
Cost Model for Heterogeneous Architectures

A PROJECT REPORT

SUBMITTED IN PARTIAL FULFILMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

Master of Technology

IN

Faculty of Engineering

BY

Mistry Kathan Bhargavkumar

Computer Science and Automation

Indian Institute of Science

Bangalore – 560 012 (INDIA)

June, 2025

Declaration of Originality

I, Mistry Kathan Bhargavkumar, with SR No. 04-04-00-10-51-23-1-22804 hereby

declare that the material presented in the thesis title

Cost Model for Heterogeneous Architectures

represents original work carried out by me in the Department of Computer Science and

Automation at Indian Institute of Science during the years 2024-25.

With my signature, I certify that:

• I have not manipulated any of the data or results.

• I have not committed any plagiarism of intellectual property. I have clearly indicated and

referenced the contributions of others.

• I have explicitly acknowledged all collaborative research and discussions.

• I have understood that any false claim will result in severe disciplinary action.

• I have understood that the work may be screened for any form of academic misconduct.

Date: 21/06/2025 Student Signature

In my capacity as supervisor of the above-mentioned work, I certify that the above statements

are true to the best of my knowledge, and I have carried out due diligence to ensure the

originality of the report.

Advisor Name: Prof.Jayant R. Haritsa Advisor Signature

1

© Mistry Kathan Bhargavkumar

June, 2025

All rights reserved

DEDICATED TO

My family and to all the elevators,

for always lifting me up

Acknowledgements

I would like to express my deepest gratitude to Prof. Jayant R. Haritsa, my advisor at

the Database Systems Laboratory, Indian Institute of Science, Bengaluru, for his insightful

guidance, constant encouragement, and unwavering support throughout the course of this work.

I am also profoundly thankful to Dr. Harish Doraiswamy of Microsoft Research for his

valuable feedback, constructive suggestions, and the many enriching discussions that helped

shape the direction of this thesis.

My heartfelt thanks go to my lab mates and friends—Himanshu Devrani, Suprit Chafle,

Alaap Surendran, Bhavya Choudhary, Shweta Shukla, Dhruvin Chaudhari, Dev

Gandhi, and Sakshi Sindhwal—for their camaraderie, constant motivation, and the countless

brainstorming sessions that made this journey both productive and enjoyable.

I am grateful to the DuckDB Discord community for generously answering my questions

and helping me overcome technical hurdles, and to Kuntal Ghosh for sharing his invaluable

knowledge of PostgreSQL.

i

Abstract

Join and GroupBy operations are among the most computationally intensive processes in

database query execution, often serving as critical performance bottlenecks in data-intensive

applications. Leveraging the massive parallelism inherent in hardware accelerators such as FP-

GAs, GPUs, and TPUs presents a promising avenue to accelerate these operations. Although

existing research has explored various Join and GroupBy operations on these architectures, no

database engine to date integrates both CPU-based and accelerator-based operators in a hybrid

fashion to maximize performance. In this study, we introduce GPU-based implementations of

Join and GroupBy operators designed which deliver efficient performance. We propose a cost

model designed for resource-limited environments that reliably estimates the execution time of

these operations. A major contribution is the integration of GPU-based Join and GroupBy

operators into DuckDB, a leading vectorized database system. By enabling these operators,

our work demonstrates the practical viability of GPU acceleration within DuckDB.

ii

Contents

Acknowledgements i

Abstract ii

Contents iii

List of Figures v

1 Introduction 1

2 Background 4

2.1 Cost-model . 4

2.2 DuckDB . 5

2.3 In-memory Join and GroupBy on GPUs . 6

2.4 Existing join and groupby algorthms . 6

3 Experimental setup 8

3.1 Hardware . 8

3.2 Workload Description . 8

4 GroupBy 9

4.1 GPU Group By overview . 9

4.2 Extending DDB . 11

4.2.1 Implementating New GroupBy Operator 11

4.3 Cost-model . 15

4.3.1 Model Fitting Methodology . 15

4.3.2 Symbol legend . 17

4.3.3 Cost equation . 17

iii

CONTENTS

4.4 Group by cost model is good fit . 20

4.4.1 Checking for Overfitting . 20

4.4.2 All stages predictions . 21

4.4.3 All train and test queries prediction . 22

5 Join 24

5.1 GPU-Join Algorithm . 24

5.2 Extending the DDB . 27

5.2.1 Implementating New Join Operator . 27

5.3 Cost Model . 31

5.3.1 Input symbol legend . 32

5.3.2 Cost equation . 32

5.4 Join cost model is a good fit . 35

5.4.1 All stages prediction . 35

5.4.2 All train and test queries . 35

6 Conclusion and future work 38

Bibliography 40

iv

List of Figures

1.1 Query Profiling on CPU . 2

1.2 Overview of the system . 3

4.1 Working of GPU-Groupby . 10

4.2 CPUvGPU . 11

4.3 Example query plan of DDB . 12

4.4 Physical GPU GROUP BY implementation . 14

4.5 DDB’s Physical Hash AGGREGATE vs GPU GroupBy 15

4.6 Learning curve and residual plot for insert kernel cost model 21

4.7 All stages predictions vs real time . 22

4.8 All test and training data split . 23

5.1 Working of GPU-join . 25

5.2 GPU vs CPU: Execution Time Comparison . 26

5.3 Example query plan of DDB . 28

5.4 Physical GPU JOIN implementation . 30

5.5 DDB’s Physical Hash Join vs GPU Join . 31

5.6 All stages predictions vs real time . 35

5.7 All train and test queries GPU Join . 36

v

Chapter 1

Introduction

Join and GroupBy operations are crucial and often among the most time-intensive tasks in

database systems. To better understand the performance characteristics, we conducted CPU

profiling in DuckDB[24, 27] on five random queries from the TPC-H and TPC-DS benchmark

suites [2, 3]. For TPC-H, we profiled Q4, Q9, Q13, Q18, and Q21, while for TPC-DS, we

profiled Q18, Q35, Q40, Q82, and Q98. The reported times for each operator represent the

total wall-clock time spent completing its work, including actual computation, I/O operations,

and any waiting for resources or thread synchronization. In addition, each operator’s reported

time is the sum of all occurrences of that operator within the query. This reflects the real-world

execution time of the operator in query processing. We conducted experiments for scale factor

100.

As shown in Figure 1.1, the Join and GroupBy operators constitute a significant portion of

the overall execution time in database queries(Each bar contains thin white lines that separate

the individual Join and GroupBy operations.). For these standard queries with the default

parameters from the TPC-H and TPC-DS benchmark suites, analyzing the query plans shows

that the optimizer frequently selects hash joins as one of its preferred algorithms, underscoring

their importance.

1

Figure 1.1: Query Profiling on CPU

Efforts to optimize the hash Join and GroupBy operators have led to the exploration of ad-

vanced hardware platforms, including FPGAs, GPUs, and TPUs, as alternatives to traditional

CPU-based execution. Modern multicore architectures have demonstrated superior perfor-

mance for hash Join and GroupBy operations compared to traditional CPUs [10, 8, 30, 17].

