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Abstract

As the energy consumption in computing systems is increasing, much attention is being paid to make
computing systems more power efficient. While there has been a lot of work done in the past in designing
better hardware or hardware control mechanisms for this purpose, there has not been much work in
making software applications power-aware. Since database management systems are a major component
of computing systems, energy consumption by them is also significant and hence there is a need to make
them power-aware. There hasn’t been much study done to check the current state of the database query
optimizers in terms of power efficiency. Since the goal of present query optimizers is to minimize the

response time, it is very much possible that energy or peak power consumption is being compromized.

In our work, we try to see if this is the case with current database optimizers. We explore all the
existing opportunities to improve on these power metrics and evaluate the possible improvements. The
analysis to understand the trade-off between energy/peak power and performance has also been carried

out.
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Chapter 1

Introduction

Over the years, the main objective of computing system designers has been improving performance.
But with the increasing energy consumption of computers, power efficiency has become a critical issue in
system design. A recent report by the Environmental Protection Agency shows that data center power
consumption in the US doubled between 2000 and 2006 [2]. In a typical data center, electricity consumed
by servers and cooling systems contributes to around 20% of the total ownership cost, equivalent to one-
third of the maintenance cost. This makes energy the second largest item in a typical IT department’s
monthly bill (with labour being number one). It is generally believed that these numbers will continue to
increase in the next few years. Uncontrolled energy usage in the data centers has negative implications on
the environment. Due to the continuous demand for increase in the computational capabilities and the
continuous decrease in size for portability, the modern data servers suffer from an increasing possibility
of thermal failures. Therefore, it is important to reduce the database power consumption so that the
total power consumption of an entire system can be kept below a given power budget. Furthermore,
reduced power consumption can lead to lower system temperature implying reduced cooling costs and

this can contribute to significant energy savings in the long run.

Due to the above mentioned facts, power conservation in computing systems has attracted much
attention from government agencies, industrial sectors, and the research communities. Standards and
benchmarks are being modified to consider power consumption [16] [I8]. Transaction Processing Coun-
cil(TPC) is also developing a new energy specification [I7]. Early innovations on power-aware computer
servers have concentrated on hardware and system software like compilers and operating systems. These
build a computing environment where: (1)Hardware can operate on various power saving modes [0];
(2)System software can control the operating modes of hardware and reschedule resource requests from
applications to save energy [9, [I1]. These system level research approaches treat the high level applica-

tions as passive resource consumers that are not aware of the low level efforts of power reduction. As a
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complementary measure, we need to build power aware applications which can exploit the power saving

opportunities in system.

While software for mobile(battery-powered) devices may include techniques targeted at energy ef-
ficiency, current server software typically does not. For database servers, some techniques aimed at
general performance and scalability like data compression may also have incidental benefits in power
efficiency, but designing database servers specifically for energy efficiency is not yet attempted. Power
reduction in DBMSs is of high economic significance as DBMS is an important type of software in the
three-tier computing architecture adopted by most of today’s business computing environments. In a
typical data center, a majority of the computing resources are dedicated to database servers, making
DBMSs the largest consumers of power in all the software applications deployed. It is the need of hour
to study and analyze the power consumption by commercial DBMSs and try to find out if they are

overlooking power in the quest to achieve quick response time.

In our work, we study power consumption patterns in database management systems and identify
power saving opportunities. The main objective is to find if there are any power-saving opportunities
in current DBMSs and if there are, see how we can exploit them. We have identified two metrics :
Energy and Peak Power which should be minimized for the DBMS. We included peak power metric
as to our knowledge, there hasn’t been any published work that analyzes peak power consumption of
DBMS and we believe this metric presents good potential for improvement. Our ultimate goal is to build
power aware DBMS by changing query optimizer that can achieve significant energy/peak power cost
savings while maintaining reasonable performance in query processing. We focus on the opportunities
provided by the database query optimizers. Power savings can also be achieved by re-designing the
database layout or the access algorithms but our aim is to make query optimizers power-aware and
this will serve as a compliment to the other efforts. We use a popular commercial database engine and
PostgreSQIE database engine to analyze power consumption patterns of different query plans considered

by optimizers.

Contributions

In our quest to find out power saving opportunities provided by the optimizers, we found out some

interesting results. The contributions of this work are as follows.

e Through our analysis of database optimizers we found out that there do not exist alternate strate-

gies that reduce energy consumption significantly and the few cases where we do get improvement,

Thttp://www.postgresql.org/
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it is limited and not more than 10% of the optimizer’s choice.

e The peak power interestingly, provides scope for improvements in commercial database engines.
We were able to find out alternate strategies giving about 50% improvements here. Although it
is difficult to model peak power usage, this is an area that warrants attention from the optimizer

developer community.

Organization

As mentioned before, we execute different query plans given by optimizer and analyze power consumption
by them. Typically, database engines execute only the optimal plan chosen by optimizer. We first discuss
in Section 2 how we achieved foreign plan execution in the two engines we are working on. Next we give
details of our setup and workload in Section 3. Following this, we move towards finding opportunities
of power saving in database optimizers. Section 4 is dedicated to energy metric while Section 5 talks
about peak power. An overview of related work is given in Section 6 and finally Section 7 summarizes

all the results and also concludes the work.



Chapter 2

Foreign Plan Execution

The goal of our project was to find the opportunities of power saving in the database optimizers. As
we know, an optimizer considers a lot of plans/strategies to execute the given query and selects the one
which it thinks will give the best performance (i.e. execute the fastest). Since our goals of optimization
are different (energy and peak power), the best performing plan may not be the best for us. But to
verify this, we need to execute the other plan(s) than the optimizer’s choice and this feature is not
directly provided by any of the database engines. Commercial engines do provide some ways to achieve
this with facilities like query hints and abstract plan execution which will be discussed in Section [2.1
PostgreSQL engine though doesn’t provide any such facilities and hence we modified the plan selection
procedure of Postgres optimizer to choose a subset of plans from the search space those can be executed
by the engine. First we will see how we achieved foreign plan execution in SQL Server and then see how

to explore search space in PostgreSQL.

