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Abstract

The economics and flexibility of the Cloud have made it attractive for enterprises to leverage

the “Database-as-a-Service” (DBaaS) model of cloud computing. The main challenge in the

DBaaS model is to simultaneously provide data security with efficient query execution. In

decision support systems, the bulk of the data processing activities comprises of queries having

range predicates. Current solutions for secure processing of these predicates resort to order-

preserving encryption (OPE) or prefix-preserving encryption (PPE), but these schemes have

only been analysed for “Honest-but-Curious” server attack model.

In this thesis, we present “SPLIT Encryption Scheme”, a new scheme for securely processing

range predicates and ensuring strong security guarantees against more powerful attack models,

where the “Honest-but-Curious” server has the ability to inject artificial queries into the system.

SPLIT is a deterministic encryption scheme that takes any OPE or PPE ciphertext and splits

them into two parts. Further these two ciphertexts are stored in separate database tables

and any tuple correspondence between the two tables is removed. At query processing time,

a range predicate is rewritten into an equivalent set of sub-range predicates and these sub-

range predicates are directly processed from the ciphertext tables. Evaluation of SPLIT on the

IBM DB2 system indicates that query execution time over SPLIT ciphertext is within 3 times

slowdown as compared to the query execution over plaintext database.
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Chapter 1

Introduction

Cloud computing has leaded to the emergence of a new business model known as “Database-

as-a-Service” (DBaaS) model. The well-known economics and flexibility of DBaaS model have

made it attractive for enterprises to consider outsourcing their database query processing ac-

tivities to computing environments hosted by third-party service providers such as Amazon

EC2 and S3 [1], Microsoft Azure [2] and IBM Cloudant [3]. A crippling deterrent to this move,

however, is the well-taken concern of ensuring the security of confidential data hosted in remote

locations. Encryption techniques for protecting such data have been worked on for several

decades now. However, the difficulty is that these techniques may not directly support query

processing in the encrypted domain, forcing clients to download and decrypt the entire data

before executing the query. The net effect is that the Cloud becomes reduced to a mere storage

repository, and ceases to be a first-class data processing engine in its own right.

In this report we look at the problem of processing range predicates in SQL queries over

encrypted cloud databases. Our technique to process range predicates securely and efficiently

can also be used to handle equality predicates, group by and equi-join operators. Queries

containing range predicates, equality predicates, equi-joins of relations and grouping are very

common in both transaction systems as well as analytical systems. Hence it is evident that

secure and efficient processing of range predicates in SQL queries is very critical for building a

secure Database-as-a-Service system.
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Figure 1.1: System Entities

The cloud computing model which we consider consists of four entities as shown in Fig-

ure 1.1. Service Provider (SP) which provides cloud infrastructure, Data Owner (DO) who

owns the data and wants to store it on infrastructure hosted by SP, Clients (C) who are au-

thorized to issue queries on data stored by DO at SP ’s infrastructure and the Security Agent

(SA) who acts as the bridge between DO and SP or C and SP. For example, a bank (DO)

stores his data on IBM Cloudant (SP), and all the employees of the bank that perform analysis

over bank’s database will serve as the clients (C) in the system. SA is a transparent entity that

helps to translate the plaintext queries into the corresponding query in the ciphertext space.

The adversarial model which describes the powers and objective of an adversary of the

system is very closely related to these entities. Any entity which is inherently not trusted or

which can be compromised adds to the power of the adversary. In our cloud computing model,

the Data Owner and the Security Agent are considered trusted, while the Service Provider is

always untrusted. One assumption we make here is that the database engine is not corrupted

by the adversary (i.e. SP is honest in executing protocols). The Clients in our model can either

be trusted or un-trusted. This gives rise to two adversarial model. A) Honest-but-Curious

model: If the client is trusted then only Service Provider can be compromised. All the attacks

in this scenario will be passive attacks. B) Honest-but-Active model: If the client is not-trusted

or is compromised or colludes with the Service Provider, then adversary gains a lot of power.

He can launch active attacks on the system. He can adaptively issue queries by acting as a
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Client and then can see how that query is processed at SP’s site.

The objective of adversary which we consider is decrypting a selected encrypted value. The

intuition behind this is that adversary sees a lot of encrypted data being stored at the server.

He chooses a particular encrypted data item (how he chooses is immaterial) and then tries to

know the plaintext value of this data item. While trying to decrypt this ciphertext value he

may learn plaintext values of some other ciphertext but that is not considered a high threat

(since the ciphertext being decrypted is not in his control). All the previous work that allows

the secure processing of range predicates in DBaaS model look at Honest-but-Curious model.

However as we show in Section 3.3, Honest-but-Active model is a very realistic model and

any DBaaS system of future should consider its security in this model rather than a weaker

Honest-but-Curious model.

1.1 Background Review

Numerous attempts have been made to answer range predicates over encrypted database in

DBaaS model. In Bucketing Scheme [10, 8] whole data domain is partitioned into buckets.

Each bucket has a unique ID. This ID is stored at the server along with encrypted data. The

input range query is mapped to bucket ids and all the rows which fall into these buckets are

returned. This scheme leads to false positives if the bucket boundary does not match with range

boundary. In Order-Preserving Encryption Schemes (OPE) [18, 7, 6, 17], encryption function

preserves the order of the plaintext i.e. if a ≤ b then E(a) ≤ E(b). Any range predicate

over plaintext can be easily converted into range predicate over encrypted values. Various

implementations of order preserving encryptions have been proposed but they are not secure

in Honest-but-Active model. The fundamental reason for this is that they leak the order of the

plaintext values and a adversary in Honest-but-Active model can perform a binary search over

the ciphertext values and successfully decrypt any target encrypted value. Prefix-Preserving

Encryption (PPE) [13, 12] preserve the querying ability on the prefix of input data. Any

range predicate on plaintext data is converted into queries having equality over prefixes. This

encryption scheme is also not secure in Honest-but-Active model. A similar binary search over

the ciphertext values can be performed by Honest-but-Active adversary to learn the plaintext

value of any target ciphertext. There are also solutions [19] which work towards providing a

new index structure to handle the range predicates in a secure manner. However these kind of

solutions require change in database systems which is not a trivial task and faces stiff resistance

from industry, further they are also not analysed in Honest-but-Active adversarial model. In

SIGMOD 2014 Wong et. at. [20] have came up with a new encryption scheme SDB to securely

process SQL queries over encrypted database, but in Chapter 5 we have shown attack against

3



SDB in Honest-but-Curious adversarial model itself. In Chapter 4 we will give examples to

specifically show the weaknesses of OPE and PPE encryption scheme against Honest-but-Active

adversary.

1.2 Our Contribution

In this thesis we propose a new encryption scheme, which takes any order-preserving encryption

scheme or prefix-preserving encryption scheme and makes it secure in the sense that any Honest-

but-Active adversary will not be able to compute the plaintext from its corresponding ciphertext

despite of its adaptive querying power. Specifically we will show that, if N is the plaintext

domain size, then an adversary can decrypt any ciphertext encrypted using OPE or PPE

scheme in log(N) adaptive queries, while it has to make
√

N adaptive queries to decrypt any

ciphertext encrypted using our proposed encryption scheme.

The OPE or PPE can be visualized using a complete binary tree over the ciphertext domain.

Each encrypted value stores the whole path information from root of this ciphertext tree to the

leaf node representing the input data. This property of having all the information in a single

place leads to the possibility of binary search over the ciphertext domain. In our work we split

the information of any ciphertext into two parts. Geometrically what we do it to divide all

the levels in the complete binary tree representing the ciphertext into two contiguous parts,

one part corresponds to the contiguous top levels of the tree while the other corresponds to

the contiguous bottom levels of the tree. While encrypting a single data value we produce

two ciphertexts. These two ciphertexts are then stored separately in different tables. Any

association between the two tables is broken by randomizing the physical layout of the rows in

the ciphertext tables. This makes our scheme secure in Honest-but-Active model. We call this

scheme SPLIT. The scheme and its details are explained in Chapter 6.

Our SPLIT scheme can be implemented on top of current existing database engines. This is

very important since it implies that SPLIT can be used in current DBaaS solutions. Through

experimentation we have found that our scheme is efficient and practical. The SQL query

execution in our scheme is 3 times slow as compared to execution in plaintext database, which

is a reasonable price to pay for getting higher security.

1.3 Organization

The rest of the thesis is organized as follows. Chapter 2 introduces some preliminaries. Chapter

3 introduces our problem framework and the attack model. Chapter 4 shows attacks against

existing solutions in Honest-but-Active attack model. Chapter 5 contains an attack against the

SDB encryption algorithm [20] in Honest-but-Curious adversarial model. Chapter 6 describes

4



our basic SPLIT encryption scheme and its security while Chapter 7 proposes extension to our

scheme to general range predicate queries. In Chapter 8 we have presented the experimental

evaluation of SPLIT. Chapter 9 concludes the report and describes the future work.

5



Chapter 2

Preliminaries

1. Notations: Let an integer λ be the security parameter. The running time of the ad-

versary (and the running time of the honest parties) as well as the adversary’s success

probability are all viewed as functions of security parameter. The algorithms in this paper

implicitly takes the security parameter as an input.

