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Abstract

Indexes are useful in reducing the cost of workload comprising SQL queries. Database Admin-

istrators used to do this work by identifying certain query patterns and recommending indexes

that minimize the overall workload cost. However, this is not feasible for workloads comprising

complex SQL queries. Thus, several index advisor tools were proposed that automated the pro-

cess of finding the set of indexes to minimize the cost of the workload. But these index advisor

tools often generate suboptimal index configurations, as, due to the inherent computational

hardness of the problem, they resort to various heuristics.

A hybrid Quantum-Classical Index Advisor [4] has previously demonstrated the potential

to address this issue. However, the quality of the solution is limited by the initial set of

candidate indexes generated by the database engine, which itself can be suboptimal due to

various heuristics used in computing them by the database engine.

In order to improve the quality of the solution, we present a Quadratic Unconstrained Binary

Optimization (QUBO) formulation that encodes the index advisor problem without relying on

inherent heuristics used by the database engine. We use a Quantum Approximate Optimiza-

tion Algorithm (QAOA)-based approach to solve the formulation. Our proposed solution is

independent of the initial set of indexes generated by the database engine, thereby reducing

the number of heuristics we rely on for generating index recommendations.
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Chapter 1

Introduction

Indexes are crucial for achieving high database workload performance [11]. Traditionally, in-

dexes are identified, built, and maintained by the Database Administrator (DBA). However, it

is not feasible for DBAs to identify good index configurations for complex query workloads. To

automate this process, several index advisors have been proposed to automatically and judi-

ciously find an appropriate set of indexes to optimize query performance. However, the Index

Selection problem is NP-Complete [6] and thus these index advisors use several heuristics to

solve the index selection problem. Due to these heuristics, the recommended indexes from In-

dex Advisor tools can be highly suboptimal. For instance, DB2 IA reduces the index selection

problem to an instance of the 0-1 Knapsack problem and then invokes a greedy heuristic-based

solver to recommend the index configuration.

Consider an SQL workload comprising TPC-H Queries over a 1 GB TPC-H database:

SELECT *

FROM LINEITEM

WHERE L_QUANTITY > 49

AND L_DISCOUNT > 0.099;

SELECT SUM(L_QUANTITY)

FROM LINEITEM

WHERE L_SHIPDATE >= ’1994 -12 -31’

AND L_SHIPDATE < ’1995 -01 -01’;

We constructed all possible index configurations having a maximum of 2 columns for the

above workload. The cost of workload when no indexes are there, the cost of workload under

DB2 recommended indexes, and the cost of workload under optimal index configuration (having
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Figure 1.1: Costing of different configurations in DB2

a maximum of 2 columns) are plotted in 1.1.

This graph shows how heuristics impact the quality of index recommendations. From the

graph, we can see there are only 18 configurations whose workload costs lie between the No Index

case and CDB recommended case, whereas there are 493 configurations that lie between CDB

recommended and Optimal. Many of these configurations have half the estimated workload

cost than what was recommended by IBM’s DB2 Index Advisor.

1.1 Problem Framework

Statement. We are given a workload comprising SQL Queries. The goal is to find an in-

dex configuration that minimizes the estimated cost of workload execution within the storage

constraint specified by the user.

Assumption. Only single-column indexes are permitted over the workload, and the workload

comprises of read-only queries; update statements are not permitted.

Output. Single-column indexes that are within the budget specified by the user.

1.2 Computational Hardness of the problem

The reason why we are only working with single-column indexes is that there is very limited

number of qubits available. But even while working in the domain of only single-column indexes,

the problem is still exponential. A column is indexable if it appears as a SARGABLE predicate.

If n such indexable columns are present, then there are 2n − 1 configurations possible (except

the empty configuration). In the future work, we will try to extend this formulation for multi-

column indexes when more number of qubits are available.
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1.3 Costing Configurations

In order to find the index configuration that gives minimal cost, we first need a way to cost

the index configurations. Query optimizers compute the estimated cost of the queries using

several metrics such as: access methods (table access or index access), selectivity of clauses,

etc., without actually executing the query. We will use the help of the query optimizer to cost

the configurations. Since there are exponential such index configurations, it is not possible to

cost each of these with the help of an optimizer, as optimizer calls are expensive.

To reduce the number of optimizer calls, we use the notion of atomic configurations [2]. A

configuration C is atomic for a query Q if there exists an optimizer-chosen plan that uses all

the indexes in C.

The cost of any non-atomic configuration can be derived from atomic configurations as below:

Cost(Q,C) = min{Cost(Q,Ci)}; Ci are atomic configurations that are subsets of C

Here, we are assuming empty configuration is also one of the atomic configurations.

