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Abstract

Database queries present in applications can be hidden due to explicit encryption or complex
internal representation. Unmasking the hidden queries within the database applications is
termed as Hidden Query Extraction(HQE) problem in [1]. The diverse use-cases of this problem
range from resurrecting legacy code to query rewriting. UNMASQUE algorithm is a first step
towards addressing the HQE problem. It is a non-invasive, platform-independent extraction
algorithm that extracts SQL queries hidden within database applications.

There are two main issues within UNMASQUE, from the performance and extraction point
of view. They inefficiently handle the input-output database tables. We incorporated tech-
niques for the efficient handling of input-output database tables. We are extending the scope
of UNMASQUE by including Not Equal Predicates into its extractable domain. A detailed
evaluation on synthetic benchmarks demonstrates the minimization in extraction overhead and

accurate extraction of Not Equal (<>) hidden queries.
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Chapter 1
Introduction

Database queries embedded within applications may become invisible due to explicit or implicit
opacity. Encryption or obfuscation may have been incorporated to protect the application
logic. Alternatively, opacity may also arise when the application source code is written in a
complex manner like ORM translations. These queries are termed as Hidden Queries in [1]
and the functions as ezecutable for the queries. Hidden-Query Extraction (HQE) was recently

introduced in [1], and its task is to identify the hidden query.

Formally defined, HQE is: Given a black-box application A containing a Hidden query
Qq¢ (in either SQL format or its imperative equivalent), and a database instance Dy on which A
produces a populated result Ry, unmask Qg¢ to reveal the original query (in SQL format). The
goal of Hidden Query Extraction is to find the precise Qg such that V;Qqs(D;) = R;.

A ground-truth query is additionally available but in a hidden form that is not easily accessible.
HQE has a variety of use cases such as: Imperative Code to SQL Translation, Debugging
Application with stored SQL procedures, Recovering of lost source code etc. UNMASQUE
(Unified Non-invasive MAchine for Sql QUery Extraction) is a first step towards addressing
the HQE problem. It is a platform-independent hidden query extractor introduced in [1].
It extracts the hidden query Qg through “active learning” - that is, by using the outputs of
application executions on carefully crafted database instances. It uses a judicious combination of
database mutation and database generation techniques to extract hidden queries. UNMASQUE
is capable of extracting a basal set of warehouse queries that feature the core SPJGAOL (Select,

Project, Join, Group by, Aggregation, Order by, Limit ) clauses.
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Figure 1.1: UNMASQUE Architecture

1.1 Motivation

Our motivation for incorporating Not Equal predicate into hidden query extraction as it is a
commonly used operator in database applications. It is evident from the widely used business
benchmarks. Among the 22 queries in the TPC-H benchmark [3], as many as 5 performs Not
Equal operation. Among the 99 queries in the TPC-DS benchmark [4], 11 contains Not Equal
operators. We will be using the following query running example throughout to explain subse-
quent report sections. UNMASQUE will not be able to extract the following hidden query Qg
because it contains Not Equal (<>) and Not Like operator, and hence it falls outside of the
class of extractable queries. We will use NEP as the abbreviation to represent the Not Equal

predicate.

Select [_shipmode, count(*) as count

From lineitem

Where |_quantity > 20 and |_quantity <> 25
and [_shipmode not like *%AIR%’

Group By [_shipmode

Order By | _shipmode

The MINIMIZER module of the UNMASQUE pipeline, shown in Figure 1.1, takes up the
lion’s share(more than 98 %) of the extraction time. The extreme skewness across the modules
because the minimizer operates on the original large database, whereas the other modules work

with minuscule databases. We can make the entire extraction fast by making the MINIMIZER



module efficient.

1.2 Technical Challenges

The primary challenge in Not Equal predicate extraction is identifying the single value from
the wide search space of attribute. It is not feasible to search NEP value in the huge domain
range of each attribute. We have devised a minimization technique that will quickly reduce the
search space of the attribute to find the NEP value.

The other challenges in addressing the HQE problem are due to the inherent complexities
of the query clauses and the acute dependencies between them. The extraction of NEP is
challenging due to its dependence on Filter Extraction Module of Figure 1.1. The filter extractor
may extract a subsumed filter predicate if we include column <> val in their extractable domain.

We have discussed this challenge in detail in Section 2.2.

1.3 Owur Contribution

We extend the current scope of HQE by including Not equal into the extractable domain and

enhancing its efficiency. The key design principles are:
NEP Extraction

This project takes under consideration of UNMASQUE Extractable Query Class(EQC) as-
sumptions and tries to expand its domain by including the ablity to handle <> and Not Like
operator. Our contribution is to unmask the hidden queries containing <> and Not Like

operators under certain assumptions.
Views-based Minimizer

One of the key modules of UNMASQUE is the Data Minimizer module. It identifies the
smallest subset D! of D; such that Qs continues to produce the populated result on this D*.
This minimization module is the bottleneck in the current pipeline because it operates on the
original large database D;, whereas the other modules work with a miniscule database D!. The
minimization module times increase as the size of the original database instance increases. We
have proposed a View-based Minimizer, which will take no extra disk space and improve the

minimization time by orders of magnitude.
Result Comparator

The result comparator of the query checker module in UNMASQUE compares the output results
of the hidden query Qg¢ and extracted query Q¢ to verify the correctness of extracted query.

The UNMASQUE comparison algorithm follows a brute force approach in which each tuple



of one table is linearly searched into another table. It will slow down when the cardinality of
the tables is high. There is also a correctness issue with the above approach. The algorithm
will produce an incorrect answer when the unique tuples are identical, but the frequency of
the duplicate tuples in the two tables is different. We have proposed some faster algorithms
for results comparison. They will compute the hash of the tables and then compare their hash

values for table equivalence check.

