Schema-based Statistics and Storage

for XML

A Thesis
Submitted for the Degree of

Doctor of ‘Philosophy
in the Faculty of Engineering

By
Maya Ramanath

LW
I N A,
LIPS
A1 A N
AT7) ok
Ny = A
QY ¥ A
N i =A
[N i 171
N it P
YA I =
1" 4 WL =i
p SN\
NS SN Y
NS a7 75/
S TITUTE O F Py
Y INDIAN — SCIENCE,
Lt g T

Supercomputer Education and Research Centre
INDIAN INSTITUTE OF SCIENCE
BANGALORE - 560 012, INDIA

April 2006

Acknowledgements

First and foremost, I would like to thank my advisor, Jayant Haritsa. Thanks to Jayant
for teaching me about research, writing about my research as well as presenting my
research. I thank him for setting high standards in the lab and for providing a great work
environment with all possible facilities one would ever need. Finally, he was and continues
to be an example to the rest of us with his hard work and dedication to research.

I thank Juliana Freire who has not only been my mentor and collaborator throughout
my Ph.D years, but also a good friend. She is the most hard-working, smartest and tough-
est person I know and continues to be an inspiration to me in many ways. Discussions
with her helped me clarify my ideas and writing papers with her gave me confidence in
my work.

My other collaborators, Prasan Roy, Jerome Simeon and Lingzhi Zhang have helped at
various phases in my Ph.D. Apart from their technical input which was always excellent,
I thank them for teaching me how to work in groups and enriching my PhD experience.

I thank Prof. N. Balakrishnan, Prof. Matthew Jacob, Prof. R. Govindarajan and
Prof. S.K. Nandy for their help and support. Special thanks to the office people who
were a tremendous help with the administrative side of things — Rajalakshmi, Sarala,
Nagamanjari, Triveni, Mallika, Kavitha, Govindaswamy, Gopakumar, Shashi, Shekhar,
Shivanna and many others. Thanks to the CMC staff — Anant, Raju, Gajanan — who
fixed my machines on time :-).

Working in the same lab for so many years can be difficult without a lot of friends.
Thanks to Kumaran, Vikram and Suresha for giving me company in my Ph.D. years.

Thanks to Aditya, Bharat, Chaitra, Kumaran and Vikram for giving me amazing company

ACKNOWLEDGEMENTS i

for amazing amounts of time at the tea board and coffee board. I miss those daytime as
well as midnight trips when we talked about everything under the sun (and moon)!

Srikanta — first a friend, then a close friend and finally my life partner! I did not
include him in the above lists because he deserves a few pages of gratitude all for himself.
Without him, I may not have completed my Ph.D. Always there for me in my moments
of despair as well as my moments of joy. We struggled together for our PhDs and that
makes our bond even more special. He supported me in all the ways that I could possibly
want and then some!

Thanks to my mother-in-law who was the most kind and non-demanding mother-in-
law that one could ever wish for. It made my academic life smooth and my married life
a joy. I will miss her. Thanks to my father-in-law for his understanding and support.
Thanks to Prasad and Gayathri, for taking on many responsibilities when we were busy
with our seemingly never-ending student lives. Thanks to my cute little nephew Vishnu
— though he did not give me any technical input, his smiles and friendliness were input
enough :-))!!

No words can express my gratitude to my parents without whom none of this would
have been possible. Thanks to my father for teaching me about life and philosophy and
instilling in me the confidence and the ambition to work towards a Ph.D. He sets the
highest possible standards for himself and it is my constant endeavour to live up to those
standards that has made me the person I am today. Thanks to my mother for her love and
affection, her confidence in my abilities and her pride in my achievements. Always eager
to see me succeed and always willing take on more trouble to allow me to concentrate on
my studies has ensured that I never lost focus (and always had good food to eat ;-). All
that I am, I owe to my parents. And thanks of course to my brother, Madhava, who took
away the TV remote from me so that I worked even when at home ;-)).

Finally, I would like to thank my daughter — oh wait, she wasn’t born yet at that time
— she still had 3 months to go!!

Abstract

XML (eXtensible Markup Language) is a highly flexible text format that has become the
defacto standard for electronic publishing and data exchange, especially on the Web. XML
data is tree-structured and can be described by an XML Schema, which provides types
and regular expression constructs to concisely describe the document format. XQuery, a
declarative query language, supports the extraction and transformation of XML data.

Due to its flexible and nested format, the storage and query processing of XML data
throws up a variety of new challenges, not addressed by the classical relational approach
which is predicated on rigid flat-structured schemas. In this thesis, we address three
important issues arising in the XML context: First, we propose StatiX, a framework
for XML data summarization and query result cardinality estimation, that organically
handles both structural and value predicates. A rich set of schema transformations are
used to improve the accuracy of the summary. Through detailed experimentation with a
representative set of XQuery queries on both real and synthetic XML data, we show that
StatiX produces concise, accurate and flexible summaries.

Second, to cater to dynamic XML applications that frequently update their underlying
data, we propose the IMAX algorithm for incrementally maintaining StatiX summaries.
IMAX incorporates novel techniques for estimating both the positions of the update and
the ordinals of elements in the update fragment — a crucial requirement in the ordered data
model of XML. An experimental evaluation shows that it provides comparable accuracy
to a compute-from-scratch approach at a fraction of the runtime cost.

Finally, to design efficient storage layouts for XML data on the ubiquitous relational
database engines, we propose FleXMap, a framework that uses a wide range of transfor-
mations on the XML Schema description for characterizing the equivalent relational con-
figuration space. A variety of greedy search algorithms built on the FleXMap framework
are experimentally shown to output cost-efficient relational configurations as compared
to prior approaches.

In summary, this thesis presents a toolkit for effectively supporting the highly popular
XML world-view on the underlying storage and processing engines.

il

Publications

e “IMAX: Incremental Maintenance of Schema-based XML Statistics”
M. Ramanath, L. Zhang, J. Freire and J. Haritsa
Proc. of the 21st IEEE Intl. Conf. on Data Engineering (ICDE), Tokyo, Japan,
April 2005, pgs. 273-284

e “A Flexible Infrastructure for Gathering XML Statistics and Estimating Query
Cardinality” (demo)
J. Freire, M. Ramanath and L. Zhang
Proc. of the 20th IEEE Intl. Conf. on Data Engineering (ICDE), Boston, USA,
March 2004, pg. 857

e “Searching for Efficient XML-to-Relational Mappings”
M. Ramanath, J. Freire, J. Haritsa and P. Roy
Proc. of the 1st Intl. XML Database Symposium (XSym), Berlin, Germany, Septem-
ber 2003, pgs. 19-36

e “Bridging the XML-Relational Divide with LegoDB: A Demonstration” (demo)
P. Bohannon, J. Freire, J. Haritsa, M. Ramanath, P. Roy and J. Simeon
Proc. of the 19th IEEE Intl. Conf. on Data Engineering (ICDE), Bangalore, India,
March 2003, pgs. 759-761

e “LegoDB: Customizing Relational Storage for XML Documents” (demo)
P. Bohannon, J. Freire, J. Haritsa, M. Ramanath, P. Roy and J. Simeon
Proc. of the 28th Intl. Conf. on Very Large Data Bases (VLDB), Hong Kong,
China, August 2002, pgs. 1091-1094

e “StatiX: Making XML Count”
J. Freire, J. Haritsa, M. Ramanath, P. Roy and J. Simeon
Proc. of the ACM SIGMOD Intl. Conf. on Management of Data , Madison,
Wisconsin, USA, June 2002, pgs. 181-192

v

Contents

Acknowledgements
Abstract

List of Figures
List of Tables

1 Introduction
1.1 XML and Related Standards
1.2 Challenges in XML Data Management
1.3 Problems Addressed in the Thesis
1.3.1 Statistics Collection and Cardinality Estimation
1.3.2 Statistics Maintenance L.
1.3.3 Relational Storage for XML
1.3.4 Summary of Contributions

1.4 Organization

2 Related Work
2.1 Introduction
2.2 XML Statistics
2.2.1 Statistics Productiono
2.2.2 Statistics Maintenance

2.3 XML Storage

iv

xiv

10
12
13
13

CONTENTS vi
2.3.1 Storage Methods for Schemaless XML Data 21

2.3.2 Storage Methods using XML Schemas 23

2.3.3 Cost-based Solutions o0 26

2.3.4 Commercial Solutions 27

3 Schema Transformations 29
3.1 Introduction 29
3.2 Basic Frameworko L 30
3.3 Schema Transformations 0oL 31
3.3.1 Inline and Outline 32

3.3.2 Type Split and Type Merge 32

3.3.3 Union Distribution and Union Factorization 35

3.3.4 Repetition Split and Repetition Merge 36

3.3.5 Repetitions to Unions 37

3.4 Recursion 37
3.5 Validation and Schema Transformations 39
3.6 Implementation of Transforms 40
3.7 Conclusions 43

4 Statistics Collection and Query Result Size Estimation 44
4.1 Introduction 44
4.2 Description of StatiX Summaries 46
4.3 Estimating Query Result Cardinality in StatiX 48
4.4 Tuning the Accuracy of StatiX Summaries 51
4.4.1 Potential Limitations of Structural Histograms 51

4.4.2 Transformations for Finer Granularity Statistics 52

4.5 Construction of a StatiX Summary L. 56
4.5.1 The Statistics Collector o7

4.5.2 Schema Transformer 59

4.6 Experimental Setup 60

CONTENTS vii

4.6.1 Metrics 61

4.7 Performance Evaluation 000 62
4.7.1 Estimation Accuracy 62
4.7.2 Size of the Summary oL 72
4.7.3 Statistics Collection Overheads 7

4.8 Conclusions L L 80
5 Incremental Maintenance of XML Summaries 81
5.1 Imtroduction 81
5.2 Issues in Updating StatiX Summaries 82
5.2.1 Location and Cardinality Estimation 84
5.2.2 Updates to Structure and Value Histograms 84

5.3 The IMAX Technique 85
5.3.1 Estimating the Location of the Update 85
5.3.2 Estimating the Ids of the Update Fragment 88
5.3.3 Updating the Summary 90

5.4 Experimental Evaluation oo 93
5.4.1 Experimental Setup 93
5.4.2 Append-Only Updates 95
5.4.3 Random Insertions L. 97
5.4.4 Estimation Accuracy and Timing 109

5.5 Conclusions L 110
6 A Cost-based XML-to-Relational Storage System 112
6.1 Introduction 112
6.2 From Schema Trees to Relational Configurations 113
6.2.1 Basic Mapping 113
6.2.2 Supporting Additional Features of XML Schema 116
6.2.3 Schema Transformations and Relational Configurations 116

6.2.4 Structural Transformations 119

CONTENTS

viii

6.3 Evaluating Configurations 122
6.3.1 Collection and Propagation of Statistics 122
6.3.2 Query Translation 00 124

6.4 Search Algorithms 128
6.4.1 InlineGreedy 129

6.4.2 ShallowGreedy: Adding Transforms 130
6.4.3 DeepGreedy: Deep merges 130

6.5 Performance Evaluation 0oL 131
6.5.1 Query Workloads 132
6.5.2 Performance on S-Query Workloads 134
6.5.3 Performance on M-Query Workloads 136
6.5.4 Performance on Mixed Workloads 138
6.5.5 Comparison with Baselines 141

6.6 Optimizations 143
6.6.1 Grouping Transformations Together 143
6.6.2 Early Termination 146
6.6.3 Applying Only Profitable Transforms 146
6.6.4 Reducing the Search Space by Query Analysis 147

6.7 Conclusions 148
7 Conclusions and Future Work 150
7.1 Future Worko 151

References

154

List of Figures

1.1
1.2
1.3
1.4

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10

Sample DBLP Data 4
Tree Representation of the DBLP Data 5)
Snippet of an XML Schema for DBLP 6
The Big Picture: Problems addressed in the Thesis 13
Using Type Constructors to Represent XML Schema Types. 30
The (partial) IMDB Schema 41
(Partial) Schema Tree for the IMDB Schema 42
Patterns for Union Distribution and their Transformation 42
Pattern for Repetition Split and its Transformation 43
IMDB schema and the corresponding StatiX summary 47
Node and Parent ids have a Correspondence 51
Schema 1 53
Schema 2 53
Schema 3 54
Type graphs of the Three Schemas 54
Building StatiX Summarieso 56
IMDB: Estimation Accuracy for BP Queries over N-Summary 63
DBLP: Estimation Accuracy for BP Queries over N-Summary 63

IMDB: Estimation Accuracy for VP Queries over N-Summary with 30
Value Histogram Buckets 65

X

LisT OF FIGURES X

4.11 IMDB: Overall Estimation Accuracy for VP Queries over N-Summary
with Increasing Value Histogram Buckets 66

4.12 IMDB: Estimation Accuracy for VP Queries over N-Summary with In-
creasing Value Histogram Buckets and 100 Structural Histogram Buckets . 66

4.13 DBLP: Estimation Accuracy for VP Queries over N-Summary with 30
Value Histogram Buckets 67

4.14 DBLP: Estimation Accuracy for VP Queries over N-Summary with In-
creasing Value Histogram Buckets and 100 Structural Histogram Buckets . 68

4.15 IMDB: Estimation Accuracy for VP Queries over D-Summary with 30
Value Histogram Buckets 69

4.16 IMDB: Estimation Accuracy for VP Queries over D-Summary with In-
creasing Value Histogram Buckets 70

4.17 IMDB: Estimation Accuracy for VP Queries over D-Summary with In-
creasing Value Histogram Buckets and 100 Structural Histogram Buckets . 70

4.18 DBLP: Estimation Accuracy for VP Queries over D-Summary with 30
Value Histogram Buckets L. 71

4.19 DBLP: Estimation Accuracy for VP Queries over D-Summary with In-
creasing Value Histogram Buckets and 100 Structural Histogram Buckets . 72

4.20 IMDB: Estimation Accuracy for VP Queries with Equivalent Number of
Buckets 74

4.21 DBLP: Estimation Accuracy for VP Queries with Equivalent Number of
Buckets 74
4.22 TMDB: Efficiency of Statistics Collection for the N-Schema 77
4.23 IMDB: Efficiency of Statistics Collection for the D-Schema 78
4.24 TMDB: Comparison of Validation Times for the N- and D-Schemas 78

4.25 IMDB: Comparison of Summary Construction Times for the N- and D-
Schemas 79
5.1 2D Histogram to Capture Correlation Between Year values and Year Ids 88
5.2 Node and Parent ids have a Correspondence 89

LisT OF FIGURES pal

5.3 Computing the Ids of REVIEW 90
5.4 Inserting Ids into the Parent Histogram of RATING 91
5.5 2D Histograms - Construction and Merge 93
5.6 IMDB: ji,,s values for types Review and Aka 96
5.7 IMDB: ji,,s values for type Yearo 96
5.8 DBLP: p,,s values for types Author and Url 98

5.9 IMDB: LEA for Random Insertions with 1D and 2D Value Histograms . . 101
5.10 DBLP: LE A for Random Insertions with 1D and 2D Value Histograms . . 101

5.11 IMDB: 1,5 values for type Played for Random Insertions 102
5.12 IMDB: [icount values for type Played for Random Insertions 103
5.13 IMDB: [icoun: values for type Played for Skewed Insertions 104
5.14 IMDB: 1,5 values for type Played for Skewed Insertions 104
5.15 IMDB: 1,5 values for type Episode for Random Insertions 105
5.16 IMDB: 4,5 values for type Episode for Skewed Insertions 105
5.17 DBLP: pi,,s. values for type LINK for Random Multiple Insertions 107
5.18 DBLP: s values for type LINK for Skewed Multiple Insertions 107
5.19 DBLP: picoun: values for type LINK for Random Multiple Insertions 108
5.20 DBLP: ficount values for type LINK for Skewed Multiple Insertions 108

5.21 Error Relative to Recomputed Summary for IMDB and DBLP Datasets . . 109

6.1 (Partial) Schema Tree for the IMDB Schema 115
6.2 Relational Schema for the (partial) Schema Tree 115
6.3 A Subset of Annotations L 117
6.4 Relational Schema with Annotation “T” 117
6.5 Applying Associativityo 119
6.6 Statistics Translation L 123
6.7 The IMDB Schema and its relational configuration 126
6.8 Cost of Workloads containing S-Queries 135
6.9 No. of configurations Examined for Workloads Containing S-Queries 136

6.10 Cost of Workloads Containing M-Queries 137

LisT OF FIGURES

xii

6.11 No. of configurations Examined for Workloads Containing M-Queries . . . 137

6.12 IMDB: Cost of Workloads Containing both M- and S-Queries 139
6.13 IMDB: No. of Configurations Examined for Workloads Containing M-

and S-Queries L 139

6.14 DBLP: Cost of Workloads Containing both M- and S-Queries 140
6.15 DBLP: No. of Configurations Examined for Workloads Containing M-

and S-Queries oL 141

6.16 Comparison of DeepGreedy with the Baselines and Inline (User) 143

6.17 No. of Configurations Examined by DeepGreedy and GroupGreedy 145

6.18 Progress of DeepGreedy on Workload W 146

List of Tables

2.1
2.2

4.1
4.2
4.3
4.4
4.5
4.6

5.1
5.2
5.3
5.4
5.9

Summary of Related Work on Statistics Production and Maintenance . . . 16
Summary of Related Work on Storage in Relational Backends 21
Cardinality Computation in StatiX 50
Queries, Schemas and Accuracy 55
Experimental Setupo 62
Equivalent Number of Buckets 73
IMDB and DBLP: Absolute Sizes of the Summaries 75
IMDB and DBLP: Savings with Compression 7
IMDB: RECOMP with Appends 97
DBLP: RECOMP with Appends 97
IMDB: RECOM P with Random and Skewed Insertions 103
DBLP: RECOMP with Random and Skewed Insertions 106
Average Time per Update (inms) 109

xiii

Chapter 1

Introduction

Because of the huge popularity and reach of the World Wide Web, the potential to exploit
it in diverse areas such as industry, governance and academics is tremendous. Web-based
applications include e-business, e-governance, medical informatics, bio-informatics, etc.

For example, Amazon [2], the well-known distributor of books and related material,
enables developers, merchants, and partners to provide customers with information re-
trieved from Amazon’s databases in real-time over the web. Amazon opened up several of
its features like the catalog, shopping cart, and personalization engine through their web
services platform to the public. More than a million associates can now access Amazon’s
product listings through the web and provide consumers with value-added services, while
also uploading their own products to be advertised and sold on Amazon’s web-site [41].

For applications such as the above to succeed, there are several requirements, including:
(i) a common format for publishing the data should be agreed upon by the concerned
parties, (ii) applications should be able to automatically consume this data, (iii) humans
should be able to read the data so that they can design customized applications, and (iv)
the publishing format has to be platform- and vendor-independent.

The exchange and manipulation of documents conforming to a common format has
been in practice for over 40 years. For example, IBM developed GML (Generalized
Markup Language) so that the same markup for, say, a manual, could be used to produce

a book, electronic editions, reports, etc. The need for standardizing the way in which

CHAPTER 1. INTRODUCTION 2

markup could be specified, defined and used in documents was recognized when wider
varieties of document types had to be specified, each with their own set of tags and struc-
ture. The result was the development of SGML (Standard Generalized Markup Language),
published as ISO 8879 [33]. SGML can be used for defining and using portable document
formats and can handle complex documents. SGML supports the following important
features: (i) extensibility — the ability to add new tags, (ii) structure — the flexibility to
specify deeply nested structures, possibly containing missing and repeated elements, and
(iii) validation — enabling the application which consumes the SGML document to check
whether the document is valid with respect to its document type.

When the web was still in its nascent stages, electronic documents were published on
the web mainly to be read by web browsers and this comparatively simple application
did not require the power of SGML. And so was born the Hypertext Markup Language
(HTML) [31]. HTML is also an application of SGML and defines its own specific tagset.
It is hugely popular because it is easy to learn and use.

However, HTML’s tagset is mainly limited to describing how the document should be
displayed on a browser, rather than describing its content. And this is the main reason
why HTML cannot be used for applications such as those supported by Amazon. The
markup and structures that need to be defined for these applications is industry-specific
and can be supported not by HTML, but by SGML. And so, the need to bring SGML
to the web resulted in the development of XML (eXtensible Markup Language), a meta-
language which is based on SGML, but without some of the more difficult-to-learn and
difficult-to-implement features of SGML.

XML [23] is a highly flexible text format that has become the defacto standard for
electronic publishing and data exchange on the web. Its simplicity makes it a tool of
choice in various applications requiring data representation, integration and transforma-
tion (see for example, [77], for a long list of such applications). Moreover, the emergence
of supporting XML-related standards such as schemas for describing classes of XML doc-
uments and query languages for accessing and transforming XML data has made XML a

powerful tool, making it the key component in applications such as those supported by

CHAPTER 1. INTRODUCTION 3

the web-services platform of Amazon.

1.1 XML and Related Standards

XML emerged as a standard in 1998, and is a recommendation of the World Wide Web
Consortium (W3C) [73]. Figure 1.1 shows a fragment of data from the Database and Logic
Programming Bibliography website (DBLP) [18]. The data contains elements (tags) such
as article and author, as well as attributes, such as key. All these tags are specific
to describing the DBLP data. The data representation is flexible since it allows for
optional elements (for example, one of the articles has a url, while the other does not),
and repeated elements (multiple author elements in one inproceedings, while the other
contains a single author), etc. Different elements in the document can be linked to each
other through the use of IDs (keys) and IDREFs (keyrefs). For example, the key attribute
in each of the elements acts as the identification or key of that element. This key can
then be referred to by a key reference such as crossref.

Each start tag has a corresponding end tag, making this XML fragment well-formed.
The nested structure of the document can be regarded as a tree, with the internal nodes
containing the elements and attributes and the leaf nodes containing the values, as shown
in Figure 1.2!. This representation is commonly used when manipulating XML data,
especially from APIs such as the Document Object Model (DOM) API [20].

Other standards essential for the effective use of XML such as schemas and query
languages are being developed, and some of them have become recommendations. Chief
among the schema languages proposed for XML are the DTD (Document Type Definition)
23] and XML Schema [71]. Both these languages make use of regular expressions to
provide flexibility in describing a class of documents. XML Schemas are more powerful
than DTDs since they have a type system associated with them and allow the decoupling
of tag names from type names. A snippet of the XML Schema which describes the DBLP

data is shown in Figure 1.3. The flexibility of regular expressions is suitable for expressing

!Note that we may also choose to represent key/keyrefs as edges, making the data graph-structured.

CHAPTER 1. INTRODUCTION

<dblp>

<mastersthesis mdate="2002-01-03" key="ms/Brown92">
<author>Kurt P. Brown</author>
<title>PRPL: A Database Workload Specification Language, v1.3.</title>
<year>1992</year>
<school>Univ. of Wisconsin-Madison</school>
</mastersthesis>

<article mdate="2002-01-03" key="tr/dec/SRC1997-018">
<ee>db/labs/dec/SRC1997-018.html</ee>
<ee>http://www.mcjones.org/System_R/SQL_Reunion_95/</ee>
<editor>Paul R. McJones</editor>
<title>The 1995 SQL Reunion: People, Project, and Politics, May 29, 1995.</title>
<journal>Digital System Research Center Report</journal>
<volume>SRC1997-018</volume>
<year>1997</year>
<cdrom>decTR/src1997-018.pdf</cdrom>

</article>

<article mdate="2002-01-03" key="tr/gte/TR-0263-08-94-165">
<ee>db/labs/gte/TR-0263-08-94-165.html</ee>
<author>Frank Manola</author>
<title>An Evaluation of Object-Oriented DBMS Developments: 1994 Edition.</title>
<journal>GTE Laboratories Incorporated</journal>
<volume>TR-0263-08-94-165</volume>
<month>August</month>
<year>1994</year>
<url>db/labs/gte/index.html#TR-0263-08-94-165</url>
<cdrom>GTE/MAN094a.pdf</cdrom>

</article>

<inproceedings mdate="2002-01-23" key="conf/b/Sekerinski98">
<author>Emil Sekerinski</author>
<booktitle>Graphical Design of Reactive Systems.</booktitle>
<crossref>conf/b/1998</crossref>
<ee>http://link.springer.de/link/service/series/0558/bibs/1393/13930182.htm</ee>
<pages>182-197</pages>
<url>db/conf/b/b1998.html#Sekerinski98</url>
<year>1998</year>

</inproceedings>

<inproceedings mdate="2002-01-23" key="conf/b/BehmBM9I8">
<author>Patrick Behm</author>
<author>Lilian Burdy</author>
<author>Jean-Marc Meynadier</author>
<booktitle>Well Defined B.</booktitle>
<crossref>conf/b/1998</crossref>
<ee>http://link.springer.de/link/service/series/0558/bibs/1393/13930029.htm</ee>
<pages>29-45</pages>
<url>db/conf/b/b1998.html#BehmBMI8</url>
<year>1998</year>

</inproceedings>

</dblp>

Figure 1.1: Sample DBLP Data

CHAPTER 1. INTRODUCTION 5

/ I p\

nast er st he5| s article article i npr oceedi ngs

SN /N N

author booktltle crossref ee

Figure 1.2: Tree Representation of the DBLP Data

1992

features such as optional and repeated elements. For example, the type Article contains
several optional elements, such as Url (the ? qualifier in Figure 1.3 indicates this) — the
second article in the data contains a url while the first one does not. The XML Schema
also has types which may occur multiple times, such as Author (indicated by the * qualifier)
— the first inproceedings in the XML data contains a single author element while the
second one contains three such elements. Moreover, simple data types such as integer for
the type Year and string for the type Author can be specified.

Query languages for XML include the declarative XPath [79] and XQuery [70]. XQuery
is a language with the power of first order predicate calculus. It can query XML data, and
additionally provides constructs to transform and integrate multiple sources of XML data.
Extensions for enabling XQuery to support updates are currently under development [80].
XPath, also a full-fledged query language on its own, forms the core of XQuery and mainly
provides the navigational constructs required to query XML. The following XQuery query
extracts all articles published before 1995 and returns the key, title and authors of each

article in a new format.

for $i in /dblp/article
where $i/year < €€1995°’
return
<ARTICLE>
<KEY> $i/0key </KEY>
<TITLE> $i/title </TITLE>
<AUTHORS>
<AUTHOR> $i/author </AUTHOR>
</AUTHORS>

CHAPTER 1. INTRODUCTION

define element dblp {

}

type Mastersthesis+, type Article+, type Inproceedings-

define type Mastersthesis {

by

element mastersthesis {
attribute Mdate, attribute Key, type Author,
type Title, type Year, type School

define type Article {

} 3

element article {
attribute Mdate, attribute Key, type Ee*, type Author®,
type Editor®, type Title, type Journal, type Volume,
type Month?, type Year, type Publisher? type Url?,
type Cdrom?

define type Inproceedings {

1S,

element inproceedings {
attribute Key, attribute Mdate, type Author®, type Booktitle,
type Cdrom?,type Crossref*, type Ee*,
type Number?, type Pages® type Url*,
type Year

define type Crossref { element crossref {xsd:string } }
define type Author { element author {xsd:string } }
define type Booktitle { element booktitle {xsd:string } }
define type Year { element year {xsd:integer } }

Figure 1.3: Snippet of an XML Schema for DBLP

CHAPTER 1. INTRODUCTION 7

</ARTICLE>

This XQuery contains three clauses: for, where and return. The return clause
constructs a new fragment of XML. Note that path expressions such as /dblp/article are
an essential part of XQuery. This expression indicates that starting at the root (denoted by
the first “/” symbol), the tag dblp has to be matched. From the nodes which match dblp,
the children of those nodes (denoted by the second“/” symbol) have to be traversed. The
“/” symbol denotes the navigational azis. Several other axes, such as descendant (denoted
by “//7), parent, ancestor, left-sibling, etc. can be specified. The path expression can also
contain branches, as in the following example: /dblp/article[year < ¢€1995°°] which
asks for all articles whose publication year is less than 1995. Such branching path
expressions with value as well as boolean predicates (including and, or and not) form the

crux of XPath.

1.2 Challenges in XML Data Management

The proliferation of the web and the emergence of XML as a popular means of data
representation and data exchange has resulted in the need for managing large volumes of

XML data. The primary data management issues which need to be addressed include:

Storage: XML data can be stored in a variety of ways including backends such as file
systems, relational systems or native XML stores. The choice of backend depends
on the application. Building a full-fledged XML storage manager is often an attrac-
tive option since the layout can be optimized for efficient query processing. But,
many applications expect XML data to be either stored in or generated from already
existing relational systems. Hence the storage of XML in relational database is an
interesting alternative that has attracted considerable attention from the research
community. In addition to storage in such legacy systems, the complementary prob-
lem of XML publishing, where XML data is produced from relational systems is also

important.

CHAPTER 1. INTRODUCTION 8

Query processing: Access to XML involves the retrieval, transformation and update
of XML data using XML query languages such as XPath and XQuery. Query pro-
cessing as a whole involves the investigation of several other issues. Chief among
them are: (i) development of efficient algorithms to process the various query predi-
cates, including updates; (ii) development of cost models for XML query processing;
(iii) cardinality estimation of query fragments which serve as inputs to the query

optimizer; (iv) building query optimizers to generate optimal query plans, etc.

Except for XML publishing which is a problem mainly motivated from XML applica-
tions which need to publish data from existing sources, the other data management issues
of storage and query processing have already been addressed in the context of relational
database systems. However, direct application of techniques developed for relational sys-
tems to XML data management is not always possible due to the fundamental mismatch
in the data models of XML and relational data. We list several differences below be-
tween XML and relational data which makes clear the necessity for revisiting several data

management issues in the context of XML.

Data: XML data is tree-structured (if keys and keyrefs are treated as edges, then XML
is graph-structured), while relational data is flat and is made up of tables and
columns. Moreover, while relational systems are predicated on the existence of a

schema, XML data need not be accompanied by a schema.

Schema: Relational databases have a rigid schema associated with them, which clearly
defines the tables, their columns and the data types of these columns. However,
XML schemas are significantly more flexible since they describe classes of documents
through means of reqular expressions, which allow for a considerable variety of data

conforming to the same schema.

Queries: Relational databases are queried through the declarative query language SQL
which specifies the tables and columns from which data is to be retrieved and how
they are to be combined. On the other hand, since XML is tree structured, XML

query languages such as XPath and XQuery have navigational primitives in addition

CHAPTER 1. INTRODUCTION 9

to value primitives. Also, the output of an XML query could be an arbitrary sized

tree.

1.3 Problems Addressed in the Thesis

In this thesis, we address two important problems that go to the heart of XML data man-
agement due to their substantive impact on efficient XML query processing: XML data
summarization and XML data storage. Data summarization provides crucial cardinality
estimation inputs to the query optimizer which helps in execution plan generation, while
data storage directly impacts the query processing. The work presented in this thesis is
divided mainly into three parts: (i) Statistics Collection and Cardinality Estimation, (ii)
Statistics Maintenance, and (iii) XML Storage. Our solutions to each of these problems
is based on the existence of an XML Schema that decides document validity. As men-
tioned previously, XML Schemas are more powerful than DTDs and are now becoming
commonplace for most XML applications, and are widely used (see [48] for descriptions
of several applications and standardized XML Schemas). Another crucial feature in our
work is the use of schema transformations on the XML Schema to make our solutions

both effective and efficient.

1.3.1 Statistics Collection and Cardinality Estimation

A critical component of an XML data management system is the result estimator, which
estimates the selectivity of user queries. Its importance arises from the fact that estimated
cardinalities serve as inputs in many aspects of XML data management systems such as
cost-based storage design and query optimization.