Let’s take an example to better under understand atomic configurations. Consider the below

query:

SELECT SUM(L_EXTENDEDPRICE),L_ORDERKEY ,L_SUPPKEY ,L_TAX

FROM LINEITEM

WHERE L_SHIPDATE >= ’1994 -12 -31’ AND L_SHIPDATE < ’1995 -01 -01’

GROUP BY L_ORDERKEY ,L_SUPPKEY ,L_TAX;

SELECT L_SHIPDATE ,SUM(L_DISCOUNT),AVG(L_EXTENDEDPRICE)

FROM LINEITEM

WHERE L_QUANTITY > 49 AND L_TAX > 0.01 AND

L_RECEIPTDATE >= ’1990 -12 -31’ AND L_RECEIPTDATE < ’1991 -01 -01’

GROUP BY L_SHIPDATE;

From IBM’s DB2 engine, the following atomic configurations were computed for both queries:

Atomic Config of Query 0:

((‘L SHIPDATE’), 3616.61)

Atomic config of query: 1

((‘L RECEIPTDATE’,), 20.32)

((‘L QUANTITY’,), 41655.71)

Suppose we want to compute the cost of non-atomic configuration C: [‘L SHIPDATE’,

‘L RECEIPTDATE’]. For query 0, [‘L SHIPDATE’] is an atomic configuration subset of C and
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has cost 3615.61 and for query 1, [‘L RECEIPTDATE’] and [‘L QUANTITY’] are atomic con-

figurations subset of C, but atomic configuration [‘L RECEIPTDATE’] has lesser cost so this

will be selected. The overall cost of the workload will be 3636.93 (by adding up the atomic config

cost of both queries), and thus, in this way, we can derive the cost of non-atomic configurations

without any optimizer calls.

1.4 Evaluating Performance

We evaluated 10 workloads on IBM’s DB2 Index Advisor [8] and 6 workloads on Microsoft’s

Autoadmin [2]. The details about each workload is present in the appendix section. For each

workload, we first find out the atomic configurations of each query. Using the brute-force

method we find out the optimal set of single-column indexes under given atomic configurations

over the workload (we call these as AC 1). Next we also compute AC 2, which is the optimal

set of single and two-column indexes under the atomic configurations over the workload. The

reason for computing AC 2 is to evaluate further reduction in estimated workload cost when

allowing 2-column indexes compared to only single-column indexes in AC 1.

We also evaluated the performance of QIA (Quantum Index Advisor), which was proposed

recently in 2024 [4]. QIA is a hybrid quantum-classical approach that extracts the initial set

of indexes from the optimizer and then maps this initial set to a knapsack problem instance.

Then it uses a Search-based QIA approach to recommend index configuration.

Plots in fig 1.2 and fig 1.3 show how estimated workload cost varies under the following

configurations: 1) No index 2) Commercial Index Advisor Recommended (CDB) Indexes 3)

QIA Recommended Indexes [4] 4) Optimal set of indexes from atomic config (1-col) 5) Optimal

set of indexes from atomic config (2-col). For the SQL Server case, QIA Recommended Indexes

are not shown because SQL Server doesn’t provide a way to show what the initial set of

candidate indexes it considers while recommending indexes for the workload. Also, in some

plots, AC 2 is not reported because it wasn’t feasible to continue the brute force method on

those problem instances. The experiments are carried out under a 1 GB TPC-H database [9].

The capacity constraint for each workload is also mentioned alongside the workload name.

Results in Fig. 1.2 and Fig. 1.3 show a significant gap in the quality of index recommen-

dations by DB2 as well as Autoadmin. In all the cases, AC 1 performance is better than CDB

as well as QIA, even though AC 1 only had single-column indexes. Also, in most cases, the

difference between AC 1 and AC 2 is not much, which further motivates us to solve the index

advisor problem in the domain of only single-column indexes.
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Figure 1.2: Results on IBM’s DB2 Index Advisor
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Figure 1.3: Results on Autoadmin’s Index Advisor
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Chapter 2

Methodology

To solve the index advisor problem, two quantum computing models can be used: 1) Quan-

tum Annealing, 2) Quantum Circuit. Quantum Annealing is based on energy minimization,

whereas gate-based quantum computing relies on quantum logic gates. The D-Wave quantum

annealer is specifically designed to solve NP-hard optimization problems by formulating them

as a QUBO (Quadratic Unconstrained Binary Optimization) problem. Any NP-hard problem

can be mapped to a QUBO formulation and then solved using D-Wave’s quantum annealer.