If N is an integer, then [N ] denotes the set {1, · · · , N}. For a set S, x
$←− S denote that

x is uniformly randomly selected from set S, |x| denotes its length in bits. By x1|| · · · ||xn
we denote an encoding of x1, · · · , xn from which x1, · · · , xn are uniquely recoverable.

x[m · · ·n] denotes extracting bits m to n from the bits representation of x, where m lies

towards the most significant bit of x. Let P denote the domain of plaintext message, then

[x]n
$←− P denote that a set of n plaintexts are selected uniformly at random from domain

P.

2. Negligible Success Probability: (Definition 3.4 of [11]) Any encryption scheme is

said to be secure if for any probabilistic polynomial-time adversary (adversaries running

for polynomial number of steps in the security parameter λ), there exists an integer N

such that for all integers λ > N the probability that the adversary succeeds in breaking

the scheme is f(λ) < 1/p(λ), where p(·) is any polynomial in λ.

It means that for every constant c the adversary’s success probability is smaller than λ−c

for large enough values of λ. A function that grows smaller than any inverse polynomial

is called negligible and the above function f(λ) denotes the negligible success probability

of the adversary.

6



2.1 Order-Preserving Encryption

Order-Preserving encryption (OPE) [18, 7, 6, 17] is an important class of encryption functions

to support range query processing over encrypted databases. These are deterministic encryption

schemes that preserve the numerical ordering of plaintext in the encrypted domain. Following

definition of OPE is taken from [7].

Definition 2.1.1 (Order-Preserving Encryption) For A,B ⊆ N with |A| ≤ |B|, a func-

tion f : A → B is order-preserving (aka. strictly-increasing) if for all i, j ∈ A, f(i) > f(j) iff

i > j. We say that deterministic encryption scheme SE = (K, Enc,Dec) with plaintext and

ciphertext-spaces D,R is order-preserving if Enc(K, ·) is an order-preserving function from D

to R for all K output by K (with elements of D,R interpreted as numbers, encoded as strings).

2.2 Prefix-Preserving Encryption

This PPE scheme was initially proposed by Xu et al. [13] for prefix-preserving IP address

anonymization. This encryption scheme also supports the efficient evaluation of range predi-

cates over encrypted databases.

Definition 2.2.1 (Prefix-Preserving Encryption) ([13]) We say that two n-bit numbers

a = a1a2...an and b = b1b2...bn share a k-bit prefix (0 ≤ k ≤ n), if a1a2 · · · ak = b1b2 · · · bk,
and ak+1 6= bk+1 when k < n. An encryption function Ep is defined as a one-to-one function

from {0, 1}n to {0, 1}n. An encryption function Ep is said to be prefix-preserving, if, given two

numbers a and b that share a k-bit prefix, Ep(a) and Ep(b) also share a k-bit prefix.

7



Chapter 3

Problem Framework

In this chapter we are going to state the problem we are going to solve, explain about the

entities in our cloud framework and also define the adversary against our scheme.

3.1 Solution Objective

To provide an efficient, secure and practical implementation for processing the range predicates

in SQL queries over encrypted cloud database in Honest-but-Active adversary model.

Service Provider should do all the processing pertaining to the evaluation of range predicates

in a SQL query. Along with this query processing, some measurable data security should be

achieved which restricts the learning of adversary about the encrypted data.

3.2 System Entities

Figure 1.1 shows various entities involved in cloud environment:

1. Service Provider (SP): It is a third party that provides the storage and computation

capability as a service to its clients. For our scenario, Service Provider can be a system

where any present-day state of the art database engine is running. For example, IBM

Cloudant. We assume that SP is honest in executing the protocols correctly, but he may

be interested in the plaintext of the encrypted data stored at it’s site, either because it is

curious or on account of being compromised.

2. Data Owner (DO): A company or an individual who is having a proprietary right to the

data such as, a Bank. Data Owner wants to outsource its data storage and computation

to some Service Provider. Data Owner is inherently trusted. This is because he does not

have to mount any attack on the system to gain access to the data.

8



3. Client (C): The authorized users of the data who can issue SQL queries on the data

stored on SP’s infrastructure. For example, employees of the bank performing analytics

over the data to make some new policies. Trustworthiness of Client depends upon the

adversarial model. In Honest-but-Curious model he is trusted whereas in Honest-but-

Active model he is not trusted and may collude with SP to break the system.

4. Security Agent (SA): It acts as the proxy system for communication between Data

Owner and Service Provider or between Client and Service Provider. All the secret keys

which are used for encrypting the data are stored at Security Agent. It performs necessary

query rewriting of range predicates in SQL queries coming from Clients and also decrypts

the results returned for the respective query from Service Provider. Since keys are stored

at Security Agent it should be managed by someone trusted by Data Owner or by Data

Owner himself.

3.3 Adversary Model

The adversarial model which we follow is Honest-but-Active adversary. In this model Data

Owner and Security Agent are trusted entities whereas Service Provider and Clients are not

trusted. Service Provider and Clients can also collude in order to break the system. The powers

of adversary in this model are as follows:

1. Adversary has access to all data which is stored at Service Provider.

2. Adversary can monitor all the computations done over data by the database engine.

3. Adversary knows all the details of the encryption schemes which the Data Owner and

Security Agent have used to encrypt the data. Only the keys used are secret.

4. Adversary can adaptively ask range predicate queries through the colluded Client.

The main distinguishing factor of this model from the Honest-but-Curious model is the

point 4 above. Now lets define what kind of active attacks can be mounted on the system.

Usually the clients query the database not by writing SQL queries but via some applications.

These applications provide a form based interface to the client. The client can fill in various

values in the forms and the application takes care of forming the appropriate SQL query and

displaying the output. Thus adversary can iteratively ask queries by changing the form param-

eters according to the result of the previous query. Additionally we assume that the Adversary

knows the query template which is fired for each form.

9



Adversary’s Objective

As mentioned in [14], the most basic and often sufficient requirement is security against Message

Recovery (MR), under an adaptive adversary. Therefore the objective of Honest-but-Active ad-

versary considered in our system is to decrypt a chosen ciphertext. Now lets define what this

means in terms of DBaaS model. Data Owner has stored data related to various Clients on the

Service Provider. An Adversary has access to subset of this data depending upon the access

control and query templates used by the form interface. The adversary now chooses a tuple to

which he cannot fire a direct SQL query and then picks a cell from this tuple. The goal of the

adversary is to decrypt this chosen cell value.

Note, here we are not specifying how the adversary chooses the target tuple and cell which

he wants to break. But we require that he chose this cell before mounting an attack on the

system.

3.3.1 Attack Models

In this subsection we will describe various attack models that are possible by varying the powers

of Honest-but-Active adversary.

In all the below attack models A will represent the adversary against the deterministic

encryption scheme SE = (KeyGen,Enc,Dec) and λ will denote the security parameter. The

function negl(λ) will represent a negligible function in the security parameter (λ).

3.3.1.1 Ciphertext Only Attack Model

The adversary A is given a set of z ciphertexts of (uniformly) random messages from the chal-

lenger C and is asked to come up with the plaintext of any one of them. In this model the

adversary is passive and can only see the ciphertexts of unknown messages. It can be consid-

ered as more general form of standard one-wayness (Definition 6.1 of [11]). This model can be

more formally described in the form of below experiment against the deterministic encryption

scheme SE:

The One-Wayness Experiment ExpOne−Way
SE,A (λ)

1. C computes K ← KeyGen(λ).

2. C chooses input [x]n
$←− D, computes yi ← EncK(xi), ∀i ∈ {1, · · · , n}.

3. A is given λ and [y]n as input, and outputs x′.

10



4. The output of the experiment is defined to be 1 if EncK(x′) = yi, for some i ∈ {1, · · · , n},
and 0 otherwise.

The one-wayness advantage of the adversary A against SE is

AdvOne−Way
SE,A (λ) = |Pr[ExpOne−Way

SE,A (λ) = 1]| (3.1)

SE is said to be secure against one-wayness adversary A, if

AdvOne−Way
SE,A (λ) ≤ negl(λ) (3.2)

3.3.1.2 Non-Adaptive Attack Model

The adversary A on input the security parameter λ, decides at the beginning of its execution

the sequence of queries it will ask and gets their corresponding ciphertext from the challenger

C, along with this knowledge of pairs of <plaintext,ciphertext>, A is also given a challenge

ciphertext y∗. The objective of the adversary A is to come up with the plaintext of the chal-

lenge ciphertext. This model can be thought as non-adaptive Chosen Plaintext Attack model

with the adversary having the knowledge of some known plaintexts. We will call this as KPA

Model. This model can be more formally described in the form of below experiment against

the deterministic encryption scheme SE:

The Non-Adaptive Experiment ExpKPASE (λ)

1. C computes K ← KeyGen(λ).

2. A on input λ, selects [x]n ← D, and gives [x]n to C.

3. C computes yi ← EncK(xi), ∀i ∈ {1, · · · , n}, also chooses a challenge plaintext x∗ ∈
D and computes the corresponding challenge ciphertext y∗ ← EncK(x∗), where x∗ /∈
{x1, · · · , xn} and x∗ ∈ D.

4. A is given [y]n, the corresponding ciphertext to [x]n, and the challenge ciphertext y∗ and

outputs x′.

