
Schema-based Statistics and Storage

for XML

A Thesis

Submitted for the Degree of

Doctor of Philosophy

in the Faculty of Engineering

By

Maya Ramanath

Supercomputer Education and Research Centre

INDIAN INSTITUTE OF SCIENCE

BANGALORE – 560 012, INDIA

April 2006

Acknowledgements

First and foremost, I would like to thank my advisor, Jayant Haritsa. Thanks to Jayant

for teaching me about research, writing about my research as well as presenting my

research. I thank him for setting high standards in the lab and for providing a great work

environment with all possible facilities one would ever need. Finally, he was and continues

to be an example to the rest of us with his hard work and dedication to research.

I thank Juliana Freire who has not only been my mentor and collaborator throughout

my Ph.D years, but also a good friend. She is the most hard-working, smartest and tough-

est person I know and continues to be an inspiration to me in many ways. Discussions

with her helped me clarify my ideas and writing papers with her gave me confidence in

my work.

My other collaborators, Prasan Roy, Jerome Simeon and Lingzhi Zhang have helped at

various phases in my Ph.D. Apart from their technical input which was always excellent,

I thank them for teaching me how to work in groups and enriching my PhD experience.

I thank Prof. N. Balakrishnan, Prof. Matthew Jacob, Prof. R. Govindarajan and

Prof. S.K. Nandy for their help and support. Special thanks to the office people who

were a tremendous help with the administrative side of things – Rajalakshmi, Sarala,

Nagamanjari, Triveni, Mallika, Kavitha, Govindaswamy, Gopakumar, Shashi, Shekhar,

Shivanna and many others. Thanks to the CMC staff – Anant, Raju, Gajanan – who

fixed my machines on time :-).

Working in the same lab for so many years can be difficult without a lot of friends.

Thanks to Kumaran, Vikram and Suresha for giving me company in my Ph.D. years.

Thanks to Aditya, Bharat, Chaitra, Kumaran and Vikram for giving me amazing company

i

Acknowledgements ii

for amazing amounts of time at the tea board and coffee board. I miss those daytime as

well as midnight trips when we talked about everything under the sun (and moon)!

Srikanta – first a friend, then a close friend and finally my life partner! I did not

include him in the above lists because he deserves a few pages of gratitude all for himself.

Without him, I may not have completed my Ph.D. Always there for me in my moments

of despair as well as my moments of joy. We struggled together for our PhDs and that

makes our bond even more special. He supported me in all the ways that I could possibly

want and then some!

Thanks to my mother-in-law who was the most kind and non-demanding mother-in-

law that one could ever wish for. It made my academic life smooth and my married life

a joy. I will miss her. Thanks to my father-in-law for his understanding and support.

Thanks to Prasad and Gayathri, for taking on many responsibilities when we were busy

with our seemingly never-ending student lives. Thanks to my cute little nephew Vishnu

– though he did not give me any technical input, his smiles and friendliness were input

enough :-))!!

No words can express my gratitude to my parents without whom none of this would

have been possible. Thanks to my father for teaching me about life and philosophy and

instilling in me the confidence and the ambition to work towards a Ph.D. He sets the

highest possible standards for himself and it is my constant endeavour to live up to those

standards that has made me the person I am today. Thanks to my mother for her love and

affection, her confidence in my abilities and her pride in my achievements. Always eager

to see me succeed and always willing take on more trouble to allow me to concentrate on

my studies has ensured that I never lost focus (and always had good food to eat ;-). All

that I am, I owe to my parents. And thanks of course to my brother, Madhava, who took

away the TV remote from me so that I worked even when at home ;-)).

Finally, I would like to thank my daughter – oh wait, she wasn’t born yet at that time

– she still had 3 months to go!!

Abstract

XML (eXtensible Markup Language) is a highly flexible text format that has become the

defacto standard for electronic publishing and data exchange, especially on the Web. XML

data is tree-structured and can be described by an XML Schema, which provides types

and regular expression constructs to concisely describe the document format. XQuery, a

declarative query language, supports the extraction and transformation of XML data.

Due to its flexible and nested format, the storage and query processing of XML data

throws up a variety of new challenges, not addressed by the classical relational approach

which is predicated on rigid flat-structured schemas. In this thesis, we address three

important issues arising in the XML context: First, we propose StatiX, a framework

for XML data summarization and query result cardinality estimation, that organically

handles both structural and value predicates. A rich set of schema transformations are

used to improve the accuracy of the summary. Through detailed experimentation with a

representative set of XQuery queries on both real and synthetic XML data, we show that

StatiX produces concise, accurate and flexible summaries.

Second, to cater to dynamic XML applications that frequently update their underlying

data, we propose the IMAX algorithm for incrementally maintaining StatiX summaries.

IMAX incorporates novel techniques for estimating both the positions of the update and

the ordinals of elements in the update fragment – a crucial requirement in the ordered data

model of XML. An experimental evaluation shows that it provides comparable accuracy

to a compute-from-scratch approach at a fraction of the runtime cost.

Finally, to design efficient storage layouts for XML data on the ubiquitous relational

database engines, we propose FleXMap, a framework that uses a wide range of transfor-

mations on the XML Schema description for characterizing the equivalent relational con-

figuration space. A variety of greedy search algorithms built on the FleXMap framework

are experimentally shown to output cost-efficient relational configurations as compared

to prior approaches.

In summary, this thesis presents a toolkit for effectively supporting the highly popular

XML world-view on the underlying storage and processing engines.

iii

Publications

• “IMAX: Incremental Maintenance of Schema-based XML Statistics”

M. Ramanath, L. Zhang, J. Freire and J. Haritsa

Proc. of the 21st IEEE Intl. Conf. on Data Engineering (ICDE), Tokyo, Japan,

April 2005, pgs. 273-284

• “A Flexible Infrastructure for Gathering XML Statistics and Estimating Query

Cardinality” (demo)

J. Freire, M. Ramanath and L. Zhang

Proc. of the 20th IEEE Intl. Conf. on Data Engineering (ICDE), Boston, USA,

March 2004, pg. 857

• “Searching for Efficient XML-to-Relational Mappings”

M. Ramanath, J. Freire, J. Haritsa and P. Roy

Proc. of the 1st Intl. XML Database Symposium (XSym), Berlin, Germany, Septem-

ber 2003, pgs. 19-36

• “Bridging the XML-Relational Divide with LegoDB: A Demonstration” (demo)

P. Bohannon, J. Freire, J. Haritsa, M. Ramanath, P. Roy and J. Simeon

Proc. of the 19th IEEE Intl. Conf. on Data Engineering (ICDE), Bangalore, India,

March 2003, pgs. 759-761

• “LegoDB: Customizing Relational Storage for XML Documents” (demo)

P. Bohannon, J. Freire, J. Haritsa, M. Ramanath, P. Roy and J. Simeon

Proc. of the 28th Intl. Conf. on Very Large Data Bases (VLDB), Hong Kong,

China, August 2002, pgs. 1091-1094

• “StatiX: Making XML Count”

J. Freire, J. Haritsa, M. Ramanath, P. Roy and J. Simeon

Proc. of the ACM SIGMOD Intl. Conf. on Management of Data , Madison,

Wisconsin, USA, June 2002, pgs. 181-192

iv

Contents

Acknowledgements i

Abstract iv

List of Figures x

List of Tables xiv

1 Introduction 1

1.1 XML and Related Standards . 3

1.2 Challenges in XML Data Management . 7

1.3 Problems Addressed in the Thesis . 9

1.3.1 Statistics Collection and Cardinality Estimation 9

1.3.2 Statistics Maintenance . 10

1.3.3 Relational Storage for XML . 12

1.3.4 Summary of Contributions . 13

1.4 Organization . 13

2 Related Work 15

2.1 Introduction . 15

2.2 XML Statistics . 16

2.2.1 Statistics Production . 17

2.2.2 Statistics Maintenance . 20

2.3 XML Storage . 20

v

Contents vi

2.3.1 Storage Methods for Schemaless XML Data 21

2.3.2 Storage Methods using XML Schemas 23

2.3.3 Cost-based Solutions . 26

2.3.4 Commercial Solutions . 27

3 Schema Transformations 29

3.1 Introduction . 29

3.2 Basic Framework . 30

3.3 Schema Transformations . 31

3.3.1 Inline and Outline . 32

3.3.2 Type Split and Type Merge . 32

3.3.3 Union Distribution and Union Factorization 35

3.3.4 Repetition Split and Repetition Merge 36

3.3.5 Repetitions to Unions . 37

3.4 Recursion . 37

3.5 Validation and Schema Transformations 39

3.6 Implementation of Transforms . 40

3.7 Conclusions . 43

4 Statistics Collection and Query Result Size Estimation 44

4.1 Introduction . 44

4.2 Description of StatiX Summaries . 46

4.3 Estimating Query Result Cardinality in StatiX 48

4.4 Tuning the Accuracy of StatiX Summaries 51

4.4.1 Potential Limitations of Structural Histograms 51

4.4.2 Transformations for Finer Granularity Statistics 52

4.5 Construction of a StatiX Summary . 56

4.5.1 The Statistics Collector . 57

4.5.2 Schema Transformer . 59

4.6 Experimental Setup . 60

Contents vii

4.6.1 Metrics . 61

4.7 Performance Evaluation . 62

4.7.1 Estimation Accuracy . 62

4.7.2 Size of the Summary . 72

4.7.3 Statistics Collection Overheads . 77

4.8 Conclusions . 80

5 Incremental Maintenance of XML Summaries 81

5.1 Introduction . 81

5.2 Issues in Updating StatiX Summaries . 82

5.2.1 Location and Cardinality Estimation 84

5.2.2 Updates to Structure and Value Histograms 84

5.3 The IMAX Technique . 85

5.3.1 Estimating the Location of the Update 85

5.3.2 Estimating the Ids of the Update Fragment 88

5.3.3 Updating the Summary . 90

5.4 Experimental Evaluation . 93

5.4.1 Experimental Setup . 93

5.4.2 Append-Only Updates . 95

5.4.3 Random Insertions . 97

5.4.4 Estimation Accuracy and Timing 109

5.5 Conclusions . 110

6 A Cost-based XML-to-Relational Storage System 112

6.1 Introduction . 112

6.2 From Schema Trees to Relational Configurations 113

6.2.1 Basic Mapping . 113

6.2.2 Supporting Additional Features of XML Schema 116

6.2.3 Schema Transformations and Relational Configurations 116

6.2.4 Structural Transformations . 119

Contents viii

6.3 Evaluating Configurations . 122

6.3.1 Collection and Propagation of Statistics 122

6.3.2 Query Translation . 124

6.4 Search Algorithms . 128

6.4.1 InlineGreedy . 129

6.4.2 ShallowGreedy: Adding Transforms 130

6.4.3 DeepGreedy: Deep merges . 130

6.5 Performance Evaluation . 131

6.5.1 Query Workloads . 132

6.5.2 Performance on S-Query Workloads 134

6.5.3 Performance on M-Query Workloads 136

6.5.4 Performance on Mixed Workloads 138

6.5.5 Comparison with Baselines . 141

6.6 Optimizations . 143

6.6.1 Grouping Transformations Together 143

6.6.2 Early Termination . 146

6.6.3 Applying Only Profitable Transforms 146

6.6.4 Reducing the Search Space by Query Analysis 147

6.7 Conclusions . 148

7 Conclusions and Future Work 150

7.1 Future Work . 151

References 154

List of Figures

1.1 Sample DBLP Data . 4

1.2 Tree Representation of the DBLP Data . 5

1.3 Snippet of an XML Schema for DBLP . 6

1.4 The Big Picture: Problems addressed in the Thesis 13

3.1 Using Type Constructors to Represent XML Schema Types 30

3.2 The (partial) IMDB Schema . 41

3.3 (Partial) Schema Tree for the IMDB Schema 42

3.4 Patterns for Union Distribution and their Transformation 42

3.5 Pattern for Repetition Split and its Transformation 43

4.1 IMDB schema and the corresponding StatiX summary 47

4.2 Node and Parent ids have a Correspondence 51

4.3 Schema 1 . 53

4.4 Schema 2 . 53

4.5 Schema 3 . 54

4.6 Type graphs of the Three Schemas . 54

4.7 Building StatiX Summaries . 56

4.8 IMDB: Estimation Accuracy for BP Queries over N-Summary 63

4.9 DBLP: Estimation Accuracy for BP Queries over N-Summary 63

4.10 IMDB: Estimation Accuracy for VP Queries over N-Summary with 30

Value Histogram Buckets . 65

ix

List of Figures x

4.11 IMDB: Overall Estimation Accuracy for VP Queries over N-Summary

with Increasing Value Histogram Buckets 66

4.12 IMDB: Estimation Accuracy for VP Queries over N-Summary with In-

creasing Value Histogram Buckets and 100 Structural Histogram Buckets . 66

4.13 DBLP: Estimation Accuracy for VP Queries over N-Summary with 30

Value Histogram Buckets . 67

4.14 DBLP: Estimation Accuracy for VP Queries over N-Summary with In-

creasing Value Histogram Buckets and 100 Structural Histogram Buckets . 68

4.15 IMDB: Estimation Accuracy for VP Queries over D-Summary with 30

Value Histogram Buckets . 69

4.16 IMDB: Estimation Accuracy for VP Queries over D-Summary with In-

creasing Value Histogram Buckets . 70

4.17 IMDB: Estimation Accuracy for VP Queries over D-Summary with In-

creasing Value Histogram Buckets and 100 Structural Histogram Buckets . 70

4.18 DBLP: Estimation Accuracy for VP Queries over D-Summary with 30

Value Histogram Buckets . 71

4.19 DBLP: Estimation Accuracy for VP Queries over D-Summary with In-

creasing Value Histogram Buckets and 100 Structural Histogram Buckets . 72

4.20 IMDB: Estimation Accuracy for VP Queries with Equivalent Number of

Buckets . 74

4.21 DBLP: Estimation Accuracy for VP Queries with Equivalent Number of

Buckets . 74

4.22 IMDB: Efficiency of Statistics Collection for the N-Schema 77

4.23 IMDB: Efficiency of Statistics Collection for the D-Schema 78

4.24 IMDB: Comparison of Validation Times for the N- and D-Schemas 78

4.25 IMDB: Comparison of Summary Construction Times for the N- and D-

Schemas . 79

5.1 2D Histogram to Capture Correlation Between Year values and Year Ids . . 88

5.2 Node and Parent ids have a Correspondence 89

List of Figures xi

5.3 Computing the Ids of REVIEW . 90

5.4 Inserting Ids into the Parent Histogram of RATING 91

5.5 2D Histograms - Construction and Merge 93

5.6 IMDB: µmse values for types Review and Aka 96

5.7 IMDB: µmse values for type Year . 96

5.8 DBLP: µmse values for types Author and Url 98

5.9 IMDB: LEA for Random Insertions with 1D and 2D Value Histograms . . 101

5.10 DBLP: LEA for Random Insertions with 1D and 2D Value Histograms . . 101

5.11 IMDB: µmse values for type Played for Random Insertions 102

5.12 IMDB: µcount values for type Played for Random Insertions 103

5.13 IMDB: µcount values for type Played for Skewed Insertions 104

5.14 IMDB: µmse values for type Played for Skewed Insertions 104

5.15 IMDB: µmse values for type Episode for Random Insertions 105

5.16 IMDB: µmse values for type Episode for Skewed Insertions 105

5.17 DBLP: µmse values for type LINK for Random Multiple Insertions 107

5.18 DBLP: µmse values for type LINK for Skewed Multiple Insertions 107

5.19 DBLP: µcount values for type LINK for Random Multiple Insertions 108

5.20 DBLP: µcount values for type LINK for Skewed Multiple Insertions 108

5.21 Error Relative to Recomputed Summary for IMDB and DBLP Datasets . . 109

6.1 (Partial) Schema Tree for the IMDB Schema 115

6.2 Relational Schema for the (partial) Schema Tree 115

6.3 A Subset of Annotations . 117

6.4 Relational Schema with Annotation “T” 117

6.5 Applying Associativity . 119

6.6 Statistics Translation . 123

6.7 The IMDB Schema and its relational configuration 126

6.8 Cost of Workloads containing S-Queries . 135

6.9 No. of configurations Examined for Workloads Containing S-Queries 136

6.10 Cost of Workloads Containing M-Queries 137

List of Figures xii

6.11 No. of configurations Examined for Workloads Containing M-Queries . . . 137

6.12 IMDB: Cost of Workloads Containing both M- and S-Queries 139

6.13 IMDB: No. of Configurations Examined for Workloads Containing M-

and S-Queries . 139

6.14 DBLP: Cost of Workloads Containing both M- and S-Queries 140

6.15 DBLP: No. of Configurations Examined for Workloads Containing M-

and S-Queries . 141

6.16 Comparison of DeepGreedy with the Baselines and Inline (User) 143

6.17 No. of Configurations Examined by DeepGreedy and GroupGreedy 145

6.18 Progress of DeepGreedy on Workload W 146

List of Tables

2.1 Summary of Related Work on Statistics Production and Maintenance . . . 16

2.2 Summary of Related Work on Storage in Relational Backends 21

4.1 Cardinality Computation in StatiX . 50

4.2 Queries, Schemas and Accuracy . 55

4.3 Experimental Setup . 62

4.4 Equivalent Number of Buckets . 73

4.5 IMDB and DBLP: Absolute Sizes of the Summaries 75

4.6 IMDB and DBLP: Savings with Compression 77

5.1 IMDB: RECOMP with Appends . 97

5.2 DBLP: RECOMP with Appends . 97

5.3 IMDB: RECOMP with Random and Skewed Insertions 103

5.4 DBLP: RECOMP with Random and Skewed Insertions 106

5.5 Average Time per Update (in ms) . 109

xiii

Chapter 1

Introduction

Because of the huge popularity and reach of the World Wide Web, the potential to exploit

it in diverse areas such as industry, governance and academics is tremendous. Web-based

applications include e-business, e-governance, medical informatics, bio-informatics, etc.

For example, Amazon [2], the well-known distributor of books and related material,

enables developers, merchants, and partners to provide customers with information re-

trieved from Amazon’s databases in real-time over the web. Amazon opened up several of

its features like the catalog, shopping cart, and personalization engine through their web

services platform to the public. More than a million associates can now access Amazon’s

product listings through the web and provide consumers with value-added services, while

also uploading their own products to be advertised and sold on Amazon’s web-site [41].

For applications such as the above to succeed, there are several requirements, including:

(i) a common format for publishing the data should be agreed upon by the concerned

parties, (ii) applications should be able to automatically consume this data, (iii) humans

should be able to read the data so that they can design customized applications, and (iv)

the publishing format has to be platform- and vendor-independent.

The exchange and manipulation of documents conforming to a common format has

been in practice for over 40 years. For example, IBM developed GML (Generalized

Markup Language) so that the same markup for, say, a manual, could be used to produce

a book, electronic editions, reports, etc. The need for standardizing the way in which

1

Chapter 1. Introduction 2

markup could be specified, defined and used in documents was recognized when wider

varieties of document types had to be specified, each with their own set of tags and struc-

ture. The result was the development of SGML (Standard Generalized Markup Language),

published as ISO 8879 [33]. SGML can be used for defining and using portable document

formats and can handle complex documents. SGML supports the following important

features: (i) extensibility – the ability to add new tags, (ii) structure – the flexibility to

specify deeply nested structures, possibly containing missing and repeated elements, and

(iii) validation – enabling the application which consumes the SGML document to check

whether the document is valid with respect to its document type.

When the web was still in its nascent stages, electronic documents were published on

the web mainly to be read by web browsers and this comparatively simple application

did not require the power of SGML. And so was born the Hypertext Markup Language

(HTML) [31]. HTML is also an application of SGML and defines its own specific tagset.

It is hugely popular because it is easy to learn and use.

However, HTML’s tagset is mainly limited to describing how the document should be

displayed on a browser, rather than describing its content. And this is the main reason

why HTML cannot be used for applications such as those supported by Amazon. The

markup and structures that need to be defined for these applications is industry-specific

and can be supported not by HTML, but by SGML. And so, the need to bring SGML

to the web resulted in the development of XML (eXtensible Markup Language), a meta-

language which is based on SGML, but without some of the more difficult-to-learn and

difficult-to-implement features of SGML.

XML [23] is a highly flexible text format that has become the defacto standard for

electronic publishing and data exchange on the web. Its simplicity makes it a tool of

choice in various applications requiring data representation, integration and transforma-

tion (see for example, [77], for a long list of such applications). Moreover, the emergence

of supporting XML-related standards such as schemas for describing classes of XML doc-

uments and query languages for accessing and transforming XML data has made XML a

powerful tool, making it the key component in applications such as those supported by

Chapter 1. Introduction 3

the web-services platform of Amazon.

1.1 XML and Related Standards

XML emerged as a standard in 1998, and is a recommendation of the World Wide Web

Consortium (W3C) [73]. Figure 1.1 shows a fragment of data from the Database and Logic

Programming Bibliography website (DBLP) [18]. The data contains elements (tags) such

as article and author, as well as attributes, such as key. All these tags are specific

to describing the DBLP data. The data representation is flexible since it allows for

optional elements (for example, one of the articles has a url, while the other does not),

and repeated elements (multiple author elements in one inproceedings, while the other

contains a single author), etc. Different elements in the document can be linked to each

other through the use of IDs (keys) and IDREFs (keyrefs). For example, the key attribute

in each of the elements acts as the identification or key of that element. This key can

then be referred to by a key reference such as crossref.

Each start tag has a corresponding end tag, making this XML fragment well-formed.

The nested structure of the document can be regarded as a tree, with the internal nodes

containing the elements and attributes and the leaf nodes containing the values, as shown

in Figure 1.21. This representation is commonly used when manipulating XML data,

especially from APIs such as the Document Object Model (DOM) API [20].

Other standards essential for the effective use of XML such as schemas and query

languages are being developed, and some of them have become recommendations. Chief

among the schema languages proposed for XML are the DTD (Document Type Definition)

[23] and XML Schema [71]. Both these languages make use of regular expressions to

provide flexibility in describing a class of documents. XML Schemas are more powerful

than DTDs since they have a type system associated with them and allow the decoupling

of tag names from type names. A snippet of the XML Schema which describes the DBLP

data is shown in Figure 1.3. The flexibility of regular expressions is suitable for expressing

1Note that we may also choose to represent key/keyrefs as edges, making the data graph-structured.

Chapter 1. Introduction 4

<dblp>

<mastersthesis mdate="2002-01-03" key="ms/Brown92">

<author>Kurt P. Brown</author>

<title>PRPL: A Database Workload Specification Language, v1.3.</title>

<year>1992</year>

<school>Univ. of Wisconsin-Madison</school>

</mastersthesis>

<article mdate="2002-01-03" key="tr/dec/SRC1997-018">

<ee>db/labs/dec/SRC1997-018.html</ee>

<ee>http://www.mcjones.org/System_R/SQL_Reunion_95/</ee>

<editor>Paul R. McJones</editor>

<title>The 1995 SQL Reunion: People, Project, and Politics, May 29, 1995.</title>

<journal>Digital System Research Center Report</journal>

<volume>SRC1997-018</volume>

<year>1997</year>

<cdrom>decTR/src1997-018.pdf</cdrom>

</article>

<article mdate="2002-01-03" key="tr/gte/TR-0263-08-94-165">

<ee>db/labs/gte/TR-0263-08-94-165.html</ee>

<author>Frank Manola</author>

<title>An Evaluation of Object-Oriented DBMS Developments: 1994 Edition.</title>

<journal>GTE Laboratories Incorporated</journal>

<volume>TR-0263-08-94-165</volume>

<month>August</month>

<year>1994</year>

<url>db/labs/gte/index.html#TR-0263-08-94-165</url>

<cdrom>GTE/MANO94a.pdf</cdrom>

</article>

<inproceedings mdate="2002-01-23" key="conf/b/Sekerinski98">

<author>Emil Sekerinski</author>

<booktitle>Graphical Design of Reactive Systems.</booktitle>

<crossref>conf/b/1998</crossref>

<ee>http://link.springer.de/link/service/series/0558/bibs/1393/13930182.htm</ee>

<pages>182-197</pages>

<url>db/conf/b/b1998.html#Sekerinski98</url>

<year>1998</year>

</inproceedings>

<inproceedings mdate="2002-01-23" key="conf/b/BehmBM98">

<author>Patrick Behm</author>

<author>Lilian Burdy</author>

<author>Jean-Marc Meynadier</author>

<booktitle>Well Defined B.</booktitle>

<crossref>conf/b/1998</crossref>

<ee>http://link.springer.de/link/service/series/0558/bibs/1393/13930029.htm</ee>

<pages>29-45</pages>

<url>db/conf/b/b1998.html#BehmBM98</url>

<year>1998</year>

</inproceedings>

</dblp>

Figure 1.1: Sample DBLP Data

Chapter 1. Introduction 5

mastersthesis

author

article

dblp

article inproceedings

title year school author booktitle crossref ee
... ...

...

...

"..." "..." 1992 "..." "..." "..." "..." "..."

Figure 1.2: Tree Representation of the DBLP Data

features such as optional and repeated elements. For example, the type Article contains

several optional elements, such as Url (the ? qualifier in Figure 1.3 indicates this) – the

second article in the data contains a url while the first one does not. The XML Schema

also has types which may occur multiple times, such as Author (indicated by the * qualifier)

– the first inproceedings in the XML data contains a single author element while the

second one contains three such elements. Moreover, simple data types such as integer for

the type Year and string for the type Author can be specified.

Query languages for XML include the declarative XPath [79] and XQuery [70]. XQuery

is a language with the power of first order predicate calculus. It can query XML data, and

additionally provides constructs to transform and integrate multiple sources of XML data.

Extensions for enabling XQuery to support updates are currently under development [80].

XPath, also a full-fledged query language on its own, forms the core of XQuery and mainly

provides the navigational constructs required to query XML. The following XQuery query

extracts all articles published before 1995 and returns the key, title and authors of each

article in a new format.

for $i in /dblp/article
where $i/year < ‘‘1995’’
return
<ARTICLE>
<KEY> $i/@key </KEY>
<TITLE> $i/title </TITLE>
<AUTHORS>

<AUTHOR> $i/author </AUTHOR>
</AUTHORS>

Chapter 1. Introduction 6

define element dblp {
type Mastersthesis+, type Article+, type Inproceedings+

}
define type Mastersthesis {

element mastersthesis {
attribute Mdate, attribute Key, type Author,
type Title, type Year, type School

} }
define type Article {

element article {
attribute Mdate, attribute Key, type Ee*, type Author*,
type Editor*, type Title, type Journal, type Volume,
type Month?, type Year, type Publisher?, type Url?,
type Cdrom?

} }
define type Inproceedings {

element inproceedings {
attribute Key, attribute Mdate, type Author*, type Booktitle,
type Cdrom?,type Crossref*, type Ee*,
type Number?, type Pages*, type Url*,
type Year

} }
define type Crossref { element crossref {xsd:string } }
define type Author { element author {xsd:string } }
define type Booktitle { element booktitle {xsd:string } }
define type Year { element year {xsd:integer } }

Figure 1.3: Snippet of an XML Schema for DBLP

Chapter 1. Introduction 7

</ARTICLE>

This XQuery contains three clauses: for, where and return. The return clause

constructs a new fragment of XML. Note that path expressions such as /dblp/article are

an essential part of XQuery. This expression indicates that starting at the root (denoted by

the first “/” symbol), the tag dblp has to be matched. From the nodes which match dblp,

the children of those nodes (denoted by the second“/” symbol) have to be traversed. The

“/” symbol denotes the navigational axis. Several other axes, such as descendant (denoted

by “//”), parent, ancestor, left-sibling, etc. can be specified. The path expression can also

contain branches, as in the following example: /dblp/article[year < ‘‘1995’’] which

asks for all articles whose publication year is less than 1995. Such branching path

expressions with value as well as boolean predicates (including and, or and not) form the

crux of XPath.

1.2 Challenges in XML Data Management

The proliferation of the web and the emergence of XML as a popular means of data

representation and data exchange has resulted in the need for managing large volumes of

XML data. The primary data management issues which need to be addressed include:

Storage: XML data can be stored in a variety of ways including backends such as file

systems, relational systems or native XML stores. The choice of backend depends

on the application. Building a full-fledged XML storage manager is often an attrac-

tive option since the layout can be optimized for efficient query processing. But,

many applications expect XML data to be either stored in or generated from already

existing relational systems. Hence the storage of XML in relational database is an

interesting alternative that has attracted considerable attention from the research

community. In addition to storage in such legacy systems, the complementary prob-

lem of XML publishing, where XML data is produced from relational systems is also

important.

Chapter 1. Introduction 8

Query processing: Access to XML involves the retrieval, transformation and update

of XML data using XML query languages such as XPath and XQuery. Query pro-

cessing as a whole involves the investigation of several other issues. Chief among

them are: (i) development of efficient algorithms to process the various query predi-

cates, including updates; (ii) development of cost models for XML query processing;

(iii) cardinality estimation of query fragments which serve as inputs to the query

optimizer; (iv) building query optimizers to generate optimal query plans, etc.

Except for XML publishing which is a problem mainly motivated from XML applica-

tions which need to publish data from existing sources, the other data management issues

of storage and query processing have already been addressed in the context of relational

database systems. However, direct application of techniques developed for relational sys-

tems to XML data management is not always possible due to the fundamental mismatch

in the data models of XML and relational data. We list several differences below be-

tween XML and relational data which makes clear the necessity for revisiting several data

management issues in the context of XML.

Data: XML data is tree-structured (if keys and keyrefs are treated as edges, then XML

is graph-structured), while relational data is flat and is made up of tables and

columns. Moreover, while relational systems are predicated on the existence of a

schema, XML data need not be accompanied by a schema.