A large body of literature is available for result size estimators in traditional database
systems. In essence, summary statistics such as the distribution of values in a given
column, the minimum and maximum value, the number of distinct values, etc. are stored
and used in an estimation framework in order to estimate the result size. However, in the

XML domain, the design of such result estimators becomes more complex because of the

CHAPTER 1. INTRODUCTION 10

fact that XML inherently has structure associated with it and does not consist merely
of values as in the case of relational systems. Moreover, the query languages designed
for XML have tree navigation as a first class primitive. Additionally, since XML Schema
provides regular expression constructs, the structure of the data has a considerable amount
of flexibility in terms of presence/absence of certain elements, number of occurrences of
a given element, etc. This may give rise to skew in the structure of the data as well as
the values. In effect, any solution to the problem of cardinality estimation for XML has
to provide solutions which deal with both structure and value on an equal footing.

The first part of the thesis proposes StatiX (Statistics for XML), a framework for
XQuery cardinality estimation and statistics collection for XML data. StatiX is a novel,
schema-based framework that exploits the structure in the XML Schema in order to decide
what statistics should be collected. StatiX proposes the use of schema transformations
in order to vary the granularity of the statistics collected (in consequence, the accuracy
of the cardinality estimation is affected). It is based on the following two principles: i)
the use of standard XML technology (mainly, schema validators), where possible, in order
to collect the statistics efficiently, and ii) the use of histograms to summarize both the
structure as well as the values in an XML document. This aspect of StatiX enables the
reuse of histogram multiplication techniques in order to estimate the query cardinalities
of various queries. Currently, StatiX can handle a significant subset of XQuery, specifi-
cally, branching path expressions with value predicates. Through a detailed performance
evaluation, StatiX is shown to be accurate as well as concise for different synthetic as well

as real data sets.

1.3.2 Statistics Maintenance

A large number of XML applications are dynamic and frequently update the underlying
data. For example, an XML workflow application that keeps track of customer purchase
orders may dynamically update book-keeping information about the status of the order
as it navigates through the order-processing cycle. While StatiX provides solutions to the

problem of statistics production, it is equally important to address the problem of statistics

CHAPTER 1. INTRODUCTION 11

maintenance when the underlying data is subject to inserts, deletes or modifications.

Periodically recomputing the statistics from scratch on the updated documents is an
obvious choice to cater to the XML update problem. But since recomputation requires the
whole document to be parsed, it can be prohibitively expensive [47] if recomputations occur
frequently, especially for large documents. Further, if recomputations are not adequately
timed, stale statistical summaries may lead to unacceptable estimation errors. And so,
techniques which can maintain the statistics in parallel with the receipt of data need to
be considered.

Incremental maintenance of data statistics per se is not a new issue to the database
community, having been previously addressed in the context of relational database systems
(see e.g., [30]). However, what is novel in the XML context is that statistics about both
structure and value have to be maintained. That is, while in an RDBMS, there is no
difference, as far as the statistics go, between the insertion of a tuple in the middle of
a relation or the appending of the same tuple at the end, the location of the update
is always an issue in XML. Secondly, the size of the update in an RDBMS can only
be either a single tuple or a set of tuples. But, in an XML environment, the update
could be an arbitrarily complex XML fragment, or sets of fragments. For example, the
update could require inserting sub-trees at various locations in the original document.
Thus, maintaining accurate statistics for XML databases poses a fresh set of problems as
compared to those tackled in prior systems.

In the second part of the thesis, we propose an algorithm for incremental maintenance
of XML Statistics, named IMAX (Incremental Maintenance of XML Statistics). IMAX
proposes efficient strategies for incrementally maintaining StatiX summaries as and when
updates are applied to the data. IMAX addresses the issues of: i) estimating how many
updates will take place and, ii) estimating the specific locations where the updates will
take place. The second issue is specific to XML since the order of elements has to be

taken into account.

CHAPTER 1. INTRODUCTION 12

1.3.3 Relational Storage for XML

As applications manipulate an increasing amount of XML, there is a growing interest in
storing XML data in relational databases. The main advantage of storing XML in rela-
tional systems is that the large amount of research which has enabled relational systems
to grow into a mature technology can be leveraged. Basic data management services such
as concurrency control and recovery are already present in relational systems and need
not be re-invented for XML. In addition, many XML applications are expected to be
produced from or stored in relational databases. The need for such close interaction with
relational data make relational database systems an attractive choice for storing XML.
An added advantage is that relational systems are already widely used.

Due to the mismatch between the complexity of XML’s tree structure and the sim-
plicity of flat relational tables, there are many ways to store the same document in an
RDBMS, and a number of heuristic techniques have been proposed. However, a single
fixed mapping is unlikely to work well for all different applications. The case for a cost
based approach was made in [6, 7, 8] wherein the application characteristics in the form of
the XML Schema, XML data statistics and XML query workload were considered when
coming up with a relational configuration. The system, named LegoDB, used schema
transformations to generate different relational configurations and used a relational opti-
mizer [61] to estimate the costs of the generated candidate configurations.

The third part of the thesis — named FleXMap (Flexible XML Mappings) — builds
on LegoDB and investigates the utility of the schema transformations in more detail.
Many of these schema transformations are also used in StatiX to improve the granularity
of the summary. Issues which arise in the context of cost-based storage, such as the
propagation of statistics from one relational configuration to another during the search
process are addressed. Using FleXMap has two advantages: i) a much larger space of
configurations can be explored by the addition of new transformations or by choosing an
appropriate subset of the transformations already proposed, and, ii) because of the way in
which the search algorithms are derived from the framework, a larger space is searched at

a marginal increase in response time. Several optimizations to substantially improve the

CHAPTER 1. INTRODUCTION 13

XQuery Workload

Relational Configuration

XML Data StatIX Statistics > FleXMap >

XML Schema

\ Updated Statistics
XML Data Updates I MAX | b

Figure 1.4: The Big Picture: Problems addressed in the Thesis

efficiency of the search process while maintaining the quality of the output are proposed.

1.3.4 Summary of Contributions

In summary, we propose a set of three tools in this thesis — StatiX, IMAX and FleXMap
— which address the issues of statistics production, statistics maintenance, and storage
of XML data, respectively. These three systems are schematically shown in Figure 1.4.
StatiX takes an XML Schema and XML data as inputs, and outputs a statistics summary.
This summary can then be used to estimate the cardinality of various XQuery queries.
IMAX takes as input the XML Schema and the currently existing StatiX summary for
a data set. IMAX tracks the updates to the underlying data and appropriately updates
the summary. FleXMap takes as input an XML Schema, a StatiX summary and a query
workload, and outputs a relational configuration that can answer the queries in the query
workload efficiently. Experimental evaluation of all three tools over real and synthetic

data sets shows that this toolkit is both effective as well as efficient.

1.4 Organization

The rest of this thesis is organized as follows. In Chapter 2, we review related work on
statistics and storage of XML and highlight the differences and similarities with the work

presented in this thesis. In Chapter 3, we introduce schema transformations which are

CHAPTER 1. INTRODUCTION 14

the basis of the solutions presented. In Chapter 4, we present StatiX, a framework for
XML statistics production and cardinality estimation. In Chapter 5, we present IMAX,
a technique for maintaining XML statistics in the presence of updates to the underlying
data. In Chapter 6, we present FleXMap, a cost-based search system to find efficient
relational configurations for XML data. We conclude and identify avenues of future

research in Chapter 7.

Chapter 2

Related Work

2.1 Introduction

There have been several proposals on XML query selectivity estimation in the literature
[1, 14, 26, 27, 40, 54, 55, 56, 62, 63, 75]. They differ in many different aspects, such
as use of schema information, summary structure, supported queries, etc. However, a
common limitation of the proposals mentioned above is that they do not support statistics
maintenance. In addition to IMAX, the Bloom Histogram technique proposed in [72] is
the only other work we are aware of that deals with the problem of maintaining statistics
in the presence of updates to the underlying XML data.

Moving on to the problem of storing XML data, there is a large amount of literature
available on primarily two ways of storing XML data: (i) building a native XML database
system, and (ii) storing XML in an already existing database system such as a relational
database system. While there are many native XML databases available (for example,
[34, 46, 66|, see [78] for a list of such databases), our focus in this thesis is on storing
XML data in relational systems.

There are several proposals for storing XML in relational systems. For example,
8, 12, 13, 17, 19, 21, 25, 35, 38, 43, 50, 52, 64, 68, 81, 82]. These proposals differ in
many ways — whether they are order-preserving and constraint-preserving, whether they

are schema-aware or schema-oblivious, whether they automatically generate a relational

15

CHAPTER 2. RELATED WORK 16

mapping, whether they are heuristic or cost-based, etc.
In this Chapter, we survey the related work on XML statistics in Section 2.2 — statistics
production as well as maintenance. And then in Section 2.3, we discuss related work on

mapping XML to relational systems.

2.2 XML Statistics

Proposal Input Summary Order | Structure | Value | Updates
Structure
[14] Data Correlated sub- | No Tree pat- | No No
path tree tern
1] Data Path tree and | No Simple No No
Markov tables paths
XPathLearnery Query Markov tables No Simple Yes No
[40] feedback Paths
[75] Data Position His- | Yes Twigs Yes No
and togram
schema
XSketches
[54, 55, 56] Data XSketch graph No Tree Pat- | Yes No
tern
StatiX
26, 27] Data Histogram Yes Tree Pat- | Yes No
and tern
Schema
(62, 63] Data Tagged region | No Tree pat- | Yes No
and graph tern
Schema
Bloom His-
tograms
[72] Data Bloom Filter No Simple No Yes
Paths
IMAX
[60] Data Histogram Yes Tree pat- | Yes Yes
and tern
Schema

Table 2.1: Summary of Related Work on Statistics Production and Maintenance

Table 2.1 summarizes the differences and features among the various proposals for

CHAPTER 2. RELATED WORK 17

XML statistics production and maintenance.

2.2.1 Statistics Production

In [14], Chen et al propose a scheme that captures correlations between paths, resulting
in accurate estimation of twig queries. Twig queries are queries which can be expressed
as small, node-labeled trees that match portions of the data. Their strategy consists of
gathering counts for frequently occurring twiglets in the data, and then assigning each
twiglet a “set hash” signature that captures the correlations between the subpaths in the
data tree. Query selectivity is then estimated by combining the hash signatures of the
twiglets occurring in the query.

In [1], Aboulnaga et al propose two techniques for estimating selectivity of simple path
expressions: summarized path trees and summarized Markov tables. A summarized path
tree is a representation of all paths in the XML document. At each node in the path tree,
the frequency of paths from the root to that node is maintained. The frequency at the
node is the selectivity of the path from the root to that node. Since the path tree can
be very large, several methods of compressing it are proposed. The main idea is to delete
or coalesce low frequency nodes. Markov tables are tables which contain the frequency
information for all simple paths upto a given length k. The low frequency paths are again
deleted to make the table compact. The selectivity of any simple path query is computed
based on the selectivities of “subpaths” of the query — in effect, it is assumed that the
selectivity of any tag in the path depends only on at most the previous k£ — 1 tags, in
effect modeling the path as a Markov process of order & — 1 (hence the name “Markov”
table).

The XPathLearner [40] technique proposes the use of query feedback in order to collect
statistics about simple path expressions. The basic summary structure is the Markov
histogram, which simply summarizes the counts of simple paths with lengths less than
some parameter k, as well as values. This summarization is done online by observing
the selectivities of queries fired on the database, rather than by scanning the data offline.

The principle of computing the selectivities of simple path expressions is the same as that

CHAPTER 2. RELATED WORK 18

described in [1].

In [75], the authors propose “position histograms” to capture selectivity information.
Each node in the XML tree is first labeled with intervals — that is, each node is assigned a
tuple of a start position and an end position. Any descendant node has an interval strictly
contained in any of its ancestor nodes. Next, several predicates of interest are identified —
a predicate could be as simple as “element name = AUTHOR”. For each such predicate,
a position histogram is built. A position histogram is a two dimensional histogram which
contains the start values in the x-axis and end values in the y-axis. Armed with these
position histograms, predicates such as P;//P, can be computed. For branching patterns,
the query is first decomposed into simple paths and the results are combined. Certain
properties of position histograms, such as identifying certain regions to be empty, help in
effective evaluation of these predicates. Schema information is made use of when available
— for example, if it is known that two predicates P; and P; reside on different branches of
the tree, then the selectivity of P;//P; is 0 and can be reported without any computation.

Polyzotis et al [54, 55, 56] propose graph synopses structures called “XSketch”es as
the summary structure. XSketches are based on the notion of backward and forward
bisimilarity of a graph. The two extreme XSketches are the “label-split” graph (the
coarsest summary) and the “backward-and-forward bisimilar” graph (BF-bisimilar graph,
the most detailed summary). Construction for the BF-bisimlar graph is known in the
literature [51]. For values, they propose building value histograms at the leaf level. Since
the label-split graph is small but too inaccurate and the BF-bisimilar graph is highly
accurate, but potentially too large, a greedy algorithm is proposed to find an appropriate
“intermediate” XSketch synopsis. The construction algorithm outlined starts from the
label-split graph and successively refines edges to make them backward or forward (or
both) stable based on the increase in accuracy that they offer on a given query workload.
XSketches are able to handle branching path expressions with value predicates as well
as twig queries which require combining results from multiple path expressions. The
cardinality estimation makes use of independence and uniform distribution assumptions

when necessary. XSketches come closest in spirit to StatiX even though they do not use

CHAPTER 2. RELATED WORK 19

any schema information and do not store parent-child distributions (only the cardinality
is stored). The refinement operations proposed in XSketch are similar to the schema
transformations that we propose for StatiX.

In [62, 63] the author proposes a “metamodel” for estimating the cardinality of XML
queries which may include the “for” and “let” bindings. The framework is based on the
notion of regions of data where each region contains the cardinality of a set of nodes
sharing a common feature (such as tags or types). A “match occurence” is a sequence of
regions which satisfies a certain structural or value predicate. Given a set of bind variables
in the for or let bindings, a list of match occurences is computed for each variable. Based
on common parent or ancestor regions, correlations are determined and the cardinality
divided appropriately. The framework can identify not only twig estimates, but also group
cardinalities which occur when /et bindings are used. As the author states, StatiX can
be a part of this model if the region can be defined appropriately (for example, the node
type and its bucket in the structural histogram can constitute a region for a given node
in the data).

In summary, the above proposals outline novel approaches to solve the selectivity
estimation problem. They vary in the summary structure they use and the type of queries
they can support (simple path expressions, branching path expressions, twigs, etc.). Most
of them are data-based techniques and do not exploit the XML Schema to optimize their
summaries. This is in contrast to StatiX which not only collects statistics based on
the schema, but also utilizes schema information to substantially reduce the size of the
summary. Moreover, another significant advantage in StatiX is the use of histograms (in
addition to the XML Schema) as the summary structure of choice to capture parent-
child and value distributions and the estimation is based on histogram multiplication
techniques. This aspect may make the techniques proposed for StatiX easily adoptable

in relational systems which already use histograms for capturing value distributions.

CHAPTER 2. RELATED WORK 20

2.2.2 Statistics Maintenance

We are aware of only one other work which supports cardinality estimation in the presence
of updates. In [72], the authors propose the use of bloom histograms as a summary
structure. Given a table of paths and their frequencies, a bloom histogram summarizes
them into buckets. Paths with similar frequencies are grouped into a single bucket and
their average count is maintained. In order to represent all the paths in a given bucket, a
bloom filter is utilized. A bloom filter is a data structure which can be used to represent
sets and supports set membership queries. In order to maintain the bloom histogram, an
intermediate “dynamic summary” is maintained which is used to periodically recompute
the bloom histogram. IMAX differs from bloom histograms in several ways: (i) Bloom
histograms need to be periodically recomputed, and as a consequence, may suffer from
highly inaccurate estimates if the periodicity of recomputations is not properly set (the
authors do not explicitly comment on the periodicity of recomputations), while IMAX
supports incremental maintenance — that is, the summary is updated as and when the
updates are received — and recomputations are used only as a backup mechanism, (ii)
the recomputations on the Bloom histogram happen over an intermediate data structure,
such as the path tree table, while the recomputations in IMAX happen over the backend
data — hence the recomputations in the bloom histogram technique may be much cheaper,
but maintaining the intermediate structure requires a parsing of the data into paths, (iii)
the class of queries covered is restricted to simple path expressions without values in the
bloom histograms while IMAX supports the full functionality of StatiX, and (iv) StatiX
and consequently, IMAX utilize schema information to build and maintain the summary

while bloom histograms make use of only the data.

2.3 XML Storage

Table 2.3 gives an overview of features of various techniques to store XML in relational
systems. Related work that doesn’t fit into the above table (for example, there are papers

which theoretically analyze the nature of XML-to-relational mappings) are described in

CHAPTER 2. RELATED WORK 21
Techniques Schema-aware | Cost- | Constraint- | Order- Automatic
or oblivious | based | preserving | preserving | or Manual
SA/SO (A/M)

STORED [19] SO No No Yes A

Edge [25] SO No No Yes A

XRel [81] SO No No Yes A

[68] SA No No Yes A

[64] SO No No No A

XParent SO No No Yes A

(35, 36]

[65] SA No No No A

[12, 16, 11] SA No Yes No A

[38],[42] SA No No No A

LegoDB and SA Yes No No A
FleXMap

8, 59, 7, 6]

[82] SA Yes No No A

[13] SA Yes No No A

ShreX [21, 22] SA No No Yes M

ELIXIR [52] SA Yes Yes No A

Oracle XML SA/SO No No Yes A/M

DB [50]

DB2 XML Ex- SA/SO No No Yes A/M
tender [17]

MS SQL SA/SO No No Yes A/M
Server [43]

Table 2.2: Summary of Related Work on Storage in Relational Backends

the text.

2.3.1

Storage Methods for Schemaless XML Data

In STORED [19], a mapping between a semi-structured database instance and a relational

schema is automatically chosen and expressed in a declarative language called STORED.

Data mining techniques are utilized to generate this mapping. Parts of the data which

do not fit into the schema are stored in an overflow graph.

In [24, 25], several mapping schemes are proposed. According to the Edge approach,

CHAPTER 2. RELATED WORK 22

the input XML document is viewed as a graph and each edge of the graph is represented
as a tuple in a single table. The tuple consists of the source and destination ids of the
nodes, the label, and the value (if the destination is a leaf node) in addition to the node’s
ordinal. In a variant, known as the Attribute approach, the edge table is horizontally
partitioned on the tag name yielding a separate table for each element/attribute. Two
other alternatives, the Universal table approach, corresponding to an outer-join of all the
tables in the attribute approach, and the Normalized Universal approach, where multi-
valued attributes in the Universal Table approach are stored separately, are also proposed.

The binary association approach [64] is a path-based approach. An association is a
relationship between two nodes, such as node-node (denoting a parent-child), node-value
and node-attribute value, and so on. All associations between two types of nodes based
on their path from the root are stored in a single relation which is named for that path.
Evaluation of path expressions now involves joins among the corresponding tables.

The XRel approach [81] is another path-based approach. It constructs a single table
for each node type (one each for elements, attributes and text, respectively), and one
table to store all the paths that occur in the document along with a path id. In the
element, attribute and text tables, the region of the node as well as its ordinal and path
id are stored. The region of a node is an interval consisting of a start and end position,
determined by the pre-order and post-order traversal of the document tree. The advantage
of this approach is that a path expression can be easily evaluated by comparing path ids.

XParent [35, 36] uses the edge mapping scheme and stores XML documents in four
separate tables — LabelPath, DataPath, Element and Data. LabelPath stores all paths
along with a unique id and the length of the path; DataPath stores all parent-child
relationships by storing pairs of node ids in each tuple; Element stores each element in
the document by identifying it with a unique identifier and ordinal, and references the
LabelPath table to indicate what its path was, and, similarly Data stores values in the
document along with a unique id and ordinal, and references the LabelPath table to
identify its path.

In summary, except for STORED, each of the other schema-oblivious storage schemes

CHAPTER 2. RELATED WORK 23

provide generic techniques to store XML in relational systems. That is, both the markup
(elements) as well as values are treated as data and the techniques proposed can, in
general, be adapted to store any labeled graph-structured data. This is an extremely
useful feature for schemaless XML data. STORED, however, infers a schema for the
XML data and can come up with a more space-efficient storage as compared to the other
techniques. But, the main drawback of all these methods is that, they are all heuristic-
based and do not take into account the query workload while constructing the relational

schema.

2.3.2 Storage Methods using XML Schemas

In [65], a DTD is used to map XML into a relational schema. Several simplifying, but lossy
transformations (that is, the transformed DTD may validate a superset of documents as
compared to the original DTD) are used on the regular expressions in the DTD to make
it more amenable to relational storage. Three different inlining techniques — basic, shared,
and hybrid inlining are described. Each technique differs in the way it chooses the elements
to be inlined. While basic inlining creates a separate table for every element in the DTD,
the shared inlining technique ensures that a given element is represented in exactly one
relation. The hybrid inlining technique, which is similar to shared inlining, additionally
inlines elements which are shared, but not repeating or recursive.

Methods to store and retrieve ordered XML are studied in [68]. Three order-encoding
methods — Global order, Local order and Dewey order — are described and evaluated.
Both the schemaless and schema-aware cases are considered.

In [12], the authors propose an algorithm which preserves the key and keyref con-
straints specified in an XML schema when XML data is stored in relations. In order
to check the key and keyref constraints, it is enough to check the key and foreign key
constraints specified in the relational schema derived by their algorithm.

In [16], the work in [12] is extended. Methods to refine the relational schema given a
set of keys in the schema are proposed. Given a universal relation corresponding to the

XML schema and a set of keys, the authors propose methods to determine the minimum

CHAPTER 2. RELATED WORK 24

number of functional dependencies that must hold in the relational schema (that is, the
minimum cover of all functional dependencies). This helps in appropriately decomposing
the universal relation such that the XML keys are correctly propagated.

Redundancy reducing XML storage is considered in [11]. The techniques outlined
make use of semantic constraints specified in the XML schema. For example, if there are
value based keys for a particular element, there is no need to generate id values for that
element.

The theory of regular tree grammars is used in [42] to convert XML schemas to re-
lational schemas. A normal form of representation for XML schemas which eliminates
the use of the union (|) operator is defined. Using this normal form as the basis, the
authors outline a language independent representation of several features of XML schema
including basic data types and IDREFs. Several simplifying regular expressions are uti-
lized when the XML schema constraints (such as order of elements in (A,B,A)*) cannot
be captured in the relational domain.

In [38], the authors propose a method to convert XML DTDs to relational schemas
where semantic constraints implicit in the DTD are translated to the relational schema
via inclusion dependencies. For example, if papers are nested elements under a conference
in the DTD, then each tuple in the table for papers should reference a tuple in the table
for conference and this should be a foreign key relation. The authors propose a constraint
preserving mapping algorithm to map such constraints.

A generic mapping tool called ShreX is proposed in [21, 22]. ShreX can incorporate
many different mapping schemes proposed in the literature, including Edge [25], order-
preserving [68], and many from [8]. The input to ShreX is an annotated XML Schema that
contains details about how the mapping to the relational backend should take place, and
the XML document which is to be shredded. ShreX checks the validity of the mappings
and automatically shreds the document to store it in the appropriate relations. It also
provides APIs to query information about the mappings, and this information can then
be used for query translation.

In [3, 4], “information-preserving” mappings are defined. That is, mappings which

CHAPTER 2. RELATED WORK 25

allow: (i) every XML query over the document to be mapped to a query over the database
and, (ii) only valid updates (updates resulting in valid documents). The paper shows
that existing techniques do not always preserve information and proposes an algorithm
to derive relational configurations which are information-preserving.

In [69], the performance of various techniques of storing XML, including three tech-
niques of storing XML in RDBMSs are compared. The strategies evaluated are the
heuristic approach from [65] and the edge as well as the attribute approach from [25].
The authors report that [65] resulted in a much more compact data representation than
either the edge or the attribute approach. Moreover, given a path expression, a large
number of joins were required in the SQL query when the edge approach was chosen,
making this approach sensitive to the complexity of the path expression. But, breaking
up the edge table in the attribute approach contributed to a considerable reduction in the
number of joins and was therefore more efficient.

In summary, as with the schema-oblivious techniques described in the previous section,
the schema-aware techniques reviewed above are all heuristic, and do not consider a space
of several possible relational mappings to choose the optimal one. However, many of
them address specific XML issues such as constraint-aware mappings [16], order-preserving
mappings [68], information-preserving mappings [4], etc. Not all these issues can be easily
addressed in a cost-based context and need to be studied further.

The problem of converting XML schemas into relations has been formally studied in
[37]. The authors specifically concentrate on the inter-relationships in the XML to re-
lational schema translation algorithm (decomposition), the XQuery to SQL translation
algorithm (query translation), and the optimality of the generated relational schema with
respect to a few simple cost metrics. They show that the choice of metric along with the
translation algorithms has a big impact on the quality of the final relational configuration
and that practical XML-to-relational conversion algorithms should not consider the de-
composition problem in isolation. FleXMap currently provides a simple query translation
algorithm. However, because of its modular design, any other translation algorithm can

be easily plugged into the system.

CHAPTER 2. RELATED WORK 26

2.3.3 Cost-based Solutions

LegoDB [6, 7, 8] was the first cost-based solution described for the problem of storing
XML in relations. FleXMap is built on top of the LegoDB framework with several im-
portant extensions: (i) FleXMap defines a formal framework for schema transformations
(this is described separately in Chapter 3), (ii) Some of the subtleties in performing these
transformations are highlighted, and consequently, different greedy algorithms are formu-
lated to search the huge space of relational configurations, (iii) The implications of schema
transformations on statistics propagation are studied and, (iv) A comprehensive exper-
imental evaluation with different kinds of query workloads shows that the search space
is often considerably reduced by a judicious choice of the greedy algorithm. In addition,
several optimizations to reduce the run-time of the search process are proposed.

In [82], a hill-climbing algorithm to select a good relational configuration is proposed.
Four different transformations are outlined — V-cut, V-merge, H-cut and H-merge — to
be applied on an initial XML schema. The four transformations defined are a subset
of transformations proposed for LegoDB and FleXMap. The main differences in their
approach and ours are: (i) they use the hill-climbing algorithm while we use the greedy
algorithm and, (ii) they estimate costs based on selectivity estimates for simple path
expressions while we use a relational optimizer.

In [13], the authors make use of several transformations from FleXMap, but explore the
impact of physical design on the storage efficiency. The utility of searching the combined
logical and physical search space in a greedy manner is shown. The physical search space
includes physical design structures such as indexes, materialized views, etc.

The ELIXIR system [52] builds on top of FleXMap to support constraints, views and
triggers. ELIXIR makes use of the cost-based methodology of FleXMap, but is augmented
with appropriate mapping alternatives to support the various constraints defined in the
XML Schema. The goal of the work is to provide an industrial-strength cost-based system
to map XML data into relations.

CHAPTER 2. RELATED WORK 27

2.3.4 Commercial Solutions

We review three standard commercial systems which provide support for XML storage and
query processing: IBM DB2’s XML Extender [17], Oracle’s XMLDB [49] and Microsoft’s
SQLXML [43].

DB2 [17] provides two options for storing XML. The first option is to store XML in
a single column as a CLOB, Varchar or XMLFile (which basically stores the data in a
separate file). The second option is to specify a mapping from an XML DTD to relational
tables/columns using the Data Access Definition (DAD) language provided by DB2.

Oracle’s XMLDB [49] provides unstructured and structured storage for XML. The
unstructured storage is made possible through a special type called XMLType to store
XML documents as CLOBs in a single column. Structured storage is done when an XML
Schema is provided. XMLDB can automatically map the types in the XML Schema into
relations and columns with the appropriate base type when applicable. In addition, users
can control this mapping by annotating the XML Schema.

Microsoft’s SQLXML [43] also provides for annotations in the XML Schema through
XSD (XML Schema Definition). If no annotations are provided, then a default mapping
is automatically used. In addition, XML can also be stored using the generic edge tech-
nique, or by compiling it into an internal DOM representation and then providing XPath
expressions to map values into tuples.

All three database systems provide control over the mapping of XML to relational
through the mechanism of schema annotations. FleXMap can be easily adapted to au-
tomatically generate such annotated XML Schemas after identifying the most efficient
mapping.

In summary, there are various techniques to store XML in relational databases. They
differ in several aspects, notably, (i) whether they use a schema to help in the mapping, (ii)
whether they are manual or automatic and (iii) whether they are heuristic or cost-based.
Research prototypes such as ShreX, as well as commercial solutions discussed above pro-
vide flexibility to the user by allowing him/her to specify the XML to relational mapping
by annotating the XML schema. The schema transformations proposed in LegoDB and

CHAPTER 2. RELATED WORK 28

FleXMap have also been used by other systems to extend the scope of cost-based search

to include physical storage with views and indexes [13] as well as constraint preservation

(ELIXIR [52]).

Chapter 3

Schema Transformations

3.1 Introduction

In this chapter we abstract out the essentials required for the understanding of the rest of
this thesis. While all the work reported in this thesis make use of XML Schema, not all
the features of XML Schema are supported or utilized. However, the primary requirement
of our work is the ability of XML Schema to decouple type names from element names —
a distinction not present in DTDs.

As mentioned in the Introduction, our solutions are based on the existence of an XML
Schema. In addition to describing the types of documents that will be encountered, the
XML Schema also allows us to perform some amount of optimization to the solutions,
without having to process the data. Each of the solutions proposed in this thesis are thus
made dependent on the size and complexity of the schema, rather than the data, which
can be orders of magnitude larger.

We introduce some notation used in the thesis and then define and give examples
of schema transformations, the basic building blocks for the solutions we propose. The
implications of performing these schema transformations on validation are then discussed.

Finally, we describe the implementation of the transformations.

29

CHAPTER 3. SCHEMA TRANSFORMATIONS 30

<complex type> ::=
<simple type>
|| <complex type> , <complex type>
|| <complex type> | <complex type>
|| <complex type> *
|| <complex type> 7
| | <tagname> [<complex type>]
<simple type> ::=
string
|| integer

Figure 3.1: Using Type Constructors to Represent XML Schema Types
3.2 Basic Framework

XML Schemas are extended context free grammars. Two features of XML Schema that
are of interest to us are the following: (i) It provides a type system which includes basic
types such as integers, and (ii) It decouples the type names from the tag names.

An XML Schema can be regarded as a complex type represented using the type con-
structors for: sequence (“)7), repetition (“x7), option (“77), union (“|”), <tagname>
(corresponding to a tag) and <simple type> corresponding to base types (e.g., integer,
string, etc.). Figure 3.1 gives a simplified grammar for the construction of types.

We make use of the following compact text notation to describe the different type

constructors.

Tag Constructor: E(label,t,n), where label is name of the tag, ¢ is the complex type
which occurs as part of the constructor, and n is the type name. Note that the type

name in any of the constructors can be null.

Sequence, Union, Option and Repetition Constructors: Each of these construc-
tors are defined respectively as: C(tq,t2,n), Ul(ty,ta,n), O(t,n), and R(t,a,b,n),
respectively, where t1,t, and t are complex types and n is the type name. For the
repetition constructor, a and b denote the minimum and maximum occurrences of

the type.

CHAPTER 3. SCHEMA TRANSFORMATIONS 31

Simple Type Constructor: Simple types are represented as S(base,n) where base is

the type of the simple type (e.g., integer) and n is its name.