5. The output of the experiment is defined to be 1 if x′ = x∗, and 0 otherwise.

Note, since we are using deterministic encryption scheme, the challenge plaintext does not lies

in the A′s chosen list of plaintext, otherwise it would have been trivial for the adversary to come
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up with the correct plaintext. The KPA advantage of the adversary A against SE is defined as

AdvKPASE,A (λ) = |Pr[ExpKPASE,A (λ) = 1]| (3.3)

SE is said to be secure against KPA adversary A, if

AdvKPASE,A (λ) ≤ negl(λ) (3.4)

3.3.1.3 Adaptive Attack Model

The adversary A is given the security parameter λ, the challenge ciphertext y∗ and is allowed

to make polynomial number of queries in the security parameter to encryption oracle. The ob-

jective of the adversary A is to come up with the plaintext of the challenge ciphertext. This

model represents the basic Chosen Plaintext Attack without the indistinguishability test. We

will call this model as CPA model. This model can be more formally described in the form of

below experiment against the deterministic encryption scheme SE:

The Adaptive Experiment ExpCPASE (λ)

1. C computes K ← KeyGen(λ), chooses a challenge plaintext x∗ ∈ D and computes the

corresponding challenge ciphertext y∗ ← EncK(x∗).

2. A is given λ and y∗ as input. Now A adaptively asks the encryption of polynomial number

of points from C and gets the corresponding encryptions. At the end A outputs x′.

3. The output of the experiment is defined to be 1 if x′ = x∗, and 0 otherwise.

The CPA advantage of the adversary A against SE is defined as

AdvCPASE,A (λ) = |Pr[ExpCPASE,A (λ) = 1]| (3.5)

SE is said to be secure against CPA adversary A, if

AdvCPASE,A (λ) ≤ negl(λ) (3.6)

3.3.1.4 Query Injecting Attack Model

The adversary A is given the security parameter λ, the challenge ciphertext y∗ and is allowed

to make polynomial number of range queries in the security parameter to encryption oracle.

The objective of the adversary A is to come up with the plaintext of the challenge ciphertext.
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This model is a generalized version of above Adaptive Attack Model, here the adversary asks

for the encryption of a range of values rather than points. This model represents the real life

threat under Honest-but-Active adversary where the adversary A accesses the encrypted cloud

database through some user interface where it can alter the range of queries in the where clause.

We will call this model as QI model. This model can be more formally described in the form

of below experiment against the deterministic encryption scheme SE:

The Query-Injecting Experiment ExpQISE (λ)

1. C computes K ← KeyGen(λ), chooses a challenge plaintext x∗ ∈ D and computes the

corresponding challenge ciphertext y∗ ← EncK(x∗).

2. A is given λ and y∗ as input. Now A adaptively asks the encryption of polynomial number

of range queries from C and gets the corresponding encryptions. At the end A outputs x′.

3. The output of the experiment is defined to be 1 if x′ = x∗, and 0 otherwise.

The QI advantage of the adversary A against SE is defined as

AdvQISE,A(λ) = |Pr[ExpQISE,A(λ) = 1]| (3.7)

SE is said to be secure against QI adversary A, if

AdvQISE,A(λ) ≤ negl(λ) (3.8)

Figure 3.1: Hierarchy of Attack Models
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We can easily show that there is a strict hierarchy among the adversarial models as shown in

Figure 3.1. The security in higher attack models implies security in lower models, but not vice-

versa. Later in Chapter 4, we will show that all the existing schemes that allow the evaluation

of range predicates over encrypted data are not secure against atleast one of the attack models

while in Chapter 6 we will show that our SPLIT encryption scheme is secure against QI-

adversary if the plaintext domain is sufficiently large, which implicitly implies security in other

attack models. Figure 3.2 shows a comparison of security of SPLIT scheme with the existing

schemes.

Figure 3.2: Comparison of Security of SPLIT with Existing Schemes

3.4 Assumptions

There are various assumptions which are implicit in the adversarial model and DBaaS model

which we use. We list them here:

1. There are certain tuples in the database to which Clients do not have direct access, either

because of access control or because of the form interface provided by the application

they are using to access the encrypted data.
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2. The communication channel between client and server is secure. This can be ensured by

using techniques such as TLS (Transport Layer Security) [15].

3. All the existing secure block cipher schemes which we use are unbreakable. If any of them

is broken in future then we can replace it with another unbroken secure block cipher

scheme having similar properties.
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Chapter 4

Security of Existing Solutions

In this chapter we will analyse the security of existing solutions proposed in [18, 7, 17, 13, 12]

under the attack model described in Section 3.3.1. Consider there is a Bank (say B) whose

database schema for the customer section is shown in Figure 4.1.

Customer(Customer ID, Age)
Account(Customer ID, Branch ID, Balance)

Figure 4.1: Customer Database Schema

Now suppose, in order to make new policies, the customer section of the bank wants to

analyse the relation between the age and the account balances of the customers, so the bank

may expose an interface to the analyst that issues the SQL query shown in Figure 4.2 to the

customer database.

SELECT Branch ID, Count(*)
FROM Customer, Account
WHERE Customer.Customer ID = Account.Customer ID

AND Customer.Age ≥ 30
AND Customer.Age ≤ 70
AND Account.Balance ≥ 500000
AND Account.Balance ≤ 5000000000

GROUP BY Branch ID;

Figure 4.2: SQL query to “Count the number of customers in each branch having age between
30 and 70 and account balance between 500,000 to 5,000,000,000”
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Say the Honest-but-Active adversary A has access to the form (through a colluded Client)

used to issue the query presented in Figure 4.2. Now say A has selected a tuple from the

Account table and it wants to decrypted the encrypted Balance cell in that tuple. Lets see

how A can decrypt the target encrypted cell if the data is encrypted using one of the existing

encryption schemes.

4.1 Order Preserving Encryption (OPE)

If the Bank’s database is encrypted using any order preserving encryption scheme, then the

Honest-but-Active adversary using the Query Injecting Attack Model, can perform a simple

binary search over the encrypted data and decrypt the selected encrypted Balance cell.

In the particular example query shown in Figure 4.2, say the age of customer lies between

[0, 128], then A will first set the Age to this range to make sure that the target tuple is not

pruned in its injected query because of incorrect Age value. Now A will do a binary search

over the Balance column. Say negative balances are not allowed and the account balance of the

customers can take any positive integer value of 64-bit. Then the Honest-but-Active adversary

will first set the balance to lie in range [0, 262 = 4611686018427387904] as shown in Figure 4.3,

where Customer E and Account E are the encrypted Customer and Account tables under OPE

scheme. Now if the target row is selected by this query then A will recur with binary search

SELECT Branch ID, Count(*)
FROM Customer E, Account E
WHERE Customer E.Customer ID=Account E.Customer ID

AND Customer E.Age ≥ 0
AND Customer E.Age ≤ 128
AND Account E.Balance ≥ 0
AND Account E.Balance ≤ 4611686018427387904

GROUP BY Branch ID;

Figure 4.3: SQL query over encrypted tables to “Count the number of customers in each branch
having age between 0 and 128 and account balance between 0 to 262”

using range [0, 262 − 1], otherwise it will recur over range [262 + 1, 263 − 1]. Thus, in the worst

case A will be able to decrypt the target tuple in just log(264) = 64 queries.

If the underlying data is coming from uniform distribution, then the interpolation search

[4] is also possible over the encrypted domain, in this case the average number of chosen range

queries required by A to decrypt the target encrypted cell is log(log(264)) = 8.
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Thus, we see that against any OPE scheme the Honest-but-Active adversary mounting

a Query Injecting attack is able to decrypt any target encrypted data cell on average in

log(log(N)) queries and in worst case in log(N) queries, where N is the plaintext domain

size.

4.2 Prefix Preserving Encryption (PPE)

If the Bank’s database is encrypted using any prefix preserving encryption scheme, then as

shown in Section 4.1 the Honest-but-Active adversary using the Query Injecting Attack Model,

can perform a similar binary search over the encrypted data and decrypt the selected encrypted

Balance cell.

Again, after observing the processing of the query shown in Figure 4.3( in this case Cus-

tomer E and Account E are the encrypted Customer and Account tables under PPE scheme)

the Honest-but-Active adversary A will be able to correctly learn the most significant bit of

the target encrypted data cell. Now again depending on its observation A will be select the

appropriate range for its next query and continue the binary search over the encrypted data.

Note, in case of PPE interpolation search is not possible, since the encrypted data is not

ordered. Hence the Honest-but-Active adversary mounting a Query Injecting attack against

any PPE scheme will be able to decrypt any target encrypted data cell on average and in worst

case in log(N) queries, where N is the plaintext domain size.

4.3 PBtree Approach [19]

If the Bank’s database is encrypted using PBtree approach [19] presented in VLDB, 2014, then

the Honest-but-Active adversary using the Query Injecting Attack Model, can perform a simple

binary search over the encrypted data and decrypt the selected encrypted Balance cell.

Similarly, adversary will first inject the query shown in Figure 4.3( here Customer E and

Account E are the encrypted Customer and Account tables under PBtree scheme) and observe

that whether its target tuple is getting selected in the result or not. Depending on its outcome

the adversary can adaptively choose the range predicates for its next query and perform the

binary search.

Hence the Honest-but-Active adversary mounting the Query Injecting attack against the

PBtree scheme will be able to decrypt any target encrypted data cell on average and in worst

case in log(N) range queries, where N is the plaintext domain size.
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4.4 SDB Approach [20]

If the Bank’s database is encrypted using the SDB approach [20] presented in SIGMOD, 2014,

then the Honest-but-Active adversary using the Non-Adaptive Attack Model, Adaptive Attack

Model or the Query Injecting Attack Model can decrypt the selected encrypted Balance cell.