However, current research predominantly focuses on executing these operations entirely

on specialized hardware, to achieve better performance. However, for some workloads the

overhead of transferring data to the device can outweigh the gains from accelerated execution,

so performing the hash join on the CPU remains the more efficient option. On the other hand,

for smaller tables, CPU-based nested loop Joins often outperform hash Joins, while sort-merge

Joins can be more efficient on CPUs when the data is pre-sorted or can be sorted effectively

[5]. The same trade-offs apply to GroupBys.

Despite these advancements, existing solutions lack a hybrid execution strategy that lever-

2

ages the strengths of different architectures to achieve potentially better performance across a

wide range of workloads.

In this work, recognising that query planners depend on accurate cost estimates, we design

a dedicated model for GPU-accelerated Join and GroupBy. Incorporating this model allows

the engine to choose the fastest execution path for a given workload and hardware profile, as

illustrated in Figure 1.2.

Figure 1.2: Overview of the system

3

Chapter 2

Background

2.1 Cost-model

In a relational database engine, a cost model is the component of the query optimizer that

estimates the “cost” of executing a given query plan. Formally, it is a function that maps a

proposed execution plan (and the current database state) to a numerical cost value representing

the expected resource usage [20]. In these systems, the optimizer generates many logically

equivalent plans for a SQL query, uses the cost model to estimate the cost of each plan, and

then chooses the plan with the lowest cost. Importantly, cardinality estimates—the number of

tuples(rows) an operator processes—are a crucial input to cost models.

Existing work on cost modelling can be grouped into two streams [15, 13]: (a) analytic

models with parameter tuning and (b) black-box ML models.

The former focuses on adjusting the cost parameters within the predefined cost functions

of the existing models. In contrast, the latter involves training ML models on a set of executed

query plans to predict the execution time for new queries. While the whitebox tuning approach

achieves only limited accuracy and does not question the fundamental assumptions of the cost

functions, the black-box ML models are data-intensive, lack explainability, and may perform

poorly on queries that differ significantly from those in the training set.

Because no published analytic model exists for GPU operators—especially for Joins and

GroupBys—there is nothing to retune. We therefore design a new analytic model whose terms

capture GPU-specific effects (PCIe transfers, kernel launches, hash-table operations, etc.) and

then fit its coefficients from measurements of representative workloads.

As highlighted by Lan et al., errors in cardinality estimation—the estimated number of

tuples produced by an operator—can propagate through the cost model and amplify into devi-

ations of many orders of magnitude, often yielding severely sub-optimal execution plans [21].

4

In our work, we therefore assume perfect cardinality information (that is, every intermediate

and final cardinality is known exactly) so as to isolate and evaluate the intrinsic accuracy and

robustness of our cost model without conflating it with cardinality-induced variance.

2.2 DuckDB

DuckDB(DDB) is an in-process analytical database management system (often described as

“SQLite for analytics”). Internally, DDB is designed for OLAP (online analytical processing)

workloads, using a columnar storage format and a vectorized execution engine to efficiently

handle large scans and complex queries.

One of DDB’s core design features is its execution engine, which processes data in chunks

(vectors) rather than one row at a time. Instead of the classical “tuple-at-a-time” Volcano

model[14], DDB operates on batches of values (Typically 2048 values in a vector) for each

operation. Query operators produce and consume entire vectors/chunks rather than individual

rows.

DuckDB employs a push-based(data-flow) execution engine: operators consume input

vectors, process them, and immediately push the produced chunks downstream, all the way

to the pipeline’s sink. Unlike a Volcano-style pull model—where the root repeatedly calls

‘GetChunk()‘ on its children—each DuckDB operator drives its successors proactively, enabling

tight, cache-friendly pipelines and minimizing function-call overhead.

It supports SOTA CPU implementations of GroupBy and Joins[30, 27]. DDB’s extensible

and modular architecture makes it ideal for integrating custom operators, such as our GPU

operators, allowing seamless integration into its execution pipeline. Additionally, DDB’s ability

to handle SQL queries with minimal setup ensures a user-friendly interface for testing and

benchmarking our operators.

Each column chunk in DDB appears as a compact UnifiedVectorFormat(UVF) triple: data

(pointer to values), validity (NULL bitmap), and a SelectionVector ⟨s0, s1, . . . ⟩ that maps

logical row i to data[si]. We keep the pointer even for dense chunks (si = i) so every operator

sees the same branch-free “pointer + offset” interface across plain, dictionary, or run-length

storage.

A one-off ToUnifiedFormat() call performs any decoding before the critical inner loop—the

tight per-tuple loop in joins and aggregations—so a NULL check degenerates to validity.RowIsValid(s)

and avoids branchy if(null)... code.

Output is zero-copy: create a new SelectionVector and call vector.Slice(sel,count),

an O(1) pointer swap that re-wraps the same buffer (i.e., re-wrapping here means building a

new view over the identical data, with no copying). During hash-join build/probe we then

5

materialise only the selected, non-NULL keys into contiguous host arrays—already ideal for a

single bulk transfer if GPU support is added later.

Thus, UVF + SelectionVector is our uniform abstraction for every “gather” (key ex-

traction) and “scatter” (chunk emission) step, removing encoding differences, minimising data

movement, and keeping the critical loops branch-less and cache-friendly.

Strings are encoded using UTF-8 encoding[31] in DDB.

2.3 In-memory Join and GroupBy on GPUs

In this work, we assume that all inputs and outputs fit entirely within GPU memory. The

GroupBy operator processes a single relation

R(k1, k2, . . . , a1, . . . , am),

where k1, k2, . . . are the grouping key(s) (each of type INT64 or VARCHAR), and a1, . . . , am are

the payload (non-key) columns.

For the Join, we focus on the most common inner equi -join— specifically, the many-to-many

case where duplicate keys may appear on either side. It takes two input relations

R(k, a1, . . .) and S(k, b1, . . .),

matches tuples on the single join key k (either INT64 or VARCHAR), and produces the output

relation

O(k, a1, . . . , b1, . . .).

Here R.k and S.k are the join keys, and a1, . . . , b1, . . . denote the payload (non-key) attributes

carried into the result.

2.4 Existing join and groupby algorthms

Several GPU-based algorithms have been developed for executing Joins and GroupBy aggrega-

tions efficiently. For Join operations, notable methods include Garuda’s graphics-driven query

execution approach[8] and the hardware-conscious hash join algorithm[9]. For GroupBy opera-

tions, existing solutions include the grahics driven method, and the Efficient GPU-Accelerated

GroupBy Aggregation algorithm[11] published recently.

However, due to practical constraints, we could not directly utilize these existing implemen-

tations. Specifically, permission to use the Garuda implementation was not obtained, and the

hardware-conscious hash Join algorithm contains known unresolved bugs that would require sig-

6

nificant debugging time. Consequently, we developed our own algorithms for Join and GroupBy

operations tailored specifically for this research. While these algorithms may not represent the

absolute state-of-the-art, they are effective, functional, and reliably meet the requirements of

our cost modeling experiments.

7

Chapter 3

Experimental setup

3.1 Hardware

We ran all experiments on a workstation powered by a 12th Gen Intel Core® i9-12900K proces-

sor (x86-64, 24 threads) and 125 GiB of RAM. We used an NVIDIA GeForce RTX 4090 GPU

with 24 GiB of dedicated memory. All code was compiled using CUDA 12.5 and GCC 11.4.0.