As a simple example, consider the following fragment of XML Schema (expressed in the

XQuery type syntax notation) of the IMDB (Internet Movie Database) [32] website.

define element IMDB { type Show* }
define type Show { element Show { type Title, type Year } }
define type Title { element TITLE { xsd:string } }

define type Year { element YEAR { xsd:integer } }

In the compact notation, the above fragment can be represented as:

E(IMDB, t1, null)

t1 := R(ta, 0, unlimited, null)

ty := F(SHOW, t3, Show)

ts := C'(E(TITLE, S(string, null), Title),
E(YEAR, S(integer,null), Year),
null)

3.3 Schema Transformations

We make use of two types of schema transformations: (i) manipulation of type names
— this is possible since XML Schema decouples the type name from the tag name and,
(ii) using equivalent regular expressions — that is, replacing a regular expression M with
another expression N such that L(M) = L(N), where L(M) and L(N) denote the languages
accepted by the automata of M and N, respectively. An important property satisfied
by the schema transformations that we define here is that they do not alter the set of
documents validated by the original schema (this is discussed in more detail in Section
3.5). We now define and give examples of the schema transformations. Several of these

transformations were first outlined in [8].

CHAPTER 3. SCHEMA TRANSFORMATIONS 32

3.3.1 Inline and Outline

The inline operation corresponds to removing the name of a type (most commonly, ele-
ments) in the schema. Conversely, the outline operation provides a name to a type (again,
most commonly, elements) in the schema. More formally, the inline and outline operations
can be represented as follows:

E(label,t,n) — Inline — E(label,t,null)

E(label, t,null) — Outline — E(label,t,n)

Examples of the inline and outline operations are shown below. Consider the following

fragment of schema:

define type Show {element SHOW

{element TITLE {xsd:string }, element YEAR {xsd:integer }}}

The tag structure of this fragment has a tag SHOW with two children TITLE and YEAR
in that order. It is possible to introduce type names, for both TITLE and YEAR without

changing the tag structure — that is, outline both TITLE and YEAR — as follows:

define type Show { element SHOW { type Title, type Year } }
define type Title { element TITLE { xsd:string } }
define type Year { element YEAR { xsd:integer } }

Starting from the second schema which contains type names for TITLE and YEAR, it is

possible to inline them both to get the original schema.

3.3.2 Type Split and Type Merge

When two different types 77 and T, have a child T" with the same name, T is said to
be shared by T} and T,. The type split operation eliminates the shared type by giving
different names to the shared type. Conversely, type merge identifies types with the same
structure, but different names, and makes them shared by giving them the same name.

Formally, let 77 and T3 be two types. Then, type split is defined as follows:

CHAPTER 3. SCHEMA TRANSFORMATIONS 33

case 11, T of
| E(label,t,a), E(label',t' a) —
IF label = label’ AND t = t', THEN replace T by E(label,t,a;)
| C(t1,t2,a), C(t),th,a) —
IF ¢, = t{ AND to = t, THEN replace T3 by C(t1,t2,a1)
| U(t1,t2,a), U(t),th,a) —
IF t; =t} AND to = t}, THEN replace T by U(t1,t2,a1)
| R(t,m,n,a), R(t',m',n',a) —
IF ¢t = ¢ THEN replace T} by R(t,m,n,a;)
| O(t,a), O(t',a) —
IF t = THEN replace T} by O(t,a1)
| S(b,a), S(b',a) —
IF b =0 THEN replace 71 by S(b,a1)
Note that if any of the above cases violates the IF condition, then there is an error in the

schema which has given the same name to two different type structures. Type merge is

defined as:
case 11, T of
| E(label,t,a), E(label’ ;' a") —
IF label = label’ AND t = t/, THEN replace o’ by a
| C(t1,t2,a), C(t),th,d") —
IF t; =t} AND to = t}, THEN replace a’ by a
| U(t1,t2,a), U(t),th,a') —
IF ¢, = t{ AND ty = ¢}, THEN replace a’ by a
| R(t,m,n,a), R(t',m',n'a’") —
IF t =t THEN replace a’ by a
| O(t,a), O(t',d') —
IF ¢ =t THEN replace d’ by a
| S(b,a), S(¥',d') —
IF b =" THEN replace a’ by a

CHAPTER 3. SCHEMA TRANSFORMATIONS 34

The definition of both operations requires that we know how to determine when two types

are equal. We define equality of two types as follows:

Definition 3.1 Syntactic Equality
Two types T1 and Ty are syntactically equal — denoted by T = Ty — if the following holds:
case Ty, Ty of
| E(label,t,a), E(label’,t',a') —
label = label’ AND a = o' AND t =t/
| Cltr,ta,a), Ot thy ') —
a=a AND t; =t| AND t, =t
| U(ty,ta,a), U(t, th,d) —
a=a ANDt; =2t} AND ty =t
| R(t,m,n,a), R(t',m',n'd") —
a=a ANDt =t
| O(t,a), O(t',a’) —
a=a ANDt =t
| S(b,a), S(V',a') —
a=a ANDb =1V

As an example, consider the following fragment of the IMDB schema:

define element IMDB { type Actor®, type Director* } }
define type Actor { element ACTOR { type Name, type Biography } }
define type Director { element DIRECTOR { type Name, type Directed® } }

define type Name { element NAME { xsd:string } }

The type Name is shared by both Actor and Director. The type split operation separates

the two occurrences by renaming the type Name as follows:

CHAPTER 3. SCHEMA TRANSFORMATIONS 35

define element IMDB { type Actor®, type Director* } }
define type Actor { element ACTOR { type Name, type Biography } }
define type Director { element DIRECTOR { type DirectorName, type Directed® } }

define type Name { element NAME { xsd:string } }

define type DirectorName { element NAME { xsd:string } }

The converse operation of type merge would start from the second schema and rec-
ognize that the type structure of Name and DirectorName are syntactically equal and give

them a common name to get back the original schema.

3.3.3 Union Distribution and Union Factorization

Union distribution and union factorization change the structure of the schema by intro-
ducing new types. For example, consider the following fragment of IMDB which contains

a union of Movie and Tv.

define type Show { element SHOW {

type Title, type Year, type Aka*, type Review*, (type Movie | type Tv) }}

Distributing this union gives us the following fragment in which Movie-related infor-

mation has the potential to be separated from the Tv-related information.

define type Show {
(element SHOW { type Title, type Year, type Aka*, type Review™® Tv}) |
(element SHOW { type Title, type Year, type Aka*, type Review™, Movie})

Performing two outlines and four type splits on all the shared types ensures that the

distribution of the union completely separates the Movie and Tv information. That is,

define type Showl { element SHOW {
type Titlel, type Yearl, type Akal* type Reviewl* Tv) }}
define type Show2 { element SHOW {

type Title2, type Year2, type Aka2*, type Review2*, Movie }}

CHAPTER 3. SCHEMA TRANSFORMATIONS 36

The converse operation of union factorization is analogous to union distribution. Union
factorization may involve a type merge — analogous to the type split operation in the union
distribution. That is, Titlel and Title2, Yearl and Year2, Akal and Aka2, Reviewl and Review2
would all have to be first type merged before Showl and Show2 can be factorized into Show.

The formal definition of union distribution and factorization is given below:

E(label, C(t., U(ty, ta, null), null), n)

——

U(E(label, C(t., t1,null),ny), E(label, C(t., ta, null), ns), null)

3.3.4 Repetition Split and Repetition Merge

Repetition split, as the name implies, splits a given repetition into more than one. That
is, it distinguishes the occurrences of a given type — for example, the first occurrence,
second occurrence, etc. In fact, repetition split can be performed an infinite number of
times if the repetition itself is infinite. An example of two consecutive repetition splits

which distinguish the first two occurrences is given below:

define type Actor = element ACTOR {Name, Played+}

define type Actor = element ACTOR {Name, Played, Played*}

define type Actor = element ACTOR {Name, Played, Played?, Played™}

As with union distribution, we do a type split operation on Played to establish the

distinction of one Played from the other.

define type Actor = element ACTOR {Name, Playedl, Played2?, Played3*}

Repetition merge is the converse operation of repetition split — the order of repetition
merges always follows the reverse order of repetition splits — in the example above, Played2
and Played3 would be merged first.

We formally define a repetition split and repetition merge as follows:

CHAPTER 3. SCHEMA TRANSFORMATIONS 37

R(t, 0, unlimited, null)
—
C(R(t,0,1,null), R(t,0, unlimited, null), null)
R(t, 1, unlimited, null)
—

C(R(t,1,1,null), R(t,0, unlimited, null), null)

3.3.5 Repetitions to Unions

This operation enables the straighforward application of union distribution to repetitions.

For example, consider the following definition of the type Show:

define type Show { element SHOW {type Title, type Aka* } }

There could be lots of shows which do not have alternative titles (that is Akas). We

utilize the repetitions to unions operation to explicitly state this:

define type Show { element SHOW {type Title, (¢| type Aka+) } }

We have now converted the repetition into a union and can perform a union distribution
as defined before leading to two types of Shows — those with Akas and those without.

Formally, we define this operation as follows:

R(t, 0, unlimited, null)
—

U(Empty, R(t, 1, unlimited, null), null)

3.4 Recursion

We provide an unroll transformation to unroll the recursion. Note that while the schema
itself may be recursive, the data conforming to that schema is non-recursive and corre-
sponds to a schema in which the recursion has been unrolled a certain number of times.

And so, a mechanism is necessary by which the recursion in the schema is unrolled as

CHAPTER 3. SCHEMA TRANSFORMATIONS 38

and when required (for example, when validating the XML document, if the same type is
revisited in a cycle, then that type can be unrolled on the fly to create a new type). By
default, we unroll each recursion exactly once in any recursive schema.

As an example, consider the following fragment from the XMark Schema:

define type Text { element text

{ (xsd:string | type Bold | type Text | type Keyword | type Emph })* }
define type Bold { element bold

{ (xsd:string | type Bold | type Text | type Keyword | type Emph })* }
define type Emph { element emph

{ (xsd:string | type Bold | type Text | type Keyword | type Emph })* }
define type Keyword { element keyword

{ (xsd:string | type Bold | type Text | type Keyword | type Emph)* } }

Unrolling the above complicated recursion once, will give us the following fragment!:

define type Textl { element text

{ (type Boldl | type Bold2 | type Keywordl |

type Keyword2 | type Emphl | type Emph2 | type Text2)* }}
define type Boldl { element bold

{ (type Keyword2 | type Text2 | type Emph2 | type Bold2)* }}
define type Keywordl { element keyword

{ (type Bold2 | type Text2 | type Emph2 | type Keyword2)* }}
define type Emphl { element emph

{ (type Bold2 | type Text2 | type Keyword2 | type Emph2)* }}
define type Text2 { element text {xsd:string }}
define type Bold2 { element bold {xsd:string }}
define type Keyword2 { element keyword {xsd:string }}
define type Emph2 { element emph {xsd:string }}

!Note that the mixed content — indicating the interleaving of text and markup — of the original
fragment has been factored out.

CHAPTER 3. SCHEMA TRANSFORMATIONS 39

3.5 Validation and Schema Transformations

Validation is a process which takes as input a schema S and a document D and checks
whether D is wvalid with respect to S. That is, (i) whether D is well-formed and, (ii)
whether D obeys the constraints (both structure and value) specified in S.

We first show that applying the transformations defined so far does not change the set
of documents validated. Formally, let D be the set of documents validated by a schema
S. Let T be the transformation applied on S to get a new schema 7'(S). The set of
documents validated by T'(S) is exactly D.

As mentioned in Section 3.3, we define two types of schema transformations: (i)
manipulation of type names and, (ii) using equivalent regular expressions. Clearly, (i)
satisfies our property since no change is being made to the tag structure of the XML
Schema. We can prove that (ii) also satisfies this property by proving that the equivalent
regular expressions used are indeed equivalent to each other. We list each of the structure-

changing transformations below:

Union Distribution and Factorization: We prove the property that performing a
union distribution does not change the set of validated documents. That is,
L(M|N)= LM|LN.

Proof:

Let w € L(M|N). Then, w can be written as wyws where w; € L and wy € M|N.
If wy € M, then wywy € LM and hence to LM|LN. Similarly if we € N, then
wywg € LN and hence to LM|LN.

Conversely, let w € LM|LN. If w € LM, then w can be written as w;w, where
wy € L and wy € M. Therefore, wy € M|N and hence wyjwy, € L(M|N). Similarly,
if w € LN, then then w can be written as wyws where w; € L and wy € N.

Therefore, wy € M|N and hence wyws € L(M|N). O
Repetition Split and Merge: X* = X?Xx, XT = X X*. Proof is immediate.

Repetitions to Unions: X* = ¢|X+. Proof is immediate.

CHAPTER 3. SCHEMA TRANSFORMATIONS 40

An important property of the XML Schema (which is a part of its specifications) is
that it should be 7-unambiguous. That is, it should be possible to assign a type to a token
without having to do a look-ahead. This property results in a linear validation algorithm
proportional to the size of the data.

In case of most of the schema transformations, validation is straightforward. That is,
these transformations result in schemas which are 1-unambiguous. However, there are two
transformations, which violate the 1-unambiguity condition: Repetition Split and Union
Distribution.

In the case of repetition split, only the case of X* = X?7X* is ambiguous since it is not
clear whether a given x should be validated to X7 or X*. And so, we use the convention
of “longest match” to resolve the ambiguity.

In the case of Union Distribution, clearly, there is no ambiguity in the type assign-
ments. But, since union distribution violates the 1-unambiguity property, the validation
is no longer linear. For example, when the type Show is distributed in the schema, the type
assignment for the tag SHOW in the document cannot be immediately determined. The
validator has to look ahead until it finds the token TV or MOVIE to determine whether to
assign the type Showl or Show?2 to the tag SHOW. Hence, standard XML validators such as
Xerces [76], will be unable to validate any of these schemas. But there are other methods
which can be used to validate against such schemas [45]. In our work, we make use of the
standard validators, whenever possible, for the task of statistics collection. We have built

our own statistics collection module for non-standard XML Schemas that we generate.

3.6 Implementation of Transforms

In order to implement the transforms, we visualize the XML Schema as a tree of con-
structors — that is, a schema tree.

To illustrate the representation of a schema tree, consider the partial XML Schema
in Figure 3.2. Here, Title, Year, Aka and Review are simple types. The schema tree for an
excerpt of this schema is shown in Figure 3.3 (note that base types are not shown). Nodes

in the tree are annotated with the names of the types present in the original schema —

CHAPTER 3. SCHEMA TRANSFORMATIONS 41

define element IMDB {
type Show*, type Director*®, type Actor® }
define type Show {
element SHOW { type Title, type Year, type Aka*, type Review*,
(type Movie | type Tv) }}
define type Director { element DIRECTOR {
type Name, type Directed*}}
define type Directed {
element DIRECTED {type Title, type Year, type Info }}

Figure 3.2: The (partial) IMDB Schema

these annotations are shown in sans serif next to the tags (shown in typewriter font) in
Figure 3.3. Some points are worthy of note. First, there need not be any correspon-
dence between tag names and annotations (type names). Second, the schema graph is
represented as a tree, where shared types are repeated at nodes where they occur, but the
annotation remains the same (see e.g., the nodes TITLE; and TITLE; in Figure 3.3 — they
both correspond to the same type, since their annotation is the same). Finally, recursive
types can be handled similarly to shared types, i.e., the base occurrence and the recursive
occurrence are differentiated, but both correspond to the same type if their annotations
are the same.

Any subtree in the schema tree can be regarded as a type and the node corresponding
to that subtree can be annotated without changing the structure of the tree. We refer to
this annotation as the name of the node and use it synonymously with annotation.

Transformations which manipulate type names, such as, inline, outline and type
split /merge, can be performed on the schema tree simply by adding, deleting or renaming
the type name of a single node or set of nodes.

We perform structure changing transformations through the process of tree pattern
matching and replacement. For example, in order to perform a union distribution, we
need to first find the patterns shown in Figures 3.4(a) and (c) in the original schema.
Next, we need to transform these patterns into those shown in Figures 3.4(b) and (d),

respectively. Similarly, Figure 3.5(a) shows the pattern to be searched for in order to

CHAPTER 3. SCHEMA TRANSFORMATIONS

| MDB

\
*/ *
\ \

(Show) SHOWN DI RECTOR (Director)
| |
/’ \ / ’ —
(Title) TI TLE, , NAVE (Name)

DI RECTED (Directed)

(Year) YEAR; ‘

| (Title) | \,
S\ a7

(Aka) AKA REVI EW (Year) YEAR, | NFO(Info)
(Review)

Figure 3.3: (Partial) Schema Tree for the IMDB Schema

AL\
EANPANAN

(a) (b)

<elem>

|
. T

| <elem> <elem>
Y/\Z ! !

(¢) (d)

Figure 3.4: Patterns for Union Distribution and their Transformation

CHAPTER 3. SCHEMA TRANSFORMATIONS 43

A A A

(@) (b)

Figure 3.5: Pattern for Repetition Split and its Transformation

locate a repetition split and the pattern which should replace it.

3.7 Conclusions

In summary, this chapter introduced notations and transformations used in this thesis.
The impact of the transformations on validation was discussed. While all transformations
defined here do not change set of documents validated by the resulting schema, the vali-
dation algorithm would need to change based on whether the transformation violates the
1l-unambiguity condition. The implementation of the transforms can be done by regard-
ing the schema as a tree of constructors. The transforms are performed by either tree
pattern matching and replacement for structure changing transforms or by manipulating

the annotations of the tree nodes.

Chapter 4

Statistics Collection and Query

Result Size Estimation

4.1 Introduction

In this chapter we describe StatiX — a framework for statistics collection and cardinality

estimation. Its design is based on the following:

XML Schema-based statistics collection: Using the XML Schema as the basis for
statistics collection enables StatiX to produce concise and accurate summaries of
XML data. Moreover, the use of XML Schemas is becoming commonplace in a large

number of XML applications.

Histogram summaries: A large variety of mechanisms are available for representing
statistical summaries (for example, path trees [1], graph summaries [54], etc.). We
have specifically selected histograms for this purpose — the use of histograms enables
StatiX to maintain scalable and symmetric summaries of both the structures of the

types as well as the values in the data.

Basing statistics on XML Schema types facilitates the re-use of standard XML technol-
ogy, namely, validating parsers, for statistics gathering. Another advantage of type-based

statistics is that the granularity of statistics can be tuned. That is, since StatiX collects

44

CHAPTER 4. STATISTICS COLLECTION AND QUERY RESULT SIZE ESTIMATION 45

statistics for each named type in the schema, more detailed or less detailed statistics can
be gathered through schema transformations. The schema transformations defined in
Chapter 3 allow the addition of type names (through transformations such as outline,
repetition split, union distribution, etc.) as well as deletion of type names (inline, repeti-
tion merge, union factorization, etc.). Thus, granularity of the statistics can be changed
appropriately depending on the memory budget. An important consequence of schema-
based statistics collection is that the mazimum size of the summary depends on the size
of the schema, not on the size of the data and this can be determined beforehand — that is,
even before gathering the statistics. Also, using schema information on the occurrences
of elements can help in considerably reducing the size of the final summary.

Using histograms to store structural summaries elegantly captures the data skew preva-
lent in XML documents. Histograms are attractive because they are simple to implement,
have been well-studied, and proven to be effective for selectivity estimation [57, 58].
Moreover, because histograms are already widely used in relational database engines,
our framework can be easily integrated with these systems.

StatiX can currently handle a significant subset of XQuery — namely, branching path
expressions with value predicates. A detailed evaluation over different datasets and query
sets shows that StatiX can provide extremely accurate summaries at very reasonable

memory budgets.

Organization. The rest of this chapter is organized as follows. In Section 4.2 we de-
scribe the components of StatiX summaries and then, in Section 4.3, we outline the
algorithm for cardinality estimation. In Section 4.4 we identify some limitations of using
histograms and propose the use of schema transformations to improve the accuracy of
StatiX summaries. In Section 4.5 we describe how to construct StatiX summaries. The
experimental setup and performance evaluation are described in Sections 4.6 and Section

4.7, respectively. Finally, we conclude in Section 4.8.

CHAPTER 4. STATISTICS COLLECTION AND QUERY RESULT SIZE ESTIMATION 46

4.2 Description of StatiX Summaries

StatiX collects statistics based on the schema given by the user. It distinguishes types
which are named and those which are not. That is, statistics are collected only for types
which are outlined in the schema (Chapter 3). However, a restriction imposed by StatiX
is that only types with the tag constructor can be outlined. Each outlined type has two

types of histograms associated with it:

Structural Histogram: Given a type 1" and it’s parent T, a structural histogram H(7T')
captures the distribution of the elements of type 7" with respect to its parent 7),.

We also refer to the structural histogram as the parent histogram of type T'.

Value Histogram: If T is a simple type, then, in addition to a structural histogram, a
value histogram is also constructed. The value histogram captures the distribution
of values of type T'. Currently, equi-depth integer value histograms are constructed

in StatiX.

In addition to the basic two types of histograms above, other statistics, such as the
number of distinct values, number of null values, etc. are gathered. An example of an
XML schema and a possible StatiX summary corresponding to this schema is shown in
Figure 4.1. The schema describes a database which contains information about shows.
A show can be either a movie or a TV show; has a title and year of release; and may
contain zero or more reviews, and zero or more alternative titles (i.e., AKA). The summary
contains statistical information about all types defined in the schema. For each complex
type, it records the type cardinality, i.e., the number of occurrences of that type in the
document; its id (or key) range (which can be regarded as a trivial, single bucket key
histogram); and its parent histogram. For example, the type Review has cardinality 16;
ids ranging from 1 to 16'; and a parent histogram corresponding to Show, which indicates
that there are 8 instances of REVIEW under SHOWs with ids from 1 to 3 and 8 instances

under SHOWs with ids from 4 to 5. Simple types, that correspond to elements with atomic

'In StatiX summaries, intervals are left-closed and right-open.

CHAPTER 4. STATISTICS COLLECTION AND QUERY RESULT SIZE ESTIMATION 47

content, are associated with value histograms. For example, the type Year has a value

histogram indicating that there are 3 occurrences of Year with values between 1990 and

1993, and 2 occurrences with values between 1994 and 2000.

define element IMDB {
type Show* }

define type Show {
element SHOW {
element TITLE {xsd:string },
type Year,
element AKA { xsd:string }*,
(element MOVIE {
element BOXOFFICE{xsd:integer } } |

type Tv),
type Review® } }

define type Tv {
element TV {
element SEASONS{xsd:string } } }

define type Review {
element REVIEW {
element RATING{xsd:integer }
element COMMENT{xsd:string } } }

(a)

define stat Show {
cardinality {5 }
id_domain {1to 6} }

define stat Review {
cardinality { 16 }
id_domain {1 to 17 }
parent histogram Show {
bucket number { 2 }
buckets {
from 1 to 4 count 8,
from 4 to 6 count 8} }}

define stat Tv {
cardinality {2 }
id_domain {1 to 6}
parent histogram Show {
bucket number {1 }
buckets {
from 1to 6 count 2} }}

define stat Year {
value_domain { 1990 to 2001 }
number distinct {5}
bucket number { 2 }
buckets {
from 1990 to 1994 count 3,
from 1994 to 2001 count 2} }

(b)

Figure 4.1: IMDB schema and the corresponding StatiX summary

CHAPTER 4. STATISTICS COLLECTION AND QUERY RESULT SIZE ESTIMATION 48

4.3 Estimating Query Result Cardinality in StatiX

StatiX estimates the result cardinality of XML queries using histogram multiplication.
Since path queries are expressed in terms of element (tag) names, and StatiX collects
statistics for types, the tags in the query are first mapped to the corresponding types;
and then the structural and value histograms corresponding to the tags in the path are
multiplied. If a structural histogram is not available for a given tag, a uniform-distribution

is assumed for that tag.

Input: ¢, H

¢ is the path expression identifying the location

H is the set of histograms (value and structure) for all types corresponding to the elements
in ¢

1: let ¢ = /t1[b1]/t2[b2]/t3[b3]//tn[bn]
{t; is the tag (correspondingly, its type is T;)}
for all7 €1 ton do
B; = result distribution of b;
J; = B; x keyHist(T;)
keyHist(T;) = key distribution of T; based on J;
parentHist(T;) = compute distribution based on keyHist(T;)
end for
forallie1ton—1do
J; = keyHist(T;) x parentHist(T;, 1)
keyHist(T;,1) = distribute freq(J;) into keyHist(T;11)
. end for
{Cardinality of the update}
. card = frequency (J,)

—_ =
— O

—_
[N)

Algorithm 1: Cardinality Estimation in StatiX

Algorithm 1 describes the cardinality estimation of branching path expressions,
given a StatiX summary. The general format of such a branching path expression is
Jt1[b1]/ta[ba]/.../ta[by], where t; is the tag and b; is a path expression which may contain
value and structural predicates. In the sequel, we use T; to denote the type corresponding
to the tag t;. The cardinality estimation procedure operates in two stages: (i) compute
the key distribution and parent-key distribution for each of the ¢;s in the presence of pred-

icates individually (lines 2 through 7); (ii) use these individual distributions to compute

CHAPTER 4. STATISTICS COLLECTION AND QUERY RESULT SIZE ESTIMATION 49

the overall key distribution of the complete query (lines 8 through 11).

There are three basic operations — histogram multiplication (lines 4 and 9), finding
the key distribution (line 5), and finding the parent key distribution (line 6). Histogram
multiplication is a well-known operation to find the join estimate given two histograms

[29]. Below, we describe the other two operations in more detail.

Key distribution. Note that when two histograms are multiplied, one of the histograms
is the key histogram having values which occur exactly once. However, the join distribu-
tion gives the total number of tuples in the result — that is, the values in the key histogram
may occur multiple times in the result. From this join histogram, we need to determine
which distribution of keys occurs in the join (line 5). The fact that keys are unique can be
used to compute this distribution as follows: (i) initially, construct the key distribution
K by dividing the key histogram into the same number of buckets as the join histogram
and in which the frequency of each bucket is the same as its range, (ii) for corresponding
buckets j; in the join histogram and k; in the key distribution histogram, if frequency of
7: 1s less than the frequency of k;, change the frequency of k; to that of j;. The resulting
histogram is the statistically determined distribution of keys in the join. This histogram

is used to compute the parent key distribution described next.

Parent key distribution. An important observation in the case of structural his-
tograms is that the node ids (keys) and parent ids have a strong correspondence with
each other — that is, if nodeid; > nodeids, then parentid(nodeid,) >= parentid(nodeids).
The parent histogram is a summarization of this correspondence, as illustrated in Fig-
ure 4.2. Using this observation, we can compute the parent key distribution as shown by
the example next.

Consider the case where the parent histogram of Review (with respect to Show) is [1-4:
8; 4-6: 8]. The multi-bucket key histogram of Review would then be [1-9: 8;
9-17: 8]. Conversely, suppose Review has now been “filtered” through a value predicate
(say, Reviews with Rating > 6) leading to the following key histogram for Review: [1-9:

5; 9-17: 3]. The corresponding distribution in the parent histogram of Review is now:

CHAPTER 4. STATISTICS COLLECTION AND QUERY RESULT SIZE ESTIMATION 50

Cardy car = 0<1992 (Year) 1.5
Keyshow = distribute Cardyqq, into id range of Show | [1-6: 1.5)
Cardpgeview = freq (parent Hist(Review) X Keyshow) ~ b

Table 4.1: Cardinality Computation in StatiX

[1-4: 5; 4-6: 3]. This is because, from the key histogram, we know that 5 of the
first 8 Reviews are “relevant”. We know from the parent histogram that the first 8 Reviews
occur under the first 3 Shows. Hence, clearly, the 5 relevant Reviews of the first 8 Reviews,
now occur under the same Shows. Similarly, we know from the key histogram that 3 of the
last 8 Reviews are relevant and from the parent histogram, we know that these 3 Reviews
occur under Shows 4-5. Hence, the second bucket of the parent histogram now gets a count
of 3. This computation is a direct consequence of the observation made in the previous
paragraph. This new parent histogram is then used to compute the cardinality and join
distribution of the result (lines 8 to 12).

Consider the cardinality estimation of the following query asking for all Reviews of
Shows made before 1992, on data corresponding to the schema in Figure 4.1:

Query 1: //SHOW[YEAR < "1992"]/REVIEW

Here, the mapping of element names to type names is straightforward, and in order to
compute the query cardinality, we perform the computations outlined in Table 4.1. The
result distribution of the branch YEAR < <1992’ is first calculated (line 3 in Algorithm
1). Then, in the next step, this distribution is distributed into the key histogram of the
parent Show (line 5 in Algorithm 1). Next, moving to the main branch, the parent
histogram of Review is multiplied with the newly computed key histogram of Show (step
9 in Algorithm 1). The frequency of this join histogram is the cardinality of the query
(step 12 in Algorithm 1). Hence, we conclude that the cardinality of the query (that is,
the number of Reviews) is approximately 5. Note that all the steps from the algorithm not

shown in Table 4.1 have no bearing on the final result and hence are not shown explicitly.

CHAPTER 4. STATISTICS COLLECTION AND QUERY RESULT SIZE ESTIMATION 51

Movie ids Aka ids
J

4 [4 o

3 L4 ! 3 o :

S 2| e ;
N G | A |

AR B ¥ R 1

| 1 2 3 4 5 | Show ids | 1 2 3 4 5 | Show ids
Parent histogram Parent histogram
{[1-3: 2], [3-6: 2]} {[1-2: 2], [2-6: 2]}

Figure 4.2: Node and Parent ids have a Correspondence
4.4 Tuning the Accuracy of StatiX Summaries

The accuracy of StatiX summaries can be tuned by: (i) increasing/decreasing the number
of buckets in the histograms; and/or by (ii) adjusting the granularity of the statistics

collection.

4.4.1 Potential Limitations of Structural Histograms

Histograms are well-known to be concise and effective in capturing skew in the underlying
data [57, 58]. The addition of more buckets to the histogram results in a more accurate
reflection of the underlying data distribution. In StatiX, histograms are used for two dif-
ferent purposes — to capture the: (i) value skew (value histograms) and, (ii) the structural
skew (structural or parent histograms).

The domain of any structural or parent histogram is potentially very large. Larger
the number of occurrences of a particular type, larger its id domain. For example, the
number of occurrences of a type like Show may be in the thousands — if there are 10,000
Shows in the database, then there are 10,000 distinct ids. This would affect the parent
histogram of its children, say, Tv and Movie. Suppose approximately 20% of the Shows are
Tv shows and the other 80% are Movie shows. Then, clearly, the way in which these Tv

and Movie shows are interleaved in the data affects the parent histograms of both types.

CHAPTER 4. STATISTICS COLLECTION AND QUERY RESULT SIZE ESTIMATION 52

For example, suppose Tv and Movie shows span almost the entire range of Shows. Then,
the parent histograms of both types contain the same range of 10,000, and may not be
able to capture the parent-child distribution accurately. On the other extreme, if all Tv
shows occured before all Movie shows in the data, then the parent histogram of Tv would
have a range of 1 to 2000 and that of Movie, from 2001 to 10,000. Now, neither parent
histogram has any holes and very accurately reflects the distribution. In fact, a single
bucket in each parent histogram, is enough to capture the distribution.

In effect, for a given number of histogram buckets, n, the histogram could potentially
be less effective in capturing the skew, as the domain of values grows larger and the
occurrence pattern of the type leaves too many gaps in the id range. In order to overcome
this limitation, we propose the use of schema transformations to improve the summary

accuracy in the following section.

4.4.2 Transformations for Finer Granularity Statistics

Since StatiX gathers statistics based on the types in the schema, there are several trans-
formations which can be applied to the schema to increase or decrease the number of
types and consequently finer or coarser-grained statistics can be collected. Although the
types defined in an XML Schema do not appear in the document, they are used during
validation as annotations to document nodes. These transformations can be used to im-
prove the accuracy of the summary, since they reduce the problem of interleaved elements
described in the previous section.