Since we did not have access to D-Wave’s quantum hardware, we employed a gate-based

approach instead. In particular, the Quantum Approximate Optimization Algorithm (QAOA)

can be used to solve QUBO problems in the gate-based model. QAOA works by converting the

QUBO problem into a corresponding Hamiltonian and then finding an assignment of variables

that minimizes the energy of this Hamiltonian. However, our same formulation can also be

used on D-Wave, and it can solve much larger problems than the gate-based approach. We

only have 127 qubits (IBM provides a 127-qubit machine with a quantum time of 10 mins free

per month), whereas D-Wave has a 5000-qubit quantum machine.

2.1 Preprocessing Step

2.1.1 Find Atomic Configurations

The cost of any non-atomic configuration can be effectively calculated using atomic configura-

tions, as we saw earlier. This method reduces the need for any optimizer calls once the atomic

configurations for all the queries of the workload are computed.
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2.1.2 Identify Indexable columns

Extract all the columns that appear as sargable predicates. Columns appearing in GROUP

BY, HAVING, ORDER BY, and SELECT clauses can also be considered for indexes.

2.1.3 Compute Storage Space Consumed By Each Indexabe Column

After identifying the set of indexable columns, compute the storage space required for each of

these indices. This can be done using a query optimizer by physically creating the index and

retrieving the storage space information from the optimizer. An alternative is to estimate the

size of the index using various standard formulas; however, these estimates may not always be

accurate.

2.1.4 Deriving the cost of Index Configurations

The cost of a query under any non-atomic configuration can be derived as:

Cost(Q,C) = min
Ci⊆C

Cost(Q,Ci); C i are the atomic configurations of query Q.

Since we have restricted ourselves to read-only queries (select query), the inclusion of an index

in a configuration can only reduce the cost. Thus, we pick the maximal atomic configurations,

and among the maximal atomic configurations, we pick the atomic configuration with the least

cost.

A solution to the QUBO problem will be valid if it satisfies the following constraints:

• Only one atomic configuration for each query should be picked.

• At most one clustered index on each table.

• The indexes corresponding to the selected atomic configurations for each query should be

a subset of the recommended index set over the workload.

• For each query, the selected atomic configurations should be maximal in size, and among

the maximal ones, it must be minimal in cost.

• The recommended index configuration must be within the storage limit specified by the

user.

8



Chapter 3

QUBO Transformation

3.1 Notations

We have used several variables and symbols in our QUBO formulation. All of those are defined

in Table 3.1.

3.2 Exactly one atomic configuration selected per query

To ensure that only one atomic configuration per query should be picked, we use the below

formulation:

S =
n∑

i=1

 lqi∑
j=1

xj
qi
− 1

2

(3.1)

While trying to minimize the above equation to 0, for each atomic configuration of query qi

only one of the xj
qi
will be 1 rest will be 0. This means only one atomic configuration is picked

per query.

3.2.1 Atmost one clustered index per relation

One clustered index per table can be represented in the below quadratic form:

B =
∑
t∈W

ct∑
k=1

yckt ≤ 1

To convert above equation to QUBO form we introduce a slack variable sb. The above equation

can now be converted into QUBO form as follows:

9



B =
∑
t∈W

ct∑
k=1

yckt − 1 + sb (3.2)

sb ∈ {0, 1}

3.3 Selected Atomic Configuration must be subset of

recommended indexes

To ensure that atomic configuration picked per query should be subset of I i.e the index set

over the workload, the below formulation is made:

V =
n∑

i=1

lqi∑
j=1

xj
qi

(∑
ti∈qi

ci∑
k=1

zc
kj
ti · (1− yckti) + zu

kj
ti · (1− yuk

ti
)

)
(3.3)

In the above formulation, the two outermost sums iterate over all the atomic configurations for

each query. Now if some atomic configuration xj
qi
is selected, the inner sum iterates over all the

indexes present in atomic configuration xj
qi
. For every index present in atomic configuration

xj
qi
, it checks whether the same index is being picked in the final recommended index or not.

3.4 Selection of maximal Size Atomic Configuration with

minimal cost

3.4.1 Maximal Size Atomic Configurations

Here, maximal size atomic configurations refers to those atomic configurations that have larger

number of indexes in it. We want to prioritize those atomic configurations that have more

indexes so penalty should be lesser to them and vice versa. So, we define fxj
qi
as below:

fxj
qi
= 1−

|Aj
qi
|

|Amax
qi

|
(3.4)

Now to ensure we select maximal atomic configurations we use the below formulation:

10



M =
n∑

i=1

lqi∑
j=1

fxj
qi
.xqji

(3.5)

Type Symbol Description Domain

Input n Number of queries in Workload R

Input qi ith query of workload where i ∈
[1, n]

–

Input Wmax Storage constraint R

Input lqi Total atomic configurations of query
qi

Z

Input cti Number of columns in table ti ∈ qi
where i ∈ [1, n]

Z

Input xjqi Indicator variable denoting jth

atomic configuration of query qi

{0, 1}

Input Aj
qi Denotes jth atomic configuration of

query qi

–

Input Amax
qi Denotes the atomic configuration

with the most indexes among all
atomic configurations of query qi

–

Output yckt and yukt Indicator variable for index on kth

column of table t. yc indicates clus-
tered index, yu indicates unclus-
tered index. This defines which in-
dexes are present over the workload.