To ensure consistent performance measurements, we cleared the system cache before each test

and restarted DDB prior to every query execution.

3.2 Workload Description

We evaluated performance on TPC-H[23](skewed versions with zipf= 0.1, 0.5 and 1.0 to under-

stand perfornace with the skewness of data) and TPC-DS benchmarks using scale factors of 1,

10, 50, and 100. We were not able to scale more than this because our system was not able

to generate the data because of high data movements. We also use a data generator, which is

used in several studies[9] to benchmark performace.

Each benchmark was run multiple times, and reported runtimes correspond to the average

execution time across iterations.

All the testing and training queries are available here:[19]. Queries feature keys of varying

types—both integer and string (CHAR/VARCHAR)—and every aggregate payload column is a 64-

bit integer (INT64). The workload combines keys with low, medium, and very-high cardinality

alongside diverse aggregate functions (COUNT(*), SUM, MIN, MAX, AVG).

1We refer to NVIDIA hardware and terminology in this work.

8

Chapter 4

GroupBy

4.1 GPU Group By overview

To start with, we developed a hash GroupBy operator specifically for this research.

Design overview. Our GroupBy forwards 64-bit integer keys unchanged, but encodes each

VARCHAR key as a 64-bit FNV-1a hash—a fast, non-cryptographic function with a low collision

rate[12]—while maintaining a hash→ string table for later decoding. The stand-alone imple-

mentation then runs a three-kernel pipeline that keeps all intermediate state resident on the

GPU:

1. Row-hash prepass (kernel row hash). A single thread per input row constructs a 64-bit

composite hash by Murmur-mixing every key column,

h ← mix
(
h⊕ k0

)
. . . mix

(
h⊕ kK−1

)
,

where mix(·) is the 64-bit MurmurHash3 finalizer [28]. MurmurHash3 was selected for its

speed and efficiency in generating uniformly distributed hash values, which is crucial for

reducing collisions. Hashes are row hash buffer for perfectly coalesced reads in the next

phase.

2. Lock-free build & aggregation (kernel insert). Each thread linearly probes a power-

of-two table of capacity C=2 ⌈2N⌉2 until it can claim a bucket:

2.a. Reservation. atomicCAS(&ht keys[0][pos], HT EMPTY, HT BUSY) swaps an HT EMPTY

sentinel for HT BUSY, guaranteeing that exactly one thread performs the first write.

9

2.b. Commit. The winning thread fills the remaining key columns, executes threadfence(),

and publishes the real key with atomicExch, flipping the bucket from busy to full.

2.c. Collision resolution. Non-owners compare every key column in registers; mismatches

advance the probe pos← (pos+ 1) mod C.

Once the bucket is known, the thread updates the requested aggregates in place: atomicAdd

for COUNT/SUM and typed atomicMin/atomicMax for extrema. No host intervention or

coarse locks are required, so thousands of inserts progress fully in parallel.

Figure 4.1: Working of GPU-Groupby

3. Parallel compaction (kernel compact). A final sweep assigns dense output positions us-

ing a single atomicAdd(d size,1), copies occupied buckets into column-major result arrays,

and leaves |groups| = d size in device memory. The host performs exactly two bulk DMA

transfers (table → dense, dense → host), independent of the number of groups.

Overall, we implement our GROUP BY operator as illustrated in Figure 4.1.

10

Figure 4.2: CPUvGPU

To evaluate our GPU GroupBy performance, we implemented a comparable single-core

CPU hash GroupBy using std::unordered multimap. This approach avoids the FNV-based

VARCHAR→64-bit conversion used in our GPU code—relying instead on direct hashing of

strings—thereby reducing per-row overhead on the CPU.

Figure 4.2 compares the total execution time (i.e., the end-to-end time from query submis-

sion to receiving the final result) of six queries from our GroupBy query suites on CPU and

GPU implementations.

We approximately get 2x speed up for every benchmark.

4.2 Extending DDB

4.2.1 Implementating New GroupBy Operator

We began by exploring the codebase of the DDB database engine. To integrate our GPU

GroupBy operator, we defined a new physical operator named Physical GPU GROUPBY and an

associated logical operator named GPU GROUP BY. To ensure that DDB chooses our operator

during execution, we initially modified the plan aggregate.cpp file to hardcode the selection

of Physical GPU GROUPBY.

11

As an example, consider the following simple database schema and query:

Figure 4.3: Example query plan of DDB

TABLE users (user_id BIGINT, enrollment_number BIGINT);

SELECT user_id AS key, COUNT(*) AS cnt

FROM users

GROUP BY user_id;

For this query, DDB generates a physical query plan, which is depicted in Figure 4.3.

DDB does not natively support files with a .cu extension, which are required for CUDA

programming. To enable support for .cu files, we made several modifications to the CMake

configuration files in the DDB codebase. These changes allow the integration of GPU-specific

components within the existing DDB framework.

The PhysicalGPUGROUPBY class extends the PhysicalOperator class in DDB. This class

implements key methods to manage the GroupBy operation, as detailed below:

• Sink

– Appends every incoming DataChunk to a host-side “build buffer”.

12

• Finalize

– Host preparation

∗ Flattens all key and value vectors.

∗ Encodes each VARCHAR key to a 64-bit FNV-1a hash, while keeping a hash→ string

map for later recovery.

∗ Collects INT64 payload columns (one per aggregate that is not COUNT(*)).

– Host→Device transfer

∗ Allocates device buffers for row keys, payloads, and an auxiliary pointer array

for each.

∗ Copies the flattened host columns into these device buffers.

– Key hashing on the GPU

∗ Launches kernel hash keys to compute a composite 64-bit Murmur-style hash

for every row (supports up to 16 key columns).

– Hash-table build & aggregate update

∗ Creates a power-of-two, open-addressing hash table whose capacity is 2× the

surviving row count.

∗ Runs kernel insert multi: each thread inserts (or locates) its key and updates

aggregate slots with atomic operations for SUM, MIN, MAX, and the running total

used by AVG.

– Compaction

∗ Allocates dense output arrays for keys, counts, and aggregate accumulators.

∗ Executes kernel compact multi to scan the sparse hash table and pack live

entries contiguously.

– Device→Host transfer

∗ Downloads the compacted key arrays, group counts, and aggregate results.

– VARCHAR rebuild

∗ Uses the stored hash→ string maps to recover original UTF-8 keys, resolving

any collisions if they occurred.

• GetData

– Streams the compacted result in batches of STANDARD VECTOR SIZE.

13

Overall workflow of the GroupBy in duckdb is as figure 4.4:

Figure 4.4: Physical GPU GROUP BY implementation

Among the three main stages—Sink, Finalize, and GetData—DuckDB can dispatch mul-

tiple CPU threads for the Sink and GetData stages, but only a single thread for Finalize.

When using multiple threads for Sink, each thread produces a partial build chunk that must

later be merged via a Combine step into one large chunk. We implemented both approaches

(single-threaded Sink versus multi-threaded Sink + Combine) and consistently observed that

the single-threaded Sink outperformed the multi-threaded Sink + Combine variant. So, we

chose to stick with single threaded sink version.