1.4 Performance Evaluation

We have evaluated NEP extraction behavior on complex SQL queries containing <> and Not
Like, arising in a synthetic TPC-H environment. These complex queries are derived from
the popular TPC-H benchmark. Our experiments, conducted on a Google Cloud platform,
indicate that the hidden queries are precisely identified in a timely manner. As a case in point,

the running example query is extracted on a 100 GB TPC-H instance within 10 minutes.

1.5 Organization

The remainder of the paper is organized as follows: The background work is reviewed in Section
2. The problem framework is discussed in Section 3. Further, the solution overview for NEP
extraction is introduced in Section 4, and then described in detail in Sections 5 through 8.
The experimental evaluation is reported in Section 9. The related work is discussed in Section
10. Finally, our conclusions and future research avenues are summarized in Section 11. The

appendix contains some proofs and experimental test queries.



Chapter 2

BACKGROUND

We have discussed some of the prerequisites of UNMASQUE, which will help to understand
the NEP extraction. The class of queries that UNMASQUE can handle is defined in [1] as
Eztractable Query Class (EQC). EQC assumes : (i) {<>, Not Like} are out of the Extractable
Query Class. (ii) Filter predicate features only non-key columns and are of the type column
op value. For numeric columns op € {=, <, >, <, >, between} and for textual columns op € {=
,like}; (iii) The join graph is a sub-graph of the schema graph(comprised of all valid PK-FK
and FK-FK edges); (iv) All the ordering columns appear in the projections; (v) The limit value

is at least 3; (vi) All joins are key based equi-joins.

2.1 Database Minimization

Database Minimizer identifies the smallest subset D,,;, of the initial database instance D; such
that hidden query Qg continues to produce the populated result on this D,,;,. For EQC class
hidden queries, there will always exist single-row minimized tables. These single-row D,,;, are
referred to as D' in [1]. It uses a recursive database partitioning technique to find D!. Tt picks a
table ¢ from Tx(Set of tables in Q) that contains more than one row and divides it roughly into
two halves. Run Qs on the first half, and if the result is populated, retain only this partition.
Otherwise, retain only the second half. Eventually, all the tables of T have been reduced to a

single row by this process.

2.2 Filter Extraction

As per EQC, the filter predicates should be on non-key attributes and are of the type column op
value. The following steps are taken to check the presence of the filter predicate on attribute A.

Let [imin, tmaz) be the value spread of column A in the integer domain, and the range predicate



in Qq¢ is of the form [ < A < r, where [ and r need to be identified. All the comparison operators

(=, <,>,<,>,between) can be represented in this format (e.g. A <5 =iy, < A < 4).

Table 2.1: Filter Predicate Cases

‘ Case ‘ |Ri| = ¢ ‘ |R2| = ¢ ‘ Predicate Type ‘ Action Required

1 No No Tin < A <imas No Predicate
2 Yes No | <A< Find [
1 No Yes Tin < A< Find r
1 Yes Yes I<A<Zr Find [ and r

Replace the value of column A with 4,,;, in D! and then execute Q4. Similarly, replace the
value of column A with 4,,,, in D! and then execute Q. If we get a non-empty output result,
in either case, the filter predicate is present in column A. If the match is with Case 2, a binary-
search is conducted over (i, a] to identify the value of I, where a is the value of column
A present in D'. Similarly, for Case 3, the search is over [a, 4,,q,) to identify the value of 7.

Finally, Case 4 is a trivial combination of Cases 2 and 3, and handled in a similar manner.

2.3 Result Comparator

In the final module, UNMASQUE conducts a suite of automated tests to verify the extraction
correctness. First, several randomized large databases are created on which both the application
and the extracted query are run. The results are compared, and a non-zero difference indicates
an error. We denote Ry and Rp as the result of the hidden query and extracted query,
respectively. The UNMASQUE comparison algorithm follows a brute force approach in which
each element of result Rg is linearly searched into Ry. This approach will slow down when the

cardinality of the output results is high.



Chapter 3
Problem Framework

In this section, we summarize the basic problem statement, and the underlying assumptions of
the NEP extraction.
Problem Statement: The hidden query Qg contains Not Equal predicates, unmask Qs to

reveal the original query such that Vi, Qs (D) = R;.

3.1 Assumptions

We define a new class of supported queries called Extractable Query Class with NEP(EQCH).
In addition to EQC assumptions, we require some additional mild assumptions to achieve this

extended coverage of Not Equal Predicate.

e The Not Equal Predicate present in the filter is only on the non-key columns and is of

the type column op value where op € {<> not like}.

e When we execute hidden query Qg on the database instance Dg, each NEP present in

Qq¢ must separately impact the output result.

e There can be at most one NEP present per attribute. Extraction of the NOT IN operator

is out of our extractable domain.
e The possible wildcard characters that are used with the Not Like operator are ‘_" and ‘%.’

The second assumption is crucial to identify NEP efficiently. If NEP doesn’t show any
visible impacts on the original database Dy, we cannot identify NEP efficiently.

For ease of presentation, we are assuming one NEP per attribute. The modifications made
in the filter extractor of UNMASQUE (Section 5) can handle one NEP per attribute. We can

7



extend the same idea to k NEP per attribute, i.e., NOT IN operator.

3.2 Notations

The main acronyms and key notations used in the rest of the paper are summarized in Table
3.1.