Schema: Relational databases have a rigid schema associated with them, which clearly

defines the tables, their columns and the data types of these columns. However,

XML schemas are significantly more flexible since they describe classes of documents

through means of regular expressions, which allow for a considerable variety of data

conforming to the same schema.

Queries: Relational databases are queried through the declarative query language SQL

which specifies the tables and columns from which data is to be retrieved and how

they are to be combined. On the other hand, since XML is tree structured, XML

query languages such as XPath and XQuery have navigational primitives in addition

Chapter 1. Introduction 9

to value primitives. Also, the output of an XML query could be an arbitrary sized

tree.

1.3 Problems Addressed in the Thesis

In this thesis, we address two important problems that go to the heart of XML data man-

agement due to their substantive impact on efficient XML query processing: XML data

summarization and XML data storage. Data summarization provides crucial cardinality

estimation inputs to the query optimizer which helps in execution plan generation, while

data storage directly impacts the query processing. The work presented in this thesis is

divided mainly into three parts: (i) Statistics Collection and Cardinality Estimation, (ii)

Statistics Maintenance, and (iii) XML Storage. Our solutions to each of these problems

is based on the existence of an XML Schema that decides document validity. As men-

tioned previously, XML Schemas are more powerful than DTDs and are now becoming

commonplace for most XML applications, and are widely used (see [48] for descriptions

of several applications and standardized XML Schemas). Another crucial feature in our

work is the use of schema transformations on the XML Schema to make our solutions

both effective and efficient.

1.3.1 Statistics Collection and Cardinality Estimation

A critical component of an XML data management system is the result estimator, which

estimates the selectivity of user queries. Its importance arises from the fact that estimated

cardinalities serve as inputs in many aspects of XML data management systems such as

cost-based storage design and query optimization.

A large body of literature is available for result size estimators in traditional database

systems. In essence, summary statistics such as the distribution of values in a given

column, the minimum and maximum value, the number of distinct values, etc. are stored

and used in an estimation framework in order to estimate the result size. However, in the

XML domain, the design of such result estimators becomes more complex because of the

Chapter 1. Introduction 10

fact that XML inherently has structure associated with it and does not consist merely

of values as in the case of relational systems. Moreover, the query languages designed

for XML have tree navigation as a first class primitive. Additionally, since XML Schema

provides regular expression constructs, the structure of the data has a considerable amount

of flexibility in terms of presence/absence of certain elements, number of occurrences of

a given element, etc. This may give rise to skew in the structure of the data as well as

the values. In effect, any solution to the problem of cardinality estimation for XML has

to provide solutions which deal with both structure and value on an equal footing.

The first part of the thesis proposes StatiX (Statistics for XML), a framework for

XQuery cardinality estimation and statistics collection for XML data. StatiX is a novel,

schema-based framework that exploits the structure in the XML Schema in order to decide

what statistics should be collected. StatiX proposes the use of schema transformations

in order to vary the granularity of the statistics collected (in consequence, the accuracy

of the cardinality estimation is affected). It is based on the following two principles: i)

the use of standard XML technology (mainly, schema validators), where possible, in order

to collect the statistics efficiently, and ii) the use of histograms to summarize both the

structure as well as the values in an XML document. This aspect of StatiX enables the

reuse of histogram multiplication techniques in order to estimate the query cardinalities

of various queries. Currently, StatiX can handle a significant subset of XQuery, specifi-

cally, branching path expressions with value predicates. Through a detailed performance

evaluation, StatiX is shown to be accurate as well as concise for different synthetic as well

as real data sets.

1.3.2 Statistics Maintenance

A large number of XML applications are dynamic and frequently update the underlying

data. For example, an XML workflow application that keeps track of customer purchase

orders may dynamically update book-keeping information about the status of the order

as it navigates through the order-processing cycle. While StatiX provides solutions to the

problem of statistics production, it is equally important to address the problem of statistics

Chapter 1. Introduction 11

maintenance when the underlying data is subject to inserts, deletes or modifications.

Periodically recomputing the statistics from scratch on the updated documents is an

obvious choice to cater to the XML update problem. But since recomputation requires the

whole document to be parsed, it can be prohibitively expensive [47] if recomputations occur

frequently, especially for large documents. Further, if recomputations are not adequately

timed, stale statistical summaries may lead to unacceptable estimation errors. And so,

techniques which can maintain the statistics in parallel with the receipt of data need to

be considered.

Incremental maintenance of data statistics per se is not a new issue to the database

community, having been previously addressed in the context of relational database systems

(see e.g., [30]). However, what is novel in the XML context is that statistics about both

structure and value have to be maintained. That is, while in an RDBMS, there is no

difference, as far as the statistics go, between the insertion of a tuple in the middle of

a relation or the appending of the same tuple at the end, the location of the update

is always an issue in XML. Secondly, the size of the update in an RDBMS can only

be either a single tuple or a set of tuples. But, in an XML environment, the update

could be an arbitrarily complex XML fragment, or sets of fragments. For example, the

update could require inserting sub-trees at various locations in the original document.

Thus, maintaining accurate statistics for XML databases poses a fresh set of problems as

compared to those tackled in prior systems.

In the second part of the thesis, we propose an algorithm for incremental maintenance

of XML Statistics, named IMAX (Incremental Maintenance of XML Statistics). IMAX

proposes efficient strategies for incrementally maintaining StatiX summaries as and when

updates are applied to the data. IMAX addresses the issues of: i) estimating how many

updates will take place and, ii) estimating the specific locations where the updates will

take place. The second issue is specific to XML since the order of elements has to be

taken into account.

Chapter 1. Introduction 12

1.3.3 Relational Storage for XML

As applications manipulate an increasing amount of XML, there is a growing interest in

storing XML data in relational databases. The main advantage of storing XML in rela-

tional systems is that the large amount of research which has enabled relational systems

to grow into a mature technology can be leveraged. Basic data management services such

as concurrency control and recovery are already present in relational systems and need

not be re-invented for XML. In addition, many XML applications are expected to be

produced from or stored in relational databases. The need for such close interaction with

relational data make relational database systems an attractive choice for storing XML.

An added advantage is that relational systems are already widely used.

Due to the mismatch between the complexity of XML’s tree structure and the sim-

plicity of flat relational tables, there are many ways to store the same document in an

RDBMS, and a number of heuristic techniques have been proposed. However, a single

fixed mapping is unlikely to work well for all different applications. The case for a cost

based approach was made in [6, 7, 8] wherein the application characteristics in the form of

the XML Schema, XML data statistics and XML query workload were considered when

coming up with a relational configuration. The system, named LegoDB, used schema

transformations to generate different relational configurations and used a relational opti-

mizer [61] to estimate the costs of the generated candidate configurations.

The third part of the thesis – named FleXMap (Flexible XML Mappings) – builds

on LegoDB and investigates the utility of the schema transformations in more detail.

Many of these schema transformations are also used in StatiX to improve the granularity

of the summary. Issues which arise in the context of cost-based storage, such as the

propagation of statistics from one relational configuration to another during the search

process are addressed. Using FleXMap has two advantages: i) a much larger space of

configurations can be explored by the addition of new transformations or by choosing an

appropriate subset of the transformations already proposed, and, ii) because of the way in

which the search algorithms are derived from the framework, a larger space is searched at

a marginal increase in response time. Several optimizations to substantially improve the

Chapter 1. Introduction 13

Figure 1.4: The Big Picture: Problems addressed in the Thesis

efficiency of the search process while maintaining the quality of the output are proposed.

1.3.4 Summary of Contributions

In summary, we propose a set of three tools in this thesis – StatiX, IMAX and FleXMap

– which address the issues of statistics production, statistics maintenance, and storage

of XML data, respectively. These three systems are schematically shown in Figure 1.4.

StatiX takes an XML Schema and XML data as inputs, and outputs a statistics summary.

This summary can then be used to estimate the cardinality of various XQuery queries.

IMAX takes as input the XML Schema and the currently existing StatiX summary for

a data set. IMAX tracks the updates to the underlying data and appropriately updates

the summary. FleXMap takes as input an XML Schema, a StatiX summary and a query

workload, and outputs a relational configuration that can answer the queries in the query

workload efficiently. Experimental evaluation of all three tools over real and synthetic

data sets shows that this toolkit is both effective as well as efficient.

1.4 Organization

The rest of this thesis is organized as follows. In Chapter 2, we review related work on

statistics and storage of XML and highlight the differences and similarities with the work

presented in this thesis. In Chapter 3, we introduce schema transformations which are

Chapter 1. Introduction 14

the basis of the solutions presented. In Chapter 4, we present StatiX, a framework for

XML statistics production and cardinality estimation. In Chapter 5, we present IMAX,

a technique for maintaining XML statistics in the presence of updates to the underlying

data. In Chapter 6, we present FleXMap, a cost-based search system to find efficient

relational configurations for XML data. We conclude and identify avenues of future

research in Chapter 7.

Chapter 2

Related Work

2.1 Introduction

There have been several proposals on XML query selectivity estimation in the literature

[1, 14, 26, 27, 40, 54, 55, 56, 62, 63, 75]. They differ in many different aspects, such

as use of schema information, summary structure, supported queries, etc. However, a

common limitation of the proposals mentioned above is that they do not support statistics

maintenance. In addition to IMAX, the Bloom Histogram technique proposed in [72] is

the only other work we are aware of that deals with the problem of maintaining statistics

in the presence of updates to the underlying XML data.

Moving on to the problem of storing XML data, there is a large amount of literature

available on primarily two ways of storing XML data: (i) building a native XML database

system, and (ii) storing XML in an already existing database system such as a relational

database system. While there are many native XML databases available (for example,

[34, 46, 66], see [78] for a list of such databases), our focus in this thesis is on storing

XML data in relational systems.

There are several proposals for storing XML in relational systems. For example,

[8, 12, 13, 17, 19, 21, 25, 35, 38, 43, 50, 52, 64, 68, 81, 82]. These proposals differ in

many ways – whether they are order-preserving and constraint-preserving, whether they

are schema-aware or schema-oblivious, whether they automatically generate a relational

15

Chapter 2. Related Work 16

mapping, whether they are heuristic or cost-based, etc.

In this Chapter, we survey the related work on XML statistics in Section 2.2 – statistics

production as well as maintenance. And then in Section 2.3, we discuss related work on

mapping XML to relational systems.

2.2 XML Statistics

Proposal Input Summary
Structure

Order Structure Value Updates

[14] Data Correlated sub-
path tree

No Tree pat-
tern

No No

[1] Data Path tree and
Markov tables

No Simple
paths

No No

XPathLearner
[40]

Query
feedback

Markov tables No Simple
Paths

Yes No

[75] Data
and
schema

Position His-
togram

Yes Twigs Yes No

XSketches
[54, 55, 56] Data XSketch graph No Tree Pat-

tern
Yes No

StatiX
[26, 27] Data

and
Schema

Histogram Yes Tree Pat-
tern

Yes No

[62, 63] Data
and
Schema

Tagged region
graph

No Tree pat-
tern

Yes No

Bloom His-
tograms
[72] Data Bloom Filter No Simple

Paths
No Yes

IMAX
[60] Data

and
Schema

Histogram Yes Tree pat-
tern

Yes Yes

Table 2.1: Summary of Related Work on Statistics Production and Maintenance

Table 2.1 summarizes the differences and features among the various proposals for

Chapter 2. Related Work 17

XML statistics production and maintenance.

2.2.1 Statistics Production

In [14], Chen et al propose a scheme that captures correlations between paths, resulting

in accurate estimation of twig queries. Twig queries are queries which can be expressed

as small, node-labeled trees that match portions of the data. Their strategy consists of

gathering counts for frequently occurring twiglets in the data, and then assigning each

twiglet a “set hash” signature that captures the correlations between the subpaths in the

data tree. Query selectivity is then estimated by combining the hash signatures of the

twiglets occurring in the query.

In [1], Aboulnaga et al propose two techniques for estimating selectivity of simple path

expressions: summarized path trees and summarized Markov tables. A summarized path

tree is a representation of all paths in the XML document. At each node in the path tree,

the frequency of paths from the root to that node is maintained. The frequency at the

node is the selectivity of the path from the root to that node. Since the path tree can

be very large, several methods of compressing it are proposed. The main idea is to delete

or coalesce low frequency nodes. Markov tables are tables which contain the frequency

information for all simple paths upto a given length k. The low frequency paths are again

deleted to make the table compact. The selectivity of any simple path query is computed

based on the selectivities of “subpaths” of the query – in effect, it is assumed that the

selectivity of any tag in the path depends only on at most the previous k − 1 tags, in

effect modeling the path as a Markov process of order k − 1 (hence the name “Markov”

table).

The XPathLearner [40] technique proposes the use of query feedback in order to collect

statistics about simple path expressions. The basic summary structure is the Markov

histogram, which simply summarizes the counts of simple paths with lengths less than

some parameter k, as well as values. This summarization is done online by observing

the selectivities of queries fired on the database, rather than by scanning the data offline.

The principle of computing the selectivities of simple path expressions is the same as that

Chapter 2. Related Work 18

described in [1].

In [75], the authors propose “position histograms” to capture selectivity information.

Each node in the XML tree is first labeled with intervals – that is, each node is assigned a

tuple of a start position and an end position. Any descendant node has an interval strictly

contained in any of its ancestor nodes. Next, several predicates of interest are identified –

a predicate could be as simple as “element name = AUTHOR”. For each such predicate,

a position histogram is built. A position histogram is a two dimensional histogram which

contains the start values in the x-axis and end values in the y-axis. Armed with these

position histograms, predicates such as P1//P2 can be computed. For branching patterns,

the query is first decomposed into simple paths and the results are combined. Certain

properties of position histograms, such as identifying certain regions to be empty, help in

effective evaluation of these predicates. Schema information is made use of when available

– for example, if it is known that two predicates P1 and P2 reside on different branches of

the tree, then the selectivity of P1//P2 is 0 and can be reported without any computation.

Polyzotis et al [54, 55, 56] propose graph synopses structures called “XSketch”es as

the summary structure. XSketches are based on the notion of backward and forward

bisimilarity of a graph. The two extreme XSketches are the “label-split” graph (the

coarsest summary) and the “backward-and-forward bisimilar” graph (BF-bisimilar graph,

the most detailed summary). Construction for the BF-bisimlar graph is known in the

literature [51]. For values, they propose building value histograms at the leaf level. Since

the label-split graph is small but too inaccurate and the BF-bisimilar graph is highly

accurate, but potentially too large, a greedy algorithm is proposed to find an appropriate

“intermediate” XSketch synopsis. The construction algorithm outlined starts from the

label-split graph and successively refines edges to make them backward or forward (or

both) stable based on the increase in accuracy that they offer on a given query workload.

XSketches are able to handle branching path expressions with value predicates as well

as twig queries which require combining results from multiple path expressions. The

cardinality estimation makes use of independence and uniform distribution assumptions

when necessary. XSketches come closest in spirit to StatiX even though they do not use

Chapter 2. Related Work 19

any schema information and do not store parent-child distributions (only the cardinality

is stored). The refinement operations proposed in XSketch are similar to the schema

transformations that we propose for StatiX.

In [62, 63] the author proposes a “metamodel” for estimating the cardinality of XML

queries which may include the “for” and “let” bindings. The framework is based on the

notion of regions of data where each region contains the cardinality of a set of nodes

sharing a common feature (such as tags or types). A “match occurence” is a sequence of

regions which satisfies a certain structural or value predicate. Given a set of bind variables

in the for or let bindings, a list of match occurences is computed for each variable. Based

on common parent or ancestor regions, correlations are determined and the cardinality

divided appropriately. The framework can identify not only twig estimates, but also group

cardinalities which occur when let bindings are used. As the author states, StatiX can

be a part of this model if the region can be defined appropriately (for example, the node

type and its bucket in the structural histogram can constitute a region for a given node

in the data).

In summary, the above proposals outline novel approaches to solve the selectivity

estimation problem. They vary in the summary structure they use and the type of queries

they can support (simple path expressions, branching path expressions, twigs, etc.). Most

of them are data-based techniques and do not exploit the XML Schema to optimize their

summaries. This is in contrast to StatiX which not only collects statistics based on

the schema, but also utilizes schema information to substantially reduce the size of the

summary. Moreover, another significant advantage in StatiX is the use of histograms (in

addition to the XML Schema) as the summary structure of choice to capture parent-

child and value distributions and the estimation is based on histogram multiplication

techniques. This aspect may make the techniques proposed for StatiX easily adoptable

in relational systems which already use histograms for capturing value distributions.

Chapter 2. Related Work 20

2.2.2 Statistics Maintenance

We are aware of only one other work which supports cardinality estimation in the presence

of updates. In [72], the authors propose the use of bloom histograms as a summary

structure. Given a table of paths and their frequencies, a bloom histogram summarizes

them into buckets. Paths with similar frequencies are grouped into a single bucket and

their average count is maintained. In order to represent all the paths in a given bucket, a

bloom filter is utilized. A bloom filter is a data structure which can be used to represent

sets and supports set membership queries. In order to maintain the bloom histogram, an

intermediate “dynamic summary” is maintained which is used to periodically recompute

the bloom histogram. IMAX differs from bloom histograms in several ways: (i) Bloom

histograms need to be periodically recomputed, and as a consequence, may suffer from

highly inaccurate estimates if the periodicity of recomputations is not properly set (the

authors do not explicitly comment on the periodicity of recomputations), while IMAX

supports incremental maintenance – that is, the summary is updated as and when the

updates are received – and recomputations are used only as a backup mechanism, (ii)

the recomputations on the Bloom histogram happen over an intermediate data structure,

such as the path tree table, while the recomputations in IMAX happen over the backend

data – hence the recomputations in the bloom histogram technique may be much cheaper,

but maintaining the intermediate structure requires a parsing of the data into paths, (iii)

the class of queries covered is restricted to simple path expressions without values in the

bloom histograms while IMAX supports the full functionality of StatiX, and (iv) StatiX

and consequently, IMAX, utilize schema information to build and maintain the summary

while bloom histograms make use of only the data.

2.3 XML Storage

Table 2.3 gives an overview of features of various techniques to store XML in relational

systems. Related work that doesn’t fit into the above table (for example, there are papers

which theoretically analyze the nature of XML-to-relational mappings) are described in

Chapter 2. Related Work 21

Techniques Schema-aware Cost- Constraint- Order- Automatic
or oblivious based preserving preserving or Manual

SA/SO (A/M)
STORED [19] SO No No Yes A
Edge [25] SO No No Yes A
XRel [81] SO No No Yes A
[68] SA No No Yes A
[64] SO No No No A
XParent SO No No Yes A
[35, 36]
[65] SA No No No A
[12, 16, 11] SA No Yes No A
[38],[42] SA No No No A
LegoDB and SA Yes No No A
FleXMap
[8, 59, 7, 6]
[82] SA Yes No No A
[13] SA Yes No No A
ShreX [21, 22] SA No No Yes M
ELIXIR [52] SA Yes Yes No A
Oracle XML SA/SO No No Yes A/M
DB [50]
DB2 XML Ex- SA/SO No No Yes A/M
tender [17]
MS SQL SA/SO No No Yes A/M
Server [43]

Table 2.2: Summary of Related Work on Storage in Relational Backends

the text.

2.3.1 Storage Methods for Schemaless XML Data

In STORED [19], a mapping between a semi-structured database instance and a relational

schema is automatically chosen and expressed in a declarative language called STORED.

Data mining techniques are utilized to generate this mapping. Parts of the data which

do not fit into the schema are stored in an overflow graph.

In [24, 25], several mapping schemes are proposed. According to the Edge approach,

Chapter 2. Related Work 22

the input XML document is viewed as a graph and each edge of the graph is represented

as a tuple in a single table. The tuple consists of the source and destination ids of the

nodes, the label, and the value (if the destination is a leaf node) in addition to the node’s

ordinal. In a variant, known as the Attribute approach, the edge table is horizontally

partitioned on the tag name yielding a separate table for each element/attribute. Two

other alternatives, the Universal table approach, corresponding to an outer-join of all the

tables in the attribute approach, and the Normalized Universal approach, where multi-

valued attributes in the Universal Table approach are stored separately, are also proposed.

The binary association approach [64] is a path-based approach. An association is a

relationship between two nodes, such as node-node (denoting a parent-child), node-value

and node-attribute value, and so on. All associations between two types of nodes based

on their path from the root are stored in a single relation which is named for that path.

Evaluation of path expressions now involves joins among the corresponding tables.

The XRel approach [81] is another path-based approach. It constructs a single table

for each node type (one each for elements, attributes and text, respectively), and one

table to store all the paths that occur in the document along with a path id. In the

element, attribute and text tables, the region of the node as well as its ordinal and path

id are stored. The region of a node is an interval consisting of a start and end position,

determined by the pre-order and post-order traversal of the document tree. The advantage

of this approach is that a path expression can be easily evaluated by comparing path ids.

XParent [35, 36] uses the edge mapping scheme and stores XML documents in four

separate tables – LabelPath, DataPath, Element and Data. LabelPath stores all paths

along with a unique id and the length of the path; DataPath stores all parent-child

relationships by storing pairs of node ids in each tuple; Element stores each element in

the document by identifying it with a unique identifier and ordinal, and references the

LabelPath table to indicate what its path was, and, similarly Data stores values in the

document along with a unique id and ordinal, and references the LabelPath table to

identify its path.

In summary, except for STORED, each of the other schema-oblivious storage schemes

Chapter 2. Related Work 23

provide generic techniques to store XML in relational systems. That is, both the markup

(elements) as well as values are treated as data and the techniques proposed can, in

general, be adapted to store any labeled graph-structured data. This is an extremely

useful feature for schemaless XML data. STORED, however, infers a schema for the

XML data and can come up with a more space-efficient storage as compared to the other

techniques. But, the main drawback of all these methods is that, they are all heuristic-

based and do not take into account the query workload while constructing the relational

schema.

2.3.2 Storage Methods using XML Schemas

In [65], a DTD is used to map XML into a relational schema. Several simplifying, but lossy

transformations (that is, the transformed DTD may validate a superset of documents as

compared to the original DTD) are used on the regular expressions in the DTD to make

it more amenable to relational storage. Three different inlining techniques – basic, shared,

and hybrid inlining are described. Each technique differs in the way it chooses the elements

to be inlined. While basic inlining creates a separate table for every element in the DTD,

the shared inlining technique ensures that a given element is represented in exactly one

relation. The hybrid inlining technique, which is similar to shared inlining, additionally

inlines elements which are shared, but not repeating or recursive.

Methods to store and retrieve ordered XML are studied in [68]. Three order-encoding

methods – Global order, Local order and Dewey order – are described and evaluated.

Both the schemaless and schema-aware cases are considered.

In [12], the authors propose an algorithm which preserves the key and keyref con-

straints specified in an XML schema when XML data is stored in relations. In order

to check the key and keyref constraints, it is enough to check the key and foreign key

constraints specified in the relational schema derived by their algorithm.

In [16], the work in [12] is extended. Methods to refine the relational schema given a

set of keys in the schema are proposed. Given a universal relation corresponding to the

XML schema and a set of keys, the authors propose methods to determine the minimum

Chapter 2. Related Work 24

number of functional dependencies that must hold in the relational schema (that is, the

minimum cover of all functional dependencies). This helps in appropriately decomposing

the universal relation such that the XML keys are correctly propagated.

Redundancy reducing XML storage is considered in [11]. The techniques outlined

make use of semantic constraints specified in the XML schema. For example, if there are

value based keys for a particular element, there is no need to generate id values for that

element.

The theory of regular tree grammars is used in [42] to convert XML schemas to re-

lational schemas. A normal form of representation for XML schemas which eliminates

the use of the union (|) operator is defined. Using this normal form as the basis, the

authors outline a language independent representation of several features of XML schema

including basic data types and IDREFs. Several simplifying regular expressions are uti-

lized when the XML schema constraints (such as order of elements in (A,B,A)*) cannot

be captured in the relational domain.

In [38], the authors propose a method to convert XML DTDs to relational schemas

where semantic constraints implicit in the DTD are translated to the relational schema

via inclusion dependencies. For example, if papers are nested elements under a conference

in the DTD, then each tuple in the table for papers should reference a tuple in the table

for conference and this should be a foreign key relation. The authors propose a constraint

preserving mapping algorithm to map such constraints.

A generic mapping tool called ShreX is proposed in [21, 22]. ShreX can incorporate

many different mapping schemes proposed in the literature, including Edge [25], order-

preserving [68], and many from [8]. The input to ShreX is an annotated XML Schema that

contains details about how the mapping to the relational backend should take place, and

the XML document which is to be shredded. ShreX checks the validity of the mappings

and automatically shreds the document to store it in the appropriate relations. It also

provides APIs to query information about the mappings, and this information can then

be used for query translation.

In [3, 4], “information-preserving” mappings are defined. That is, mappings which

Chapter 2. Related Work 25

allow: (i) every XML query over the document to be mapped to a query over the database

and, (ii) only valid updates (updates resulting in valid documents). The paper shows

that existing techniques do not always preserve information and proposes an algorithm

to derive relational configurations which are information-preserving.

In [69], the performance of various techniques of storing XML, including three tech-

niques of storing XML in RDBMSs are compared. The strategies evaluated are the

heuristic approach from [65] and the edge as well as the attribute approach from [25].

The authors report that [65] resulted in a much more compact data representation than

either the edge or the attribute approach. Moreover, given a path expression, a large

number of joins were required in the SQL query when the edge approach was chosen,

making this approach sensitive to the complexity of the path expression. But, breaking

up the edge table in the attribute approach contributed to a considerable reduction in the

number of joins and was therefore more efficient.

In summary, as with the schema-oblivious techniques described in the previous section,

the schema-aware techniques reviewed above are all heuristic, and do not consider a space

of several possible relational mappings to choose the optimal one. However, many of

them address specific XML issues such as constraint-aware mappings [16], order-preserving

mappings [68], information-preserving mappings [4], etc. Not all these issues can be easily

addressed in a cost-based context and need to be studied further.

The problem of converting XML schemas into relations has been formally studied in

[37]. The authors specifically concentrate on the inter-relationships in the XML to re-

lational schema translation algorithm (decomposition), the XQuery to SQL translation

algorithm (query translation), and the optimality of the generated relational schema with

respect to a few simple cost metrics. They show that the choice of metric along with the

translation algorithms has a big impact on the quality of the final relational configuration

and that practical XML-to-relational conversion algorithms should not consider the de-

composition problem in isolation. FleXMap currently provides a simple query translation

algorithm. However, because of its modular design, any other translation algorithm can

be easily plugged into the system.

Chapter 2. Related Work 26

2.3.3 Cost-based Solutions

LegoDB [6, 7, 8] was the first cost-based solution described for the problem of storing

XML in relations. FleXMap is built on top of the LegoDB framework with several im-

portant extensions: (i) FleXMap defines a formal framework for schema transformations

(this is described separately in Chapter 3), (ii) Some of the subtleties in performing these

transformations are highlighted, and consequently, different greedy algorithms are formu-

lated to search the huge space of relational configurations, (iii) The implications of schema

transformations on statistics propagation are studied and, (iv) A comprehensive exper-

imental evaluation with different kinds of query workloads shows that the search space

is often considerably reduced by a judicious choice of the greedy algorithm. In addition,

several optimizations to reduce the run-time of the search process are proposed.

In [82], a hill-climbing algorithm to select a good relational configuration is proposed.

Four different transformations are outlined – V-cut, V-merge, H-cut and H-merge – to

be applied on an initial XML schema. The four transformations defined are a subset

of transformations proposed for LegoDB and FleXMap. The main differences in their

approach and ours are: (i) they use the hill-climbing algorithm while we use the greedy

algorithm and, (ii) they estimate costs based on selectivity estimates for simple path

expressions while we use a relational optimizer.

In [13], the authors make use of several transformations from FleXMap, but explore the

impact of physical design on the storage efficiency. The utility of searching the combined

logical and physical search space in a greedy manner is shown. The physical search space

includes physical design structures such as indexes, materialized views, etc.

The ELIXIR system [52] builds on top of FleXMap to support constraints, views and

triggers. ELIXIR makes use of the cost-based methodology of FleXMap, but is augmented

with appropriate mapping alternatives to support the various constraints defined in the

XML Schema. The goal of the work is to provide an industrial-strength cost-based system

to map XML data into relations.

Chapter 2. Related Work 27

2.3.4 Commercial Solutions

We review three standard commercial systems which provide support for XML storage and

query processing: IBM DB2’s XML Extender [17], Oracle’s XMLDB [49] and Microsoft’s

SQLXML [43].

DB2 [17] provides two options for storing XML. The first option is to store XML in

a single column as a CLOB, Varchar or XMLFile (which basically stores the data in a

separate file). The second option is to specify a mapping from an XML DTD to relational

tables/columns using the Data Access Definition (DAD) language provided by DB2.

Oracle’s XMLDB [49] provides unstructured and structured storage for XML. The

unstructured storage is made possible through a special type called XMLType to store

XML documents as CLOBs in a single column. Structured storage is done when an XML

Schema is provided. XMLDB can automatically map the types in the XML Schema into

relations and columns with the appropriate base type when applicable. In addition, users

can control this mapping by annotating the XML Schema.

Microsoft’s SQLXML [43] also provides for annotations in the XML Schema through

XSD (XML Schema Definition). If no annotations are provided, then a default mapping

is automatically used. In addition, XML can also be stored using the generic edge tech-

nique, or by compiling it into an internal DOM representation and then providing XPath

expressions to map values into tuples.

All three database systems provide control over the mapping of XML to relational

through the mechanism of schema annotations. FleXMap can be easily adapted to au-

tomatically generate such annotated XML Schemas after identifying the most efficient

mapping.

In summary, there are various techniques to store XML in relational databases. They

differ in several aspects, notably, (i) whether they use a schema to help in the mapping, (ii)

whether they are manual or automatic and (iii) whether they are heuristic or cost-based.

