just for illustrative purposes, but remain invisible to the
UNMASQUE tool in its extraction process.)

(Case 2) t.A € JGg In this case, 3 rows are generated for table ¢, 2 rows are generated for
all tables ¢’ having a column ¢'.B such that there is a path between t.A and ¢'.B in JGg and
only one row in each of the other tables in 7. The assignment of values in the tables is similar
to Case 1 with the following modifications: (i) p and ¢ are assigned fixed values of 1 and 2, (ii)
Each columns #'.B having a path to t.A in JGg, is assigned fixed values (1, 2) and all other
columns of the corresponding table ¢’ are assigned values just like for ¢".X in Case 1, except
that the assignment is now duplicated across the two rows.

An example D, for checking the presence of |_orderkey in G is shown in Figure 4.2. Here,
there are 3 rows for LINEITEM, 2 rows for ORDERS and 1 row for CUSTOMER.

It is straightforward to see by inspection that, with our EQC restriction to key-based equi-
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ccust || [Torder | Lextendea |, Lorder | revenue | o_order | o_ship ...
key key price koY bl g0t priorty
1 1 1.00
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lineitem Jl SPJ intermediate result
o_order | o_cust o_order o_ship |... |_order | revenue o_order o_ship
key key date priority key date priority
1 1 1995-03-14 1 1 2.00 1995-03-14 1
2 1 1995-03-14 1 2 1.00 1995-03-14 1
orders R

Figure 4.2: D, for Grouping on |_orderkey (Q3)

joins, the above data generation procedure results in ensuring the desired conditions for the
intermediate SPJ result. Namely, that it will contain 3 rows with all columns having the same
value across these rows except for the attribute under test which has two values across these
rOWS.

It is possible that after all attributes have been processed in the above manner, G turns
out to be empty. In this case, we create a Dy, with each table having two rows, each column
in JGg assigned fixed values (1,2), and any two different values to all other columns while
satisfying all filter predicates. Then, J is run on this Dg,, and if the result contains just one
row, we can conclude that the query has an ungrouped aggregation.

Overall, the above procedure produces for Q3:

Gr = {l.orderkey, o_shippriority, o_orderdate}.

4.2 Aggregation Functions

We explain here the procedure for identifying aggregations (min(), maz(), count(), sum(),
avg()) — due to space limitations, we restrict our attention to numeric attributes. However,
similar methods can be used for textual/date attributes as well. Further, for ease of presenta-
tion, we assume that there is no DISTINCT aggregation — such specialized cases are handled at
last.

As described in 3.5, the Projections Extractor extracts each output column as a function
of the database columns in its dependency list. For each columns O in ﬁE, the aggregation
identification goes as follows: Let O = agg(f,(A1, ..., A,)) where agg corresponds to the aggre-
gation and f, corresponds to the function identified in Section 3.5. Now our goal is to generate
a database D, such that the final result cardinality is 1, and each of the five possible aggre-

gation functions on f, results in a unique value, thereby allowing for correct identification of
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the specific aggregation. We call this the “target result”.

Since we want to be able to distinguish between min() and maz(), we need at least two
different values in the input database columns. Further, to ensure unique values for the various
aggregations in the final output, we do the following: Consider a pair of input arguments
(a1, .., a4, ..,a,) and (ay, .., a;, .., a,) such that f,(aq,..,a;,..,a,) = o1 and fo(ay, ..,al, .., a,) = o0g,
with 01 # 0, 01 # 0y. Note that the two arguments differ only in a; and a. Now assume we
have generated a database D, such that there are k + 1 rows in the (invisible) intermediate
result produced by the SPJ part of the query with value f, = o; in k rows and f, = 0y in the

remaining row. Further, that k satisfies the following constraint:

. {0,01 o1, 01 —02’ 1 —027 (00 —2) £ \/(01 —2)2 —4(1 —02)} (4.1)
01 op —1 2

These constraints on £ have been derived by computing pairwise equivalences of the five aggre-

gation functions, and forbidding all the k values that result in any equality across functions.

Now, additionally if we ensure that the Gg attributes are assigned common values in all the

rows, the result of F will be the target result.

The reason that the target result is produced is (i) the result cardinality is 1 since there
is a common set of values for the G attributes, and (ii) the constraints on k ensure unique
aggregated output of all the aggregations for O. (As a special case, if f, is a constant function
or a function of only the columns in Gg, we are forced to have a; = a; and hence, 0; = 0y = c.
Here, the k constraint reduces to k& ¢ {0,c — 1} and since multiple aggregations on f, will be

equivalent (e.g. min(), maz(), avg()), any can be taken as the final choice.

Generating D,

Firstly, we choose the i argument A; to be a column that is not in Gg. If choosing such A;
is not possible, then as mentioned above, a; = a; and any argument column can be chosen as
A;. After that, the data generation process to obtain the above intermediate result for output
column O = agg(fo(A1,...,A,)) is similar to the Dy, generation of GROUP BY (explained in

section 4.1), with the following changes:

e k+ 1 rows are generated for table ¢ where A; € t, with t.A; assigned value a; in k rows

and value a in the remaining row.

e With respect to Case 2 (t.4; € JGg) in section 4.1, the assignments of fixed values 1,2

are replaced with values a;, a;.
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Figure 4.3: D,., for Aggregation on revenue UDF (Q3)

We can either use any two of the arguments that were used to identify dependency list for
fo in Section 3.5 as (ay, .., a;, .., a,) and (as, .., a;, .., a,) since they are known assignments that
satisfy the required conditions, or generate a new set of arguments. Further, the least positive
integer satisfying Equation 4.1 is chosen as k. A sample D, to check for aggregation on
|_extendedprice * (1 - |_discount) is shown in Figure 4.3. Here we set (l_extendedprice, |_discount)
as < (3,0),(4,0) > and k =1 is feasible.

After getting Dgyc,,, we run F and the aggregation is identified by matching the result column
value (corresponding to O) with the corresponding unique values for the five aggregations. The
identified aggregation along with the mapping to the corresponding result column is added to
Ag.

At last, entries corresponding to all the aggregated columns are removed from 13]/3 and
inserted in Ag. Further, if there remains an unmapped output column in fA’;, it is removed and
count(x) is added to Ag. Whatever remains in Py now constitutes the native (i.c. unaggregated)
Pg.

With the above procedure, we finally obtain for Q3:

Ap = {revenue:sum(l_extendedprice x (1 — l_discount))}
Pr = {l_orderkey:l orderkey, o_orderdate:o_orderdate,
o_shippriority:o_shippriority}

Extension to DISTINCT keyword

In case the aggregation can be present with DISTINCT keyword as well, the following cases

may happen as a result of identifying aggregation (without distinct) using above method:

Casel - min() or max() aggregation is identified: In such a case, no action is required

as min() or max() produces exactly same result with/without unique.
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Case2 - No aggregation is identified: In such a case, the aggregation on f, is one
of sum(DISTINCT f,), avg(DISTINCT f,) or count(DISTINCT f,). To identify the correct
aggregation, we generate the D, such that f, having values (01,02) such that o; # 0, and

(01 + 02) & {2,4} to get value for all three aggregated results unique.