For example, consider the schemas shown in Figures 4.3 through 4.5. All three schemas
are equivalent to one another. That is, they validate exactly the same set of documents.

The schemas were derived as follows:

Schema 1: The original schema.

Schema 2: On Schema 1, perform a union distribution of Tv and Movie. Then, perform
a type split. In Schema 2, Tv shows and Movie shows are separated. This, in effect,

ensures that Shows with Tv have a different ¢d range from Shows with Movie. Hence,

CHAPTER 4. STATISTICS COLLECTION AND QUERY RESULT SIZE ESTIMATION 53

define element IMDB { type Show*}
define type Show { element SHOW
{ type Title, type Aka*, type Tv | type Movie} }

define
define
define
define

type
type
type
type

Title { element TITLE { xsd:string } }
Aka { element AKA { xsd:string } }

Tv { element TV { xsd:string } }

Movie { element MOVIE { xsd:string } }

Figure 4.3: Schema 1

define
define
define
define
define
define
define
define
define

element IMDB { (type Showl | type Show2)* }

type
type
type
type
type
type
type
type

Showl { element SHOW { type Titlel, type Akal* type Tv} }
Show2 { element SHOW { type Title2, type Aka2* type Movie} }
Titlel { element TITLE { xsd:string } }

Akal { element AKA { xsd:string } }

Title2 { element TITLE { xsd:string } }

Aka2 { element AKA { xsd:string } }

Tv { element TV { xsd:string } }

Movie { element MOVIE { xsd:string } }

Figure 4.4: Schema 2

even if Tv and Movie shows are interleaved in the data, the type assignment ensures

an artificial segregation, making the parent histograms of both Tv and Movie more

accurate.

Schema 3: On Schema 2, convert the two repetitions of Aka — Akal* and Aka2* into

unions. That is, Akal* = () | Akal+. Subsequently, perform a union distribution to

get 4 different Shows — (i) Showll — Tv shows without Akas, (ii) Show12 — Tv shows

with Akas, (iii) Show21 — Movie shows without Akas and (iv) Show22 — Movie shows

with Akas. In this schema, in addition to the segregation of Tv and Movie shows,

Shows with Akas and those without are also segregated, thus reducing the impact of

interleaved Tv and Movie Shows with and without Akas.

A slightly modified tree representation of each of these schemas is shown in Figure

4.6. The tree representation only shows the nesting and repetition of types, but not the

CHAPTER 4. STATISTICS COLLECTION AND QUERY RESULT SIZE ESTIMATION

o4

define
define
define
define
define
define
define
define
define
define
define
define
define
define
define

element IMDB { (type Showll | type Showl2 | type Show2l | type Show22)* }

type Showll { element SHOW { type Titlell, type Tvl} }

type Showl2 { element SHOW { type Titlel2, type Akal+, type Tv2} }

type Show2l { element SHOW { type Title21, type Moviel} }

type Show22 { element SHOW { type Title22, type Aka2+, type Movie2} }

type Titlell { element TITLE { xsd:string } }
type Titlel2 { element TITLE { xsd:string } }
type Akal { element AKA { xsd:string } }
type Title21 { element TITLE { xsd:string } }
type Title22 { element TITLE { xsd:string } }
type Aka2 { element AKA { xsd:string } }
type Tvl { element TV { xsd:string } }

type Moviel { element MOVIE { xsd:string } }
type Tv2 { element TV { xsd:string } }

type Movie2 { element MOVIE { xsd:string } }

Figure 4.5: Schema 3

IMDB IMDB
. e

Show1l Show?2

e IN /N

Title Aka Tv Movie Titlel Akal Tv Title2 Aka2 Movie
Schema 1 Schema 2
IMDB
* /\\
Show11l Show12 Show21 Show?22

fN NN N

Titlell Tv1l Titlel2 Akal Tv2 Title21 Moviel Title22 Aka2 Movie2

Schema 3

Figure 4.6: Type graphs of the Three Schemas

CHAPTER 4. STATISTICS COLLECTION AND QUERY RESULT SIZE ESTIMATION 55

Q.no. | Query Most Accurate

1 /IMDB/SHOW 1,2,3
2 /IMDB/SHOW/TITLE 1,2,3
3 /IMDB/SHOW/AKA 1,2,3
4 /IMDB/SHOW[TV]/AKA 2,3
5 /IMDB/SHOW[MOVIE|/AKA 2,3
6 /IMDB/SHOW[AKA] /TITLE 3

7 /IMDB/SHOW[AKA && TV|/TITLE | 3

Table 4.2: Queries, Schemas and Accuracy

constructors. The artificial segregation can be clearly seen. Schema 1, Schema 2 and
Schema 3 are in increasing order of granularity — that is, not only does each schema have
more types than the previous one, but the larger number of types contributes to a more
accurate summary. Though not apparent from the example, which gives the impression
that the larger granularity summary has a larger memory budget because of the increase
in the number of types, the estimation accuracy of the finer granularity summary increases
even with a fized memory budget. This is shown in Section 4.7.

Consider the queries in Table 4.2. For each query, the most accurate summary is
shown in the third column. Note that each of the 7 queries can be answered using any of
the three schemas in conjunction with Algorithm 1. However, we are concerned with the
accuracy of these estimates.

For example, for query 4, it is necessary to distinguish Tv shows. Clearly, Schema 1
does not distinguish between Tv and Movie shows — they are both nested under the same
type Show. However, Schema 2 clearly separates Tv shows into a separate type (Showl).
And so, Schema 2 is able to give an accurate estimate of the cardinality. Similarly, Schema
3 also distinguishes Tv shows — Show1l and Show12. As another example, consider query
7. Here, it is necessary to not only distinguish Tv shows, but those Tv shows which also
have Akas associated with them. Clearly, Schema 3 is the only schema which makes this

separation.

CHAPTER 4. STATISTICS COLLECTION AND QUERY RESULT SIZE ESTIMATION 56

XML Schema

Schema
Transformer

I Normalization I

I Application—Specific
Transformations

Transformed
XML Schema

XML Statistics Collector 'M
Document Summary

Figure 4.7: Building StatiX Summaries

Summary Compression. The XML Schema can also be used to compress the sum-
mary. We make the observation that the statistics of some types can be inferred directly
from the statistics of their parents. That is, if a child type T" occurs exactly once under
its parent 7}, then the distribution of 7" under 7}, is one-to-one and there is no need to
store a structural histogram for 7. That is, by inlining such types, we can reduce the size
of the summary. As shown in the experiments section, this simple compression scheme
significantly reduces the amount of space occupied by the summary because there are

several such 1:1 occurrences in real-life schemas.

4.5 Construction of a StatiX Summary

The architecture of the StatiX module, shown in Figure 4.7, depicts the two main com-
ponents of StatiX: (i) the Schema Transformer, which enables statistics collection at
different levels of granularity, and, (ii) the Statistics Collector, that takes as input, the
transformed schema and simultaneously validates the document against the schema and

gathers the associated statistics. In what follows, we describe these components in detail.

CHAPTER 4. STATISTICS COLLECTION AND QUERY RESULT SIZE ESTIMATION 57

4.5.1 The Statistics Collector

While in practice, the Statistics Collector comes into play only after the Schema Trans-
former has completed its rewritings, for ease of exposition, we will describe the role of the
collector first.

The statistics collector has two functions: validation of the source XML document
against its XML Schema description, and the simultaneous collection of statistics for this
schema. If the transformed schema is a valid XML Schema, then a standard validating
parser such as Xerces [76] or Galax [28] can be used as the statistics collector. The
statistics are gathered on a per-type basis.

The successful validation of an XML document against a given schema results in the
assignment of types (defined in the schema) to the nodes in the document [71]. StatiX
leverages this information to build the statistical summaries. Intuitively, as the document
is validated, StatiX keeps track of the number of occurrences of each type, and how the
instances of a given type are distributed over the instances of its parent type(s).

Statistics gathering proceeds as follows. Each type defined in the schema is associated
with a unique type id. As a document is parsed and occurrences of a given type are
encountered, a new sequential node id is assigned to each occurrence. The concatenation
of type id and node id uniquely identifies a given node in the document tree. Note
that the order of occurrence of the type in the document determines the order in which
node ids are assigned. For each type defined in the schema, StatiX has an associated
parent set. Since validation is performed in a top-down fashion, and a parent is always
processed before its children, for each type instance encountered, the id of the parent node
is incrementally added to the parent set of the corresponding child type. This information
is later summarized in a structural histogram.

Assigning contiguous ids to a given type is critical to building accurate and concise
histograms — the use of non-contiguous ids will necessarily result in large gaps within
buckets as well as between buckets. Moreover, the assignment of contiguous ids automat-
ically keeps track of the order of the occurrences. Since equi-depth histograms result in

significantly smaller estimation errors as compared to equi-width histograms [53], we have

CHAPTER 4. STATISTICS COLLECTION AND QUERY RESULT SIZE ESTIMATION 58

implemented the former in StatiX.
Besides structural information, StatiX also captures value distributions at the leaf-
node level using value histograms. While structural histograms are unique to the XML

context, value histograms are commonly used in traditional relational storage systems.

Handling Ambiguous Transformations

One of the major limitations in using a standard XML validator for statistics gathering is
that a standard validator cannot handle ambiguous schemas (as was described in Section
3.5 in Chapter 3).

In general, validating a document is nothing more than recognizing that the grammar
defined by the schema recognizes the document as either belonging to (valid) or not
belonging to (invalid) the language recognized by it. It follows that validating a document
against a non l-unambiguous schema involves recognizing whether or not a particular
regular expression is satisfied before a particular type assignment. For example, in the
case of distributing the union of Tv and Movie shows, we need to recognize the regular

expression:

<SHOW><TITLE>...</>}YEAR>...</>..... <TV><SEASONS>...</></>..... </SHOW>

in order to determine that the SHOW node validates to Showl (and not Show?2), TITLE
node validates to Titlel, etc. That is, the tag TV has to be seen before assigning a type
to SHOW. In order to build a statistics collection module for such schemas, we utilized a
recently proposed programming language called CDuce [10]. CDuce provides for regular
expression pattern matching with specific emphasis on XML-style patterns. That is, it is
possible in CDuce to express regular expressions using XML elements, attributes, types,
etc. CDuce is a functional language in the style of Caml [9], and has been proposed
for designing efficient applications which use XML pattern matching extensively. The
statistics collection method remains unchanged. That is, the nodes in the documents are
assigned types, and the parent set of a given type contains the list of ids of its parent
element. Once this validation process is complete, structural and value histograms are

built.

CHAPTER 4. STATISTICS COLLECTION AND QUERY RESULT SIZE ESTIMATION 59

4.5.2 Schema Transformer

The Schema Transformer first performs some basic operations on the input XML Schema
to ensure that statistics are generated for all elements and attributes. That is, both, a
structural as well as a value histogram (for base types) are associated with each element
and attribute. It then performs additional transformations, as required. And so, the
function of the schema transformer is two-fold: (i) “normalize” the input XML Schema

and (ii) perform appropriate transformations. Normalization involves the following:

e Give type names to all elements and attributes in the Schema. That is, outline all

elements and attributes.

e Ensure that no type is shared. That is, perform all type split operations, so that no
type has more than one parent histogram. This step ensured that the implementa-

tion of the cardinality estimation algorithm described before was simplified.

The second function of the schema transformer is to apply application-dependent
transformations to make the resulting summary more accurate. StatiX currently does not
implement any specific algorithm which does application-specific transformations on the
schema. But, in general, several application characteristics, such as the query workload,
memory budget available, etc. can be utilized to automate the process of generating the
appropriate summary.

Apart from the outline and type split operations performed during the normalization
steps, the transformer can also apply the repetition-to-union and the union distribution
transformations, which increase the accuracy of the summary. Examples of schemas with
increasing accuracy were shown in Section 4.4.

From now on, we refer to the normalized schema as the N-Schema and the summary
resulting from this schema as the N-Summary. This is the coarsest summary possible in
StatiX, while the finest summary is obtained when all repetition-to-union and union dis-
tribution operations have been performed on the N-Schema. We refer to this decomposed

schema as the D-Schema and the corresponding summary as the D-Summary. Schema 1

CHAPTER 4. STATISTICS COLLECTION AND QUERY RESULT SIZE ESTIMATION 60

in Figure 4.3 is an example of an N-Schema, while Schema 3 in Figure 4.5 is the corre-

sponding D-Schema.?

4.6 Experimental Setup

We performed several experiments to measure the effectiveness and efficiency of StatiX.
All experiments were run on a Pentium IV, 2.4GHz machine with 1GB of main memory;,

running Redhat 8.0. The query and datasets used are described below.

Data: We synthetically generated several different datasets of varying sizes conforming
to the IMDB schema using ToXgene [5]. The generated data contained moderate
to high skew both in structure as well as values. Since the trends across these
datasets were similar, we report on the results obtained for the 5MB dataset. We

also experimented with about 30MB of the DBLP dataset available from [18].

Schema: As mentioned in Section 4.4, it is possible to collect statistics at various granu-
larities — coarser to finer. In order to show the impact of tuning StatiX summaries,
we present results for summaries based on two “extreme” schemas — the N-Schema

and the D-Schema, described in Section 4.5.

Query workload: The query workload was generated by sampling the BF-bisimilar
graph of the data described in [54]. We generated two separate query workloads
— one containing branching path expressions without value predicates and the other
containing branching path expressions with value predicates. The length of the path
expression varied from 2 to 6 elements, with at least one branch and a maximum
of two branches. Each branch had a single predicate (either structural or value).
From now on, we refer to the query workload without value predicates as BP and

the workload with value predicates as VP.

2Note that one more repetition-to-union transform is possible at the root, but we do not perform this
transform since it would result in multiple roots when the union distribution is subsequently applied.

CHAPTER 4. STATISTICS COLLECTION AND QUERY RESULT SIZE ESTIMATION 61

4.6.1 Metrics

With

the above setup, we performed experiments to measure: (i) estimation accuracy,

(ii) summary size, and (iii) overheads in statistics collection . Each of these metrics are

described in more detail below.

Estimation Accuracy. In order to measure the estimation accuracy of the summary,

Size.

we used average relative error as our metric. The relative error is defined as follows:

RE — ABS(Cardgst—Cardact)
Cardact

where Cardgg is the estimated cardinality of the query and Cardy is the actual

cardinality of the query. The average relative error is then defined as:
ARE = Z=f
n

where n is the total number of queries and RE' is the relative error of the i** query.

In order to be effective, the size of the summary should be as small as possible.
We show through our experiments that not only is the accuracy of the summary
very high, but the size is also moderate, even when finer granularity statistics are
collected. We tabulate the size in terms of both the number of types in the schema,
as well as the number of bytes required to store the summary. We show the sizes

with and without the compression technique, outlined in Section 4.4.

Overhead. We measure the timing overheads involved in collecting statistics which in-

volves two major phases — validation and histogram construction. We tabulate these

metrics for both summaries — N and D.

The experimental setup is summarized in Table 4.3.

CHAPTER 4. STATISTICS COLLECTION AND QUERY RESULT SIZE ESTIMATION 62

Data IMDB, DBLP

Schema N (Normalized), D (Decomposed)
Query set | BP (BPE without value predicates),
VP (BPE with value predicates)
Metrics Estimation Accuracy, Summary Size,
Statistics Collection Overheads

Table 4.3: Experimental Setup

4.7 Performance Evaluation

4.7.1 Estimation Accuracy

The estimation accuracy depends on two parameters: (i) the number of buckets allocated
to the structural and value histograms, and, (ii) the granularity of the schema itself.
We first discuss the estimation accuracy results for each of the N- and D- Summaries
separately. Subsequently, we compare the estimation accuracy across the two schemas

given a fixed budget.

N-Summary

We discuss the estimation accuracy of the BP and VP query workloads for both the
IMDB dataset as well as the DBLP dataset. In addition to plotting the overall estimation
accuracy, we sorted the queries in descending order of their relative errors and plotted the
estimation accuracy of the top 30% and the top 50% of the queries in this list — that is,

queries with the worst estimates.

BP workload. Figure 4.8 shows the estimation accuracy in terms of the average relative
error for the BP workload for the IMDB dataset. The first point on the X-axis corresponds
to a single structural histogram bucket per type — effectively, only the cardinality is stored
and the uniform distribution assumption is made. Several important points to be noted

from the graph are as follows:

1. After a certain “cutoff” at around 60 histogram buckets, the estimation accuracy

CHAPTER 4.

STATISTICS COLLECTION AND QUERY RESULT S1ZE ESTIMATION

63

Average Relative Error

1.30
1.20
110
1.00
0.90
0.80
0.70
0.60
0.50

0.20
0.10
0.00

—
<
N
v
\v\
- \\
. I
T~ = OVERALL
K + TOP 50%
0.40 ..\._\- T |y TOP30%
0.30
\.\.\.\= L —a—a
1 5‘1‘0‘2‘0 30 40‘5‘0‘60‘7‘0 80 90‘1(‘)0

No. of Structural Histogram Buckets

Figure 4.8: IMDB: Estimation Accuracy for BP Queries over N-Summary

Average Relative Error

1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10

0.00

—

1

® OVERALL
* TOP 50%

Y TOP 30%

M

N

P

10 20 30 40 50 60 70 80 90 100

1 5
No. of Structural Histogram Buckets

Figure 4.9: DBLP: Estimation Accuracy for BP Queries over N-Summary

CHAPTER 4. STATISTICS COLLECTION AND QUERY RESULT SIZE ESTIMATION 64

does not improve substantially. As was discussed in detail in Section 4.4.1, the inter-
leaving of elements in the dataset was the indeed reason for the lack of improvement
in estimation accuracy. The results obtained imply that simply increasing the num-
ber of histogram buckets (unless a very large number of additional buckets are

allocated) is not always an effective solution to the problem of bad estimates.

2. The estimation accuracy increases faster for the more inaccurate estimates when the
number of histogram buckets is increased. The “TOP-30%"” line falls more rapidly
than the “TOP-50%"” line. This indicates that increasing the number of histogram
buckets does make a substantial difference to some of the queries. But after a certain
cutoff, the gains are limited. Inspite of the substantial improvements, the worst top
50% and top 30% of errors is still unacceptably high, though the overall relative

error is a moderate 20% (at 100 structural histogram buckets).

The reason for the poor estimation accuracy is the presence of a few queries with very
large errors (about 8% of the estimates were over-estimates which were off by more than
100%). These queries had predicates which were optional, or part of unions. For example,
//IMDB/SHOW[REVIEW|/TV, which asks for only Tv reviews. Note that Tv is part of a union
and Review is repeated zero or more times per Show.

The estimation accuracy for the DBLP workload is shown in Figure 4.9. In contrast
to the IMDB workload, the estimation accuracy is very high with only a small number of
histogram buckets. Even for the top 30% of the worst estimates, the error is less than 12%
for just 10 structural histogram buckets. And very small gains are obtained by increasing
the number of buckets. This is due to the fact that the DBLP dataset does not have
a lot of skew. And whatever skew exists is adequately captured by a small number of
buckets. Moreover, when we examined the actual cardinality and the estimates, we found
that the large errors in the dataset were found in a very small number of queries with
small cardinality (comprising less than 10% of the total workload). For example, a query

with cardinality 2 was estimated as 4 leading to a 100% error.

CHAPTER 4. STATISTICS COLLECTION AND QUERY RESULT SIZE ESTIMATION 65

0.90

\
0.80
0.70 \
.

0.60

0.50 \ S

Average Relative Error

0.40
\\ m OVERALL
0.30 + TOP 50%
. [S D N
“\l\,\-\- Y TOP 30%
0.20 -—
0.10
00—+

1 5 10 20 30 40 50 60 70 80 90 100
No. of Structural Histogram Buckets

Figure 4.10: IMDB: Estimation Accuracy for VP Queries over N-Summary with 30 Value
Histogram Buckets

VP workload. For the VP workload, we study the impact of increasing both the num-
ber of structural histogram buckets as well as the number of value histogram buckets.
Figure 4.10 shows the estimation accuracy of the VP workload as the number of structural
histogram buckets increases. The number of value histogram buckets was kept constant
at 30. In addition to the overall estimation accuracy, the top 30% and the top 50% of
the worst estimates are also plotted. As was indicated in the case of the BP workload,
there is a cutoff beyond which the number of structural histogram buckets fails to make
a significant impact.

Figure 4.11 shows the effect of increasing the number of value histogram buckets on
the estimation accuracy. The graph shows 4 curves for 4 different settings of the number
of structural histogram buckets. Note that the first point on the X-axis shows a single
value histogram bucket — effectively, the range and cardinality of the values is stored and
uniform distribution assumption is made. Only the overall estimation accuracy is shown.

Figure 4.12 shows the top 30% and top 50% of the worst estimates in addition to the
overall accuracy for the 100 structural histogram bucket case. As before, the “TOP 30%”

curve falls faster as the the number of value histogram buckets increases. Similar graphs

CHAPTER 4. STATISTICS COLLECTION AND QUERY RESULT SIZE ESTIMATION 66

0.40

0.35

0.30

7V
/

0.25

LI
0.15 1 | 3

v 50
0.10 A 100

Average Relative Error

0.05

0.00 w w \ ‘
5 10 20 30

No. of Value Histogram Buckets

=

Figure 4.11: IMDB: Overall Estimation Accuracy for VP Queries over N-Summary with
Increasing Value Histogram Buckets

0.90

0.80

0.70
0.60 \\
0.50 >

0.40
\\\ = OVERALL
0.30 * TOP 50%
"\ v TOP 30%
0.20

0.10

Average Relative Error

0.00 w w \ |
1 5 10 20 30

No. of Value Histogram Buckets

Figure 4.12: IMDB: Estimation Accuracy for VP Queries over N-Summary with Increas-
ing Value Histogram Buckets and 100 Structural Histogram Buckets

CHAPTER 4. STATISTICS COLLECTION AND QUERY RESULT SIZE ESTIMATION 67

were obtained for other values of the number of structural histogram buckets.

0.75
0.70
065 v\v/‘"—"“"“'\v—'v—v—v—v
0.60
0.55
0.50
0.45 %
0.40 | s SN
0.35

0.30 = OVERALL
0.25, * TOP 50%

02071;-<I;.:.:-:-:I:I:I:I:I v TOP 30%

0.15
0.10
0.05

0_00 T 1
1 5 10 20 30 40 50 60 70 80 90 100

No. of Structural Histogram Buckets

Average Relative Error

Figure 4.13: DBLP: Estimation Accuracy for VP Queries over N-Summary with 30 Value
Histogram Buckets

Similar results were found for the DBLP dataset as well. Figure 4.13 shows the
estimation accuracy when the number of value histogram buckets is kept constant at
30. Again, as indicated from the results for the BP queries, increase in the number of
structural histogram buckets does not have a significant impact on the quality of the
estimates.

Figure 4.14 shows the improvement in estimation accuracy as the number of value his-
togram buckets is increased. As seen from the graph, the improvement is quite significant
— the overall relative error reduces from about 55% for 5 buckets to a little under 20%
for 30 buckets, indicating that the dataset has a large amount of skew in the values (in
contrast to the structure skew). The overall estimation accuracy for different settings of
the number of structural histogram buckets follows very closely the same curve as that

shown in Figure 4.14 and is not shown.

CHAPTER 4. STATISTICS COLLECTION AND QUERY RESULT SIZE ESTIMATION 68

5.50

5.00 7%

4.50
4.00

3.50
3.00}

2.50

® OVERALL

2.00 1\]6\ + TOP 50%
Lsos v TOP 30%
1.00 \

T T —
0.50 037

Average Relative Error

[7 R (k.)
0.00 ‘ ‘ ‘ ‘ ‘ ‘
1 5 10 20 30

No. of Value Histogram Buckets

Figure 4.14: DBLP: Estimation Accuracy for VP Queries over N-Summary with Increas-
ing Value Histogram Buckets and 100 Structural Histogram Buckets

D-Summary

We now move on to the estimation accuracy in the case of the D-Summary. Note that,
given a fixed number of structural and value histogram buckets, the size of the D-Schema
is much larger than the N-Schema. We first discuss the estimation accuracy of the D-
Summary independently and then, in the next section, we compare the accuracies of the

two summaries when they both have the same memory budget.

BP Workload. For the BP workload, the D-Summary of both IMDB as well as DBLP
gave 100% estimation accuracy — that is, the relative error of each of the queries in the
workload was 0. This is not very surprising, given that the D-Summary is a very fine

granularity summary.

VP Workload. We study the impact of increasing the number of structural histogram
buckets as well as the number of value histogram buckets independently. Figure 4.15 shows
the estimation accuracy for increasing number of structural histogram buckets when the
number of value histogram buckets is kept constant at 30. As already indicated by the

results of the BP workload, the increase in number of histogram buckets hardly has any

CHAPTER 4. STATISTICS COLLECTION AND QUERY RESULT SIZE ESTIMATION 69

o
o
N

o
(=)
&

o
o
vl

3

o
o
X

® OVERALL
* TOP 50%

s —=—8% = =» ®» = s 35 g g R

Average Relative Error
o
o
w

0.00 T 1
1 5 10 20 30 40 50 60 70 80 90 100

No. of Structural Histogram Buckets

Figure 4.15: IMDB: Estimation Accuracy for VP Queries over D-Summary with 30 Value
Histogram Buckets

impact on the estimation accuracy. Even in the case of the top 30% of the worst estimates,
the improvement was a mere 0.5% from just storing the count to allocating 100 structural
histogram buckets.

Figure 4.16 shows the estimation accuracy when the number of value histogram buck-
ets increases. There are 4 different curves for 4 different settings of the number of struc-
tural histogram buckets. Note that only the overall accuracy is plotted. While there is
significant improvement as the number of value histogram buckets increase, there is no
such improvement when the number of structural histogram buckets increase (as already
indicated from Figure 4.15).

Figure 4.17 shows the top 30% and top 50% of the worst estimates as well as the
overall accuracy for the 100 structural histogram bucket case. In addition to improved
estimation accuracy as the number of value histogram buckets increases, the “TOP 30%”
curve falls faster as the the number of value histogram buckets increases. This shows that
for the D-Summary, the main bottleneck is in coming up with effective value histograms.
In contrast, in the N-Summary, both value as well as structural histograms have the

potential to make significant improvements in the estimation accuracy.

CHAPTER 4. STATISTICS COLLECTION AND QUERY RESULT SIZE ESTIMATION 70

0.13
0.12
0.11
0.10
0.09
0.08

0.07 \

0.06 \

0.05 \

0.04 e

0.03 \
5 \

30
50
100

Average Relative Error

> 4« o 1

0.02
0.01

0.00 w ‘ ‘ |
1 5 10 20 30

No. of Value Histogram Buckets

Figure 4.16: IMDB: Estimation Accuracy for VP Queries over D-Summary with Increas-
ing Value Histogram Buckets

0.40

0.35%

0.30

0.25
4\
0.20 \'\
= OVERALL
0.15 \\ \ * TOP 50%
B %
0.10 \\\\Q 'T°P3°/
0.05

0.00 w w \ ‘

Average Relative Error

No. of Value Histogram Buckets

Figure 4.17: IMDB: Estimation Accuracy for VP Queries over D-Summary with Increas-
ing Value Histogram Buckets and 100 Structural Histogram Buckets

CHAPTER 4. STATISTICS COLLECTION AND QUERY RESULT SIZE ESTIMATION 71

0.30
0.28
0.25
0.23
0.20
0.18]
0.15

0.13 m OVERALL
0.10 * TOP 50%
' v TOP 30%

Average Relative Error

0.08
0.05
0.03

O_OO T 1
1 5 10 20 30 40 50 60 70 80 90 100

No. of Structural Histogram Buckets

Figure 4.18: DBLP: Estimation Accuracy for VP Queries over D-Summary with 30 Value
Histogram Buckets

Similar results were found for the DBLP dataset as well. Figure 4.18 shows the
estimation accuracy when the number of value histogram buckets is kept constant at
30. Again, as indicated from the results for the BP queries, increase in the number of
structural histogram buckets does not have a significant impact on the quality of the
estimates.

Figure 4.19 shows the estimation accuracy when the number of value histogram buckets
increases. Again, the improvement in estimation accuracy is significant. Even for the top
30% of the worst estimates, the average relative error decreases from over 150% when
there is no value histogram, to less than 30% with 30 value histogram buckets. The overall
estimation accuracy for different values of structural histogram follows very closely the
same curve as that shown in Figure 4.19 and is not shown.

Across the board, the estimation accuracy provided by the D-Summary is extremely
high, ranging from 100% accuracy for BP queries to less than 10% error for VP queries.
This holds for both the IMDB as well as the DBLP datasets.

CHAPTER 4. STATISTICS COLLECTION AND QUERY RESULT SIZE ESTIMATION 72

1.80y-78

Average Relative Error
=
o
o

0.80
c\ﬁ;\ m OVERALL
0.60 432 * TOP 50%
\ \Q%\ v TOP 30%
0.40
2
0.20

2 0Jl opo
0.00 ‘
1 5 10 20 30

No. of Value Histogram Buckets

Figure 4.19: DBLP: Estimation Accuracy for VP Queries over D-Summary with Increas-
ing Value Histogram Buckets and 100 Structural Histogram Buckets

4.7.2 Size of the Summary

The previous section discussed the estimation accuracy of the N- and D-summaries for
both the BP and VP workload. In this section we consider the sizes of the summaries
from two different viewpoints: (i) The estimation accuracy of both summaries when they
are given the same memory budget and, (ii) The absolute sizes of the summaries with and

without the compression technique.

Estimation Accuracy with Equivalent Memory Budgets

Clearly the D-Summary is a lot bigger than the N-Summary because of the larger number
of types. In this section we study the behaviour of the two summaries when they are
allocated the same memory budget.

Table 4.4 tabulates the “equivalent” number of buckets allocated for the two summaries
for both the DBLP and IMDB datasets. These equivalences were derived by first counting
the total number of buckets allocated to the structural histograms in the D-Summary and
then dividing the total number by the number of types in the N-Schema — this number gives

the number of buckets to be allocated to each type in the N-Schema. A similar procedure

CHAPTER 4. STATISTICS COLLECTION AND QUERY RESULT SIZE ESTIMATION 73

] IMDB \H DBLP \
Structural Value Structural Value
D N D| N D N | D| N
1 15 1 15 1 10 1 10
50 | 550 || 5 | 60 50 | 135 || 5 | 25
100 | 1000 || 10 | 120 || 100 | 215 || 10 | 40

20 | 225 20 | 65
30 | 325 30 | 80
40 | 100
50 | 115
60 | 130
70 | 140

Table 4.4: Equivalent Number of Buckets

was used to calculate the equivalent number of value histogram buckets. For example, in
the case of IMDB, allocating a single bucket per structural histogram in the D-Summary
translates to allocating 15 buckets per structural histogram in the N-Summary.

Figures 4.20 and 4.21 show the estimation accuracy for the IMDB and DBLP sum-
maries with equivalent number of buckets for the VP workload. The number of structural
histogram buckets in both cases is the equivalent of 100 buckets in the D-Summary — that
is, 1000 buckets for IMDB and 215 buckets for DBLP for the N-Summary.

Clearly, in the case of IMDB, the D-Summary is far superior to the N-Summary. This
result is expected since we previously noted from Figure 4.8 that the number of structural
histograms made a significant difference to the estimation accuracy. And so, the structure
component of the dataset contributes significantly to the estimation accuracy. Since the
D-Summary improves the structure of the summary, it is significantly more accurate than
the N-Summary. This result shows that in order to increase the estimation accuracy,
simply increasing the number of structural histogram buckets may be far less effective as
compared to performing the schema transformations.