{0, 1}

Input zc
kj
ti

and zu
kj
ti

Indicator variable for index on kth

column of table ti in jth atomic con-
figuration of query qi. zc for clus-
tered, zu for unclustered index.

{0, 1}

Input W (ykt ) Total storage space taken by index
on kth column of table t

Z

Input Cost(qi, A
j
qi) Cost of query qi under jth atomic

configuration, computed via opti-
mizer

Z

Input W Workload comprising of n SQL
queries

–

Table 3.1: Table of Inputs, Parameters, and Domains

11



3.4.2 Minimal Cost

The workload cost can be computed through the selected atomic configurations as follows:

O =
n∑

i=1

lqi∑
j=1

(
Cost(qi, A

j
qi
)

Cost(qi, Amax
qi

)
.xj

qi
(3.6)

Here,the cost is normalized to make sure the coefficients of all binary variables are small. While

minimizing the above equation, it will try to select those atomic configurations that have lesser

cost.

Overall equations (3.5) and (3.6) together make sure that out of the maximal size atomic

configurations minimal cost atomic configurations are picked.

3.5 Capacity Constraint

Now we want to make sure that the recommended index set over the workload must be within

the storage budget constraint specified by user. This can be expressed as below:

∑
t∈W

ct∑
k=1

ykti .W (ykti) ≤ Wmax. (3.7)

The above can be converted to a QUBO form. We introduce a slack variable for the inequality

constraint and equation (5) can be rewritten as follows:

Wmax −
∑
t∈W

ct∑
k=1

ykti .W (ykti) =

log2(Wmax)∑
m=1

2m ∗ sm (3.8)

sm ∈ {0, 1}log2(Wmax)

Now equation 3.8 can be reformulated as:

C =

Wmax −
∑
t∈W

ct∑
k=1

ykt .W (ykt )−
log2(Wmax)∑

m=1

2m ∗ sm

2

(3.9)

12



However after expanding the above equation, the coefficients of binary variables can become

very large. To avoid this, the above equation is normalized by dividing each term by Wmax. So

(3.9) will now become:

C =

1−
∑
t∈W

ct∑
k=1

ykt .W (ykt )

Wmax

−
log2(Wmax)∑

m=1

2m ∗ sm
Wmax

2

(3.10)

3.6 Putting it all together

min
yckt ,yu

k
t ,x

j
qi
,sm,sb

(ps · S +B + pv · V +O + pm ·M + pc · C)

S =
n∑

i=1

 lqi∑
j=1

xj
qi
− 1

2
(Enforces one

atomic config-

uration picked

per query)

B =
∑
t∈W

ct∑
k=1

yckt − 1 + sb

(Atmost one

clustered index

per table)

V =
n∑

i=1

lqi∑
j=1

xj
qi

(∑
ti∈qi

ci∑
k=1

zc
kj
ti · (1− yckti) + zu

kj
ti · (1− yuk

ti
)

)
(Makes sure that selected atomic configura-

tions must be subset of recommended index

configuration)

O =
n∑

i=1

lqi∑
j=1

(
Cost(qi, A

j
qi
)

Cost(qi, Amax
qi

)
· xj

qi

(Normalized

cost of work-

load)

fxj
qi
= 1−

|Aj
qi
|

|Amax
qi

|

M =
n∑

i=1

lqi∑
j=1

fxj
qi
· xqji

(Makes sure

that maximal

size atomic con-

figurations are

selected)

13



C =

1−
∑
t∈W

ct∑
k=1

ykt .W (ykt )

Wmax

−
log2(Wmax)∑

m=1

2m ∗ sm
Wmax

2

(Enforces capacity constraint)

If no weights are assigned i.e ps = pv = pm = pc = 1 then the minimal solution of given QUBO

will select atomic configurations with minimal cost without looking at their sizes.

In order to enforce the maximal size of atomic configurations, a small penalty can be applied to

M . In our experiments, a value of pm = 2 was found to be sufficient. Suppose all other weights

are set to 1—then the minimal solution would be one where no atomic configuration for any

query is selected. This is because the incentive to avoid the penalty pm outweighs the benefit

of selecting any atomic configuration. Therefore, a penalty ps ≥ pm + 1 should be assigned

to S to ensure that atomic configurations for queries are indeed selected. In our experiments,

we assigned ps = 3. Similarly, to prevent subset constraint violations, a penalty pv ≥ pm + 1

should also be applied; we set pv = 3 in our experiments. The penalty pc can be any positive

value; however, in our tests, pc = 1 was sufficient to avoid any capacity constraint violations.