Regarding GetData, its execution time is very small relative to the overall query runtime (to

the point that we exclude it from our final cost model). As a result, parallelizing GetData across

all available CPU threads yields negligible benefit. In summary, although DuckDB supports

parallel Sink and GetData stages, in practice a single-threaded Sink is faster (due to Combine

overhead), and parallelizing GetData does not meaningfully reduce total execution time.

The implementation of the described approach has been made available online. The com-

plete codebase, including all relevant files and documentation, can be accessed at the following

repository [18].

14

Figure 4.5: DDB’s Physical Hash AGGREGATE vs GPU GroupBy

Figure 4.5 shows that at small scale factors, the CPU GroupBy outperforms the GPU

version; as the data size grows, the GPU GroupBy runtime converges to the CPU’s. We expect

that large scales (e.g., 500 GB or 1 TB), the GPU’s massive parallelism will overcome the

CPU’s increasing stall time, yielding clear GPU speedups.

4.3 Cost-model

4.3.1 Model Fitting Methodology

To determine the coefficients of the cost model, we perform a separate multiple linear

regression for each execution sub-stage(Section 4.3.3’s term-by-term breakdown of the cost

model shows why a linear formulation is adequate.)

15

Each sub-stage is modeled as a linear combination of relevant features:

T =
d∑

i=1

ci · xi = x⊤c

where:

• T is the measured execution time for the sub-stage (in nanoseconds),

• x = (x1, x2, . . . , xd)
⊤ is the feature vector,

• c = (c1, c2, . . . , cd)
⊤ is the coefficient vector to be estimated.

Given n observed measurements across multiple queries, we construct a design matrix:

X =

 ↑ ↑ ↑
x(1) x(2) · · · x(n)

↓ ↓ ↓


⊤

∈ Rn×d

and the response vector t =


T (1)

T (2)

...

T (n)

 ∈ Rn

We solve for the least-squares estimate of the coefficients:

ĉ = argmin
c
∥Xc− t∥22

The solution is given by the closed-form expression:

ĉ = (X⊤X)−1X⊤t

Once each sub-stage is fitted independently, the total execution time is modeled as the

sum of all sub-stage models:

Ttotal ≈ Tsink + Thost-prep + TH2D + Thash + Tinsert + Tcompact

+ TD2H + Trebuild + Tgetdata

This process ensures high fidelity of the overall model by capturing the fine-grained contri-

butions of each component stage.

16

Ttotal ≈ 0.7375N w︸ ︷︷ ︸
Sink()

+
(
6.002KintN + 1.590Kv BN + 2.855Sv N + 155.5Kv Gv

)︸ ︷︷ ︸
host-prep

+0.63848 (K + Sv)N︸ ︷︷ ︸
host→device

+ 0.01043KN︸ ︷︷ ︸
composite hash

+
(
0.08505N + 0.1561Sv N + 0.4859G+ 0.2055KG

)︸ ︷︷ ︸
insert kernel

+
(
0.02988N + 0.01191KG+ 0.03549G+ 0.01952Sv G

)︸ ︷︷ ︸
compact kernel

+ 2.4336 (K + Sv + 1)G︸ ︷︷ ︸
device→host

+
(
0.2204Kv G+ 5.29Kv BG

)︸ ︷︷ ︸
VARCHAR rebuild

+
(
5.509× 10−5 (Kint +Kv B)G+ 8.194× 10−4 S G

)︸ ︷︷ ︸
GetData()

(4.1)

4.3.2 Symbol legend

Symbol Meaning

N Surviving rows after the NULL-key filter

w Input bytes per row shipped to Sink()

Kint Number of integer key columns

Kv Number of VARCHAR key columns

K Total keys (Kint +Kv)

B Avg. UTF-8 length of a VARCHAR key

S Total number of aggregates

Sv “Value” aggregates (SUM/MIN/MAX/AVG)

Gv Number of distinct string hashes inserted

(obtain this by first running SELECT

COUNT(DISTINCT key) FROM table)

G Final output groups (cardinality)

4.3.3 Cost equation

Equation 4.1 presents the complete cost model incorporating all execution stages, while Equa-

tion 4.2 shows a simplified version obtained by omitting terms with minimal impact on the

17

Ttotal ≈ 0.7375N w +
(
6.002Kint + 1.590Kv B + 2.855Sv

)
N + 155.5Kv Gv

+ 0.63848 (K + Sv)N +
(
0.08505 + 0.1561Sv

)
N +

(
0.4859 + 0.2055K

)
G

+ 2.4336 (K + Sv + 1)G+ 5.29Kv BG

(4.2)

overall runtime. All costs are expressed in nanoseconds.

The following models detail each execution stage, outlining the contributing terms, their

influencing factors, and the corresponding fitted coefficients.

1. Sink() (0.7375N w)

• During Sink() the executor rowises every surviving tuple: it loads contiguous elements

from columnar vectors.

• The work therefore scales with the exact byte volume copied, N w bytes.

2. Host preparation
• 6.002KintN

– Each integer key is simply read from the vector and written into the staging buffer.

• 1.590Kv BN

– For a VARCHAR key we first follow its pointer, then hash the string (FNV-1a)

into 64 bits.

– Cost grows with the average byte length B and the number of such keys Kv.

• 2.855Sv N

– Every value aggregate (SUM/MIN/MAX/AVG) causes one extra column fetch.

• 155.5Kv Gv

– Each distinct string is inserted into a host-side unordered map.

3. Host → Device copy (0.63848 (K + Sv)N)

• All key columns and all payload columns needed by value-aggregates are transferred from

host to device.

18

4. Composite-hash kernel (0.01043KN)

• A composite key is created from all the K-64 bit keys.

5. Insert kernel

0.08505N + 0.1561Sv N + 0.4859G + 0.2055KG

• 0.08505N : one atomicAdd(&ht cnt) for every row,

• 0.1561Sv N : one atomic (ADD / MIN / MAX) for each aggregate payload column,

• 0.4859G: successful atomicCAS + atomicExch to claim the slot,

• 0.2055KG: copying the remaining K key columns into the hash-table row .

6. Compact kernel

0.02988N + 0.01191KG + 0.03549G + 0.01952Sv G

• Scans every slot (0.02988N) and copies survivors to dense arrays (remaining terms in G).

7. Device → Host copy (2.4336 (K + Sv + 1)G)

• Keys, counts and payloads form (K + Sv + 1) columns of 64-bit values are transferred

from device to host.

8. VARCHAR rebuild

0.2204Kv G + 5.29Kv BG

• If Kv > 0 we map group hashes back to the original strings (first term) and, for ma-

terialisation, memcpy the bytes into DDB’s string heap (second term, proportional to

B).

9. GetData()

5.509× 10−5 (Kint +KvB)G + 8.194× 10−4 S G

• CPU materialises a DataChunk: one scalar assignment per output element (keys, counts,

aggregates).

19

4.4 Group by cost model is good fit

4.4.1 Checking for Overfitting

To ensure that our models are not overfitted to the training data, we performed the following

diagnostic checks. Here, R2 denotes the coefficient of determination, defined as

R2 = 1−
∑

i(yi − ŷi)
2∑

i(yi − ȳ)2
,

where yi are the true values, ŷi are the model predictions, and ȳ is the mean of the observed

values. Intuitively, R2 measures the fraction of variance in the response variable explained by

the model.