Case3 - Aggregation other than min() or max() is identified: In such a case, the pos-
sible actual aggregations on f, are sum(DISTINCT f,), avg(DISTINCT f,), count(DISTINCT
fo) or the one identified without distinct. In such a case, we generate databases to prune out
this list one by one. For example, let us say that sum (f,) is the identified projection. To
prune out one of sum(f,) and sum(DISTINCT f,), we generate a D, instance with k = 2 and
01 # 0. Similarly, other candidates can be pruned out as well. Note that in case of equivalent

aggregations, anyone can be chosen.

Extension to non-Numeric Columns

In case of non-numeric column A, we need to find existence of min() or max() only. In such a
case, we take k = 1 and take two different values a and b from the domain of A such that the
corresponding output column function returns two different values. The rest of the procedure

remains same.

4.3 Order By

We now move on to identifying the sequence of columns present in O—;; A basic difficulty here
is that the result of a query can be in a particular order either due to: (i) explicit ORDER BY
clause in the query or (ii) a particular plan choice (e.g. Index-based access or Sort-Merge join).
Given our black-box environment, it is fundamentally infeasible to differentiate the two cases.
However, even if there are extraneous orderings arising from the plan, the query semantics will
not be altered, and so we allow them to remain.

Here, we expect that each database column occurs in the dependency list of at most one
output column. Further, for simplicity, we assume that count() ¢ Ar and that no aggregated
output column is a constant function — the procedure to handle these special cases is described

at last.

Order Extraction

We start with a candidate list comprised of the output columns in Pg U Ag. From this list, the
—
columns in O are extracted sequentially, starting from the leftmost index. The process stops

when either (i) all candidates have been included, or (ii) all functionally-independent attributes
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Figure 4.4: D2 and D2, for Ordering on revenue (Q3)
of Gg have been included in Og, or (iii) no sort order can be identified for the current index
position.

To check for the existence of an output column O, we create a pair of 2-row database

instances — D2 and D? . In the former, the sort-order of O is the same as that of all the

same rev’
other output columns, whereas in the latter, the sort-order of O alone is reversed with respect
to the other output columns. An example instance of this database pair is shown for the revenue
UDF in Figure 4.4.

We use the following procedure to create D? -

same*

Firstly, we divide the output columns into
three sets. S, which represents the output columns that are already present in O_E> (initially,
S1 = ¢). Sz, which is a singleton set containing the output column that is currently being
analyzed. S5 is the set of all remaining output columns. Let f, denote the function identified
in Section 3.5 for output column O. For each O € S;, we select a single value for the argument
columns which feature in f,. For each O € Sy U S5, we select a pair of argument columns such
that both the pair return different values for the output column. All these values are generated
keeping the filter and join restrictions in consideration. The data generation for all the tables is

as follows: (i) Each column that features in S; is assigned the single identified value in both the
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rows. (ii) Each column that features in Sy and S; is assigned the pair of identified values in the
two rows so that each output column is sorted in the same order. (iv) For all other columns,
two values r and s are assigned such that » < s and both r and s satisfy the associated filter
predicate (if any). The key attributes which are connected, get same r and s values. Further,

in case of equality filter predicate, we take r = s.

2

The procedure for creating D7,

is the same as above except that the attributes correspond-
2

same’

ing to the output column in S5 are assigned values in the reverse order to that in D
Database construction in the above manner ensures both the rows form individual groups,
so aggregated columns can be effectively treated as projections (except for count(), which re-

quires a different mechanism, explained at last). After generating D2, _ and D? , we run F

same rev?
for both the instances and analyze the results. If the values in O are sorted in the same order
—
for both the results, O along with its associated order, is added to Og at position ¢, and the

sets S1, 55 and Ss are recalculated for the next iteration.

Lemma 4.1: With the above procedure, if O is not the rightful column at position ¢ in O_E>,
and another column O’ is actually the correct choice, then the values in O will not be sorted
in the same order in the two results.

Proof: Firstly, as each column in the existing identified O_;; is assigned the same value in
both the rows, they have no effect on the ordering induced by other attributes. Now, let us

_%
say that the next attribute in Og is O (asc) but UNMASQUE extracts O. Now in the result
2

same’

2
rev)’

corresponding to D the values in O will also be sorted in ascending order. But in the result

corresponding to DZ, , the values in O will be sorted in descending order (due to ascending
order on O'), a contradiction. O
With the above procedure, we finally obtain for Q3:

—»
Op = {revenue desc, o_orderdate asc}

Extensionl: count(*) € Ag

In the case when count(*) € Ag, the two rows in each of the tables is not enough as the count()
value for both the groups will be one. In such case, we need an intermediate result (on which
grouping will be applied) with 3 rows such that two rows form one group and the third row
forms another group. Also, the values in the rows should be according to the order desired after

grouping of the intermediate result. So the data generation process is as follows:

2

Tev?

To generate data for D7, , we first choose a table ¢t with at least one attribute in group by
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Figure 4.5: D2, and D?,, for Ordering on count(*) (Hypothetical scenario:Q3)
clause that can take two different values and is not present as an argument to any column in
S1. For each output column function f, € S;, we take argument value (ay,..,a,) and assign
same values in both the rows to corresponding columns in the table. For each output column
function f, ¢ S1, we take two different argument values (as,..,a,) and (by,..b,) and assign
values to corresponding columns in the table. In case the column is a key column we take
fixed values 1 and 2. For all the other columns of other tables ¢, we generate two rows with
each attribute having two different values (p and ¢) such that p < ¢. In case of key attributes,
take p = landq = 2. In other cases, take p and ¢ satisfying the corresponding filter predicates
(if any). Note that in the above procedure, if we encounter an attribute with equality filter

predicate, we take p = ¢ = val where val satisfies the corresponding filter predicate.

2 . . . 2
< me 1s similar as for D;_,

Data generation for D with the only change being the values of p
and ¢ are now swapped. The further procedure of running F and analyzing the results is the
same as explained in order extraction part of the section. A sample D?  and D?  database

instance for a hypothetical scenario where revenue is replaced by count(*) is shown in Figure 4.5.

28



Lastly, in case count(DISTINCT t.A) € A, the data generation process is the similar with
the change that A is assigned values (p, ¢, p) in both the cases.

Extension2: t.A: (“t.A=wval” € Fg A (agg_func(t.A) € Ag)

In case there is min(), maz() or avg() aggregation on A, the attribute can be treated as natively
projected attribute because each group in the output will have exactly the same value for A.
Now, if sum(t.A) € Ag, the data generation process is same as in Extension 1. Also note that,

the aggregation case with DISTINC'T keyword is equivalent to non-aggregated projection.

A closing note on the potential for spurious columns appearing in Gg due to plan-induced
ordering: Since D? = and D?, are extremely small in size, it is unlikely that the database
engine will choose a plan with sort-based operators — for instance, it would be reasonable to
expect a sequential scan rather than index access, and nested-loops join rather than sort-merge.