2.1 Foreign Plan Execution in SQL Server

Microsoft SQL Server engine has a utility called Use Plan Hint using which we can provide a plan
in XML format along with a query and if that plan happens to be from the search space (i.e. a valid
plan considered by the optimizer), the engine executes the query with this plan even if it is not the
optimal one. Now the only question that remains is how do we know that the plan we are providing is a
valid plan from the search space. To ensure that it is, we move our attention to a subset of plans called
Parameteric Optimal Set of Plans (POSP). Next paragraph gives some definitions before showing how

to use this subset.

For a query on a given database and system configuration, the optimizer’s plan choice is primarily

a function of the selectivities of the base relations participating in the query : that is, the estimated
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number of rows of each relation relevant to producing the final result. A plan diagram [24] is a color-coded
pictorial enumeration of the execution plan choices of a database query optimizer for a parameterized
query template over the relational selectivity space. The dimension of a plan diagram is the number of
relations whose selectivities are varied to produce the picture. Figure below shows a sample plan
diagram for a Query Template built from Q22 of TPC-DS benchmark suite. It is a 2-dimensional plan
diagram drawn at a resolution of 100¥*100. The minimal set of plans that includes at least one optimal
plan for each point of the selectivity space is called Parameteric Optimal Set of Plans (POSP) [22]. The
POSP for the figure has 14 plans.

483
20.66
17.12
9.67
2186
— 0.75

T I T s PRI T R 0.81

0.33
0.30
0.03
0.03

0.01

ITEMI_MANUFACT_ID [0.0,100.0)@ 100

0.01
0.01

I T T T

T 1
] 20 40 60 80 100
INVENTORY.INV_QUANTITY_ON_HAND [0.0,100.0l@ 100

Figure 2.1: Plan diagram of QT22

We used the Picasso[23] tool to generate the plan diagrams. All the plan diagrams generated for our
experiments were two dimensional. The plan diagram contains all the plans from the POSP at a certain
degree of resolution. For each of these plans, we generated abstract XML plans from the SQL Server.
These abstract plans were executable at any point of the selectivity space since they were guaranteed to
be from the search space of the optimizer and thus we could achieve the foreign plan execution (although

for a limited number of plans) in the SQL Server.
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2.2 Plan Selection in PostgreSQL

The planner unit of Postgres engine follows bottom-up approach for plan selection [28]. It considers
all possible execution paths for the given query and through dynamic programming selects the one which
is predicted to execute the fastest. The plan tree is constructed for this optimal plan and is passed to
executor unit which executes it. We wanted planner unit to give away more plans and not to pass only
the optimal one so that we can see the energy consumption pattern for all of them. One way is to
modify the whole process of plan selection and instead of rejecting some paths at each level, consider all
of them. But there are two problems here: (1)There would be too many plans reaching the top level,
(2)Most of these will give very bad response time and won’t do any better in terms of energy as well.
Our goal was to find out a subset of plans from the search space which are not much worse than the

optimal plan.
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Figure 2.2: Modified plan selection in PostgreSQL

A query can contain a number of sub-queries because of nesting of queries or union/join of multiple
parts. The optimization for each sub-query is carried out separately by Postgres. For each sub-query,
once a plan reaches top level of optimization, only the grouping and/or aggregation operators remain
to be considered by planner which are to be carried out in the end. The plans that reach up to this
level are better in terms of performance than the other discarded ones and one of these is chosen in the
end which performs the best after applying grouping/aggregate. We modified the planner unit to pass
all these plansEI instead of just the optimal one. This set of plans is called as Root Node Space of the
query. The flow of our plan selection process is shown in Figure We added one extra parameter that
indicates the index for each sub-query. Out of all the plans passed by the planner unit, the executor

unit selects one using this index. So by varying this index, we can execute different plans. These plans

1The number of plans here were observed to be between 6-10 for the TPC-DS benchmark queries.
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are not necessarily the best performing ones because it is possible that some of the better plans are
pruned by the ones that reach top. This problem is discussed in [26]. But ranking all the plans of the
search space is a tedious job and for our experiments, the plans reaching the top level seem to form a
good representative set. In the future, if the plan ranking feature is added to Postgres engine, we would

like to use it for our tests.



Chapter 3

Experimental Setup

3.1 Server Configuration

We used a Sun Ultra-24 workstation having a quad-core processor as our database server. The

configuration is given in the Table

Workstation | Sun Ultra 24

Processor Intel Core 2 Extreme Quad Core:
3.0 GHz

RAM 8 GB

Hard Disks | 4*300GB SAS: 15000 RPM

Operating

System Windows Vista Business: 64 bit

Table 3.1: Database Server Configuration

Two database engines were used for all our experiments. A commercial engine : Microsoft SQL Server

2008 and an open source engine : PostgreSQL 8.4. Both are widely used DBMSs.

3.2 Workload

In all our experiments we used the TPC—DEE] benchmark which is the new generation industry standard
decision support benchmark. It models the decision support functions of a multi-channel retails product
supplier. The schema is highly complex with a total of 25 tables. There are three sales channels : store,
catalog and web each of which has one sales and one returns table. These six along with inventory data

constitute the fact tables of the schema. The other tables are mainly the dimension tables which store

Thttp://www.tpc.org/tpcds
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critical business data like information about customers, orders etc. The scale 1 size of the database is
100GB and we used this sized database for our experiments. The benchmark also has a set of 99 highly
complex queries. Its workload is expected to test the upper limits of hardware system performance in
the areas of CPU, memory and I/O subsystem utilization and the ability of the operating system and

database software to perform various complex functions important to DSS as given below.
e Examine large volumes of data
e Give answers to real-world business questions

e Execute queries with a high degree of complexity and various operational requirements (e.g. ad-

hoc, reporting, data extraction)

3.3 Power Measurement

We used a digital power meter model 20-1850/CI manufactured by Brand Electronics [I5] for our
power measurements. The meter has to be connected to an electricity supply outlet and it has a socket
to which our database server was connected. This way, the meter could record the power drawn by
the server. The meter has a computer interface cable which has a serial port connector at the other
end. Through this cable it can transmit the measured power values. We logged the power values of our
server using this in a monitor machine at a sampling rate of 1Hz. For each logged power value, the time
stamp at which it was measured was also logged. The scripts to calculate energy, average power and
peak power values from the recorded logs were written on the monitor machine and were used in all our

experiments.