1. Train–Test Gap. We split the data into an 80% training set and a 20% hold-out test set.

Let

R2
train and R2

test

denote the coefficients of determination on the training and test splits, respectively. A large

difference
(
R2

train−R2
test

)
would indicate that the model is memorizing noise in the training

set rather than capturing generalizable patterns.

2. k-Fold Cross-Validation (k = 5). We performed fivefold cross-validation, refitting the

model five times—each time holding out one-fifth of the data. We then computed the mean

and standard deviation of

R2
cv.

If R2
cv is close to R2

train and the standard deviation σR2
cv

is small, this indicates good gener-

alization and low variance.

3. Learning Curves. For a representative model, we plotted R2
train and R2

val against the

fraction of training data used (from 10% up to 100%). If the model were overfitting, these

two curves would diverge as the training fraction increases. Conversely, underfitting would

manifest as both R2
train and R2

val remaining low.

4. Residual Plots. We examined scatterplots of residuals ri = yi − ŷi versus fitted values ŷi.

Overfitted models tend to exhibit erratic residual patterns (wild swings or clusters), while

underfitted models show clear systematic structure (e.g., curvature or funnel shapes). A

well-fitted model produces a tight, featureless cloud of points around zero.

20

Results. Across all submodels—host → device, retrieve, flatten, host prep probe, getdata,

etc.— each diagnostic indicated strong generalization:

• Train/Test and 5-Fold CV. We observed that

R2
train and R2

cv

were nearly identical, so the train–test gap was negligible.

• Learning Curves. For each representative model, the curves for R2
train and R2

val remained

nearly overlapping. For an example see the insert kernel’s cost model’s plot figure 4.6.

• Residual Plots. Residuals formed a tight, structureless cloud around zero, with no visible

bends, funnels, or systematic deviations(see figure 4.6) .

These diagnostics represent the most widely used methods for detecting overfitting, and in

the next section we also present experiments conducted with different datasets. Because all

independent checks concur, we conclude that the fitted models are not overfitted.

Figure 4.6: Learning curve and residual plot for insert kernel cost model

4.4.2 All stages predictions

Figure 4.7 shows the comparison between the real execution time and the predicted time for

GroupBy Query 10 at scale factor 100. It demonstrates that all model predictions are accurate,

and the mispredictions do not cancel each other out.

21

Figure 4.7: All stages predictions vs real time

4.4.3 All train and test queries prediction

Figure 4.8 displays a scatter plot comparing the predicted execution times with the actual times

for all training and testing queries.

To assess the performance of our regression model for execution time prediction, we evaluate

it using the following standard metrics:

Mean Absolute Error (MAE): MAE measures the average magnitude of the errors in a

set of predictions, without considering their direction. It is defined as:

MAE =
1

n

n∑
i=1

|yi − ŷi|

where yi is the actual value, ŷi is the predicted value, and n is the total number of observations.

22

Figure 4.8: All test and training data split

Root Mean Squared Error (RMSE): RMSE is the square root of the average of squared

differences between prediction and actual observation. It is more sensitive to large errors than

MAE:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2

Evaluation Results

• MAE: 0.153 seconds

• RMSE: 0.292 seconds

• R2: 0.989

These values indicate excellent predictive accuracy, with very small average and root-mean-

square errors, and a near-perfect fit.

23

Chapter 5

Join

5.1 GPU-Join Algorithm

We developed our own GPU hash Join algorithm for this research.

Design overview.

1. Host-side key normalisation.

• BIGINT keys are losslessly cast to 64-bit words.

• VARCHAR keys are condensed into 64-bit scalars with the branch-free FNV-1a hash

The original strings are cached in host memory so that any rare 64-bit hash collisions can

be detected later.

2. GPU build phase. All scalarised keys from relation A are inserted, in a single kernel

launch, into a multi-value hash table provided by the Warpcore library [6, 7]. Warpcore

internally re-hashes each 64-bit key with MurmurHash3 to choose a bucket; duplicates are

chained in a device-side value array. Using a target load factor λ = 0.9 the table capacity

is ⌈|A|/λ⌉ and requires only one contiguous device allocation.

3. GPU probe phase. Relation B is processed by two kernels:

3.1. a dry-run call produces, for every probe row i, the interval [begin[i], end[i]) that delimits

its matching build rows and returns the global match count M ;

3.2. a second call materialises the flat buffer matchIds[0:M−1] containing all build-side row

identifiers.

24

4. Host reconstruction and collision filter. For each probe row i we iterate over its slice

of matchIds, compare the stored key string of A with that of B to eliminate the vanishingly

rare FNV collisions, and finally emit the joined tuple ⟨A[idA], B[idB]⟩..

Figure 5.1 shows how our GPU Join works.

Figure 5.1: Working of GPU-join

25

Figure 5.2: GPU vs CPU: Execution Time Comparison

To assess the performance of the GPU-based hash Join, we implemented a comparable single-

core CPU hash Join algorithm. Both implementations use the Murmur hash function to ensure

a fair comparison. The CPU-based Join algorithm employs the Murmur hash function, as it is

also used in the GPU algorithm, ensuring a fair comparison between the two implementations.

There are no discernible advantages to using the Murmur hash function in either the GPU or

CPU implementations for the Join, as its use does not contribute to any significant performance

improvements in this context[22, 4]. To minimize overhead in the CPU version, we omit the

FNV-based VARCHAR-to-64-bit conversion used on the GPU side and instead rely on direct

string comparisons.

We conducted performance comparisons of GPU-based and CPU-based hash-join algorithms

using datasets from the TPC-H. As shown in figure 5.2, the GPU-based hash Join demonstrated

performance improvements compared to CPU-based hash Join, and also, when the S.F is higher,

we see better speed up.

26

5.2 Extending the DDB

5.2.1 Implementating New Join Operator

Similar to the GroupBy To integrate our Join operator, we defined a new physical operator

named Physical GPU JOIN and an associated logical operator named GPU JOIN. To ensure that

DDB chooses our operator during execution, we initially modified the plan comparison join.cpp

file to hardcode the selection of Physical GPU JOIN.

As an example, consider the following simple database schema and query:

TABLE users (user_id INTEGER, user_name VARCHAR);

TABLE orders (order_value INTEGER, user_id INTEGER);

SELECT *

FROM users u

JOIN orders o ON u.user_id = o.user_id;

For this query, DDB generates a physical query plan, which is depicted in Figure 5.3.

27

Figure 5.3: Example query plan of DDB

The PhysicalGPUJoin class extends the PhysicalOperator class in DDB. The overview

main method for Join are explained below:

• Sink

– Appends every incoming build-side DataChunk to a host-side buffer that stores one

contiguous array per column.

• Finalize

– Host preparation

∗ Linearises the build keys into h keys and their row numbers into h vals.

∗ BIGINT keys are copied verbatim; each VARCHAR key is transformed into a 64-bit

FNV-1a hash.

– Host→Device transfer

∗ Allocates two device buffers with cudaMalloc.

28

∗ Copies h keys and h vals to the GPU with back-to-back cudaMemcpy opera-

tions.