In contrast, for the DBLP dataset, the results are a bit mixed. Previously, from
Figure 4.9, we saw that the structure component was much less important. This fact

is clearly reflected in Figure 4.21 where the dominating effect is due to the number of

CHAPTER 4. STATISTICS COLLECTION AND QUERY RESULT SIZE ESTIMATION 74

0.13
L

0.12 —
0.11 R

0.10
0.09
0.08
0.07

0.06

0.05 —
0.04 \\
0.03

0.02

0.01

0.00 w \ \ ‘
1 5 10 20 30

No. of Value Histogram Buckets (D-Summary)

Average Relative Error

Figure 4.20: IMDB: Estimation Accuracy for VP Queries with Equivalent Number of
Buckets

0.60
0.55 \
0.50
0.45
0.40,

0.35 I\

0.30
0.25

[N e
0.20
0.15 \
0.10 \;\-K \; . . .
0.05 . . .

0.00 T T T T T T T)
1 5 10 20 30 40 50 60 70

No. of Value Histogram Buckets (FS Schema)

Average Relative Error

Figure 4.21: DBLP: Estimation Accuracy for VP Queries with Equivalent Number of
Buckets

CHAPTER 4. STATISTICS COLLECTION AND QUERY RESULT SIZE ESTIMATION 75

value histograms. When the D-Summary has just a single value histogram bucket, the
N-Summary has 10 buckets which captures a reasonable amount of skew in the values
leading to a 50% improvement in the estimation accuracy. However, as the number
of value histograms is increased, the D-Summary starts to perform better than the N-
Summary. The conclusion that can be drawn from these two graphs is that when there
is very little structural skew, the effectiveness of performing the schema transformations

is limited.

Absolute Summary Sizes

Moving away from equivalent memory budgets for the N- and D-summaries, we now
turn our attention to their absolute sizes, given a fixed number of structural and value
histogram buckets. The summary size depends on the schema as well as the data, while
the mazimum summary size depends only on the schema. Clearly, performing schema
transformations increases the number of types and consequently, the number of histograms
that need to be stored. However, even though the schema has several types, not all of
them may be actually instantiated in the data. For example, in the case of IMDB, if the
document does not contain any MOVIE shows, then the type Movie and all its children would
not have any histograms associated with them. For the datasets used in our experiments,
we tabulate both the mazimum size of the summary as well as the actual size for the

specific documents we used.

No. of types | No. of types | Maximum Size | Actual Size
(structural) (value) (100,30) bkts (100,30) bkts
IMDB
N | 32 22 45.2 KB 41.5 KB
D | 409 280 577.7 KB 457.3 KB
DBLP
N | 58 50 85.5 KB 41.6 KB
D | 3321 2082 4940.1 KB 186.8 KB

Table 4.5: IMDB and DBLP: Absolute Sizes of the Summaries

Table 4.5 tabulates the number of types for both the N- and D-summaries.

The

CHAPTER 4. STATISTICS COLLECTION AND QUERY RESULT SIZE ESTIMATION 76

number of types which contain structural histograms only are tabulated separately. Each
histogram bucket is assumed to require 3 integers with 4 bytes per integer — two integers
to store the bucket boundaries and one to store the count. The actual N-summary sizes
are less than 50 KB for both IMDB and DBLP, while the D-summary sizes are less than
500KB. An interesting observation is that the maximum summary size is larger than the
actual summary size for both N- and D-summaries. In fact, for the D-summary of DBLP,
there is an order of magnitude difference between the two. This difference is due two

reasons:

e The N- or D-Schema could contain types which are not instantiated in the data. Con-
sider the DBLP schema which contains a lot of optional and repeated elements in
sequence. For example, the type ARTICLE contains AUTHOR*, EDITOR*, MONTH?,
PUBLISHER? and URL? in sequence. When constructing the D-schema, these rep-
etitions are converted to unions and the unions are all distributed. This leads to
2° different types of ARTICLEs. That is, articles with none of these sub-elements,
articles with all these sub-elements, articles with at least one author but none of
the other sub-elements, articles with at least author and one editor, etc. The given
data does not contain all these different types of articles and hence a lot of these
types are not utilized in the summary. And so, the actual summary size is much

less than the maximum summary size.

e Not all the histogram buckets may be utilized. For example, in the IMDB data, the
Rating type can contain a total of only 10 values (1 to 10). And so, even though 30
value histogram buckets are allocated, only 10 of those buckets are utilized. Also,
with a large number of types which are optional, not all the structural histogram
buckets may be utilized. For example, in the DBLP data, even though there are
more than 500 ARTICLEs, only 30 of them contain CDROMs.

Compressing the Number of Types. Eliminating the structural histograms for child
types which have a one-to-one correspondence with their parents (that is, those types

which occur exactly once under their parent) considerably reduces the number of types,

CHAPTER 4. STATISTICS COLLECTION AND QUERY RESULT SIZE ESTIMATION 77

No. of No. of types | Maximum Size | Maximum Size | Savings

types after (100,30) bkts after

(structural) | compression compression

(100,30) bkts

IMDB
N | 32 11 45.2 KB 20.6 KB 54.4%
D | 409 113 577.7 KB 230.8 KB 60.0%
DBLP
N | 58 16 85.5 KB 36.3 KB 57.5%
D | 3321 1458 4940.1 KB 2756.9 KB 44.1%

Table 4.6: IMDB and DBLP: Savings with Compression

and consequently, the memory budget. Table 4.6 tabulates the savings gained by reducing
the number of structural histograms. The results show that the savings are more than

40% for both the N- and D-summaries.

4.7.3 Statistics Collection Overheads

100%-

90%

80%

70%7

60%

50% T

B Construction
[validation

40%

30% 17—

Percentage of Time Taken

20% 1

10% 1

0% ; ; :
5 10 25 50
Size of Dataset (MB)

Figure 4.22: IMDB: Efficiency of Statistics Collection for the N-Schema

The efficiency of statistics gathering depends on: (i) parsing and validation of the XML

data file (Validation) and, (ii) construction of the summary structure (Construction). We

CHAPTER 4. STATISTICS COLLECTION AND QUERY RESULT SIZE ESTIMATION 78

Percentage of Time Taken

100%
90%
80%
70%
60%
50%
40% [l Construction
] Validation
30%
20%
10%
0%
5 10 25 50

Size of Dataset (MB)

Figure 4.23: IMDB: Efficiency of Statistics Collection for the D-Schema

o
o

[0]
(=]

~
o

[=2]
o

Time (sec)
3

40
N
30 mo
20
10
0,
5 10 25 50
Size of Dataset (MB)

Figure 4.24: IMDB: Comparison of Validation Times for the N- and D-Schemas

CHAPTER 4. STATISTICS COLLECTION AND QUERY RESULT SIZE ESTIMATION 79

60
55
50
45
40
35
30

Time (sec)

25 DN

15
10

ZWT

5 10 25 | 50
Size of Dataset (MB)

Figure 4.25: IMDB: Comparison of Summary Construction Times for the N- and D-
Schemas

tabulate the relative time taken by each of these phases for the IMDB N-Schema and the
IMDB D-Schema for different sizes of datasets. The results are shown in Figures 4.22
and 4.23. Clearly, the results indicate that the major part of the time is taken up by
the parsing/validation part of the statistics gathering (over 50% for the N-Schema and
over 60% for the D-Schema). An interesting result in this regard is that it takes less
percentage of time for statistics construction in the case of D-Schema inspite of the larger
number of types than in the case of the N-Schema. The absolute times for validation and
construction, shown in Figures 4.24 and 4.25 respectively, indicate that it takes longer
for validating against the D-Schema, but the time for construction is much shorter than
for the N-Schema. This can be explained by the fact that in the case of the N-Schema,
there may be less number of types, but the size of the value and parent-id lists are much
longer. Since we need to sort these lists in order to construct the equi-depth histograms,
it takes longer. On the other hand, for the D-Schema, the sorting takes place for much

shorter lists, though the number of such lists is larger.

CHAPTER 4. STATISTICS COLLECTION AND QUERY RESULT SIZE ESTIMATION 80

4.8 Conclusions

In this chapter, we introduced StatiX, a framework for statistics collection and cardinality
estimation. The main features of StatiX include: (i) the use of XML Schema as the basis
for statistics collection, (ii) the use of several schema transformations to improve the accu-
racy of the summary, (iii) use of histograms to symmetrically capture both structural and
value distributions, (iv) support for cardinality estimation of branching path expression
queries with value predicates, and (v) the ability to use standard XML Schema validators
where possible, for statistics collection.

Our experimental evaluation showed that the D-Summary could achieve 100% accu-
racy for branching path expressions without value predicates, while the N-Summary could
improve the estimation accuracy by increasing the number of histogram buckets. How-
ever, increasing the number of histogram buckets was effective only when there was a
reasonable amount of skew in the data as in the case of the IMDB dataset. For branching
path expressions with value predicates, the number of value histogram buckets made the
largest difference in improving the estimation accuracy, while the number of structural
histogram buckets made a limited impact (this was especially noticeable in the DBLP
dataset which did not contain much structural skew).

The absolute amount of memory used for the N-summary was less than 50KB, while
for the D-summary, it was less than 300 KB for DBLP and less than 500KB for IMDB. Our
compression technique resulted in size reductions of 40%-60% on the maximum summary
size.

Experiments on estimation accuracy with equivalent memory budgets for both the N-
and D- summaries indicated that performing schema transformations is a more effective
method of improving accuracy as compared to increasing the number of histogram buckets.

With regard to the efficiency of statistics collection, our results indicate that parsing
and validation of the XML data takes up the major portion of the time as compared to the
actual construction of the histograms. In fact, upto 70% of the total statistics collection

time devoted was to validation.

Chapter 5

Incremental Maintenance of XML

Summaries

5.1 Introduction

An increasing number of XML applications are dynamic and frequently update the under-
lying data. This gives rise to the problem of maintaining the statistics in the presence of
these updates. Periodically recomputing the statistics from scratch is a possible solution,
but suffers from two problems: (i) Recomputation is an expensive process since it involves
the parsing of the entire document, and (ii) Improperly timed recomputations could result
in stale summaries, leading to unacceptable estimation errors. In this chapter, we present
new techniques to incrementally update XML statistical summaries in parallel with the
receipt of document updates. We assume that an accurate summary of the data, created
at the document loading time, is initially made available, and then, as and when updates
are received, this summary is also correspondingly updated. Specifically, given an initial
document D and its summary S, and a stream of updates U = Uy, Us, ..., U,, compris-
ing of inserts, deletes or modifications, the goal is to efficiently and incrementally create
summaries, S, S2%,..., 8™, such that the accuracy of these summaries are comparable to
those obtained with a recomputed-from-scratch summary Sk, S%, ..., S%. Moreover, this

should be achieved within a fized memory budget (that is, the incremental approach has

81

CHAPTER 5. INCREMENTAL MAINTENANCE OF XML SUMMARIES 82

the same resource constraints as recomputation).

Our solution to the XML statistics maintenance problem is an algorithm called IMAX
(Incremental MAintenance of XML statistics). IMAX is built around the StatiX frame-
work (Chapter 4), which not only produces concise and accurate summaries for XML doc-
uments, but also has several features that make it attractive in a dynamic scenario. For
example, StatiX captures order information among the elements in a document through
the document schema and its numbering scheme (see Chapter 4 for details). This infor-
mation makes it possible to estimate the location of updates — a key step in IMAX. In
addition, its use of histograms permits the re-use of well-known techniques for incremental
histogram maintenance.

An important extension that we make to the StatiX framework is the use of two-
dimensional value histograms (instead of the originally proposed 1D histograms) to cap-
ture the correspondence between the node ids and their values. The use of 2D histograms
is a key factor in the effectiveness of IMAX. An empirical evaluation of IMAX (with
both 1D as well as 2D histograms) over a variety of XML documents and update streams
demonstrates that IMAX provides, at a marginal run-time cost, accuracy comparable to

the brute-force recomputation approach, even with a fixed memory budget.

Organization. The rest of this chapter is organized as follows. In Section 5.2, we
highlight several issues which arise in the maintenance of XML statistics with particular
reference to the StatiX framework. In Section 5.3, we describe IMAX, our solution to the
statistics maintenance problem. In Section 5.4, we present an experimental evaluation of

IMAX. Finally, in Section 5.5, we conclude the chapter.

5.2 Issues in Updating StatiX Summaries

Given an update query, it is important to know both how many updates will be applied
and also where they will be applied. The importance of knowing the locations of the
updates stems from the fact that structural histograms capture the relative distributions of

children with respect to their parents. Hence, if the correct ids of the updated components

CHAPTER 5. INCREMENTAL MAINTENANCE OF XML SUMMARIES 83

can be computed, the appropriate buckets of the histogram can be updated. In the case of
XML updates there is always an implicit location component to the update. For example,

consider the following insertion (using the syntax of [39]):

Example 1 Add a REVIEW element to the SHOW with title “The sixth sense”.

update
insert <REVIEW>
<RATING>Top drawer stuff!</RATING>
</REVIEW>
into //SHOW[TITLE="The sixth sense"]

O

Here, the path expression: //SHOW[TITLE="The sixth sense"] describes the particular
Show at which the update applies. Inherently, there is an ordinal associated with this
SHOW, which is critical in updating the summary. Moreover, the ordinal of SHOW determines
the ordinals of the other elements in the update fragment. For example, for the above
update query, in the parent histogram of Review, the count of the bucket which contains
the Show id of “The sixth sense” needs to be incremented; and based on where the review
is added, the parent histogram of Rating also needs to be updated. Note that if titles are
unique, there is a single location in the document which is updated with the given REVIEW
fragment. However, an update can also be applied to a set of locations. For example, the
following query inserts a new AGE sub-element into all movies and TV shows made prior

to 1930:

Example 2 Add the AGE element into all shows with year less than 1930.

update
insert <AGE> Golden 0Oldie ! </AGE>
into //SHOW[YEAR < "1930"]

CHAPTER 5. INCREMENTAL MAINTENANCE OF XML SUMMARIES 84

5.2.1 Location and Cardinality Estimation

It is possible to rely on the actual update operation to determine the number and location
of updates — the database can provide this information to the estimator module. Recall,
however, that the accuracy of estimation and the conciseness of summaries achieved by
StatiX are largely due to contiguous node ids which both capture the order among ele-
ments and are effectively summarized by histograms. While such a numbering scheme is
effective for StatiX, it may not be suitable for the backend database — using a contiguous
node id scheme at the backend could lead to unacceptable update performance, since it
may require a large number of elements to be renumbered [15, 67, 74]. Therefore, instead
of relying on a translation mechanism between the contiguous node id scheme required by
StatiX, and the many possible id schemes at the backend, we make update maintenance

self-sufficient by estimating both the cardinality and location of the updates.

5.2.2 Updates to Structure and Value Histograms

Another important difference to note in the case of updating StatiX summaries is the
nature of the histograms being updated. Previously proposed techniques for histogram
maintenance (e.g., [30]) were designed for wvalue histograms, not structural histograms.
There are important differences between a structural histogram and a value histogram.
First, there is no sanctity to the values in a structural histogram — structural histograms
are based on node ids, but the specific value of the node id is not relevant as long as
the histogram correctly captures the parent-child distribution. For example, it does not
make a difference whether a sequence of Shows is numbered from 1 to 10 or from 100
to 110, as long as the parent histograms of its children use the same values. Second,
the term “insertion” in the case of value histograms and structural histograms take on
different meanings. In the case of insertion into a value histogram, the count of the
corresponding value is updated. However, in the case of structural histograms, a “new”
value is inserted and the subsequent values renumbered. For example, if a new REVIEW is
inserted between REVIEW 2 and REVIEW 3, the id of the new REVIEW is set to 3, and the ids

of the subsequent reviews are incremented. Thus, the domain of the values in a structural

CHAPTER 5. INCREMENTAL MAINTENANCE OF XML SUMMARIES 85

histogram continuously changes, and this change in ordinals affects the bucket boundaries

of all the parent histograms for the children of type Review as well.

5.3 The IMAX Technique

In this section we introduce our techniques for maintaining statistics in an XML document
in the presence of insertions and deletions of tree fragments. We restrict our attention to
the class of updates where the location of the update is determined through branching
path expressions in the query.

A high-level description of IMAX is provided in Algorithm 2. It consists of three main
steps: location estimation; id estimation; and summary update. These steps are described

in detail in the remainder of this section.

Input: Summary S, Update U = (¢, u)
S is the initial summary; U is divided into condition ¢, and update fragment u
Output: UpdatedSummary S’

1: Estimate the location of update using c and §
2: Estimate the ids of update fragment v using S
3: Update S

Algorithm 2: IMAX Algorithm

5.3.1 Estimating the Location of the Update

Given the branching path predicate for the update location, IMAX needs to estimate the
cardinalities of these updates, as well as the ids of the nodes where the updates takes
place. Estimating the location of the updates is closely tied to the cardinality estimation.
As previously mentioned in Section 4.2, each type can be thought of as having a trivial
one-bucket key histogram whose end points are the range of ids of the type, and whose
frequency is the cardinality of the type. As we explain below, we utilize this key histogram
and the parent histogram associated with each type to perform cardinality and location
estimates. A high-level description of the procedure is shown in Algorithm 3. Note that a

major part of this procedure as well as the explanation below is reproduced from Chapter

CHAPTER 5. INCREMENTAL MAINTENANCE OF XML SUMMARIES 86

4. In the interests of completeness, we repeat the salient points here.

Input: ¢, H
c 1s the path expression identifying the location
H is the set of histograms (value and structure) for all types corresponding to the elements
in c
Output: Cardinality and Location Ids of the Updates
s let ¢ = /tl[bl]/tg[bg]/tg[bg]//tn[bn]
{t; is the tag (correspondingly, its type is T;)}
: for alli € 1 ton do
B; = result distribution of b;
J; = B; x keyHist(T;)
keyHist(T;) = key distribution of T; based on J;
parentHist(T;) = compute distribution based on keyHist(T;)
end for
for allie1lton—1do
J; = keyHist(T;) x parentHist(T;, 1)
keyHist(T;,1) = distribute freq(J;) into keyHist(T;11)
: end for
{Cardinality of the update}
. card = frequency (J,)
{We now compute the location ids}
. locations = randomly choose card ids from the buckets of keyHist(T,,) in proportion
to their frequency

— =
— O

—
[\)

—
w

Algorithm 3: Location and Cardinality Estimation for the Updates

This procedure operates in three stages: (i) compute the key distribution and parent-
key distribution for each of the ¢;s in the presence of predicates individually (lines 2
through 7); (ii) use these individual distributions to compute the overall key distribution
of the complete query (lines 8 through 11); and finally (iii) estimate the cardinality and
the location of the updates (lines 12,13).

There are three basic operations — histogram multiplication (lines 4 and 9), finding
the key distribution (line 5), and finding the parent key distribution (line 6). Histogram
multiplication is a well-known operation to find the join estimate given two histograms.
For a description of how the key and parent key distributions are computed, please refer

to Section 4.3 in Chapter 4.

CHAPTER 5. INCREMENTAL MAINTENANCE OF XML SUMMARIES 87

Choosing the ids

By performing the steps in Algorithm 3, we get the key distribution of the result of the
query (that is, the key distribution corresponding to t,, shown in line 1). Computing
the actual location ids is now a matter of choosing the ids from this key histogram. The
ids are chosen from the buckets of the key histogram in proportion to their counts. For
example, suppose the final key distribution of Show from the previous update is: [1-12:
1; 12-25: 1]. We randomly choose 1 Show id from 1 to 11 and 1 id from 12 to 24
— these choices comprise the statistically determined Show ids where the updates of the

REVIEW fragment takes place.

Improved Location Estimation

A potential limitation in the current location estimation process is the use of single di-
mensional histograms for values. The problem stems from the fact that no correspondence
between the occurrence of a value and the id of the node at which it occurs, is stored, as
in the case of structural histograms. Consequently, we have to make the independence
assumption when computing the distribution of the nodes containing particular values —
that is, distribute the estimated cardinality into the parent histogram in proportion to
the bucket counts. For example, consider the type Year with values ranging from 1900 to
1960. Suppose the key histogram of year is as follows (note that the key histogram has
been arbitrarily made into a two-bucket histogram).

[1-12: 12; 12-30: 18]
Now, let the value histogram of Year have the skew as shown below:

[1900-1912:7; 1912-1924:7; 1924-1931:6; 1931-1945:6; 1945-1960:4]
Suppose we were to estimate the location of the following location condition:

//SHOW[YEAR <= “1930"]

There are 20 YEARs with value less than or equal to 1930 and their key distribution
would be evenly distributed across the range of key ids of Year (and consequently, into the
parent histogram of Year which is to be multiplied by the key histogram of Show). But, if

all the relevant Year ids were in the range of, say, [12-30), then the location estimate has

CHAPTER 5. INCREMENTAL MAINTENANCE OF XML SUMMARIES 88

Key ids of YEAR
2(2’ BE
4 |2 1 2) 15 ids in the range 13 to
13 30
3 |5
> 2 1 2 5ids in the range 1 to 13
1 Values of YEAR
7 7 6 6 | 4
1900 1912 1924 1931 1945 1960

Figure 5.1: 2D Histogram to Capture Correlation Between Year values and Year Ids

a large error — that is, it estimates 8 of the ids from the wrong range.

In order to overcome this limitation, we propose the use of 2D histograms to explicitly
capture the correspondence between values and the corresponding node ids. For the
previous example, suppose we constructed the histogram shown in Figure 5.1!. Then the
location estimation process would accurately estimate that there are 5 ids in the range 1
to 13 and 15 ids in the range 13 to 30.

Since 2D histograms require more space, the budget for value histograms must be
increased to improve the accuracy. However, as we show in Section 5.4, the advantages
of using 2D histograms are substantial. We use the algorithm proposed in [44] to build
equi-depth 2D histograms by choosing one axis at a time. We chose the key dimension
as the first dimension — the key dimension is contiguous and hence will lead to histogram

buckets which are well packed in that dimension.

5.3.2 Estimating the Ids of the Update Fragment

Once the locations of the update is determined, we next need to estimate the ids of
the elements in the update fragment. In the case of insertions, the update fragment is
explicitly given in the query and for each insertion, the number of elements being inserted

is known, while the ids of these elements have to be estimated. But, in the case of

I'Note that the 2D histogram could have a more complex bucket structure than the simple square
buckets shown in Figure 5.1.

CHAPTER 5. INCREMENTAL MAINTENANCE OF XML SUMMARIES 89

Input: parentHistchiia, idparent
The parent histogram of the child element and the id of the parent are the inputs
Output: id.piq

L: idepjgg = 0
2: By, € parentHist piiq such that idpgrent € By
3: foralliecltok—1do
4: idepyg + = frequency of B;
5. end for
6: idenia + = | freq(Bg)/range(By)* (idparent — lowerbound(By))]+1
Algorithm 4: Estimating Ids
Movie ids Aka ids
A
4 ° 4 °
; . S ;
2 * | 3 2| e 3
Lo | N |
R B v, vy v,
| 1 2 3 4 5 | Show ids | 1 2 3 4 5| Show ids
Parent histogram Parent histogram
{[1-3: 2], [3-6: 2]} {[1-2: 2], [2-6: 2]}

Figure 5.2: Node and Parent ids have a Correspondence

deletions, only the root of the subtree to be deleted is given, so the number as well as the
ids of the deleted elements in the subtree need to be estimated.
In order to estimate the ids of the update fragment, we use the parent histogram which

summarizes the correspondence between parent and child ids (Figure 5.2).

Estimating ids for insertions

Algorithm 4 describes how the parent histogram is used to estimate the id of a child
fragment. The algorithm outputs a single child id. If there are multiple children in the
update with the same tag, then a set of contiguous ids are assigned beginning from the
estimated id of the first child (as determined by Algorithm 4). For Example 1, let the key

distribution of Show be computed as:

CHAPTER 5. INCREMENTAL MAINTENANCE OF XML SUMMARIES 90

Estimated SHOW IDs: 7, 16

Parent (SHOW) histogram of REVIEW Estimated REVIEW IDs:
1. 6+2+1=9

2. 6+7+6+0+1=20

6 |7[6|5]6

Figure 5.3: Computing the Ids of REVIEW

[1-12: 1; 12-25: 1]
Suppose the actual ids chosen were 7 and 16, then, the insertion ids for REVIEW would be

computed as shown in Figure 5.3.

Estimating ids for deletions

In the case of deletions, only the root node of the subtree to be deleted is given. The
elements in this subtree have to be first determined from the schema. Since the id of
the root node of the deletion is known, Algorithm 4 can be used to estimate the id of
the child. In addition, the frequency of the child can be estimated from By (line 2 in
Algorithm 4) by dividing the frequency of By by the range of By.

5.3.3 Updating the Summary

The relevant parent histograms in the summary need to be updated by either inserting
new ids or deleting them. This includes not only the parent histograms of the types in
the update fragment, but also the children of these types which may not be present in the
update fragment. As mentioned in Section 5.2, when a structural histogram is updated,
not only does the count of the bucket increase, but the subsequent ordinals may have to
be renumbered. An example of such an insertion is shown in Figure 5.4.

However, a large number of insertions or deletions to the histogram may make it

inaccurate. For example, if new documents are appended continuously, then clearly, only

CHAPTER 5. INCREMENTAL MAINTENANCE OF XML SUMMARIES 91

Parent (REVIEW) histogram of RATING

1 5 12 16 22 30
Insert new REVIEWs with ID 9 and ID 20

Figure 5.4: Inserting Ids into the Parent Histogram of RATING

the last bucket of a histogram is updated each time with new ids. Therefore, while the
last bucket keeps accumulating counts eventually making it inaccurate, the remaining
buckets retain their original counts. One strategy to approximately maintain the equi-
depth histogram is to periodically redistribute the bucket counts by splitting a bucket once
its count reaches a threshold occupancy 7" into two new buckets, and then simultaneously
merging a pair of buckets whose combined count is less than 7" [30]. If more than one such
pair exists, then the pair whose combined frequency is the least is chosen. If such a pair of
split-merge operations cannot be performed, then the histogram is recomputed from the
base data. Note that this procedure for determining whether to recompute the histogram
from base data is very conservative, since the criterion for recomputation is whether or not
there is a split-merge pair available. Other techniques, such as, testing whether the current
histogram is equi-depth, before performing a recomputation, could potentially reduce the
number of recomputations. In this thesis, we evaluate the conservative approach.
Algorithm 5 highlights the main steps in inserting a new value into a parent histogram.
The input to the algorithm is the pair (id, f). Note that the id in this case is the id of the
parent, while the histogram being updated is the parent histogram of the child. The pair
(¢d, f) indicates the number of times, f, the given child occurs under the given parent
with id 2d. Steps 3 to 7 perform a shift operation to indicate the insertion of a new
id — this is equivalent to renumbering the previous ordinals of the elements due to the
insertion of a new one. Steps 8 to 15 determine whether only a reorganization will suffice

or whether a complete recomputation of the histogram from the base data needs to take

CHAPTER 5. INCREMENTAL MAINTENANCE OF XML SUMMARIES 92

Input: Histogram : H, Update : (id, f), Threshold : T
H is the histogram to be updated
(id, f) is the update consisting of new (id, frequency) pair
T is threshold occupancy at which a bucket is split
Output: UpdatedHistogram : H'
1: B, € H such that ¢d € By,
{Update the frequency of the bucket}
2: By.frequency + = f
{Update bucket’s upper limit to reflect insertion of new id}
{n is the number of buckets in H}
{Update the boundaries of remaining buckets}

4: for alli € k+1ton do

5: B;.lo= B;.lo+1

6: B;.hi=B;.hi+1

7: end for

8: if By.frequency >=T then

9: found = find B;, B;y1 in H such that B;.frequency + B;i1.frequency < T
10: if found then

11: REORGANIZE H merging B;, B; ;1 and splitting By
12: else

13: RECOMPUTE H from base data

14: end if

15: end if

Algorithm 5: Insertion of a new id into a parent histogram

place.

For deletions, instead of ids being “inserted”, the ids need to be deleted. Similar issues
also arise for deletions — that is, a single bucket may have a very small count compared
to the others. The strategies outlined for insertions can be easily modified to handle

deletions as well.

Maintaining 2D Histograms. A split-merge strategy with a threshold T is used to
maintain the 2D histograms as well. However, unlike the strategy for 1D histograms,
merge pairs are always chosen such that the bucket boundaries in the key axis match
and the split happens only along the values axis — this ensures that the buckets remain
rectangular even after merging. Figure 5.5(a) shows a 2D histogram with the key axis

being chosen first during construction. Two buckets in Figure 5.5(a) are selected for

CHAPTER 5. INCREMENTAL MAINTENANCE OF XML SUMMARIES 93

Keys Keys

! T

» »
-

Vaues Vaues

(@) A 2D Histogram (b) Merged buckets

Figure 5.5: 2D Histograms - Construction and Merge

merging (darkened rectangles) — both buckets have the same boundaries on the key axis.

Figure 5.5(b) shows the histogram after the buckets have been merged.

5.4 Experimental Evaluation

5.4.1 Experimental Setup

We carried out a detailed evaluation of the IMAX approach on synthetically generated
IMDB data and also on a subset of DBLP data available from [18]. All experiments were
performed on a Compaq ES45 dual-processor machine with 1.25 GHz and 16 GB memory.
For ease of presentation, we classify the types of insertions into: (i) Append only, and (ii)

Random insertions.

Memory Budget

The memory budget for the summary depends on the number of types in the schema
and the number of buckets allocated for structural histograms and value histograms.
All experiments in this section were performed with a minimum of 5 buckets for each
structural histogram and 100 buckets for each value histogram — translating to about 5KB

of memory, and a maximum of 30 structural histogram buckets and 500 value histogram

CHAPTER 5. INCREMENTAL MAINTENANCE OF XML SUMMARIES 94

buckets — translating to about 23 KB of memory. Note that the value histograms are 2D
value histograms requiring 5 integers per buckets (4 integers to identify the boundaries and
1 to store the count). Also, schema fragments were used in the experiments, which were

smaller than the full Schema and encompassed only the types required for the updates.

Threshold Factor

The reorganization threshold of histogram H; is set as T; = t % f; where f; is the equi-
depth bucket frequency of histogram H;, and ¢ is a user-specified threshold factor. In our

experiments, the threshold factor was set to 2.5.

Metrics

Our primary performance metric is to compare how close the IMAX incrementally-
generated summary is with respect to the recomputed-from-scratch summary. For each

affected histogram, this is quantitatively captured by s defined as follows:

[/L (IMAX) — Zi\il(EStRecomputed7E5tIJ\JAX)2

totalCardinality

where ¢ = 1 to IV covers the total range of values in the histogram, Fstrecomputed 15
the estimate of value 7 from the histogram computed from scratch, and Est;yax is the
estimate computed from IMAX. The totalCardinality refers to the overall occupancy of
the histogram.

To quantitatively establish that there is indeed a significant difference between the
updated document and the original document, we also compute fi,,se between the currently
computed-from-scratch summary and the original summary (i.e., before any updates were

received), as shown below:

m (OR]G]NAL) _ SN (Estrecomputea—Estoricinar)?

totalCardinality

While the above metrics measure the accuracy of IMAX in the face of significant
updates, our next metric aims to measure its efficiency. This is done by tracking the

number of recomputations incurred by IMAX during its maintenance process. This metric,

CHAPTER 5. INCREMENTAL MAINTENANCE OF XML SUMMARIES 95

called RECOM P, is defined as the number of recomputations divided by the total number

of insertions into the histograms, that is, RECOMP = 7 where r is the number of
recomputations and I is the total number of histogram insertions. RECOM P can be

calculated on a per-type basis or over all types in the insertions.