Chapter 4

Plan Replacements for Energy

Conservation

In this section, we try to find if there exist any plans which are superior than the optimizer’s choice
in terms of energy. As mentioned before, we do this on a commercial engine SQL Server as well as on

an open source engine PostgreSQL. The results for each are given in separate subsections below.

4.1 Plans from POSP on SQL Server

Here we chose some query templates and created the compile time plan diagrams for them using the
Picasso tool. Next we considered all the plans from POSP which can be executed at any location of the
selectivity space using the ‘Use plan hint’ feature as mentioned in Section We then executed these
plans at 25 equally spaced positions on the selectivity space and measured power values using our power
measurement setup. At each of these points, we replaced the optimal plan with the one that is most
energy efficient and tried to find how much improvements are possible. We also tried to see trade-off
between the energy value and the performance to know how much penalty in terms of performance we

have to pay in trying to save energy.

4.1.1 Detailed Analysis for a Query Template

As mentioned in the experimental setup, we carried out the plan replacements for energy optimality
on some query templates over TPC-DS data. We show the results for Query Template 22 (given in
Figure here. The plan diagram generated using Picasso for this template with diagram resolution
100*100 contains 14 different plans. (shown in Figure ) As mentioned previously, we only consider

25 equally-spaced locations of the selectivity space. The compile-time optimal plan diagram for these

10
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select top 100 i_product_name
,i_brand
,i_class
,i_category
,avg(inv_quantity_on_hand) qoh
from inventory
,date_dim
,item
,warehouse
where inv_date_sk=d_date_sk
and inv_item_sk=i_item_sk
and inv_warehouse_sk = w_warehouse_sk
and d_year=1998
and <nv_quantity_on_hand :varies
and i_manufact_id :varies
group by rollup(i_product_name
,i_brand
,i_class
,i_category)
order by qoh, i_product_name,
i_brand, i_class, i_category;

Figure 4.1: Query Template 22

25 points is shown in Figure At each of these points, we executed all the 14 plans from POSP
and noted down the energy values. We then replaced the plan at each location with a plan that is the
most energy efficient at that location. The new diagram thus achieved is given in Figure It can
be observed that at only 6 locations out of the 25, original plans are retained. Though plans change at
most of the locations, we need to find the magnitude of the change.

Figure [4.3] shows the energy cost diagram for both compile-time optimal plan diagram and energy
(POSP-)optimal plan diagram where the third dimension shows the value of the energy consumed for all
the points of the selectivity spaceﬂ It can be seen that at most locations, there is very small difference
between the two curves. The energy optimal plans save only 8.5% energy over the optimizer’s plan
choices over the whole selectivity space. We can see two spikes in the curve of compile-time optimal
energy cost diagram. We tried to see why this happened and found out that this is in fact due to
suboptimal choice of plan by optimizer in these locations. The optimization errors due to wrong cost
estimation are common and an accepted fact in database literature [21I]. If optimizer had selected correct
time-optimal plan in these two locations, the energy savings would have come down to only 3% which

is a very small value.

1The diagram is interpolated across the 25 points we have.
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We found similar results for QT8 as well which are not included here. (It showed only 1.7% improve-

ment.) So it doesn’t seem to be worth the effort to change the whole database optimizer to gain these

miniscule savings in energy.

4.1.2 Trade-off between Energy and Performance

We showed in the last subsection that there are replacement plans available from POSP that are
estimated to save on energy (though the savings are not substantial). In order to see how worse they are
in terms of performance, we executed all the plans from POSP for some query templates on the same
database engine. Figure shows the results for the templates executed at the top-right point of the
selectivity space. Here different points for a query stand for different plans from POSP. The times and
energy values for all the queries are normalized to the range [0, 1] to fit them all in a single graph. It
can be observed that for every query, some plans appear near origin and some far off in top-right area.
The later ones are worst plan choices both in terms of time and energy. There are some plans for Q65
which are more energy efficient than optimizer choices, but here we get about 8% energy savings for a
performance penalty of more than 17%. For other queries, we do not find any plan doing better than
the optimizer’s choice. So all this signifies that the optimization done for performance alone suffices to

provide energy optimal choices in most cases.
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4.2 Energy Model on PostgreSQL

In the last subsection, we explored the POSP space and found that there are not many opportunities
existing in the query optimizer to save energy of a query. Here we try to dig into the search space of the
optimizer by first building a simple energy model and then trying to see if we can identify any superior

plans. All these experiments were carried out on the PostgreSQL 8.4 database engine.

The work here is inspired from [4]. It claims that by modifying the Postgres optimizer, we can achieve
power savings in the range of 11% to 22‘7@ It develops a power cost model along the lines of Postgres
time cost model by adding some constants that assign power costs for basic operations like accessing a
tuple in CPU. For a given workload, it estimates the average power value for every plan and selects the
one with the minimum value. There is a serious flaw with this model though. The model uses some
formulae to estimate the power cost which are similar to the ones used by Postgres default optimizer to
estimate the time cost and this logically doesn’t seem correct. To elaborate further, consider the case
of sequential scan. As given in [4], the power cost function for sequential scan suggests that the CPU
power is directly proportional to the number of tuples of the relation that is being scanned. But the
average power should remain the same irrespective of the number of tuples, only the time cost should
change. We tried to execute some sequential scan queries by varying the number of tuples and found
that the average power is roughly the same for all the queries, only the energy values changed due to

the variation in the execution times.

As our focus is on energy, we decided to develop a model to estimate the energy values directly and
not the average power. We came up with a very simple model to estimate the energy for a given query.

We next discuss the model, the workload we chose for our tests and the results obtained.