Research prototypes such as ShreX, as well as commercial solutions discussed above pro-

vide flexibility to the user by allowing him/her to specify the XML to relational mapping

by annotating the XML schema. The schema transformations proposed in LegoDB and

Chapter 2. Related Work 28

FleXMap have also been used by other systems to extend the scope of cost-based search

to include physical storage with views and indexes [13] as well as constraint preservation

(ELIXIR [52]).

Chapter 3

Schema Transformations

3.1 Introduction

In this chapter we abstract out the essentials required for the understanding of the rest of

this thesis. While all the work reported in this thesis make use of XML Schema, not all

the features of XML Schema are supported or utilized. However, the primary requirement

of our work is the ability of XML Schema to decouple type names from element names –

a distinction not present in DTDs.

As mentioned in the Introduction, our solutions are based on the existence of an XML

Schema. In addition to describing the types of documents that will be encountered, the

XML Schema also allows us to perform some amount of optimization to the solutions,

without having to process the data. Each of the solutions proposed in this thesis are thus

made dependent on the size and complexity of the schema, rather than the data, which

can be orders of magnitude larger.

We introduce some notation used in the thesis and then define and give examples

of schema transformations, the basic building blocks for the solutions we propose. The

implications of performing these schema transformations on validation are then discussed.

Finally, we describe the implementation of the transformations.

29

Chapter 3. Schema Transformations 30

<complex type> ::=

<simple type>

|| <complex type> , <complex type>

|| <complex type> | <complex type>

|| <complex type> *

|| <complex type> ?

|| <tagname> [<complex type>]

<simple type> ::=

string

|| integer

Figure 3.1: Using Type Constructors to Represent XML Schema Types

3.2 Basic Framework

XML Schemas are extended context free grammars. Two features of XML Schema that

are of interest to us are the following: (i) It provides a type system which includes basic

types such as integers, and (ii) It decouples the type names from the tag names.

An XML Schema can be regarded as a complex type represented using the type con-

structors for: sequence (“,”), repetition (“∗”), option (“?”), union (“|”), <tagname>

(corresponding to a tag) and <simple type> corresponding to base types (e.g., integer,

string, etc.). Figure 3.1 gives a simplified grammar for the construction of types.

We make use of the following compact text notation to describe the different type

constructors.

Tag Constructor: E(label, t, n), where label is name of the tag, t is the complex type

which occurs as part of the constructor, and n is the type name. Note that the type

name in any of the constructors can be null.

Sequence, Union, Option and Repetition Constructors: Each of these construc-

tors are defined respectively as: C(t1, t2, n), U(t1, t2, n), O(t, n), and R(t, a, b, n),

respectively, where t1, t2 and t are complex types and n is the type name. For the

repetition constructor, a and b denote the minimum and maximum occurrences of

the type.

Chapter 3. Schema Transformations 31

Simple Type Constructor: Simple types are represented as S(base, n) where base is

the type of the simple type (e.g., integer) and n is its name.

As a simple example, consider the following fragment of XML Schema (expressed in the

XQuery type syntax notation) of the IMDB (Internet Movie Database) [32] website.

define element IMDB { type Show* }
define type Show { element Show { type Title, type Year } }
define type Title { element TITLE { xsd:string } }
define type Year { element YEAR { xsd:integer } }

In the compact notation, the above fragment can be represented as:

E(IMDB, t1, null)

t1 := R(t2, 0, unlimited, null)

t2 := E(SHOW, t3, Show)

t3 := C(E(TITLE, S(string, null), Title),

E(YEAR, S(integer, null), Year),

null)

3.3 Schema Transformations

We make use of two types of schema transformations: (i) manipulation of type names

– this is possible since XML Schema decouples the type name from the tag name and,

(ii) using equivalent regular expressions – that is, replacing a regular expression M with

another expression N such that L(M) = L(N), where L(M) and L(N) denote the languages

accepted by the automata of M and N, respectively. An important property satisfied

by the schema transformations that we define here is that they do not alter the set of

documents validated by the original schema (this is discussed in more detail in Section

3.5). We now define and give examples of the schema transformations. Several of these

transformations were first outlined in [8].

Chapter 3. Schema Transformations 32

3.3.1 Inline and Outline

The inline operation corresponds to removing the name of a type (most commonly, ele-

ments) in the schema. Conversely, the outline operation provides a name to a type (again,

most commonly, elements) in the schema. More formally, the inline and outline operations

can be represented as follows:

E(label, t, n)→ Inline→ E(label, t,null)

E(label, t,null)→ Outline→ E(label, t, n)

Examples of the inline and outline operations are shown below. Consider the following

fragment of schema:

define type Show {element SHOW

{element TITLE {xsd:string }, element YEAR {xsd:integer }}}

The tag structure of this fragment has a tag SHOW with two children TITLE and YEAR

in that order. It is possible to introduce type names, for both TITLE and YEAR without

changing the tag structure – that is, outline both TITLE and YEAR – as follows:

define type Show { element SHOW { type Title, type Year } }
define type Title { element TITLE { xsd:string } }
define type Year { element YEAR { xsd:integer } }

Starting from the second schema which contains type names for TITLE and YEAR, it is

possible to inline them both to get the original schema.

3.3.2 Type Split and Type Merge

When two different types T1 and T2 have a child T with the same name, T is said to

be shared by T1 and T2. The type split operation eliminates the shared type by giving

different names to the shared type. Conversely, type merge identifies types with the same

structure, but different names, and makes them shared by giving them the same name.

Formally, let T1 and T2 be two types. Then, type split is defined as follows:

Chapter 3. Schema Transformations 33

case T1, T2 of

| E(label, t, a), E(label′, t′, a) →
IF label = label′ AND t = t′, THEN replace T1 by E(label, t, a1)

| C(t1, t2, a), C(t′1, t
′
2, a) →

IF t1 = t′1 AND t2 = t′2 THEN replace T1 by C(t1, t2, a1)

| U(t1, t2, a), U(t′1, t
′
2, a) →

IF t1 = t′1 AND t2 = t′2 THEN replace T1 by U(t1, t2, a1)

| R(t,m, n, a), R(t′,m′, n′, a) →
IF t = t′ THEN replace T1 by R(t,m, n, a1)

| O(t, a), O(t′, a) →
IF t = t′ THEN replace T1 by O(t, a1)

| S(b, a), S(b′, a) →
IF b = b′ THEN replace T1 by S(b, a1)

Note that if any of the above cases violates the IF condition, then there is an error in the

schema which has given the same name to two different type structures. Type merge is

defined as:

case T1, T2 of

| E(label, t, a), E(label′, t′, a′) →
IF label = label′ AND t = t′, THEN replace a′ by a

| C(t1, t2, a), C(t′1, t
′
2, a

′) →
IF t1 = t′1 AND t2 = t′2 THEN replace a′ by a

| U(t1, t2, a), U(t′1, t
′
2, a

′) →
IF t1 = t′1 AND t2 = t′2 THEN replace a′ by a

| R(t,m, n, a), R(t′,m′, n′a′) →
IF t = t′ THEN replace a′ by a

| O(t, a), O(t′, a′) →
IF t = t′ THEN replace a′ by a

| S(b, a), S(b′, a′) →
IF b = b′ THEN replace a′ by a

Chapter 3. Schema Transformations 34

The definition of both operations requires that we know how to determine when two types

are equal. We define equality of two types as follows:

Definition 3.1 Syntactic Equality

Two types T1 and T2 are syntactically equal – denoted by T1
∼= T2 – if the following holds:

case T1, T2 of

| E(label, t, a), E(label′, t′, a′) →
label = label′ AND a = a′ AND t ∼= t′

| C(t1, t2, a), C(t′1, t
′
2, a

′) →
a = a′ AND t1 ∼= t′1 AND t2 ∼= t′2

| U(t1, t2, a), U(t′1, t
′
2, a

′) →
a = a′ AND t1 ∼= t′1 AND t2 ∼= t′2

| R(t,m, n, a), R(t′,m′, n′a′) →
a = a′ AND t ∼= t′

| O(t, a), O(t′, a′) →
a = a′ AND t ∼= t′

| S(b, a), S(b′, a′) →
a = a′ AND b = b′

As an example, consider the following fragment of the IMDB schema:

define element IMDB { type Actor*, type Director* } }
define type Actor { element ACTOR { type Name, type Biography } }
define type Director { element DIRECTOR { type Name, type Directed* } }
define type Name { element NAME { xsd:string } }

The type Name is shared by both Actor and Director. The type split operation separates

the two occurrences by renaming the type Name as follows:

Chapter 3. Schema Transformations 35

define element IMDB { type Actor*, type Director* } }
define type Actor { element ACTOR { type Name, type Biography } }
define type Director { element DIRECTOR { type DirectorName, type Directed* } }
define type Name { element NAME { xsd:string } }
define type DirectorName { element NAME { xsd:string } }

The converse operation of type merge would start from the second schema and rec-

ognize that the type structure of Name and DirectorName are syntactically equal and give

them a common name to get back the original schema.

3.3.3 Union Distribution and Union Factorization

Union distribution and union factorization change the structure of the schema by intro-

ducing new types. For example, consider the following fragment of IMDB which contains

a union of Movie and Tv.

define type Show { element SHOW {
type Title, type Year, type Aka*, type Review*, (type Movie | type Tv) }}

Distributing this union gives us the following fragment in which Movie-related infor-

mation has the potential to be separated from the Tv-related information.

define type Show {
(element SHOW { type Title, type Year, type Aka*, type Review*, Tv}) |
(element SHOW { type Title, type Year, type Aka*, type Review*, Movie})

}

Performing two outlines and four type splits on all the shared types ensures that the

distribution of the union completely separates the Movie and Tv information. That is,

define type Show1 { element SHOW {
type Title1, type Year1, type Aka1*, type Review1*, Tv) }}

define type Show2 { element SHOW {
type Title2, type Year2, type Aka2*, type Review2*, Movie }}

Chapter 3. Schema Transformations 36

The converse operation of union factorization is analogous to union distribution. Union

factorization may involve a type merge – analogous to the type split operation in the union

distribution. That is, Title1 and Title2, Year1 and Year2, Aka1 and Aka2, Review1 and Review2

would all have to be first type merged before Show1 and Show2 can be factorized into Show.

The formal definition of union distribution and factorization is given below:

E(label, C(tc, U(t1, t2, null), null), n)

←→
U(E(label, C(tc, t1, null), n1), E(label, C(tc, t2, null), n2), null)

3.3.4 Repetition Split and Repetition Merge

Repetition split, as the name implies, splits a given repetition into more than one. That

is, it distinguishes the occurrences of a given type – for example, the first occurrence,

second occurrence, etc. In fact, repetition split can be performed an infinite number of

times if the repetition itself is infinite. An example of two consecutive repetition splits

which distinguish the first two occurrences is given below:

define type Actor = element ACTOR {Name, Played+}

→
define type Actor = element ACTOR {Name, Played, Played*}

→
define type Actor = element ACTOR {Name, Played, Played?, Played*}

As with union distribution, we do a type split operation on Played to establish the

distinction of one Played from the other.

define type Actor = element ACTOR {Name, Played1, Played2?, Played3*}

Repetition merge is the converse operation of repetition split – the order of repetition

merges always follows the reverse order of repetition splits – in the example above, Played2

and Played3 would be merged first.

We formally define a repetition split and repetition merge as follows:

Chapter 3. Schema Transformations 37

R(t, 0, unlimited, null)

←→
C(R(t, 0, 1, null), R(t, 0, unlimited, null), null)

R(t, 1, unlimited, null)

←→
C(R(t, 1, 1, null), R(t, 0, unlimited, null), null)

3.3.5 Repetitions to Unions

This operation enables the straighforward application of union distribution to repetitions.

For example, consider the following definition of the type Show:

define type Show { element SHOW {type Title, type Aka* } }

There could be lots of shows which do not have alternative titles (that is Akas). We

utilize the repetitions to unions operation to explicitly state this:

define type Show { element SHOW {type Title, (ε| type Aka+) } }

We have now converted the repetition into a union and can perform a union distribution

as defined before leading to two types of Shows – those with Akas and those without.

Formally, we define this operation as follows:

R(t, 0, unlimited, null)

→
U(Empty, R(t, 1, unlimited, null), null)

3.4 Recursion

We provide an unroll transformation to unroll the recursion. Note that while the schema

itself may be recursive, the data conforming to that schema is non-recursive and corre-

sponds to a schema in which the recursion has been unrolled a certain number of times.

And so, a mechanism is necessary by which the recursion in the schema is unrolled as

Chapter 3. Schema Transformations 38

and when required (for example, when validating the XML document, if the same type is

revisited in a cycle, then that type can be unrolled on the fly to create a new type). By

default, we unroll each recursion exactly once in any recursive schema.

As an example, consider the following fragment from the XMark Schema:

define type Text { element text

{ (xsd:string | type Bold | type Text | type Keyword | type Emph })* }
define type Bold { element bold

{ (xsd:string | type Bold | type Text | type Keyword | type Emph })* }
define type Emph { element emph

{ (xsd:string | type Bold | type Text | type Keyword | type Emph })* }
define type Keyword { element keyword

{ (xsd:string | type Bold | type Text | type Keyword | type Emph)* } }

Unrolling the above complicated recursion once, will give us the following fragment1:

define type Text1 { element text

{ (type Bold1 | type Bold2 | type Keyword1 |
type Keyword2 | type Emph1 | type Emph2 | type Text2)* }}

define type Bold1 { element bold

{ (type Keyword2 | type Text2 | type Emph2 | type Bold2)* }}
define type Keyword1 { element keyword

{ (type Bold2 | type Text2 | type Emph2 | type Keyword2)* }}
define type Emph1 { element emph

{ (type Bold2 | type Text2 | type Keyword2 | type Emph2)* }}
define type Text2 { element text {xsd:string }}
define type Bold2 { element bold {xsd:string }}
define type Keyword2 { element keyword {xsd:string }}
define type Emph2 { element emph {xsd:string }}

1Note that the mixed content – indicating the interleaving of text and markup – of the original
fragment has been factored out.

Chapter 3. Schema Transformations 39

3.5 Validation and Schema Transformations

Validation is a process which takes as input a schema S and a document D and checks

whether D is valid with respect to S. That is, (i) whether D is well-formed and, (ii)

whether D obeys the constraints (both structure and value) specified in S.

We first show that applying the transformations defined so far does not change the set

of documents validated. Formally, let D be the set of documents validated by a schema

S. Let T be the transformation applied on S to get a new schema T (S). The set of

documents validated by T (S) is exactly D.

As mentioned in Section 3.3, we define two types of schema transformations: (i)

manipulation of type names and, (ii) using equivalent regular expressions. Clearly, (i)

satisfies our property since no change is being made to the tag structure of the XML

Schema. We can prove that (ii) also satisfies this property by proving that the equivalent

regular expressions used are indeed equivalent to each other. We list each of the structure-

changing transformations below:

Union Distribution and Factorization: We prove the property that performing a

union distribution does not change the set of validated documents. That is,

L(M |N) = LM |LN .

Proof:

Let w ∈ L(M |N). Then, w can be written as w1w2 where w1 ∈ L and w2 ∈ M |N .

If w2 ∈ M , then w1w2 ∈ LM and hence to LM |LN . Similarly if w2 ∈ N , then

w1w2 ∈ LN and hence to LM |LN .

Conversely, let w ∈ LM |LN . If w ∈ LM , then w can be written as w1w2 where

w1 ∈ L and w2 ∈ M . Therefore, w2 ∈ M |N and hence w1w2 ∈ L(M |N). Similarly,

if w ∈ LN , then then w can be written as w1w2 where w1 ∈ L and w2 ∈ N .

Therefore, w2 ∈M |N and hence w1w2 ∈ L(M |N). ¤

Repetition Split and Merge: X∗ = X?X∗, X+ = XX∗. Proof is immediate.

Repetitions to Unions: X∗ = ε|X+. Proof is immediate.

Chapter 3. Schema Transformations 40

An important property of the XML Schema (which is a part of its specifications) is

that it should be 1-unambiguous. That is, it should be possible to assign a type to a token

without having to do a look-ahead. This property results in a linear validation algorithm

proportional to the size of the data.

In case of most of the schema transformations, validation is straightforward. That is,

these transformations result in schemas which are 1-unambiguous. However, there are two

transformations, which violate the 1-unambiguity condition: Repetition Split and Union

Distribution.

In the case of repetition split, only the case of X∗ = X?X∗ is ambiguous since it is not

clear whether a given x should be validated to X? or X∗. And so, we use the convention

of “longest match” to resolve the ambiguity.

In the case of Union Distribution, clearly, there is no ambiguity in the type assign-

ments. But, since union distribution violates the 1-unambiguity property, the validation

is no longer linear. For example, when the type Show is distributed in the schema, the type

assignment for the tag SHOW in the document cannot be immediately determined. The

validator has to look ahead until it finds the token TV or MOVIE to determine whether to

assign the type Show1 or Show2 to the tag SHOW. Hence, standard XML validators such as

Xerces [76], will be unable to validate any of these schemas. But there are other methods

which can be used to validate against such schemas [45]. In our work, we make use of the

standard validators, whenever possible, for the task of statistics collection. We have built

our own statistics collection module for non-standard XML Schemas that we generate.

3.6 Implementation of Transforms

In order to implement the transforms, we visualize the XML Schema as a tree of con-

structors – that is, a schema tree.

To illustrate the representation of a schema tree, consider the partial XML Schema

in Figure 3.2. Here, Title, Year, Aka and Review are simple types. The schema tree for an

excerpt of this schema is shown in Figure 3.3 (note that base types are not shown). Nodes

in the tree are annotated with the names of the types present in the original schema –

Chapter 3. Schema Transformations 41

define element IMDB {
type Show*, type Director*, type Actor* }

define type Show {
element SHOW { type Title, type Year, type Aka*, type Review*,

(type Movie | type Tv) }}
define type Director { element DIRECTOR {

type Name, type Directed*}}
define type Directed {

element DIRECTED {type Title, type Year, type Info }}

Figure 3.2: The (partial) IMDB Schema

these annotations are shown in sans serif next to the tags (shown in typewriter font) in

Figure 3.3. Some points are worthy of note. First, there need not be any correspon-

dence between tag names and annotations (type names). Second, the schema graph is

represented as a tree, where shared types are repeated at nodes where they occur, but the

annotation remains the same (see e.g., the nodes TITLE1 and TITLE2 in Figure 3.3 – they

both correspond to the same type, since their annotation is the same). Finally, recursive

types can be handled similarly to shared types, i.e., the base occurrence and the recursive

occurrence are differentiated, but both correspond to the same type if their annotations

are the same.

Any subtree in the schema tree can be regarded as a type and the node corresponding

to that subtree can be annotated without changing the structure of the tree. We refer to

this annotation as the name of the node and use it synonymously with annotation.

Transformations which manipulate type names, such as, inline, outline and type

split/merge, can be performed on the schema tree simply by adding, deleting or renaming

the type name of a single node or set of nodes.

We perform structure changing transformations through the process of tree pattern

matching and replacement. For example, in order to perform a union distribution, we

need to first find the patterns shown in Figures 3.4(a) and (c) in the original schema.

Next, we need to transform these patterns into those shown in Figures 3.4(b) and (d),

respectively. Similarly, Figure 3.5(a) shows the pattern to be searched for in order to

Chapter 3. Schema Transformations 42

SHOW DIRECTOR

YEAR

AKA REVIEW

NAME

DIRECTED

IMDB

,

* *

,

,

,

TITLE

YEAR INFO

,
,

TITLE1

1

2

2

(Show)

(Title)

(Year)

(Aka)
(Review)

(Info)

(Name)

(Director)

(Directed)

(Title)

(Year)

,
*

Figure 3.3: (Partial) Schema Tree for the IMDB Schema

Y

X

,

|

Z X ZXY

|

,

<elem>

Y
Z

|

Z
Y

| <elem>

(a) (b)

(d)(c)

<elem>

,

Figure 3.4: Patterns for Union Distribution and their Transformation

Chapter 3. Schema Transformations 43

*

(a) (b)

? *

,

AAA

Figure 3.5: Pattern for Repetition Split and its Transformation

locate a repetition split and the pattern which should replace it.

3.7 Conclusions

In summary, this chapter introduced notations and transformations used in this thesis.

The impact of the transformations on validation was discussed. While all transformations

defined here do not change set of documents validated by the resulting schema, the vali-

dation algorithm would need to change based on whether the transformation violates the

1-unambiguity condition. The implementation of the transforms can be done by regard-

ing the schema as a tree of constructors. The transforms are performed by either tree

pattern matching and replacement for structure changing transforms or by manipulating

the annotations of the tree nodes.

Chapter 4

Statistics Collection and Query

Result Size Estimation

4.1 Introduction

In this chapter we describe StatiX – a framework for statistics collection and cardinality

estimation. Its design is based on the following:

XML Schema-based statistics collection: Using the XML Schema as the basis for

statistics collection enables StatiX to produce concise and accurate summaries of

XML data. Moreover, the use of XML Schemas is becoming commonplace in a large

number of XML applications.

Histogram summaries: A large variety of mechanisms are available for representing

statistical summaries (for example, path trees [1], graph summaries [54], etc.). We

have specifically selected histograms for this purpose – the use of histograms enables

StatiX to maintain scalable and symmetric summaries of both the structures of the

types as well as the values in the data.

Basing statistics on XML Schema types facilitates the re-use of standard XML technol-

ogy, namely, validating parsers, for statistics gathering. Another advantage of type-based

statistics is that the granularity of statistics can be tuned. That is, since StatiX collects

44

Chapter 4. Statistics Collection and Query Result Size Estimation 45

statistics for each named type in the schema, more detailed or less detailed statistics can

be gathered through schema transformations. The schema transformations defined in

Chapter 3 allow the addition of type names (through transformations such as outline,

repetition split, union distribution, etc.) as well as deletion of type names (inline, repeti-

tion merge, union factorization, etc.). Thus, granularity of the statistics can be changed

appropriately depending on the memory budget. An important consequence of schema-

based statistics collection is that the maximum size of the summary depends on the size

of the schema, not on the size of the data and this can be determined beforehand – that is,

even before gathering the statistics. Also, using schema information on the occurrences

of elements can help in considerably reducing the size of the final summary.

Using histograms to store structural summaries elegantly captures the data skew preva-

lent in XML documents. Histograms are attractive because they are simple to implement,

have been well-studied, and proven to be effective for selectivity estimation [57, 58].

Moreover, because histograms are already widely used in relational database engines,

our framework can be easily integrated with these systems.

StatiX can currently handle a significant subset of XQuery – namely, branching path

expressions with value predicates. A detailed evaluation over different datasets and query

sets shows that StatiX can provide extremely accurate summaries at very reasonable

memory budgets.

Organization. The rest of this chapter is organized as follows. In Section 4.2 we de-

scribe the components of StatiX summaries and then, in Section 4.3, we outline the

algorithm for cardinality estimation. In Section 4.4 we identify some limitations of using

histograms and propose the use of schema transformations to improve the accuracy of

StatiX summaries. In Section 4.5 we describe how to construct StatiX summaries. The

experimental setup and performance evaluation are described in Sections 4.6 and Section

4.7, respectively. Finally, we conclude in Section 4.8.

Chapter 4. Statistics Collection and Query Result Size Estimation 46

4.2 Description of StatiX Summaries

StatiX collects statistics based on the schema given by the user. It distinguishes types

which are named and those which are not. That is, statistics are collected only for types

which are outlined in the schema (Chapter 3). However, a restriction imposed by StatiX

is that only types with the tag constructor can be outlined. Each outlined type has two

types of histograms associated with it:

Structural Histogram: Given a type T and it’s parent Tp, a structural histogram H(T)

captures the distribution of the elements of type T with respect to its parent Tp.

We also refer to the structural histogram as the parent histogram of type T .

Value Histogram: If T is a simple type, then, in addition to a structural histogram, a

value histogram is also constructed. The value histogram captures the distribution

of values of type T . Currently, equi-depth integer value histograms are constructed

in StatiX.

In addition to the basic two types of histograms above, other statistics, such as the

number of distinct values, number of null values, etc. are gathered. An example of an

XML schema and a possible StatiX summary corresponding to this schema is shown in

Figure 4.1. The schema describes a database which contains information about shows.

A show can be either a movie or a TV show; has a title and year of release; and may

contain zero or more reviews, and zero or more alternative titles (i.e., AKA). The summary

contains statistical information about all types defined in the schema. For each complex

type, it records the type cardinality, i.e., the number of occurrences of that type in the

document; its id (or key) range (which can be regarded as a trivial, single bucket key

histogram); and its parent histogram. For example, the type Review has cardinality 16;

ids ranging from 1 to 161; and a parent histogram corresponding to Show, which indicates

that there are 8 instances of REVIEW under SHOWs with ids from 1 to 3 and 8 instances

under SHOWs with ids from 4 to 5. Simple types, that correspond to elements with atomic

1In StatiX summaries, intervals are left-closed and right-open.

Chapter 4. Statistics Collection and Query Result Size Estimation 47

content, are associated with value histograms. For example, the type Year has a value

histogram indicating that there are 3 occurrences of Year with values between 1990 and

1993, and 2 occurrences with values between 1994 and 2000.

define element IMDB {
type Show* }

define type Show {
element SHOW {
element TITLE {xsd:string },
type Year,
element AKA { xsd:string }*,
(element MOVIE {
element BOXOFFICE{xsd:integer } } |

type Tv),
type Review* } }

define type Tv {
element TV {
element SEASONS{xsd:string } } }

define type Review {
element REVIEW {
element RATING{xsd:integer }
element COMMENT{xsd:string } } }

define stat Show {
cardinality { 5 }
id domain { 1 to 6 } }

define stat Review {
cardinality { 16 }
id domain { 1 to 17 }
parent histogram Show {
bucket number { 2 }
buckets {
from 1 to 4 count 8,
from 4 to 6 count 8 } } }

define stat Tv {
cardinality { 2 }
id domain { 1 to 6 }
parent histogram Show {
bucket number { 1 }
buckets {
from 1 to 6 count 2 } } }

define stat Year {
value domain { 1990 to 2001 }
number distinct {5}
bucket number { 2 }
buckets {
from 1990 to 1994 count 3,
from 1994 to 2001 count 2 } }

(a) (b)

Figure 4.1: IMDB schema and the corresponding StatiX summary

Chapter 4. Statistics Collection and Query Result Size Estimation 48

4.3 Estimating Query Result Cardinality in StatiX

StatiX estimates the result cardinality of XML queries using histogram multiplication.

Since path queries are expressed in terms of element (tag) names, and StatiX collects

statistics for types, the tags in the query are first mapped to the corresponding types;

and then the structural and value histograms corresponding to the tags in the path are

multiplied. If a structural histogram is not available for a given tag, a uniform-distribution

is assumed for that tag.

Input: c, H
c is the path expression identifying the location
H is the set of histograms (value and structure) for all types corresponding to the elements
in c

1: let c = /t1[b1]/t2[b2]/t3[b3]/.../tn[bn]
{ti is the tag (correspondingly, its type is Ti)}

2: for all i ∈ 1 to n do
3: Bi = result distribution of bi

4: Ji = Bi on keyHist(Ti)
5: keyHist(Ti) = key distribution of Ti based on Ji

6: parentHist(Ti) = compute distribution based on keyHist(Ti)
7: end for
8: for all i ∈ 1 to n− 1 do
9: Ji = keyHist(Ti) on parentHist(Ti+1)

10: keyHist(Ti+1) = distribute freq(Ji) into keyHist(Ti+1)
11: end for
{Cardinality of the update}

12: card = frequency (Jn)

Algorithm 1: Cardinality Estimation in StatiX

Algorithm 1 describes the cardinality estimation of branching path expressions,

given a StatiX summary. The general format of such a branching path expression is

/t1[b1]/t2[b2]/.../tn[bn], where ti is the tag and bi is a path expression which may contain

value and structural predicates. In the sequel, we use Ti to denote the type corresponding

to the tag ti. The cardinality estimation procedure operates in two stages: (i) compute

the key distribution and parent-key distribution for each of the tis in the presence of pred-

icates individually (lines 2 through 7); (ii) use these individual distributions to compute

Chapter 4. Statistics Collection and Query Result Size Estimation 49

the overall key distribution of the complete query (lines 8 through 11).

There are three basic operations – histogram multiplication (lines 4 and 9), finding

the key distribution (line 5), and finding the parent key distribution (line 6). Histogram

multiplication is a well-known operation to find the join estimate given two histograms

[29]. Below, we describe the other two operations in more detail.

Key distribution. Note that when two histograms are multiplied, one of the histograms

is the key histogram having values which occur exactly once. However, the join distribu-

tion gives the total number of tuples in the result – that is, the values in the key histogram

may occur multiple times in the result. From this join histogram, we need to determine

which distribution of keys occurs in the join (line 5). The fact that keys are unique can be

used to compute this distribution as follows: (i) initially, construct the key distribution

K by dividing the key histogram into the same number of buckets as the join histogram

and in which the frequency of each bucket is the same as its range, (ii) for corresponding

buckets ji in the join histogram and ki in the key distribution histogram, if frequency of

ji is less than the frequency of ki, change the frequency of ki to that of ji. The resulting

histogram is the statistically determined distribution of keys in the join. This histogram

is used to compute the parent key distribution described next.

Parent key distribution. An important observation in the case of structural his-

tograms is that the node ids (keys) and parent ids have a strong correspondence with

each other – that is, if nodeid1 > nodeid2, then parentid(nodeid1) >= parentid(nodeid2).

The parent histogram is a summarization of this correspondence, as illustrated in Fig-

ure 4.2. Using this observation, we can compute the parent key distribution as shown by

the example next.