– GPU hash-table build

∗ Instantiates a

warpcore::MultiValueHashTable sized so the load factor stays below 0.9.

• Execute

– Buffers probe-side chunks in host memory until the pipeline signals that no more

input will arrive.

• FinalExecute

– Probe host preparation

∗ Copies BIGINT probe keys directly; hashes VARCHAR probe keys with the same

FNV-1a routine.

– Probe Host→Device transfer

∗ Allocates a device buffer for the probe key array and transfers it via cudaMemcpy.

– Two-pass retrieval

∗ Pass 1: calls retrieve() with d ids=nullptr to compute per-probe match

counts and the total number of matches.

∗ Pass 2: allocates d ids of the exact total length and calls retrieve() again to

materialise build row IDs.

– Device→Host transfer

∗ Copies the begin/end pointers and the flattened d ids array back to host mem-

ory.

– Match list flattening

∗ Expands each [beg,end) interval into parallel probe indices and build indices

vectors.

– Chunk emission

∗ Slices the buffered probe chunk and build chunk with the flattened indices,

emitting joined rows in batches of STANDARD VECTOR SIZE.

29

Overall workflow of the Join in DDB illustrated in figure 5.4:

Figure 5.4: Physical GPU JOIN implementation

Among all the methods, DDB can schedule multiple threads only for the sink method.

As discussed in Section 5, a single-threaded sink can outperform a multi-threaded sink +

combine operation. In DDB’s execution model, the FinalExecute step of a physical operator is

deliberately run on a single thread once all of its parallel pipelines have finished. But in our

use case, if we could schedule multiple threads, we could see significant performance benefits.

However, we haven’t done that yet because of the cascading effects on the correctness of other

operators.

30

Figure 5.5: DDB’s Physical Hash Join vs GPU Join

One can access the code at the following repository [18].

Figure 5.5 compares our GPU hash join with DuckDB’s Physical Hash Join for mentioned

queries from our join query suits. At all tested scale factors, DDB still outperforms the GPU

version; nevertheless, enabling parallel FinalExecute instances on the GPU would narrow this

gap considerably. Looking ahead to terabyte-scale workloads (1 TB and beyond), the per-thread

load of DDB join becomes the bottleneck. We therefore anticipate that, with both larger data

sizes and concurrent FinalExecute support, the GPU hash join will surpass DDB join and

yield performance speed-ups.

5.3 Cost Model

We follow the similar separat multiple linear regression method as we used in GroupBy operator.

31

Ttotal ≈ 0.7375NA w︸ ︷︷ ︸
Sink()

+(4.0677 + 1.590BK) NA︸ ︷︷ ︸
build host-prep

+1.3728NA︸ ︷︷ ︸
build H2D

+(0.4698NA + 3940NA/G)︸ ︷︷ ︸
build hash-table

+ 0.7375NB w′︸ ︷︷ ︸
Execute()

+(2.2644 + 1.590BK) NB︸ ︷︷ ︸
probe host-prep

+0.6621NB︸ ︷︷ ︸
probe H2D

+ 1.262NB︸ ︷︷ ︸
retrieve (pass 1)

+ 0.1205NJ︸ ︷︷ ︸
retrieve (pass 2)

+ 1.262NB︸ ︷︷ ︸
D2H beg/end

+0.67NJ︸ ︷︷ ︸
D2H ids

+6.9704NJ︸ ︷︷ ︸
flatten

+3.06NJ C + 9.78NB︸ ︷︷ ︸
chunk gather

(5.1)

5.3.1 Input symbol legend

Symbol Meaning

NA Build-side cardinality

NB Probe-side cardinality fed to Execute

NJ Number of matches produced (NJ ≤ NA ·NB)

G Total Distinct keys in build table

w Bytes processed per build row inside Sink

w′ Bytes processed per probe row inside Execute

B Average length (bytes) of the join key

when it is VARCHAR

K Indicator: 1 if the key is VARCHAR, 0 if it is BIGINT

C Number of columns copied into the output chunk

So, the final total execution time is modeled as the sum of all sub stage models:

Ttotal ≈ Tsink + T
(b)
host-prep + T

(b)
H2D + Tbuild + Texec + T

(p)
host-prep

+ T
(p)
H2D + Tretrieve + TD2H + Tflatten + Tgather

5.3.2 Cost equation

Equation 5.1 presents the complete cost model incorporating all execution stages. For this

operator almost all the terms play significant importance with different selectivity so we have

not dropped any terms. All the presented cost models are in ns.

The models below break down every execution stage, identifying the contributing terms,

the factors that shape them, and their fitted coefficients.

32

1.Sink() (0.7375NAw)

• In the build-side Sink() phase, each input row is copied from columnar layout into a

staging buffer.

• Cost scales with the raw byte volume: NAw bytes.

2.Build Host Preparation ((4.0677 + 1.590BK)NA)

• 4.0677NA: Fixed overhead per row, including row pointer navigation and per-key vector

access.

• 1.590BKNA: For each VARCHAR key, we compute a FNV-1a hash. The cost scales with

average byte length B and number of keys K.

3.Build Host→Device (1.3728NA)

• All build keys and associated row IDs are transferred to GPU memory.

• This term models PCIe transfer cost based on number of rows.

4. Build Hash Table (0.512NA + 3.94×103 NA

G
ns)

• Each build row is hashed, probed, and written into the WarpCore multi-value hash table.

• Row cost: 0.512 ns×NA — one hash, one probe step, one write per row.

• Collision cost: 3.94×103 ns × NA

G
— extra probe steps caused by rows that share the

same key (average multiplicity NA/G).

5.Execute() (0.7375NBw
′)

• The probe-side executor copies input rows for processing.

• Scales with input byte size: NBw
′ bytes.

6.Probe Host Preparation ((2.2644 + 1.590BK)NB)

• 2.2644NB: Includes vector access and temporary buffer setup.

• 1.590BKNB: VARCHAR probe keys are hashed before transfer.

7.Probe Host→Device (0.6621NB)

• All probe-side keys are copied to GPU memory.

• Fixed cost per row.

33

8. Retrieve (1.262NB + 0.1205NJ ns)

• Pass 1 (offset scan) — one warp per probe key counts how many build rows matched

and writes the prefix-sum offsets. Work scales with the number of probe rows (NB), hence

the first term 1.262 ns×NB.

• Pass 2 (materialise list) — the kernel walks the table again and stores the actual row

IDs (or tuple IDs) for every match. The inner loop is executed once per join match (NJ),

so the second term 0.1205 ns×NJ captures that pure memory-copy cost.

9. D2H beg/end (1.34NB ns)

• Two cudaMemcpy calls copy the begin and end offset vectors (NB 64-bit indices each) from

GPU to host.

• Each probe row therefore moves 16 bytes, giving the measured slope 1.34 ns × NB (12

GB/s sustained PCIe bandwidth).

10. D2H ids (0.67NJ ns)

• A single cudaMemcpy copies the contiguous list of matching build-row IDs (NJ 64-bit

values) to the host.

• Only 8 bytes per match are transferred, so the cost is half of the offset copy: 0.67 ns×NJ .

11.Flatten (6.9704NJ)

• The host flattens variable-length match lists into contiguous arrays of row index pairs.