Table 3.1: Notations

’ Symbol ‘ Meaning(wrt query Q) ‘

& Application Executable
Dy Initial Database Instance
Dnin Reduced Database
Dt Mutated Database
Qq¢ Hidden Query
Qe Extracted Query
Ry Result of Hidden Query
Re Result of Extracted Query
Ty Set of tables in Qg
Fg Set of Filter predicates in Qg




Chapter 4

Solution Overview

In this section, we overview the core design principles of NEP extraction, with the running

example of the Introduction used as a query to explain each module overview. Subsequently,

in Sections 5 through 8, all the architecture modules are described in detail.

The extracted query Q¢ from UNMASQUE is given as input to our NEP extraction mod-

ule. When our running example query is given as input to the current UNMASQUE(with the

modifications of Section 5), all the query components will get successfully extracted except <>

and Not Like operators. The extracted query Q¢ will be as follows:

Select [_shipmode, count(*) as count
From lineitem

Where [_quantity > 20

Group By [_shipmode

Order By [_shipmode;

The Figure 4.1 shown above is the architecture for NEP extraction. All of UNMASQUE’s

Updated Qg
(one NEP extracted)

Q¢ RESULT False (Qu Qg D%

—_—
D, UNMASQUE COMPARATOR

NEP_DB_Minimizer

(Qu Qs DY)

| True

Qg (Equivalent to Q)

Figure 4.1: NEP Architecture

NEP_Extractor




original code-base, other than the changes in Filter Extraction module, was used as a black-
box. The modification in the filter extractor clause is discussed in Section 5. We will use the
UNMASQUE pipeline extracted output query Q¢ for NEP extraction. The key observation
helpful to extract NEP is the difference in the output results from the hidden query Qs and
extracted query Q¢. From these output results, we can detect whether the NEP is present and
find attribute values on which it is present.

The Result Comparator module will detect whether the Not Equal Predicate is present in
Qq¢ or not. If the hidden query Qs € EQCY and extracted query Q¢ produces different results
on Dy, NEP is present in Qqg.

Result Comparator module will work as NEP detector. The hidden query Qs¢, extracted
query Q¢ and initial database D; are given as the input to the NEP_DB_Minimizer module.
This module will find a reduced database D' from D; such that Q¢ gives a populated result
and Qg gives an empty result on D!. The reduced database D! for our running example is
shown in Table 4.1.

Table 4.1: Minimized lineitem table I

l_orderkey | l_shipdate | [_commitdate | l_quantity | [_shipmode
10 1993-09-10 | 1994-02-05 25 MAIL

The reduced database instance D! is given as an input to the NEP_Extractor module. The
NEP_FEzxtractor module will extract one NEP at a time using database mutation techniques.
This module will extract |_quantity <> 25 for our running example and updates the extracted

query by including extracted NEP. The updated extracted query Q; " will be:

Select |_shipmode, count(*) as count

From lineitem

Where [_quantity > 20 and [_quantity <> 25
Group By [_shipmode

Order By l_shipmode;

Using this updated extracted query Qg/ again, the presence of some other NEP is checked.
This cycle will repeat until all the NEP gets extracted from Q. The not like operator will
get extracted for our running example query in the next cycle. In the following sections, we

present the internal details of each of the aforementioned concepts.

10



Chapter 5

Modified Filter Extractor

If column <> wal is present in the hidden query Qg then the filter extractor may extract a
subsumed filter predicate. We can understand this problem from our running example. Sup-
pose we are extracting the filter extractor on the [_quantity attribute. The range of column
[_quantity attribute is [1, 50], and the value of column [_quantity in D' is 50. As we have
discussed the working of filter extractor in Section 2.2. A binary search is conducted over [1,
50] to find the value of I. Due to the presence of I_quantity <> 25 in Qg, a subsumed filter
predicate A > 26 will get extracted. Due to the presence of NEP, the binary search finds the

incorrect value of [.

As per our FQCY assumptions defined in Problem Framework Section, there can be at
most one NEP per attribute in Q4. By putting one additional check at Line 8 of Algorithm
1, we can avoid finding subsumed filter predicate. When we find the value of [, at any iteration
of Binary Search, if we get an empty result for the middle value and a populated result for the

maddle — 1 value, then it means that NEP is present on the middle value.

If the condition of Line 9 in the following algorithm is true, then NEP is present on the mid
value. In our running example, Q4 produces empty result on D! when the value of [_quantity
attribute is 25 and non-empty results when the value of [_quantity attribute is 24. It means
that [_quantity <> 25 is present in Qq;. Similarly, when we find the value of r, we have put an
additional check for one larger value of mid. This modification ensures the correct working of
the UNMASQUE Filter extractor module under EQCY assumptions.

11



The following algorithm is the modified filter extraction algorithm of UNMASQUE under
EQCV assumptions:

Algorithm 1: Modified Filter Extraction
Data: Ty, D!
Result: Fg
left < imin
right < D'.A
while left < right do
mid < (left + right)/2
DA « mid
71 < Q3c(Dy)
DA« mid — 1
r2 4= Qac(Dpyue) // Additional check
if 7y = ¢ and r # ¢ then
Fg.add(*A <> mid’)
right <— mid

end
else if 1, = ¢ and r = ¢ then

‘ left < mid+ 1
end
else

‘ right <— mid
end

© W0 N O ok W N =

[ TS S G S Sy
W g OO U N W N = O

end

[+ left
Frp.add(*A>1)
return Fg

N NN =
N = O ©
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Chapter 6

NEP Database Minimizer

To extract every Not Equal Predicate present in Q5¢, We invoke the NEP_DB_Minimizer mod-
ule to minimize the database as far as possible while maintaining different output results on
extracted queryQe and hidden query Qs. If we can find such minimized single-row database,

we can extract NEP by database mutation techniques discussed in the NEP_Eztractor module.