Consider the case where the parent histogram of Review (with respect to Show) is [1-4:

8; 4-6: 8]. The multi-bucket key histogram of Review would then be [1-9: 8;

9-17: 8]. Conversely, suppose Review has now been “filtered” through a value predicate

(say, Reviews with Rating > 6) leading to the following key histogram for Review: [1-9:

5; 9-17: 3]. The corresponding distribution in the parent histogram of Review is now:

Chapter 4. Statistics Collection and Query Result Size Estimation 50

CardY ear = σ<1992 (Year) 1.5
KeyShow = distribute CardY ear into id range of Show [1-6: 1.5)
CardReview = freq (parentHist(Review) on KeyShow) ≈ 5

Table 4.1: Cardinality Computation in StatiX

[1-4: 5; 4-6: 3]. This is because, from the key histogram, we know that 5 of the

first 8 Reviews are “relevant”. We know from the parent histogram that the first 8 Reviews

occur under the first 3 Shows. Hence, clearly, the 5 relevant Reviews of the first 8 Reviews,

now occur under the same Shows. Similarly, we know from the key histogram that 3 of the

last 8 Reviews are relevant and from the parent histogram, we know that these 3 Reviews

occur under Shows 4-5. Hence, the second bucket of the parent histogram now gets a count

of 3. This computation is a direct consequence of the observation made in the previous

paragraph. This new parent histogram is then used to compute the cardinality and join

distribution of the result (lines 8 to 12).

Consider the cardinality estimation of the following query asking for all Reviews of

Shows made before 1992, on data corresponding to the schema in Figure 4.1:

Query 1: //SHOW[YEAR < "1992"]/REVIEW

Here, the mapping of element names to type names is straightforward, and in order to

compute the query cardinality, we perform the computations outlined in Table 4.1. The

result distribution of the branch YEAR < ‘‘1992’’ is first calculated (line 3 in Algorithm

1). Then, in the next step, this distribution is distributed into the key histogram of the

parent Show (line 5 in Algorithm 1). Next, moving to the main branch, the parent

histogram of Review is multiplied with the newly computed key histogram of Show (step

9 in Algorithm 1). The frequency of this join histogram is the cardinality of the query

(step 12 in Algorithm 1). Hence, we conclude that the cardinality of the query (that is,

the number of Reviews) is approximately 5. Note that all the steps from the algorithm not

shown in Table 4.1 have no bearing on the final result and hence are not shown explicitly.

Chapter 4. Statistics Collection and Query Result Size Estimation 51

Show ids

Aka ids

4

3

2

1

21 3 4 5

Parent histogram
{[1−2: 2], [2−6: 2]}

Show ids

Movie ids

4

3

2

1

21 3 4 5

Parent histogram
{[1−3: 2], [3−6: 2]}

Figure 4.2: Node and Parent ids have a Correspondence

4.4 Tuning the Accuracy of StatiX Summaries

The accuracy of StatiX summaries can be tuned by: (i) increasing/decreasing the number

of buckets in the histograms; and/or by (ii) adjusting the granularity of the statistics

collection.

4.4.1 Potential Limitations of Structural Histograms

Histograms are well-known to be concise and effective in capturing skew in the underlying

data [57, 58]. The addition of more buckets to the histogram results in a more accurate

reflection of the underlying data distribution. In StatiX, histograms are used for two dif-

ferent purposes – to capture the: (i) value skew (value histograms) and, (ii) the structural

skew (structural or parent histograms).

The domain of any structural or parent histogram is potentially very large. Larger

the number of occurrences of a particular type, larger its id domain. For example, the

number of occurrences of a type like Show may be in the thousands – if there are 10,000

Shows in the database, then there are 10,000 distinct ids. This would affect the parent

histogram of its children, say, Tv and Movie. Suppose approximately 20% of the Shows are

Tv shows and the other 80% are Movie shows. Then, clearly, the way in which these Tv

and Movie shows are interleaved in the data affects the parent histograms of both types.

Chapter 4. Statistics Collection and Query Result Size Estimation 52

For example, suppose Tv and Movie shows span almost the entire range of Shows. Then,

the parent histograms of both types contain the same range of 10,000, and may not be

able to capture the parent-child distribution accurately. On the other extreme, if all Tv

shows occured before all Movie shows in the data, then the parent histogram of Tv would

have a range of 1 to 2000 and that of Movie, from 2001 to 10,000. Now, neither parent

histogram has any holes and very accurately reflects the distribution. In fact, a single

bucket in each parent histogram, is enough to capture the distribution.

In effect, for a given number of histogram buckets, n, the histogram could potentially

be less effective in capturing the skew, as the domain of values grows larger and the

occurrence pattern of the type leaves too many gaps in the id range. In order to overcome

this limitation, we propose the use of schema transformations to improve the summary

accuracy in the following section.

4.4.2 Transformations for Finer Granularity Statistics

Since StatiX gathers statistics based on the types in the schema, there are several trans-

formations which can be applied to the schema to increase or decrease the number of

types and consequently finer or coarser-grained statistics can be collected. Although the

types defined in an XML Schema do not appear in the document, they are used during

validation as annotations to document nodes. These transformations can be used to im-

prove the accuracy of the summary, since they reduce the problem of interleaved elements

described in the previous section.

For example, consider the schemas shown in Figures 4.3 through 4.5. All three schemas

are equivalent to one another. That is, they validate exactly the same set of documents.

The schemas were derived as follows:

Schema 1: The original schema.

Schema 2: On Schema 1, perform a union distribution of Tv and Movie. Then, perform

a type split. In Schema 2, Tv shows and Movie shows are separated. This, in effect,

ensures that Shows with Tv have a different id range from Shows with Movie. Hence,

Chapter 4. Statistics Collection and Query Result Size Estimation 53

define element IMDB { type Show*}
define type Show { element SHOW

{ type Title, type Aka*, type Tv | type Movie} }
define type Title { element TITLE { xsd:string } }
define type Aka { element AKA { xsd:string } }
define type Tv { element TV { xsd:string } }
define type Movie { element MOVIE { xsd:string } }

Figure 4.3: Schema 1

define element IMDB { (type Show1 | type Show2)* }
define type Show1 { element SHOW { type Title1, type Aka1*, type Tv} }
define type Show2 { element SHOW { type Title2, type Aka2*, type Movie} }
define type Title1 { element TITLE { xsd:string } }
define type Aka1 { element AKA { xsd:string } }
define type Title2 { element TITLE { xsd:string } }
define type Aka2 { element AKA { xsd:string } }
define type Tv { element TV { xsd:string } }
define type Movie { element MOVIE { xsd:string } }

Figure 4.4: Schema 2

even if Tv and Movie shows are interleaved in the data, the type assignment ensures

an artificial segregation, making the parent histograms of both Tv and Movie more

accurate.

Schema 3: On Schema 2, convert the two repetitions of Aka – Aka1* and Aka2* into

unions. That is, Aka1* = () | Aka1+. Subsequently, perform a union distribution to

get 4 different Shows – (i) Show11 – Tv shows without Akas, (ii) Show12 – Tv shows

with Akas, (iii) Show21 – Movie shows without Akas and (iv) Show22 – Movie shows

with Akas. In this schema, in addition to the segregation of Tv and Movie shows,

Shows with Akas and those without are also segregated, thus reducing the impact of

interleaved Tv and Movie Shows with and without Akas.

A slightly modified tree representation of each of these schemas is shown in Figure

4.6. The tree representation only shows the nesting and repetition of types, but not the

Chapter 4. Statistics Collection and Query Result Size Estimation 54

define element IMDB { (type Show11 | type Show12 | type Show21 | type Show22)* }
define type Show11 { element SHOW { type Title11, type Tv1} }
define type Show12 { element SHOW { type Title12, type Aka1+, type Tv2} }
define type Show21 { element SHOW { type Title21, type Movie1} }
define type Show22 { element SHOW { type Title22, type Aka2+, type Movie2} }
define type Title11 { element TITLE { xsd:string } }
define type Title12 { element TITLE { xsd:string } }
define type Aka1 { element AKA { xsd:string } }
define type Title21 { element TITLE { xsd:string } }
define type Title22 { element TITLE { xsd:string } }
define type Aka2 { element AKA { xsd:string } }
define type Tv1 { element TV { xsd:string } }
define type Movie1 { element MOVIE { xsd:string } }
define type Tv2 { element TV { xsd:string } }
define type Movie2 { element MOVIE { xsd:string } }

Figure 4.5: Schema 3

Show

Title Aka Tv Movie TvTitle1 Aka1 Title2 Aka2 Movie

Show1 Show2

IMDB IMDB

Tv1

Show11

Title12 Aka1

IMDB

Show22

Movie2Aka2

Show21

Movie1Title21

Show12

Tv2Title11 Title22

Schema 1 Schema 2

Schema 3

*

* * *

*
*

+ +

* * * *

Figure 4.6: Type graphs of the Three Schemas

Chapter 4. Statistics Collection and Query Result Size Estimation 55

Q.no. Query Most Accurate
1 /IMDB/SHOW 1,2,3
2 /IMDB/SHOW/TITLE 1,2,3
3 /IMDB/SHOW/AKA 1,2,3
4 /IMDB/SHOW[TV]/AKA 2, 3
5 /IMDB/SHOW[MOVIE]/AKA 2, 3
6 /IMDB/SHOW[AKA]/TITLE 3
7 /IMDB/SHOW[AKA && TV]/TITLE 3

Table 4.2: Queries, Schemas and Accuracy

constructors. The artificial segregation can be clearly seen. Schema 1, Schema 2 and

Schema 3 are in increasing order of granularity – that is, not only does each schema have

more types than the previous one, but the larger number of types contributes to a more

accurate summary. Though not apparent from the example, which gives the impression

that the larger granularity summary has a larger memory budget because of the increase

in the number of types, the estimation accuracy of the finer granularity summary increases

even with a fixed memory budget. This is shown in Section 4.7.

Consider the queries in Table 4.2. For each query, the most accurate summary is

shown in the third column. Note that each of the 7 queries can be answered using any of

the three schemas in conjunction with Algorithm 1. However, we are concerned with the

accuracy of these estimates.

For example, for query 4, it is necessary to distinguish Tv shows. Clearly, Schema 1

does not distinguish between Tv and Movie shows – they are both nested under the same

type Show. However, Schema 2 clearly separates Tv shows into a separate type (Show1).

And so, Schema 2 is able to give an accurate estimate of the cardinality. Similarly, Schema

3 also distinguishes Tv shows – Show11 and Show12. As another example, consider query

7. Here, it is necessary to not only distinguish Tv shows, but those Tv shows which also

have Akas associated with them. Clearly, Schema 3 is the only schema which makes this

separation.

Chapter 4. Statistics Collection and Query Result Size Estimation 56

Application−Specific
Transformations

Statistics Collector

Normalization

Transformed

XML Schema

Transformer
Schema

Document
XML StatiX

Summary

XML Schema

Figure 4.7: Building StatiX Summaries

Summary Compression. The XML Schema can also be used to compress the sum-

mary. We make the observation that the statistics of some types can be inferred directly

from the statistics of their parents. That is, if a child type T occurs exactly once under

its parent Tp, then the distribution of T under Tp is one-to-one and there is no need to

store a structural histogram for T . That is, by inlining such types, we can reduce the size

of the summary. As shown in the experiments section, this simple compression scheme

significantly reduces the amount of space occupied by the summary because there are

several such 1:1 occurrences in real-life schemas.

4.5 Construction of a StatiX Summary

The architecture of the StatiX module, shown in Figure 4.7, depicts the two main com-

ponents of StatiX: (i) the Schema Transformer, which enables statistics collection at

different levels of granularity, and, (ii) the Statistics Collector, that takes as input, the

transformed schema and simultaneously validates the document against the schema and

gathers the associated statistics. In what follows, we describe these components in detail.

Chapter 4. Statistics Collection and Query Result Size Estimation 57

4.5.1 The Statistics Collector

While in practice, the Statistics Collector comes into play only after the Schema Trans-

former has completed its rewritings, for ease of exposition, we will describe the role of the

collector first.

The statistics collector has two functions: validation of the source XML document

against its XML Schema description, and the simultaneous collection of statistics for this

schema. If the transformed schema is a valid XML Schema, then a standard validating

parser such as Xerces [76] or Galax [28] can be used as the statistics collector. The

statistics are gathered on a per-type basis.

The successful validation of an XML document against a given schema results in the

assignment of types (defined in the schema) to the nodes in the document [71]. StatiX

leverages this information to build the statistical summaries. Intuitively, as the document

is validated, StatiX keeps track of the number of occurrences of each type, and how the

instances of a given type are distributed over the instances of its parent type(s).

Statistics gathering proceeds as follows. Each type defined in the schema is associated

with a unique type id. As a document is parsed and occurrences of a given type are

encountered, a new sequential node id is assigned to each occurrence. The concatenation

of type id and node id uniquely identifies a given node in the document tree. Note

that the order of occurrence of the type in the document determines the order in which

node ids are assigned. For each type defined in the schema, StatiX has an associated

parent set. Since validation is performed in a top-down fashion, and a parent is always

processed before its children, for each type instance encountered, the id of the parent node

is incrementally added to the parent set of the corresponding child type. This information

is later summarized in a structural histogram.

Assigning contiguous ids to a given type is critical to building accurate and concise

histograms – the use of non-contiguous ids will necessarily result in large gaps within

buckets as well as between buckets. Moreover, the assignment of contiguous ids automat-

ically keeps track of the order of the occurrences. Since equi-depth histograms result in

significantly smaller estimation errors as compared to equi-width histograms [53], we have

Chapter 4. Statistics Collection and Query Result Size Estimation 58

implemented the former in StatiX.

Besides structural information, StatiX also captures value distributions at the leaf-

node level using value histograms. While structural histograms are unique to the XML

context, value histograms are commonly used in traditional relational storage systems.

Handling Ambiguous Transformations

One of the major limitations in using a standard XML validator for statistics gathering is

that a standard validator cannot handle ambiguous schemas (as was described in Section

3.5 in Chapter 3).

In general, validating a document is nothing more than recognizing that the grammar

defined by the schema recognizes the document as either belonging to (valid) or not

belonging to (invalid) the language recognized by it. It follows that validating a document

against a non 1-unambiguous schema involves recognizing whether or not a particular

regular expression is satisfied before a particular type assignment. For example, in the

case of distributing the union of Tv and Movie shows, we need to recognize the regular

expression:

<SHOW><TITLE>...</><YEAR>...</>.....<TV><SEASONS>...</></>.....</SHOW>

in order to determine that the SHOW node validates to Show1 (and not Show2), TITLE

node validates to Title1, etc. That is, the tag TV has to be seen before assigning a type

to SHOW. In order to build a statistics collection module for such schemas, we utilized a

recently proposed programming language called CDuce [10]. CDuce provides for regular

expression pattern matching with specific emphasis on XML-style patterns. That is, it is

possible in CDuce to express regular expressions using XML elements, attributes, types,

etc. CDuce is a functional language in the style of Caml [9], and has been proposed

for designing efficient applications which use XML pattern matching extensively. The

statistics collection method remains unchanged. That is, the nodes in the documents are

assigned types, and the parent set of a given type contains the list of ids of its parent

element. Once this validation process is complete, structural and value histograms are

built.

Chapter 4. Statistics Collection and Query Result Size Estimation 59

4.5.2 Schema Transformer

The Schema Transformer first performs some basic operations on the input XML Schema

to ensure that statistics are generated for all elements and attributes. That is, both, a

structural as well as a value histogram (for base types) are associated with each element

and attribute. It then performs additional transformations, as required. And so, the

function of the schema transformer is two-fold: (i) “normalize” the input XML Schema

and (ii) perform appropriate transformations. Normalization involves the following:

• Give type names to all elements and attributes in the Schema. That is, outline all

elements and attributes.

• Ensure that no type is shared. That is, perform all type split operations, so that no

type has more than one parent histogram. This step ensured that the implementa-

tion of the cardinality estimation algorithm described before was simplified.

The second function of the schema transformer is to apply application-dependent

transformations to make the resulting summary more accurate. StatiX currently does not

implement any specific algorithm which does application-specific transformations on the

schema. But, in general, several application characteristics, such as the query workload,

memory budget available, etc. can be utilized to automate the process of generating the

appropriate summary.

Apart from the outline and type split operations performed during the normalization

steps, the transformer can also apply the repetition-to-union and the union distribution

transformations, which increase the accuracy of the summary. Examples of schemas with

increasing accuracy were shown in Section 4.4.

From now on, we refer to the normalized schema as the N-Schema and the summary

resulting from this schema as the N-Summary. This is the coarsest summary possible in

StatiX, while the finest summary is obtained when all repetition-to-union and union dis-

tribution operations have been performed on the N-Schema. We refer to this decomposed

schema as the D-Schema and the corresponding summary as the D-Summary. Schema 1

Chapter 4. Statistics Collection and Query Result Size Estimation 60

in Figure 4.3 is an example of an N-Schema, while Schema 3 in Figure 4.5 is the corre-

sponding D-Schema.2

4.6 Experimental Setup

We performed several experiments to measure the effectiveness and efficiency of StatiX.

All experiments were run on a Pentium IV, 2.4GHz machine with 1GB of main memory,

running Redhat 8.0. The query and datasets used are described below.

Data: We synthetically generated several different datasets of varying sizes conforming

to the IMDB schema using ToXgene [5]. The generated data contained moderate

to high skew both in structure as well as values. Since the trends across these

datasets were similar, we report on the results obtained for the 5MB dataset. We

also experimented with about 30MB of the DBLP dataset available from [18].

Schema: As mentioned in Section 4.4, it is possible to collect statistics at various granu-

larities – coarser to finer. In order to show the impact of tuning StatiX summaries,

we present results for summaries based on two “extreme” schemas – the N-Schema

and the D-Schema, described in Section 4.5.

Query workload: The query workload was generated by sampling the BF-bisimilar

graph of the data described in [54]. We generated two separate query workloads

– one containing branching path expressions without value predicates and the other

containing branching path expressions with value predicates. The length of the path

expression varied from 2 to 6 elements, with at least one branch and a maximum

of two branches. Each branch had a single predicate (either structural or value).

From now on, we refer to the query workload without value predicates as BP and

the workload with value predicates as VP.

2Note that one more repetition-to-union transform is possible at the root, but we do not perform this
transform since it would result in multiple roots when the union distribution is subsequently applied.

Chapter 4. Statistics Collection and Query Result Size Estimation 61

4.6.1 Metrics

With the above setup, we performed experiments to measure: (i) estimation accuracy,

(ii) summary size, and (iii) overheads in statistics collection . Each of these metrics are

described in more detail below.

Estimation Accuracy. In order to measure the estimation accuracy of the summary,

we used average relative error as our metric. The relative error is defined as follows:

RE = ABS(CardEst−CardAct)
CardAct

where CardEst is the estimated cardinality of the query and CardAct is the actual

cardinality of the query. The average relative error is then defined as:

ARE =
Σn

i=1REi

n

where n is the total number of queries and REi is the relative error of the ith query.

Size. In order to be effective, the size of the summary should be as small as possible.

We show through our experiments that not only is the accuracy of the summary

very high, but the size is also moderate, even when finer granularity statistics are

collected. We tabulate the size in terms of both the number of types in the schema,

as well as the number of bytes required to store the summary. We show the sizes

with and without the compression technique, outlined in Section 4.4.

Overhead. We measure the timing overheads involved in collecting statistics which in-

volves two major phases – validation and histogram construction. We tabulate these

metrics for both summaries – N and D.

The experimental setup is summarized in Table 4.3.

Chapter 4. Statistics Collection and Query Result Size Estimation 62

Data IMDB, DBLP
Schema N (Normalized), D (Decomposed)
Query set BP (BPE without value predicates),

VP (BPE with value predicates)
Metrics Estimation Accuracy, Summary Size,

Statistics Collection Overheads

Table 4.3: Experimental Setup

4.7 Performance Evaluation

4.7.1 Estimation Accuracy

The estimation accuracy depends on two parameters: (i) the number of buckets allocated

to the structural and value histograms, and, (ii) the granularity of the schema itself.

We first discuss the estimation accuracy results for each of the N- and D- Summaries

separately. Subsequently, we compare the estimation accuracy across the two schemas

given a fixed budget.

N-Summary

We discuss the estimation accuracy of the BP and VP query workloads for both the

IMDB dataset as well as the DBLP dataset. In addition to plotting the overall estimation

accuracy, we sorted the queries in descending order of their relative errors and plotted the

estimation accuracy of the top 30% and the top 50% of the queries in this list – that is,

queries with the worst estimates.

BP workload. Figure 4.8 shows the estimation accuracy in terms of the average relative

error for the BP workload for the IMDB dataset. The first point on the X-axis corresponds

to a single structural histogram bucket per type – effectively, only the cardinality is stored

and the uniform distribution assumption is made. Several important points to be noted

from the graph are as follows:

1. After a certain “cutoff” at around 60 histogram buckets, the estimation accuracy

Chapter 4. Statistics Collection and Query Result Size Estimation 63

Figure 4.8: IMDB: Estimation Accuracy for BP Queries over N-Summary

Figure 4.9: DBLP: Estimation Accuracy for BP Queries over N-Summary

Chapter 4. Statistics Collection and Query Result Size Estimation 64

does not improve substantially. As was discussed in detail in Section 4.4.1, the inter-

leaving of elements in the dataset was the indeed reason for the lack of improvement

in estimation accuracy. The results obtained imply that simply increasing the num-

ber of histogram buckets (unless a very large number of additional buckets are

allocated) is not always an effective solution to the problem of bad estimates.

2. The estimation accuracy increases faster for the more inaccurate estimates when the

number of histogram buckets is increased. The “TOP-30%” line falls more rapidly

than the “TOP-50%” line. This indicates that increasing the number of histogram

buckets does make a substantial difference to some of the queries. But after a certain

cutoff, the gains are limited. Inspite of the substantial improvements, the worst top

50% and top 30% of errors is still unacceptably high, though the overall relative

error is a moderate 20% (at 100 structural histogram buckets).

The reason for the poor estimation accuracy is the presence of a few queries with very

large errors (about 8% of the estimates were over-estimates which were off by more than

100%). These queries had predicates which were optional, or part of unions. For example,

//IMDB/SHOW[REVIEW]/TV, which asks for only Tv reviews. Note that Tv is part of a union

and Review is repeated zero or more times per Show.

The estimation accuracy for the DBLP workload is shown in Figure 4.9. In contrast

to the IMDB workload, the estimation accuracy is very high with only a small number of

histogram buckets. Even for the top 30% of the worst estimates, the error is less than 12%

for just 10 structural histogram buckets. And very small gains are obtained by increasing

the number of buckets. This is due to the fact that the DBLP dataset does not have

a lot of skew. And whatever skew exists is adequately captured by a small number of

buckets. Moreover, when we examined the actual cardinality and the estimates, we found

that the large errors in the dataset were found in a very small number of queries with

small cardinality (comprising less than 10% of the total workload). For example, a query

with cardinality 2 was estimated as 4 leading to a 100% error.

Chapter 4. Statistics Collection and Query Result Size Estimation 65

Figure 4.10: IMDB: Estimation Accuracy for VP Queries over N-Summary with 30 Value
Histogram Buckets

VP workload. For the VP workload, we study the impact of increasing both the num-

ber of structural histogram buckets as well as the number of value histogram buckets.

Figure 4.10 shows the estimation accuracy of the VP workload as the number of structural

histogram buckets increases. The number of value histogram buckets was kept constant

at 30. In addition to the overall estimation accuracy, the top 30% and the top 50% of

the worst estimates are also plotted. As was indicated in the case of the BP workload,

there is a cutoff beyond which the number of structural histogram buckets fails to make

a significant impact.

Figure 4.11 shows the effect of increasing the number of value histogram buckets on

the estimation accuracy. The graph shows 4 curves for 4 different settings of the number

of structural histogram buckets. Note that the first point on the X-axis shows a single

value histogram bucket – effectively, the range and cardinality of the values is stored and

uniform distribution assumption is made. Only the overall estimation accuracy is shown.

Figure 4.12 shows the top 30% and top 50% of the worst estimates in addition to the

overall accuracy for the 100 structural histogram bucket case. As before, the “TOP 30%”

curve falls faster as the the number of value histogram buckets increases. Similar graphs

Chapter 4. Statistics Collection and Query Result Size Estimation 66

Figure 4.11: IMDB: Overall Estimation Accuracy for VP Queries over N-Summary with
Increasing Value Histogram Buckets

Figure 4.12: IMDB: Estimation Accuracy for VP Queries over N-Summary with Increas-
ing Value Histogram Buckets and 100 Structural Histogram Buckets

Chapter 4. Statistics Collection and Query Result Size Estimation 67

were obtained for other values of the number of structural histogram buckets.

Figure 4.13: DBLP: Estimation Accuracy for VP Queries over N-Summary with 30 Value
Histogram Buckets

Similar results were found for the DBLP dataset as well. Figure 4.13 shows the

estimation accuracy when the number of value histogram buckets is kept constant at

30. Again, as indicated from the results for the BP queries, increase in the number of

structural histogram buckets does not have a significant impact on the quality of the

estimates.

Figure 4.14 shows the improvement in estimation accuracy as the number of value his-

togram buckets is increased. As seen from the graph, the improvement is quite significant

– the overall relative error reduces from about 55% for 5 buckets to a little under 20%

for 30 buckets, indicating that the dataset has a large amount of skew in the values (in

contrast to the structure skew). The overall estimation accuracy for different settings of

the number of structural histogram buckets follows very closely the same curve as that

shown in Figure 4.14 and is not shown.

Chapter 4. Statistics Collection and Query Result Size Estimation 68

Figure 4.14: DBLP: Estimation Accuracy for VP Queries over N-Summary with Increas-
ing Value Histogram Buckets and 100 Structural Histogram Buckets

D-Summary

We now move on to the estimation accuracy in the case of the D-Summary. Note that,

given a fixed number of structural and value histogram buckets, the size of the D-Schema

is much larger than the N-Schema. We first discuss the estimation accuracy of the D-

Summary independently and then, in the next section, we compare the accuracies of the

two summaries when they both have the same memory budget.

BP Workload. For the BP workload, the D-Summary of both IMDB as well as DBLP

gave 100% estimation accuracy – that is, the relative error of each of the queries in the

workload was 0. This is not very surprising, given that the D-Summary is a very fine

granularity summary.

VP Workload. We study the impact of increasing the number of structural histogram

buckets as well as the number of value histogram buckets independently. Figure 4.15 shows

the estimation accuracy for increasing number of structural histogram buckets when the

number of value histogram buckets is kept constant at 30. As already indicated by the

results of the BP workload, the increase in number of histogram buckets hardly has any

Chapter 4. Statistics Collection and Query Result Size Estimation 69

Figure 4.15: IMDB: Estimation Accuracy for VP Queries over D-Summary with 30 Value
Histogram Buckets

impact on the estimation accuracy. Even in the case of the top 30% of the worst estimates,

the improvement was a mere 0.5% from just storing the count to allocating 100 structural

histogram buckets.

Figure 4.16 shows the estimation accuracy when the number of value histogram buck-

ets increases. There are 4 different curves for 4 different settings of the number of struc-

tural histogram buckets. Note that only the overall accuracy is plotted. While there is

significant improvement as the number of value histogram buckets increase, there is no

such improvement when the number of structural histogram buckets increase (as already

indicated from Figure 4.15).

Figure 4.17 shows the top 30% and top 50% of the worst estimates as well as the

overall accuracy for the 100 structural histogram bucket case. In addition to improved

estimation accuracy as the number of value histogram buckets increases, the “TOP 30%”

curve falls faster as the the number of value histogram buckets increases. This shows that

for the D-Summary, the main bottleneck is in coming up with effective value histograms.

In contrast, in the N-Summary, both value as well as structural histograms have the

potential to make significant improvements in the estimation accuracy.

Chapter 4. Statistics Collection and Query Result Size Estimation 70

Figure 4.16: IMDB: Estimation Accuracy for VP Queries over D-Summary with Increas-
ing Value Histogram Buckets

Figure 4.17: IMDB: Estimation Accuracy for VP Queries over D-Summary with Increas-
ing Value Histogram Buckets and 100 Structural Histogram Buckets

Chapter 4. Statistics Collection and Query Result Size Estimation 71

Figure 4.18: DBLP: Estimation Accuracy for VP Queries over D-Summary with 30 Value
Histogram Buckets

Similar results were found for the DBLP dataset as well. Figure 4.18 shows the

estimation accuracy when the number of value histogram buckets is kept constant at

30. Again, as indicated from the results for the BP queries, increase in the number of

structural histogram buckets does not have a significant impact on the quality of the

estimates.

Figure 4.19 shows the estimation accuracy when the number of value histogram buckets

increases. Again, the improvement in estimation accuracy is significant. Even for the top

30% of the worst estimates, the average relative error decreases from over 150% when

there is no value histogram, to less than 30% with 30 value histogram buckets. The overall

estimation accuracy for different values of structural histogram follows very closely the

same curve as that shown in Figure 4.19 and is not shown.

Across the board, the estimation accuracy provided by the D-Summary is extremely

high, ranging from 100% accuracy for BP queries to less than 10% error for VP queries.

This holds for both the IMDB as well as the DBLP datasets.

Chapter 4. Statistics Collection and Query Result Size Estimation 72

Figure 4.19: DBLP: Estimation Accuracy for VP Queries over D-Summary with Increas-
ing Value Histogram Buckets and 100 Structural Histogram Buckets

4.7.2 Size of the Summary

The previous section discussed the estimation accuracy of the N- and D-summaries for

both the BP and VP workload. In this section we consider the sizes of the summaries

from two different viewpoints: (i) The estimation accuracy of both summaries when they

are given the same memory budget and, (ii) The absolute sizes of the summaries with and

without the compression technique.

Estimation Accuracy with Equivalent Memory Budgets

Clearly the D-Summary is a lot bigger than the N-Summary because of the larger number

of types. In this section we study the behaviour of the two summaries when they are

allocated the same memory budget.