In our experiments, we explicitly verified that this was indeed the case.

4.4 Limit

If the query is an SPJA query, there is no need to extract [ since there can be only one row
in any populated result. But in the general SPJGAOL case, the only way to extract lg is to
generate a database instance such that F produces more than [ rows in the result R, subject
to a maximum limit imposed by the GROUP BY clause.

The number of different values a column can legitimately take is a function of multi-
ple parameters — data type, filter predicates, database engine, hardware platform, etc. Let
ni, Mg, N3, .. be the number of different values, after applying domain and filter restrictions,
that the functionally-independent attributes A;, As, As,.. in G can respectively take. This
means that there can be a maximum of ny * ny * ng * ... = [F*" groups in the result. Thus, lg
values up to [3** can be extracted with this approach.

To extract |y, UNMASQUE iteratively generates database instances such that the result-
cardinality follows a geometric progression starting with a rows and having common ratio
r(>1). We set a = max (4, cardinality of R) to be consistent with our extraction requirement
for Gg which required a permissible result cardinality of upto 3 rows. And r can be set to a
convenient value that provides a good tradeoff between the number of iterations (which will be
high with small r) and the setup cost of each iteration (which will be high with large r). In
our experiments, r = 10 was used. This appears reasonable given that the [g value is typically
a small number in most applications — for instance, in TPC-H, the maximum is 100, and in

general, we do not expect the value to be more than a few hundreds at most.
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Generating D, for desired R cardinality

To get m rows in the result prior to the limit kicking in, we generate a database instance
with each table having n rows such that the functionally-independent attributes in Gg have a
unique permutation of values in each row. Specifically, all the attributes appearing in JG g are
assigned values (1,2,3,...,n) and the other attributes are assigned any value satisfying their
filter predicates (if any). If the result of applying F on this database contains m rows with
m < n, then we can conclude that LIMIT is in operation and equal to m. With the above

procedure, we finally obtain [ = 10 for Q3.
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Chapter 5
Experimental Evaluation

Having described the functioning of the UNMASQUE tool, we now move on to empirically
evaluating its efficacy and its efficiency. All the experiments were hosted on a well-provisioned*
PostgreSQL 11 [20] database platform.

5.1 Hidden SQL Queries

Our first set of experiments was conducted on a representative suite of hidden SPJGAOL queries
based on different template queries of the TPC-H benchmark, with the primary change being the
removal of nesting; and are similar in complexity to the Q3 running example. For convenience,
we hereafter refer to them as )z, where x is their associated TPC-H query identifier. The exact
queries are listed in Appendix A. Each query was passed through a Cpp program that embedded
the query in a separate executable. These executables formed the input to UNMASQUE;,
which has been implemented in Python, and were invoked on the TPC-H database, assuring
a populated result. UNMASQUE’s ability to non-invasively extract these queries was assessed
on a 100 GB version of the TPC-H benchmark, and to profile its scaling capacity, also on a 1
TB environment.

we have also run UNMASQUE on (i) the TPC-DS [26] benchmark with PostgreSQL, and
(ii) the TPC-H benchmark with SQL Shield encrypted queries on Microsoft SQL Server [19].

The performance results were of a similar nature.

5.1.1 Correctness

We compared the Qg output by UNMASQUE on the above Qg suite with the original queries.

Specifically, we verified, both manually and empirically with the automated Checker component

Tntel Xeon 2.3 GHz CPU, 32GB RAM, 3TB Disk, Ubuntu Linux
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Figure 5.1: Hidden Query Extraction Time (TPC-H 100 GB)

of the pipeline, that the extracted queries were semantically identical to their hidden sources.

5.1.2 Efficiency

The total end-to-end time taken to extract each of the twelve queries on the 100 GB TPC-H
database instance is shown in the bar-chart of Figure 5.1. In addition, the breakup of the
primary pipeline contributors to the total time is also shown in the figure.

We first observe that the extraction times are practical for offline analysis environments,
with all extractions being completed within 40 minutes. Secondly, there is a wide variation in
the extraction times, ranging from 4 minutes (e.g. 2) to almost 40 minutes (e.g. @5). The
reason is the presence or absence of the lineitem table in the query — this table is enormous in
size (around 0.6 billion rows), occupying about 80% of the database footprint, and therefore
inherently incurring heavy processing costs.

Drilling down into the performance profile, we find that the MINIMIZER module of the
pipeline (blue color), take up the lion’s share of the extraction time, the remaining modules
(red color) collectively completing within a few seconds. For instance, for @5 which consumed
around 37.2 minutes overall, the MINIMIZER expended around 37 minutes, and only a paltry 12
seconds was taken by all other modules combined.

The extreme skew is because these two modules operate on the original large database,
whereas, as described in Chapters 3 and 4, the remaining modules work on miniscule mutations
or synthetic constructions that contain just a handful of rows. Interestingly, although the
executable F was invoked a few hundred times during the operation of these modules, the

execution times in these invocations was negligible due to the tiny database sizes.
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5.1.3 Optimization

We now go on to show how MINIMIZATION — could be substantially improved with regard to its
efficiency.

Instead of executing MINIMIZER on the entire original database, sampling methods that are
natively available in most database systems could be leveraged as a pre-processor to quickly
reduce the initial size. Specifically, we iteratively sample the large-sized tables, one-by-one in
decreasing size order, until a populated result is obtained. The sampling is done using the
following SQL construct:

select * from table where random() < 0.SZ ;
which creates a random sample that is SZ percent relative to the original table size. An
interesting optimization problem arises here — if SZ is set too low, the sampling may require
several failed iterations before producing a populated result. On the other hand, if SZ is set
too large, unnecessary overheads are incurred even if the sampling is successful on the first
attempt.

Currently, we have found a heuristic setting of Sample Size = 2% in terms of number of
rows to consistently achieve both fast convergence (within two iterations) and low overheads.
In our future work, we intend to theoretically investigate the optimal tuning of the sample size
parameter.

The revised total execution times after incorporating the above two optimizations, are shown
in Figure 5.2, along with the module-wise breakups. We see here that all the queries are now
successfully identified in less than 10 minutes, substantially lower as compared to Figure 5.1.
Further, the FROM clause takes virtually no time, as expected, and is therefore included in the
Other Modules category (green color). And in the MINIMIZER, the preprocessing effort spent on
sampling (maroon color) takes the majority of the time, but greatly speeds up the subsequent
recursive partitioning (pink color).

An alternative testimonial to UNMASQUE’s efficiency is obtained when we compare the
total extraction times with their corresponding query response times. For all the queries in
our workload, this ratio was less than 1.5. As a case in point, a single execution of (25 on the
100GB database took around 6.7 minutes, shown by the red dashed line in Figure 5.2, while
the extraction time was just under 10 minutes.