6.1 Reducing D; to D!

Lemma 6.1.1 For the EQCY, there always exists a D' identified by NEP_DB_Minimizer on
which Qq¢ and Qe produce different output results.

Proof of Correctness: Given an initial database instance D, extracted query Q¢ from UN-
MASQUE, and hidden query Qg containing NEP, our NEP_DB_Minimizer module will always
identify reduced database instance D!.

Firstly, since the output result from Qs and Q¢ are different on Dy, the intermediate output
results obtained after the evaluation of the SPJ core of the query are also guaranteed to be
different. This is because the subsequent GAOL elements only perform computations on the
intermediate result but do not add to it. Now, if we consider the provenance for each row r; in
the intermediate result, there will be exactly one row as input from each table in Tz on which
Qg¢ and Qg give the different results because: (i) If there is no row from table ¢, r; cannot be
derived because the inner equi-join with table ¢ will result in an empty output from both Qs
and Q¢.(ii) If there are k rows (k > 1) from table ¢ on which Qg and Q¢ give different outputs,
(k — 1) rows either do not satisfy one or more join/filter Fj predicates and can therefore be
removed, or they will produce a result of more than one row. We can trace back to the single-row

database(containing NEP value) on which Qg and Qe give different output results.

13



We will discuss the overview of the following Algorithm 2. It works similar to the database
minimization algorithm of UNMASQUE with the changes in line number 9. It picks a table
T from Ty that contains more than one row and divides it roughly into two halves. Run the
Match algorithm on the first half, and if it returns false, retain only this partition. Otherwise,
retain only the second half. The Match algorithm will efficiently compare the result of extracted
query Q¢ with the result of hidden query Q4. The output of the Match algorithm is true if
Rsc and R¢ are equivalent otherwise false. Each time after table halving, Match Algorithm is

executed.

The following NEP_DB_Minimizer algorithm is used to identify reduced database instance
Dl

Algorithm 2: NEP_DB_Minimizer
Data: Qg, Q¢, Dy

Result: D!

1 D ¢

2 foreach Table T in T do

3 | while |T|>1do

4 Divide T into two halves T, and T;
5 T+ T,

6 Dy.update(T)

7 :Rg{ — Qg{(@j)

8 :Rg — Qg (@j)

9 if not Match(Ry¢, Re) then
10 ‘ drop T;

11 end

12 else

13 drop 7,

14 T+ T

15 end

16 end

17 | Dl.add(T)
18 end

19 return D!

6.2 Correctness

Lemma 6.2.1 For EQCY class of assumptions, NEP_DB_Minimizer will correctly identify a
reduced database D' such that Q¢ (D') = ¢ and Qqc(D') # ¢.

14



Proof of Correctness: Under EQCY assumptions, if Ry and Re are different on D;, then
NEP must present in Q¢ as the other UNMASQUE modules don’t get impacted due to the
presence of NEP. NEP_DB_Minimizer will find a reduced database D! from D; such that
Rye = Qq¢(D') and Rg = Q¢ (D?') are different. As the cardinality of input reduced database
D' is one, the cardinality of the output results Ry and Re must be at most one. This implies
that some attribute of D! contains NEP value. Therefore, the cardinality of Ry must be zero
because D! has the NEP value.

Since Ry and R¢ are different and Ry is empty, Re must be non-empty. Hence, NEP_DB_Minimizer
will identify a D! such that Ry is empty and R¢ is non-empty. From Lemma 6.1.1 and 6.2.1, we
can conclude that the NEP_DB_Minimizer algorithm will always identify the reduced database
instance D' such that Q¢ (D') = ¢ and Qqc(D') # ¢. We can identify all NEPs from D' by

simple mutation techniques.

6.3 Optimizations in MINIMIZER

The MINIMIZER module of the UNMASQUE pipeline takes up more than 98 % of the ex-
traction time. It is a bottleneck in the UNMASQUE pipeline. Database minimization is a
one-time process in UNMASQUE. But in NEP extraction, for each NEP extraction database
minimization is done. Therefore, to make NEP extraction time practical, we need to work on

the efficiency of minimizer.

We can see in Algorithm 2 that in each iteration of the while loop, we are creating a new
table by copying the upper half of the current table. This copying of tables will incur time and
space overhead. We can avoid this extra time and space overhead by avoiding the materializa-
tion of the tables. We have used virtual views for table halving rather than materializing a new

table every time.

We have used systems tuple identifiers to create views. A tuple identifier represents a
physical location of a row. They are database vendor dependent. For, e.g., ctid in PostgreSQL
and rowid in Oracle. It is the fastest way of locating a row. A Ctid of a row is represented as
a pair (block number, tuple number within block). The Ctid of the first row of the table is (0,
1)’. The number of tuples present in a block is table-width dependent. Based on the number
of tuples per block, we can estimate the ctid of the middle row of the table. Suppose one block
contains 50 tuples, then the following query will create a view T, which contains roughly the
upper half of table T

15



Create View T, as

Select * From T Where ctid > (0, 1)’ and ctid < ‘(|T|/100, 1)’ ;

The view T, roughly contains the upper half of table T. The approximate block number
of the middle row of table T" would be |T'|/50 * 1/2. Using Ctid’s, we can quickly locate the
required chunk of large tables. We can query the view through hidden query Q4. View creation

is a constant-time operation. The extra time and space of materializing the table T, is avoided.

If the database vendor doesn’t provide the system’s tuple identifier, we create an extra column
in the schema that acts as pseudokey. We will create an index on this column and create the
views T, using this extra column instead of ctid. This Approach will work similarly to the

previous tuple identifier approach.