4.2.1 Our Model

We decided to build the energy model on top of Postgres cost model. Postgres provides us with the
time cost estimates and our job is to come up with good energy estimates. We know that CPU and
disks are the units which consume dynamic powerﬂ The power consumption by other units doesn’t
vary once it is stabilized after system boot and it is accounted for in the ambient/idle power value. The
dynamic peak power consumed by CPU in our configuration is about 80W and that taken by the disks
is 4W|ﬂ Postgres estimates the time cost taken by CPU and disk separately and the final estimate is

2These savings are shown on average power values for some specific workloads and no significant improvements are
observed on the energy.

3Memory units also consume dynamic power, but that value is very small and leakage power tends to dominate the
power consumption there.

4The values are measured using ‘LEM Analyst 2060 Clamp-on Power Quality Meter’.
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the sum of these two values. We define two constants for our energy model:
e CPU_TUPLE_POWER
e PAGE_POWER

Since our CPU is quad-core and a tuple is processed by a single core, we set the value of CPU_TUPLE_POWER
to 20W and the other constant, PAGE_POWER which specifies disk cost is set to 4W. Finally the energy

estimate is given by following formula:

Energy = CPUTUPLE_POWERxCPU _time
+ PAGE_POWER x disk_time

where C'PU _time and disk_time are the estimates given by the Postgres cost model.

Our model is dependent on the two parameters mentioned above and depending on the system config-
uration, these parameters need to be tuned. Basically it just scales CPU costs and disk costs differently

since the power consumption by these units is different.

4.2.2 Workload

As mentioned before, we carried out all our experiments on TPC-DS database. The workload for
the experiments is made up of TPC-DS benchmark queries. These 99 queries were classified into four

categories according to the schema coverage in [27]. The classification is given below.
e Single fact table (54 queries)

e Multiple fact table
with join of sub-queries (22 queries)

with union of sub-queries (17 queries)
e Dimension table only (6 queries)
We created a workload of 16 queries chosen from these different categories with the proportion of the

queries maintaine(fl These queries exhibit a wide range of SQL features ranging from huge aggregates

to SQL CASE statements.

5Specifically, we selected 9 queries from first category, 3 each from second and third category and 1 query from last
category



Chapter 4. Plan Replacements for Energy Conservation 16

4.2.3 Experiments and Results

We executed each of the 16 queries with Postgres default optimizer as well as with our modified
optimizer and compared the energy values as well as the performance. The results are presented in the
Table Though we were expecting to get energy efficient plans with our model, surprisingly only 7
queries showed any improvements the in energy values after execution. These improvements were not
more than 6% anywhere which is very small. Remaining queries gave very bad results, 4 queries got
such bad plans that they failed after executing for long amount of time. Some errors are bound to
happen due to inherent weaknesses in modelling but the results here indicate the possibility that there
may not exist any superior plans available in the whole search space. We tried to dig more into the
search space of Postgres optimizer to find out the reasons for this behaviour. Next subsection talks

about those experiments.

Default Optimizer Energy Optimizer

Query No. | e Time ‘pEnergy(J) Exec. Ti}rfle ‘pEnergy(J)
8 0:07:08 7029 0:07:25 ‘ 7012
16 7:17:59 1137363 Failed

24 0:12:00 16975 Failed

41 0:06:13 13524 0:06:13 13524
49 0:32:21 6462 0:19:27 43382
57 0:05:54 9214 0:06:00 8877
58 0:13:35 13049 0:13:38 12775
59 0:32:50 78783 0:31:57 78246
61 0:13:52 13687 0:14:44 15459
64 0:24:43 34234 Failed

66 0:06:49 8061 0:07:41 9523
76 0:13:53 14837 0:14:14 14290
82 0:02:24 4159 0:04:25 4554
83 0:01:09 1137 0:01:01 1097
88 0:55:06 57317 Failed

98 0:06:41 6484 0:06:54 ‘ 6077

Table 4.1: Comparison of Default optimizer and Energy optimizer

4.3 Exploring Root Node Space on PostgreSQL

As seen in our experiments with building energy model, the improvements in the energy are very

limited. There are two possibilities here:
e The energy model is very weak and it cannot find the energy optimal plans from the search space.

e There are no energy optimal plans existing in the whole search space, so building the energy model

is a fruitless exercise.

We changed the Postgres engine to allow it to execute a query plan other than the optimal one

chosen by the optimizer. These changes are described in Section Here we give the results we got
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with the changed optimizer and analyze those.

We tried executing the plans for some TPC-DS benchmark queries using the foreign plan execution
feature discussed earlier. We discuss results of two queries here. One query is CPU intensive while the
other one is I/O intensive. Figure displays the trade-off between energy and performance for Query
82 of the benchmark set which is I/O intensive. This query is a join of 4 relations and involves only
single fact table. We got 10 plans at the top level which we executed by changing the plan index as
mentioned in Section 2.2} The energy and the execution times were recorded and the graph was plotted.
It can be seen that the time optimal plan is the energy optimal one as well. There are 5 other plans

which are closer in the energy value but no one beats the time optimal plan.

Figure [£.5b| shows similar analysis for Query 83 which is CPU intensive. This is a complex SQL query
and involves a join of all three fact tables. It consists of 4 sub-queries and each sub-query had 6-8 plans
reaching the top level. So we had a wide range of plans available for the final query and the compilation
costs of all these plans were within 25% of the cost of the optimal one. We executed all these plans
and the graph shows the results for 52 of those plansﬂ Here we found only two plans that are better
in terms of energy than the time optimal one. The difference though is only 4.7% and if you observe
carefully, both these plans are time efficient as well. So not getting energy optimal plan in the first place

from the default optimizer again seems to be the artifact of the compile-time errors in time estimation.

The results here tally with our observations with the energy model. Our model couldn’t find more
energy efficient plan for Q82 because there didn’t exist one in the subset of plans we saw here and for

Q83, we were able to find a superior plan which is one of the two that we saw doing better.