Finally, as an aside, it may be surmised that popular database subsetting tools, such as
Jailer [15] or Condenser [24], could be invoked instead of the above sampling-based approach
to constructively achieve a populated result. However, this is not really the case due to the

following reasons: Firstly, these tools do not scale well to large databases — for instance, Jailer
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Figure 5.2: Optimized Hidden Query Extraction Time (TPC-H 100 GB)

did not even complete on our 100 GB TPC-H database! Secondly, although they guarantee
referential integrity, they cannot guarantee that the subset will adhere to the filter predicates
— due to the hidden nature of the query. So, even with these tools, a trial-and-error approach

would have to be implemented to obtain a populated result.

5.1.4 Scaling Profile
To explicitly assess the ability of UNMASQUE to scale to larger databases, we also conducted

the same set of extraction experiments on a 1 TB instance of the TPC-H database. The results
of these experiments, which included all optimizations, are shown in Figure 5.3. We see here
that all extractions were completed in less than 25 minutes each, demonstrating that the growth
of overheads is sub-linear in the database size. In fact, a single query execution of ()5 on this

database took around 72 minutes, almost 3 times the query extraction time.

5.1.5 TPC-DS Results for 100 GB

The bar-chart in Figure 5.4 shows the time taken to extract 7 queries sourced from TPC-DS
benchmark (along with there identifier numbers) on a 100 GB database version. The exact
queries are listed in Appendix A. We can see that all the queries were extracted within 4
minutes. It may surprise at first that the time taken in this case is lesser than the time for
TPC-H queries and also, the variation amongst queries is very less. The reason is that the
table sizes in TPC-DS are not that skewed as in TPC-H. So, no table in TPC-DS is as huge as
lineitem table of TPC-H.
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Command Application Extracted SQL Complexity Time
get admin comments Enki Project, Join, OrderBy, Limit 1.2 sec
get admin pages Enki Project, OrderBy, Limit 1 sec
get admin pages id Enki Select, Project, Limit 1 sec
get admin posts Enki Project, Join, GroupBy, OrderBy, Limit 2.5 sec
get admin posts id Enki Select, Project, Limit 1 sec
get admin comments id Enki Select, Project, Limit 1 sec
get admin undo items Enki Project, Order by, Limit .5 sec
get latest posts Enki Select, Project, Join, Filter, GroupBy, Order By, Limit 1.5 sec
get user posts Enki Select, Project, Join, Filter, Group By, Order By, Limit 2.5 sec
get latest posts by tag Enki Select, Project, Join, Filter, GroupBy, OrderBy, Limit 2.5 sec
get article for id Blog Select, Project, join 1 sec

Table 5.1: Imperative to SQL Translation
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def find_recent(options = {})

Select min(posts.title), min(posts.body), max(posts.published_at),
count(*), min(tags.name)

From posts, comments, taggings, tags

in-'{clude_tags = options[:include] == :tags
order = 'published_at DESC'
conditions = ['published_at < ?', Time.zone.now]

limit = options[:limit] [|= DEFAULT_LIMIT Where posts.id = comments.post_id and taggings.tag_id = tags.id
result = Post.tagged_with(tag) - and posts.id = taggings.taggable_id and taggings.taggable_type =
result = result_where(Eonditions) 'Post' and (posts.publishedfal < cur_timestamp)

result = result.includes(:tags) if include_tags group by comments.post_id

order by max(posts.published_at) desc limit 15;

(a) Imperative Function Code (snippet) (b) Extracted Query (cur_timestamp is a constant)

Figure 5.5: Imperative to SQL Translation

5.2 Hidden Imperative Code

Our second set of experiments evaluated applications hosting imperative code. Here we con-
sidered the popular Enki [16] and Blog [21] blogging application, both built with Ruby on
Rails, each of which has a variety of commands that enable bloggers to navigate pages, posts
and comments. The Enki and Blog servers receive HT'TP requests, interact with the database
accordingly, and respond the client with an HTML page that contains the data retrieved. Enki
uses a total of eight database tables and Blog uses two database tables. We created a synthetic
database of 10 MB size which gives non-empty result for each of these commands. Along with
UNMASQUE, we used Selenium [18] to send an HTTP request and receive the results in HTML
page from which the database results are automatically extracted.

Since native data is not publicly available, we created a synthetic 10MB database that
provided populated results for all these commands. We found that for Enki, 14 out of 17 and
for blog 2 out of 2 commands were extracted (except insert, update, etc.). Table 5.1 shows the
SQL queries extracted w.r.t. the commands. We have omitted five commands as those were
simple table scans. The queries corresponding to remaining three commands did not belong
to EQC and only SPJ part was extracted correctly for them. We manually verified that all
the commands in table 5.1 were extracted correctly. As a sample instance, consider the “get
latest posts by tag” command, a snippet of which is outlined in Figure 5.5a. The corresponding
UNMASQUE output is shown in Figure 5.5b, and was produced in just 2.5 seconds.
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Chapter 6

Extensions

6.1 Extension to non-integral Key attributes

There are various applications (e.g. Wilos [27]) which use non-integral keys as identifier in
the database tables. We assume that the domain of each key attribute contains at least two

different values. To handle non-integral keys, the following changes are required:

In Mutation Pipeline, only the join predicate extraction module require changes. In this
module, instead of negating the values of the columns in C; (refer Section 3.3), we choose two
different fixed values (say p and ¢) from the domain of the key attribute and assign p to the

columns in C; and ¢ to the columns in Cs.

For every module in Generation Pipeline, we again take two different fixed values (say p
and ¢) from the domain of the key attribute. Then, all the assignments that use fixed value 1
are replaced with value p and all the the assignments that use fixed value 2 are replaced with

value q.

6.2 Queries with Having Clause

Thus far, we had deliberately set aside discussion of the HAVING clause. The reason is that this
clause is especially difficult to extract, stemming from its close similarity to filter predicates in
the WHERE clause — this difficulty has led to it not being considered in the prior QRE literature
as well. The good news is that we have been able to devise an extraction technique under a few

assumptions, the primary one being that the attribute sets in Fiz and Hp are disjoint' However,

I'This assumption holds for all the queries of the TPC-DS benchmark.
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incorporating this approach entails a significant reworking of the UNMASQUE pipeline, as well
as modified algorithms for some of the modules. Specifically, the extraction of filter predicates is
now delayed to after the GROUPBY module, and the implementations of the FILTERPREDICATE
and GROUPBY modules are altered. In addition to the assumptions in Chapter 2, the SPJGA

queries with having clause should satisfy the following conditions.

1. The attributes involved in filter predicate in the Having clause and outside Having clause

are disjoint.
2. Each attribute has at most one aggregation in the Having clause predicates.

3. The values in the Having clause predicates do not exceed the bounds of corresponding

data type.

Note: Here, the operation on only integral attributes are discussed. However, the queries
with textual attributes (and LIKE operator) can also be handled in a similar manner as defined

in previous chapters.

6.2.1 From Clause Detection

From Clause detection is performed in the same way as described in section 3.1.

6.2.2 Database Sampling

If the initial database instance is huge, the sampling (as defined in Chapter 5) is applied to
reduce its size. Note that, the whole database is not copied, but a new table is created with

the sampled rows. Also “not null” constraints are not added in the new table.