We have performed the empirical analysis of minimization time for both the UNMASQUE
and Views Approach in the experiments section. These experiments justify the above theoretical
claims. We have also recorded the extra disk space for both approaches to verify no extra disk
requirement in the Views Approach. The result comparator module internally uses Match
Algorithm for table equivalence check. We have described the working of an efficient Match

Algorithmin the next section.

6.4 Time Complexity

We assume a simple cost model, defined as follows: Let |T'| denote the size of table T', measured
in terms of the row-cardinality. Then, the time to run a query that includes m tables (say T}, T3,
.., Tp) is directly proportional to the product of the table sizes. NEP_DB_Minimizer algorithm
will recursively halve the selected table through Views (which is constant-time operation) and
then execute the hidden query. Every time, the query cost is reduced by half. The time taken
by the NEP_DB_Minimizer algorithm to reduce the table to a single row can be computed as
(5 + 3+ ...+1), which is upper bounded by O(7).
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Chapter 7

RESULT COMPARATOR

The Match procedure of Algorithm 2 will compare the result Ry of the hidden query with the
result Re of the extracted query Qg. For a query in EQCY, the matching algorithm will work
as a Not Equal Predicate detector. If results Rg and R are different, then it means that some
NEP is not extracted. The UNMASQUE comparison algorithm follows a quadratic approach

in which each tuple of result R¢ is linearly searched into result Ry.

We have proposed some methods which have lower overheads for result comparison. We
have devised two algorithms for the result comparison, i.e., Faster Comparison-based and
Computation-based algorithms. Tables Re and Ry are explicitly created from extracted query

Q¢ and hidden query Qg outputs, respectively.

7.1 Comparison-based Methods

Each tuple’s presence in the other table is checked in a comparison-based algorithm. We have
used the ‘Except All” SQL operator for result comparison. We will count the number of rows

left after subtracting the result tables Re and Rg¢ from each other.

(' < Select count(*) From (Select * From R¢
Except All Select * From Ry) T;

Cy + Select count(*) From (Select * From Ry
Except All Select * From R¢) T

If the value of both C and C2 equals zero, Re and Ry are equivalent. The benefit of using

the SQL operator for result comparison is that the database optimizer will intelligently switch
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the query plan having less cost. When the cardinality of the result is less, it uses the Sort Merge
plan; Otherwise, it uses Hashing. We have used ‘All’ because of the possibility of duplicate

rows in Re and Ry.

7.2 Computation-based Methods

In this method, a hash is generated row-wise or table-wise, and then these hash values are
compared for result comparison. If aggregated hash values of table Re and Rq; are equal, they
are equivalent. The contents of each tuple of the table are not compared. We have discussed

two types of computation-based methods:

1. Table Hash Method: We compute the hash value of the entire result tables Re and Ry.
If the computed hash value is equal, the result tables are equivalent. The drawback of the
table hash method is that before computing hash, we need to sort both the tables on all
attributes of Re and Rg. The sorting will ensure the same tuple ordering in both tables.
Firstly, we need to apply the ‘Order By’ on all the attributes and compute the table
hash. PostgreSQL has many Hash functions; we have used the HashText hash function.

HashText function calculates a 32-bit signed integer hash value of the input string.

2. Row Hash Method: We compute the integer hash values of the individual tuples of
the table, then take the aggregate sum of all these integer hash values. We will call this
as checksum value of a table. If the checksum value of both the table Re and Ry are
equal, then it means that the tables are equivalent. The advantage of using the Row hash
method is that there is no need to sort the tables. The checksum value with or without
sorting would be the same. We have used the same HashText function for calculating the

checksum value.

We have conducted the empirical analysis of execution time for all the above result com-
parison techniques in the experiments section. The Table Hash method is the slowest because
of the extra cost of sorting the tables on all attributes. The Row hash method is the fastest
result comparison technique. We have used the Row Hash method as our Match algorithm.

We have compared the results comparison time of the UNMASQUE approach with our
fastest Row Hash approach. The comparison time in the UNMASQUE approach increases ex-
ponentially as the result cardinality increases. We have improved the output results comparison
time by orders of magnitude. Match procedure algorithm is frequently executed in Algorithm

2. The row hash method reduces the overall NEP comparison time significantly.
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The following algorithm is our final Result Comparison Algorithm:

Algorithm 3: Match_Algorithm

Data: ng{,ng
Result: Comparison of Ry, Re
H, < Sum of all rows integer hash values of Ry
Hy < Sum of all rows integer hash values of R¢
if H == H, then
‘ return True ; // Ry and Re equivalent
end
else
‘ return False ;
end

® J O O A W N =
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Chapter 8

NEP Extraction

The reduced database instance D! from NEP_DB_Minimizer is given as input to the NEP_Extractor
module. Using database mutation techniques NEP_Eztractor module will extract the Not Equal
Predicate source attribute and its corresponding value. The filter extractor module of UN-
MASQUE extracts all the filter and join predicates under FQC' assumptions. Therefore, we
can refer to the values of the attribute which satisfy the corresponding filter and join predicates

of Q¢, and are termed as filter-compliant values.

NEP_Extractor algorithm will iteratively explore all the attributes of D!. It will mutate
each attribute value with some other filter predicate compliant value and then run Qg If Qg
gives a populated output result, it means that the present attribute is the source NEP column,
and the associated value present in D! before the mutation is the NEP value. We are mutating
the attribute values of D! with the values that satisfy the corresponding filter and join predi-

cates in the Qg.