Table 4.4 tabulates the “equivalent” number of buckets allocated for the two summaries

for both the DBLP and IMDB datasets. These equivalences were derived by first counting

the total number of buckets allocated to the structural histograms in the D-Summary and

then dividing the total number by the number of types in the N-Schema – this number gives

the number of buckets to be allocated to each type in the N-Schema. A similar procedure

Chapter 4. Statistics Collection and Query Result Size Estimation 73

IMDB DBLP

Structural Value Structural Value
D N D N D N D N
1 15 1 15 1 10 1 10
50 550 5 60 50 135 5 25
100 1000 10 120 100 215 10 40

20 225 20 65
30 325 30 80

40 100
50 115
60 130
70 140

Table 4.4: Equivalent Number of Buckets

was used to calculate the equivalent number of value histogram buckets. For example, in

the case of IMDB, allocating a single bucket per structural histogram in the D-Summary

translates to allocating 15 buckets per structural histogram in the N-Summary.

Figures 4.20 and 4.21 show the estimation accuracy for the IMDB and DBLP sum-

maries with equivalent number of buckets for the VP workload. The number of structural

histogram buckets in both cases is the equivalent of 100 buckets in the D-Summary – that

is, 1000 buckets for IMDB and 215 buckets for DBLP for the N-Summary.

Clearly, in the case of IMDB, the D-Summary is far superior to the N-Summary. This

result is expected since we previously noted from Figure 4.8 that the number of structural

histograms made a significant difference to the estimation accuracy. And so, the structure

component of the dataset contributes significantly to the estimation accuracy. Since the

D-Summary improves the structure of the summary, it is significantly more accurate than

the N-Summary. This result shows that in order to increase the estimation accuracy,

simply increasing the number of structural histogram buckets may be far less effective as

compared to performing the schema transformations.

In contrast, for the DBLP dataset, the results are a bit mixed. Previously, from

Figure 4.9, we saw that the structure component was much less important. This fact

is clearly reflected in Figure 4.21 where the dominating effect is due to the number of

Chapter 4. Statistics Collection and Query Result Size Estimation 74

Figure 4.20: IMDB: Estimation Accuracy for VP Queries with Equivalent Number of
Buckets

Figure 4.21: DBLP: Estimation Accuracy for VP Queries with Equivalent Number of
Buckets

Chapter 4. Statistics Collection and Query Result Size Estimation 75

value histograms. When the D-Summary has just a single value histogram bucket, the

N-Summary has 10 buckets which captures a reasonable amount of skew in the values

leading to a 50% improvement in the estimation accuracy. However, as the number

of value histograms is increased, the D-Summary starts to perform better than the N-

Summary. The conclusion that can be drawn from these two graphs is that when there

is very little structural skew, the effectiveness of performing the schema transformations

is limited.

Absolute Summary Sizes

Moving away from equivalent memory budgets for the N- and D-summaries, we now

turn our attention to their absolute sizes, given a fixed number of structural and value

histogram buckets. The summary size depends on the schema as well as the data, while

the maximum summary size depends only on the schema. Clearly, performing schema

transformations increases the number of types and consequently, the number of histograms

that need to be stored. However, even though the schema has several types, not all of

them may be actually instantiated in the data. For example, in the case of IMDB, if the

document does not contain any MOVIE shows, then the type Movie and all its children would

not have any histograms associated with them. For the datasets used in our experiments,

we tabulate both the maximum size of the summary as well as the actual size for the

specific documents we used.

No. of types No. of types Maximum Size Actual Size
(structural) (value) (100,30) bkts (100,30) bkts

IMDB
N 32 22 45.2 KB 41.5 KB
D 409 280 577.7 KB 457.3 KB

DBLP
N 58 50 85.5 KB 41.6 KB
D 3321 2982 4940.1 KB 186.8 KB

Table 4.5: IMDB and DBLP: Absolute Sizes of the Summaries

Table 4.5 tabulates the number of types for both the N- and D-summaries. The

Chapter 4. Statistics Collection and Query Result Size Estimation 76

number of types which contain structural histograms only are tabulated separately. Each

histogram bucket is assumed to require 3 integers with 4 bytes per integer – two integers

to store the bucket boundaries and one to store the count. The actual N-summary sizes

are less than 50 KB for both IMDB and DBLP, while the D-summary sizes are less than

500KB. An interesting observation is that the maximum summary size is larger than the

actual summary size for both N- and D-summaries. In fact, for the D-summary of DBLP,

there is an order of magnitude difference between the two. This difference is due two

reasons:

• The N- or D-Schema could contain types which are not instantiated in the data. Con-

sider the DBLP schema which contains a lot of optional and repeated elements in

sequence. For example, the type ARTICLE contains AUTHOR*, EDITOR*, MONTH?,

PUBLISHER? and URL? in sequence. When constructing the D-schema, these rep-

etitions are converted to unions and the unions are all distributed. This leads to

25 different types of ARTICLEs. That is, articles with none of these sub-elements,

articles with all these sub-elements, articles with at least one author but none of

the other sub-elements, articles with at least author and one editor, etc. The given

data does not contain all these different types of articles and hence a lot of these

types are not utilized in the summary. And so, the actual summary size is much

less than the maximum summary size.

• Not all the histogram buckets may be utilized. For example, in the IMDB data, the

Rating type can contain a total of only 10 values (1 to 10). And so, even though 30

value histogram buckets are allocated, only 10 of those buckets are utilized. Also,

with a large number of types which are optional, not all the structural histogram

buckets may be utilized. For example, in the DBLP data, even though there are

more than 500 ARTICLEs, only 30 of them contain CDROMs.

Compressing the Number of Types. Eliminating the structural histograms for child

types which have a one-to-one correspondence with their parents (that is, those types

which occur exactly once under their parent) considerably reduces the number of types,

Chapter 4. Statistics Collection and Query Result Size Estimation 77

No. of No. of types Maximum Size Maximum Size Savings
types after (100,30) bkts after
(structural) compression compression

(100,30) bkts
IMDB
N 32 11 45.2 KB 20.6 KB 54.4%
D 409 113 577.7 KB 230.8 KB 60.0%

DBLP
N 58 16 85.5 KB 36.3 KB 57.5%
D 3321 1458 4940.1 KB 2756.9 KB 44.1%

Table 4.6: IMDB and DBLP: Savings with Compression

and consequently, the memory budget. Table 4.6 tabulates the savings gained by reducing

the number of structural histograms. The results show that the savings are more than

40% for both the N- and D-summaries.

4.7.3 Statistics Collection Overheads

Figure 4.22: IMDB: Efficiency of Statistics Collection for the N-Schema

The efficiency of statistics gathering depends on: (i) parsing and validation of the XML

data file (Validation) and, (ii) construction of the summary structure (Construction). We

Chapter 4. Statistics Collection and Query Result Size Estimation 78

Figure 4.23: IMDB: Efficiency of Statistics Collection for the D-Schema

Figure 4.24: IMDB: Comparison of Validation Times for the N- and D-Schemas

Chapter 4. Statistics Collection and Query Result Size Estimation 79

Figure 4.25: IMDB: Comparison of Summary Construction Times for the N- and D-
Schemas

tabulate the relative time taken by each of these phases for the IMDB N-Schema and the

IMDB D-Schema for different sizes of datasets. The results are shown in Figures 4.22

and 4.23. Clearly, the results indicate that the major part of the time is taken up by

the parsing/validation part of the statistics gathering (over 50% for the N-Schema and

over 60% for the D-Schema). An interesting result in this regard is that it takes less

percentage of time for statistics construction in the case of D-Schema inspite of the larger

number of types than in the case of the N-Schema. The absolute times for validation and

construction, shown in Figures 4.24 and 4.25 respectively, indicate that it takes longer

for validating against the D-Schema, but the time for construction is much shorter than

for the N-Schema. This can be explained by the fact that in the case of the N-Schema,

there may be less number of types, but the size of the value and parent-id lists are much

longer. Since we need to sort these lists in order to construct the equi-depth histograms,

it takes longer. On the other hand, for the D-Schema, the sorting takes place for much

shorter lists, though the number of such lists is larger.

Chapter 4. Statistics Collection and Query Result Size Estimation 80

4.8 Conclusions

In this chapter, we introduced StatiX, a framework for statistics collection and cardinality

estimation. The main features of StatiX include: (i) the use of XML Schema as the basis

for statistics collection, (ii) the use of several schema transformations to improve the accu-

racy of the summary, (iii) use of histograms to symmetrically capture both structural and

value distributions, (iv) support for cardinality estimation of branching path expression

queries with value predicates, and (v) the ability to use standard XML Schema validators

where possible, for statistics collection.

Our experimental evaluation showed that the D-Summary could achieve 100% accu-

racy for branching path expressions without value predicates, while the N-Summary could

improve the estimation accuracy by increasing the number of histogram buckets. How-

ever, increasing the number of histogram buckets was effective only when there was a

reasonable amount of skew in the data as in the case of the IMDB dataset. For branching

path expressions with value predicates, the number of value histogram buckets made the

largest difference in improving the estimation accuracy, while the number of structural

histogram buckets made a limited impact (this was especially noticeable in the DBLP

dataset which did not contain much structural skew).

The absolute amount of memory used for the N-summary was less than 50KB, while

for the D-summary, it was less than 300 KB for DBLP and less than 500KB for IMDB. Our

compression technique resulted in size reductions of 40%-60% on the maximum summary

size.

Experiments on estimation accuracy with equivalent memory budgets for both the N-

and D- summaries indicated that performing schema transformations is a more effective

method of improving accuracy as compared to increasing the number of histogram buckets.

With regard to the efficiency of statistics collection, our results indicate that parsing

and validation of the XML data takes up the major portion of the time as compared to the

actual construction of the histograms. In fact, upto 70% of the total statistics collection

time devoted was to validation.

Chapter 5

Incremental Maintenance of XML

Summaries

5.1 Introduction

An increasing number of XML applications are dynamic and frequently update the under-

lying data. This gives rise to the problem of maintaining the statistics in the presence of

these updates. Periodically recomputing the statistics from scratch is a possible solution,

but suffers from two problems: (i) Recomputation is an expensive process since it involves

the parsing of the entire document, and (ii) Improperly timed recomputations could result

in stale summaries, leading to unacceptable estimation errors. In this chapter, we present

new techniques to incrementally update XML statistical summaries in parallel with the

receipt of document updates. We assume that an accurate summary of the data, created

at the document loading time, is initially made available, and then, as and when updates

are received, this summary is also correspondingly updated. Specifically, given an initial

document D and its summary S, and a stream of updates U = U1, U2, . . . , Um compris-

ing of inserts, deletes or modifications, the goal is to efficiently and incrementally create

summaries, S1, S2, . . . , Sm, such that the accuracy of these summaries are comparable to

those obtained with a recomputed-from-scratch summary S1
R, S2

R, . . . , Sm
R . Moreover, this

should be achieved within a fixed memory budget (that is, the incremental approach has

81

Chapter 5. Incremental Maintenance of XML Summaries 82

the same resource constraints as recomputation).

Our solution to the XML statistics maintenance problem is an algorithm called IMAX

(Incremental MAintenance of XML statistics). IMAX is built around the StatiX frame-

work (Chapter 4), which not only produces concise and accurate summaries for XML doc-

uments, but also has several features that make it attractive in a dynamic scenario. For

example, StatiX captures order information among the elements in a document through

the document schema and its numbering scheme (see Chapter 4 for details). This infor-

mation makes it possible to estimate the location of updates – a key step in IMAX. In

addition, its use of histograms permits the re-use of well-known techniques for incremental

histogram maintenance.

An important extension that we make to the StatiX framework is the use of two-

dimensional value histograms (instead of the originally proposed 1D histograms) to cap-

ture the correspondence between the node ids and their values. The use of 2D histograms

is a key factor in the effectiveness of IMAX. An empirical evaluation of IMAX (with

both 1D as well as 2D histograms) over a variety of XML documents and update streams

demonstrates that IMAX provides, at a marginal run-time cost, accuracy comparable to

the brute-force recomputation approach, even with a fixed memory budget.

Organization. The rest of this chapter is organized as follows. In Section 5.2, we

highlight several issues which arise in the maintenance of XML statistics with particular

reference to the StatiX framework. In Section 5.3, we describe IMAX, our solution to the

statistics maintenance problem. In Section 5.4, we present an experimental evaluation of

IMAX. Finally, in Section 5.5, we conclude the chapter.

5.2 Issues in Updating StatiX Summaries

Given an update query, it is important to know both how many updates will be applied

and also where they will be applied. The importance of knowing the locations of the

updates stems from the fact that structural histograms capture the relative distributions of

children with respect to their parents. Hence, if the correct ids of the updated components

Chapter 5. Incremental Maintenance of XML Summaries 83

can be computed, the appropriate buckets of the histogram can be updated. In the case of

XML updates there is always an implicit location component to the update. For example,

consider the following insertion (using the syntax of [39]):

Example 1 Add a REVIEW element to the SHOW with title “The sixth sense”.

update

insert <REVIEW>

<RATING>Top drawer stuff!</RATING>

</REVIEW>

into //SHOW[TITLE="The sixth sense"]

¤

Here, the path expression: //SHOW[TITLE="The sixth sense"] describes the particular

Show at which the update applies. Inherently, there is an ordinal associated with this

SHOW, which is critical in updating the summary. Moreover, the ordinal of SHOW determines

the ordinals of the other elements in the update fragment. For example, for the above

update query, in the parent histogram of Review, the count of the bucket which contains

the Show id of “The sixth sense” needs to be incremented; and based on where the review

is added, the parent histogram of Rating also needs to be updated. Note that if titles are

unique, there is a single location in the document which is updated with the given REVIEW

fragment. However, an update can also be applied to a set of locations. For example, the

following query inserts a new AGE sub-element into all movies and TV shows made prior

to 1930:

Example 2 Add the AGE element into all shows with year less than 1930.

update

insert <AGE> Golden Oldie ! </AGE>

into //SHOW[YEAR < "1930"]

¤

Chapter 5. Incremental Maintenance of XML Summaries 84

5.2.1 Location and Cardinality Estimation

It is possible to rely on the actual update operation to determine the number and location

of updates – the database can provide this information to the estimator module. Recall,

however, that the accuracy of estimation and the conciseness of summaries achieved by

StatiX are largely due to contiguous node ids which both capture the order among ele-

ments and are effectively summarized by histograms. While such a numbering scheme is

effective for StatiX, it may not be suitable for the backend database – using a contiguous

node id scheme at the backend could lead to unacceptable update performance, since it

may require a large number of elements to be renumbered [15, 67, 74]. Therefore, instead

of relying on a translation mechanism between the contiguous node id scheme required by

StatiX, and the many possible id schemes at the backend, we make update maintenance

self-sufficient by estimating both the cardinality and location of the updates.

5.2.2 Updates to Structure and Value Histograms

Another important difference to note in the case of updating StatiX summaries is the

nature of the histograms being updated. Previously proposed techniques for histogram

maintenance (e.g., [30]) were designed for value histograms, not structural histograms.

There are important differences between a structural histogram and a value histogram.

First, there is no sanctity to the values in a structural histogram – structural histograms

are based on node ids, but the specific value of the node id is not relevant as long as

the histogram correctly captures the parent-child distribution. For example, it does not

make a difference whether a sequence of Shows is numbered from 1 to 10 or from 100

to 110, as long as the parent histograms of its children use the same values. Second,

the term “insertion” in the case of value histograms and structural histograms take on

different meanings. In the case of insertion into a value histogram, the count of the

corresponding value is updated. However, in the case of structural histograms, a “new”

value is inserted and the subsequent values renumbered. For example, if a new REVIEW is

inserted between REVIEW 2 and REVIEW 3, the id of the new REVIEW is set to 3, and the ids

of the subsequent reviews are incremented. Thus, the domain of the values in a structural

Chapter 5. Incremental Maintenance of XML Summaries 85

histogram continuously changes, and this change in ordinals affects the bucket boundaries

of all the parent histograms for the children of type Review as well.

5.3 The IMAX Technique

In this section we introduce our techniques for maintaining statistics in an XML document

in the presence of insertions and deletions of tree fragments. We restrict our attention to

the class of updates where the location of the update is determined through branching

path expressions in the query.

A high-level description of IMAX is provided in Algorithm 2. It consists of three main

steps: location estimation; id estimation; and summary update. These steps are described

in detail in the remainder of this section.

Input: Summary S, Update U = (c, u)
S is the initial summary; U is divided into condition c, and update fragment u
Output: UpdatedSummary S ′
1: Estimate the location of update using c and S
2: Estimate the ids of update fragment u using S
3: Update S

Algorithm 2: IMAX Algorithm

5.3.1 Estimating the Location of the Update

Given the branching path predicate for the update location, IMAX needs to estimate the

cardinalities of these updates, as well as the ids of the nodes where the updates takes

place. Estimating the location of the updates is closely tied to the cardinality estimation.

As previously mentioned in Section 4.2, each type can be thought of as having a trivial

one-bucket key histogram whose end points are the range of ids of the type, and whose

frequency is the cardinality of the type. As we explain below, we utilize this key histogram

and the parent histogram associated with each type to perform cardinality and location

estimates. A high-level description of the procedure is shown in Algorithm 3. Note that a

major part of this procedure as well as the explanation below is reproduced from Chapter

Chapter 5. Incremental Maintenance of XML Summaries 86

4. In the interests of completeness, we repeat the salient points here.

Input: c, H
c is the path expression identifying the location
H is the set of histograms (value and structure) for all types corresponding to the elements
in c
Output: Cardinality and Location Ids of the Updates

1: let c = /t1[b1]/t2[b2]/t3[b3]/.../tn[bn]
{ti is the tag (correspondingly, its type is Ti)}

2: for all i ∈ 1 to n do
3: Bi = result distribution of bi

4: Ji = Bi on keyHist(Ti)
5: keyHist(Ti) = key distribution of Ti based on Ji

6: parentHist(Ti) = compute distribution based on keyHist(Ti)
7: end for
8: for all i ∈ 1 to n− 1 do
9: Ji = keyHist(Ti) on parentHist(Ti+1)

10: keyHist(Ti+1) = distribute freq(Ji) into keyHist(Ti+1)
11: end for
{Cardinality of the update}

12: card = frequency (Jn)
{We now compute the location ids}

13: locations = randomly choose card ids from the buckets of keyHist(Tn) in proportion
to their frequency

Algorithm 3: Location and Cardinality Estimation for the Updates

This procedure operates in three stages: (i) compute the key distribution and parent-

key distribution for each of the tis in the presence of predicates individually (lines 2

through 7); (ii) use these individual distributions to compute the overall key distribution

of the complete query (lines 8 through 11); and finally (iii) estimate the cardinality and

the location of the updates (lines 12,13).

There are three basic operations – histogram multiplication (lines 4 and 9), finding

the key distribution (line 5), and finding the parent key distribution (line 6). Histogram

multiplication is a well-known operation to find the join estimate given two histograms.

For a description of how the key and parent key distributions are computed, please refer

to Section 4.3 in Chapter 4.

Chapter 5. Incremental Maintenance of XML Summaries 87

Choosing the ids

By performing the steps in Algorithm 3, we get the key distribution of the result of the

query (that is, the key distribution corresponding to tn, shown in line 1). Computing

the actual location ids is now a matter of choosing the ids from this key histogram. The

ids are chosen from the buckets of the key histogram in proportion to their counts. For

example, suppose the final key distribution of Show from the previous update is: [1-12:

1; 12-25: 1]. We randomly choose 1 Show id from 1 to 11 and 1 id from 12 to 24

– these choices comprise the statistically determined Show ids where the updates of the

REVIEW fragment takes place.

Improved Location Estimation

A potential limitation in the current location estimation process is the use of single di-

mensional histograms for values. The problem stems from the fact that no correspondence

between the occurrence of a value and the id of the node at which it occurs, is stored, as

in the case of structural histograms. Consequently, we have to make the independence

assumption when computing the distribution of the nodes containing particular values –

that is, distribute the estimated cardinality into the parent histogram in proportion to

the bucket counts. For example, consider the type Year with values ranging from 1900 to

1960. Suppose the key histogram of year is as follows (note that the key histogram has

been arbitrarily made into a two-bucket histogram).

[1-12: 12; 12-30: 18]

Now, let the value histogram of Year have the skew as shown below:

[1900-1912:7; 1912-1924:7; 1924-1931:6; 1931-1945:6; 1945-1960:4]

Suppose we were to estimate the location of the following location condition:

//SHOW[YEAR <= “1930”]

There are 20 YEARs with value less than or equal to 1930 and their key distribution

would be evenly distributed across the range of key ids of Year (and consequently, into the

parent histogram of Year which is to be multiplied by the key histogram of Show). But, if

all the relevant Year ids were in the range of, say, [12-30), then the location estimate has

Chapter 5. Incremental Maintenance of XML Summaries 88

Figure 5.1: 2D Histogram to Capture Correlation Between Year values and Year Ids

a large error – that is, it estimates 8 of the ids from the wrong range.

In order to overcome this limitation, we propose the use of 2D histograms to explicitly

capture the correspondence between values and the corresponding node ids. For the

previous example, suppose we constructed the histogram shown in Figure 5.11. Then the

location estimation process would accurately estimate that there are 5 ids in the range 1

to 13 and 15 ids in the range 13 to 30.

Since 2D histograms require more space, the budget for value histograms must be

increased to improve the accuracy. However, as we show in Section 5.4, the advantages

of using 2D histograms are substantial. We use the algorithm proposed in [44] to build

equi-depth 2D histograms by choosing one axis at a time. We chose the key dimension

as the first dimension – the key dimension is contiguous and hence will lead to histogram

buckets which are well packed in that dimension.

5.3.2 Estimating the Ids of the Update Fragment

Once the locations of the update is determined, we next need to estimate the ids of

the elements in the update fragment. In the case of insertions, the update fragment is

explicitly given in the query and for each insertion, the number of elements being inserted

is known, while the ids of these elements have to be estimated. But, in the case of

1Note that the 2D histogram could have a more complex bucket structure than the simple square
buckets shown in Figure 5.1.

Chapter 5. Incremental Maintenance of XML Summaries 89

Input: parentHistchild, idparent

The parent histogram of the child element and the id of the parent are the inputs
Output: idchild

1: idchild = 0
2: Bk ∈ parentHistchild such that idparent ∈ Bk

3: for all i ∈ 1 to k − 1 do
4: idchild + = frequency of Bi

5: end for
6: idchild + = bfreq(Bk)/range(Bk)∗ (idparent − lowerbound(Bk))c+1

Algorithm 4: Estimating Ids

Show ids

Aka ids

4

3

2

1

21 3 4 5

Parent histogram
{[1−2: 2], [2−6: 2]}

Show ids

Movie ids

4

3

2

1

21 3 4 5

Parent histogram
{[1−3: 2], [3−6: 2]}

Figure 5.2: Node and Parent ids have a Correspondence

deletions, only the root of the subtree to be deleted is given, so the number as well as the

ids of the deleted elements in the subtree need to be estimated.

In order to estimate the ids of the update fragment, we use the parent histogram which

summarizes the correspondence between parent and child ids (Figure 5.2).

Estimating ids for insertions

Algorithm 4 describes how the parent histogram is used to estimate the id of a child

fragment. The algorithm outputs a single child id. If there are multiple children in the

update with the same tag, then a set of contiguous ids are assigned beginning from the

estimated id of the first child (as determined by Algorithm 4). For Example 1, let the key

distribution of Show be computed as:

Chapter 5. Incremental Maintenance of XML Summaries 90

Figure 5.3: Computing the Ids of REVIEW

[1-12: 1; 12-25: 1]

Suppose the actual ids chosen were 7 and 16, then, the insertion ids for REVIEW would be

computed as shown in Figure 5.3.

Estimating ids for deletions

In the case of deletions, only the root node of the subtree to be deleted is given. The

elements in this subtree have to be first determined from the schema. Since the id of

the root node of the deletion is known, Algorithm 4 can be used to estimate the id of

the child. In addition, the frequency of the child can be estimated from Bk (line 2 in

Algorithm 4) by dividing the frequency of Bk by the range of Bk.

5.3.3 Updating the Summary

The relevant parent histograms in the summary need to be updated by either inserting

new ids or deleting them. This includes not only the parent histograms of the types in

the update fragment, but also the children of these types which may not be present in the

update fragment. As mentioned in Section 5.2, when a structural histogram is updated,

not only does the count of the bucket increase, but the subsequent ordinals may have to

be renumbered. An example of such an insertion is shown in Figure 5.4.

However, a large number of insertions or deletions to the histogram may make it

inaccurate. For example, if new documents are appended continuously, then clearly, only

Chapter 5. Incremental Maintenance of XML Summaries 91

Figure 5.4: Inserting Ids into the Parent Histogram of RATING

the last bucket of a histogram is updated each time with new ids. Therefore, while the

last bucket keeps accumulating counts eventually making it inaccurate, the remaining

buckets retain their original counts. One strategy to approximately maintain the equi-

depth histogram is to periodically redistribute the bucket counts by splitting a bucket once

its count reaches a threshold occupancy T into two new buckets, and then simultaneously

merging a pair of buckets whose combined count is less than T [30]. If more than one such

pair exists, then the pair whose combined frequency is the least is chosen. If such a pair of

split-merge operations cannot be performed, then the histogram is recomputed from the

base data. Note that this procedure for determining whether to recompute the histogram

from base data is very conservative, since the criterion for recomputation is whether or not

there is a split-merge pair available. Other techniques, such as, testing whether the current

histogram is equi-depth, before performing a recomputation, could potentially reduce the

number of recomputations. In this thesis, we evaluate the conservative approach.

Algorithm 5 highlights the main steps in inserting a new value into a parent histogram.

The input to the algorithm is the pair (id, f). Note that the id in this case is the id of the

parent, while the histogram being updated is the parent histogram of the child. The pair

(id, f) indicates the number of times, f , the given child occurs under the given parent

with id id. Steps 3 to 7 perform a shift operation to indicate the insertion of a new

id – this is equivalent to renumbering the previous ordinals of the elements due to the

insertion of a new one. Steps 8 to 15 determine whether only a reorganization will suffice

or whether a complete recomputation of the histogram from the base data needs to take

Chapter 5. Incremental Maintenance of XML Summaries 92

Input: Histogram : H, Update : (id, f), Threshold : T
H is the histogram to be updated
(id, f) is the update consisting of new (id, frequency) pair
T is threshold occupancy at which a bucket is split
Output: UpdatedHistogram : H ′

1: Bk ∈ H such that id ∈ Bk

{Update the frequency of the bucket}
2: Bk.frequency + = f
{Update bucket’s upper limit to reflect insertion of new id}

3: Bk.hi = Bk.hi + 1
{n is the number of buckets in H}
{Update the boundaries of remaining buckets}

4: for all i ∈ k + 1 to n do
5: Bi.lo = Bi.lo + 1
6: Bi.hi = Bi.hi + 1
7: end for
8: if Bk.frequency >= T then
9: found = find Bi, Bi+1 in H such that Bi.frequency + Bi+1.frequency < T

10: if found then
11: REORGANIZE H merging Bi, Bi+1 and splitting Bk

12: else
13: RECOMPUTE H from base data
14: end if
15: end if

Algorithm 5: Insertion of a new id into a parent histogram

place.

For deletions, instead of ids being “inserted”, the ids need to be deleted. Similar issues

also arise for deletions – that is, a single bucket may have a very small count compared

to the others. The strategies outlined for insertions can be easily modified to handle

deletions as well.

Maintaining 2D Histograms. A split-merge strategy with a threshold T is used to

maintain the 2D histograms as well. However, unlike the strategy for 1D histograms,

merge pairs are always chosen such that the bucket boundaries in the key axis match

and the split happens only along the values axis – this ensures that the buckets remain

rectangular even after merging. Figure 5.5(a) shows a 2D histogram with the key axis

being chosen first during construction. Two buckets in Figure 5.5(a) are selected for

Chapter 5. Incremental Maintenance of XML Summaries 93

Keys

Values Values

Keys

(a) A 2D Histogram (b) Merged buckets

Figure 5.5: 2D Histograms - Construction and Merge

merging (darkened rectangles) – both buckets have the same boundaries on the key axis.

Figure 5.5(b) shows the histogram after the buckets have been merged.

5.4 Experimental Evaluation

5.4.1 Experimental Setup

We carried out a detailed evaluation of the IMAX approach on synthetically generated

IMDB data and also on a subset of DBLP data available from [18]. All experiments were

performed on a Compaq ES45 dual-processor machine with 1.25 GHz and 16 GB memory.

For ease of presentation, we classify the types of insertions into: (i) Append only, and (ii)

Random insertions.

Memory Budget

The memory budget for the summary depends on the number of types in the schema

and the number of buckets allocated for structural histograms and value histograms.

All experiments in this section were performed with a minimum of 5 buckets for each

structural histogram and 100 buckets for each value histogram – translating to about 5KB

of memory, and a maximum of 30 structural histogram buckets and 500 value histogram

Chapter 5. Incremental Maintenance of XML Summaries 94

buckets – translating to about 23 KB of memory. Note that the value histograms are 2D

value histograms requiring 5 integers per buckets (4 integers to identify the boundaries and

1 to store the count). Also, schema fragments were used in the experiments, which were

smaller than the full Schema and encompassed only the types required for the updates.

Threshold Factor

The reorganization threshold of histogram Hi is set as Ti = t ∗ fi where fi is the equi-

depth bucket frequency of histogram Hi, and t is a user-specified threshold factor. In our

experiments, the threshold factor was set to 2.5.

Metrics

Our primary performance metric is to compare how close the IMAX incrementally-

generated summary is with respect to the recomputed-from-scratch summary. For each

affected histogram, this is quantitatively captured by µmse defined as follows:

µmse(IMAX) =
PN

i=1(EstRecomputed−EstIMAX)2

totalCardinality

where i = 1 to N covers the total range of values in the histogram, EstRecomputed is

the estimate of value i from the histogram computed from scratch, and EstIMAX is the

estimate computed from IMAX. The totalCardinality refers to the overall occupancy of

the histogram.