6.2.3 Join Graph Detection

Join graph detection is performed in the same way as described in section 3.3. Knowledge of
join graph helps reducing the database instance more efficiently. As we can not go with the

binary partition argument here, using key relations helps in faster database reduction.

6.2.4 Database Minimization

Given a database instance D and an executable F producing a populated result on D, derive a
reduced database instance D,,;, from D such that removing any row of any table in Tg results
in an empty result. We call such database, a minimal database for the query.

With this definition of D,,;,, we can prove the following observations:
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Lemma 6.1: For the EQC, the output of SPJ part of the query for the minimal D,,;, con-
stitutes a single group (as per grouping attributes of the query) and the final output contains

only a single row. n

The minimization is done in the following manner: Let ¢ be a table in the From clause (the
set Tg) of the query. Initially, for each attribute in ¢, the frequency of each value is calculated.
Let fa; denotes the maximum value of frequency with value j in attribute A. In each iteration,
the rows corresponding to f4 ; are preserved, removing all other rows. If a non-empty output is
produced, the preserved rows form the new table content on which frequency values are recalcu-
lated and the same procedure is repeated. If an empty output is produced, the same procedure
is applied with the value having the next maximum frequency. This procedure is repeated until
no further reductions are possible in ¢. Once ¢ is reduced, all the tables connected to it in the

join graph are reduced to contain only those rows which satisfy the join condition.

The above procedure is applied to each table in the set T repeatedly until the database
can not be reduced further. The idea behind the step of preserving a particular value of the
attribute is as following: if A is a group by attribute, it will contain a single value in the reduced
database instance. Further, we first select the value with the maximum frequency as a heuristic

because it selects a relatively large number of rows at a time.

Note that if the query belongs to EQC~H, the final database will be a one row database.
However, we may get a one row database even if the query belongs to EQC. For now, we

assume that the reduced database is not a one row database. We discuss the other case in
Section 6.2.10.

6.2.5 Group By Attributes

It is clear by D,,;, construction that any attribute with two or more different values can not
be a part of group by clause as it would have created two different groups in the output. So,
in order to get the attributes involved in the group by clause, we check for each attribute in
the D,,;, which have a single value in all the rows. For each such attribute A with value valy,
we insert each of the current row in the table again with A value being val, where vals # val;.
However, valy, may not satisfy the unknown filter on A, If any. For this, we do this two times,
one with val, = val; +1 and one with valy = val; — 1. Two output rows in any of the two cases
indicate A to be present in the group by clause. A similar argument can be used for textual

attributes as well.
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6.2.6 Having Clause and Filters

First we identify possible filter on each group by column using a similar technique as per in

section 3.4. After that, the filters on non-grouping attributes are identified.

For a SPJGA query, filter predicate a < A < b can be re-written in terms of a having clause
condition as a < min(A) and max(A) < b. The procedure below identifies filter predicate
in terms of having clause conditions. Thus hereonwards, a filter on A refers to a filter in the
form of val; < agg_func(A) < wvaly. To detect the having clause condition on an attribute, we
change its values in the table, such that only one row of the output group is affected at a time.
However, if a foreign key of the table maps to a key of another table in the join graph and
values in the foreign key attribute are not unique, one change in the table will affect multiple
places in the output group. So we transform the tables in a way such that all key values in
all the tables are unique and there is one-to-one relationship between the tables. This can be
done by traversing the join graph and duplicating rows in the table with new key identifiers.
For example, let T1[(1, “a”,2), (2, “b”,2)] be a table with two rows and T5[(2, “c”)] be a table
with a single row where last attribute of 77 refers to the first attribute of 75. Then these tales
are transformed as T1[(1, “a”,1), (2, “b”,2)] and T3[(1, “¢”), (2, “c””)]. Note that both the joins

(before and after transformation) produce same output except the key attribute contents.

Let [i1,19] be the integer range. Let (ay,as,...,a,) be the values in attribute A in non-
decreasing order. WLOG, let us assume a; is the value in attribute A in the i"* row. For a
filter predicate val; < A < waly, Let us call A > wal; as the left filter on A and A < walsy as
the right filter on A. We first define the term rowno and val. Starting from 1 to n, if we keep
decreasing the value of a; to i1, rowno denotes the first row, in which the values in A can not be
decreased to i; without losing the output. Also, rowno = none if values in all the rows can be
decreased to ¢;. Further, if rowno # none, val denotes the minimum value in row rowno which

can be present without losing the output. The following algorithm is used to get rowno and val.
Now, the following two cases arise:
Case 1: rowno = none. In this case, there is no left filter condition on A. The reason is
that, we were able to reduce value in every row to minimum possible value without loosing the

output.

Case 2: rowno # none. If rowno # 1 and rowno # n, there is a having clause predicate
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Algorithm 3: Getting rowno and val for left filter

1 rowno = none,val = none

2 for ¢ in range 1 ton do

3 val < the minimum value in [i1, a;] which gives non-empty result.
4 if val = 7; then

5 Replace a; with ¢; in the database

6 val = none continue

7

8

9

end
Replace a; with val in the database
rowno =1

10 break

11 end

on A with either sum() > valy or avg() > wval;. The reason is that, if there were a condition
min(A) > waly, the value of rowno should have been 1. Similarly, if here were a condition
max(A) > wvaly, the value of rowno should have been n. Now, if rowno = 1, the aggrega-
tions in the filter predicate may be sum(), avg() or min(). To differentiate amongsts these,
we decrease the value in the first row by 1 and increase the value in any other row by 1. This
makes sure that the sum(A) and avg(A) does not change while changing min(A). If we get
an output, the filter is either sum() > val; or avg() > valy otherwise it is min(A) > val;. A
similar method can be used to differentiate amongst sum(), avg() or maz() when rowno = n.

The corresponding filter value val; will be the val obtained from the algorithm.

To find the right filter on A, a similar approach can be used with a new definition of rowno
and val. Starting from n to 1, if we keep increasing the value of a; to 72, rowno denotes the
first row, in which the values in A can not be increased to i without losing the output. Also,
rowno = none if values in all the rows can be increased to i5. Further, if rowno # none, val
denotes the maximum value in row rowno which can be present without losing the output. The
following algorithm is applied to get the rowno and val.

After getting rowno and wval, right filter can be found in a similar way using the following

two cases:
Case 1: rowno = none. In this case, there is no right filter condition on A.

Case 2: rowno # none. If rowno # 1 and rowno # n, there is a having clause predicate

on A with either sum() < valy or avg() < wvaly. Now, if rowno = n, the aggregations in the
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Algorithm 4: Getting rowno and val for right filter
1 rowno = none,val = none
2 for ¢ in range n to 1 do
3 val < the maximum value in [a;, i3] which gives non-empty result.
4 if val = 75 then
5 Replace a; with iy in the database
6 val = none
7 continue
8 end
9 Replace a; with val in the database
10 rowno =1
11 break
12 end

filter predicate may be sum(), avg() or max(). To differentiate amongsts these, we increase the
value in the n'® row by 1 and decrease the value in any other row by 1. This makes sure that
the sum(A) and avg(A) doesn’t change while changing max(A). If we get an output, the filter
is either sum() < wvaly or avg() < wvaly otherwise it is max(A) < valy. A similar method can
be used to differentiate amongsts sum(), avg() or min() when rowno = 1. The corresponding

filter value valy will be the val obtained from the algorithm.