The number of variables used determines the lower bound of total number of qubits required

as each variable requires atleast one qubit. The number of variables are as follows:

1. xj
qi
: This variable represents the jth atomic configuration of query qi. There are n queries

and number of atomic configurations of query qi is lqi . So total variables of this type is:∑n
i=1 lqi .

2. yckt : This variable defines which clustered indexes are present over the workload. A

variable exist for each columns present in each query. In worst case a variable can exist

for every table.

3. yuk
t : This variable defines which unclustered indexes are present over the workload. A

variable exists for each columns present in each query. In worst case a variable can exist

for each column of every table.

4. sm: From the equation we can see there are total log2(Wmax) slack variables.

5. sb: One slack variable was used to make sure atmost one clustered index was used on

every table. In worst case number of such variables will be equal to all the tables of our

14



database.

Number of qubits needed =
∑n

i=1 lqi + 2 ·
∑

t∈W
∑ct

k=1 k + log2(Wmax) + 1 +
∑

t∈W 1

In a nutshell, number of qubits needed = O(Number of Atomic Configurations) + O(Total

columns in query) + O(logWmax).

Since the number of atomic configurations that we are computing for each query is quadratic

to the number of columns present in those queries, the number of qubits required is also

quadratic to the number of columns present in the workload.

3.7 Formal Analysis

In this section, we will prove that the minimal solution of the QUBO problem will always give

the optimal set of single column indexes computed through 1-column atomic configurations.

Basically our formulation will satisfy the below equation for all the queries of the workload:

Cost(Q,C) = min
Ci∈C

qi
max

Cost(Q,Ci) (3.11)

Here, C is the recommended index configuration of the workload, Ci ⊆ C, storage space con-

sumed by indexes in C must be less than Wmax and Cqi
max are the maximal atomic configurations

of query qi within the storage budget Wmax.

Claim: The minimal solution of QUBO always satisfies equation (3.11).

Let A1 and A2 be atomic configurations of query qi. Without loss of generality, let’s assume

S, V, and B are 0 and C is some negligible constant (i.e, both the atomic configurations are

within the space constraint Wmax) when only A1 or only A2 is selected by QUBO for query qi.

We are now left with O + pm ·M .

Let’s discuss two cases:

1) If |A1| > |A2|

This means fA1 < fA2 as the penalty for a larger size atomic configuration is less than the

penalty for a smaller size atomic configuration.

To make sure A1 is preferred over A2 the below constraint should be satisfied:

pm ·MA1 +OA1 < pm ·MA2 +OA2 (3.12)
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If pm ·MA2 > pm ·MA1+1 then (3.12) is always true because OA1 ∈ [0, 1]. Thus if pm > 1
MA2

−MA1

then equation (3.12) will always be true even if cost of query qi corresponding A1 is more than

cost of query qi corresponding A2. In the experiments done by me pm was assigned as 2, and it

worked, but depending on the problem instance, pm needs to be computed beforehand.

2) If |A1| = |A2| and cost(q,A1) ¡ cost(q,A2)

In this case also it is easy to see that A1 will be preferred over A2 as it incurs lower cost

corresponding to A2 i.e equation (3.12) will also hold true for this case.

Thus, the QUBO formulation proposed by us always selects valid atomic configurations that

are subsets of recommended index configuration and also selects maximal size minimal atomic

configurations thereby making sure the minimal solution to our QUBO problem is also the best

solution for the index selection problem.
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Chapter 4

Solving QUBO using QAOA

The QAOA is a general technique that can be used to find approximate solutions to combinato-

rial optimization problems, in particular problems that can be cast as searching for an optimal

bitstring. QAOA consists of the following steps:

1. Define a cost hamiltonian HC such that its ground state encodes the solution to the

optimization problem.

2. Define a mixer hamiltonian HM .

3. Construct the circuits eiγHC and eiαHM . These are called cost and mixer layers, respec-

tively.

4. Choose a parameter p ≥ 1 and build the circuit

U(γ, α) = eiγpHM eiγpHC ...eiγ1HM eiγ1HC

consisting of repeated cost and mixer layers.

5. Prepare an initial state U(γ, α) and use classical techniques to optimize the parameters.

6. After the circuit has been optimized, measurements of the output state reveal approximate

solutions to the optimization problem.
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Figure 4.1: QAOA Protocol [7]

In summary, the starting point of QAOA is the specification of cost and mixer Hamiltonians.