The authors themselves mention that they are not secure under any active attack models, but

later in Chapter 5 we will explicitly show an attack scenario where the knowledge of only one

pair of <plaintext,ciphertext>, will help the adversary to decrypt all the values in particular

encrypted columns.
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Chapter 5

Attack on SDB Approach [20]

In this chapter we will present an attack against the SDB approach in the Honest-but-Curious

attack model with the adversary having the knowledge of one pair of known plaintext and

ciphertext. For a background on SDB encryption algorithm, its security model and its various

SQL operator implementation readers can refer [20].

Claim 1: SDB approach is not secure under DB + QR Security Model, if the

adversary has the knowledge of only one tuple of known plaintext and ciphertext.

Proof: Let us consider that the cloud server acts as QR adversary (say C) against the SDB

approach. Now C will follow below steps to compute the plaintext values of encrypted column.

1. C will first observe a few number (>= 3) of comparison operations, on some encrypted

column say A, that is involved in a correlated sub query doing comparison with unknown

constants. We will use these comparisons to get the scaled value of random valued column

R. This we will call as Result1 .

2. Next C will use the instructions sent from client to server to answer A > B comparison

query, to curiously compute A > −B comparison, where A is the encrypted column

involved in the comparisons done in step 1 and B is any other column. This we will call

as Result2 .

3. Now after computing Result1 and Result2 from above steps, C will mathematically com-

bine them to expose some scaled value of column A.

4. Now, given only one pair of plaintext and ciphertext (i.e. plaintext as well as encrypted

value of only one tuple of A), C will be able to compute the exact values of all the tuples

in column A.
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Thus we see that by following above steps C is able to compute and reveal the plaintext

values of all the tuples of encrypted column A, hence SDB cannot be accepted as a general

purpose solution in real applications.

Let us see the above steps in greater details:

Step 1: Computing the scaled value of random valued column R.

Suppose over a period of time following comparison queries have been made by the client

to the cloud server as part of a correlated query,

• A > k1

• A > k2

• A > k3

In general, SP cannot distinguish whether an operation is done on A or on some constant

multiple of A, so let us consider the general form of above equations:

• αA > k1

• αA > k2

• αA > k3

In the above comparisons A and B are encrypted database columns while k1, k2, k3 and α

are unknown constants.

When above comparisons are performed, then according to the comparison protocol, follow-

ing equations can be inferred by the server with their plaintext values,

[R× (αA− k1 × S)] = C1 (say) (5.1)

[R× (αA− k2 × S)] = C2 (say) (5.2)

[R× (αA− k3 × S)] = C3 (say) (5.3)

In the above equations, all the values on the right hand side are available in plaintext at server

side, while the left hand side in [ ] is inferred by the server because of its knowledge of the

comparison protocol. R denotes the random value column and S denotes column with constant

value 1, these are the two additional encrypted columns added by DO, before sending the

encrypted database to the cloud server SP.

Although all the columns R, A and S as well as ki’s involved in the left hand side of above
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equations within [ ] are encrypted and their actual values are not known to the server, but the

server knows that the plaintext values on the right hand side of above equations are computed by

evaluating the expressions on the plaintext values of respective columns and constants involved

in that equation. Therefore we can rewrite above equations as:

[R× (αA−K1)] = C1 (5.4)

[R× (αA−K2)] = C2 (5.5)

[R× (αA−K3)] = C3 (5.6)

where, K1 is a vector with constant value k1, K2 is a vector with constant value k2 and K3 is

a vector with constant value k3.

Now, subtracting equation (5.4) from equation (5.5), we get,

[R×K1 −R×K2] = C2 − C1

⇒ [R× (K1 −K2)] = C2 − C1

Let Y1 = (K1 −K2) and Z1 = (C2 − C1), therefore we can write above equation as,

[R× Y1] = Z1 (5.7)

Suppose there are N tuples in the database, then we can write equation (5.7) as the element-wise

product of two vectors: 

r1

r2

r3

.

.

.

rN


×



y1

y1

y1

.

.

.

y1


=



z11

z12

z13

.

.

.

z1N


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⇒



r1 × y1
r2 × y1
r3 × y1

.

.

.

rN × y1


=



z11

z12

z13

.

.

.

z1N


(5.8)

Lets rewrite above equation as:(
r1 × y1 r2 × y1 r3 × y1 . . . rN × y1

)
=
(
z11 z12 z13 . . . z1N

) (5.9)

Similarly, by subtracting equation (5.4) from equation (5.6) we get,

[R×K1 −R×K3] = C3 − C1

⇒ [R× (K1 −K3)] = C3 − C1

Let Y2 = (K1 −K3) and Z2 = (C3 − C1), therefore we can write above equation as,

[R× Y2] = Z2 (5.10)

Following the previous steps, we will get:(
r1 × y2 r2 × y2 r3 × y2 . . . rN × y2

)
=
(
z21 z22 z23 . . . z2N

) (5.11)

Now let’s combine equation (5.9) and (5.11) in one matrix, we get(
r1 × y1 r2 × y1 r3 × y1 . . . rN × y1
r1 × y2 r2 × y2 r3 × y2 . . . rN × y2

)

=

(
z11 z12 z13 . . . z1N

z21 z22 z23 . . . z2N

) (5.12)
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Now taking the column wise GCD of the above matrix we get,

GCD([r1 × y1], [r1 × y2]) = GCD(z11, z21)

= [r1] if [y1] and [y2] are relatively prime

= [r1]×GCD([y1], [y2]) otherwise

Let us take the case when [y1] and [y2] are not relatively prime and let,

GCD([y1], [y2]) = [c]

where [c] is some constant.

⇒ GCD([r1 × y1], [r1 × y2]) = [r1]× [c]

= [r1 · c]

Similarly, we can compute the rest of [ri · c], where 2 ≤ i ≤ n. Thus now we have [R · c]
exposed in plaintext at the server. This we will call as Result1 .

Step 2: Computing A > −B comparison from the instructions of A > B comparison

query.

To compute A > B following steps are performed:

1. Client chooses a new column key <mC , xC>.

2. Now client issues the key update operations for columns A and B, to the new column key

<mC , xC>.

3. Thus server now has:

• κ(A, <mC , xC>) = A
′
e

• κ(B, <mC , xC>) = B
′
e

4. Next client asks server to compute Ce = A
′
e −B

′
e.

5. Now following the comparison protocol, server performs EE multiplication between en-

crypted column R and newly constructed column C, thus server stores De = Re×Ce and

client sets column key for D as ckD = < mD, xD > = < mR ·mC , xR + xC >.

6. Now server performs a key update on column D using column key < 1, 0 >.
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By performing above steps client exposes [R× (A−B)] in plaintext to the server.

Now server can compute the result of A > −B comparison by only modifying the step 4 of

above comparison protocol, the modification is as follows:

• Instead of computing Ce = A
′
e −B

′
e, server computes Ce = A

′
e +B

′
e.

Rest all the steps 1, 2, 3, 5 and 6 are followed as described previously.

We can easily verify that following above steps, the QR adversary can compute the plaintext

values of [R × (A + B)]. From the adversarial point of view, SP can only infer the plaintext

values of following equations :

[R× (δA− βB)] = C5 (say), and (5.13)

[R× (δA+ βB)] = C6 (say) (5.14)

where, δ and β are unknown constants and C5 and C6 are exposed in plaintext to the server.

We will refer above equations as Result2.

Step 3: Exposing scaled value of column A.

Adding equations (5.13) and (5.14), we get,

[2×R× δA] = C5 + C6 (5.15)

Let Z3 = (C5 + C6) / 2,

⇒ [R× δA] = Z3 (5.16)

Dividing equation (5.16) by Result1, i.e. [R · c], we get,[
δA

c

]
=

Z3

[R · c]
(5.17)

Let γ = δ
c
, then

[γA] =
Z3

[R · c]
(5.18)

Thus the above equation exposes the plaintext values of column A multiplied by some unknown

constant γ at the server side. Similarly, following the same approach we can expose the scaled

values of other columns also.
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Step 4: Exposing exact values of columns.

Now if SP knows only one pair of plaintext and ciphertext value of any tuple in column A ,

then it can compute the value of γ, let ai be the plaintext value of some tuple in column A,

then γ will be computed as below,

γ · ai
(ai)

= γ (5.19)

where γ · ai is the corresponding tuple of column A exposed as the result of Step 3.

Once the server is able to compute the value of γ, then it can expose all the

tuples in column A.
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Chapter 6

Encryption with SPLIT

6.1 Basics

In this chapter we propose a deterministic encryption scheme for processing equality and range

predicates in SQL queries over encrypted integer data. Our scheme can be built upon any OPE

or PPE scheme proposed in the literature. We will prove that our proposed scheme is secure

against Honest-but-Active adversary, mounting the QI attack shown in Section 3.3.1. We will

call our scheme as SPLIT.