Note that we have not yet differentiated between the filters on sum() and filters on avg().
Here we make use of the leverage to have null values in our database. Let the current average of
the values in column A be a. To differentiate between the two for an attribute A, we insert a row
in the table such that the column A is assigned value 0 (if operator is >) or it is assigned value
a (if operator is <) group by attributes get the same value, the other attributes with sum() or
avg() filter are assigned null in the new row and all other attributes get any value satisfying the
filter predicate. This construction ensures that the output state is directly dependent on the
changes made in attribute A. Based on the output on this new database, we can differentiate
between sum(A) and avg(A). Further if the average is a floating point number, we can refine

it using binary search assuming fixed precision.

6.2.7 Having condition with count()

After identifying all other filters, the filter with count() can be done in a manner analogous to

finding limit in section 4.4.
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6.2.8 Projection Clause

The projections are identified in a manner analogous to the method defined in Section 3.5.
However, while calculating the function, all the rows of the columns in dependency list are
assigned same value and final coefficients are divided by number of rows produced after the join
and filters.

6.2.9 Other Clauses

If there is no filter with count(x) in the having clause, we can create a single row database
satisfying all the filters. Hence, procedures similar to the ones described for queries in EQC
can be used. In case of presence of a filter of the form “count(x) op k”, we add an additional

constraint of number of rows for each of the other modules.

6.2.10 One Row database for SPJGHA[OL] query

While database minimization, we may get a one row database for a SPJGA query with Having
clause as well. However, to detect Having clause properly, we need database such that the
intermediate output of SPJ part contains at least two rows. In such a case, we first detect the
group by clause as mentioned in Section 6.2.5. After that, in each table, we insert the existing
row again with a different key value. If we get a two row output, we can conclude the query
is an SPJ query. If we get a single row output, we now have a single group database with
more than one row in the intermediate SPJ output. However, we may get an empty output as
well. Consider an attribute A containing a value 6 in the database currently. There is a Having
clause condition on A defined as sum(A) < 10. In such a case, replicating the value will make
sum(A) = 12 and hence we will not get any output. As there is no way of knowing beforehand,
which attribute caused output to be non-empty, we place null value in a subset of attributes

starting from size 1 subsets until we get a non-empty output.

6.2.11 UDF’s in Projection

In the absence on a Having clause filter of type val; < sum() < vals, the techniques defined in
section 3.5 can be used to detect UDF in the having clause by placing a single unique value in
every row of each column. However, in the presence of such filter, we may not be able to do so
as we may not have much choice for arbitrary unique values in the column. In such a case, we

may get an under-determined system of equations and any solution can be treated as the UDF.
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6.3 Discussion on Other Operators

A natural question to ask at this point is whether it appears feasible to extend the scope of our
extraction process to a broader range of common SQL constructs — for instance, outer-joins,
disjunctions and nested queries. As mentioned previously, none of these constructs are handled
by the current set of QRE tools. However, based on some preliminary investigation, it appears
that outer-joins and disjunctions could eventually be extracted under some restrictions — for
instance, the IN operator can be handled if it is known that the database includes all constants
that appear in the clause. Nested queries, however, pose a formidable challenge that perhaps
requires novel technology. In this context, an interesting possibility is the potential use of

machine-learning techniques for complex extractions.
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Chapter 7

Theoretical Results

In this chapter, we prove that for arbitrary queries, Hidden Query Extraction is an undecidable

problem. We use the following problem to prove the undecidability of HQE.

Semantic Equivalence of queries(SE): Given two arbitrary queries @ and @2, deter-

mine if (); and ()5 are semantically equivalent.

Semantic equvalence of two arbitrary SQL queries is a well known undecidable problem [1].
Further, we say that SE(Q,Q2) = true if ()1 and (), are semantically equivalent, and false
otherwise. Before moving on to the main theorem of this chapter, we first state and prove the

following lemma.

Lemma 7.1: Let )1, Q)2 be two arbitrary queries. For any query Q,

(SE(Q1,Q2) = true) = (SE(Q ~ Q) U(Q1 Q). (Q ~ Q2) U (Q2 — Q)) = true)

Proof: If Part: Let SE(Q;,Q2) = true, then for any database instance D, Q1(D) =
Q2(D) = R. Further let Q(D) = R'. Then,

(@ =) U (@1 —Q)(D) =(QD) = Qi(D)) U (Q:(D) = QD)) = (R = R) U(R - R)

and
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(@ = @2) U(Q2 = Q))(D) = (Q(D) — Q2(D)) U (Q2(D) = Q(D)) = (R = R)U (R — R)
Hence, SE((Q — Q1) U (Q1 — Q),(Q — Q2) U (Qs — Q) = true.
Only If Part: Let SE(Q,Q2) = false. It means that there exists a database instance
D such that Q1(D) # Qa(D). WLOG, Let t be a tuple that is present in Q;(D) but not in
Q2(D). Now there are two possible cases:
(Case 1) t € Q(D): In this case
(teQID)At e (D) = t ¢ ((Q(D) - QD)) U(Qi(D) - Q(D)))

and

(t € QID)AtE Q(D), = t € (Q(D) — Q2(D)) U(Q2(D) - Q(D)))
Hence, SE((Q — Q1) U (@1 — @), (Q — Q2) U(Q2 — Q)) = false.

(Case 2) t ¢ Q(D): In this case

(tE QD) At e Qi(D)) = t € ((QD) = Qi(D)) U(Q:(D) = Q(D)))

and

(t ¢ QD) At ¢ Qu(D)) = ¢ ((Q(D) — Qa(D)) U(Qa(D) — Q(D)))
Hence, SE((Q — Q1) U (Q1 — Q). (Q — Q) U (Q2 — Q) = false. 0

Now, we prove that the Hidden Query extraction problem is undecidable in general.
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Theorem: For an arbitrary hidden query (denoted as black-box function F'), Hidden Query
Extraction (HQE) problem is Undecidable.

Proof: Suppose that HQE is decidable. Then, there exists a deterministic algorithm A
such that for any database instance D and a function F' with F(D) # ¢, A(F, D) produces
a Qo which is semantically equivalent to unknown hidden query in F'. Further, let us say
Fy = H(Q,) and F;, = H(Q2) where H is some function (or a wrapper) which simply hides the

query. To continue our proof, we state and prove the following two lemmas first.

Lemma 7.2: (), and ()5 are semantically equivalent if f F| = F3.

Proof: F) and F5 can be seen as relations which relate the set of database instances to
a set of result instances. If F} and F, represent the exact same relation, ()1 and Qo will be
semantically equivalent otherwise there would exist at least one D, which is mapped to different

results in F} and F5. Similarly, the other direction can be proved. a

Lemma 7.3: For any Fy, Fy and D, (Fy = Fy) = (A(F1,D) = A(F2, D)). Also,
(A(F1, D) = A(F3, D)) = (F1 = F).