Then time evolution and layering is used to create a variational circuit and optimize it’s param-

eters. The algorithm concludes by sampling from the circuit to get an approximate solution to

the optimization problem.
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Chapter 5

Experiments

We have used Qiskit’s QAOA library to solve the QUBO. But there are three things than we

need to find out in order to get good results:

• Value of p

• Initial parameters for QAOA

• Which classical optimizer to use

For initializing the parameters of QAOA circuit we have used the fourier initialization technique

proposed in [12]. They claim that their initialization technique performs better than random

initialization technique that too at lower value of p.

[1] does a comprehensive study of how different optimizers work with QAOA and for noisy

quantum machines it is best to use gradient-free methods. We used two gradient-free meth-

ods: COBYLA and POWELL. In the experiments done by us, we found that POWELL takes

many more function evaluations than COBYLA; thus, POWELL is computationally expensive.

Hence, we avoided using POWELL while submitting jobs on the actual hardware machine of

IBM.

Since in IBM’s Qiskit SDK we can only simulate up to 29 qubits, not all the workloads could

be simulated. Also, at the moment, we only have hardware results for one workload (W1).

Because of high queuing time and very limited quantum time given for free accounts, other

experiments are still pending. Another issue that we are encountering is that we are not able to

find an optimizer that gives good quality solutions with a lesser number of function evaluations

(meaning less expensive).
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Table 5.1: Experiments (Simulator)

Workload Name p Optimizer
Number of

function evaluations
Qubits Depth Output

W1 1 COBYLA 34 20 97 Same as AC.1

W5 1 COBYLA 30 23 115 Same as AC.1

Table 5.2: Experiments (Hardware)

Workload Name p Optimizer
Number of

function evaluations
Qubits Depth Output Machine Name

W1 1 COBYLA 30 20 97 Same as AC 1 ibm sherbrooke (127-qubit)

To evaluate the solution quality of our QUBO formulation, we used the CPLEX solver. And

for all the constructed workloads, we got optimal single column indexes under constructed

atomic configurations for the workloads for both the database engines, i.e., IBM DB2 as well

as Microsoft’s Autoadmin. By optimal, we mean the solution from QUBO was the same as

the brute force solution for single column indexes under constructed atomic configurations for

all the workloads and under both the database engines. To evaluate our experiments, you can

navigate to our GitHub repository [3].
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Chapter 6

Related Work

Two papers formulate the index selection problem as an optimization problem. [] introduces

an ILP based approach to solving the index selection problem and [] introduces a QUBO

formulation for the same. Let’s review both of these papers in detail.

6.1 ILP Based Approach [5]

6.1.1 Summary

This paper proposes a model for index selection based on Integer Linear Programming (ILP).

They have formulated their index selection problem as: Given a workload consisting of m queries

and a set of n indexes I1 - In, with sizes s1 - sn, find a configuration C for the workload under

storage constraint S that gives maximum benefit. Here benefit is calculated as the difference

between the workload cost without configuration C and the workload cost with configuration

C.

They have used the notion of atomic configurations originally proposed in Autoadmin’s first

paper in 1997 [2]. Their ILP formulation takes into account the following constraints:

1. Select those atomic configurations whose indexes are present in the selected configuration

C.

2. The total space taken by all the indexes in C must be within the storage constraint S.

3. Each query must use at most one atomic configuration.

To solve the ILP problem, they use the branch and bound method. It gives optimal solution

if the program runs to completion or else it can be interrupted mid-way and a sub-optimal

solution is returned. For large problems the ILP might not run to completion so they propose
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using the branch and bound method only for a few iterations and stop the search once a solution

with an acceptable distance from optimal has been reached.

6.1.2 Strong Points

1. The upper bound on maximum benefit can be computed due to which we can see how close

to optimal we are. It helps the user to decide whether further increase in storage is needed to

get better quality solutions or not.

6.1.3 Weak Points

1. Though they have used the concept of atomic configurations, the original paper [] that

proposed the idea recommends selecting those atomic configurations for each query that

are maximal in size (within the budget) and amongst the maximal atomic configurations,

select the one with the least cost. This is not being done by this paper; they simply select

the ones that give maximum benefit.

2. The experiments section contains only one experiment done on 5 TPC-H queries. Infor-

mation about which of the TPC-H queries was used is also not given.

6.2 Annealing based approach [10]

6.2.1 Summary

This paper proposes a QUBO for solving the index selection probem on a DWave Quantum

Annealer. This paper introduces certain techniques for exploiting the qubits of the quantum

annealer, which in turn helps them to solve larger-sized problem instances that can be repre-

sented with the given number of qubits. They have formulated the index selection problem as

follows: Given a workload, a set of index candidates, and a storage space bound, determine an

optimal subset of indices that gives maximum benefit under given storage constraint.