12. Chunk Gather ((3.06NJ C + 9.78NB) ns)

• Builds the final DataChunk by filling two SelectionVectors (probe IDs, build IDs) and

calling Vector::Slice() once per output column.

• Cost has two linear parts:

– 3.06 ns×NJ C – one probe/index write and one slice-header update per output cell.

– 9.78 ns×NB – cache/TLB misses that grow with the size of the probe buffer (NB).

• No payload copying occurs; dependence on data type or width is negligible — only the

number of cells and the total probe rows determine the latency.

34

5.4 Join cost model is a good fit

We employed the same techniques—such as plotting residuals and learning curves etc—to verify

that the models are not overfitted, similar to the approach used for GroupBy. The results were

similarly positive.

5.4.1 All stages prediction

Figure 5.6 presents a comparison between the real execution time and the predicted time for

Join Query 13 at scale factor 100. The figure indicates that all model predictions are accurate,

and any mispredictions do not offset one another.

Figure 5.6: All stages predictions vs real time

5.4.2 All train and test queries

Figure 5.7 displays a scatter plot comparing the predicted execution times with the actual times

for all training and testing queries.

35

Figure 5.7: All train and test queries GPU Join

To evaluate the accuracy of our join cost model, we compared the predicted execution times

against the actual execution times across a diverse set of queries. The following standard

regression metrics were computed to assess model performance:

Evaluation Results

• MAE: 0.0654 seconds

36

• RMSE: 0.1286 seconds

• R2: 0.9995 seconds

These results indicate that the join cost model is highly accurate, with very low absolute and

squared prediction errors. The R2 score close to 1.0 confirms an excellent fit between predicted

and actual execution times.

37

Chapter 6

Conclusion and future work

This work addresses the performance bottlenecks of GroupBy and Join operations by developing

a GPU-accelerated Join and GroupBy operator. To guide execution in resource-constrained

environments, we construct cost models that capture stage-wise execution characteristics. The

proposed operators are

integrated into the DDB, demonstrating the potential of GPU acceleration for improving

query performance within modern analytical workloads.

There are several ways to extend this work:

a) We currently rely on oracle knowledge of intermediate and final cardinalities. Next, we

will plug a realistic cardinality-estimation (CE) module in front of the GPU cost model

and study how CE error affects runtime prediction. PostgreSQL’s MCV/histogram and

extended-statistics pipeline serves as a template; re-using its selectivity formulas lets us

derive the same inputs (N,G,B, . . .) for our model without perfect knowledge [26].

b) DDB today chooses CPU Join and GroupBy plans via heuristics rather than cost formulas.

A natural next step is to derive explicit cost models for the main CPU variants—hash

join, perfect hash join, sort–merge join, nested-loop join, hash aggregation, perfect hash

aggregation, and sort-based aggregation—and then benchmark those against our existing

GPU cost model under the same statistics and workloads.

c) Both our GPU Join and GroupBy kernels assume the entire input fits in device memory.

One can introduce an out-of-core, two-pass radix partitioning scheme: hash each tuple on

the low-order r bits of its join/group key to create 2r buckets that stream through GPU

memory; recursively refine any bucket that is still too large; then (i) run a per-bucket hash

38

join, or (ii) build a per-bucket aggregation table followed by a host-side merge. Radix

partitioning has proven effective for joins [16] and for hash-based aggregations [1].

d) Our present cost model is calibrated only for a single RTX 4090 workstation. We can

re-fit the stage coefficients on a variety of GPUs (e.g., RTX 3080, A100, MI210) and host

CPUs, then embed a lightweight auto-tuner that runs a few micro-benchmarks at start-up

to rescale the coefficients—borrowing ideas from GPU kernel auto-tuners such as Kernel

Tuner [29] and CLTune [25].

39

Bibliography

[1] Shaoyu Chen, Bingsheng He, and Xuan Zhou. Accelerating aggregate operators on gpus.

In Proc. VLDB, pages 1018–1029, 2014. https://doi.org/10.14778/2733085.2733091.

39

[2] The Transaction Processing Performance Council. TPC Benchmark™H (tpc-h). In Proc.

TPC Benchmark H (Decision Support), 2005. https://www.tpc.org/tpch/. 1

[3] The Transaction Processing Performance Council. TPC Benchmark™DS (tpc-ds). In Proc.

TPC Benchmark DS (Decision Support), 2006. https://www.tpc.org/tpcds/. 1

[4] Søren Dahlgaard, Mathias Bæk Tejs Knudsen, and Mikkel Thorup. Practical hash functions

for similarity estimation and dimensionality reduction. arXiv preprint arXiv:1711.08797,

2017. https://arxiv.org/abs/1711.08797. 26

[5] David J. DeWitt and Robert H. Gerber. Multiprocessor hash-based join algorithms. In

Proc. VLDB, pages 151–164, 1985. http://www.vldb.org/conf/1985/P151.PDF. 2

[6] Daniel Jünger et al. Warpdrive: Massively parallel hashing on multi-gpu nodes. In Proc.

IEEE International Parallel and Distributed Processing Symposium (IPDPS), pages 441–

450, 2018. doi: 10.1109/IPDPS.2018.00054. https://doi.org/10.1109/IPDPS.2018.

00054. 24

[7] Daniel Jünger et al. Warpcore: A library for fast hash tables on gpus. In Proc. IEEE

International Conference on High Performance Computing, Data, and Analytics (HiPC),

pages 11–20, 2020. doi: 10.1109/HiPC50609.2020.00015. https://doi.org/10.1109/

HiPC50609.2020.00015. 24

[8] Harish Doraiswamy et al. A case for graphics-driven query processing. Proc. VLDB Endow.,

16(10):2499–2511, 2023. doi: 10.14778/3603581.3603590. https://www.vldb.org/pvldb/

vol16/p2499-doraiswamy.pdf. 2, 6

40

https://doi.org/10.14778/2733085.2733091
https://www.tpc.org/tpch/
https://www.tpc.org/tpcds/
https://arxiv.org/abs/1711.08797
http://www.vldb.org/conf/1985/P151.PDF
https://doi.org/10.1109/IPDPS.2018.00054
https://doi.org/10.1109/IPDPS.2018.00054
https://doi.org/10.1109/HiPC50609.2020.00015
https://doi.org/10.1109/HiPC50609.2020.00015
https://www.vldb.org/pvldb/vol16/p2499-doraiswamy.pdf
https://www.vldb.org/pvldb/vol16/p2499-doraiswamy.pdf

BIBLIOGRAPHY

[9] Panagiotis Sioulas et al. Hardware-conscious hash-joins on gpus. In Proc. IEEE Interna-

tional Conference on Data Engineering (ICDE), pages 698–709, 2019. doi: 10.1109/ICDE.

2019.00068. https://doi.org/10.1109/ICDE.2019.00068. 6, 8

[10] Robert J. Halstead et al. Fpga-based multithreading for in-memory hash joins. In Proc.

CIDR, 2015. http://cidrdb.org/cidr2015/Papers/CIDR15_Paper12.pdf. 2

[11] Viktor Rosenfeld et al. Performance analysis and automatic tuning of hash aggregation

on gpus. In Proc. DaMoN, pages 8:1–8:11, 2019. https://doi.org/10.1145/3329785.