Proof: The first statement holds because A is deterministic algorithm. The second state-
ment can be proved by contradiction. Let us say that A(F}, D) = A(Fy, D)) = Q but F1 # Fs.
Now, ) will be semantically equivalent to the query in F} and F, both while F} # F3, a con-

tradiction for Lemma 7.1. O

Let @1, Q2 be two arbitrary queries. We prove that if HQE is decidable, there exists
a deterministic algorithm for SE(Q, Q) for arbitrary queries ); and Q3. WLOG, let
us say that @); and )y are compatible in set difference (‘—’) and set union (‘U’) operations.
If this is not the case, we can say that )1 and ()2 are not equivalent. Further, let ) be any
simple project join query which is compatible with ¢); and ()5 for ‘=’ and ‘U’ operations. Note
that such query @ can be generated easily after observing the result column data types of ()
or (2. Also, let D be a database instance such that Q(D) # ¢. Note that, although finding
such D is a hard problem in general, it can be easily done in case of a project join query. We

define two black-box functions as follows:

Fi=H((Q—-Q)U(Q1—-Q))

and
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F=H((Q—-Q2) U (Q2—-Q))

WLOG, let us say that D gives same non-empty result on F; and F,. Note that if this is not
the case, then by Lemma 7.1, ()1 and () are not semantically equivalent. Further, if D gives
empty result in both cases, it means that D gives a non-empty result on (); and ()5. In such a

case, we take F; = (1 and F5 = Q7 and keep the D as it is. Now that we have I}, F5 and D,
using Lemma 7.2 and Lemma 7.3, we can say that

(A(F1, D) = A(Fy, D)) = (F1=F) = SE(Q1,Qo)

Thus, presence of a deterministic algorithm for HQE shows the presence of a deterministic
algorithm for SE. As SFE is known to be undecidable, so is HQE.

O
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Chapter 8

Conclusion and Future Work

We introduced and investigated the problem of Hidden Query Extraction as a novel version of
QRE, which has a variety of real-world use-cases. As the first step toward solving this problem,
we presented the UNMASQUE algorithm, which is based on a combination of database mutation
and database generation pipelines. An attractive feature of UNMASQUE is that it is completely
non-invasive, facilitating its deployment in a platform-independent manner.

UNMASQUE is capable of identifying a large class of hidden SPJGHAOL queries, similar
to those present in the decision-support benchmarks. Potent optimizations related to database
minimization and order detection were incorporated to reduce the overheads of the extraction
process. Specifically, for the most part, the extraction pipeline works on miniscule databases
designed to contain only a handful of rows. The effects of these optimizations were visible
in our experimental results which demonstrated that query extraction could be completed in
times comparable with normal query response times in spite of a large number of executable
invocations.

In our current work, we are attempting to extend the scope of EQC to include the Having
clause in a more general sense. Also, a mathematical analysis to help choose the appropriate SZ
setting for sampling. For the long-term, the extraction of nested queries and outer joins poses a
formidable challenge. More fundamentally, characterizing the extractive power of non-invasive

techniques is an open theoretical problem.
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Appendix A

A.1 Experiment Queries 1 (Based on corresponding TPC-
H queries)
Q1

Select |_returnflag, |_linestatus, sum(l_quantity) as sum_qty, sum(|_extendedprice) as sum_base_price,
sum(l_extendedprice * (1 - |_discount)) as sum_disc_price, sum(l_extendedprice * (1 - |_discount) * (1 +
|_tax)) as sum_charge, avg(l_quantity) as avg_qty, avg(l_extendedprice) as avg_price, avg(l_discount) as
avg_disc, count(*) as count_order

From lineitem

Where |_shipdate < date ‘1998-12-01" - interval ‘71 days’

Group By |_returnflag, | _linestatus

Order by |_returnflag, I_linestatus;

Qo

Select s_acctbal, s_.name, n_name, p_partkey, p_mfgr, s_address, s_phone, s_.comment

From part, supplier, partsupp, nation, region

Where p_partkey = ps_partkey and s_suppkey = ps_suppkey and p_size = 38 and p_type like ‘%TIN’
and s_nationkey = n_nationkey and n_regionkey = r_regionkey and r_name = ‘MIDDLE EAST’
Order by s_acctbal desc, n_name, s_name, p_partkey

Limit 100;

Qs

Select |_orderkey, sum(l_extendedprice * (1 - |_discount)) as revenue, o_orderdate, o_shippriority

From customer, orders, lineitem
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Where c_mktsegment = ‘BUILDING’ and c_custkey = o_custkey and |_orderkey = o_orderkey and
o_orderdate < date ‘1995-03-15" and I_shipdate > date ‘1995-03-15'

Group By |_orderkey, o_orderdate, o_shippriority

Order by revenue desc, o_orderdate

Limit 10;

Q4

Selecto_orderdate, o_orderpriority, count(*) as order_count

From orders

Where o_orderdate > date '1997-07-01" and o_orderdate < date ‘1997-07-01" + interval ‘3" month
Group By |_orderkey, o_orderdate, o_orderpriority

Order by o_orderpriority

Limit 10;

Qs

Select n_name, sum(l_extendedprice * (1 - |_discount)) as revenue

From customer, orders, lineitem, supplier, nation, region

Where c_custkey = o_custkey and |_orderkey = o_orderkey and |_suppkey = s_suppkey and c_nationkey
= s_nationkey and s_nationkey = n_nationkey and n_regionkey = r_regionkey and r_name = ‘MIDDLE
EAST' and o_orderdate > date ‘1994-01-01" and o_orderdate < date ‘1994-01-01" + interval ‘1" year
Group By n_name

Order by revenue desc

Limit 100;

Qs

Select |_shipmode, sum(l_extendedprice * |_discount) as revenue

From lineitem

Where |_shipdate > date '1994-01-01" and | _shipdate < date ‘1994-01-01" + interval ‘1" year and
|_quantity < 24

Group By |_shipmode

Limit 100;

Q1o
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Select c_name,, sum(l_extendedprice * (1 - |_discount)) as revenue, c_acctbal, n_name, c_address,
c_phone, c_.comment

From customer, orders, lineitem, nation

Where c_custkey = o_custkey and |_orderkey = o_orderkey and o_orderdate > date ‘1994-01-01' and
o_orderdate < date ‘1994-01-01" + interval ‘3’ month and |_returnflag = ‘R’ and c_nationkey =
n_nationkey

Group By c_name, c_acctbal, c_phone, n_name, c_address, c_.comment

Order by revenue desc

Limit 20;

Qnu

Select ps_ COMMENT, sum(ps_supplycost * ps_availqgty) as value

From partsupp, supplier, nation

Where ps_suppkey = s_suppkey and s_nationkey = n_nationkey and n_name = ‘ARGENTINA’
Group By ps. COMMENT

Order by value desc

Limit 100;