6The other plans turned out to be very bad in terms of both performance and energy after execution and hence not
included.
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Chapter 5

Plan Replacements for Peak Power

Optimality

Since we found no scope for energy improvements for current optimizers, we moved our attention to
our second metric : peak power. Some systems cannot afford to have high peak power consumption [12],
so we tried to check opportunities of reducing peak power usage. As in the last section, here as well we

first carry out detailed analysis on POSP space and then on the whole search space.

5.1 Plans from POSP for SQL Server

We first show detailed analysis for a query template as we did in the last section. Then we will do a

trade-off analysis between peak power and time.

5.1.1 Detailed Analysis for a Query Template

Here we present results for QT59 (given in Figure on the SQL Server. There were 32 plans in
the plan diagram generated by Picasso at a resolution of 10*10 and we again tried 25 equally spaced
positions of the selectivity space. The plan diagram is shown in Figure The diagram contains
10 different plans as can be seen. We then executed all the plans from POSP on these locations and
noted the peak power consumed during the execution. The plans were then replaced with peak power
optimal plans and a new plan diagram was formed which is given in Figure [5.2bl The number of plans
is reduced to only 4 in this diagram; these 4 plans are clearly peak power efficient in the whole space
and thus replace other plans. But again the question is how much benefits are possible by doing this

exercise.
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with wss as
(select d_week_seq,

ss_store_sk,

sum(case when (d_day_name=’Sunday’) then ss_sales_price
else null end) sun_sales,

sum(case when (d_day_name=’Monday’) then ss_sales_price
else null end) mon_sales,

sum(case when (d_day_name=’Tuesday’) then ss_sales_price
else null end) tue_sales,

sum(case when (d_day_name=’Wednesday’) then ss_sales_price
else null end) wed_sales,

sum(case when (d_day_name=’Thursday’) then ss_sales_price
else null end) thu_sales,

sum(case when (d_day_name=’Friday’) then ss_sales_price
else null end) fri_sales,

sum(case when (d_day_name=’Saturday’) then ss_sales_price
else null end) sat_sales

from store_sales,date_dim

where d_date_sk = ss_sold_date_sk

and ss_sales_price :varies

and d_quarter_seq :varies

group by d_week_seq,ss_store_sk

)

select top 100 s_store_namel,s_store_idl,d_week_seql
,sun_sales1/sun_sales2,mon_salesl/mon_sales2
,tue_salesl/tue_salesl,wed_salesl/wed_sales2
,thu_sales1/thu_sales2,fri_salesl/fri_sales2
,sat_salesl/sat_sales2

from

(select s_store_name s_store_namel,wss .d_week_seq d_week_seql
,s_store_id s_store_idl,sun_sales sun_salesl
,mon_sales mon_salesl,tue_sales tue_salesl
,wed_sales wed_salesl,thu_sales thu_salesl
,fri_sales fri_salesl,sat_sales sat_salesl

from wss,store,date_dim d

where d.d_week_seq = wss.d_week_seq and
ss_store_sk = s_store_sk and
d_year = 2001) y,

(select s_store_name s_store_name2,wss.d_week_seq d_week_seq2
,S_store_id s_store_id2,sun_sales sun_sales2
,mon_sales mon_sales2,tue_sales tue_sales2
,wed_sales wed_sales2,thu_sales thu_sales2
,fri_sales fri_sales2,sat_sales sat_sales2

from wss,store,date_dim d

where d.d_week_seq = wss.d_week_seq and
ss_store_sk = s_store_sk and
d_year = 2001+1) x

where s_store_idl=s_store_id2

and d_week_seql=d_week_seq2-52
order by s_store_namel,s_store_idl,d_week_seql;

Figure 5.1: Query Template 59
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Figure depicts the peak power values for the original compile-time plan diagram as well as the
peak power (POSP-)optimal plan diagram. It is observed that at some points of the selectivity space,
significant reduction in values is indeed possible. In fact at two points, we got reduction by as high as
43 Watts. This is really high considering the fact that the dynamic power range of our test machines is
about 80 Watts. To speak in terms of CPU utilization, we were able to bring down peak CPU utilization
from about 90% to only about 25% by doing these plan replacements. So peak power metric seems to

hold potential for improvement.
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Figure 5.3: Peak power cost diagram for QT59

We observed an interesting aspect for this query template. The power behavior of plans over whole
selectivity space is similar. We show the temporal power behavior of two plans P1 and P7 in Figure[5.4
The top row shows plan P1 for two selectivity points (50, 70) and (90, 90). For both the points, the
graph shows high power usageﬂ for about 970 seconds and then after a sudden spike, the power value
drops down. The average power usage is seen higher for the higher selectivity point. Similar graphs
for plan P7 are shown in the bottom row of the figure. This plan doesn’t show the spike at the end of
970 seconds. This can be explained from the plan trees of these two plans. Both the plans compute

a temporary view wss for the first 970 seconds and thereafter use this view to give the required result

INote that the values of power in the graphs do not include ambient values and the power taken by database engine
only is shown.
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rows. The only difference is that the plan P1 uses a hash aggregate operation with parallelization at
the end of the view computation which is a high power consuming operation and therefore the sudden
spike in power appears. So from the peak power perspective, plan P1 is not good and therefore gets

eliminated in the peak power efficient plan diagram.