5.4.2 Append-Only Updates

Append-only updates occur in warehouse scenarios, where new documents are continu-
ously being added. The main complexity in append-only updates is in the reorganization
of the histograms since appends occur at the root of the document. For IMDB, we ap-

pended new Shows to the document, while for DBLP, we appended new ARTICLES.

Results. For the IMDB dataset, the p,,sc values for two types: Review and Aka are
shown in Figure 5.6. Note that the histograms correspond to the parent histograms of
these types. In this graph, the number associated with each algorithm in the legend (for
example, 10 in Review(10,IMAX)) refers to the number of structural histogram buckets.
Note that the number of value histogram buckets is not an issue here, since the location
condition does not involve a value predicate. For the updates of value histograms, the
Imse Values are shown for type Year in Figure 5.7. Here the legend denotes the number of
2D value histogram buckets.

The first point to note in Figures 5.6 and 5.7 is that the fi,,s values (which are shown
on a log-scale) for IMAX are very low, especially when compared with the s values
for the original parent histogram — in fact, there is close to two orders of magnitude
difference in their quality. This clearly indicates that (a) there is a substantial change
between the original document and the updated document, and (b) IMAX is able to track
these changes rather well for both the structural and the value histogram cases.

Next, the efficiency aspect is captured in the RECOMP numbers shown in Table 5.1.
It shows that only a very small fraction of recomputations are required to support the

IMAX incremental maintenance strategy.?

2Recomputation refers to the recomputation of the specific histogram, as mentioned in Section 5.3.3.

CHAPTER 5. INCREMENTAL MAINTENANCE OF XML SUMMARIES

100 ‘ ‘ ‘

Review (10, IMAX) —— |

"""""""""""""""""""""""" oo Aka (10, IMAX). -

[Review (10, Original) -------- 1
0} Aka (10, Original)

“‘mse

/ -

|y A Y
0.001 | O | | o ——
(| i ! 1 ! I h
L ' |
0.0001 | | |
16-05
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

No. of Updates

Figure 5.6: IMDB: ,,,. values for types Review and Aka

100

Year (;50' |MAX)T
Year (25, IMAX) -
. Year (50, Original) -

umse

0.01

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
No. of Updates

Figure 5.7: IMDB: p,,,. values for type Year

CHAPTER 5.

INCREMENTAL MAINTENANCE OF XML SUMMARIES

97

Type No. of Insertions | RECOMP
Show 5000 0

Review 170123 0.008%

Aka 9798 0.12%

Tv 2461 0.28%
Movie 2539 0.27%

Year 5000 0.02%
TOTAL | 189921 0.01%

Table 5.1: IMDB: RECOM P with Appends

Type No. of Insertions | RECOMP
ARTICLE | 10000 0

AUTHOR | 16174 0.04%

URL 9989 0.08%
TOTAL | 109359 0.06%

Table 5.2: DBLP: RECOMP with Appends

Similar results for the DBLP dataset are shown in Figure 5.8 and Table 5.2 for the
tmse and RECOM P metrics, respectively. Note that in Table 5.2, only a subset of types

updated have been enumerated, while the last line totals all updated types.

5.4.3 Random Insertions

Turning our attention to random insertions, the most important component here is the
location estimation. If a single update query results in updates in multiple locations,
then the cardinality estimation also comes into play. We divided insertions into two
categories: (i) Unique insertions, where a single update query results in an insertion at
a unique location in the document, and, (ii) Multiple insertions, where a single update
query results in insertions at multiple locations in the document.

For IMDB, we generated an Actor database consisting of information about actors.
Each ACTOR subtree consists of a NAME sub-element, and multiple PLAYED sub-elements.

Each PLAYED element may contain multiple EPISODE sub-elements. The update query

CHAPTER 5. INCREMENTAL MAINTENANCE OF XML SUMMARIES 98

0.1

" Author (10, IMAX)"]
77777777777777777777 smmmsmrnsinnasooo-AUer(10, Original) ~———

N }J(n (10, |MA><|§ rrrrrrrr |
Url (10, Origina

0.01: N [/\f[

0.001 | /\/\/ \/ m / 7 \/

0.0001 |

I‘lmse

1e-05 -

1e-06 [

1e-07 -

1le-08

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
No. of Updates

Figure 5.8: DBLP: u,,,. values for types Author and Url

reflects the addition of new information regarding the actor’s acting history. The insertions

were of the form:

update insert
<PLAYED>
<EPISODE>...</>
<EPISODE>...</>

</>

into /ACTOR[NAME="x"]

The number of Actors in the database was 1000 — that is 1000 unique values for the value
predicate involving Name. Note that this query has multiple levels of insertions where the
estimated id of Actor (from Algorithm 3) is used not only to update the parent histogram
of Played, but also to estimate the id of Played (from Algorithm 4). This id in turn is used
to determine the ids of the multiple Episodes.

For the DBLP dataset, we chose a set of journal articles from 134 different journals.

Each journal had articles published in that journal in a separate subtree. The insertions

CHAPTER 5. INCREMENTAL MAINTENANCE OF XML SUMMARIES 99

we chose reflects the addition of new articles into a database segregated on the basis
of journal names. Each article had multiple author elements along with several other
relevant information such as url, publisher, year, etc.

The insertions were of the form:

update insert
<article>
<author>..</>

<author>..</>

<year>..</>

<url>. .</>

</>

into /dblp/articles[journal="x"]

Additional Measures

Apart from the e and RECOM P metrics defined earlier, we utilize two additional

supporting measures here to help explain the results:

Location Estimation Accuracy: This metric measures the effectiveness of the location
estimation technique. It compares the estimated location against the actual location.
The location estimation is deemed to be correct if both the estimated as well as the
actual location both fall into the same histogram bucket. The location estimation

L
accuracy is defined to be: LEA = =2 where Looprect is the number of correctly

total
estimated locations and L. 1S the total number of locations.

Meount: Meount considers each histogram bucket and computes the deviation of the fre-
quency of the bucket from the actual frequency normalized to the average bucket
count. This metric helps in highlighting where the incorrect location estimations

are being distributed.

The metric [30] is defined as:

CHAPTER 5. INCREMENTAL MAINTENANCE OF XML SUMMARIES 100

Meount = %\/% Zf:1<f3i — Bl-.count)Q

where N denotes the number of values, 3 denotes the number of buckets, fp, denotes

the actual count of bucket B;, and B;.count denotes the current count of bucket B;.

Results. The location estimation accuracy for the IMDB and the DBLP datasets under
random insertions are shown in Figures 5.9 and 5.10, respectively, as a function of the
number of value histogram buckets. Each graph shows the location estimation accuracy
in two cases: (i) when the structural histogram contains only 5 buckets and, (ii) when
it contains 30 buckets. Further, both the 1D and 2D versions of IMAX are presented
in the graphs and we see that using 2D histograms clearly gives superior estimation
accuracy as compared to using 1D histograms. Note that in order to compare only the
location estimations, 2D histograms were used for cardinality estimation in both cases.
The equivalent cardinality estimation for the 1D case would contain only the square root
of the number of buckets in the value histogram. And so, the X-axis in the graph denotes
the total number of 2D histogram buckets utilized per type, while the equivalent number
in the 1D case would contain only the square root number of buckets. This is the tradeoff
between the space utilized and the accuracy. Note however, that increasing the number of
1D histogram buckets has no tmpact on the location estimation accuracy. This is because,
since no correlation is stored between the values and their corresponding node ids, the
location estimates are always chosen randomly from the entire range of node ids.

The pnse metric for the type Played is shown in Figure 5.11 for both the original
summary, as well as with the 1D and 2D versions of IMAX. Note that, again, there is
over two orders of magnitude difference in accuracy between the original summary and
both versions of IMAX.

An interesting observation in Figure 5.11 is that the 2D version of IMAX provides
only marginal accuracy gains over the 1D version. This is inspite of the fact that the
2D version is far superior in terms of location estimation as compared to the 1D version
(Figure 5.9). The reason is that the insertions are approximately uniformly distributed

over the whole document. So, what may not be the correctly estimated location for one

CHAPTER 5. INCREMENTAL MAINTENANCE OF XML SUMMARIES 101

1 T
Played (2D, 5 bkts) —+—
Episode (2D, 5 bkts) ===%-==
0.9 Played (2D, ke
Episode (2 =t
Played (1D, 5 bkts) --m-
Z 08 laged (1D, 30 bkts) ---e--- |
5 -
=3
g o7
©
s 9
4 06 .
c -
S B
S os
S 7
g g
£ 04 >
o
S g
b =
5 03 e ¥
B o o
[
w 0.2 B
|
0.1 o
. AP m s @ s Drmmimemmimimo ©—mmmimimimmo R it -
0
25 100 200 300 400 500 600

No. of Value Histogram Buckets

Figure 5.9: IMDB: LEA for Random Insertions with 1D and 2D Value Histograms

l T
__ AUTHOR (2D, 5 bkts) ——_4
T L “""""ARTICLE (2D, 5 bkts) —--x-—-
RS ARTICLE (2D, 30 bkts) —&
| AUTHOR (1D, 30 bkts) --m--
< 08 ARTICLE (1D, 30 bkts) ---o--- _]
(R
w
-
v i)
8 o7
©
g ea}
& 06
c
S
I
05 e N N
ks I E—
3 O
B
S04 f R .
o UL
2 L
S 03
S
g
I
0.2
0.1
0
100 200 300 400 500

No. of Value Histogram Buckets

Figure 5.10: DBLP: LEA for Random Insertions with 1D and 2D Value Histograms

CHAPTER 5. INCREMENTAL MAINTENANCE OF XML SUMMARIES 102

10

1 Played (20 30;500) —— |
R Played (1D, 30) -------
Played (Original, 30) --------]

0.1 fit’

[\ e a i
i i ‘MW W
0.01 WW W: W lx
i 1\“
ki

0.001 | ' i ‘

i

I‘lmse

0.0001

1e-05 -

1le-06

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
No. of Updates

Figure 5.11: IMDB: p,,,. values for type Played for Random Insertions

insert may very well turn out to be the correct location for some other insert, effectively
canceling out the effect of several wrong estimations. This is clear from Figure 5.12 which
plots the ficoun: metric for Played. The ficoun: values of both the 1D and 2D cases are close
together here.

However, if we consider insertions where the locations of the insertions are skewed,
the benefits of using 2D histograms become immediately apparent. Such insertions are
possible when, say, more recently added actors need to be updated more frequently than
others. Figure 5.13 shows the fi.oun: for such skewed insertions, and we observe nearly
an order of magnitude difference in the oy, values of the 1D and 2D versions. This
demonstrates the benefits of using 2D histograms. The s metric for the 2D version is
shown in Figure 5.14. There is a significant improvement in the p,,s. values of at least an
order of magnitude over the 1D version.

Similar behaviour is seen for type Episode which is nested under Played. When the
insertions are random, the difference between the p,,s. values for the 1D and 2D cases is
not significant, while in the case of skewed insertions, there is a big difference between
the 1D and 2D cases. This behaviour is shown in Figures 5.15 and 5.16. Note that there

is some interleaving of the lines since there are more recomputations which take place for

CHAPTER 5. INCREMENTAL MAINTENANCE OF XML SUMMARIES 103

oo Played (2D, 30,500 <]
Played (1D, 30) ------- 1
Played (Original, 30) --------)

HCOUH(

0.001 ¢

0.0001

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
No. of Updates

Figure 5.12: IMDB: i, values for type Played for Random Insertions

Type No. of RECOMP | No. of RECOMP
Insertions | (Random) | Insertions | (Skewed)
(Random) (Skewed)

Played 10000 0.03% 2000 0.05%

Episode | 104569 0.006% 20937 0.02%

TOTAL | 124569 0.01% 24937 0.02%

Table 5.3: IMDB: RECOMP with Random and Skewed Insertions

Episode, but the general trend of the difference between the p,,s values for the 1D and
2D cases can be seen clearly.

Moving on to the efficiency aspect of IMAX under random insertions, the number
of recomputations for both DBLP and IMDB, with and without skewed insertions, are
shown in Tables 5.3 and 5.4, respectively. The tables provide the specific measures for
only a subset of the types, but the totals in the last line are across all types.

Clearly, the number of recomputations required is a very small fraction of the total
number of insertions made in the document. Note that the number of recomputations
can be further reduced by increasing the reorganization threshold — trading off on the

accuracy of the histograms.

CHAPTER 5. INCREMENTAL MAINTENANCE OF XML SUMMARIES 104

10 ‘ ‘ ‘
Played (2D, 30, 500) ——]
Played (1D, 30) ------- 1
Played (Original, 30) --------]
! ittty ' """""""
jgl o1t m— Lo
/ 1
‘Yr
0.01
0.001
0 200 400 600 800 1000 1200 1400 1600 1800 2000

No. of Updates

Figure 5.13: IMDB: i, values for type Played for Skewed Insertions

10 T T T
Played (2D, 30, 500) ——]
Played (1D, 30) zzm===-]
Played (Original, 30) -~)
1 - ‘3
4 i -2
£ 01 e [/l \‘, A .
= v AV, ¥ :
0.01 | ‘
0.001
0 200 400 600 800 1000 1200 1400 1600 1800 2000

No. of Updates

Figure 5.14: IMDB: ,,,. values for type Played for Skewed Insertions

CHAPTER 5.

INCREMENTAL MAINTENANCE OF XML SUMMARIES

105

10 r U T) PP—— | ———— |
e Episode (2D, 30, 500) ——
Episode (1D, 30) ------- 1
Episode (Original, 30) --------
L)
[
0.1 Hpat-
O e
2 il
E H i .y
= | M E’w‘ g
b Nﬁ"% |y
i Tl AL,
i IR Lt
ii 2.‘ WW (i,
! i‘\ e W
: : Wl
[Do
0.001 | o L
/
0.0001
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

No. of Updates

Figure 5.15: IMDB: y,,,. values for type Episode for Random Insertions

10 Y . ‘ ‘
B _.. Episode {2D; 30, 500)- —===""1
» Episode (1D, 30) - - A
Episode (Original, 30) --------
1
ooy A Sl /]
0.01 ‘H‘.’ .1'1 i / 4
| V f
0.001
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Figure 5.16: IMDB:

No. of Updates

Imse values for type Episode for Skewed Insertions

CHAPTER 5. INCREMENTAL MAINTENANCE OF XML SUMMARIES 106

Type No. of RECOMP | No. of | RECOMP
Insertions | (Random) | Insertions | (Skewed)
(Random) (Skewed)

ARTICLE | 8000 0.02% 2000 0.05%

AUTHOR | 14624 0.1% 3843 0.28%

TOTAL | 88414 0.14% 22606 0.36%

Table 5.4: DBLP: RECOMP with Random and Skewed Insertions

Multiple Insertions. We consider here single update queries which spawn multiple
insertions. For example, adding a comment “Arnold Rocks” for all films starring Arnold
Schwarzenegger, or adding information templates for all shows satisfying certain criteria.
We experimented with multiple-insertion updates on the article database of DBLP. The
update involved adding a LINK for a given author denoting his/her URL. Such an update
would require multiple insertions of the tag link depending on the number of articles
authored by the author since the tag should be added to each such occurrence. The
DBLP document contained a total of 1165 authors, each with at least 10 articles spread

over more than 17000 articles. We performed insertions of the following form:

update insert
<link> .. </> into

/dblp/article[author="x"]

As with the unique insertions, two sets of insertions were performed: a set of skewed
insertions with around 20% of authors; and another set of insertions involving all authors.
The fi,,5e metric for both cases are shown in Figures 5.17 and 5.18, respectively. The utility
of 2D histograms is limited in the case of uniformly distributed insertions, but provides
considerable advantage when the insertions are skewed. This conclusion is supported by
the corresponding ficoun: metrics shown in Figures 5.19% and 5.20.

The efficiency of this set of insertions was quite good since no recomputations were

required in the case of skewed insertions, while a single recomputation was performed

3While Figures 5.17 and 5.19 may look very similar, they are not the same graph.

CHAPTER 5. INCREMENTAL MAINTENANCE OF XML SUMMARIES 107

1 : ‘ :
I LINK (2D, 30, 500y == 1
e = “"LINK (1D, 30)]
. LINK (ORIGINAL, 30) --------
0.1 SETRrmERmsmmeRea i
[T S
J~§jjf\\:‘_,_,‘
0.01
3
£
=
0.001
0.0001 |
1e-05
0 200 400 600 800 1000 1200

No. of Updates

Figure 5.17: DBLP: i, values for type LINK for Random Multiple Insertions

0.1 T
F LINK (2D, 30, 500) ——]
LINK (1D, 30} :z=====- 1
__..LINK-(original, 30)
0.01
4«,;""4;’ /\
P P—
/‘/?;/
2 0.001 /
3 S
[,/
-l/
0.0001 /
1e-05
0 50 100 150 200 250

No. of Updates

Figure 5.18: DBLP: u,,s. values for type LINK for Skewed Multiple Insertions

CHAPTER 5. INCREMENTAL MAINTENANCE OF XML SUMMARIES 108

1 T
LINK (2D, 30, 500) ——
LINK (1D, 30) ----==-]
,,,,,,,, oeonme------LINK (Original, 30) -
0.1 "/F/ :
£
15
=
0.01
0.001
0 200 400 600 800 1000 1200

No. of Updates

Figure 5.19: DBLP: ficoun: values for type LINK for Random Multiple Insertions

1
LINK (2D, 30, 500) —— |
LINK (1D, 30) -------]
LINK (Original, 30) --------]
0.1
€ o ///
8 y //
3 Y /
/
0.01
0.001
0 50 100 150 200 750

No. of Updates

Figure 5.20: DBLP: picoun: values for type LINK for Skewed Multiple Insertions

CHAPTER 5.

INCREMENTAL MAINTENANCE OF XML SUMMARIES

109

Append | Insert Skewed Multiple | Skewed
(IMDB) | (IMDB) | Inserts Inserts Multiple
(IMDB) | (DBLP) | Inserts (DBLP)
IMAX 97 7 122 190 86
Recompute | 8167 1437 669 5403 19181

Table 5.5: Average Time per Update (in ms)

when 2D histograms were used in the case of random insertions.

5.4.4 Estimation Accuracy and Timing

The previous sub-sections dealt with the histogram accuracy (for a subset of histograms)
and the number of recomputations required for various datasets. The results indicated
that IMAX is very accurate when it comes to tracking the updates with a very small
number of recomputations. In order to get a “global” picture of the accuracy and efficiency
of IMAX, we present numbers on the estimation accuracy and timing. Note that all results

are for the 30 structural histogram buckets and 500 value histogram buckets case.

1.25

Y
a
£ 1.2
o
3
o 1.15
o
e
o 11
=
S
E) 1.05
é 1 [l Recompute
s H IMAX
S 0.95 1
&

0.9
< > “ > o >

Se Fo € Jop LF
~ 9
AN NS %\Qg \QQ U)s\g,g
Datasets

Figure 5.21: Error Relative to Recomputed Summary for IMDB and DBLP Datasets

CHAPTER 5. INCREMENTAL MAINTENANCE OF XML SUMMARIES 110

Timing. Table 5.5 tabulates the average time per update for the different datasets.
We see here that IMAX is almost always at least an order of magnitude faster than the
recompute-from-scratch approach even when the occasional histogram recomputations
required are taken into account. There is not too much of variation in the timings of
IMAX across the datasets, since IMAX depends primarily on the size of the schema
and the number of recomputations is only secondary in importance (hence the slight
variations in timing), while the recomputation approach depends on the size of the data.
Consequently, the larger the size of the dataset, the longer it takes for the recomputation.
For example, for the DBLP Skewed Multiple Insertions case, the final size of the document
was around 19MB, while for the IMDB Inserts case, the final size was around 4MB.

Estimation Accuracy. We then generated a query workload of around 300 queries with
both branching path expressions without value predicates (around 15% of the workload),
as well as path expressions with at least one and a maximum of two value predicates for
each of the datasets. For each query workload, we computed the average relative error
(ARE) in estimation using the IMAX summary as well as the recomputed-from-scratch
summary. Figure 5.21 shows the ARE of IMAX relative to that of the recomputed-from-
scratch summary. The results indicate that the quality of the IMAX summary is almost

as good as that of the recomputed summary.

5.5 Conclusions

In this chapter, we introduced IMAX, an algorithm for maintaining StatiX summaries in
the presence of updates to the base data. We proposed solutions for two important issues
which arise in the context of XML statistics maintenance: (i) estimating the location of
the update and (ii) estimating the ids of the update fragment. Both issues are important
because of the ordered data model of XML. We proposed the use of 2D histograms in
place of 1D histograms to substantially improve the location estimation accuracy. IMAX
utilizes histogram maintenance techniques from prior literature (modified suitably for 2D

histograms) in order to reduce the number of recomputations required to maintain the

CHAPTER 5. INCREMENTAL MAINTENANCE OF XML SUMMARIES 111

quality of the summary.

Our experimental evaluation spanned three different kinds of inserts: (i) Appends, (ii)
Inserts and (iii) Multiple Inserts. Using 2D histograms for location estimation resulted
in an order of magnitude improvement in the updated histogram accuracy in the case
of skewed inserts, while there was no significant difference between the 1D and 2D cases
in the case of random inserts. This was due to the fact that the wrong estimates could
cancel each other out since the insertions uniformly spanned all the histogram buckets.

The relative estimation accuracy of the updated summary with respect to the
recomputed-from-scratch summary was within 25% in the worst case and was within
1%-2% for most of the experiments. IMAX was shown to be highly efficient when com-
pared to the recompute-from-scratch approach — IMAX was usually at least an order of
magnitude faster.

In summary, IMAX provides an effective and efficient means of statistics maintenance

in the presence of updates to the data.

Chapter 6

A Cost-based XML-to-Relational
Storage System

6.1 Introduction

In this chapter, we study the impact of schema transformations and the query workload on
search strategies for finding efficient XML-to-relational mappings. Specifically, we develop
a framework for generating XML-to-relational mappings, which incorporates a compre-
hensive set of schema transformations and is capable of supporting different mapping
schemes such as ordered XML and schemaless content. Our framework, named FleXMap
(Flexible XML Mappings), represents an XML Schema through type constructors (see
Chapter 3) and uses this representation to define several schema transformations from
the existing literature. We also propose variations of these transformations that lead to a
more efficient search process, as well as new transformations that derive additional useful
configurations.

FleXMap is built on top of the LegoDB prototype [8] and improves on it in several
ways. Using FleXMap, a larger space of relational configurations, including those consid-
ered by LegoDB, is explored, leading to a final storage design that is much more efficient
than those derived by LegoDB.Here, we describe a series of greedy algorithms that we have

experimented with, and show how the choice of transformations impacts the search space

112

CHAPTER 6. A COST-BASED XML-TO-RELATIONAL STORAGE SYSTEM 113

of configurations. The algorithms differ in the number and type of transformations they
utilize. Intuitively, the size of the search space examined increases as the number/type of
transformations considered in the algorithms increase. Our empirical results demonstrate
that, in addition to deriving better quality configurations, algorithms that search a larger
space of configurations can sometimes converge faster. Further, we propose optimizations
that significantly speed up the search process with very little loss in the quality of the
selected relational configuration.

An important aspect of cost-based XML-to-relational mapping is evaluating the cost
of the input workload for each of the derived configurations. In order to compute precise
cost estimates, it is important that accurate statistics are available as transformations
are applied. Clearly, it is not practical to scan the base data for each new relational
configuration that is derived during the iterative search process. As discussed later in
this chapter, we address this issue by gathering statistics at the appropriate granularity

before the search starts; and deriving accurate statistics during the search process.

Organization. The rest of the chapter is organized as follows. In Section 6.2 we show
how to derive relational configurations from schema trees. In Section 6.3 the propagation
of statistics when transformations are applied as well as query translation are discussed.
In Section 6.4 we develop a series of greedy search algorithms and in Section 6.5 these
algorithms are evaluated. In Section 6.6 we propose optimizations to speed up the search

process and then conclude in Section 6.7.

6.2 From Schema Trees to Relational Configurations

6.2.1 Basic Mapping

Given a schema tree with annotated nodes, a relational configuration is derived as follows:

e If N is an annotation in the schema tree, then there is a relational table Ty cor-

responding to it. This table contains a key column and a parent_id column which

CHAPTER 6. A COST-BASED XML-TO-RELATIONAL STORAGE SYSTEM 114

points to the key column of the table corresponding to the closest named ancestor

of the current node, if it exists.

e If the subtree of the node annotated by N is a <simple type>, then T additionally

contains a column corresponding to that type to store its values.

e If N is the annotation of a node, then Ty contains as many additional columns as

the number of non-annotated children of NV that are of type <simple type>.

One of the main motivations of transforming the XML schema in the XML domain rather
than in the relational domain is that it is possible to exploit some of the syntactic infor-
mation inherent in the XML Schema constructs. For example, it is possible to know from
the XML Schema that a certain type is repeated multiple times and hence it would be
more efficient to store it in a separate table. Similarly, if a type is part of a union in the
schema, then we already know that there are potentially many null values in the column
corresponding to that type. We make use of this knowledge in framing the following two

additional rules for deriving a relational configuration from the given schema.

e Repeated types are stored in a separate table. The alternatives would be to: (i) store
each occurrence of the repetition as separate columns in its parent table leading to
an artificial upper bound on the number of repeats, or, (ii) store all occurrences of
the repetition in the same column by duplicating the values in the rest of the tuple

leading to wasted space (as well as increased complexity for updates).

e Types which are part of a union are stored in a separate table. This rule avoids

nulls in the parent table.

The relational configuration corresponding to the schema tree in Figure 6.1 for the
Director subtree is shown in Figure 6.2. Note that the above rules form just one possible
set of rules. It is possible to frame a different set of rules — for example, we could allow

components of a union to be inlined into the parent, but pay the cost of null values.

CHAPTER 6. A COST-BASED XMUL-TO-RELATIONAL STORAGE SYSTEM

115

DI RECTOR (Director)

|
o

NAME (Name)

DI RECTED (Directed)

(Year) YEAR | NFO(Info)

Figure 6.1: (Partial) Schema Tree for the IMDB Schema

Table
Table

Table
Table

Table
Table

Figure 6.2: Relational Schema for the (partial) Schema Tree

Director [director_key INT, parent_id INT]

Name [Name_key INT, NAME VARCHAR (100),
parent_director_id INT]

Directed [Directed_key INT, parent_director_id]

Title [Title_key INT, TITLE VARCHAR (100),
parent_directed_id INT]

Year [Year_key INT, YEAR, parent_directed_id INT]

Info [Info_key INT, INFO VARCHAR (100),
parent_directed_id INT]

CHAPTER 6. A COST-BASED XML-TO-RELATIONAL STORAGE SYSTEM 116

6.2.2 Supporting Additional Features of XML Schema

The current implementation of FleXMap supports the basic features of XML Schema, but
can be extended to support other features by simply adding the appropriate rules. For

example:

Ordered XML: In order to support ordered XML, one or more additional columns to
store the ordinal of a column could be incorporated into each of the relational tables
[68]. Hence the basic mapping would include the addition of another column for the

ordinal.

Mixed Content: A simple way to handle mixed content is to have one column for all
the text content and additional columns (or tables) for each of the tagged contents.
Another option is to treat the whole content as a CLOB and assign a single column

to it.

It is also possible to support different storage schemes to a limited extent. For example,
by introducing an “ANYTYPE” constructor, we can define a rule which maps annotated

nodes of that type to a ternary relation (edge table) [25].

6.2.3 Schema Transformations and Relational Configurations

The previous section listed the rules for the translation of a given XML schema tree into
a relational configuration. In this section, we give examples to show how several schema
transformations defined in Chapter 3 (such as inline/outline, type split/merge, union
distribution/factorization, repetition split/merge) help in deriving a variety of different

relational configurations.

Inline and Outline

Clearly, inlining a node which is a simple type corresponds to including a separate column
for it in the table of its parent (assuming that the parent is outlined). Conversely, outlining

a type implies that a separate table is created for it.

CHAPTER 6. A COST-BASED XML-TO-RELATIONAL STORAGE SYSTEM

117

Table
Table

Table
Table

Table

DI RECTOR(Director)

|
Pt

NAME (Name)

DI RECTED (Directed)

(Title) \, T

N

YEAR I NFO

Figure 6.3: A Subset of Annotations

Director [Director_key INT, parent_id INT]
Name [Name_key INT, NAME VARCHAR (100),

parent_Director_id INT]

Directed [Directed_key INT, parent_Director_id INT]
Title [Title_key INT, TITLE VARCHAR (100),

parent_Directed_id INT]

T [T_key INT, YEAR INT, INFO VARCHAR (100),

parent_Directed_id INT]

Figure 6.4: Relational Schema with Annotation “T”

CHAPTER 6. A COST-BASED XML-TO-RELATIONAL STORAGE SYSTEM 118

Inline and outline may also be used to group elements together. Consider Figure 6.3
in which introducing the annotation 7" and removing annotations Year and Info results
in the new relational schema shown in Figure 6.4. This configuration groups Year and Info
together in a single table.

Since any node in the schema tree can be inlined/outlined, it is possible to generate
2™ number of different configurations, where n is the number of nodes in the schema
tree, with just the inline and outline operations. However, grouping of elements may not
be a useful transformation since much of its functionality can be subsumed by relational
schema design tools which support vertical partitioning as one of the schema optimizations

(e.g., Oracle’s Designer 2000).

Type Split/Merge

We refer to a type as shared when it has distinct annotated parents. In the example
shown below, the type Title is shared by the types Show and Directed. Consequently, the
table corresponding to Title would contain a parent_id column which contains key values
from both Directed as well as Show — hence the parent_id column is not a foreign key. By
splitting and renaming the type Title to STitle and DTitle, a relational configuration is
derived where a separate table is created for each type of title.

define type Show { element SHOW {type Title, (type Tv | type Movie) }}

define type Director { element DIRECTOR {type Title, type Directed }}

define type Title { element TITLE {xsd:string }}

Type split Title —

define type Show { element SHOW {type STitle, (type Tv | type Movie) }}
define type Director { element DIRECTOR {type DTitle, type Directed }}
define type STitle { element TITLE {xsd:string }}

define type DTitle { element TITLE {xsd:string }}

Translated to —

CHAPTER 6. A COST-BASED XML-TO-RELATIONAL STORAGE SYSTEM 119

Table Show [Show_key INT, IMDB_parent_id INT]

Table Director [Director_key INT, IMDB_parent_id INT]

Table DTitle [DTitle_key INT, DTitle_TITLE VARCHAR (100),
Directed_parent_id INT]

Table STitle [STitle_key INT, STitle_TITLE VARCHAR (100),

Show_parent_id INT]

6.2.4 Structural Transformations

We now describe how structure changing transformations (including those defined in

Chapter 3) can be utilized to derive useful relational configurations.

Commutativity and Associativity

Two basic structure-altering operations that we consider are: commutativity and asso-
ciativity. Associativity is used to group different types into the same relational table.
Consider, for example, the type Directed shown in Figure 6.5. The first tree in this figure
yields a relational schema in which the Year and Info of Directed are stored in a single table
called Year_Info. We can change this grouping by applying associativity as shown in the
second tree and obtaining a relational schema in which Title and Year appear in a single
table called Title_Year.
DI RECTED (Directed) DI RECTED (Directed)

‘ - ‘

/ | \, (Year_Info) _ | T

y (Title_Year) | NFO

N /N

YEAR | NFO
TITLE YEAR

Figure 6.5: Applying Associativity

Commutativity by itself does not give rise to different relational mappings®, but when

'Note that commuting the children of a node no longer retains the original order of the XML schema.