Q16

Select p_brand, p_type, p_size, count(ps_suppkey) as supplier_cnt

From partsupp, part

Where p_partkey = ps_partkey and p_brand = ‘Brand#45" and p_type Like ‘'SMALL PLATED%' and
p_size > 4

Group By p_brand, p_type, p_size

Order by supplier_cnt desc, p_brand, p_type, p_size;

Q17
Select AVG(l_extendedprice) as avgTOTAL

From lineitem, part
Where p_partkey = |_partkey and p_brand = ‘Brand#52" and p_container = 'LG CAN’;

Q18

Select c_name, o_orderdate, o_totalprice, sum(l_quantity)

From customer, orders, lineitem
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Where c_phone Like ‘27- %' and c_custkey = o_custkey and o_orderkey = |_orderkey
Group By c_name, o_orderdate, o_totalprice

Order by o_orderdate, o_totalprice desc

Limit 100;

Q21

Select s_name, count(*) as numwait

From supplier, lineitem |1, orders, nation

Where s_suppkey = 1.1 suppkey and o_orderkey = I1.|_orderkey and o_orderstatus = ‘F' and s_nationkey
= n_nationkey and n_name = ‘GERMANY"’

Group By s_name

Order by numwait desc, s_name

Limit 100;

A.2 Experiment Queries 2 (Based on corresponding TPC-

DS queries)
Q3

Select dt.d_year ,item.i_brand_id as brand_id ,item.i_brand as brand ,sum(ss_sales_price) as sum_agg
From date_dim dt ,store_sales ,item

Where dt.d_date_sk = store_sales.ss_sold_date_sk and store_sales.ss_item_sk = item.i_item_sk and
item.i_manufact_id = 816 and dt.d_moy=11

Group By dt.d_year ,item.i_brand ,item.i_brand_id

Order by dt.d_year ,sum_agg desc ,brand_id

Limit 100 ;

Q37

Select i_item_id ,i_item_desc ,i_current_price

From item, inventory, date_dim, catalog_sales

Where i_current_price between 45 and 45 + 30 and inv_item_sk = i_item_sk and d_date_sk=inv_date_sk
and d_date between date '1999-02-21" and date '1999-04-23" and i_manufact_id between 707 and 1000
and inv_quantity_on_hand between 100 and 500 and cs_item_sk = i_item_sk

Group By i_item_id,i_item_desc,i_current_price
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Order by i_item_id
Limit 100 ;

Qa2

Select dt.d_year ,item.i_category_id ,item.i_category ,sum(ss_ext_sales_price)

From date_dim dt ,store_sales ,item

Where dt.d_date_sk = store_sales.ss_sold_date_sk and store_sales.ss_item_sk = item.i_item_sk and
item.i_manager_id = 1 and dt.d_moy=11 and dt.d_year=2002

Group By dt.d_year ,item.i_category_id ,item.i_category

Order by sum(ss_ext_sales_price) desc,dt.d_year ,item.i_category_id ,item.i_category

Limit 100 ;

Q52

Select dt.d_year ,item.i_brand_id as brand_id ,item.i_brand as brand ,sum(ss_ext_sales_price) as ext_price
From date_dim dt ,store_sales ,item

Where dt.d_date_sk = store_sales.ss_sold_date_sk and store_sales.ss_item_sk = item.i_item_sk and
item.i_manager_id = 1 and dt.d_moy=12 and dt.d_year=2002

Group By dt.d_year ,item.i_brand ,item.i_brand_id

Order by dt.d_year ,ext_price desc ,brand_id

Limit 100 ;

Q55

Select item.i_brand_id as brand_id ,item.i_brand as brand

,sum(ss_ext_sales_price) as ext_price

From date_dim dt ,store_sales ,item

Where dt.d_date_sk = store_sales.ss_sold_date_sk and store_sales.ss_item_sk = item.i_item_sk and
item.i_manager_id = 1 and dt.d_moy=12 and dt.d_year=2002

Group By dt.d_year ,item.i_brand ,item.i_brand_id

Order by ,ext_price desc ,brand._id

Limit 100 ;

Qs2

Select i_item_id ,i_item_desc ,i_current_price
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From item, inventory, date_dim, store_sales

Where i_current_price between 45 and 45 + 30 and inv_item_sk = i_item_sk and d_date_sk=inv_date_sk
and d_date between date '1999-07-09' and date '1999-09-09' and i_manufact_id between 169 and 639
and inv_quantity_on_hand between 100 and 500 and ss_item_sk = i_item_sk

Group By i_item_id,i_item_desc,i_current_price
Order by i_item_id
Limit 100 ;

Qo6

Select count(*)

From store_sales ,household_demographics ,time_dim, store

Where ss_sold_time_sk = time_dim.t_time_sk and ss_hdemo_sk = household_demographics.hd_demo_sk
and ss_store_sk = s_store_sk and time_dim.t_hour = 8 and time_dim.t_minute > 30 and
household_demographics.hd_dep_count = 3 and store.s_store_name = ’'ese’

Order by count(*)

Limit 100;

57



	Acknowledgements
	Abstract
	Publications based on this Thesis
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 UNMASQUE Algorithm
	1.2 Extraction Workflow
	1.3 Extraction Efficiency
	1.4 Performance Evaluation
	1.5 Organization

	2 Problem Framework
	2.1 Extractable Query Class
	2.2 Overview of the Extraction Approach

	3 Mutation Pipeline
	3.1 From Clause
	3.2 Database Minimization
	3.3 Join Predicates
	3.4 Filter Predicates
	3.4.1 Numeric Predicates
	3.4.2 Date Columns
	3.4.3 Boolean Columns
	3.4.4 Textual Predicates

	3.5 Projections
	3.5.1 Dependency List Identification
	3.5.2 Function Identification


	4 Generation Pipeline
	4.1 Group By Columns
	4.2 Aggregation Functions
	4.3 Order By
	4.4 Limit

	5 Experimental Evaluation
	5.1 Hidden SQL Queries
	5.1.1 Correctness
	5.1.2 Efficiency
	5.1.3 Optimization
	5.1.4 Scaling Profile
	5.1.5 TPC-DS Results for 100 GB

	5.2 Hidden Imperative Code

	6 Extensions
	6.1 Extension to non-integral Key attributes
	6.2 Queries with Having Clause
	6.2.1 From Clause Detection
	6.2.2 Database Sampling
	6.2.3 Join Graph Detection
	6.2.4 Database Minimization
	6.2.5 Group By Attributes
	6.2.6 Having Clause and Filters
	6.2.7 Having condition with count()
	6.2.8 Projection Clause
	6.2.9 Other Clauses
	6.2.10 One Row database for SPJGHA[OL] query
	6.2.11 UDF's in Projection

	6.3 Discussion on Other Operators 

	7 Theoretical Results
	8 Conclusion and Future Work
	Bibliography
	Appendix A 
	A.1 Experiment Queries 1 (Based on corresponding TPC-H queries)
	A.2 Experiment Queries 2 (Based on corresponding TPC-DS queries)