QT59, P1 at selectivity (50, 70) QT59, P1 at selectivity (90, 90)
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B
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Figure 5.4: Temporal behavior of plans P1 and P7 at two selectivity locations

5.1.2 Trade-off between Peak Power and Performance

We just saw that there are plans available from POSP that provide significant reduction in peak power
values. But how good are these replacements in terms of performance? When we looked at the time
costs of these replacement plans, we observed that some of the replacement plans are worse by value
as high as 150% of the original choice. The good news is that these cases were found at low selectivity
points where we were getting very low absolute reductions in the range of 2-8 Watts. All the points at
higher selectivity points were observed to have replacements available that don’t increase the time cost
much. We set a threshold of 30% on the increase of time cost i.e. we restricted the search space for
replacements to only those plans of POSP that have time costs bounded by a value 30% more than the
cost of the time optimal plan at that location. The plan diagram thus obtained is shown in Figure [5.5

The number of plans here is increased to 6, but the changes mostly occurred at low selectivity points
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and the points giving high reduction had their plans retained. The diagram showing peak power cost
over selectivity space for this plan diagram is very similar to Figure [5.3 and is thus not included here.
So this shows that it is possible to achieve high benefits in peak power values with a small penalty in the

performance.
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Figure 5.5: Peak power optimal plan diagram for QT59 with 30% threshold on performance

To verify our observations, we tried another query template QT65. Its observations at top-right corner
point of selectivity space are given in Figure [5.6l The plans are seen to be clustered in three groups.
One group is that of time optimal plans that seems to be very inefficient in terms of peak power usage.
The second group at the right bottom is highly inefficient in terms of performance but seems to be doing
well in terms of peak power. The interesting group is the third one which is very good in terms of peak
power usage and also not doing too badly in terms of performance. In numbers, these plans bring down

peak power usage from about 65W to 27W and that too with only 17% performance penalty.

So this commercial database engine clearly presents good opportunities for peak power savings from

the POSP space itself and we don’t even have to dig down into the whole search space.

5.2 Plans from Root Node Space on PostgreSQL

We also analyzed peak power behavior of the plans from Root Node Space on Postgres using the
procedure described in Section [2.2] Unlike the commercial engine that we tried for our experiments

in POSP space, Postgres doesn’t show many fluctuations in peak power values. We didn’t find much
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Figure 5.6: Peak power against performance for QT65

difference in the peak power values of different plans. Figure shows the trade-off between peak power
and performance for Query 83 of TPC-DS benchmark suite. The same plans that were tried for energy
experiments were tried here. Only single plan is seen to be taking lower peak power than the optimizer’s
choice here and the difference is of 5W only. This behavior can be attributed to the lower complexity
of the Postgres engine. It doesn’t have complex operators like ‘Hash aggregate with parallelism’ used

by SQL Server which consumes high power.

This analysis shows that the current commercial optimizers present the opportunities for peak power
savings and our results indicate that the peak power value can be reduced substantially with a little
performance penalty. The subset of plans that we tried on Postgres didn’t show much improvements as
mentioned above. The other plans of search space which we didn’t try owing to their worse perfomance

might give some different results. This is an area we would like to explore in the future.
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Chapter 6

Related Work

There has been a lot of research work to make systems power efficient by making some changes in
hardware components; whereas the area of modifying softwares to make them power-aware is relatively

new. We will cover some of the important work done both in hardware as well as software areas.

6.1 Hardware approaches

System-level power-related research has created an ocean of literature. [6] identifies hardware idleness
and invokes a policy of shutting down unused components thereby getting up to 50% power savings.
[7, 8] also talk about some changes in operating systems like adjusting clock speed at a fine grain to get
savings in CPU energy. A lot of work has been done to manage the power-saving modes of hardware
components. There has also been some work to make application servers energy efficient. [I3] presents
five policies for cluster-wide power management in server farms like dynamic voltage scaling. They use
simulation to show savings of upto 29% on each server node. There has been some compiler directed
schemes as well. e.g. [9] presents some ways to reduce power consumption in caches by turning memory
modules on/off and modifying the data transfer patterns across the different levels of memory hierarchy.
All this is done by compiler instructions and the scheme is simulated. Recently [3] did a survey to
identify most power intensive components and suggest some approaches to make data centers more

power efficient, all being some changes in the hardware or the organization.

6.2 Software approaches

Application-level power-aware computing has become an active research area as many applications
have different execution paths to accomplish same computational task and we can make applications

adjust their behavior according to power-related states of underlying systems.

27
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The power consumption in databases has just caught attention of the research community. The
Claremont report on database research [I] mentions “designing power-aware DBMSs that limit energy
costs without sacrificing scalability” as an important research area. Some recent projects address power
consumption issues in data centers. [I§] develops an external sort benchmark for evaluating the en-
ergy efficiency of computer systems. To decide energy efficiency of system, the metric they use is the
records sorted per joule of energy consumed and the machine that sorts maximum records is the most
energy efficient. [3] reports extensive experimental results on the power consumption patterns in typical
commercial database servers. It develops a power consumption model and verifies it with some stan-
dard TPC—(E configurations. In [I4], energy behavior of mobile devices is analyzed when spatial access
methods are used for retrieving memory-resident data. However, none of these above mentioned work

suggests any ways of modifying database software and all focus on utilizing hardware opportunities only.

We focus on changing database query optimizer to choose more energy efficient query plans. The first
attempt at such work was by [10]. It selects energy efficient query plans to increase effective battery life
of mobile computers. Though this work looks very similar to our proposed area, their emphasis is on
client-server model optimizing the network throughput and overall energy consumption. [I1] suggests
some energy management schemes for memory resident databases. Most of the ways suggested are
hardware directed but they also give some query restructuring and regrouping algorithms which are
implemented in PostgreSQL database engine. [20] presents a challenge to software and tool developers
of developing energy-efficient databases by showing some good opportunities in hardware, optimization
choices, scheduling algorithms, physical database design and update techniques. Recently [I9] carries
out some experiments to show that the current query optimizer’s choice of plans is not necessarily the
most energy efficient one. It suggests some energy-aware optimizations and configuration parameters
and also emphasizes on the need to revisit and redesign database algorithms and policies. We found a
recent work [4] as the closest to our proposed work. It first shows the opportunities in current database
optimizers for power savings, then it modifies the query optimizer to take power costs into account. A
power cost model is developed to find these costs which we have discussed in Section [£.2} More recently,
[29] tried out different hardware and software configurations on some database engines and found that

the best performing configuration is the most energy efficient configuration as well.