The vulnerability of the existing schemes is due to the binary search attack as shown in

Section 4. The main idea of SPLIT is to break the chain of queries in binary search by,

1. Splitting a single ciphertext into two parts and storing them in different tables.

2. Removing correlation among the two ciphertext tables.

Before formally describing the SPLIT scheme, it would be helpful to consider the geometric

interpretation of our scheme and how it achieves the above two objectives. If we consider

the ciphertexts that can take any n-bit value, then the entire set of these ciphertexts can be

inherently represented by a complete binary tree of height n. This we will call as ciphertext

tree (CT). For ease of explanation let’s consider the PPE ciphertext tree for 4-bit integers as

shown in Figure 6.1(a). In this case n is 4 and CT contains nodes at 5 different levels. We will

denote the leaf level consisting of 24 nodes as L0 and the root of the tree consisting of a single

node as L4.

Every integer in the leaf level of CT can be associated with 4 bits of information depending

upon its path from root to level L0. Next, we will divide all the levels into two categories as

follows:
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Figure 6.1: SPLIT Scheme Basic

1. Range Safe (RS): This category will consist of some contiguous top levels from the

tree, for example let, levels L2 to L4 comprise the RS range. This means that for every

node at level L0, the bits corresponding to levels L2 to L4 will preserve the semantics of

the underlying PPE scheme while the remaining bits information coming from levels L0

to L2 is blinded using a secure block cipher (for eg. AES). Thus every leaf node in level

L0 is associated with a range at level L2 instead of a value as shown in Figure 6.1(b).

Here in our example the range represented by each leaf node is of 22 integers granularity.

Thus the Honest-but-Active adversary mounting the QI attack against this part of the

tree with the objective of Message Recovery from the ciphertexts will be able to identify

the nodes at coarser granularity.

2. Brute Force Safe (BS): This category will consists of the remaining contiguous levels

of the CT tree from level L0 up to the level where RS range ends. For example, after

assigning L2 to L4 to RS range the levels L0 to L2 will comprise the BS range, while the

bit information coming from higher levels is blinded using a secure block cipher (for eg.

AES). Here the leaf nodes correspond to the actual integer values of CT tree but their

higher order bit information is missing as shown in Figure 6.1(c). Thus the Honest-but-

Active adversary with the objective of Message Recovery from the ciphertexts in this part

of the tree will be forced to mount a brute force chosen plaintext attack over all the 22

nodes at level L2 to guess the exact value of any node at level L0.

Note that both the above categories consists of disjoint set of contiguous bits associated with

the corresponding levels of ciphertext tree. The number of levels in BS or RS range is a

configurable parameter for the DO to decide for every column on which the range predicate
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query can occur. This parameter in turn decides the security of our scheme. In the coming

sections we will assume that the number of levels in RS division is equal to the number of levels

in BS division (meaning divide the OPE/PPE ciphertext into two equal halves).

6.2 Formal Definition

The SPLIT encryption scheme for plaintext domain D is a tuple of polynomial-time algorithms

SPLIT = (KeyGen, Enc, Dec) run by the Data Owner (DO), Security Agent (SA) and the

Client (C), where Keygen is probabilistic and the rest are deterministic.

1. Key Generation: sk ← KeyGen(λ). KeyGen is the probabilistic algorithm that runs

at the DO’s site, takes as input the security parameter λ, and output the secret key sk.

The sk consists of two equal length secret keys (sk1,sk2) of the underlying OPE/PPE

encryption algorithm E, upon which SPLIT will be defined and also two equal length

secret keys (k1,k2) of a secure block cipher (AES in our case), i.e. sk = (sk1, sk2, k1, k2).

The sk is stored at the DO’s as well as at the SA’s site.

2. Encryption: c ← Enc(sk,m). Enc is the deterministic encryption algorithm, composed

of two separate algorithms EncRS and EncBS. EncRS is called to compute the Range

Safe (RS) component of the ciphertext while EncBS is called to computes the Brute Force

Safe (BS) component of the ciphertext. Each of these algorithm takes a part of the secret

key sk and the plaintext message m and compute the ciphertext c. The output of Enc

can be either RS component or BS component of the ciphertext depending upon which of

the two algorithms is invoked. These algorithms can run at either the DO’s or SA’s site.

• cRS ← EncRS(sk1, k1,m). EncRS first calls the underlying encryption algorithm E

with the secret key sk1 and generates the ciphertext c′RS ← E(sk1,m). Say c′RS ∈
{0, 1}n. Let’s represent c′RS = c′RSl

||c′RSr
, where c′RSl

, c′RSr
∈ {0, 1}n/2, then EncBS

computes

cRS ← c′RSl
||Ek1SE(c′RSr

) (6.1)

In the above equation Ek1SE represents a secure block cipher that is invoked with the

secret key k1. This algorithm sets c← cRS.

• cBS ← EncBS(sk2, k2,m). EncBS first calls the underlying encryption algorithm E

with the secret key sk2 and generates the ciphertext c′BS ← E(sk2,m). Say c′BS ∈
{0, 1}n. Let’s represent c′BS = c′BSl

||c′BSr
, where c′BSl

, c′BSr
∈ {0, 1}n/2, then EncBS

computes

cBS ← Ek2SE(c′BSl
)||c′BSr

(6.2)
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In the above equation Ek2SE represents a secure block cipher that is invoked with the

secret key k2. This algorithm sets c← cBS.

Note, in both the RS and BS part of the ciphertext only half of the bits follow the

underlying property of the OPE/PPE scheme, while the other half is blinded using the

secure block cipher. Further the RS and BS ciphertexts are stored in separate tables and

the correlation of rows among the two tables is removed. We will further explain this in

Section 6.3

3. Decryption: m← Dec(sk,c). Dec is the decryption algorithm, composed of two separate

algorithms DecRS and DecBS. DecRS is used to decrypt the Range Safe (RS) component

of the ciphertext while DecBS is used to decrypt the Brute Force Safe (BS) component

of the ciphertext. Each of these algorithm takes a part of the secret key sk and the

ciphertext message c and compute the plaintext message m. These algorithms can run at

either the DO’s or SA’s site. The output of Dec is the plaintext message m corresponding

to the ciphertext c.

• m ← DecRS(sk1, k1, c). The ciphertext c can be decomposed into two parts as c ≡
c′RSl
||Ek1SE(c′RSr

). DecRS first calls the decryption algorithm for the secure block cipher

Dk1
SE and computes a part of the OPE/PPE ciphertext i.e. c′RSr

← Dk1
SE(Ek1SE(c′RSr

)).

Let c′RS = c′RSl
||c′RSr

. Then the underlying decryption algorithm D of the OPE/PPE

scheme is called with the secret key sk1 and the plaintext message m is computed

as m← D(sk1, c
′
RS).

• m ← DecBS(sk2, k2, c). The ciphertext c can be decomposed into two parts as c ≡
Ek2SE(c′BSl

)||c′BSr
. DecRS first calls the decryption algorithm for the secure block cipher

Dk2
SE and computes a part of the OPE/PPE ciphertext i.e. c′BSl

← Dk2
SE(Ek2SE(c′BSl

)).

Let c′BS = c′BSl
||c′BSr

. Then the underlying decryption algorithm D of the OPE/PPE

scheme is called with the secret key sk2 and the plaintext message m is computed

as m← D(sk2, c
′
BS).

Note, calling the appropriate encryption and decryption algorithm is the responsibility of

the DO or the SAs, but the Clients have no direct access to these modules.
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Algorithm 1 (KeyGen(λ) - runs at DO)

1. sk1 ← OPE/PPE.KeyGen(λ)

2. sk2 ← OPE/PPE.KeyGen(λ)

3. k1 ← DET.KeyGen(λ)

4. k2 ← DET.KeyGen(λ)

Return sk ← (sk1, sk2, k1, k2).

Figure 6.2: SPLIT Key Generation Algorithm

Algorithm 2 (Enc(sk,m) - runs at DO or SA)

Composed of two separate algorithms

1. (EncRS(sk1,k1,m))

• c′RS ← E(sk1,m)

• c′RS ≡ c′RSl
||c′RSr

• cRS ← c′RSl
||Ek1SE(c′RSr

)

Return c← cRS

2. (EncBS(sk2,k2,m))

• c′BS ← E(sk2,m)

• c′BS ≡ c′BSl
||c′BSr

• cBS ← Ek2SE(c′BSl
)||c′BSr

Return c← cBS

Figure 6.3: SPLIT Encryption Algorithm
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Algorithm 3 (Dec(sk, c) - runs at DO or SA)

Composed of two separate algorithms

1. (DecRS(sk1,k1, c))

• c ≡ c′RSl
||Ek1SE(c′RSr

)

• c′RSr
← Dk1

SE(Ek1SE(c′RSr
))

• c′RS = c′RSl
||c′RSr

Return m← D(sk1, c
′
RS).

2. (DecBS(sk2,k2, c))

• c ≡ Ek2SE(c′BSl
)||c′BSr

.

• c′BSl
← Dk2

SE(Ek2SE(c′BSl
))

• c′BS = c′BSl
||c′BSr

.

Return m← D(sk2, c
′
BS).

Figure 6.4: SPLIT Decryption Algorithm

The SPLIT algorithm is summarized in Figures 6.2, 6.3, 6.4.

6.3 Data Organization for 1D Range Predicate

In this section we will assume that only 1D range predicate queries are allowed. Later, in

Section 7.1 we will remove this assumption and provide a general solution.