CHAPTER 6. A COST-BASED XML-TO-RELATIONAL STORAGE SYSTEM 120

combined with associativity may generate mappings different from those considered in
the existing literature. For example, in Figure 6.5, by first commuting Year and Info and
then applying associativity, we get a configuration in which Title and Info are stored in
the same relation.

As with inline and outline, much of the functionality of these two operations could be

taken over by a relational schema optimizing tool which does vertical partitioning.

Union Distribution/Factorization

We utilize union distribution in order to separate the components of a union into different
tables. The following example shows how to use a combination of union distribution,

outline and type split to derive a useful relational configuration:

define type Show { element SHOW {type Title, (type TV | type Movie) }}

Distribute Union —

define type TVShow { element SHOW {type TVTitle, type Tv }}

define type MovieShow { element SHOW {type MovieTitle, type Movie }}

Inline —

define type TVShow {
element SHOW {element TITLE { xsd:string }, element TV { xsd:string } }}
define type MovieShow {

element SHOW {element TITLE { xsd:string }, element MOVIE { xsd:string }}

Translated to —

Table TVShow [TVShow_key INT, TVShow_TITLE VARCHAR (100),

TVShow_TV VARCHAR (100), IMDB_parent_id INT]

CHAPTER 6. A COST-BASED XML-TO-RELATIONAL STORAGE SYSTEM 121

Table MovieShow [MovieShow_key INT, MovieShow_TITLE VARCHAR (100),

MovieShow_MOVIE VARCHAR (100), IMDB_parent_id INT]

The information about TV shows and movie shows, which previously may have been
stored in a single table called Show, is split into two separate tables — this is equivalent to
horizontally partitioning the Show table, i.e., one partition is created for TV shows and
another for movies.

Given a single table (that is, just the Show table with, say, two columns for Tv and
Movie), it would not be possible for any relational tool to do the horizontal partitioning.
But, by performing this transformation in the XML domain, we are able to generate this

configuration.

Repetition Split/Merge

According to the rules in Section 6.2, a repeated type is always stored in a separate
table. However, it is possible to inline some of these values by a transformation which
splits the repetition. For example:

define type Show {element SHOW {type Title, type Aka*} }

Split Repetition —

define type Show {element SHOW {type Title, type Akal?, type Aka2*} }

Inline —

define type Show {element SHOW

{element TITLE { xsd:string }, element AKA { xsd:string }7, type Aka2*} }

Translated To —

CHAPTER 6. A COST-BASED XML-TO-RELATIONAL STORAGE SYSTEM 122

Table Show [Show_key INT, Show_TITLE VARCHAR (100),
Show_AKA1 VARCHAR (100), IMDB_parent_id INT]
Table Aka2 [Aka_key INT, AKA VARCHAR (100), Show_parent_id INT]

By splitting the repetition Aka*, the new type Akal may be inlined into Show. Aka2* may
be split over and over again. In order to prevent an infinite number of splits, the number
of splits must be fixed during the search. Similar to union distribution and factorization,
repetition split and repetition merge also result in relational configurations which are
derivable only by looking at the XML schema.

Many other transforms such as simplifying unions [65] (a lossy transform? which en-
ables the inlining of one or more of the components of the union), etc. can be defined

similarly.

6.3 Evaluating Configurations

It is important that during the search process, precise cost estimates are computed for
the query workload under each of the derived configurations — this, in turn, requires
accurate statistics. Since it is not practical to scan the base data afresh for each new
relational configuration derived, it is crucial that these statistics be accurately propagated

as transformations are applied.

6.3.1 Collection and Propagation of Statistics

For ease of exposition, we describe the collection and propagation of statistics at the XML
Schema level, and later show how to translate these into relational statistics.

An important observation about the transformations defined in Chapter 3 is that
merge operations (type merge, union factorization, repetition merge, inline) preserve the
accuracy of the statistics, while split operations (type split, union distribution, repetition

split, outline) do not. Intuitively, if two types 77 and T, are merged into T, precise

2That is, the set of documents validated after the transform is applied is different from the set validated
before.

CHAPTER 6. A COST-BASED XML-TO-RELATIONAL STORAGE SYSTEM 123

statistics for 7' can be derived by summing/unioning the statistics of 7} and T,. However,
when a type T is split into T} and 75, in general it is not possible to determine precisely
the statistics for the new types. However, in some special cases, e.g., for the outline
transform, it may be possible to accurately infer the statistics of the new type from the
statistics of the parent type — this is true if the currently outlined type occurs exactly
once under its parent.

Consequently, in order to preserve the accuracy of the statistics, before the search pro-
cedure starts, all possible split operations are applied to the user XML schema. Statistics
are then collected for this fully decomposed schema. Subsequently, during the search
process, only merge operations are considered.

T_Year
5]key \ value \parent_id

define type Year {xsd:integer}

define stat Year {

ardinality {8 Cardinality of table T_Year
<dd_domain {30 to 38 —— 1= domain of column key

parent histogram Show {
bucket number {3}
bucke
fom 1 to 4 count 3,
from 4 to 7 count 3,
om 7to9count?2}

—=histogram for column parent_id

}

«alue domain {1990 to 2001} >———=range of values in column value
value histogram

bucket number {2}
bucke
rom 1990 to 1995 count 5,
om 1995 to 2001 count 3

———=histogram for column value

Figure 6.6: Statistics Translation

In our prototype implementation, we use StatiX (Chapter 4) to collect statistics. These
statistics are then translated into relational statistics. All components of the StatiX sum-
mary, such as the cardinality, parent histogram, value histogram, etc. have a counterpart

in the relational domain. Hence the statistics for each type in the StatiX summary can be

CHAPTER 6. A COST-BASED XML-TO-RELATIONAL STORAGE SYSTEM 124

translated to the table or column statistics for that type in the relational configuration.
The translation procedure is illustrated through the example in Figure 6.6.

The derived relational statistics are used as input to a relational optimizer (FleXMap
uses the optimizer described in [61]), which in turn computes cost estimates for the (trans-
lated) query workload (described in Section 6.3.2) under the current relational configura-

tion.

6.3.2 Query Translation

Input: @, S, R

Q 1s the XQuery query, S is the schema, R is the relational configuration

Q' = normalize the XQuery)

B = set of bind variables in)’

T = set of consistent types for the variables in B using &

SQLgereer = create SELECT clause using T.return and R

SQLpathjoin = create joins required for the path traversals using 7' fors and R
SQLyhere = create WHERE clause using SQ L pqthjoin, T-wheres and R
SQLfrom = create FROM clause using SQ Lsciect, SQ Lyheres and R

Algorithm 6: Query Translation

FleXMap currently supports XQuery queries which contain path expressions, value se-
lections and value joins. These queries translate to unnested “SELECT-FROM-WHERE”
SQL queries. A high-level algorithm of the query translation process is shown in Algo-
rithm 6. We describe the working of the algorithm through a detailed example. Consider
the XML Schema in Figure 6.7 and the corresponding relational configuration. The map-
ping between the type names in the XML Schema and the table/column names in the
relational configuration are also shown. Suppose we wish to query the names of directors

of all shows produced in the year 1996. Such a query would be expressed as follows:

CHAPTER 6. A COST-BASED XML-TO-RELATIONAL STORAGE SYSTEM 125

for $i in /IMDB/SHOW
$j in /IMDB/DIRECTOR
where $i/YEAR = 1996’
and $i/TITLE = $j/TITLE

return $j/NAME

Step 1 of Algorithm 6 normalizes the query. This is simply a process of converting the
given XQuery into a more simplified data structure for easier translation. The normalized
XQuery is divided into four parts: (i) the root, (ii) a set of fors which assign bind variables
to each step in the traversals, (iii) a set of wheres which specify the conditions in the
“where” clause of the XQuery and (iv) a set of returns which specifies the return values.

For the above example query, the normalization process yields the following:

root = IMDB
fors = [vO, IMDB, SHOW]
[vi, IMDB, DIRECTOR]
[v2, vO, TITLE]
[v3, vi1, TITLE]
[v4, v1, NAME]
[v5, vO, YEAR]
wheres = [XSelect (v5, ’1996°, ‘=’)]
[XJoin (v2,v3)]
return = [v4]

The bind variables in the normalized query are: {v0,01,02v3,04,05} (Step 2 in Al-
gorithm 6). Each of these bind variables can be assigned typenames by looking at the
schema (Step 3). For the schema in Figure 6.7, there is a single set of typenames which
are consistent, and that is: {v0 = E_IMDB, v1 = Director, v2 = ShowTitle, v3 = DirectorTitle,
v4 = DirectorName, v5 = ShowYear}. Note that it is possible to have more than one set of

consistent type assignments. For example, if Show was distributed into Showl and Show?2,

CHAPTER 6. A COST-BASED XML-TO-RELATIONAL STORAGE SYSTEM 126

Types in the Schema

E_IMDB — Outlined

Show — Outlined

Director — Outlined

Tv — Outlined

Movie — Outlined

DirectorName — Inlined into Director
DrectorTitle — Inlined into Director
ShowTitle — Inlined into Show
ShowYear — Inlined into Show

define type E_IMDB { element IMDB { type Show*, type Director* }
define type Show { element SHOW {
element TITLE { xsd:string }, element YEAR { xsd:integer },
(type Tv | type Movie) }}
define type Director { element DIRECTOR
{element NAME { xsd:string }, element TITLE { xsd:string } }}
define type Tv { element TV {xsd:string } }
define type Movie { element MOVIE {xsd:string } }

The Relational configuration

Table E_IMDB [IMDB_Key INT, doc_name VARCHAR (100)]
Table Show [Show_Key INT, SHOW_TITLE VARCHAR (100),
SHOW_YEAR INT, IMDB_parent_id INT]
Table Director [Director_Key INT, DIRECTOR_NAME VARCHAR (100),
DIRECTOR_TITLE VARCHAR (100),
IMDB_parent_id INT]
Table Tv [Tv_Key INT, Tv_TV VARCHAR (100), Show_parent_id INT]
Table Movie [Movie_Key INT, Movie_MOVIE VARCHAR (100),
Show_parent_id INT]

Mapping between type name and table/column

E_IMDB — E_IMDB, IMDB Key

Show — Show, Show Key

Director — Director, Director Key

Tv — Tv, TvKey

Movie — Movie, Movie Key

DirectorName — Director, DIRECTOR_NAME
DirectorTitle — Director, DIRECTOR_TITLE
ShowTitle — Show, SHOW_TITLE

ShowYear — Show, SHOW_YEAR

Figure 6.7: The IMDB Schema and its relational configuration

CHAPTER 6. A COST-BASED XML-TO-RELATIONAL STORAGE SYSTEM 127

then there would be two sets of consistent type assignments, one with Showl and one with
Show?2.

Once the type assignments are made, we now construct the SELECT, FROM and
WHERE clauses of the SQL query using the mapping between the type names and the
table/column names. We first construct the SELECT clause (Step 4) by looking at
the returns in the normalized XQuery. In this case, there is a single return, v4 which
corresponds to DirectorName whose table/column is Director, DIRECTOR.NAME. Hence
SQL.SELECT = Director. DIRECTOR_NAME.

Next, we construct the WHERE clause of the SQL query (Steps 5 and 6). There are
two kinds of conditions to take care of, the joins or selection predicates in the wheres of
the normalized XQuery and the path joins corresponding to the traversals in the XQuery.
In order to construct the path joins, we simply have to consider each of the location steps
and if the two types corresponding to the location step are in different tables, then we con-
nect the two with a join of the parent_id and key columns. For our example, there are only
two path joins: one between Show and E_IMDB and another between Director and E_IMDB.
All other types in the query are inlined into their parents and hence do not need to have
a path join. So the SQL.pathjoins = {Director.IMDB parent_id = E_IMDB.IMDB Key,
Show.IMDB_parent_id = E_IMDB.IMDB Key}. Then we construct the joins corresponding
to the wheres in the normalized XQuery. The X Select predicate is translated into
{Show.SHOW_YEAR = 1996} and the X Join predicate is translated into {Show.SHOW_TITLE
= Director .DIRECTOR.TITLE}. Combining both the path joins and the regular
joins, we get SQL.WHERE = {Show.SHOW.TITLE = Director.DIRECTOR_TITLE,
Show.SHOW_YEAR = 1996, Director.Director_parent_id = E_IMDB.IMDB Key,
Show.Show_parent_id = E_IMDB.IMDB Key }

Combining all the tables in the SELECT and the WHERE clauses, we construct the
FROM clause (Step 7). SQL.FROM = {E_IMDB, Show, Director}. The XQuery query

now corresponds to the following SQL query:

CHAPTER 6. A COST-BASED XML-TO-RELATIONAL STORAGE SYSTEM 128

SELECT Director .DIRECTOR_NAME

FROM Director, Show, E_IMDB

WHERE Show.SHOW_TITLE = Director.DIRECTOR_TITLE
AND Show.SHOW_YEAR = ‘1996’

AND Show.Show_parent_id = E_IMDB.IMDB Key

AND Director.Director_parent_id = E_IMDB.IMDB Key

6.4 Search Algorithms

Clearly, the search space of relational configurations is huge. Considering just inline and
outline of elements as the allowed transformations, the number of possible relational con-
figurations is exponential in the number of elements in the schema. Utilizing a greedy
algorithm cuts this space down from O(2") to O(n?). However, adding the other trans-
formations such as union distribution bloats up the search space further. But, by defining
more powerful transformations which subsume other transformations, we can ensure that
even this larger search space can be searched efficiently. This is discussed in Section 6.4.3.

We next describe three greedy algorithms that we have implemented using our frame-
work. They differ in the choice of transformations that are selected and applied at each
iteration of the search.

First, consider Algorithm 7, which describes a simple greedy algorithm — similar to
the algorithm described in [8]. It takes as input a query workload and the initial schema
(with statistics). At each iteration, the transform that results in the best quality relational
configuration (that is, the configuration with minimum cost) is chosen and applied to the
schema (lines 5 through 19). The conversion from the transformed schema to the relational
configuration (line 11) follows the rules set out in Section 6.2. The algorithm terminates
when no transform can be found which improves the quality of the configuration.

Though this algorithm is simple, it is also very flexible. This flexibility is achieved
by varying the strategies to select applicable transformations at each iteration (function
applicableTrans forms in line 8). In the experiments described in [8], only inline and

outline were considered as the applicable transformations and the utility of the other

CHAPTER 6. A COST-BASED XML-TO-RELATIONAL STORAGE SYSTEM 129

1: Input: queryWkld, S {Query workload and Initial Schema}
2: prevMinCost «— INFINITY

3: rel_schema <« convertToRelConfig(S, queryW kld)

4: minCost < COST (rel_schema)

5: while minCost < prevMinCost do

6: S« S {Make a copy of the schema}

7. prevMinCost < minCost

8: transforms < applicableTransforms(S’)

9: for all T in transforms do
10: S" «— Apply T to &' {S' is preserved without change}
11: rel_schema < convertToRelConfig(S”, queryWkld)
12: Cost «— COST (rel_schema)
13: if C'ost < minCost then
14: minCost «— Cost
15: minTransform «— T
16: end if
17 end for

18: 8§ « Apply minTransform to S {The min. cost transform is applied}
19: end while

Algorithm 7: Greedy Algorithm

transformations (e.g., union distribution and repetition split) were shown independently.
Below, we describe variations to the basic greedy algorithm that allow for a richer set of
transformations.

As discussed in Section 6.3, it is important to perform all splits and then the merges
on the schema to preserve the accuracy of statistics. It is worth pointing out that fixing
this order is also important to avoid re-generating the same relational configuration in
different iterations of the search. In the rest of the chapter, we assume that the starting
schema for all search algorithms is the fully decomposed schema and only merge operations

are applied during the greedy iterations.

6.4.1 InlineGreedy

The first variation we consider is InlineGreedy, which only allows inline transformations.
Note that InlineGreedy differs from the algorithm experimentally evaluated in [8], which
we term InlineUser, in the choice of starting schema: InlineGreedy starts with the fully

decomposed schema whereas InlineUser starts with the original user schema.

CHAPTER 6. A COST-BASED XML-TO-RELATIONAL STORAGE SYSTEM 130

6.4.2 ShallowGreedy: Adding Transforms

The ShallowGreedy algorithm defines the function applicableTransforms in Algorithm
7, to return all the applicable merge transforms. Because it follows the transformation
dependencies that result from the notion of syntactic equality (see Definition 3.1), it only

performs single-level or shallow merges.

6.4.3 DeepGreedy: Deep merges

The notion of syntactic equality, however, can be too restrictive for effective exploration

of the search space. For example consider the following (partial) IMDB schema:

define type Show {type Showl | type Show2}
define type Showl { element SHOW { type Titlel, type Yearl, type TV }}
define type Show2 { element SHOW { type Title2, type Year2, type Movie }}

Unless a type merge of Titlel and Title2 and a type merge of Yearl and Year2 take place,
we cannot factorize the union of Showl | Show2. However, in a run of ShallowGreedy, these
two type merges by themselves may not reduce the cost, but taken in conjunction with
the union merge would make a substantial impact. If that is the case, ShallowGreedy
is handicapped by the fact that a union merge will never be applied since the two type
merges will not be chosen by the algorithm. In order to overcome this problem, we design
a new algorithm called DeepGreedy, which we describe below.

Before we proceed to describe the DeepGreedy algorithm, we first introduce the notions
of Valid Transforms and Logical Equivalence. The set of valid transformations for a given

schema tree S is a subset of all the applicable transformations in S.

Definition 6.1 Logical Equivalence: Two types Ty and Ty are logically equivalent under
a set V' of valid transforms, denoted by T ~y T, if they can be made syntactically equal

after applying a sequence of valid transforms from V.

The following example illustrates this concept. Let V= {Inline};

CHAPTER 6. A COST-BASED XML-TO-RELATIONAL STORAGE SYSTEM 131

t1:= E(TITLE, S(string, —),Title;), and ty := E(TITLE, S(string,—), Titles). Note
that ¢; and ¢y are not syntactically equal since their annotations do not match. However,
they are logically equivalent: by inlining them (i.e., removing the annotations T'itle; and
Titles), they can be made syntactically equal. Thus, we say that ¢; and ¢, are logically
equivalent under the set {Inline}.

Now, consider two types T; and T; where T; := E(l,t1,a1) and T := E(l, t2, a2) with
t1 and ¢y as defined above. Under syntactic equality, 7; and 7} would not be identified as
candidates for type merge. However, if we relax the criteria to logical equivalence with
(say) V = {TypeMerge}, then it is possible to identify the potential type merge of T;
and T;. Thus, several transforms which may never be considered by ShallowGreedy can
be identified as candidates, provided the necessary operations can be fired to enable the
transform. That is, if T; and 7} are identified as a potential type merge, then to perform
this type merge, t; and t, are recursively type merged in order to enable the type merge of
T; and T}. Extending the above concept, we can enlarge the set of valid transforms V' to
contain all the merge transforms which can be fired recursively to enable other transforms.

DeepGreedy allows the same transforms as ShallowGreedy, ezcept that potential trans-
forms are identified not by syntactic equality, but by logical equivalence, with the set of
valid transforms containing all the merge operations (including inline). This allows Deep-
Greedy to perform deep merges. Note that additional variations of the search algorithms

are possible, e.g., by restricting the set of valid transforms.

6.5 Performance Evaluation

In this section we present a performance evaluation of the three algorithms proposed in this
chapter: InlineGreedy, ShallowGreedy and DeepGreedy. The purpose of this evaluation
is twofold: (i) to analyze the relative performance of the algorithms on different kinds of
query workloads, and, (ii) to establish the competitiveness of the proposed algorithms.
We performed experiments on both the synthetically generated IMDB dataset as well as a
subset of the DBLP dataset available from [18]. We used a Pentium IV, 2.4GHz machine

with 1GB of main memory, running Redhat 8.0, for all experiments.

CHAPTER 6. A COST-BASED XML-TO-RELATIONAL STORAGE SYSTEM 132

6.5.1 Query Workloads

We evaluated each of the algorithms on several query workloads based on: (1) the efficiency
of the derived relational configuration, and (2) the efficiency of the search algorithm.
Note that the latter is the same as the number of distinct configurations seen by the
algorithm, and also the number of distinct optimizer invocations since each iteration
involves constructing a new configuration and evaluating its quality using the optimizer.

From the discussion of the proposed algorithms, note that the behavior of each al-
gorithm on a given query depends upon whether the query benefits more from merge
transformations or from split transformations. If the query benefits more from split,
then neither DeepGreedy nor ShallowGreedy is expected to perform much better than
InlineGreedy.

As such, we considered the following two kinds of queries: S-Queries which are
expected to derive benefit from split transformations (Type Split, Union Distribution
and Repetition Split), and M-Queries which are expected to derive benefit from merge
operations (Type Merge, Union Factorization and Repetition Merge).

S-Queries typically involve simple lookup. For example:
SQ1: for $i in /IMDB/SHOW

where $i/TV/CHANNEL = 9
return $i/TITLE

SQ2: for $i in /IMDB/DIRECTOR
where $i/DIRECTED/YEAR = 1994

return $i/NAME
Query SQ1 is specific about the Title that it wants. Hence it would benefit from a

type split of Title. Moreover, it also specifies that TV Titles only are to be returned, not
merely Show Titles. Hence a union distribution would be useful to isolate only TV Titles.
Similarly, query SQ2 would benefit from isolating Director Names from Actor Names,
and Directed Year from all other Years. Such splits would help make the corresponding
tables smaller and hence lookup queries such as the above faster. The performance of the

proposed algorithms on S-query workloads is analysed in Section 6.5.2.

CHAPTER 6. A COST-BASED XML-TO-RELATIONAL STORAGE SYSTEM 133

On the other hand, M-queries typically query for subtrees in the schema which are
high up in the schema tree. When a split operation is performed on a type in the schema,
it propagates downwards towards the descendants. For example, a union distribution of
Show results in a type split of Review, which in turn leads to the type split of Review’s
children. Hence queries which ask subtrees near the top of the schema tree would benefit
from merge transforms. Similarly predicates which are “high up” in the tree would also
benefit from merges. For example:

MQl: for $i in /IMDB/SHOW, $j in $i/REVIEW
return $i/TITLE, $i/YEAR, $i/AKA,
$j/GRADE, $j/SOURCE,
$j/COMMENTS

MQ2: for $i in /IMDB/ACTOR, $j in /IMDB/SHOW
where $i/PLAYED/TITLE = $j/TITLE
return $j/TITLE, $j/YEAR, $j/AKA,
$j/REVIEW/SOURCE, $j/REVIEW/GRADE,
$j/REVIEW/COMMENTS, $i/NAME
Query MQ1 asks for full details of a Show without distinguishing between TV Shows and
Movie Shows. Since all attributes of Show which are common for TV as well as Movie Shows
are requested, this query is likely to benefit from a union factorization and repetition
merge. For example, a union factorization enables types like Title and Year to be inlined
into the same table (the table corresponding to Show). Thus the query may benefit from
reduced fragmentation. Similarly, query MQ2 would benefit from a union factorization of
Show as well as a repetition merge of Played (this is because the query does not distinguish
between the Titles of the first Played and the remaining Played). In both the above
queries, return values as well as predicates benefit from merge transformations.
Based on the two classes of queries described above, we constructed the following
workloads. Note that each workload consists of a set of queries as well as the associated
weights. Unless stated otherwise, all queries in a workload are assigned equal weights and

the weights sum up to 1.

CHAPTER 6. A COST-BASED XML-TO-RELATIONAL STORAGE SYSTEM 134

1. IMDB-S: contains 5 S-queries on the IMDB dataset.
2. DBLP-S: contains 5 S-queries on the DBLP dataset.
3. IMDB-M: contains 8 M-queries on the IMDB dataset.

4. DBLP-M: contains 5 M-queries on the DBLP dataset.

The performance of the proposed algorithms on S-query workloads and M-query work-
loads is studied in Sections 6.5.2 and 6.5.3, respectively.

There are many queries which cannot be conclusively classified as either an S-query or
an M-query. For example, an interesting variation of S-Queries is when the query contains
return values that do not benefit from splits, but has predicates which do. Similarly, for
M-Queries, adding highly selective predicates may reduce the utility of merge transforms.
For example, adding the highly selective predicate YEAR > 1990 (Year ranges from 1900
to 2000) to query MQ1 would significantly reduce the number of tuples.

Such queries thus benefit from split transformations as well as merge transformations.
However, in case the two types of transformations conflict, we need to analyze the balance
between the two. But considering arbitrary queries is unlikely to give much insight because
the impact of split transformations versus merge transformations would be different for
different queries. Thus, we chose to work instead on a workload containing a miz of S- and
M-queries, where the impact of split transformations versus the merge transformations
is controlled using a parameter. The performance of the proposed algorithms on such
workloads, as a function of the control parameter is studied in Section 6.5.4. Finally, in
Section 6.5.5 we demonstrate the competitiveness of the configurations derived using the

proposed algorithms against a set of baselines.

6.5.2 Performance on S-Query Workloads

We present results for the 2 workloads — IMDB-S and DBLP-S. The cost differences,
shown in Figure 6.8, of the derived configurations for the three algorithms, DeepGreedy,

ShallowGreedy and InlineGreedy, were within 1% of each other for the IMDB-S and

CHAPTER 6. A COST-BASED XML-TO-RELATIONAL STORAGE SYSTEM 135

DBLP-S workloads. Note that all relative costs shown in the graphs are with respect to
DeepGreedy, assuming that DeepGreedy has a cost of 1. This behaviour was expected
since not too many merge transforms were required to come up with an efficient relational
configuration. However, note that in both cases, DeepGreedy was still marginally better

than either ShallowGreedy or InlineGreedy.

1.10
1.00+

0.907

0.80
0.70
0.60
0.50+

Hl DG
— |HEsG
G

Relative Cost

0.40

0.30

0.20+

0.10+

0.00-
IMDB-S DBLP-S

S-Query Workloads

Figure 6.8: Cost of Workloads containing S-Queries

The relative number of configurations examined by each of the three algorithms Deep-
Greedy, ShallowGreedy and InlineGreedy, are shown in Figure 6.9 (again, DeepGreedy is
taken as the baseline). In terms of number of schemas examined, DeepGreedy examined
the largest number of configurations and InlineGreedy the least for the IMDB-S workload,
while DeepGreedy was the most efficient in the case of the DBLP-S workload. This differ-
ence in behaviour can be explained by the nature of the two schemas. IMDB is much more
deeply nested than DBLP resulting in a lot more options for merge transforms as com-
pared to inlines. DBLP is a relatively “flat” schema with only one or two levels of nesting
and hence has a relatively small number of merge transforms to consider. In the case of
the DBLP-S split workload, DeepGreedy performed only a few merge transforms (specif-
ically, repetition merge) which considerably reduced the number of subsequent inlines as

well, while InlineGreedy had a lot more inlines to consider to improve the quality. Hence

CHAPTER 6. A COST-BASED XML-TO-RELATIONAL STORAGE SYSTEM 136

H DG
L |MsG
G

Relative no. of Configurations Examined

IMDB-S DBLP-S
S-Query Workloads

Figure 6.9: No. of configurations Examined for Workloads Containing S-Queries

DeepGreedy was more efficient than InlineGreedy in the case of the DBLP schema. How-
ever, an interesting observation is with respect to ShallowGreedy on the DBLP schema —
it turned to be the most expensive algorithm. This was because of its inability to perform
the same merge transforms as DeepGreedy. Hence, it not only had to inspect all the
inlines (which were reduced in the case of DeepGreedy), but also continue to consider

several “wasteful” merge transforms which would not benefit the query workload.

6.5.3 Performance on M-Query Workloads

Figure 6.10 shows the relative costs of the 3 algorithms for the 2 workloads, IMDB-M
and DBLP-M. In the case of IMDB-M, DeepGreedy performs extremely well compared to
ShallowGreedy and InlineGreedy since DeepGreedy is capable of performing deep merges
which benefit the merge queries. But, the difference in the quality of configurations was
not very significant in the case of the DBLP-M workload, which can again be explained
due to the flatness of the DBLP schema and the lack of opportunities to perform the
merge transforms. However, note that InlineGreedy outputs configurations which are of
significantly lower quality than those output by DeepGreedy, indicating that whatever

merge transforms were considered by DeepGreedy were highly beneficial to the workload.

CHAPTER 6. A COST-BASED XML-TO-RELATIONAL STORAGE SYSTEM 137

1.80

1.60

Relative Cost

H DG
L |sG
G

IMDB-M DBLP-M
M-Query Workloads

Figure 6.10: Cost of Workloads Containing M-Queries

g 220

k=

€ 2.00-

b

%)

c

2

@

>

2

(3=

o

8 [

= [_ble
S 0.80- — |msc
e e
v

2 -

ks

[—

14

IMDB-M DBLP-M
M-Query Workloads

Figure 6.11: No. of configurations Examined for Workloads Containing M-Queries

CHAPTER 6. A COST-BASED XML-TO-RELATIONAL STORAGE SYSTEM 138

In terms of the number of configurations examined, DeepGreedy performed the best as
compared to ShallowGreedy and InlineGreedy for both the workloads. This might seem
counter-intuitive — since we would expect that DeepGreedy, which is capable of examin-
ing a superset of transformations as compared to ShallowGreedy and InlineGreedy, would
take longer to converge. However, this did not turn out to be the case, since DeepGreedy
picked up the cost saving recursive merges fairly early on in its run. Consequently, this
reduced the number of lower level merge and inline candidates in the subsequent itera-
tions. This enabled DeepGreedy to converge faster. By the same token, we would expect
ShallowGreedy to examine less number of configurations than InlineGreedy, but that was
not the case. This is because ShallowGreedy was not able to perform any major cost
saving merges since the “enabling” merges were never chosen individually. Hence, the
same set of merge transforms were being examined in every iteration without any benefit,
while InlineGreedy was not burdened with these candidate merges. But note that even
though InlineGreedy converged faster, it was mainly due to the lack of useful inlines as

reflected by the cost difference between InlineGreedy and ShallowGreedy.

6.5.4 Performance on Mixed Workloads

We now consider “mixed” workloads for both IMDB and DBLP — IMDB-MS (4 M-Queries
and 7 S-Queries) and DBLP-MS (5 M-Queries and 5 S-Queries).

In order to control the dominance of S-queries vs. M-queries in the workload, we use a
control parameter k € [0, 1] and give weight (1—k)/7 to each of the 7 S-queries and weight
(k)/4 to each of the 4 M-queries for the IMDB-MS workload and a weight of (1 — k)/5
and k/5 to each of the queries S- and M-queries in the DBLP workload, respectively.

We ran workload IMDB-MS with 3 different values of k£ ={0.1, 0.5, 0.9}. The cost of
the derived configurations for IMDB-MS are shown in Figure 6.12. Expectedly, when S-
Queries dominate, InlineGreedy performs quite competitively with DeepGreedy (with the
cost of the configuration output by InlineGreedy being within just 15% of that output by
DeepGreedy). But, as the influence of S-Queries reduce, the difference in costs increases

substantially.