Thttp://www.tpc.org/tpcc
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Chapter 7

Summary and Future Work

In this report, we tried to analyze the current state of the database engines in terms of power efficiency.
We explored the search space of query plans for an open source database query optimizer and for a
commercial database query optimizer, we explored a subset of query plans called as ‘Parameterized
Optimal Set of Plans’. Through our experiments on TPC-DS database, we found that nothing needs
to be done for energy efficiency. The query plans chosen by the optimizers to maximize performance in
fact maximize energy efficiency in most cases and the possible improvements are very limited. But this
is not true in terms of peak power. In the past, some work has been done to look at the energy efficiency
of the database systems, but to our knowledge nobody has tried to analyze peak power consumption
of DBMSs. And as it turns out, the current commercial optimizers present opportunities to save peak
power consumption by value as high as 50% and that too without affecting the performance significantly.

This is an area that needs attention of the optimizer developer’s community.

As we have shown that the database optimizers need to consider peak power metric while optimizing
the queries, we would like to do it ourselves in the future by building a model to estimate the peak

power usage and implementing it in a database query optimizer.

29



Appendix A

Query Templates

select top 100 s_store_name
,sum(ss_net_profit)
from store_sales
,date_dim
,store,
(select ca_zip
from (
(SELECT substr(ca_zip,1,5) ca_zip
FROM customer_address
WHERE substr(ca_zip,1,5) IN (

’99148°,°14140°,°53002’,°21895”,°12160°,°92371",
’14892°,°49798°,°156459°,°12274°,°70495° ,
’62014°,°97715°,°17739°,°10237’,°59188" ,
’83998°,’90166° ,’25772’,°97130°,° 18686,
’16144°,°66528,710939°,°89359’,°50546°,
’30150°,°90878”,°925642° ,° 35479’ ,°26668° ,
’60744° ,°33483’,°73506°,°61965,784608° ,
’82155°,°13303’,°30076°,°13262’,790592” ,
’99213,°11604°,°37243° ,°568571°,° 14265,
’36297°,°64689°,723523’,°85050’,°50849°,
’17720°,°41566° ,°58749° ,°44070°,°15193",
’68080°,°13213”,°14633°,°11509’,728628",
’40857°,°79615”,°99340°,°43278’,°85381",
’97906° ,°30365”,°24846° ,°15285,°64156° ,
’16183°,°15420’,°61890°,°89167°,°87448°,
’86652°,°72778’,796451°,°51110°,°26267°,
’69191°,°63159’,°69961°,°27098’,740363°,
’65755°,°37145°,°230567°,°80486°,’45076° ,
’73748°,°37483’,°556719°,°90083”,711111°,

Figure A.1: QTS
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’70719°,°71893°,744138°,°68042°,°45137°,
’23295°,°70904°,°66296° ,°26446°,°20180°,
’89283°,°21145°,744909°,°75323°,°63215°,
’21939°,°15023”,°42900°,°83907°,’47194° ,
’11242° ,°84786°,°32397°,°64373’,792503",
’23474°,°15737’,°50855°,°50307’,°65490° ,
’54288°,°14702’,°89635°,°84185,°82133",
’72038°,°60421°,°67015°,°52932°,°89945° ,
’20501°,°60893’,°32215°,°71638”,728918",
’79762°,°11218°,°57914°,°40119’,°36050° ,
’17258°,°73328°,°74624° ,°67165,720258" ,
’71270°,°58847’,°77831°,°78860°,°34002°,
’22724°,°92108’,°79474° ,°70003’,°90826° ,
’87205°,°31724° ,°44667°,°17204°,°88118",
’84555°,°39069°, 723272’ ,°64365’,°77008" ,
’40836°,°16061°,°52024°,°14535’,°82792°,
’62101°,°70486°,°39463°,°28119’,°61632°,
’28595’,°18978’,756104° ,°77779’,°85312°,
’43500°,°94720°,°98734°,°99903’,°40381°,
’28199’,°15003°,749085°,°94399’,°69092° ,
’45352°,°45625”,°23283°,°39259’,715304°,
’45920°,°95140°,°97697° ,’ 58585 ,746836" ,
’68927°,°88218’,739686°,°11072°,°66324°,
’39078°,°33940°,°55498° ,°64573°,°37720°,
’29019°,°84218’,°17756°,°99756° , 733661,
’45443° ,°17385,°29337°,°83251’,753478",
’63093°,°76171’,°65602°,°87062’,714513",
’568621°,°47249°,°86013’,°10326°,°68022°,
’94174°,°60681°,792429° ,°64727°,°51405°,
’18946°,°59123’,748620°,°60710°,°87260° ,
’27761°,°81166°,°92700°,°51784°,°52410° ,
’18292°,°55938”,°46249° ,°55973’,734089°,
’11436°,°84960’,°39659°,°28900’,°21903”,
’41621°,°14730°,735981’,°16052’,°38228",
’89731°,°12515°,766129°,°569193°,°25836°,
’43550°,°70205,°13716°,°90747°,720160° ,
’14761°,°71464° ,°62258°,°49338’,738468° ,
’41152°,°59074”,°27128°,°19560°,°84651°,

Figure A.1: (continued)
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’33965°,°70636°,°57842°,°20804°,°62718°,
’83798’,°523707,°66972°,°20575°,°72245° ,
’37496°,°845137,°46109°,°27771°,723169°,
718743 ,°309837,°625177,°99350°, 78594,
’68692°,7911257,°49710°,°12011°,°56381°,
7151417 ,°72848’,°57428°,°35931°,°70945°,
’69971’,°665897,°92723°,°31244° ,°61082°,
’71368°,°276557,°16342°,°96700°,’64711°,
’11505°,7253257,°77784°,°84228°,718003"°,
?333327,7498457,°17608’,°80083°,742301°,
’35907°,°451487,°135357,721491° ,715566°,
’20965°,7342977,°17601°,°21942° ,°12711°,
’14371°,°11902,°50493°,°64682°,’46051"°,
’51199°,7396177,°94734°,°87962°,’66753"°,
719329’ ,°350617,°34874’,°15093°’, 736999,
720446’ ,°52042’,°87426°,°29565°,°57806° ,
747719’ ,°27661°,°15507°,°16218°,715595° ,
’16675’,°39953,°74150°,°15571° ,°84779°,
’74361°,°790557,°83043’,°36642°,716477°,
’27961°,°167527,°71407°,°14629°,721834°,
’10113°,°746137,°171337,°32694°,°37181°,
’67632°,°647287,°552107,°14911° ,°84467°,
749413 ,°92304’,°61489°,°56839°))
intersect
(select ca_zip
from (SELECT substr(ca_zip,1,5) ca_zip,count(*) cnt
FROM customer_address, customer
WHERE ca_address_sk = c_current_addr_sk and
c_preferred_cust_flag="Y’
group by ca_zip
having count(*) > 10)A1))A2) V1
where ss_store_sk = s_store_sk
and ss_sold_date_sk = d_date_sk
and d_qoy = 1 and d_year = 2000
and (substr(s_zip,1,2) = substr(Vl.ca_zip,1,2))
and ss_ltst_price :varies
and d_quarter_seq :varies
group by s_store_name
order by s_store_name