To quantitatively establish that there is indeed a significant difference between the

updated document and the original document, we also compute µmse between the currently

computed-from-scratch summary and the original summary (i.e., before any updates were

received), as shown below:

µmse(ORIGINAL) =
PN

i=1(EstRecomputed−EstORIGINAL)2

totalCardinality

While the above metrics measure the accuracy of IMAX in the face of significant

updates, our next metric aims to measure its efficiency. This is done by tracking the

number of recomputations incurred by IMAX during its maintenance process. This metric,

Chapter 5. Incremental Maintenance of XML Summaries 95

called RECOMP , is defined as the number of recomputations divided by the total number

of insertions into the histograms, that is, RECOMP = r
I

where r is the number of

recomputations and I is the total number of histogram insertions. RECOMP can be

calculated on a per-type basis or over all types in the insertions.

5.4.2 Append-Only Updates

Append-only updates occur in warehouse scenarios, where new documents are continu-

ously being added. The main complexity in append-only updates is in the reorganization

of the histograms since appends occur at the root of the document. For IMDB, we ap-

pended new Shows to the document, while for DBLP, we appended new ARTICLES.

Results. For the IMDB dataset, the µmse values for two types: Review and Aka are

shown in Figure 5.6. Note that the histograms correspond to the parent histograms of

these types. In this graph, the number associated with each algorithm in the legend (for

example, 10 in Review(10,IMAX)) refers to the number of structural histogram buckets.

Note that the number of value histogram buckets is not an issue here, since the location

condition does not involve a value predicate. For the updates of value histograms, the

µmse values are shown for type Year in Figure 5.7. Here the legend denotes the number of

2D value histogram buckets.

The first point to note in Figures 5.6 and 5.7 is that the µmse values (which are shown

on a log-scale) for IMAX are very low, especially when compared with the µmse values

for the original parent histogram – in fact, there is close to two orders of magnitude

difference in their quality. This clearly indicates that (a) there is a substantial change

between the original document and the updated document, and (b) IMAX is able to track

these changes rather well for both the structural and the value histogram cases.

Next, the efficiency aspect is captured in the RECOMP numbers shown in Table 5.1.

It shows that only a very small fraction of recomputations are required to support the

IMAX incremental maintenance strategy.2

2Recomputation refers to the recomputation of the specific histogram, as mentioned in Section 5.3.3.

Chapter 5. Incremental Maintenance of XML Summaries 96

1e-05

0.0001

0.001

0.01

0.1

1

10

100

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

µ m
se

No. of Updates

Review (10, IMAX)
Aka (10, IMAX)

Review (10, Original)
Aka (10, Original)

Figure 5.6: IMDB: µmse values for types Review and Aka

0.01

0.1

1

10

100

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

µ m
se

No. of Updates

Year (50, IMAX)
Year (25, IMAX)

Year (50, Original)

Figure 5.7: IMDB: µmse values for type Year

Chapter 5. Incremental Maintenance of XML Summaries 97

Type No. of Insertions RECOMP
Show 5000 0
Review 170123 0.008%
Aka 9798 0.12%
Tv 2461 0.28%
Movie 2539 0.27%
Year 5000 0.02%
TOTAL 189921 0.01%

Table 5.1: IMDB: RECOMP with Appends

Type No. of Insertions RECOMP
ARTICLE 10000 0
AUTHOR 16174 0.04%
URL 9989 0.08%
TOTAL 109359 0.06%

Table 5.2: DBLP: RECOMP with Appends

Similar results for the DBLP dataset are shown in Figure 5.8 and Table 5.2 for the

µmse and RECOMP metrics, respectively. Note that in Table 5.2, only a subset of types

updated have been enumerated, while the last line totals all updated types.

5.4.3 Random Insertions

Turning our attention to random insertions, the most important component here is the

location estimation. If a single update query results in updates in multiple locations,

then the cardinality estimation also comes into play. We divided insertions into two

categories: (i) Unique insertions, where a single update query results in an insertion at

a unique location in the document, and, (ii) Multiple insertions, where a single update

query results in insertions at multiple locations in the document.

For IMDB, we generated an Actor database consisting of information about actors.

Each ACTOR subtree consists of a NAME sub-element, and multiple PLAYED sub-elements.

Each PLAYED element may contain multiple EPISODE sub-elements. The update query

Chapter 5. Incremental Maintenance of XML Summaries 98

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

µ m
se

No. of Updates

Author (10, IMAX)
Author (10, Original)

Url (10, IMAX)
Url (10, Original)

Figure 5.8: DBLP: µmse values for types Author and Url

reflects the addition of new information regarding the actor’s acting history. The insertions

were of the form:

update insert

<PLAYED>

<EPISODE>...</>

<EPISODE>...</>

....

</>

into /ACTOR[NAME="x"]

The number of Actors in the database was 1000 – that is 1000 unique values for the value

predicate involving Name. Note that this query has multiple levels of insertions where the

estimated id of Actor (from Algorithm 3) is used not only to update the parent histogram

of Played, but also to estimate the id of Played (from Algorithm 4). This id in turn is used

to determine the ids of the multiple Episodes.

For the DBLP dataset, we chose a set of journal articles from 134 different journals.

Each journal had articles published in that journal in a separate subtree. The insertions

Chapter 5. Incremental Maintenance of XML Summaries 99

we chose reflects the addition of new articles into a database segregated on the basis

of journal names. Each article had multiple author elements along with several other

relevant information such as url, publisher, year, etc.

The insertions were of the form:

update insert

<article>

<author>..</>

<author>..</>

...

<year>..</>

<url>..</>

...

</>

into /dblp/articles[journal="x"]

Additional Measures

Apart from the µmse and RECOMP metrics defined earlier, we utilize two additional

supporting measures here to help explain the results:

Location Estimation Accuracy: This metric measures the effectiveness of the location

estimation technique. It compares the estimated location against the actual location.

The location estimation is deemed to be correct if both the estimated as well as the

actual location both fall into the same histogram bucket. The location estimation

accuracy is defined to be: LEA =
Lcorrect

Ltotal

where Lcorrect is the number of correctly

estimated locations and Ltotal is the total number of locations.

µcount: µcount considers each histogram bucket and computes the deviation of the fre-

quency of the bucket from the actual frequency normalized to the average bucket

count. This metric helps in highlighting where the incorrect location estimations

are being distributed.

The metric [30] is defined as:

Chapter 5. Incremental Maintenance of XML Summaries 100

µcount = β
N

√
1
β

∑β
i=1(fBi

−Bi.count)2

where N denotes the number of values, β denotes the number of buckets, fBi
denotes

the actual count of bucket Bi, and Bi.count denotes the current count of bucket Bi.

Results. The location estimation accuracy for the IMDB and the DBLP datasets under

random insertions are shown in Figures 5.9 and 5.10, respectively, as a function of the

number of value histogram buckets. Each graph shows the location estimation accuracy

in two cases: (i) when the structural histogram contains only 5 buckets and, (ii) when

it contains 30 buckets. Further, both the 1D and 2D versions of IMAX are presented

in the graphs and we see that using 2D histograms clearly gives superior estimation

accuracy as compared to using 1D histograms. Note that in order to compare only the

location estimations, 2D histograms were used for cardinality estimation in both cases.

The equivalent cardinality estimation for the 1D case would contain only the square root

of the number of buckets in the value histogram. And so, the X-axis in the graph denotes

the total number of 2D histogram buckets utilized per type, while the equivalent number

in the 1D case would contain only the square root number of buckets. This is the tradeoff

between the space utilized and the accuracy. Note however, that increasing the number of

1D histogram buckets has no impact on the location estimation accuracy. This is because,

since no correlation is stored between the values and their corresponding node ids, the

location estimates are always chosen randomly from the entire range of node ids.

The µmse metric for the type Played is shown in Figure 5.11 for both the original

summary, as well as with the 1D and 2D versions of IMAX. Note that, again, there is

over two orders of magnitude difference in accuracy between the original summary and

both versions of IMAX.

An interesting observation in Figure 5.11 is that the 2D version of IMAX provides

only marginal accuracy gains over the 1D version. This is inspite of the fact that the

2D version is far superior in terms of location estimation as compared to the 1D version

(Figure 5.9). The reason is that the insertions are approximately uniformly distributed

over the whole document. So, what may not be the correctly estimated location for one

Chapter 5. Incremental Maintenance of XML Summaries 101

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

25 100 200 300 400 500 600

F
ra

ct
io

n
of

 C
or

re
ct

 L
oc

at
io

n
E

st
im

at
es

 (
LE

A
)

No. of Value Histogram Buckets

Played (2D, 5 bkts)
Episode (2D, 5 bkts)
Played (2D, 30 bkts)

Episode (2D, 30 bkts)
Played (1D, 5 bkts)

Played (1D, 30 bkts)

Figure 5.9: IMDB: LEA for Random Insertions with 1D and 2D Value Histograms

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 200 300 400 500

F
ra

ct
io

n
of

 C
or

re
ct

 L
oc

at
io

n
E

st
im

at
es

 (
LE

A
)

No. of Value Histogram Buckets

AUTHOR (2D, 5 bkts)
ARTICLE (2D, 5 bkts)

AUTHOR (2D, 30 bkts)
ARTICLE (2D, 30 bkts)
AUTHOR (1D, 30 bkts)
ARTICLE (1D, 30 bkts)

Figure 5.10: DBLP: LEA for Random Insertions with 1D and 2D Value Histograms

Chapter 5. Incremental Maintenance of XML Summaries 102

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

µ m
se

No. of Updates

Played (2D, 30, 500)
Played (1D, 30)

Played (Original, 30)

Figure 5.11: IMDB: µmse values for type Played for Random Insertions

insert may very well turn out to be the correct location for some other insert, effectively

canceling out the effect of several wrong estimations. This is clear from Figure 5.12 which

plots the µcount metric for Played. The µcount values of both the 1D and 2D cases are close

together here.

However, if we consider insertions where the locations of the insertions are skewed,

the benefits of using 2D histograms become immediately apparent. Such insertions are

possible when, say, more recently added actors need to be updated more frequently than

others. Figure 5.13 shows the µcount for such skewed insertions, and we observe nearly

an order of magnitude difference in the µcount values of the 1D and 2D versions. This

demonstrates the benefits of using 2D histograms. The µmse metric for the 2D version is

shown in Figure 5.14. There is a significant improvement in the µmse values of at least an

order of magnitude over the 1D version.

Similar behaviour is seen for type Episode which is nested under Played. When the

insertions are random, the difference between the µmse values for the 1D and 2D cases is

not significant, while in the case of skewed insertions, there is a big difference between

the 1D and 2D cases. This behaviour is shown in Figures 5.15 and 5.16. Note that there

is some interleaving of the lines since there are more recomputations which take place for

Chapter 5. Incremental Maintenance of XML Summaries 103

0.0001

0.001

0.01

0.1

1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

µ c
ou

nt

No. of Updates

Played (2D, 30, 500)
Played (1D, 30)

Played (Original, 30)

Figure 5.12: IMDB: µcount values for type Played for Random Insertions

Type No. of RECOMP No. of RECOMP
Insertions (Random) Insertions (Skewed)
(Random) (Skewed)

Played 10000 0.03% 2000 0.05%
Episode 104569 0.006% 20937 0.02%
TOTAL 124569 0.01% 24937 0.02%

Table 5.3: IMDB: RECOMP with Random and Skewed Insertions

Episode, but the general trend of the difference between the µmse values for the 1D and

2D cases can be seen clearly.

Moving on to the efficiency aspect of IMAX under random insertions, the number

of recomputations for both DBLP and IMDB, with and without skewed insertions, are

shown in Tables 5.3 and 5.4, respectively. The tables provide the specific measures for

only a subset of the types, but the totals in the last line are across all types.

Clearly, the number of recomputations required is a very small fraction of the total

number of insertions made in the document. Note that the number of recomputations

can be further reduced by increasing the reorganization threshold – trading off on the

accuracy of the histograms.

Chapter 5. Incremental Maintenance of XML Summaries 104

0.001

0.01

0.1

1

10

0 200 400 600 800 1000 1200 1400 1600 1800 2000

µ c
ou

nt

No. of Updates

Played (2D, 30, 500)
Played (1D, 30)

Played (Original, 30)

Figure 5.13: IMDB: µcount values for type Played for Skewed Insertions

0.001

0.01

0.1

1

10

0 200 400 600 800 1000 1200 1400 1600 1800 2000

µ m
se

No. of Updates

Played (2D, 30, 500)
Played (1D, 30)

Played (Original, 30)

Figure 5.14: IMDB: µmse values for type Played for Skewed Insertions

Chapter 5. Incremental Maintenance of XML Summaries 105

0.0001

0.001

0.01

0.1

1

10

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

µ m
se

No. of Updates

Episode (2D, 30, 500)
Episode (1D, 30)

Episode (Original, 30)

Figure 5.15: IMDB: µmse values for type Episode for Random Insertions

0.001

0.01

0.1

1

10

0 200 400 600 800 1000 1200 1400 1600 1800 2000

µ m
se

No. of Updates

Episode (2D, 30, 500)
Episode (1D, 30)

Episode (Original, 30)

Figure 5.16: IMDB: µmse values for type Episode for Skewed Insertions

Chapter 5. Incremental Maintenance of XML Summaries 106

Type No. of RECOMP No. of RECOMP
Insertions (Random) Insertions (Skewed)
(Random) (Skewed)

ARTICLE 8000 0.02% 2000 0.05%
AUTHOR 14624 0.1% 3843 0.28%
TOTAL 88414 0.14% 22606 0.36%

Table 5.4: DBLP: RECOMP with Random and Skewed Insertions

Multiple Insertions. We consider here single update queries which spawn multiple

insertions. For example, adding a comment “Arnold Rocks” for all films starring Arnold

Schwarzenegger, or adding information templates for all shows satisfying certain criteria.

We experimented with multiple-insertion updates on the article database of DBLP. The

update involved adding a LINK for a given author denoting his/her URL. Such an update

would require multiple insertions of the tag link depending on the number of articles

authored by the author since the tag should be added to each such occurrence. The

DBLP document contained a total of 1165 authors, each with at least 10 articles spread

over more than 17000 articles. We performed insertions of the following form:

update insert

<link> .. </> into

/dblp/article[author="x"]

As with the unique insertions, two sets of insertions were performed: a set of skewed

insertions with around 20% of authors; and another set of insertions involving all authors.

The µmse metric for both cases are shown in Figures 5.17 and 5.18, respectively. The utility

of 2D histograms is limited in the case of uniformly distributed insertions, but provides

considerable advantage when the insertions are skewed. This conclusion is supported by

the corresponding µcount metrics shown in Figures 5.193 and 5.20.

The efficiency of this set of insertions was quite good since no recomputations were

required in the case of skewed insertions, while a single recomputation was performed

3While Figures 5.17 and 5.19 may look very similar, they are not the same graph.

Chapter 5. Incremental Maintenance of XML Summaries 107

1e-05

0.0001

0.001

0.01

0.1

1

0 200 400 600 800 1000 1200

µ m
se

No. of Updates

LINK (2D, 30, 500)
LINK (1D, 30)

LINK (ORIGINAL, 30)

Figure 5.17: DBLP: µmse values for type LINK for Random Multiple Insertions

1e-05

0.0001

0.001

0.01

0.1

0 50 100 150 200 250

µ m
se

No. of Updates

LINK (2D, 30, 500)
LINK (1D, 30)

LINK (Original, 30)

Figure 5.18: DBLP: µmse values for type LINK for Skewed Multiple Insertions

Chapter 5. Incremental Maintenance of XML Summaries 108

0.001

0.01

0.1

1

0 200 400 600 800 1000 1200

µ c
ou

nt

No. of Updates

LINK (2D, 30, 500)
LINK (1D, 30)

LINK (Original, 30)

Figure 5.19: DBLP: µcount values for type LINK for Random Multiple Insertions

0.001

0.01

0.1

1

0 50 100 150 200 250

µ c
ou

nt

No. of Updates

LINK (2D, 30, 500)
LINK (1D, 30)

LINK (Original, 30)

Figure 5.20: DBLP: µcount values for type LINK for Skewed Multiple Insertions

Chapter 5. Incremental Maintenance of XML Summaries 109

Append Insert Skewed Multiple Skewed
(IMDB) (IMDB) Inserts Inserts Multiple

(IMDB) (DBLP) Inserts (DBLP)
IMAX 97 77 122 190 86
Recompute 8167 1437 669 5403 19181

Table 5.5: Average Time per Update (in ms)

when 2D histograms were used in the case of random insertions.

5.4.4 Estimation Accuracy and Timing

The previous sub-sections dealt with the histogram accuracy (for a subset of histograms)

and the number of recomputations required for various datasets. The results indicated

that IMAX is very accurate when it comes to tracking the updates with a very small

number of recomputations. In order to get a “global” picture of the accuracy and efficiency

of IMAX, we present numbers on the estimation accuracy and timing. Note that all results

are for the 30 structural histogram buckets and 500 value histogram buckets case.

Figure 5.21: Error Relative to Recomputed Summary for IMDB and DBLP Datasets

Chapter 5. Incremental Maintenance of XML Summaries 110

Timing. Table 5.5 tabulates the average time per update for the different datasets.

We see here that IMAX is almost always at least an order of magnitude faster than the

recompute-from-scratch approach even when the occasional histogram recomputations

required are taken into account. There is not too much of variation in the timings of

IMAX across the datasets, since IMAX depends primarily on the size of the schema

and the number of recomputations is only secondary in importance (hence the slight

variations in timing), while the recomputation approach depends on the size of the data.

Consequently, the larger the size of the dataset, the longer it takes for the recomputation.

For example, for the DBLP Skewed Multiple Insertions case, the final size of the document

was around 19MB, while for the IMDB Inserts case, the final size was around 4MB.

Estimation Accuracy. We then generated a query workload of around 300 queries with

both branching path expressions without value predicates (around 15% of the workload),

as well as path expressions with at least one and a maximum of two value predicates for

each of the datasets. For each query workload, we computed the average relative error

(ARE) in estimation using the IMAX summary as well as the recomputed-from-scratch

summary. Figure 5.21 shows the ARE of IMAX relative to that of the recomputed-from-

scratch summary. The results indicate that the quality of the IMAX summary is almost

as good as that of the recomputed summary.

5.5 Conclusions

In this chapter, we introduced IMAX, an algorithm for maintaining StatiX summaries in

the presence of updates to the base data. We proposed solutions for two important issues

which arise in the context of XML statistics maintenance: (i) estimating the location of

the update and (ii) estimating the ids of the update fragment. Both issues are important

because of the ordered data model of XML. We proposed the use of 2D histograms in

place of 1D histograms to substantially improve the location estimation accuracy. IMAX

utilizes histogram maintenance techniques from prior literature (modified suitably for 2D

histograms) in order to reduce the number of recomputations required to maintain the

Chapter 5. Incremental Maintenance of XML Summaries 111

quality of the summary.

Our experimental evaluation spanned three different kinds of inserts: (i) Appends, (ii)

Inserts and (iii) Multiple Inserts. Using 2D histograms for location estimation resulted

in an order of magnitude improvement in the updated histogram accuracy in the case

of skewed inserts, while there was no significant difference between the 1D and 2D cases

in the case of random inserts. This was due to the fact that the wrong estimates could

cancel each other out since the insertions uniformly spanned all the histogram buckets.

The relative estimation accuracy of the updated summary with respect to the

recomputed-from-scratch summary was within 25% in the worst case and was within

1%-2% for most of the experiments. IMAX was shown to be highly efficient when com-

pared to the recompute-from-scratch approach – IMAX was usually at least an order of

magnitude faster.

In summary, IMAX provides an effective and efficient means of statistics maintenance

in the presence of updates to the data.

Chapter 6

A Cost-based XML-to-Relational

Storage System

6.1 Introduction

In this chapter, we study the impact of schema transformations and the query workload on

search strategies for finding efficient XML-to-relational mappings. Specifically, we develop

a framework for generating XML-to-relational mappings, which incorporates a compre-

hensive set of schema transformations and is capable of supporting different mapping

schemes such as ordered XML and schemaless content. Our framework, named FleXMap

(Flexible XML Mappings), represents an XML Schema through type constructors (see

Chapter 3) and uses this representation to define several schema transformations from

the existing literature. We also propose variations of these transformations that lead to a

more efficient search process, as well as new transformations that derive additional useful

configurations.

FleXMap is built on top of the LegoDB prototype [8] and improves on it in several

ways. Using FleXMap, a larger space of relational configurations, including those consid-

ered by LegoDB, is explored, leading to a final storage design that is much more efficient

than those derived by LegoDB.Here, we describe a series of greedy algorithms that we have

experimented with, and show how the choice of transformations impacts the search space

112

Chapter 6. A Cost-based XML-to-Relational Storage System 113

of configurations. The algorithms differ in the number and type of transformations they

utilize. Intuitively, the size of the search space examined increases as the number/type of

transformations considered in the algorithms increase. Our empirical results demonstrate

that, in addition to deriving better quality configurations, algorithms that search a larger

space of configurations can sometimes converge faster. Further, we propose optimizations

that significantly speed up the search process with very little loss in the quality of the

selected relational configuration.

An important aspect of cost-based XML-to-relational mapping is evaluating the cost

of the input workload for each of the derived configurations. In order to compute precise

cost estimates, it is important that accurate statistics are available as transformations

are applied. Clearly, it is not practical to scan the base data for each new relational

configuration that is derived during the iterative search process. As discussed later in

this chapter, we address this issue by gathering statistics at the appropriate granularity

before the search starts; and deriving accurate statistics during the search process.

Organization. The rest of the chapter is organized as follows. In Section 6.2 we show

how to derive relational configurations from schema trees. In Section 6.3 the propagation

of statistics when transformations are applied as well as query translation are discussed.

In Section 6.4 we develop a series of greedy search algorithms and in Section 6.5 these

algorithms are evaluated. In Section 6.6 we propose optimizations to speed up the search

process and then conclude in Section 6.7.

6.2 From Schema Trees to Relational Configurations

6.2.1 Basic Mapping

Given a schema tree with annotated nodes, a relational configuration is derived as follows:

• If N is an annotation in the schema tree, then there is a relational table TN cor-

responding to it. This table contains a key column and a parent id column which

Chapter 6. A Cost-based XML-to-Relational Storage System 114

points to the key column of the table corresponding to the closest named ancestor

of the current node, if it exists.

• If the subtree of the node annotated by N is a <simple type>, then TN additionally

contains a column corresponding to that type to store its values.

• If N is the annotation of a node, then TN contains as many additional columns as

the number of non-annotated children of N that are of type <simple type>.

One of the main motivations of transforming the XML schema in the XML domain rather

than in the relational domain is that it is possible to exploit some of the syntactic infor-

mation inherent in the XML Schema constructs. For example, it is possible to know from

the XML Schema that a certain type is repeated multiple times and hence it would be

more efficient to store it in a separate table. Similarly, if a type is part of a union in the

schema, then we already know that there are potentially many null values in the column

corresponding to that type. We make use of this knowledge in framing the following two

additional rules for deriving a relational configuration from the given schema.

• Repeated types are stored in a separate table. The alternatives would be to: (i) store

each occurrence of the repetition as separate columns in its parent table leading to

an artificial upper bound on the number of repeats, or, (ii) store all occurrences of

the repetition in the same column by duplicating the values in the rest of the tuple

leading to wasted space (as well as increased complexity for updates).

• Types which are part of a union are stored in a separate table. This rule avoids

nulls in the parent table.

The relational configuration corresponding to the schema tree in Figure 6.1 for the

Director subtree is shown in Figure 6.2. Note that the above rules form just one possible

set of rules. It is possible to frame a different set of rules – for example, we could allow

components of a union to be inlined into the parent, but pay the cost of null values.

Chapter 6. A Cost-based XML-to-Relational Storage System 115

DIRECTOR

NAME

DIRECTED

TITLE

YEAR INFO

,
,

(Info)

(Name)

(Director)

(Directed)

(Title)

(Year)

,
*

Figure 6.1: (Partial) Schema Tree for the IMDB Schema

Table Director [director_key INT, parent_id INT]
Table Name [Name_key INT, NAME VARCHAR (100),

parent_director_id INT]
Table Directed [Directed_key INT, parent_director_id]
Table Title [Title_key INT, TITLE VARCHAR (100),

parent_directed_id INT]
Table Year [Year_key INT, YEAR, parent_directed_id INT]
Table Info [Info_key INT, INFO VARCHAR (100),

parent_directed_id INT]

Figure 6.2: Relational Schema for the (partial) Schema Tree

Chapter 6. A Cost-based XML-to-Relational Storage System 116

6.2.2 Supporting Additional Features of XML Schema

The current implementation of FleXMap supports the basic features of XML Schema, but

can be extended to support other features by simply adding the appropriate rules. For

example:

Ordered XML: In order to support ordered XML, one or more additional columns to

store the ordinal of a column could be incorporated into each of the relational tables

[68]. Hence the basic mapping would include the addition of another column for the

ordinal.

Mixed Content: A simple way to handle mixed content is to have one column for all

the text content and additional columns (or tables) for each of the tagged contents.

Another option is to treat the whole content as a CLOB and assign a single column

to it.

It is also possible to support different storage schemes to a limited extent. For example,

by introducing an “ANYTYPE” constructor, we can define a rule which maps annotated

nodes of that type to a ternary relation (edge table) [25].

6.2.3 Schema Transformations and Relational Configurations

The previous section listed the rules for the translation of a given XML schema tree into

a relational configuration. In this section, we give examples to show how several schema

transformations defined in Chapter 3 (such as inline/outline, type split/merge, union

distribution/factorization, repetition split/merge) help in deriving a variety of different

relational configurations.

Inline and Outline

Clearly, inlining a node which is a simple type corresponds to including a separate column

for it in the table of its parent (assuming that the parent is outlined). Conversely, outlining

a type implies that a separate table is created for it.

Chapter 6. A Cost-based XML-to-Relational Storage System 117

DIRECTOR

NAME

DIRECTED

TITLE

YEAR INFO

,
,

(Name)

(Director)

(Directed)

(Title)

,
*

(T)

Figure 6.3: A Subset of Annotations

Table Director [Director_key INT, parent_id INT]
Table Name [Name_key INT, NAME VARCHAR (100),

parent_Director_id INT]
Table Directed [Directed_key INT, parent_Director_id INT]
Table Title [Title_key INT, TITLE VARCHAR (100),

parent_Directed_id INT]
Table T [T_key INT, YEAR INT, INFO VARCHAR (100),

parent_Directed_id INT]

Figure 6.4: Relational Schema with Annotation “T”

Chapter 6. A Cost-based XML-to-Relational Storage System 118

Inline and outline may also be used to group elements together. Consider Figure 6.3

in which introducing the annotation T and removing annotations Y ear and Info results

in the new relational schema shown in Figure 6.4. This configuration groups Year and Info

together in a single table.

Since any node in the schema tree can be inlined/outlined, it is possible to generate

2n number of different configurations, where n is the number of nodes in the schema

tree, with just the inline and outline operations. However, grouping of elements may not

be a useful transformation since much of its functionality can be subsumed by relational

schema design tools which support vertical partitioning as one of the schema optimizations

(e.g., Oracle’s Designer 2000).

Type Split/Merge

We refer to a type as shared when it has distinct annotated parents. In the example

shown below, the type Title is shared by the types Show and Directed. Consequently, the

table corresponding to Title would contain a parent id column which contains key values

from both Directed as well as Show – hence the parent id column is not a foreign key. By

splitting and renaming the type Title to STitle and DTitle, a relational configuration is

derived where a separate table is created for each type of title.

define type Show { element SHOW {type Title, (type Tv | type Movie) }}
define type Director { element DIRECTOR {type Title, type Directed }}
define type Title { element TITLE {xsd:string }}

Type split Title →

define type Show { element SHOW {type STitle, (type Tv | type Movie) }}
define type Director { element DIRECTOR {type DTitle, type Directed }}
define type STitle { element TITLE {xsd:string }}
define type DTitle { element TITLE {xsd:string }}

Translated to →

Chapter 6. A Cost-based XML-to-Relational Storage System 119

Table Show [Show_key INT, IMDB_parent_id INT]

Table Director [Director_key INT, IMDB_parent_id INT]

Table DTitle [DTitle_key INT, DTitle_TITLE VARCHAR (100),

Directed_parent_id INT]

Table STitle [STitle_key INT, STitle_TITLE VARCHAR (100),

Show_parent_id INT]

...

6.2.4 Structural Transformations

We now describe how structure changing transformations (including those defined in

Chapter 3) can be utilized to derive useful relational configurations.

Commutativity and Associativity

Two basic structure-altering operations that we consider are: commutativity and asso-

ciativity. Associativity is used to group different types into the same relational table.

Consider, for example, the type Directed shown in Figure 6.5. The first tree in this figure

yields a relational schema in which the Year and Info of Directed are stored in a single table

called Year Info. We can change this grouping by applying associativity as shown in the

second tree and obtaining a relational schema in which Title and Year appear in a single

table called Title Year.

TITLE

YEAR INFO

,
,

(Directed)DIRECTED

,

(Directed)DIRECTED

(Year_Info)
,(Title_Year)

TITLE YEAR

INFO

Figure 6.5: Applying Associativity

Commutativity by itself does not give rise to different relational mappings1, but when

1Note that commuting the children of a node no longer retains the original order of the XML schema.

Chapter 6. A Cost-based XML-to-Relational Storage System 120

combined with associativity may generate mappings different from those considered in

the existing literature. For example, in Figure 6.5, by first commuting Year and Info and

then applying associativity, we get a configuration in which Title and Info are stored in

the same relation.