In SPLIT every data item is encrypted two times and two different ciphertexts are produced,

further these ciphertexts are stored in two different tables. So, for every database table in the

plaintext world two separate tables will be created in encrypted world. In particular, for the

example schema shown in Figure 4.1, the encrypted database that will be created after applying

SPLIT is shown in Figure 6.5. Here, we have assumed that range predicate query will appear

only on column Age or on column Balance but not on both columns simultaneously in the same

query. Since other columns namely, Customer ID and Branch ID are having unique numbers for

every Customer or Branch in the bank, thus they can be encrypted using any secure block cipher

like AES or DES. The encryption key of the block cipher used in Age BS, Age RS, Balance BS,
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Customer BS(Customer ID EK1, Age BS)
Customer RS(Customer ID EK2, Age RS)
Account BS(Customer ID EK1,Branch ID EK3,Balance BS)
Account RS(Customer ID EK2,Branch ID EK4,Balance RS)

Figure 6.5: Customer Database Schema, Encrypted using SPLIT Scheme

Balance RS columns are different while the encryption keys for the two Customer ID columns

in Customer BS and Account BS tables or in Customer RS and Account RS is kept same to

allow joins of these tables.

In addition to creating two encrypted tables for every plaintext table we need to randomize

the physical layout order of the rows in these tables. For example, of the two tables Account BS

and Account RS created for Account table we will randomize the physical order of rows in one

table, in order to remove the correlation among these two tables, such that the first tuple in Ac-

count BS does not necessarily be present as the first tuple in physical layout of the Account RS

table.

Later in Section 6.5 we will show that by following above steps we have removed the attacks

on SPLIT that were earlier possible on our underlying OPE/PPE encryption schemes as shown

in Chapter 4.

6.4 Implementing 1D Range Predicate Queries over En-

crypted Relations

In this section, we will show how a ID range predicate query will be executed in our framework

after the data is encrypted and stored at the Service Provider’s site.

SELECT Count(*)
FROM Customer
WHERE Customer.Age ≥ 3

AND Customer.Age ≤ 9

Figure 6.6: SQL query to “Count the number of Customers who have age between 3 and 9”

Suppose the underlying encryption mechanism used is PPE and the plaintext and ciphertext

data comes from 4-bit integer domain (PPE tree shown in Figure 6.1). Let us assign levels L2 to
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1. Starting from k = 1, find the most significant bit, numbered k, for which ak < bk.

2. If k is not found, i.e., for all i ≤ i ≤ n, ai = bi, then the interval can be denoted by
prefix a1a2 · · · an. Return a1a2 · · · an.

3. If for all k ≤ i ≤ n, ai = 0 and bi = 1, then return a1a2ak−1∗ (return ∗ if k = 1).

4. Transform interval [a1a2 · · · an, b1b2 · · · bn] into [a1 · · · ak−10ak+1 · · · an, a1 · · · ak−1011 · · · 1]
∪ [a1 · · · ak−1100 · · · 0, a1 · · · ak−11bk+1 · · · bn].

5. Run this algorithm with interval [ak+1 · · · an, 11 · · · 1] as input, concatenate
a1 · · · ak−10 before all the returned prefixes. Then run this algorithm with interval
[00 · · · 0, bk+1 · · · bn] as input, concatenate a1 · · · ak−11 before all the returned prefixes.
Return all the prefixes.

Figure 6.7: The algorithm for transforming interval [a1a2 · · · an, b1b2 · · · bn] into prefixes

level L4 into the RS range while levels L0 to L2 into the BS range. Let’s consider the encrypted

database schema is as shown in Figure 6.5 and say the Client wants to “Count the number

of Customers who have age between 3 and 9 ”, the SQL query corresponding to the Client’s

request is shown in Figure 6.6.

Now following steps are performed:

1. Client will send the plaintext query (shown in Figure 6.6) to the Security Agent (SA).

2. Now SA will first identify the subranges that will be answered from Range Safe Account

table and the subranges that will be answered from Brute Force Safe Account table. This

can done using the algorithm shown in Figure 6.7. The number of subrange predicates in

this case will be bounded by 2 ∗ (log(N)− 1) as shown in [13], where N is the plaintext

domain size. The interval [3, 9] will be transformed into below sub-intervals:

• For RS table: [4, 7].

• For BS table: [3], [8, 9],

Now SA will encrypt the end points using the EncBS and EncRS algorithms. Let’s assume

for this example, that the AES encryption of higher order bits of BS table is AES[00] =

10, AES[01] = 00, AES[10] = 11, AES[11] = 01. Now SA will generate queries shown in

Figure 6.8 for the RS and BS table respectively.
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SELECT Count(*)
FROM Customer RS
WHERE Customer RS.Age ≥ 8

AND Customer RS.Age ≤ 11

SELECT Count(*)
FROM Customer BS
WHERE (Customer BS.Age = 6 OR

AND Customer BS.Age ≥ 10)
AND Customer BS.Age ≤ 11)

Figure 6.8: SQL query for RS and BS table respectively

3. Now, SA will send the transformed queries shown in Figure 6.8 to the Service Provider

(SP).

4. SP will execute the received queries and will send the count of tuples in each query to the

SA. If instead of the count, entire tuples of the tables are requested by the Client, then in

this step SP would have returned encrypted tuples to SA as a result of query evaluation,

instead of their count.

5. Now, SA will simply add the counts received from the two queries and send the final

result back to Client. If instead of the count SA have received encrypted tuples as the

query result from SP, then SA would have decrypted individual tuples and have taken

the union of the tuples returned from the two queries.

Note, SA is able to do simple addition of count or union of tuples from the two queries,

since these queries access disjoint set of tuples from the encrypted tables.

6. Client receives the plaintext result of its issued query.

6.5 Security of SPLIT

In this section we will show the security of SPLIT scheme against Honest-but-Active adversary

mounting a QI attack.
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Lets first consider that the underlying encryption on which SPLIT is build upon is OPE

and each plaintext and ciphertext data is a 64-bit integer. Levels L32 to level L64 belong into

the RS range while levels L0 to L32 belong into the BS range. We will prove the security of

SPLIT encryption scheme inclemently by proving that

1. BS and RS encryptions are independently secure.

2. For any plaintext table, there is no correlation between the corresponding BS and RS

ciphertext tables.

Finally we will use the above knowledge to prove the overall security of SPLIT encryption

scheme.

Claim 6.5.1 If AES is a secure block cipher, then any probabilistic polynomial time ad-

versary ASPLITBS
will have negligible advantage in the adaptive Query Injecting experiment

ExpQISPLIT,A(λ) against SPLITBS encryption scheme.

Proof: We will prove the claim by the method of contradiction. Assume that there exists a QI -

adversary ASPLITBS
against SPLITBS scheme with some non-negligible advantage ε. Consider

that there exists a challenger CAES for AES block cipher and there exists another adversary

AAES that wants to break the AES ciphertext. Now we will show that AAES will act as the

challenger (CSPLITBS
) of SPLITBS encryption scheme and will use ASPLITBS

to break the AES

ciphertext with non-negligible advantage ε, which will contradict the assumption that AES is

a secure block cipher. Hence the adversaries AAES and ASPLITBS
does not exists and SPLITBS

is a secure encryption scheme.

The above argument can be better understood by a game between the challenger CAES,

AAES (also acts as CSPLITBS
) and ASPLITBS

as shown in Figure 6.9, 6.10.

Since we have assumed that ASPLITBS
has a non-negligible advantage in the QI-experiment

with the CSPLITBS
,

AdvQICSPLITBS
,ASPLITBS

(λ) = ε (6.3)

hence ASPLITBS
will computes the correct value of the plaintext of the challenge ciphertext

with ε probability. Now ASPLITBS
will compute the OPE encryption of that plaintext and the

higher order 32-bits of OPE ciphertext are its guess of the challenge AES ciphertext. Now if

ASPLITBS
has correctly computed the plaintext then AAES will win the AES challenge with the

same non-negligible ε probability, i.e.

Pr[success of AAES] = ε (6.4)
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which contradicts the assumption that AES is a secure block cipher. Hence the adversary

ASPLITBS
against SPLITBS encryption scheme with non-negligible advantage does not exists.

2

Figure 6.10: BS Security Game

Claim 6.5.2 If AES is a secure block cipher, then any probabilistic polynomial time adversary

A will have negligible advantage in the adaptive Query Injecting experiment ExpQISPLIT,A(λ)

against SPLITRS encryption scheme.

Proof: The prove for this claim will be exactly same as the prove of Claim 6.5.1, with a slight

modification, that instead of higher order bits lower order bits of the OPE ciphertext will be

selected for AES encryption. We are omitting the proof because of space restriction. 2

Till now we have seen that BS and RS encryptions are individually secure, but according to

the SPLIT encryption scheme, the BS and RS encryptions of every plaintext data exist together
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1. The Challenger CAES generates the key k1 ← KeyGenAES for the AES block cipher

and selects a random 32-bit challenge plaintext x∗
$←− {0, 1}32 and computes the

challenge ciphertext u∗[31 · · · 0]← EAESk1
(x∗), and forwards u∗ to the AES adversary

AAES.

2. The AES adversary AAES also acts as the challenger CSPLITBS
for the SPLITBS

encryption scheme and generates the key k2 ← KeyGenOPE for the OPE encryp-
tion scheme. Now it randomly selects 32-bits, y∗[31 · · · 0] ← {0, 1}32, compute the
SPLITBS challenge ciphertext c∗ = u∗||y∗[31 · · · 0] and forward c∗ to adversary
ASPLITBS

.