The following procedure for NEP exploration is skipped for equality predicate attributes.
If the hidden query Qg contains both equality and not equal predicate, i.e., A = ml and
A <> m2. It is equivalent to A = m1. There is no need to find NEP for equality predicate
attributes. NEP_FExtractor module updates Q¢ by including the extracted NEP. This cycle of
NEP_DB_Minimizer and NEP_Extractor repeats until all the NEP of different attributes gets

extracted.
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The following NEP_Extraction algorithm is used to extract the NEP from D!:

Algorithm 4: NEP_Extractor
Data: Qq, Q¢, D!
Result: Q¢ containing NEP
1 foreach Table T' in Te do

2 flag <0

3 foreach Attribute A in T do
4 vall <+ T.A

5 T.A < val2 ; /* Update the value of A with other filter compliant

value */

6 if Qy(D].;) # ¢ then

7 Fe.add(*A <> vall?)
8 Q¢.update(Fe)

9 flag + 1

10 break

11 end
12 end

13 if flag ==1 then

14 ‘ break

15 end
16 end

17 return Q¢

8.1 Textual Not Like predicate

The NEP Extraction will work correctly for numeric, decimal, boolean, and date data types.
The extraction procedure for character columns is significantly more complex because (a) strings
can be of variable length, and (b) the filters may contain wildcard characters (‘. and ‘%’).
NEP_DB_Minimizer will find a string that satisfies the actual filter value. In our running
example, the ‘AIR’ string will be extracted from D'. We aim to extract the actual filter value
from this string if Not Like is present in the where clause of Qg¢. The reduced database D! for

Not Like extraction in our running example will be:

Table 8.1: Minimized lineitem table II

l_orderkey | l_shipdate | [_commitdate | l_quantity | l_shipmode
12 1994-12-10 | 1996-11-05 22 AIR
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8.1.1 Identify MQS

The following algorithm for finding the actual filter value of Not Like operator is similar to
Algorithm 2 defined in [2]. The only possible wildcard characters that are used with the Not
Like operator are ‘_’ and ‘%.” The basic logic in the algorithm is that when we replace or
remove a character in the string of an attribute in D! and then run Qg. If we get a non-empty
result on this mutated D',,,;, then this character is part of the actual filter value of Not Like.
We will define Minimal Qualifying String(MQS) — given a character string expression str, its
MQS is the string obtained by removing all occurrences of ‘%’ from str. For example, “AIR_"
is the MQS for “%AIR_%.” The following algorithm will identify MQS using the string value

of Column A in D!, denoted as rep_str.

Algorithm 5: Identifying MQS
Data: Column A, rep_str, D!

Result: MQS

1atr =0; MQS = “7;

2 while itr < len(rep_str) do

3 temp = rep_str

4 | templitr] = ¢ where ¢ # rep_str[itr]

5 | DL . <+ D' with value temp in column A
6 | if &(D,,,)# ¢ then

7 | MQS.append(rep_strlitr + +])

8 end

9 else

10 temp.remove_char_at(itr)

11 D} .. < D' with value temp in column A
12 if &(D)...) # ¢ then

13 ‘ MQS.append(’); itr + +

14 end

15 else

16 | rep_str.remove_char_at(itr)

17 end

18 end
19 end

20 return MQS

The idea here is to loop through all the characters of rep_str and determine whether it is

present as an intrinsic character of MQS or invoked through wildcards (‘" or ‘%’). Replace

each character of rep_str in D! with a different character and then execute Qg on this mutated
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database. If the result is non-empty, the replaced character is part of MQS. Otherwise, that

character was invoked through wildcard characters.

After obtaining the MQS, we need to find the location of the ‘%’ wildcard character. We
will linearly select each pair of consecutive characters in MQS, and a random character that
is different from both these characters is inserted between them. Then, we replace the current
value in attribute A with this new string. The non-empty result of Qs on this mutated database
instance indicates the existence of ‘%’ between the pair of characters. The inserted character
is removed after each iteration and we start with the initial MQS for each successive pair of
consecutive characters. It is done to ensure that the character length limit for A is not exceeded.
In the case of our running example MQS for [_shipmode attribute will be ‘AIR’ and the actual
filter value will be ‘%AIR%’.

Lemma 8.1.1 For a query in EQCY, Algorithm 5 will correctly identify MQS for the Not

Like operator on the textual attribute.

Proof of Correctness: The correctness of Algorithm 5 can be established using contradiction.
For example, let us say a character ‘a’ belonged to MQS, but the procedure fails to identify
it. After removing ‘a’ from rep_str, the result is still empty (the filter condition for not like
was satisfied). It is only possible when ‘a’ occurs more than once in rep_str and at least
one occurrence is part of the replacement for wildcard ‘%’. However, the procedure will keep
removing ‘a’ until there is no occurrence left which is part of the replacement for wildcard ‘%’.
After that, removing ‘a’ will lead the corresponding filter predicate to fail. If this is not the
case, ‘a’ is not present in the MQS, a contradiction. This proof is similar to the identification
of MQS for the Like operator in [2].

8.1.2 Time Complexity to identify MQS

If len is the character limit of the textual attribute, then the time complexity of the Algorithm
5is O(len). Because the algorithm will linearly iterate the rep_str string, and in each iteration,
it will perform constant-time operations. After finding MQS, one more single pass is required
to find the location of the ‘%’ wildcard character. Therefore, the time complexity for actual
filter value extraction of the Not Like operator is linear in the maximum number of characters

allowed by the textual attribute.
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8.2 Time Complexity NEP Extraction

We have already discussed the time complexity of NEP_DB_Minimizer module in Section 6.4.
It is upper bounded by O(7). In the NEP_Extractor module, we are iterating over all the
attributes and performing a constant-time operation. The time complexity for this module will
be O(m), where m is the total number of attributes in all the tables.