Their QUBO formulation has three aspects: i) Utility, ii) Storage Constraint, iii) Mutual

Exclusion (Number of clustered indices per table should be atmost one). Utility can be regarded

as the benefit of generating an index. So their QUBO formulation tries to maximize the overall

utility of the workload. They propose two alternative formulas for both storage constraint as

well as mutual exclusion. The number of qubits needed is not actually bounded by the number

of variables but by the number of quadratic products between decision variables that appear in

the formulation. So, to reduce the number of qubits needed, they propose a formulation that

has a lesser number of quadratic products than the naive quadratic formula for both mutual

exclusion as well as storage constraint.
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6.2.2 Strong Points

1. Reducing the number of qubits needed by transforming the QUBO into a form that has

a smaller number of quadratic products.

2. A physical embedding algorithm that maps qubits to variables that exploit the connections

between variables and helps them map larger problem instances.

6.2.3 Weak Points

1. They have not stated the model used for finding the utility of the index.

2. The solution quality is restricted by the initial candidate set.
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Chapter 7

Conclusion and Future Work

Even after restricting ourselves to only single-column indexes, we are able to recommend sig-

nificantly better-quality index recommendations than commercial index advisors, as well as

QIA.

In the future, when more number of qubits are available, our formulation can be extended

to multi-column indexes. Our formulation can also be used on D-Wave’s quantum machine,

which has a much larger number of qubits (D-Wave’s Advantage Quantum Computer has over

5000 qubits!).
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Appendix

Experiment Workloads (Based on the corresponding TPC-H schema)

VLDB QIA Workload [4]

SELECT SUM(L_EXTENDEDPRICE * L_DISCOUNT) AS REVENUE

FROM LINEITEM

WHERE L_SHIPDATE >= DATE ’1994-01-01’ AND L_SHIPDATE < DATE

↪→ ’1995-01-01’ AND L_DISCOUNT BETWEEN 0.05 AND 0.07 AND L_QUANTITY

↪→ < 24;

SELECT 100.00 * SUM(CASE WHEN P_TYPE LIKE ’PROMO%’ THEN

↪→ L_EXTENDEDPRICE * (1 - L_DISCOUNT) ELSE 0 END) / SUM(

↪→ L_EXTENDEDPRICE * (1 - L_DISCOUNT)) AS PROMO_REVENUE FROM

↪→ LINEITEM , PART WHERE L_PARTKEY = P_PARTKEY AND L_SHIPDATE >=

↪→ DATE ’1995-09-01’ AND L_SHIPDATE < DATE ’1995-10-01’;

SELECT CNTRYCODE , COUNT (*) AS NUMCUST , SUM(C_ACCTBAL) AS TOTACCTBAL

↪→ FROM (SELECT SUBSTRING(C_PHONE ,1,2) AS CNTRYCODE , C_ACCTBAL FROM

↪→ CUSTOMER WHERE SUBSTRING(C_PHONE ,1,2) IN (’13’, ’31’, ’23’,

↪→ ’29’, ’30’, ’18’, ’17’) AND C_ACCTBAL > (SELECT AVG(C_ACCTBAL)

↪→ FROM CUSTOMER WHERE C_ACCTBAL > 0.00 AND SUBSTRING(C_PHONE ,1,2)

↪→ IN (’13’, ’31’, ’23’, ’29’, ’30’, ’18’, ’17’)) AND NOT EXISTS (

↪→ SELECT * FROM ORDERS WHERE O_CUSTKEY = C_CUSTKEY)) AS CUSTSALE

↪→ GROUP BY CNTRYCODE ORDER BY CNTRYCODE;

SELECT SUM(L_EXTENDEDPRICE)/7.0 AS AVG_YEARLY FROM LINEITEM , PART

↪→ WHERE P_PARTKEY = L_PARTKEY AND P_BRAND = ’BRAND #23’ AND

↪→ P_CONTAINER = ’MED BOX ’ AND L_QUANTITY < (SELECT 0.2* AVG(

↪→ L_QUANTITY) FROM LINEITEM WHERE L_PARTKEY = P_PARTKEY);

SELECT SUM(L_EXTENDEDPRICE)/7.0 AS AVG_YEARLY FROM LINEITEM , PART

↪→ WHERE P_PARTKEY = L_PARTKEY AND P_BRAND = ’BRAND #23’ AND

↪→ P_CONTAINER = ’MED BOX ’ AND L_QUANTITY < (SELECT 0.2* AVG(
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↪→ L_QUANTITY) FROM LINEITEM WHERE L_PARTKEY = P_PARTKEY);

W1

SELECT SUM(L_QUANTITY) FROM LINEITEM WHERE L_SHIPDATE >= ’1994-12-31’