3. Now adversary ASPLITBS
will ask for the encryption of a range of values from CSPLITBS

.
Say it has send the range from [a1, b1].

4. Upon receiving the query, CSPLITBS
will compute the OPE ciphertext for the com-

plete range [a1, b1] i.e. y1 = (a1
′, · · · , b1′) = (EOPEk2

(a1), · · · ,EOPEk2
(b1)) and sends

the most significant 32-bits of the OPE ciphertext ((a′1[63 · · · 32], · · · , b′1[63 · · · 32])) to
CAES.

5. CAES computes the AES encryptions of the requested list of values, u1[31 · · · 0] =
EAESk1

(a′1[63 · · · 32]), · · · , v1[31 · · · 0] = EAESk1
(b′1[63 · · · 32]), and sends u1, · · · , v1 to

AAES (playing the role CSPLITBS
).

6. CSPLITBS
computes the requested ciphertext c1 =

(u1||a′1[31 · · · 0]), · · · , (v1||b′1[31 · · · 0]) of the SPLITBS scheme, and sends c1 to
ASPLITBS

. This completes the processing of one range predicate query of ASPLITBS
.

7. Now adversary ASPLITBS
can ask for more range predicate queries (polynomial in the

security parameter) and CSPLITBS
will construct their response as shown in steps 4-6

above.

8. At the end ASPLITBS
will output its guess x′ as the plaintext for its challenge ciphertext

c∗.

9. Now CSPLITBS
will compute y∗ ← EOPEk2

(x′), and sends y∗[63 · · · 32] as its guess of
x∗ to AES challenger CAES.

Figure 6.9: AES adversary AAES using the SPLITBS adversary ASPLITBS
to solve the AES

challenge

in the database, but in separate database tables and the physical layout of the rows of these

tables is also made different. Say a function Fk is used to produce the different permutation
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of rows in the encrypted database tables, and since this permutation is never required to be

inverted hence a new secret key is generated every time permutation of rows is required and

the secret key is discarded after words.

Claim 6.5.3 If Fk is a strong pseudorandom permutation, then any probabilistic polynomial

time adversary A will have negligible advantage in correlating the BS and RS encryptions of

the same plaintext present in their respective tables.

Proof: For ease of explanation, consider the read-only database over which only 1D range

predicate queries are allowed, later in Section 7 we will show, how our scheme handles higher

dimensional range predicate queries and also updates in the database. Whenever DO wants

to store some encrypted data at SP’s site the function Fk is invoked with a new secret key

for each ciphertext table to decide the layout of tuples in that table. Since the secret key is

never reused, hence the generated permutation of tuples is equivalent to selecting a random

permutation. Now if the Honest-but-Active adversary selects any tuple from BS (or RS) table

it equally likely maps to all the distinct tuples (since our scheme is deterministic) of the RS

(or BS) table. Say M is the number of distinct tuples in RS table, then the probability of

correlating any tuple of BS table with RS table tuple is given by

Pr[corelating tuples in BS and RS tables] =
1

M

Since adversary A is not able to prune any tuple of RS table as the corresponding tuple of BS

table and vice versa, hence such an attack comes in the category of brute force search, therefore

not considered as a threat to encryption scheme. 2

Till now we have seen that BS and RS encryptions are independently secure, and there is

no correlation between the tuples of BS and RS ciphertext tables containing the encryption of

same plaintext table.

Claim 6.5.4 If AES is a secure block cipher and Fk is a strong pseudorandom permutation,

then any probabilistic polynomial time adversary ASPLIT will have negligible advantage in the

adaptive Query Injecting experiment ExpQIA (λ) against SPLIT encryption scheme.

Proof: Since half of the bits of BS or RS ciphertext are equal to the underlying OPE/PPE

encryption scheme, hence the adversary can perform a similar binary search over these bits as

shown in Section 4. But as proved in Claims 6.5.1 and 6.5.2 adversary ASPLIT will not be able

to decrypt any challenge BS or RS ciphertext, since AES is a secure block cipher. Further

as proved in Claim 6.5.3 there is no correlation between the tuples of BS and RS ciphertext
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tables, since the key used by the function Fk to produce the permutation of tuples in ciphertext

tables is never reused again and hence the permutation produced is equivalent to a random

permutation, therefore ASPLIT will not be able to continue its binary search over the challenge

ciphertext from BS table to RS table and vice versa. Thus the adversary ASPLIT will not be

able to win the QI experiment with non-negligible advantage against SPLIT scheme. 2

Above we have proved that QI-adversary is not able to decrypt the challenge ciphertext in

SPLIT encryption scheme. But there is some partial leakage of information associated with BS

and RS ciphertexts.

1. Leakage from Range Safe Ciphertext: If we look at the algorithm EncRS shown in

Figure 6.3, we will notice that after we get the OPE ciphertext c′RS ∈ {0, 1}64, bits 0 to

31 are blinded using a strong pseudorandom permutation while bits 32 to 63 will still

preserve the OPE property. Thus the Honest-but-Active adversary will be able to mount

the attack shown in Section 4.1 only on bits 32 to 63, and will only be able to identify

the underlying integer at the granularity of 232.

2. Leakage from Brute Force Safe Ciphertext: If we look at the algorithm EncBS

shown in Figure 6.3, we will notice that after we get the OPE ciphertext c′RS ∈ {0, 1}64,
bits 32 to 63 are blinded using a strong pseudorandom permutation while bits 0 to 31 will

still preserve the OPE property. Now because of the blinding of higher order bits each

pair of nodes at level L31 equally likely belong to all the 232 nodes present at level L32.

Thus the Honest-but-Active adversary can only mount a brute force attack to identify

the exact plaintext value of any chosen ciphertext.

For an example, consider the encrypted bank’s database schema shown in Figure 6.5. Now

suppose, Honest-but-Active adversary ASPLIT has selected a tuple in Account BS table and

wants to decrypt the Balance BS cell in that tuple. If it starts with the query shown in

Figure 4.3, then again part of its query will be answered from Account BS table and part from

Account RS table, and even if its target encrypted cell gets selected, ASPLIT will not be able

to guess the 232 granularity node to which its target cell value belongs. Now, suppose ASPLIT

starts to do a binary search over lower order bits i.e. bits 0 to 31, then ASPLIT will be able to

correctly guess the bits 0 to 31 of its target cell in just 32 QI queries, but now to guess all the

bits it needs to launch a bruteforce search over all the equally likely 232 nodes at level L32 of

the ciphertext tree, i.e. ASPLIT has to make 232 =
√

264 QI queries, to successfully break any

target encrypted data cell, where 264 is the plaintext domain size

Thus, the security of SPLIT depends on two factors
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• The number of levels in the RS and BS divisions, i.e. the split point.

• The plaintext domain size (say N ).

Thus, if the split point is chosen such that number of levels in the RS division is equal to

the number of levels in the BS division and N is a sufficiently large plaintext domain size such

that making
√
N QI queries becomes infeasible in the security parameter, then SPLIT is secure

against the Honest-but-Active adversary mounting a QI attack.
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Chapter 7

Extension to SPLIT

7.1 Support for MultiD Range Predicates

Till now we have seen, how our scheme takes the plaintext table and generates encrypted

database and how the 1D range predicate queries are handled. In this chapter we will first

show how to extend our scheme to support 2D range predicate queries and similarly we can

extend it for other higher dimensions.

Suppose in our example database shown in Figure 4.1, Client wants to ask a query having

simultaneous range predicates over Age and Balance columns. To securely support such queries

Data Owner needs to create four replication of each table corresponding to all the BS and RS

enumerations of the two columns on which range predicates can occur simultaneously (in our

example the Age and Balance columns). The encrypted database to allow such queries is shown

in Figure 7.1

Customer BS BS(Customer ID EK1, Age BS)
Customer BS RS(Customer ID EK2, Age BS)
Customer RS BS(Customer ID EK3, Age RS)
Customer RS RS(Customer ID EK4, Age RS)
Account BS BS(Customer ID EK1,Branch ID EK5,Bal BS)
Account BS RS(Customer ID EK2,Branch ID EK6,Bal RS)
Account RS BS(Customer ID EK3,Branch ID EK7,Bal BS)
Account RS RS(Customer ID EK4,Branch ID EK8,Bal RS)

Figure 7.1: Customer Database Schema, Encrypted using SPLIT Scheme for 2D range predi-
cates

In general, if there are T tables and total n columns in the database, and the Data Owner
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wants to support simultaneous range predicate over all of the n columns, then every database

table will be enumerated 2n times, corresponding to all the combinations of BS and RS split

of each column, therefore there will T ∗ 2n tables in the encrypted database. In Section 7.3 we

will show how we can reduce this exponential space blow up.

7.2 Support of Equi-Join, Group By and count based

Having Clause in SPLIT Scheme

In SPLIT scheme, only tables corresponding to the same enumeration of the BS and RS division

can be joined, further this is also sufficient to produce the correct result. For instance, in

the schema shown in Figure 7.1, Customer BS BS can be joined with Account BS BS on the

Customer ID column, since same encryption key is used for this column data in both the tables,

but join of Customer BS BS with Account BS RS is not allowed, otherwise Honest-but-Active

adversary can trivially launch a similar binary search attack over our scheme as shown in

Section 4 for existing solutions.