CHAPTER 6. A COST-BASED XML-TO-RELATIONAL STORAGE SYSTEM 139

1.8

1.6

14 / /
12 ——

Relative Cost
=

0.8 m DG
¢ SG
0.6 v IG
0.4
0.2
0 T T T)
0.1 0.5 0.9

Value of k in the query mix

Figure 6.12: IMDB: Cost of Workloads Containing both M- and S-Queries

14-
131

12 ;/\
11

—_—
0.9 V/

0.84
0.7
0.6 DG
0.54 ¢ SG
0.4+ vIG
0.34
0.2
0.14

Relative no. of Configurations Examined

0.1 | 05 | 09
Value of k in the query mix

Figure 6.13: IMDB: No. of Configurations Examined for Workloads Containing M- and
S-Queries

CHAPTER 6. A COST-BASED XML-TO-RELATIONAL STORAGE SYSTEM 140

The number of configurations examined by all three algorithms are shown in Fig-
ure 6.13. DeepGreedy examines more configurations than InlineGreedy when S-Queries
dominate, but the gap is almost closed for the other cases.

Note that both ShallowGreedy and InlineGreedy examine more configurations for k =
0.5 than in the other two cases. This is due to the fact that when S-Queries dominate (k
= 0.1), cost-saving inlines are chosen earlier while when M-queries dominate (k = 0.9),
both algorithms soon run out of cost-saving transformations to apply. Hence for both

these cases, the algorithms converge faster.

14
13 ——
1.2
1.1

1 — o
0.9
0.8
0.7
0.6 e
0.5 * SG
0.4 v IG
0.3
0.2
0.1

0 \
0.1 0.5 0.9

Value of k in the query mix

3

Relative Cost

Figure 6.14: DBLP: Cost of Workloads Containing both M- and S-Queries

The relative costs of the configurations derived by DeepGreedy, ShallowGreedy and
InlineGreedy for the DBLP-MS workload with & ={0.1, 0.5, 0.9} are shown in Figure
6.14. In contrast to the IMDB-MS workload, InlineGreedy is not at all competitive with
DeepGreedy when S-Queries dominate. This is inspite of the fact that Figure 6.8 shows
that InlineGreedy can be very competitive with respect to DeepGreedy. A closer look at
the query workload revealed that in the case of the DBLP-MS workload, even though the
weight of the S-Queries was higher (with a combined weight of 0.9), the absolute costs of
a couple of M-Queries dominated the workload. That is, impact of the M-Queries had a

larger influence on the final cost than that of the S-Queries. And so, InlineGreedy was not

CHAPTER 6. A COST-BASED XML-TO-RELATIONAL STORAGE SYSTEM 141

N
N

\

<

=
(o)

=
o

!

Relative no. of Configurations Examined
=
N

1
m DG

0.8 * SG
06 /LS
0.4
0.2

0 ‘ ‘ ‘

0.1 05 0.9

Value of k in the query mix

Figure 6.15: DBLP: No. of Configurations Examined for Workloads Containing M- and
S-Queries

competitive with DeepGreedy. However, ShallowGreedy, which was highly competitive
with DeepGreedy in both the M- and S-Queries cases had configuration costs within 1%
of DeepGreedy.

The relative number of configurations for the DBLP-MS workload is shown in Figure
6.15. The trend of ShallowGreedy looking at a much larger number of configurations
continued. The reason was the same as before — there are a smaller number of merges to
consider because of the flat DBLP schema, but the merges that are considered by Deep-
Greedy considerably reduce the number of subsequent inlines. However, ShallowGreedy
is unable to perform all the merges that DeepGreedy performs and hence the number of

configurations examined by it remains large.

6.5.5 Comparison with Baselines

From the above sections, it is clear that except when the workload is dominated by S-
queries, DeepGreedy should be our algorithm of choice among the algorithms proposed in
this chapter. In this section we compare the quality of the relational configurations derived

using DeepGreedy with the following baselines, the first four of which are non-cost-based:

CHAPTER 6. A COST-BASED XML-TO-RELATIONAL STORAGE SYSTEM 142

1. Fully Decomposed, All Outlined (FDAO): Fully decompose the schema and

outline all its types.

2. Fully Decomposed, All Inlined (FDAT): Fully decompose the schema and inline

as many types as possible.

3. Fully Merged, All Outlined (FMAO): Retain the original schema and outline
all its types.

4. Fully Merged, All Inlined (FMAI): Inline as many types as possible in the

original schema.
5. InlineUser (IU): This is the same algorithm evaluated in [8].

6. Optimal (OPT): A lower bound on the optimal configuration for the workload
given a specific set of transformations. Since DeepGreedy gives configurations of
the best quality among the 3 algorithms evaluated, the algorithm to compute the
lower bound consisted of transforms available to DeepGreedy. We evaluated this
lower bound by considering each query in the workload individually and running
an ezhaustive search algorithm on the subset of types relevant to the query. Note
that such a search is possible only if the number of types involved is very small
since the number of possible relational configurations increases exponentially with
the number of types. The exhaustive search algorithm typically examined several

orders of magnitude more configurations than DeepGreedy.

We present results for two workloads, IMDB-MS and DBLP-MS which had a query
mix of S- and M-Queries corresponding to £ = 0.5.

The relative cost for each baseline is shown in Figure 6.16. As expected, none of
the non-cost-based baselines are competitive with DeepGreedy. Moreover, InlineUser
also compares unfavorably with DeepGreedy. Though InlineUser is good when there
are not many shared types, it performs poorly if the schema has a few types which are
shared or repeated or part of unions since there will not be too many types left to inline.

This is specifically the case with the DBLP schema since most of the types like Article,

CHAPTER 6. A COST-BASED XML-TO-RELATIONAL STORAGE SYSTEM 143

6
5.5
5
4.5
n 4
o
U35
)
= 3
s
g %0 EopT
2 W DG
§ FDAO
15 FDAI
1 [FmAO
B FMAI
0.5 G (Usen
0 S
IMDB-MS DBLP-MS

Query Workloads

Figure 6.16: Comparison of DeepGreedy with the Baselines and Inline (User)

Inproceedings, etc. share many common attributes.The figures for the lower bound on the
optimal configuration also show that DeepGreedy is within around 15% of the optimal for

the IMDB schema and within 20% of the optimal for the DBLP schema.

6.6 Optimizations

There are several different optimizations that can be done to speed up the search algo-

rithms. We propose a few of them here and outline their advantages and drawbacks.

6.6.1 Grouping Transformations Together

Recall that in DeepGreedy, in a given iteration, all applicable transformations are
evaluated and the best transformation is chosen. In the next iteration, all the remaining
applicable transformations are evaluated and the best one chosen (note that, when a
transformation is applied, that transformation may remove the possibility of a few other
transformations — for example, if a union factorization is performed, then, the type merges
which would have been valid transforms before the union factorization are now no longer

applicable). We found that in the runs of our algorithms, it was often the case that, in a

CHAPTER 6. A COST-BASED XML-TO-RELATIONAL STORAGE SYSTEM

144

Input: queryWkld, S
queryWkld is the Query workload and S is the Initial Schema

1:

,_.
@

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

prevMinCost «— INFINITY
rel_schema « convertToRelConfig(S, queryWkld)
minCost « COST (rel_schema)
while minCost < prevMinCost do
prevMinCost «— minCost
transforms < applicableTransforms(S)
sortedT'rans forms = SORT (trans forms)
for all T" in sortedI'ransforms do
if applicable(7") then
S — Apply T to S
{S is preserved without change}
rel_schema «+ convertToRelConfig(S’, queryWkld)
Cost «— COST (rel_schema)
if Cost < minCost then
minCost «— Cost
S <+ & {Retain the merge}
else
Goto step 5
end if
else
Goto step 5
end if
end for
end while

Algorithm 8: GroupGreedy Algorithm

CHAPTER 6. A COST-BASED XML-TO-RELATIONAL STORAGE SYSTEM 145

given iteration in which n transforms were applicable, if transformations T} to T,, were the
best n transformations in this order (that is, 77 gave the maximum decrease in cost and
T,, gave the minimum decrease), other transformations up to 7;, for some ¢ <= n, were
chosen in subsequent iterations. This being the case, grouping transformations 7} to T;
together has the potential to save several iterations. The number of transformations which
can be grouped together depends on two factors: (i) whether the next transformation
applied reduces the cost of the derived configuration further, and (ii) whether the next
transformation is applicable after the current transformation is applied. Using these
observations, we developed a variation of Algorithm 7, called GroupGreedy (Algorithm

8).

0.9+

0.8+

0.7

0.6

0.5

M oG
GG

0.4

0.3
0.2

0.17

Relative no. of Configurations Examined

IMDB-MS DBLP-MS
Query Workloads

Figure 6.17: No. of Configurations Examined by DeepGreedy and GroupGreedy

We tried this optimization for DeepGreedy on the IMDB-MS and DBLP-MS workloads
with £ = 0.5. The cost of the final configuration derived by GroupGreedy (GG) was within
1% of DeepGreedy while examining approximately only about one third the number of

configurations examined by DeepGreedy, as shown in Figure 6.17.

CHAPTER 6. A COST-BASED XML-TO-RELATIONAL STORAGE SYSTEM 146

6.6.2 Early Termination

Another plausible optimization is to stop the algorithm once the decrease in the esti-
mated cost goes below a small §. This would save several iterations which are costly to
perform, but do not give substantial decrease in cost. This optimization would be possi-
ble if the magnitude of decrease in cost is monotonic. However, during the course of our
experiments, we came across several workloads which did not exhibit this behavior. The
progress of DeepGreedy on such a workload, W, is shown in Figure 6.18.

1204

1101
100

901
80 \'\,

70 "~
601
50

N =
40 "~
301

207
10

Estimated Cost (sec)

123456 7 8 91011121314151617 18192021 2223242526
lterations

Figure 6.18: Progress of DeepGreedy on Workload W

Clearly, with an unfortunate value of d, the algorithm would terminate at iteration 7
and miss the big cost decrease at iteration 8. Thus, while this optimization would result
in improved execution times, the derived schema may not be as efficient as it could have

been, if the algorithm were allowed to run to completion.

6.6.3 Applying Only Profitable Transforms

Though it is possible to decompose the schema fully by performing all union distributions,
repetition splits and type splits, many of them may not be useful and so would simply

increase the number of types in the schema. This is especially true for M-Queries where

CHAPTER 6. A COST-BASED XML-TO-RELATIONAL STORAGE SYSTEM 147

many of the splits ultimately proved to be useless. Thus it would help if an apriori analysis
of the query workload and the statistics can be used to cut down on the number of split
transforms. This would reduce the number of combinations of merge transforms during
search, and result in faster execution times.

As an example of such a heuristic, consider a repetition split in the following snippet:

define type Show {element SHOW {type Title, type Review®}}

It may be beneficial to split Review® into Reviewl? and Review2* only if a majority of the
shows have exactly one review. Splitting Review in this way allows the inlining of the first
review thus giving rise to potential cost benefits. However, if it is known that most shows
have at least 10 reviews, then it is unlikely that inlining just one Review into Show would
yield benefits. Nor would splitting Review help if most shows had no reviews, but a small
number of shows had several reviews.

An interesting direction of future work would be to come up with heuristics based
on the statistics available for the XML Schema to decide whether or not to perform a

particular split operation.

6.6.4 Reducing the Search Space by Query Analysis

In order to compute our metric for the lower bound on the optimal, an exhaustive search
was performed on single queries. This was made possible because the number of types
relevant to the query was within reasonable limits. The same principle can be applied
for the greedy algorithms as well. If the queries in the workload are concentrated to one
particular part of the schema, then only those types need to be taken into consideration for
the search. Or if the queries in the workload can be partitioned such that each partition
has a disjoint set of types relevant to it, then the search can be performed separately for

each partition.

CHAPTER 6. A COST-BASED XML-TO-RELATIONAL STORAGE SYSTEM 148

6.7 Conclusions

In this chapter we introduced FleXMap, a cost-based system to derive relational storage
schemas for XML. FleXMap is built on top of LegoDB and significantly extends this
framework. In particular, we made the following contributions: (i) we studied the appli-
cability of the transformations under different semantics such as syntactic equality and
logical equivalence, the consequence of which was to derive more effective search algo-
rithms such as DeepGreedy, (ii) proposed a mechanism for propagating statistics when
a transformation is applied — this led to the conclusion that the schema has to be fully
decomposed before the search can take place, (iii) evaluated the relative effectiveness of
the algorithms DG, SG and IG under various types of query workloads as well as their
effectiveness as compared to some previous approaches, and (iv) proposed optimizations
to reduce the number of iterations in the greedy algorithms leading to an efficient new
algorithm called GroupGreedy.

Our experimental evaluation showed that DeepGreedy achieves the best relational
configurations overall, but the efficiency of the algorithm in finding that configuration
depends on the query workload. If the query workload consists mainly of S-Queries,
then InlineGreedy can achieve configuration quality which is close to that obtained by
DeepGreedy, but by examining fewer number of configurations — this was true in the
case of the IMDB dataset. In the case of predominantly M-Query workloads, not only did
DeepGreedy achieve the best relational configuration, but did so by examining much fewer
configurations than either ShallowGreedy or InlineGreedy. This was because the cost-
saving merges were made earlier in the search, thus reducing the number of configurations
which needed to be examined in subsequent iterations of the algorithm.

On an absolute scale, we compared the relational configuration output by DeepGreedy
against a lower bound on the optimal configuration and showed that DeepGreedy is within
15%-20% of this lower bound. In comparison to previous results (heuristic as well as cost-
based), we showed that DeepGreedy is far superior in the quality of configurations it
outputs.

We also proposed optimizations to speed up the search process. In particular, the

CHAPTER 6. A COST-BASED XML-TO-RELATIONAL STORAGE SYSTEM 149

GroupGreedy algorithm outputs configurations with cost within 1% of the configura-
tion output by DeepGreedy, but performs much more efficiently than DeepGreedy — the
number of configurations examined by GG is only about 20%-30% of the number of con-

figurations examined by DG.

Chapter 7

Conclusions and Future Work

In this thesis, we presented a set of three tools, namely, (i) StatiX, (ii) IMAX and, (iii)
FleXMap, to address the problems of XML statistics production, statistics maintenance
and document storage, respectively. The basis for our solutions was the presence of an
XML Schema and schema transformations.

We started off with StatiX, a framework for XML statistics collection and cardinal-
ity estimation. StatiX uses the XML Schema as the basis for statistics collection and
summarizes the collected statistics in histograms. These histograms capture the skew of
both the structure and values in the XML data. Several schema transformations can be
used to make the summary more accurate. StatiX can currently support cardinality es-
timation for branching path expressions with value predicates. From an implementation
view-point, statistics gathering for unambiguous schemas can piggy-back on validation,
facilitating the reuse of standard XML validators. Experimental evaluation of StatiX on
different data and query sets showed that highly accurate summaries can be built by
applying schema transformations, while the size of the summary remains moderate. The
summary size can be further reduced by a compression technique which eliminates some
of the unnecessary structural histograms.

We introduced IMAX, a system which extends the schema-based statistics framework
of the StatiX approach to incrementally handle updates to XML repositories. The novel

challenges in the design of IMAX included developing techniques for accurately estimating

150

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 151

both the locations and the sizes of updates, as well as for the maintenance of structural
histograms. To accurately estimate the location of updates, we extended the StatiX model
with 2D histograms that capture the correspondence between the value of an element and
its id. Our experiments to evaluate the utility of IMAX covered a variety of updates
and datasets, and indicated that the accuracy of estimation from the updated statistics
is very close to that obtained from the expensive brute-force option of re-computing the
statistics from scratch. Further, these benefits can be obtained quite efficiently, requiring
only rare recomputations of the summaries from the base data. In summary, IMAX makes
sustained and efficient query processing feasible even in real-world XML environments
whose contents are dynamically changing, which may become the norm in the coming
years.

Moving on to data storage, we described a framework for exploring the space of XML-
to-relational mappings and showed how schema transformations can be used to derive
relational configurations. These transformations encompass physical database design
strategies such as vertical and horizontal partitioning, through the use of inline/outline
and union distribution, respectively. Since the framework searches the space of config-
urations in the XML world, it can be used with any other backend as long as the rules
for translating the canonical schema are specified. We designed and implemented three
greedy algorithms and studied how the quality of the final configuration is influenced by
the transformations used and the query workload. We also proposed optimizations to
speed up the time taken by the search algorithm with little loss in the quality of the
final relational configuration. Experimental results show that our new algorithms pro-
vide significantly improved relational schemas as compared to those derived by previous

approaches in the literature.

7.1 Future Work

There are several directions to extend the work described in this thesis. Cardinality
estimation, which is currently limited to branching path expressions with value predicates

can be extended to encompass other constructs such as the “for” and “let” bindings in

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 152

XQuery. A direct consequence of extending the cardinality estimation is its impact on
statistics maintenance where more complex location components can be utilized in the
update queries.

Currently, StatiX provides a framework for statistics collection. This framework can
be effectively utilized to develop algorithms to build summaries based on a given memory
budget. Such an algorithm can take into account several different factors: (i) the necessity
of building structural histograms on certain types — we showed one minimization tech-
nique which removes the need for building structural histograms on several types, (ii) the
statistics associated with a given type — it is possible that a particular type is uniformly
distributed under its parent and does not require a structural histogram, and, conversely,
another type may require the allocation of a large number of buckets, and, (iii) the query
workload — a sample query workload can help in identifying useful transformations rele-
vant to the workload.

An interesting direction of future work for statistics maintenance is the use of a backup
summary. Currently, we have described the scenario where a single summary is being
maintained. However, it may be useful for a more detailed, and consequently, larger
summary to reside on disk. When updates are applied to the base data, both the smaller
“primary” summary as well as the larger “backup” summary are updated. The primary
summary is recomputed from the backup summary when its accuracy degrades. This
technique would avoid recomputations from the base data and improve the efficiency of
statistics maintenance.

Moving on to data storage, an important problem as yet unaddressed in the XML
storage literature — especially cost-based storage — is the case when the application’s
query workload and/or statistics undergoes a significant change. So far, storage design
has been considered to be a one-time operation. However, it may be necessary to update
the storage as and when the application characteristics undergo changes. If changes to
the backend configuration (in terms of the backend schema) are expensive to implement
(as is the case in the schema evolution of relational schemas), then alternatives such as

the appropriate set of views and indexes to be built have to be considered. The novelty of

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 153

performing schema evolution for XML-on-relational is that the cost-benefit tradeoff needs
to be taken into account in the XML domain through schema transformations (otherwise,
several XML-specific optimizations in both relational schema generation as well as query
translation may go unnoticed).

In closing, this thesis presented a toolkit for effectively supporting the highly popular

XML world-view on the underlying storage and processing engines.

References

[1]

8]

A. Aboulnaga, A.R. Alameldeen, and J.Naughton. Estimating the selectivity of XML
path expressions for internet scale applications. In Proceedings of the International

Conference on Very Large Data Bases (VLDB), 2001.
Amazon.com. http://www.amazon. com.

D. Barbosa, J. Freire, and A. Mendelzon. Information preservation in XML-to-

relational mappings. In Proceedings of the XML Database Symposium (XSym), 2004.

D. Barbosa, J. Freire, and A. Mendelzon. Designing information-preserving mapping
schemes for XML. In Proceedings of the International Conference on Very Large

Data Bases (VLDB), 2005.

D. Barbosa, A. Mendelzon, J. Keenleyside, and K. Lyons. ToXgene: An extensible
template-based data generator for XML. In Proceedings of the International Work-
shop on the Web and Databases (WebDB), 2002.

P. Bohannon, J. Freire, J. Haritsa, M. Ramanath, P. Roy, and J. Siméon. LegoDB:
Customizing relational storage for XML documents. In Proceedings of the Interna-

tional Conference on Very Large Data Bases (VLDB), 2002.

P. Bohannon, J. Freire, J. Haritsa, M. Ramanath, P. Roy, and J. Siméon. Bridging
the XML-relational divide with LegoDB: A demonstration. In Proceedings of the
IEEE International Conference on Data Engineering (ICDE), 2003.

P. Bohannon, J. Freire, P. Roy, and J. Siméon. From XML schema to relations:

154

REFERENCES 155

[10]

[11]

[12]

[13]

[14]

[15]

[17]

[18]

A cost-based approach to XML storage. In Proceedings of the IEEE International
Conference on Data Engineering (ICDE), 2002.

Caml language. http://caml.inria.fr/.
CDuce. http://www.cduce.org/.

Y. Chen, S. Davidson, C. Hara, and Y. Zheng. RRXS: Redundancy reducing XML
storage in relations. In Proceedings of the International Conference on Very Large

Data Bases (VLDB), 2003.

Y. Chen, S. Davidson, and Y. Zheng. Constraint preserving XML storage in relations.
In Proceedings of the International Workshop on the Web and Databases (WebDB),
2002.

Z. Chen, S. Chaudhuri, K. Shim, and Y. Wu. Storing XML (with XSD) in SQL
databases: Interplay of logical and physical designs. In Proceedings of the IEEE
International Conference on Data Engineering (ICDE), 2004.

Z. Chen, H.V. Jagadish, F. Korn, N. Koudas, S. Muthukrishnan, R.T. Ng, and D. Sri-
vastava. Counting twig matches in a tree. In Proceedings of the IEEE International

Conference on Data Engineering (ICDE), 2001.

E. Cohen, H. Kaplan, and T. Milo. Labeling dynamic XML trees. In Proceedings
of the ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Sys-
tems (PODS), 2002.

S. Davidson, W. Fan, C. Hara, and J. Qin. Propagating XML constraints to relations.
In Proceedings of the IEEE International Conference on Data Engineering (ICDE),
2003.

DB2 XML extender. http://www.ibm.com/software/data/db2/extenders/xmlext/.

DBLP. http://dblp.uni-trier.de/xml.

REFERENCES 156

[19]

[20]

[21]

[22]

23]

[24]

[25]

[20]

A. Deutsch, M. Fernandez, and D. Suciu. Storing semi-structured data with
STORED. In Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data (SIGMOD), 1999.

Document object model. http://www.w3.org/DOM/.

F. Du, S. Amer-Yahia, and J. Freire. A comprehensive solution to the XML-to-
relational mapping problem. In Proceedings of the ACM International Workshop on
Web Information and Data Management (WIDM), 2004.

F. Du, S. Amer-Yahia, and J. Freire. ShreX: Managing XML documents in relational
databases. In Proceedings of the International Conference on Very Large Data Bases

(VLDB), 2004.
Extensible Markup Language (XML). http://www.w3.org/XML.

D. Florescu and D. Kossmann. A performance evaluation of alternative mapping
schemes for storing XML in a relational database. Technical Report 3680, INRIA,
1999.

D. Florescu and D. Kossmann. Storing and querying XML data using an RDBMS.
IEEFE Data Engineering Bulletin, 22(3), 1999.

J. Freire, J. Haritsa, M. Ramanath, P. Roy, and J. Siméon. StatiX: Making XML
Count. In Proceedings of the ACM SIGMOD International Conference on Manage-
ment of Data (SIGMOD), 2002.

J. Freire, M. Ramanath, and L. Zhang. A flexible infrastructure for gathering XML
statistics and estimating query cardinality. In Proceedings of the IEEE International

Conference on Data Engineering (ICDE), 2004.
Galax. http://www.galaxquery.org.

H. Garcia-Molina, J.D. Ullman, and J. Widom. Database Systems: The Complete
Book. Pearson Education, Inc, 2002.

REFERENCES 157

[30]

[31]
[32]

[33]

[35]

[36]

[37]

[39]

P. Gibbons, Y. Matias, and V. Poosala. Fast incremental maintenance of approximate

histograms. ACM Transactions on Database Systems (TODS), 27(3), 2002.
HyperText Markup Language (HTML) Home Page. http://www.w3.org/MarkUp/.
Internet Movie Database. http://www.imdb.com.

ISO 8879. Information Processing — Text and Office Systems - Standard Generalized
Markup Language (SGML), 1986.

H. V. Jagadish, S. A.-Khalifa, A. Chapman, L.V.S. Lakshmanan, A. Nierman, S. Pa-
parizos, J. Patel, D. Srivastava, N. Wiwatwattana, Y. Wu, and C. Yu. TIMBER: A
native XML database. The VLDB Journal, 11(4), 2002.

H. Jiang, H. Lu, W. Wang, and J. X. Yu. Path materialization revisited: An efficient
storage model for XML data. In Proceedings of the Australasian Database Conference

(ADC), 2002.

H. Jiang, H. Lu, W. Wang, and J. X. Yu. XParent: An efficient RDBMS-based
XML database system. In Proceedings of the IEEE International Conference on
Data Engineering (ICDE), 2002.

R. Krishnamurthy, V. Chakaravarthy, and J.F. Naughton. On the difficulty of finding
optimal relational decompositions for XML workloads: A complexity theoretic per-
spective. In Proceedings of the International Conference on Database Theory (ICDT),
2003.

D. Lee and W. Chu. CPI: Constraints-preserving inlining algorithm for mapping
XML DTD to relational schema. Journal of Data and Knowledge Engineering (DKE),
39(1), 2001.

P. Lehti. Design and implementation of a data manipulation processor for an XML

query language. Master’s thesis, Universitat Darmstadt, 2001.

REFERENCES 158

[40]

[41]

[42]

[48]
[49]
[50]

[51]

[52]

L. Lim, M. Wang, S. Padmanabhan, J. Vitter, and R. Parr. XPathLearner: An on-
line self-tuning markov histogram for XML path selectivity estimation. In Proceedings

of the International Conference on Very Large Data Bases (VLDB), 2002.

Making web services work at Amazon.

http://www.xml.com/pub/a/2003/12/09/xm12003amazon.html.

M. Mani and D. Lee. XML to relational conversion using theory of regular tree
grammars. In Proceedings of the Workshop on Efficiency and Effectiveness of XML
Tools and Techniques (EEXTT), 2002.

Microsoft SQLXML. http://msdn.microsoft.com/sqlxml.

M. Muralikrishna and D. DeWitt. Equi-depth histograms for estimating selectivity
factors for multi-dimensional queries. In Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data (SIGMOD), 1988.

M. Murata, D. Lee, and M. Mani. Taxonomy of XML schema languages using formal
language theory. In Ezxtreme Markup Languages, 2001.

Natix XML repository. http://www.dataexmachina.de/natix.html.

M. Nicola and J. John. XML parsing: a threat to database performance. In Proceed-
ings of the ACM International Conference on Information and Knowledge Manage-

ment (CIKM), 2003.

Oasis - the coverpages. http://www.oasis-open.org/cover.

Oracle XML DB. http://www.oracle.com/technology/tech/xml/xmldb/index.html.
Oracle’s XML SQL utility. http://technet.oracle.com/tech/xml/oracle_xsu.

R. Paige and R. Tarjan. Three paritition refinement algorithms. SIAM Journal on
Computing, 16(6), 1987.

P. Patil. Holistic source-centric schema mappings for XML-on-RDBMS. Master’s
thesis, Indian Institute of Science, 2005.

REFERENCES 159

[53]

[54]

[55]

[56]

[57]

[58]

[61]

G. Piatetsky-Shapiro and C. Connell. Accurate estimation of the number of tuples
satisfying a condition. In Proceedings of the ACM SIGMOD International Conference
on Management of Data (SIGMOD), 1984.

N. Polyzotis and M. Garofalakis. Statistical synopses for graph structured XML
databases. In Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data (SIGMOD), 2002.

N. Polyzotis and M. Garofalakis. Structure and value synopses for XML data graphs.
In Proceedings of the International Conference on Very Large Data Bases (VLDB),
2002.

N. Polyzotis, M. Garofalakis, and Y. loannidis. Selectivity estimation for XML twigs.
In Proceedings of the IEEE International Conference on Data Engineering (ICDE),
2004.

V. Poosala and Y. loannidis. Selectivity estimation without the attribute value

independence assumption. In Proceedings of the International Conference on Very

Large Data Bases (VLDB), 1997.

V. Poosala, Y. loannidis, P. Haas, and E. Shekita. Improved histograms for selectivity
estimation of range predicates. In Proceedings of the ACM SIGMOD International
Conference on Management of Data (SIGMOD), 1996.

M. Ramanath, J. Freire, J. Haritsa, and P. Roy. Searching for efficient XML-to-
relational mappings. In Proceedings of the XML Database Symposium (XSym), 2003.

M. Ramanath, L. Zhang, J. Freire, and J. Haritsa. IMAX: Incremental maintenance
of schema-based XML statistics. In Proceedings of the IEEFE International Conference
on Data Engineering (ICDE), 2004.

P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe. Efficient and extensible algorithms
for multi query optimization. In Proceedings of the ACM SIGMOD International
Conference on Management of Data (SIGMOD), 2000.

REFERENCES 160

[62]

[63]

[64]

[65]

[69]

[70]

[71]

C. Sartiani. A framework for estimating XML query cardinality. In Proceedings of

the International Workshop on the Web and Databases (WebDB), 2003.

C. Sartiani. A general framework for estimating XML query cardinality. In Proceed-
ings of the International Workshop on Database Programming Languages (DBPL),
2003.

A. Schmidt, M. Kersten, M. Windhouwer, and F. Waas. Efficient relational storage
and retrieval of XML documents. In Proceedings of the International Workshop on

the Web and Databases (WebDB), 2000.

J. Shanmugasundaram, K. Tufte, G. He, C. Zhang, D. DeWitt, and J. Naughton.
Relational databases for querying XML documents: Limitations and opportunities.
In Proceedings of the International Conference on Very Large Data Bases (VLDDB),
1999.

Tamino. http://www.softwareag.com/tamino/architecture.htm.

I. Tatarinov, Z. Ives, A. Halevy, and D. Weld. Updating XML. In Proceedings of
the ACM SIGMOD International Conference on Management of Data (SIGMOD),
2001.

I. Tatarinov, S. Viglas, K. Beyer, J. Shanmugasundaram, E. Shekita, and C. Zhang.
Storing and querying ordered XML using a relational database system. In Proceedings
of the ACM SIGMOD International Conference on Management of Data (SIGMOD),
2002.

F. Tian, D. DeWitt, J. Chen, and C. Zhung. The design and performance evaluation
of alternative XML storage strategies. SIGMOD Record, 31(1), 2002.

W3C XML query. http://www.w3.org/XML/Query.

W3C XML schema. http://www.w3.org/XML/Schema.

REFERENCES 161

[72] W. Wang, H. Jiang, H. Lu, and J.X. Yu. Bloom histogram: Path selectivity estima-
tion for XML data with updates. In Proceedings of the International Conference on

Very Large Data Bases (VLDB), 2004.
(73] World wide web consortium. http://www.w3c.org.

[74] X. Wu, M.-L. Lee, and W. Hsu. A prime number labeling scheme for dynamic
ordered XML trees. In Proceedings of the IEEE International Conference on Data
Engineering (ICDE), 2004.

[75] Y. Wu, J. M. Patel, and H. V. Jagadish. Estimating answer sizes for XML queries.
In Proceedings of the International Conference on Extending Database Technology

(EDBT), 2002.
[76] Xerces Java parser 2.5.0. http://xml.apache.org/xerces-j/.
[77) XML Applications and Initiatives. http://xml.coverpages.org/xmlApplications.html

[78] XML database products: Native XML databases.

http://www.rpbourret.com/xml/ProdsNative.htm.
[79] XML path language (XPath). http://www.w3.org/TR/xpath.

[80] XQuery update facility requirements.

http://www.w3.org/TR/xquery-update-requirements/.

[81] M. Yoshikawa, T. Amagasa, T. Shimura, and S. Uemura. XRel: A path-based
approach to storage and retrieval of XML documents using relational databases.

ACM Transactions on Internet Technology (TOIT), 1(1), August 2001.

[82] S. Zheng, J.-R. Wen, and H. Lu. Cost-driven storage schema selection for XML.
In Proceedings of the International Conference on Database Systems for Advanced

Applications (DASFAA), 2003.