If kK NEPs are present in the hidden query Qg, then this cycle of NEP_DB_Minimizer and
NEP_FEztractor repeats k times. Therefore, the overall time complexity is O(k(7 + m)).
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Chapter 9
Experiments

We now move on to empirically evaluating Minimizer, Result Comparator, and NEP extraction
efficiency. Our experiments are carried out on the google cloud platform, installed PostgreSQL
11 database (Intel Xeon 2.3 GHz CPU, 32GB RAM, 3TB Disk, Ubuntu Linux) with default
primary-key indices. Our experiments cover the accuracy, time and space overhead aspects of
NEP extraction.

9.1 Copy-based Minimizer Vs Views-based Minimizer

The proposed optimized approach of database minimization using views is implemented in
Python 3.6 and integrated with the UNMASQUE pipeline. We have compared the Minimizer
time of UNMASQUE with the Views approach. We also compared the extra disk space re-
quirement of UNMASQUE and Views Approach.

9.1.1 Empirical Analysis of Running Time

We have conducted experiments on different sized TPC-H databases and compared the execu-
tion times. The hidden query Qs on which the minimization times are reported is the TPC-H
Q; query. We have used a stacked bar chart to show the table creation time and rest minimizer
time separately.

We can see that the blue part (table creation time) shares the maximum chunk of minimiza-
tion time in UNMASQUE. The views approach is significantly faster because there is no table
creation part. On large databases like 100GB, UNMASQUE took close to 4500 seconds, whereas
the Views approach completed the minimization in only 320 seconds. The minimization time

improved by orders of magnitude.
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Figure 9.1: UNMASQUE and Views Comparison Time

9.1.2 Empirical Analysis of Disk Space

We have recorded the extra disk space required by both copy-based and views-based mini-
mizer. The total extra disk space required by UNMASQUE is dependent on the size of the
initial database instance D;. The views-based minimizer avoids the extra disk space required
for materializing the tables. There is no requirement for disk space in the proposed optimized

minimizer. We have used this optimization in NEP extraction.

Disk Space (in GB)

. — n

1GB 10GB 20GB 30GB 100 GB
TPC-H Databases

®UNMASQUE m VIEWS

Figure 9.2: UNMASQUE and Views Space Overhead

9.2 Result Comparator Techniques

We have conducted the experiments to compare the three Result comparison techniques i.e.,
Comparison-based, Table Hash and Row Hash method. The execution time is recorded for each
technique with different cardinality of the result tables. There are 16 attributes in each result
table.
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The Table Hash method is the slowest because of the extra cost of sorting the tables on
all attributes. The sorting cost will increase as the number of attributes of the result table
increases. The computation-based methods are faster than comparison-based methods because
computing a hash is a one-time process, whereas checking each row’s presence is expensive.
The computation-based Row Hash technique is the fastest result comparator method. We have
used it as our final Match algorithm.

We have compared the results comparison time of the UNMASQUE approach with our
fastest Row Hash approach.
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Figure 9.4: UNMASQUE and Row-Hash Comparison Time

We have compared the result comparison time of our faster row hash approach with the
UNMASQUE approach. The comparison time in the following graph also contains additional

time required to create the output result Ry and R¢ tables. We have improved the output
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results comparison time by orders of magnitude, specifically when the size of result tables is

large. The result comparator has a crucial role in NEP extraction.

9.3 NEP Extraction time

We implemented the proposed NEP algorithm in Python 3.6 and integrated with the existing
UNMASQUE codebase. The new modules were tested against a set of NEP queries to verify the
correctness and to see how much overhead is incurred due to the additions. The experiments are
conducted on a basal suite of EQCY class queries. All these complex queries contain Not Equal
operators. These queries are derived from the popular TPC-H benchmark queries. To conduct
a better evaluation, we need complexity in queries that TPC-H provides. We have reported
the extra overhead incurred due to the addition of this new module. We have incorporated
the View-based minimizer and modified filter extractor in the UNMASQUE codebase. The
UNMASQUE’s codebase with modifications was used as a black box in NEP extraction.

All these derived benchmark queries are listed in the appendix. The total end-to-end time
taken to extract each of the 12 queries on a 100 GB initial instance (with a populated result) is
shown in Figure 9.5. In addition, the breakup of the NEP extractor module and UNMASQUE

module execution time is shown in the Figure.
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We have done the manual verification of all the output extracted queries. The extraction
times are practical for offline analysis environments, with all extractions being completed
within 10 minutes. When we drilled down into the performance profile, both Minimizer and
NEP_DB_Minimizer take up the maximum shares of extraction time. The Minimizer module

operates on the large database tables, where as the rest modules work with miniscule databases.
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Chapter 10

Related Work

Over the past decades, a variety of novel approaches have been proposed for the query reverse-
engineering (QRE) problem. The general QRE problem statement is: Given a database instance
D; and a populated result Ry, identify a candidate SQL query Q¢ such that Qo(D;) = R;.
This problem has a wide variety of use cases. There has been a lot of work done in this area,
with the development of elegant tools such as TALOS [5], REGAL [6], and SCYTHE [7]. The
ground-truth query is not available in QRE, due to which the output query Q¢ is organically
dependent on the specific (D, R; ) instance provided by the user.

A variant of the QRE problem was recently introduced in [1], where a ground-truth query
is additionally available in hidden form. This problem is termed Hidden Query Extraction
(HQE). HQE problem is described in the introduction section. The output query now becomes
independent of the initial (D;, R; ) instance. Our work is enhancing the scope and efficiency of
hidden query extraction. We extended the scope of HQE by including the Not Equal predicates

into its extractable domain.
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Chapter 11

Conclusion and Future Work

We can now extract the hidden queries containing Not Fqual and Not Like operators under
EQCY assumptions. Experiments are performed to verify the proposed solution on complex
TPC-H-based queries. We have implemented the suggested optimizations in the UNMASQUE
tool’s Minimizator and Result Comparator module. We minimized the extraction overhead of
UNMASQUE by orders of magnitude. We can extract the NEP hidden queries efficiently and
accurately.