Since SPLIT scheme is a deterministic encryption scheme, it trivially supports the Group

By clause, but there is a possibility that same groups may appear as the result of different sub

queries being executed on different tables. These groups can be trivially merged by the SA

after decrypting the independent results.

Similarly, count based Having clause can be supported in SPLIT scheme. Here also if same

groups appear in the result of different sub queries executed on different tables, SA needs to

simply add the counts before returning the final result to the Client.

7.3 Optimizations and Improvements of SPLIT

In this section we will show how we can reduce the required storage overhead for the MultiD

case, how we can enhance the overall security, and how we can reduce the query execution time

in SPLIT scheme.

1. Equivalence Classes Partitioning of Columns: Say {Col} represents a set com-

prising of all the columns in the database, then if the Data Owner (DO) is able to:

(a) Partition {Col} into two disjoint sets, such that {Set1} is the set of database columns

that will not be used as range predicate in any legal SQL query, and {Set2} is the

set of all the columns on which range predicates can occur, formally

• {Set1} ∩ {Set2} = φ

• {Set1} ∪ {Set2} = {Col}
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(b) Further DO can partition {Set2} into a number of equivalence classes, such that no

two column in each equivalence class can occur simultaneously as range predicate in

any legal SQL query against the database. Say DO is able to identify d equivalence

classes, then

• {Set2i} ∩ {Set2j} = φ ∀(i, j) ∈ {1, ..., d}
• {Set21} ∪ {Set22} ∪...∪ {Set2d} = {Set2}

Since only the columns in {Set2} participate in a range predicate and are further

restricted to be one from each equivalence class at a time, hence the maximum

dimension of simultaneous range predicates allowed in any legal SQL query against

this database will be d- dimensions. Hence the total blowup in the number of table

replication is T ∗ 2d.

For example, consider a test database shown in Figure 7.2. Suppose if the database has

Table1(ColA, ColB, ColC)
Table2(ColD, ColE, ColF)
Table3(ColG, ColH, ColI)

Figure 7.2: Test Database Schema

to support simultaneous range predicates over all the columns, then the total number of

tables in the encrypted database is 3 ∗ 29.

Here {Col} = {ColA, ColB, ColC, ColD, ColE, ColF , ColG, ColH, ColI}, now suppose

{Set1} = {ColA, ColB, ColD, ColG, ColI }, then {Set2} = {ColC, ColE, ColF, ColH },
further, say {Set2} can be partitioned into two equivalence classes, i.e. {Set21} = {ColC,

ColH } and {Set22} = {ColE, ColF}, then the total number of tables in the encrypted

database is 3 ∗ 22. The encrypted database is shown in Figure 7.3.

For a real example, we can look at the TPCH benchmark [5] database and the recom-

mended 22 benchmarking queries. Total number tables in TPCH database is 8 and total

number of columns in the database is 61 but only 4 columns take part as the range

predicate, i.e. {|Set1|} = 57, and {|Set2|} = 4. Namely, {Set2} = {O ORDERDATE,

L SHIPDATE, L RECEIPTDATE, L QUANTITY }. Further we can split {Set2} into

two groups, viz. {Set21}= O ORDERDATE and {Set22}= L SHIPDATE, L RECEIPTDATE,

L QUANTITY. Thus total number of tables in the encrypted TPCH database is 8 ∗ 22,

i.e. the encrypted database is four times the size of the plaintext database.
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Table1 BS BS(ColA, ColB, ColC BS)
Table2 BS BS(ColD, ColE BS, ColF BS)
Table3 BS BS(ColG, ColH BS, ColI)

Table1 BS RS(ColA, ColB, ColC BS)
Table2 BS RS(ColD, ColE RS, ColF RS)
Table3 BS RS(ColG, ColH BS, ColI)

Table1 RS BS(ColA, ColB, ColC RS)
Table2 RS BS(ColD, ColE BS, ColF BS)
Table3 RS BS(ColG, ColH RS, ColI)

Table1 RS RS(ColA, ColB, ColC RS)
Table2 RS RS(ColD, ColE RS, ColF RS)
Table3 RS RS(ColG, ColH RS, ColI)

Figure 7.3: Encrypted Test Database Schema

2. Enhancing the security of SPLIT: Till now in SPLIT scheme we have produced two

ciphertext for every plaintext data and kept them in two different tables corresponding

to the BS and RS divisions, further since we are building upon OPE and PPE schemes,

thus over half of the bits of any ciphertext one of the attack shown in Section 4 can be

mounted. But on the other hand, if we increase the number of ciphertexts corresponding

to every plaintext, for example, we can keep each level of the ciphertext tree into its own

table instead of dividing them into two groups, i.e. if plaintext data is represented using

64-bits, we will have 64 corresponding ciphertexts, and hence every plaintext table will

have 64 corresponding ciphertext table. Thus in this case we can show that Honest-but-

Active adversary will not be able to mount any of the attacks shown in Section 3.3.1 over

any of the 64 ciphertext tables.

3. Reducing the query execution time: In SPLIT scheme we have seen that each

plaintext table is replicated into multiple tables, further each plaintext query is also

translated into multiple queries over ciphertext tables. But key observation is that,

• Each ciphertext query access disjoint set of rows, and

• Each ciphertext query access independent tables.
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Hence, these queries can be executed in parallel and their outcome can be merged by the

SA with simple addition (in case of count as query result) or union (in case of tuples as

query result) operations.

7.4 Limitations of SPLIT

There are certain limitations of the SPLIT scheme, which are listed below:

1. The storage space required by SPLIT scheme is exponential in the number of equivalence

classes of the database columns on which the range predicate queries are permitted.

Further this is actually not a limitation since storage is cheap now-a-days.

2. Only batch updates are possible to ciphertext database encrypted using SPLIT encryption

scheme. This requirement is essential to remove the correlation between the encrypted

database tables.

7.5 Supporting More complicated Queries

Since SPLIT scheme does not return any false positive, hence it can be used along with other

partial homomorphic encryption scheme to support a wide range of SQL queries. For example,

1. Along with the encrypted ciphertext corresponding to SPLIT scheme we can store the

paillier encryption [16] of plaintext data, and can support SQL queries having SUM

aggregate clause in there SELECT statement.

2. Similarly, we can store ELGAMAL encryption [9] of the data in parallel with the SPLIT

scheme ciphertext and allow the multiplication of two columns in the database.
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Chapter 8

Experimental Evaluation

To evaluate the performance of SPLIT scheme, we have conducted experiments on Google Cloud

Platform running Ubuntu 14.04 LTS with 14.4GB memory and 2.5GHz Intel Xeon E5 v2 16

core processor. The database engine used was “IBM DB2 Enterprise Server Edition”. We have

evaluated the range predicate execution time on TPCH 1GB and TPCH 10GB benchmark

databases. The metric for evaluation is the ratio of the query execution time over the data

encrypted using our scheme with respect to the execution time of the same query over plaintext

database. This metric will give the effective slowdown that is introduced in the query processing

time due to our encryption framework.

Various experiments have been performed over both plaintext and encrypted database by

considering the affect of following factors:

1. No index was created in both the plaintext and the encrypted database.

2. Index was created in both the databases over all the columns on which range predicate

appears in the queries.

3. The executed queries have 100% selectivity.

4. The dimension of the query is also varied, upto 3 dimensional query has been evaluated.

All the 1D queries use the SQL query template shown in Figure 8.1. Further 2D queries

add the range predicate for column L Orderdate and the 3D queries add the range predicates

for columns L Orderdate and L Orderkey in the query template 8.1.

In all the executions the query Q1 instantiates the query template with the range<min column value,

max column value> for the respective columns, while the query Q2 instantiates the query tem-

plate with the range <min domain value, max domain value>. Further the subrange predicates

are ordered from high selectivity to low selectivity in all the queries for the encrypted database.
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SELECT Count(*)
FROM Lineitem
WHERE L Shipdate ≥ “ value1”

AND L Shipdate ≤ “ value2”

Figure 8.1: SQL query template for 1D range predicate query

The bar charts in Figure 8.2 shows the query execution time for 1GB TPCH database, while

the Figure 8.3 shows the query execution time for 10GB TPCH database. In all the charts the

x-axis shows the dimension of the query and y-axis shows the query execution time in seconds.

Further the first two plots from the left in each figure shows the result of query execution

without indexes, while the remaining two plots shows the query execution in the presence of

indexes. Note that both single dimensional and multidimensional indexes were created.

(a) Q1 without index (b) Q2 without index (c) Q1 with index (d) Q2 with index

Figure 8.2: TPCH 1GB Experimental Results

(a) Q1 without index (b) Q2 without index (c) Q1 with index (d) Q2 with index

Figure 8.3: TPCH 10GB Experimental Results

As shown in Figures 8.2 and 8.3, all the queries for the encrypted database executed within

the 3-times slowdown of the plaintext query execution time.
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Chapter 9

Conclusion and Future Work

In this thesis we have shown the presence of Honest-but-Active adversary in the DBaaS system

and proposed an encryption scheme to securely and efficiently process range predicate over

encrypted database in the presence of such adversaries. We have also shown that our scheme

can efficiently handle equality predicates, group by and equi-join operators. Further, we have

also implemented and evaluated our scheme on benchmark databases and the experiment results

show that our scheme can efficiently support real time range predicate queries with strong

security guarantees.

The future work includes constructing an encryption scheme to securely and efficiently han-

dle all the SQL operators over the encrypted database against Honest-but-Active adversaries.
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