↪→ AND L_SHIPDATE < ’1995-01-01’;

SELECT * FROM LINEITEM WHERE L_QUANTITY > 49 AND L_DISCOUNT > 0.099;

W2

SELECT MAX(L_DISCOUNT) FROM LINEITEM WHERE L_SHIPDATE >= ’1990-12-31’

↪→ AND L_SHIPDATE < ’1995-01-01’ AND L_RECEIPTDATE >= ’1994-12-31’

↪→ AND L_RECEIPTDATE < ’1995-01-01’;

SELECT SUM(L_EXTENDEDPRICE) FROM LINEITEM WHERE L_DISCOUNT > 0.099;

W4

SELECT SUM(L_EXTENDEDPRICE),L_ORDERKEY ,L_SUPPKEY ,L_TAX FROM LINEITEM

↪→ WHERE L_SHIPDATE >= ’1994-12-31’ AND L_SHIPDATE < ’1995-01-01’

↪→ GROUP BY L_ORDERKEY ,L_SUPPKEY ,L_TAX;

SELECT L_SHIPDATE ,SUM(L_DISCOUNT),AVG(L_EXTENDEDPRICE) FROM LINEITEM

↪→ WHERE L_QUANTITY > 49 AND L_TAX > 0.01 AND L_RECEIPTDATE >=

↪→ ’1990-12-31’ AND L_RECEIPTDATE < ’1991-01-01’ GROUP BY

↪→ L_SHIPDATE;

W5

SELECT L_TAX ,L_ORDERKEY FROM LINEITEM WHERE L_LINENUMBER = 6 AND

↪→ L_DISCOUNT = 0 GROUP BY L_TAX ,L_ORDERKEY;

SELECT SUM(L_QUANTITY) FROM LINEITEM WHERE L_TAX > 0.01 AND

↪→ L_RETURNFLAG = ’N’ AND L_PARTKEY = 200000;

W6

SELECT L_ORDERKEY FROM LINEITEM WHERE L_DISCOUNT > 49;

SELECT SUM(L_QUANTITY) FROM LINEITEM WHERE L_LINENUMBER = 6 AND

↪→ L_EXTENDEDPRICE > 104928 GROUP BY L_QUANTITY HAVING L_QUANTITY >

↪→ 49;

SELECT L_PARTKEY FROM LINEITEM WHERE L_TAX > 0.01;
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W7

SELECT L_ORDERKEY ,L_TAX ,L_DISCOUNT FROM LINEITEM WHERE L_DISCOUNT >

↪→ 0.099 AND L_QUANTITY > 49 GROUP BY L_ORDERKEY ,L_TAX ,L_DISCOUNT;

SELECT AVG(L_EXTENDEDPRICE) FROM LINEITEM WHERE L_TAX > 0.01 AND

↪→ L_SHIPMODE = ’AIR ’;

W8

SELECT AVG(L_DISCOUNT) FROM LINEITEM WHERE L_COMMITDATE > ’1992-12-31’

↪→ AND L_COMMITDATE < ’1993-01-01’;

SELECT SUM(L_EXTENDEDPRICE),L_ORDERKEY ,L_PARTKEY FROM LINEITEM WHERE

↪→ L_DISCOUNT = 0 AND L_TAX > 0.01 AND L_QUANTITY > 49 GROUP BY

↪→ L_ORDERKEY ,L_PARTKEY;

W9

SELECT L_SHIPINSTRUCT ,L_SHIPMODE ,L_COMMITDATE FROM LINEITEM WHERE

↪→ L_QUANTITY > 49 AND L_TAX > 0.099 GROUP BY L_SHIPINSTRUCT ,

↪→ L_SHIPMODE ,L_COMMITDATE;

SELECT SUM(L_EXTENDEDPRICE) FROM LINEITEM WHERE L_DISCOUNT = 0 AND

↪→ L_RECEIPTDATE = ’1991-01-01’;

SELECT L_PARTKEY FROM LINEITEM WHERE L_SHIPDATE = ’1993-01-01’ GROUP

↪→ BY L_PARTKEY;

W10

SELECT SUM(L_EXTENDEDPRICE) FROM LINEITEM WHERE L_TAX > 0.01;

SELECT L_ORDERKEY ,L_QUANTITY FROM LINEITEM WHERE L_RECEIPTDATE =

↪→ ’1990-04-23’ GROUP BY L_ORDERKEY ,L_QUANTITY HAVING L_QUANTITY >

↪→ 49;

SELECT AVG(L_DISCOUNT) FROM LINEITEM WHERE L_COMMITDATE >=

↪→ ’1992-12-31’ AND L_COMMITDATE < ’1993-01-01’;
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