As with inline and outline, much of the functionality of these two operations could be

taken over by a relational schema optimizing tool which does vertical partitioning.

Union Distribution/Factorization

We utilize union distribution in order to separate the components of a union into different

tables. The following example shows how to use a combination of union distribution,

outline and type split to derive a useful relational configuration:

define type Show { element SHOW {type Title, (type TV | type Movie) }}

Distribute Union →

define type TVShow { element SHOW {type TVTitle, type Tv }}
define type MovieShow { element SHOW {type MovieTitle, type Movie }}

Inline →

define type TVShow {
element SHOW {element TITLE { xsd:string }, element TV { xsd:string } }}

define type MovieShow {
element SHOW {element TITLE { xsd:string }, element MOVIE { xsd:string }}

Translated to →

Table TVShow [TVShow_key INT, TVShow_TITLE VARCHAR (100),

TVShow_TV VARCHAR (100), IMDB_parent_id INT]

Chapter 6. A Cost-based XML-to-Relational Storage System 121

Table MovieShow [MovieShow_key INT, MovieShow_TITLE VARCHAR (100),

MovieShow_MOVIE VARCHAR (100), IMDB_parent_id INT]

The information about TV shows and movie shows, which previously may have been

stored in a single table called Show, is split into two separate tables – this is equivalent to

horizontally partitioning the Show table, i.e., one partition is created for TV shows and

another for movies.

Given a single table (that is, just the Show table with, say, two columns for Tv and

Movie), it would not be possible for any relational tool to do the horizontal partitioning.

But, by performing this transformation in the XML domain, we are able to generate this

configuration.

Repetition Split/Merge

According to the rules in Section 6.2, a repeated type is always stored in a separate

table. However, it is possible to inline some of these values by a transformation which

splits the repetition. For example:

define type Show {element SHOW {type Title, type Aka*} }

Split Repetition →

define type Show {element SHOW {type Title, type Aka1?, type Aka2*} }

Inline →

define type Show {element SHOW

{element TITLE { xsd:string }, element AKA { xsd:string }?, type Aka2*} }

Translated To →

Chapter 6. A Cost-based XML-to-Relational Storage System 122

Table Show [Show_key INT, Show_TITLE VARCHAR (100),

Show_AKA1 VARCHAR (100), IMDB_parent_id INT]

Table Aka2 [Aka_key INT, AKA VARCHAR (100), Show_parent_id INT]

By splitting the repetition Aka*, the new type Aka1 may be inlined into Show. Aka2* may

be split over and over again. In order to prevent an infinite number of splits, the number

of splits must be fixed during the search. Similar to union distribution and factorization,

repetition split and repetition merge also result in relational configurations which are

derivable only by looking at the XML schema.

Many other transforms such as simplifying unions [65] (a lossy transform2 which en-

ables the inlining of one or more of the components of the union), etc. can be defined

similarly.

6.3 Evaluating Configurations

It is important that during the search process, precise cost estimates are computed for

the query workload under each of the derived configurations – this, in turn, requires

accurate statistics. Since it is not practical to scan the base data afresh for each new

relational configuration derived, it is crucial that these statistics be accurately propagated

as transformations are applied.

6.3.1 Collection and Propagation of Statistics

For ease of exposition, we describe the collection and propagation of statistics at the XML

Schema level, and later show how to translate these into relational statistics.

An important observation about the transformations defined in Chapter 3 is that

merge operations (type merge, union factorization, repetition merge, inline) preserve the

accuracy of the statistics, while split operations (type split, union distribution, repetition

split, outline) do not. Intuitively, if two types T1 and T2 are merged into T , precise

2That is, the set of documents validated after the transform is applied is different from the set validated
before.

Chapter 6. A Cost-based XML-to-Relational Storage System 123

statistics for T can be derived by summing/unioning the statistics of T1 and T2. However,

when a type T is split into T1 and T2, in general it is not possible to determine precisely

the statistics for the new types. However, in some special cases, e.g., for the outline

transform, it may be possible to accurately infer the statistics of the new type from the

statistics of the parent type – this is true if the currently outlined type occurs exactly

once under its parent.

Consequently, in order to preserve the accuracy of the statistics, before the search pro-

cedure starts, all possible split operations are applied to the user XML schema. Statistics

are then collected for this fully decomposed schema. Subsequently, during the search

process, only merge operations are considered.

key

T_Year

value parent_id

define stat Year {

 parent histogram Show {
 bucket number {3}
 buckets {

 from 7 to 9 count 2 }
 }

 value domain {1990 to 2001}

}

 }
 from 1995 to 2001 count 3
 from 1990 to 1995 count 5,
 buckets {
 bucket number {2}
 value histogram {

 cardinality {8} Cardinality of table T_Year
domain of column key id_domain {30 to 38}

histogram for column parent_id

range of values in column value

histogram for column value

define type Year {xsd:integer}

 from 1 to 4 count 3,
 from 4 to 7 count 3,

Figure 6.6: Statistics Translation

In our prototype implementation, we use StatiX (Chapter 4) to collect statistics. These

statistics are then translated into relational statistics. All components of the StatiX sum-

mary, such as the cardinality, parent histogram, value histogram, etc. have a counterpart

in the relational domain. Hence the statistics for each type in the StatiX summary can be

Chapter 6. A Cost-based XML-to-Relational Storage System 124

translated to the table or column statistics for that type in the relational configuration.

The translation procedure is illustrated through the example in Figure 6.6.

The derived relational statistics are used as input to a relational optimizer (FleXMap

uses the optimizer described in [61]), which in turn computes cost estimates for the (trans-

lated) query workload (described in Section 6.3.2) under the current relational configura-

tion.

6.3.2 Query Translation

Input: Q, S, R
Q is the XQuery query, S is the schema, R is the relational configuration

1: Q′ = normalize the XQuery Q
2: B = set of bind variables in Q′

3: T = set of consistent types for the variables in B using S
4: SQLselect = create SELECT clause using T.return and R
5: SQLPathjoin = create joins required for the path traversals using T.fors and R
6: SQLwhere = create WHERE clause using SQLPathjoin, T.wheres and R
7: SQLfrom = create FROM clause using SQLselect, SQLwheres and R

Algorithm 6: Query Translation

FleXMap currently supports XQuery queries which contain path expressions, value se-

lections and value joins. These queries translate to unnested “SELECT-FROM-WHERE”

SQL queries. A high-level algorithm of the query translation process is shown in Algo-

rithm 6. We describe the working of the algorithm through a detailed example. Consider

the XML Schema in Figure 6.7 and the corresponding relational configuration. The map-

ping between the type names in the XML Schema and the table/column names in the

relational configuration are also shown. Suppose we wish to query the names of directors

of all shows produced in the year 1996. Such a query would be expressed as follows:

Chapter 6. A Cost-based XML-to-Relational Storage System 125

for $i in /IMDB/SHOW

$j in /IMDB/DIRECTOR

where $i/YEAR = ’1996’

and $i/TITLE = $j/TITLE

return $j/NAME

Step 1 of Algorithm 6 normalizes the query. This is simply a process of converting the

given XQuery into a more simplified data structure for easier translation. The normalized

XQuery is divided into four parts: (i) the root, (ii) a set of fors which assign bind variables

to each step in the traversals, (iii) a set of wheres which specify the conditions in the

“where” clause of the XQuery and (iv) a set of returns which specifies the return values.

For the above example query, the normalization process yields the following:

root = IMDB

fors = [v0, IMDB, SHOW]

[v1, IMDB, DIRECTOR]

[v2, v0, TITLE]

[v3, v1, TITLE]

[v4, v1, NAME]

[v5, v0, YEAR]

wheres = [XSelect (v5, ’1996’, ‘=’)]

[XJoin (v2,v3)]

return = [v4]

The bind variables in the normalized query are: {v0,v1,v2,v3,v4,v5} (Step 2 in Al-

gorithm 6). Each of these bind variables can be assigned typenames by looking at the

schema (Step 3). For the schema in Figure 6.7, there is a single set of typenames which

are consistent, and that is: {v0 = E IMDB, v1 = Director, v2 = ShowTitle, v3 = DirectorTitle,

v4 = DirectorName, v5 = ShowYear}. Note that it is possible to have more than one set of

consistent type assignments. For example, if Show was distributed into Show1 and Show2,

Chapter 6. A Cost-based XML-to-Relational Storage System 126

Types in the Schema

E IMDB → Outlined
Show → Outlined
Director → Outlined
Tv → Outlined
Movie → Outlined
DirectorName → Inlined into Director
DrectorTitle → Inlined into Director
ShowTitle → Inlined into Show
ShowYear → Inlined into Show

define type E IMDB { element IMDB { type Show*, type Director* }
define type Show { element SHOW {

element TITLE { xsd:string }, element YEAR { xsd:integer },
(type Tv | type Movie) }}

define type Director { element DIRECTOR
{element NAME { xsd:string }, element TITLE { xsd:string } }}

define type Tv { element TV {xsd:string } }
define type Movie { element MOVIE {xsd:string } }

The Relational configuration

Table E_IMDB [IMDB_Key INT, doc_name VARCHAR (100)]
Table Show [Show_Key INT, SHOW_TITLE VARCHAR (100),

SHOW_YEAR INT, IMDB_parent_id INT]
Table Director [Director_Key INT, DIRECTOR_NAME VARCHAR (100),

DIRECTOR_TITLE VARCHAR (100),
IMDB_parent_id INT]

Table Tv [Tv_Key INT, Tv_TV VARCHAR (100), Show_parent_id INT]
Table Movie [Movie_Key INT, Movie_MOVIE VARCHAR (100),

Show_parent_id INT]

Mapping between type name and table/column

E IMDB → E IMDB, IMDB Key
Show → Show, Show Key
Director → Director, Director Key
Tv → Tv, Tv Key
Movie → Movie, Movie Key
DirectorName → Director, DIRECTOR NAME
DirectorTitle → Director, DIRECTOR TITLE
ShowTitle → Show, SHOW TITLE
ShowYear → Show, SHOW YEAR

Figure 6.7: The IMDB Schema and its relational configuration

Chapter 6. A Cost-based XML-to-Relational Storage System 127

then there would be two sets of consistent type assignments, one with Show1 and one with

Show2.

Once the type assignments are made, we now construct the SELECT, FROM and

WHERE clauses of the SQL query using the mapping between the type names and the

table/column names. We first construct the SELECT clause (Step 4) by looking at

the returns in the normalized XQuery. In this case, there is a single return, v4 which

corresponds to DirectorName whose table/column is Director, DIRECTOR NAME. Hence

SQL.SELECT = Director.DIRECTOR NAME.

Next, we construct the WHERE clause of the SQL query (Steps 5 and 6). There are

two kinds of conditions to take care of, the joins or selection predicates in the wheres of

the normalized XQuery and the path joins corresponding to the traversals in the XQuery.

In order to construct the path joins, we simply have to consider each of the location steps

and if the two types corresponding to the location step are in different tables, then we con-

nect the two with a join of the parent id and key columns. For our example, there are only

two path joins: one between Show and E IMDB and another between Director and E IMDB.

All other types in the query are inlined into their parents and hence do not need to have

a path join. So the SQL.pathjoins = {Director.IMDB parent id = E IMDB.IMDB Key,

Show.IMDB parent id = E IMDB.IMDB Key}. Then we construct the joins corresponding

to the wheres in the normalized XQuery. The XSelect predicate is translated into

{Show.SHOW YEAR = 1996} and the XJoin predicate is translated into {Show.SHOW TITLE

= Director.DIRECTOR TITLE}. Combining both the path joins and the regular

joins, we get SQL.WHERE = {Show.SHOW TITLE = Director.DIRECTOR TITLE,

Show.SHOW YEAR = 1996, Director.Director parent id = E IMDB.IMDB Key,

Show.Show parent id = E IMDB.IMDB Key }
Combining all the tables in the SELECT and the WHERE clauses, we construct the

FROM clause (Step 7). SQL.FROM = {E IMDB, Show, Director}. The XQuery query

now corresponds to the following SQL query:

Chapter 6. A Cost-based XML-to-Relational Storage System 128

SELECT Director.DIRECTOR NAME

FROM Director, Show, E IMDB

WHERE Show.SHOW TITLE = Director.DIRECTOR TITLE

AND Show.SHOW YEAR = ‘1996’

AND Show.Show parent id = E IMDB.IMDB Key

AND Director.Director parent id = E IMDB.IMDB Key

6.4 Search Algorithms

Clearly, the search space of relational configurations is huge. Considering just inline and

outline of elements as the allowed transformations, the number of possible relational con-

figurations is exponential in the number of elements in the schema. Utilizing a greedy

algorithm cuts this space down from O(2n) to O(n2). However, adding the other trans-

formations such as union distribution bloats up the search space further. But, by defining

more powerful transformations which subsume other transformations, we can ensure that

even this larger search space can be searched efficiently. This is discussed in Section 6.4.3.

We next describe three greedy algorithms that we have implemented using our frame-

work. They differ in the choice of transformations that are selected and applied at each

iteration of the search.

First, consider Algorithm 7, which describes a simple greedy algorithm — similar to

the algorithm described in [8]. It takes as input a query workload and the initial schema

(with statistics). At each iteration, the transform that results in the best quality relational

configuration (that is, the configuration with minimum cost) is chosen and applied to the

schema (lines 5 through 19). The conversion from the transformed schema to the relational

configuration (line 11) follows the rules set out in Section 6.2. The algorithm terminates

when no transform can be found which improves the quality of the configuration.

Though this algorithm is simple, it is also very flexible. This flexibility is achieved

by varying the strategies to select applicable transformations at each iteration (function

applicableTransforms in line 8). In the experiments described in [8], only inline and

outline were considered as the applicable transformations and the utility of the other

Chapter 6. A Cost-based XML-to-Relational Storage System 129

1: Input: queryWkld, S {Query workload and Initial Schema}
2: prevMinCost← INFINITY
3: rel schema← convertToRelConfig(S, queryWkld)
4: minCost← COST(rel schema)
5: while minCost < prevMinCost do
6: S ′ ← S {Make a copy of the schema}
7: prevMinCost← minCost
8: transforms← applicableTransforms(S ′)
9: for all T in transforms do

10: S ′′ ← Apply T to S ′ {S ′ is preserved without change}
11: rel schema← convertToRelConfig(S ′′, queryWkld)
12: Cost← COST(rel schema)
13: if Cost < minCost then
14: minCost← Cost
15: minTransform← T
16: end if
17: end for
18: S ← Apply minTransform to S {The min. cost transform is applied}
19: end while

Algorithm 7: Greedy Algorithm

transformations (e.g., union distribution and repetition split) were shown independently.

Below, we describe variations to the basic greedy algorithm that allow for a richer set of

transformations.

As discussed in Section 6.3, it is important to perform all splits and then the merges

on the schema to preserve the accuracy of statistics. It is worth pointing out that fixing

this order is also important to avoid re-generating the same relational configuration in

different iterations of the search. In the rest of the chapter, we assume that the starting

schema for all search algorithms is the fully decomposed schema and only merge operations

are applied during the greedy iterations.

6.4.1 InlineGreedy

The first variation we consider is InlineGreedy, which only allows inline transformations.

Note that InlineGreedy differs from the algorithm experimentally evaluated in [8], which

we term InlineUser, in the choice of starting schema: InlineGreedy starts with the fully

decomposed schema whereas InlineUser starts with the original user schema.

Chapter 6. A Cost-based XML-to-Relational Storage System 130

6.4.2 ShallowGreedy: Adding Transforms

The ShallowGreedy algorithm defines the function applicableTransforms in Algorithm

7, to return all the applicable merge transforms. Because it follows the transformation

dependencies that result from the notion of syntactic equality (see Definition 3.1), it only

performs single-level or shallow merges.

6.4.3 DeepGreedy: Deep merges

The notion of syntactic equality, however, can be too restrictive for effective exploration

of the search space. For example consider the following (partial) IMDB schema:

define type Show {type Show1 | type Show2}
define type Show1 { element SHOW { type Title1, type Year1, type TV }}
define type Show2 { element SHOW { type Title2, type Year2, type Movie }}

Unless a type merge of Title1 and Title2 and a type merge of Year1 and Year2 take place,

we cannot factorize the union of Show1 | Show2. However, in a run of ShallowGreedy, these

two type merges by themselves may not reduce the cost, but taken in conjunction with

the union merge would make a substantial impact. If that is the case, ShallowGreedy

is handicapped by the fact that a union merge will never be applied since the two type

merges will not be chosen by the algorithm. In order to overcome this problem, we design

a new algorithm called DeepGreedy, which we describe below.

Before we proceed to describe the DeepGreedy algorithm, we first introduce the notions

of Valid Transforms and Logical Equivalence. The set of valid transformations for a given

schema tree S is a subset of all the applicable transformations in S.

Definition 6.1 Logical Equivalence: Two types T1 and T2 are logically equivalent under

a set V of valid transforms, denoted by T1 ∼V T2, if they can be made syntactically equal

after applying a sequence of valid transforms from V .

The following example illustrates this concept. Let V = {Inline};

Chapter 6. A Cost-based XML-to-Relational Storage System 131

t1 := E(TITLE, S(string,−), T itle1), and t2 := E(TITLE, S(string,−), T itle2). Note

that t1 and t2 are not syntactically equal since their annotations do not match. However,

they are logically equivalent : by inlining them (i.e., removing the annotations Title1 and

Title2), they can be made syntactically equal. Thus, we say that t1 and t2 are logically

equivalent under the set {Inline}.
Now, consider two types Ti and Tj where Ti := E(l, t1, a1) and Tj := E(l, t2, a2) with

t1 and t2 as defined above. Under syntactic equality, Ti and Tj would not be identified as

candidates for type merge. However, if we relax the criteria to logical equivalence with

(say) V = {TypeMerge}, then it is possible to identify the potential type merge of Ti

and Tj. Thus, several transforms which may never be considered by ShallowGreedy can

be identified as candidates, provided the necessary operations can be fired to enable the

transform. That is, if Ti and Tj are identified as a potential type merge, then to perform

this type merge, t1 and t2 are recursively type merged in order to enable the type merge of

Ti and Tj. Extending the above concept, we can enlarge the set of valid transforms V to

contain all the merge transforms which can be fired recursively to enable other transforms.

DeepGreedy allows the same transforms as ShallowGreedy, except that potential trans-

forms are identified not by syntactic equality, but by logical equivalence, with the set of

valid transforms containing all the merge operations (including inline). This allows Deep-

Greedy to perform deep merges. Note that additional variations of the search algorithms

are possible, e.g., by restricting the set of valid transforms.

6.5 Performance Evaluation

In this section we present a performance evaluation of the three algorithms proposed in this

chapter: InlineGreedy, ShallowGreedy and DeepGreedy. The purpose of this evaluation

is twofold: (i) to analyze the relative performance of the algorithms on different kinds of

query workloads, and, (ii) to establish the competitiveness of the proposed algorithms.

We performed experiments on both the synthetically generated IMDB dataset as well as a

subset of the DBLP dataset available from [18]. We used a Pentium IV, 2.4GHz machine

with 1GB of main memory, running Redhat 8.0, for all experiments.

Chapter 6. A Cost-based XML-to-Relational Storage System 132

6.5.1 Query Workloads

We evaluated each of the algorithms on several query workloads based on: (1) the efficiency

of the derived relational configuration, and (2) the efficiency of the search algorithm.

Note that the latter is the same as the number of distinct configurations seen by the

algorithm, and also the number of distinct optimizer invocations since each iteration

involves constructing a new configuration and evaluating its quality using the optimizer.

From the discussion of the proposed algorithms, note that the behavior of each al-

gorithm on a given query depends upon whether the query benefits more from merge

transformations or from split transformations. If the query benefits more from split,

then neither DeepGreedy nor ShallowGreedy is expected to perform much better than

InlineGreedy.

As such, we considered the following two kinds of queries: S-Queries which are

expected to derive benefit from split transformations (Type Split, Union Distribution

and Repetition Split), and M-Queries which are expected to derive benefit from merge

operations (Type Merge, Union Factorization and Repetition Merge).

S-Queries typically involve simple lookup. For example:

SQ1: for $i in /IMDB/SHOW

where $i/TV/CHANNEL = 9

return $i/TITLE

SQ2: for $i in /IMDB/DIRECTOR

where $i/DIRECTED/YEAR = 1994

return $i/NAME

Query SQ1 is specific about the Title that it wants. Hence it would benefit from a

type split of Title. Moreover, it also specifies that TV Titles only are to be returned, not

merely Show Titles. Hence a union distribution would be useful to isolate only TV Titles.

Similarly, query SQ2 would benefit from isolating Director Names from Actor Names,

and Directed Year from all other Years. Such splits would help make the corresponding

tables smaller and hence lookup queries such as the above faster. The performance of the

proposed algorithms on S-query workloads is analysed in Section 6.5.2.

Chapter 6. A Cost-based XML-to-Relational Storage System 133

On the other hand, M-queries typically query for subtrees in the schema which are

high up in the schema tree. When a split operation is performed on a type in the schema,

it propagates downwards towards the descendants. For example, a union distribution of

Show results in a type split of Review, which in turn leads to the type split of Review’s

children. Hence queries which ask subtrees near the top of the schema tree would benefit

from merge transforms. Similarly predicates which are “high up” in the tree would also

benefit from merges. For example:

MQ1: for $i in /IMDB/SHOW, $j in $i/REVIEW

return $i/TITLE, $i/YEAR, $i/AKA,

$j/GRADE, $j/SOURCE,

$j/COMMENTS

MQ2: for $i in /IMDB/ACTOR, $j in /IMDB/SHOW

where $i/PLAYED/TITLE = $j/TITLE

return $j/TITLE, $j/YEAR, $j/AKA,

$j/REVIEW/SOURCE, $j/REVIEW/GRADE,

$j/REVIEW/COMMENTS, $i/NAME

Query MQ1 asks for full details of a Show without distinguishing between TV Shows and

Movie Shows. Since all attributes of Show which are common for TV as well as Movie Shows

are requested, this query is likely to benefit from a union factorization and repetition

merge. For example, a union factorization enables types like Title and Year to be inlined

into the same table (the table corresponding to Show). Thus the query may benefit from

reduced fragmentation. Similarly, query MQ2 would benefit from a union factorization of

Show as well as a repetition merge of Played (this is because the query does not distinguish

between the Titles of the first Played and the remaining Played). In both the above

queries, return values as well as predicates benefit from merge transformations.

Based on the two classes of queries described above, we constructed the following

workloads. Note that each workload consists of a set of queries as well as the associated

weights. Unless stated otherwise, all queries in a workload are assigned equal weights and

the weights sum up to 1.

Chapter 6. A Cost-based XML-to-Relational Storage System 134

1. IMDB-S: contains 5 S-queries on the IMDB dataset.

2. DBLP-S: contains 5 S-queries on the DBLP dataset.

3. IMDB-M: contains 8 M-queries on the IMDB dataset.

4. DBLP-M: contains 5 M-queries on the DBLP dataset.

The performance of the proposed algorithms on S-query workloads and M-query work-

loads is studied in Sections 6.5.2 and 6.5.3, respectively.

There are many queries which cannot be conclusively classified as either an S-query or

an M-query. For example, an interesting variation of S-Queries is when the query contains

return values that do not benefit from splits, but has predicates which do. Similarly, for

M-Queries, adding highly selective predicates may reduce the utility of merge transforms.

For example, adding the highly selective predicate YEAR > 1990 (Year ranges from 1900

to 2000) to query MQ1 would significantly reduce the number of tuples.

Such queries thus benefit from split transformations as well as merge transformations.

However, in case the two types of transformations conflict, we need to analyze the balance

between the two. But considering arbitrary queries is unlikely to give much insight because

the impact of split transformations versus merge transformations would be different for

different queries. Thus, we chose to work instead on a workload containing a mix of S- and

M-queries, where the impact of split transformations versus the merge transformations

is controlled using a parameter. The performance of the proposed algorithms on such

workloads, as a function of the control parameter is studied in Section 6.5.4. Finally, in

Section 6.5.5 we demonstrate the competitiveness of the configurations derived using the

proposed algorithms against a set of baselines.

6.5.2 Performance on S-Query Workloads

We present results for the 2 workloads – IMDB-S and DBLP-S. The cost differences,

shown in Figure 6.8, of the derived configurations for the three algorithms, DeepGreedy,

ShallowGreedy and InlineGreedy, were within 1% of each other for the IMDB-S and

Chapter 6. A Cost-based XML-to-Relational Storage System 135

DBLP-S workloads. Note that all relative costs shown in the graphs are with respect to

DeepGreedy, assuming that DeepGreedy has a cost of 1. This behaviour was expected

since not too many merge transforms were required to come up with an efficient relational

configuration. However, note that in both cases, DeepGreedy was still marginally better

than either ShallowGreedy or InlineGreedy.

Figure 6.8: Cost of Workloads containing S-Queries

The relative number of configurations examined by each of the three algorithms Deep-

Greedy, ShallowGreedy and InlineGreedy, are shown in Figure 6.9 (again, DeepGreedy is

taken as the baseline). In terms of number of schemas examined, DeepGreedy examined

the largest number of configurations and InlineGreedy the least for the IMDB-S workload,

while DeepGreedy was the most efficient in the case of the DBLP-S workload. This differ-

ence in behaviour can be explained by the nature of the two schemas. IMDB is much more

deeply nested than DBLP resulting in a lot more options for merge transforms as com-

pared to inlines. DBLP is a relatively “flat” schema with only one or two levels of nesting

and hence has a relatively small number of merge transforms to consider. In the case of

the DBLP-S split workload, DeepGreedy performed only a few merge transforms (specif-

ically, repetition merge) which considerably reduced the number of subsequent inlines as

well, while InlineGreedy had a lot more inlines to consider to improve the quality. Hence

Chapter 6. A Cost-based XML-to-Relational Storage System 136

Figure 6.9: No. of configurations Examined for Workloads Containing S-Queries

DeepGreedy was more efficient than InlineGreedy in the case of the DBLP schema. How-

ever, an interesting observation is with respect to ShallowGreedy on the DBLP schema –

it turned to be the most expensive algorithm. This was because of its inability to perform

the same merge transforms as DeepGreedy. Hence, it not only had to inspect all the

inlines (which were reduced in the case of DeepGreedy), but also continue to consider

several “wasteful” merge transforms which would not benefit the query workload.

6.5.3 Performance on M-Query Workloads

Figure 6.10 shows the relative costs of the 3 algorithms for the 2 workloads, IMDB-M

and DBLP-M. In the case of IMDB-M, DeepGreedy performs extremely well compared to

ShallowGreedy and InlineGreedy since DeepGreedy is capable of performing deep merges

which benefit the merge queries. But, the difference in the quality of configurations was

not very significant in the case of the DBLP-M workload, which can again be explained

due to the flatness of the DBLP schema and the lack of opportunities to perform the

merge transforms. However, note that InlineGreedy outputs configurations which are of

significantly lower quality than those output by DeepGreedy, indicating that whatever

merge transforms were considered by DeepGreedy were highly beneficial to the workload.

Chapter 6. A Cost-based XML-to-Relational Storage System 137

Figure 6.10: Cost of Workloads Containing M-Queries

Figure 6.11: No. of configurations Examined for Workloads Containing M-Queries

Chapter 6. A Cost-based XML-to-Relational Storage System 138

In terms of the number of configurations examined, DeepGreedy performed the best as

compared to ShallowGreedy and InlineGreedy for both the workloads. This might seem

counter-intuitive – since we would expect that DeepGreedy, which is capable of examin-

ing a superset of transformations as compared to ShallowGreedy and InlineGreedy, would

take longer to converge. However, this did not turn out to be the case, since DeepGreedy

picked up the cost saving recursive merges fairly early on in its run. Consequently, this

reduced the number of lower level merge and inline candidates in the subsequent itera-

tions. This enabled DeepGreedy to converge faster. By the same token, we would expect

ShallowGreedy to examine less number of configurations than InlineGreedy, but that was

not the case. This is because ShallowGreedy was not able to perform any major cost

saving merges since the “enabling” merges were never chosen individually. Hence, the

same set of merge transforms were being examined in every iteration without any benefit,

while InlineGreedy was not burdened with these candidate merges. But note that even

though InlineGreedy converged faster, it was mainly due to the lack of useful inlines as

reflected by the cost difference between InlineGreedy and ShallowGreedy.

6.5.4 Performance on Mixed Workloads

We now consider “mixed” workloads for both IMDB and DBLP – IMDB-MS (4 M-Queries

and 7 S-Queries) and DBLP-MS (5 M-Queries and 5 S-Queries).

In order to control the dominance of S-queries vs. M-queries in the workload, we use a

control parameter k ∈ [0, 1] and give weight (1−k)/7 to each of the 7 S-queries and weight

(k)/4 to each of the 4 M-queries for the IMDB-MS workload and a weight of (1 − k)/5

and k/5 to each of the queries S- and M-queries in the DBLP workload, respectively.

We ran workload IMDB-MS with 3 different values of k ={0.1, 0.5, 0.9}. The cost of

the derived configurations for IMDB-MS are shown in Figure 6.12. Expectedly, when S-

Queries dominate, InlineGreedy performs quite competitively with DeepGreedy (with the

cost of the configuration output by InlineGreedy being within just 15% of that output by

DeepGreedy). But, as the influence of S-Queries reduce, the difference in costs increases

substantially.

Chapter 6. A Cost-based XML-to-Relational Storage System 139

Figure 6.12: IMDB: Cost of Workloads Containing both M- and S-Queries

Figure 6.13: IMDB: No. of Configurations Examined for Workloads Containing M- and
S-Queries

Chapter 6. A Cost-based XML-to-Relational Storage System 140

The number of configurations examined by all three algorithms are shown in Fig-

ure 6.13. DeepGreedy examines more configurations than InlineGreedy when S-Queries

dominate, but the gap is almost closed for the other cases.