’

Figure A.1: (continued)
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select top 100 i_item_id,
ca_country,
ca_state,
ca_county,
avg( cast(cs_quantity as numeric(12,2))) aggl,
avg( cast(cs_list_price as numeric(12,2))) agg2,
avg( cast(cs_coupon_amt as numeric(12,2))) agg3,
avg( cast(cs_sales_price as numeric(12,2))) agg4,
avg( cast(cs_net_profit as numeric(12,2))) aggh,
avg( cast(c_birth_year as numeric(12,2))) agg6,
avg( cast(cdl.cd_dep_count as numeric(12,2))) agg7?
from catalog_sales, customer_demographics cdl,
customer_demographics cd2, customer, customer_address, date_dim, item
where cs_sold_date_sk = d_date_sk and
cs_item_sk = i_item_sk and
cs_bill_cdemo_sk = cdl.cd_demo_sk and
cs_bill_customer_sk = c_customer_sk and
cdl.cd_gender = ’F’ and
cdl.cd_education_status = ’2 yr Degree’ and
c_current_cdemo_sk = cd2.cd_demo_sk and
c_current_addr_sk = ca_address_sk and
c_birth_month in (10,9,7,5,1,3) and
d_year = 2001 and
ca_state in (°CA’,’CA’,’WV’
,’OH’ ,’UT’ ,’ID’ ’)VA})
and cs_list_price :varties
and <_current_price :varies
group by rollup (i_item_id, ca_country, ca_state, ca_county)
order by ca_country,
ca_state,
ca_county,
i_item_id

’

Figure A.2: QT18
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select top 100 s_store_name, i_item_desc, sc.revenue
from store, item,
(select ss_store_sk, avg(revenue) as ave
from
(select ss_store_sk, ss_item_sk,
sum(ss_sales_price) as revenue
from store_sales, date_dim
where ss_sold_date_sk = d_date_sk and d_year = 2000
and ss_list_price :varies
group by ss_store_sk, ss_item_sk) sa
group by ss_store_sk) sb,
(select ss_store_sk, ss_item_sk, sum(ss_sales_price) as revenue
from store_sales, date_dim
where ss_sold_date_sk = d_date_sk and d_year = 2000
group by ss_store_sk, ss_item_sk) sc
where sb.ss_store_sk = sc.ss_store_sk and
sc.revenue <= 0.1 * sb.ave and
s_store_sk = sc.ss_store_sk and
i_item_sk = sc.ss_item_sk and
i_current_price :varies
order by s_store_name, i_item_desc

Figure A.3: QT65
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Other Queries

select top 100 i_item_id

,i_item_desc

,i_current_price
from item, inventory, date_dim, store_sales
where i_current_price between 65 and 65+30
and inv_item_sk = i_item_sk
and d_date_sk=inv_date_sk
and d_date between cast(’2000-02-05’ as date) and
(cast(’2000-02-05’ as date) + 60 days)
and i_manufact_id in (526,89,748,463)
and inv_quantity_on_hand between 100 and 500
and ss_item_sk = i_item_sk
group by i_item_id,i_item_desc,i_current_price
order by i_item_id

)

Figure B.1: Q82
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with sr_items as
(select i_item_id item_id,
sum(sr_return_quantity) sr_item_qty
from store_returns,

item,

date_dim
where sr_item_sk = i_item_sk
and d_date in

(select d_date

from date_dim

where d_week_seq in

(select d_week_seq

from date_dim
where d_date in (’1999-04-11’,°1999-08-16",°1999-11-11")))
and sr_returned_date_sk = d_date_sk
group by i_item_id),

cr_items as
(select i_item_id item_id,

sum(cr_return_quantity) cr_item_qty

from catalog_returns,

item,

date_dim
where cr_item_sk = i_item_sk
and d_date in

(select d_date

from date_dim

where d_week_seq in

(select d_week_seq

from date_dim
where d_date in (21999-04-11’,71999-08-16",71999-11-11")))
and cr_returned_date_sk = d_date_sk
group by i_item_id),

wr_items as
(select i_item_id item_id,

sum(wr_return_quantity) wr_item_qty

from web_returns,

item,

date_dim
where wr_item_sk = i_item_sk
and d_date in

(select d_date

from date_dim

where d_week_seq in

(select d_week_seq

from date_dim

where d_date in (’1999-04-11’,°1999-08-16",°1999-11-11")))
and wr_returned_date_sk = d_date_sk

group by i_item_id)

Figure B.2: Q83
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select top 100 sr_items.item_id
,8r_item_qty
,sr_item_qty/(sr_item_qty+cr_item_qty+wr_item_qty)/3.0 * 100 sr_dev
,cr_item_qty
,cr_item_qty/(sr_item_qty+cr_item_qty+wr_item_qty)/3.0 * 100 cr_dev
,Wr_item_qty
,wr_item_qty/(sr_item_qty+cr_item_qty+wr_item_qty)/3.0 * 100 wr_dev
,(sr_item_qty+cr_item_qty+wr_item_qty)/3.0 average
from sr_items
,Cr_items
,Wr_items
where sr_items.item_id=cr_items.item_id
and sr_items.item_id=wr_items.item_id
order by sr_items.item_id
,8r_item_qty

Figure B.2: (continued)
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