There are some operators that cannot be extracted by UNMASQUE yet. One possible
direction for future work would be to come up with new ideas to extract the filter predicate of the
type column <> column. These types of extraction come under Algebraic predicates extraction.

The extraction of nested queries and MINUS set operator is also out of the extractable domain.
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Appendix

TPC-H Based Queries
Q.1:

Select |_returnflag, [ linestatus, sum(l_quantity) as sum_qty, sum(l_extendedprice) as sum_base_price,
sum(l_discount) as sum_disc_price, sum(l_tax) as sum_charge, avg(l_quantity) as avg_qty,
avg(l_extendedprice) as avg_price, avg(l_discount) as avg_disc, count(*) as count_order

From lineitem

Where [_shipdate < date ’1998-12-01" and [_extendedprice <> 33203.72

Group by [ _returnflag, [ linestatus

Order by [_returnflag, | linestatus;

Q.2:

Select s_acctbal, s.name, n_name, p_partkey, p-mfgr, s_address, s_phone, s_comment
From part, supplier, partsupp, nation, region

Where p_partkey = ps_partkey and s_suppkey = ps_suppkey and p_size = 38 and p_type like
"%TIN” and s_nationkey = n_nationkey and n_regionkey = r_regionkey and r_name = "MID-
DLE EAST’ and p-mfgr <> 'Manufacturer#5’

Order by s_acctbal desc, n_name, s_-name, p_partkey

Limit 100;

Q.3:

Select [_orderkey, sum(l_discount) as revenue, o_orderdate, o_shippriority

From customer, orders, lineitem

Where c. mktsegment <> 'BUILDING’ and c_custkey = o_custkey and [_orderkey = o_orderkey
and o_orderdate <’1995-03-15" and [_shipdate >"1995-03-15

Group by [l orderkey, o_orderdate, o_shippriority

Order by revenue desc, o_orderdate, l_orderkey
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Limit 10;

Q.4:

Select o_orderdate, o_orderpriority, count(*) as order_count

From orders

Where o_orderdate <’1997-09-01" and o_orderdate > date ’1997-07-01" and o_orderdate <>’1997-
07-01°

Group By o_orderdate, o_orderpriority

Order By o_orderpriority

Limit 10;

Q.5:

Select n_name, sum(l_extendedprice) as revenue

From customer, orders, lineitem, supplier, nation, region

Where c_custkey = o_custkey and [_orderkey = o_orderkey and [_suppkey = s_suppkey and
c_nationkey = s_nationkey and s_nationkey = n_nationkey and n_regionkey = r_regionkey
and r_name = 'MIDDLE EAST’ and o_orderdate > date '1994-01-01" and n_name not like
"IRAN%’

Group By n_name

Order By revenue desc

Limit 100;

Q.6:

Select [_shipmode, sum(l_extendedprice) as revenue

From lineitem

Where [_shipdate > date '1994-01-01" and [_shipdate <date '1994-01-01" and [_quantity < 24
and [_shipmode not like "%AIR%’ and [_shipdate <>'1994-01-02’

Group By [_shipmode

Limit 100;

Q.10:

Select c_name, sum(l_extendedprice) as revenue, c_acctbal, n_name, c_address, c_phone,
c_comment

From customer, orders, lineitem, nation

Where c_custkey = o_custkey and [_orderkey = o_orderkey and o_orderdate > date '1994-
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01-01" and o_orderdate < date '1994-01-01" + interval '3’ month and [_returnflag = 'R’ and
c_nationkey = n_nationkey and c_name <> 'Customer#000100867’
Group By c_name, c_acctbal, c_phone, n_name, c_address, c.comment

Order By revenue desc
Limit 20;

Q.11:
Select ps COMMENT, sum(ps_availqty) as value

From partsupp, supplier, nation

Where ps_suppkey = s_suppkey and s_nationkey = n_nationkey and n_name =’ ARGENTINA’
and ps_comment not like *%regular%dependencies%’ and s_acctbal <> 449.54

Group By ps. COMMENT

Order By value desc

Limit 100;

Q.16:
Select p_brand, p-type, p_size, count(ps_suppkey) as supplier_cnt

From partsupp, part

Where p_partkey = ps_partkey and p_brand = ’Brand#45’ and p_type not like 'SMALL
PLATED%’ and p_size > 4

Group By p_brand, p_type, p_size

Order By supplier_cnt desc, p_brand, p_type, p_size;

Q.17:

Select AVG(I_extendedprice) as avgTOT AL

From lineitem, part

Where p_partkey = l_partkey and p_brand = 'Brand#52’ and [_shipdate <> '1994-05-29;

Q.18:

Select c_.name, o_orderdate, o_totalprice, sum(l_quantity)

From customer, orders, lineitem

Where c_phone LIKE '27-_%’ and c_custkey = o_custkey and o_orderkey = l_orderkey and
c_name <> "Customer#000060217’

Group By c.name, o_orderdate, o_totalprice

Order By o_orderdate, o_totalprice desc

34



Limit 100;

Q.21:

Select s_name, count(*) as numwait

From supplier, lineitemly, orders, nation

Where s_suppkey = [1.l_suppkey and o_orderkey = [1.l_orderkey and o_orderstatus = 'F’
and s_nationkey = n_nationkey and n_name <> 'GERMANY’

Group By s_name

Order By numwait desc, s_.name

Limit 100;
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