Note that both ShallowGreedy and InlineGreedy examine more configurations for k =

0.5 than in the other two cases. This is due to the fact that when S-Queries dominate (k

= 0.1), cost-saving inlines are chosen earlier while when M-queries dominate (k = 0.9),

both algorithms soon run out of cost-saving transformations to apply. Hence for both

these cases, the algorithms converge faster.

Figure 6.14: DBLP: Cost of Workloads Containing both M- and S-Queries

The relative costs of the configurations derived by DeepGreedy, ShallowGreedy and

InlineGreedy for the DBLP-MS workload with k ={0.1, 0.5, 0.9} are shown in Figure

6.14. In contrast to the IMDB-MS workload, InlineGreedy is not at all competitive with

DeepGreedy when S-Queries dominate. This is inspite of the fact that Figure 6.8 shows

that InlineGreedy can be very competitive with respect to DeepGreedy. A closer look at

the query workload revealed that in the case of the DBLP-MS workload, even though the

weight of the S-Queries was higher (with a combined weight of 0.9), the absolute costs of

a couple of M-Queries dominated the workload. That is, impact of the M-Queries had a

larger influence on the final cost than that of the S-Queries. And so, InlineGreedy was not

Chapter 6. A Cost-based XML-to-Relational Storage System 141

Figure 6.15: DBLP: No. of Configurations Examined for Workloads Containing M- and
S-Queries

competitive with DeepGreedy. However, ShallowGreedy, which was highly competitive

with DeepGreedy in both the M- and S-Queries cases had configuration costs within 1%

of DeepGreedy.

The relative number of configurations for the DBLP-MS workload is shown in Figure

6.15. The trend of ShallowGreedy looking at a much larger number of configurations

continued. The reason was the same as before – there are a smaller number of merges to

consider because of the flat DBLP schema, but the merges that are considered by Deep-

Greedy considerably reduce the number of subsequent inlines. However, ShallowGreedy

is unable to perform all the merges that DeepGreedy performs and hence the number of

configurations examined by it remains large.

6.5.5 Comparison with Baselines

From the above sections, it is clear that except when the workload is dominated by S-

queries, DeepGreedy should be our algorithm of choice among the algorithms proposed in

this chapter. In this section we compare the quality of the relational configurations derived

using DeepGreedy with the following baselines, the first four of which are non-cost-based:

Chapter 6. A Cost-based XML-to-Relational Storage System 142

1. Fully Decomposed, All Outlined (FDAO): Fully decompose the schema and

outline all its types.

2. Fully Decomposed, All Inlined (FDAI): Fully decompose the schema and inline

as many types as possible.

3. Fully Merged, All Outlined (FMAO): Retain the original schema and outline

all its types.

4. Fully Merged, All Inlined (FMAI): Inline as many types as possible in the

original schema.

5. InlineUser (IU): This is the same algorithm evaluated in [8].

6. Optimal (OPT): A lower bound on the optimal configuration for the workload

given a specific set of transformations. Since DeepGreedy gives configurations of

the best quality among the 3 algorithms evaluated, the algorithm to compute the

lower bound consisted of transforms available to DeepGreedy. We evaluated this

lower bound by considering each query in the workload individually and running

an exhaustive search algorithm on the subset of types relevant to the query. Note

that such a search is possible only if the number of types involved is very small

since the number of possible relational configurations increases exponentially with

the number of types. The exhaustive search algorithm typically examined several

orders of magnitude more configurations than DeepGreedy.

We present results for two workloads, IMDB-MS and DBLP-MS which had a query

mix of S- and M-Queries corresponding to k = 0.5.

The relative cost for each baseline is shown in Figure 6.16. As expected, none of

the non-cost-based baselines are competitive with DeepGreedy. Moreover, InlineUser

also compares unfavorably with DeepGreedy. Though InlineUser is good when there

are not many shared types, it performs poorly if the schema has a few types which are

shared or repeated or part of unions since there will not be too many types left to inline.

This is specifically the case with the DBLP schema since most of the types like Article,

Chapter 6. A Cost-based XML-to-Relational Storage System 143

Figure 6.16: Comparison of DeepGreedy with the Baselines and Inline (User)

Inproceedings, etc. share many common attributes.The figures for the lower bound on the

optimal configuration also show that DeepGreedy is within around 15% of the optimal for

the IMDB schema and within 20% of the optimal for the DBLP schema.

6.6 Optimizations

There are several different optimizations that can be done to speed up the search algo-

rithms. We propose a few of them here and outline their advantages and drawbacks.

6.6.1 Grouping Transformations Together

Recall that in DeepGreedy, in a given iteration, all applicable transformations are

evaluated and the best transformation is chosen. In the next iteration, all the remaining

applicable transformations are evaluated and the best one chosen (note that, when a

transformation is applied, that transformation may remove the possibility of a few other

transformations – for example, if a union factorization is performed, then, the type merges

which would have been valid transforms before the union factorization are now no longer

applicable). We found that in the runs of our algorithms, it was often the case that, in a

Chapter 6. A Cost-based XML-to-Relational Storage System 144

Input: queryWkld, S
queryWkld is the Query workload and S is the Initial Schema

1: prevMinCost← INFINITY
2: rel schema← convertToRelConfig(S, queryWkld)
3: minCost← COST(rel schema)
4: while minCost < prevMinCost do
5: prevMinCost← minCost
6: transforms← applicableTransforms(S)
7: sortedTransforms = SORT(transforms)
8: for all T in sortedTransforms do
9: if applicable(T) then

10: S ′ ← Apply T to S
{S is preserved without change}

11: rel schema← convertToRelConfig(S ′, queryWkld)
12: Cost← COST(rel schema)
13: if Cost < minCost then
14: minCost← Cost
15: S ← S ′ {Retain the merge}
16: else
17: Goto step 5
18: end if
19: else
20: Goto step 5
21: end if
22: end for
23: end while

Algorithm 8: GroupGreedy Algorithm

Chapter 6. A Cost-based XML-to-Relational Storage System 145

given iteration in which n transforms were applicable, if transformations T1 to Tn were the

best n transformations in this order (that is, T1 gave the maximum decrease in cost and

Tn gave the minimum decrease), other transformations up to Ti, for some i <= n, were

chosen in subsequent iterations. This being the case, grouping transformations T1 to Ti

together has the potential to save several iterations. The number of transformations which

can be grouped together depends on two factors: (i) whether the next transformation

applied reduces the cost of the derived configuration further, and (ii) whether the next

transformation is applicable after the current transformation is applied. Using these

observations, we developed a variation of Algorithm 7, called GroupGreedy (Algorithm

8).

Figure 6.17: No. of Configurations Examined by DeepGreedy and GroupGreedy

We tried this optimization for DeepGreedy on the IMDB-MS and DBLP-MS workloads

with k = 0.5. The cost of the final configuration derived by GroupGreedy (GG) was within

1% of DeepGreedy while examining approximately only about one third the number of

configurations examined by DeepGreedy, as shown in Figure 6.17.

Chapter 6. A Cost-based XML-to-Relational Storage System 146

6.6.2 Early Termination

Another plausible optimization is to stop the algorithm once the decrease in the esti-

mated cost goes below a small δ. This would save several iterations which are costly to

perform, but do not give substantial decrease in cost. This optimization would be possi-

ble if the magnitude of decrease in cost is monotonic. However, during the course of our

experiments, we came across several workloads which did not exhibit this behavior. The

progress of DeepGreedy on such a workload, W, is shown in Figure 6.18.

Figure 6.18: Progress of DeepGreedy on Workload W

Clearly, with an unfortunate value of δ, the algorithm would terminate at iteration 7

and miss the big cost decrease at iteration 8. Thus, while this optimization would result

in improved execution times, the derived schema may not be as efficient as it could have

been, if the algorithm were allowed to run to completion.

6.6.3 Applying Only Profitable Transforms

Though it is possible to decompose the schema fully by performing all union distributions,

repetition splits and type splits, many of them may not be useful and so would simply

increase the number of types in the schema. This is especially true for M-Queries where

Chapter 6. A Cost-based XML-to-Relational Storage System 147

many of the splits ultimately proved to be useless. Thus it would help if an apriori analysis

of the query workload and the statistics can be used to cut down on the number of split

transforms. This would reduce the number of combinations of merge transforms during

search, and result in faster execution times.

As an example of such a heuristic, consider a repetition split in the following snippet:

define type Show {element SHOW {type Title, type Review*}}

It may be beneficial to split Review* into Review1? and Review2* only if a majority of the

shows have exactly one review. Splitting Review in this way allows the inlining of the first

review thus giving rise to potential cost benefits. However, if it is known that most shows

have at least 10 reviews, then it is unlikely that inlining just one Review into Show would

yield benefits. Nor would splitting Review help if most shows had no reviews, but a small

number of shows had several reviews.

An interesting direction of future work would be to come up with heuristics based

on the statistics available for the XML Schema to decide whether or not to perform a

particular split operation.

6.6.4 Reducing the Search Space by Query Analysis

In order to compute our metric for the lower bound on the optimal, an exhaustive search

was performed on single queries. This was made possible because the number of types

relevant to the query was within reasonable limits. The same principle can be applied

for the greedy algorithms as well. If the queries in the workload are concentrated to one

particular part of the schema, then only those types need to be taken into consideration for

the search. Or if the queries in the workload can be partitioned such that each partition

has a disjoint set of types relevant to it, then the search can be performed separately for

each partition.

Chapter 6. A Cost-based XML-to-Relational Storage System 148

6.7 Conclusions

In this chapter we introduced FleXMap, a cost-based system to derive relational storage

schemas for XML. FleXMap is built on top of LegoDB and significantly extends this

framework. In particular, we made the following contributions: (i) we studied the appli-

cability of the transformations under different semantics such as syntactic equality and

logical equivalence, the consequence of which was to derive more effective search algo-

rithms such as DeepGreedy, (ii) proposed a mechanism for propagating statistics when

a transformation is applied – this led to the conclusion that the schema has to be fully

decomposed before the search can take place, (iii) evaluated the relative effectiveness of

the algorithms DG, SG and IG under various types of query workloads as well as their

effectiveness as compared to some previous approaches, and (iv) proposed optimizations

to reduce the number of iterations in the greedy algorithms leading to an efficient new

algorithm called GroupGreedy.

Our experimental evaluation showed that DeepGreedy achieves the best relational

configurations overall, but the efficiency of the algorithm in finding that configuration

depends on the query workload. If the query workload consists mainly of S-Queries,

then InlineGreedy can achieve configuration quality which is close to that obtained by

DeepGreedy, but by examining fewer number of configurations – this was true in the

case of the IMDB dataset. In the case of predominantly M-Query workloads, not only did

DeepGreedy achieve the best relational configuration, but did so by examining much fewer

configurations than either ShallowGreedy or InlineGreedy. This was because the cost-

saving merges were made earlier in the search, thus reducing the number of configurations

which needed to be examined in subsequent iterations of the algorithm.

On an absolute scale, we compared the relational configuration output by DeepGreedy

against a lower bound on the optimal configuration and showed that DeepGreedy is within

15%-20% of this lower bound. In comparison to previous results (heuristic as well as cost-

based), we showed that DeepGreedy is far superior in the quality of configurations it

outputs.

We also proposed optimizations to speed up the search process. In particular, the

Chapter 6. A Cost-based XML-to-Relational Storage System 149

GroupGreedy algorithm outputs configurations with cost within 1% of the configura-

tion output by DeepGreedy, but performs much more efficiently than DeepGreedy – the

number of configurations examined by GG is only about 20%-30% of the number of con-

figurations examined by DG.

Chapter 7

Conclusions and Future Work

In this thesis, we presented a set of three tools, namely, (i) StatiX, (ii) IMAX and, (iii)

FleXMap, to address the problems of XML statistics production, statistics maintenance

and document storage, respectively. The basis for our solutions was the presence of an

XML Schema and schema transformations.

We started off with StatiX, a framework for XML statistics collection and cardinal-

ity estimation. StatiX uses the XML Schema as the basis for statistics collection and

summarizes the collected statistics in histograms. These histograms capture the skew of

both the structure and values in the XML data. Several schema transformations can be

used to make the summary more accurate. StatiX can currently support cardinality es-

timation for branching path expressions with value predicates. From an implementation

view-point, statistics gathering for unambiguous schemas can piggy-back on validation,

facilitating the reuse of standard XML validators. Experimental evaluation of StatiX on

different data and query sets showed that highly accurate summaries can be built by

applying schema transformations, while the size of the summary remains moderate. The

summary size can be further reduced by a compression technique which eliminates some

of the unnecessary structural histograms.

We introduced IMAX, a system which extends the schema-based statistics framework

of the StatiX approach to incrementally handle updates to XML repositories. The novel

challenges in the design of IMAX included developing techniques for accurately estimating

150

Chapter 7. Conclusions and Future Work 151

both the locations and the sizes of updates, as well as for the maintenance of structural

histograms. To accurately estimate the location of updates, we extended the StatiX model

with 2D histograms that capture the correspondence between the value of an element and

its id. Our experiments to evaluate the utility of IMAX covered a variety of updates

and datasets, and indicated that the accuracy of estimation from the updated statistics

is very close to that obtained from the expensive brute-force option of re-computing the

statistics from scratch. Further, these benefits can be obtained quite efficiently, requiring

only rare recomputations of the summaries from the base data. In summary, IMAX makes

sustained and efficient query processing feasible even in real-world XML environments

whose contents are dynamically changing, which may become the norm in the coming

years.

Moving on to data storage, we described a framework for exploring the space of XML-

to-relational mappings and showed how schema transformations can be used to derive

relational configurations. These transformations encompass physical database design

strategies such as vertical and horizontal partitioning, through the use of inline/outline

and union distribution, respectively. Since the framework searches the space of config-

urations in the XML world, it can be used with any other backend as long as the rules

for translating the canonical schema are specified. We designed and implemented three

greedy algorithms and studied how the quality of the final configuration is influenced by

the transformations used and the query workload. We also proposed optimizations to

speed up the time taken by the search algorithm with little loss in the quality of the

final relational configuration. Experimental results show that our new algorithms pro-

vide significantly improved relational schemas as compared to those derived by previous

approaches in the literature.

7.1 Future Work

There are several directions to extend the work described in this thesis. Cardinality

estimation, which is currently limited to branching path expressions with value predicates

can be extended to encompass other constructs such as the “for” and “let” bindings in

Chapter 7. Conclusions and Future Work 152

XQuery. A direct consequence of extending the cardinality estimation is its impact on

statistics maintenance where more complex location components can be utilized in the

update queries.

Currently, StatiX provides a framework for statistics collection. This framework can

be effectively utilized to develop algorithms to build summaries based on a given memory

budget. Such an algorithm can take into account several different factors: (i) the necessity

of building structural histograms on certain types – we showed one minimization tech-

nique which removes the need for building structural histograms on several types, (ii) the

statistics associated with a given type – it is possible that a particular type is uniformly

distributed under its parent and does not require a structural histogram, and, conversely,

another type may require the allocation of a large number of buckets, and, (iii) the query

workload – a sample query workload can help in identifying useful transformations rele-

vant to the workload.

An interesting direction of future work for statistics maintenance is the use of a backup

summary. Currently, we have described the scenario where a single summary is being

maintained. However, it may be useful for a more detailed, and consequently, larger

summary to reside on disk. When updates are applied to the base data, both the smaller

“primary” summary as well as the larger “backup” summary are updated. The primary

summary is recomputed from the backup summary when its accuracy degrades. This

technique would avoid recomputations from the base data and improve the efficiency of

statistics maintenance.

Moving on to data storage, an important problem as yet unaddressed in the XML

storage literature – especially cost-based storage – is the case when the application’s

query workload and/or statistics undergoes a significant change. So far, storage design

has been considered to be a one-time operation. However, it may be necessary to update

the storage as and when the application characteristics undergo changes. If changes to

the backend configuration (in terms of the backend schema) are expensive to implement

(as is the case in the schema evolution of relational schemas), then alternatives such as

the appropriate set of views and indexes to be built have to be considered. The novelty of

Chapter 7. Conclusions and Future Work 153

performing schema evolution for XML-on-relational is that the cost-benefit tradeoff needs

to be taken into account in the XML domain through schema transformations (otherwise,

several XML-specific optimizations in both relational schema generation as well as query

translation may go unnoticed).

In closing, this thesis presented a toolkit for effectively supporting the highly popular

XML world-view on the underlying storage and processing engines.

References

[1] A. Aboulnaga, A.R. Alameldeen, and J.Naughton. Estimating the selectivity of XML

path expressions for internet scale applications. In Proceedings of the International

Conference on Very Large Data Bases (VLDB), 2001.

[2] Amazon.com. http://www.amazon.com.

[3] D. Barbosa, J. Freire, and A. Mendelzon. Information preservation in XML-to-

relational mappings. In Proceedings of the XML Database Symposium (XSym), 2004.

[4] D. Barbosa, J. Freire, and A. Mendelzon. Designing information-preserving mapping

schemes for XML. In Proceedings of the International Conference on Very Large

Data Bases (VLDB), 2005.

[5] D. Barbosa, A. Mendelzon, J. Keenleyside, and K. Lyons. ToXgene: An extensible

template-based data generator for XML. In Proceedings of the International Work-

shop on the Web and Databases (WebDB), 2002.

[6] P. Bohannon, J. Freire, J. Haritsa, M. Ramanath, P. Roy, and J. Siméon. LegoDB:

Customizing relational storage for XML documents. In Proceedings of the Interna-

tional Conference on Very Large Data Bases (VLDB), 2002.

[7] P. Bohannon, J. Freire, J. Haritsa, M. Ramanath, P. Roy, and J. Siméon. Bridging

the XML-relational divide with LegoDB: A demonstration. In Proceedings of the

IEEE International Conference on Data Engineering (ICDE), 2003.

[8] P. Bohannon, J. Freire, P. Roy, and J. Siméon. From XML schema to relations:

154

References 155

A cost-based approach to XML storage. In Proceedings of the IEEE International

Conference on Data Engineering (ICDE), 2002.

[9] Caml language. http://caml.inria.fr/.

[10] CDuce. http://www.cduce.org/.

[11] Y. Chen, S. Davidson, C. Hara, and Y. Zheng. RRXS: Redundancy reducing XML

storage in relations. In Proceedings of the International Conference on Very Large

Data Bases (VLDB), 2003.

[12] Y. Chen, S. Davidson, and Y. Zheng. Constraint preserving XML storage in relations.

In Proceedings of the International Workshop on the Web and Databases (WebDB),

2002.

[13] Z. Chen, S. Chaudhuri, K. Shim, and Y. Wu. Storing XML (with XSD) in SQL

databases: Interplay of logical and physical designs. In Proceedings of the IEEE

International Conference on Data Engineering (ICDE), 2004.

[14] Z. Chen, H.V. Jagadish, F. Korn, N. Koudas, S. Muthukrishnan, R.T. Ng, and D. Sri-

vastava. Counting twig matches in a tree. In Proceedings of the IEEE International

Conference on Data Engineering (ICDE), 2001.

[15] E. Cohen, H. Kaplan, and T. Milo. Labeling dynamic XML trees. In Proceedings

of the ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Sys-

tems (PODS), 2002.

[16] S. Davidson, W. Fan, C. Hara, and J. Qin. Propagating XML constraints to relations.

In Proceedings of the IEEE International Conference on Data Engineering (ICDE),

2003.

[17] DB2 XML extender. http://www.ibm.com/software/data/db2/extenders/xmlext/.

[18] DBLP. http://dblp.uni-trier.de/xml.

References 156

[19] A. Deutsch, M. Fernandez, and D. Suciu. Storing semi-structured data with

STORED. In Proceedings of the ACM SIGMOD International Conference on Man-

agement of Data (SIGMOD), 1999.

[20] Document object model. http://www.w3.org/DOM/.

[21] F. Du, S. Amer-Yahia, and J. Freire. A comprehensive solution to the XML-to-

relational mapping problem. In Proceedings of the ACM International Workshop on

Web Information and Data Management (WIDM), 2004.

[22] F. Du, S. Amer-Yahia, and J. Freire. ShreX: Managing XML documents in relational

databases. In Proceedings of the International Conference on Very Large Data Bases

(VLDB), 2004.

[23] Extensible Markup Language (XML). http://www.w3.org/XML.

[24] D. Florescu and D. Kossmann. A performance evaluation of alternative mapping

schemes for storing XML in a relational database. Technical Report 3680, INRIA,

1999.

[25] D. Florescu and D. Kossmann. Storing and querying XML data using an RDBMS.

IEEE Data Engineering Bulletin, 22(3), 1999.

[26] J. Freire, J. Haritsa, M. Ramanath, P. Roy, and J. Siméon. StatiX: Making XML

Count. In Proceedings of the ACM SIGMOD International Conference on Manage-

ment of Data (SIGMOD), 2002.

[27] J. Freire, M. Ramanath, and L. Zhang. A flexible infrastructure for gathering XML

statistics and estimating query cardinality. In Proceedings of the IEEE International

Conference on Data Engineering (ICDE), 2004.

[28] Galax. http://www.galaxquery.org.

[29] H. Garcia-Molina, J.D. Ullman, and J. Widom. Database Systems: The Complete

Book. Pearson Education, Inc, 2002.

References 157

[30] P. Gibbons, Y. Matias, and V. Poosala. Fast incremental maintenance of approximate

histograms. ACM Transactions on Database Systems (TODS), 27(3), 2002.

[31] HyperText Markup Language (HTML) Home Page. http://www.w3.org/MarkUp/.

[32] Internet Movie Database. http://www.imdb.com.

[33] ISO 8879. Information Processing – Text and Office Systems - Standard Generalized

Markup Language (SGML), 1986.

[34] H. V. Jagadish, S. A.-Khalifa, A. Chapman, L.V.S. Lakshmanan, A. Nierman, S. Pa-

parizos, J. Patel, D. Srivastava, N. Wiwatwattana, Y. Wu, and C. Yu. TIMBER: A

native XML database. The VLDB Journal, 11(4), 2002.

[35] H. Jiang, H. Lu, W. Wang, and J. X. Yu. Path materialization revisited: An efficient

storage model for XML data. In Proceedings of the Australasian Database Conference

(ADC), 2002.

[36] H. Jiang, H. Lu, W. Wang, and J. X. Yu. XParent: An efficient RDBMS-based

XML database system. In Proceedings of the IEEE International Conference on

Data Engineering (ICDE), 2002.

[37] R. Krishnamurthy, V. Chakaravarthy, and J.F. Naughton. On the difficulty of finding

optimal relational decompositions for XML workloads: A complexity theoretic per-

spective. In Proceedings of the International Conference on Database Theory (ICDT),

2003.

[38] D. Lee and W. Chu. CPI: Constraints-preserving inlining algorithm for mapping

XML DTD to relational schema. Journal of Data and Knowledge Engineering (DKE),

39(1), 2001.

[39] P. Lehti. Design and implementation of a data manipulation processor for an XML

query language. Master’s thesis, Universität Darmstadt, 2001.

References 158

[40] L. Lim, M. Wang, S. Padmanabhan, J. Vitter, and R. Parr. XPathLearner: An on-

line self-tuning markov histogram for XML path selectivity estimation. In Proceedings

of the International Conference on Very Large Data Bases (VLDB), 2002.

[41] Making web services work at Amazon.

http://www.xml.com/pub/a/2003/12/09/xml2003amazon.html.

[42] M. Mani and D. Lee. XML to relational conversion using theory of regular tree

grammars. In Proceedings of the Workshop on Efficiency and Effectiveness of XML

Tools and Techniques (EEXTT), 2002.

[43] Microsoft SQLXML. http://msdn.microsoft.com/sqlxml.

[44] M. Muralikrishna and D. DeWitt. Equi-depth histograms for estimating selectivity

factors for multi-dimensional queries. In Proceedings of the ACM SIGMOD Interna-

tional Conference on Management of Data (SIGMOD), 1988.

[45] M. Murata, D. Lee, and M. Mani. Taxonomy of XML schema languages using formal

language theory. In Extreme Markup Languages, 2001.

[46] Natix XML repository. http://www.dataexmachina.de/natix.html.

[47] M. Nicola and J. John. XML parsing: a threat to database performance. In Proceed-

ings of the ACM International Conference on Information and Knowledge Manage-

ment (CIKM), 2003.

[48] Oasis - the coverpages. http://www.oasis-open.org/cover.

[49] Oracle XML DB. http://www.oracle.com/technology/tech/xml/xmldb/index.html.

[50] Oracle’s XML SQL utility. http://technet.oracle.com/tech/xml/oracle xsu.

[51] R. Paige and R. Tarjan. Three paritition refinement algorithms. SIAM Journal on

Computing, 16(6), 1987.

[52] P. Patil. Holistic source-centric schema mappings for XML-on-RDBMS. Master’s

thesis, Indian Institute of Science, 2005.

References 159

[53] G. Piatetsky-Shapiro and C. Connell. Accurate estimation of the number of tuples

satisfying a condition. In Proceedings of the ACM SIGMOD International Conference

on Management of Data (SIGMOD), 1984.

[54] N. Polyzotis and M. Garofalakis. Statistical synopses for graph structured XML

databases. In Proceedings of the ACM SIGMOD International Conference on Man-

agement of Data (SIGMOD), 2002.

[55] N. Polyzotis and M. Garofalakis. Structure and value synopses for XML data graphs.

In Proceedings of the International Conference on Very Large Data Bases (VLDB),

2002.

[56] N. Polyzotis, M. Garofalakis, and Y. Ioannidis. Selectivity estimation for XML twigs.

In Proceedings of the IEEE International Conference on Data Engineering (ICDE),

2004.

[57] V. Poosala and Y. Ioannidis. Selectivity estimation without the attribute value

independence assumption. In Proceedings of the International Conference on Very

Large Data Bases (VLDB), 1997.

[58] V. Poosala, Y. Ioannidis, P. Haas, and E. Shekita. Improved histograms for selectivity

estimation of range predicates. In Proceedings of the ACM SIGMOD International

Conference on Management of Data (SIGMOD), 1996.

[59] M. Ramanath, J. Freire, J. Haritsa, and P. Roy. Searching for efficient XML-to-

relational mappings. In Proceedings of the XML Database Symposium (XSym), 2003.

[60] M. Ramanath, L. Zhang, J. Freire, and J. Haritsa. IMAX: Incremental maintenance

of schema-based XML statistics. In Proceedings of the IEEE International Conference

on Data Engineering (ICDE), 2004.

[61] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe. Efficient and extensible algorithms

for multi query optimization. In Proceedings of the ACM SIGMOD International

Conference on Management of Data (SIGMOD), 2000.

References 160

[62] C. Sartiani. A framework for estimating XML query cardinality. In Proceedings of

the International Workshop on the Web and Databases (WebDB), 2003.

[63] C. Sartiani. A general framework for estimating XML query cardinality. In Proceed-

ings of the International Workshop on Database Programming Languages (DBPL),

2003.

[64] A. Schmidt, M. Kersten, M. Windhouwer, and F. Waas. Efficient relational storage

and retrieval of XML documents. In Proceedings of the International Workshop on

the Web and Databases (WebDB), 2000.

[65] J. Shanmugasundaram, K. Tufte, G. He, C. Zhang, D. DeWitt, and J. Naughton.

Relational databases for querying XML documents: Limitations and opportunities.

In Proceedings of the International Conference on Very Large Data Bases (VLDB),

1999.

[66] Tamino. http://www.softwareag.com/tamino/architecture.htm.

[67] I. Tatarinov, Z. Ives, A. Halevy, and D. Weld. Updating XML. In Proceedings of

the ACM SIGMOD International Conference on Management of Data (SIGMOD),

2001.

[68] I. Tatarinov, S. Viglas, K. Beyer, J. Shanmugasundaram, E. Shekita, and C. Zhang.

Storing and querying ordered XML using a relational database system. In Proceedings

of the ACM SIGMOD International Conference on Management of Data (SIGMOD),

2002.

[69] F. Tian, D. DeWitt, J. Chen, and C. Zhung. The design and performance evaluation

of alternative XML storage strategies. SIGMOD Record, 31(1), 2002.

[70] W3C XML query. http://www.w3.org/XML/Query.

[71] W3C XML schema. http://www.w3.org/XML/Schema.

References 161

[72] W. Wang, H. Jiang, H. Lu, and J.X. Yu. Bloom histogram: Path selectivity estima-

tion for XML data with updates. In Proceedings of the International Conference on

Very Large Data Bases (VLDB), 2004.

[73] World wide web consortium. http://www.w3c.org.

[74] X. Wu, M.-L. Lee, and W. Hsu. A prime number labeling scheme for dynamic

ordered XML trees. In Proceedings of the IEEE International Conference on Data

Engineering (ICDE), 2004.

[75] Y. Wu, J. M. Patel, and H. V. Jagadish. Estimating answer sizes for XML queries.

In Proceedings of the International Conference on Extending Database Technology

(EDBT), 2002.

[76] Xerces Java parser 2.5.0. http://xml.apache.org/xerces-j/.

[77] XML Applications and Initiatives. http://xml.coverpages.org/xmlApplications.html.

[78] XML database products: Native XML databases.

http://www.rpbourret.com/xml/ProdsNative.htm.

[79] XML path language (XPath). http://www.w3.org/TR/xpath.

[80] XQuery update facility requirements.

http://www.w3.org/TR/xquery-update-requirements/.

[81] M. Yoshikawa, T. Amagasa, T. Shimura, and S. Uemura. XRel: A path-based

approach to storage and retrieval of XML documents using relational databases.

ACM Transactions on Internet Technology (TOIT), 1(1), August 2001.

[82] S. Zheng, J.-R. Wen, and H. Lu. Cost-driven storage schema selection for XML.

In Proceedings of the International Conference on Database Systems for Advanced

Applications (DASFAA), 2003.