3329922. 6

[12] Glenn Fowler, Landon Curt Noll, and Kiem Phong Vo. Fowler noll vo hash function.

Wikipedia, 2025. https://en.wikipedia.org/wiki/Fowler_Noll_Vo_hash_function. 9

[13] Vishal Goel. Think global, model local: A fine-grained approach to query cost estimation

with learned parameters, 2020. https://dsl.cds.iisc.ac.in/publications/thesis/

vishal.pdf. 4

[14] Goetz Graefe. Volcano—an extensible and parallel query evaluation system. IEEE Trans-

actions on Knowledge and Data Engineering, 6(1):120–135, 1994. https://doi.org/10.

1109/69.273032. 5

[15] Jayant R. Haritsa. Robust query processing: Mission possible. Proc. VLDB Endow., 13

(12):3425–3428, 2020. doi: 10.14778/3415478.3415561. http://www.vldb.org/pvldb/

vol13/p3425-haritsa.pdf. 4

[16] Bingsheng He, Mian Lu, Ke Yang, Rui Fang, Naga K. Govindaraju, Qiong Luo, and

Peter V. Sander. Relational joins on graphics processors. In Proc. SIGMOD Int’l Conf.

on Management of Data, pages 511–522, 2008. https://doi.org/10.1145/1376616.

1376669. 39

[17] Pedro Holanda and Hannes Mühleisen. Relational queries with a tensor processing unit. In

Proc. 15th Intl. Workshop on Data Management on New Hardware (DaMoN), pages 1–3,

2019. doi: 10.1145/3329785.3329932. https://doi.org/10.1145/3329785.3329932. 2

[18] Kathan. Duckdb gpu join, 2025. https://github.com/kathan3/duckdb_kathan_join/.

14, 31

[19] Kathan. Test queries. 2025. https://github.com/kathan3/

Training-and-testing-queries/. 8

41

https://doi.org/10.1109/ICDE.2019.00068
http://cidrdb.org/cidr2015/Papers/CIDR15_Paper12.pdf
https://doi.org/10.1145/3329785.3329922
https://doi.org/10.1145/3329785.3329922
https://en.wikipedia.org/wiki/Fowler_Noll_Vo_hash_function
https://dsl.cds.iisc.ac.in/publications/thesis/vishal.pdf
https://dsl.cds.iisc.ac.in/publications/thesis/vishal.pdf
https://doi.org/10.1109/69.273032
https://doi.org/10.1109/69.273032
http://www.vldb.org/pvldb/vol13/p3425-haritsa.pdf
http://www.vldb.org/pvldb/vol13/p3425-haritsa.pdf
https://doi.org/10.1145/1376616.1376669
https://doi.org/10.1145/1376616.1376669
https://doi.org/10.1145/3329785.3329932
https://github.com/kathan3/duckdb_kathan_join/
https://github.com/kathan3/Training-and-testing-queries/
https://github.com/kathan3/Training-and-testing-queries/

BIBLIOGRAPHY

[20] Hai Lan, Zhifeng Bao, and Yuwei Peng. A survey on advancing the dbms query optimizer:

Cardinality estimation, cost model, and plan enumeration. Data Science and Engineer-

ing, 6(1):86–101, 2021. doi: 10.1007/s41019-020-00149-7. http://dx.doi.org/10.1007/

s41019-020-00149-7. 4

[21] Hai Lan, Zhifeng Bao, and Yuwei Peng. A survey on advancing the dbms query optimizer:

Cardinality estimation, cost model, and plan enumeration. Data Science and Engineer-

ing, 6(1):86–101, 2021. doi: 10.1007/s41019-020-00149-7. https://link.springer.com/

article/10.1007/s41019-020-00149-7. 4

[22] Hua Luan and Lei Chang. An experimental study of group-by and aggregation on

cpu–gpu processors. Journal of Engineering and Applied Science, 69(1):54, 2022.

doi: 10.1186/s44147-022-00108-1. https://jeas.springeropen.com/articles/10.

1186/s44147-022-00108-1. 26

[23] Microsoft. Program for TPC-H data generation with skew. https://www.microsoft.

com/en-us/download/details.aspx?id=52430, July 2024. File: TPCDSkew.zip (246

KB); Date Published: July 15, 2024. 8

[24] Hannes Mühleisen and Mark Raasveldt. Duckdb: An embeddable analytical database,

2019. https://duckdb.org/. 1

[25] Cedric Nugteren and Valeriu Codreanu. Cltune: A generic auto-tuner for opencl kernels.

In Proc. of the International Conference on Supercomputing (ICS), 2015. https://arxiv.

org/abs/1703.06503. 39

[26] PostgreSQL Global Development Group. Planner statistics and cost estimation in post-

gresql. https://www.postgresql.org/docs/current/planner-stats.html, 2025. 38

[27] Mark Raasveldt and Hannes Mühleisen. Duckdb: an embeddable analytical database. In

Proc. of the 2019 International Conference on Management of Data (SIGMOD), pages

1981–1984, 2019. doi: 10.1145/3299869.3320212. https://doi.org/10.1145/3299869.

3320212. 1, 5

[28] Damien Spaolacci. murmur3: Go implementation of murmurhash3, 2014. https:

//github.com/spaolacci/murmur3. 9

[29] Ben van Werkhoven. Kernel tuner: A search-optimizing gpu code auto-tuner. Future

Generation Computer Systems, 90:347–358, 2019. https://doi.org/10.1016/j.future.

2018.08.004. 39

42

http://dx.doi.org/10.1007/s41019-020-00149-7
http://dx.doi.org/10.1007/s41019-020-00149-7
https://link.springer.com/article/10.1007/s41019-020-00149-7
https://link.springer.com/article/10.1007/s41019-020-00149-7
https://jeas.springeropen.com/articles/10.1186/s44147-022-00108-1
https://jeas.springeropen.com/articles/10.1186/s44147-022-00108-1
https://www.microsoft.com/en-us/download/details.aspx?id=52430
https://www.microsoft.com/en-us/download/details.aspx?id=52430
https://duckdb.org/
https://arxiv.org/abs/1703.06503
https://arxiv.org/abs/1703.06503
https://www.postgresql.org/docs/current/planner-stats.html
https://doi.org/10.1145/3299869.3320212
https://doi.org/10.1145/3299869.3320212
https://github.com/spaolacci/murmur3
https://github.com/spaolacci/murmur3
https://doi.org/10.1016/j.future.2018.08.004
https://doi.org/10.1016/j.future.2018.08.004

BIBLIOGRAPHY

[30] Zhe Wang, Yao Shen, and Zhou Lei. Ega: An efficient gpu accelerated groupby aggregation

algorithm. Applied Sciences, 15(7):3693, 2025. doi: 10.3390/app15073693. https://www.

mdpi.com/2076-3417/15/7/3693. 2, 5

[31] Wikipedia contributors. Utf-8 — wikipedia, the free encyclopedia, 2025. https://en.

wikipedia.org/wiki/UTF-8. 6

43

https://www.mdpi.com/2076-3417/15/7/3693
https://www.mdpi.com/2076-3417/15/7/3693
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8

