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Abstract

Database queries present in applications can be hidden due to explicit encryption or complex

internal representation. Unmasking the hidden queries within the database applications is

termed as Hidden Query Extraction(HQE) problem in [1]. The diverse use-cases of this problem

range from resurrecting legacy code to query rewriting. UNMASQUE algorithm is a first step

towards addressing the HQE problem. It is a non-invasive, platform-independent extraction

algorithm that extracts SQL queries hidden within database applications.

There are two main issues within UNMASQUE, from the performance and extraction point

of view. They ine�ciently handle the input-output database tables. We incorporated tech-

niques for the e�cient handling of input-output database tables. We are extending the scope

of UNMASQUE by including Not Equal Predicates into its extractable domain. A detailed

evaluation on synthetic benchmarks demonstrates the minimization in extraction overhead and

accurate extraction of Not Equal (<>) hidden queries.
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Chapter 1

Introduction

Database queries embedded within applications may become invisible due to explicit or implicit

opacity. Encryption or obfuscation may have been incorporated to protect the application

logic. Alternatively, opacity may also arise when the application source code is written in a

complex manner like ORM translations. These queries are termed as Hidden Queries in [1]

and the functions as executable for the queries. Hidden-Query Extraction (HQE) was recently

introduced in [1], and its task is to identify the hidden query.

Formally defined, HQE is: Given a black-box application A containing a Hidden query

QH(in either SQL format or its imperative equivalent), and a database instance DI on which A

produces a populated result RI, unmask QH to reveal the original query (in SQL format). The

goal of Hidden Query Extraction is to find the precise QH such that 8iQH(Di) = Ri.

A ground-truth query is additionally available but in a hidden form that is not easily accessible.

HQE has a variety of use cases such as: Imperative Code to SQL Translation, Debugging

Application with stored SQL procedures, Recovering of lost source code etc. UNMASQUE

(Unified Non-invasive MAchine for Sql QUery Extraction) is a first step towards addressing

the HQE problem. It is a platform-independent hidden query extractor introduced in [1].

It extracts the hidden query QH through “active learning” - that is, by using the outputs of

application executions on carefully crafted database instances. It uses a judicious combination of

database mutation and database generation techniques to extract hidden queries. UNMASQUE

is capable of extracting a basal set of warehouse queries that feature the core SPJGAOL (Select,

Project, Join, Group by, Aggregation, Order by, Limit ) clauses.
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Figure 1.1: UNMASQUE Architecture

1.1 Motivation

Our motivation for incorporating Not Equal predicate into hidden query extraction as it is a

commonly used operator in database applications. It is evident from the widely used business

benchmarks. Among the 22 queries in the TPC-H benchmark [3], as many as 5 performs Not

Equal operation. Among the 99 queries in the TPC-DS benchmark [4], 11 contains Not Equal

operators. We will be using the following query running example throughout to explain subse-

quent report sections. UNMASQUE will not be able to extract the following hidden query QH

because it contains Not Equal (<>) and Not Like operator, and hence it falls outside of the

class of extractable queries. We will use NEP as the abbreviation to represent the Not Equal

predicate.

Select l shipmode, count(*) as count

From lineitem

Where l quantity > 20 and l quantity <> 25

and l shipmode not like ’%AIR%’

Group By l shipmode

Order By l shipmode

The MINIMIZER module of the UNMASQUE pipeline, shown in Figure 1.1, takes up the

lion’s share(more than 98 %) of the extraction time. The extreme skewness across the modules

because the minimizer operates on the original large database, whereas the other modules work

with minuscule databases. We can make the entire extraction fast by making the MINIMIZER
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module e�cient.

1.2 Technical Challenges

The primary challenge in Not Equal predicate extraction is identifying the single value from

the wide search space of attribute. It is not feasible to search NEP value in the huge domain

range of each attribute. We have devised a minimization technique that will quickly reduce the

search space of the attribute to find the NEP value.

The other challenges in addressing the HQE problem are due to the inherent complexities

of the query clauses and the acute dependencies between them. The extraction of NEP is

challenging due to its dependence on Filter Extraction Module of Figure 1.1. The filter extractor

may extract a subsumed filter predicate if we include column<> val in their extractable domain.

We have discussed this challenge in detail in Section 2.2.

1.3 Our Contribution

We extend the current scope of HQE by including Not equal into the extractable domain and

enhancing its e�ciency. The key design principles are:

NEP Extraction

This project takes under consideration of UNMASQUE Extractable Query Class(EQC) as-

sumptions and tries to expand its domain by including the ablity to handle <> and Not Like

operator. Our contribution is to unmask the hidden queries containing <> and Not Like

operators under certain assumptions.

Views-based Minimizer

One of the key modules of UNMASQUE is the Data Minimizer module. It identifies the

smallest subset D1 of DI such that QH continues to produce the populated result on this D1.

This minimization module is the bottleneck in the current pipeline because it operates on the

original large database DI , whereas the other modules work with a miniscule database D1. The

minimization module times increase as the size of the original database instance increases. We

have proposed a View-based Minimizer, which will take no extra disk space and improve the

minimization time by orders of magnitude.

Result Comparator

The result comparator of the query checker module in UNMASQUE compares the output results

of the hidden query QH and extracted query QE to verify the correctness of extracted query.

The UNMASQUE comparison algorithm follows a brute force approach in which each tuple

3



of one table is linearly searched into another table. It will slow down when the cardinality of

the tables is high. There is also a correctness issue with the above approach. The algorithm

will produce an incorrect answer when the unique tuples are identical, but the frequency of

the duplicate tuples in the two tables is di↵erent. We have proposed some faster algorithms

for results comparison. They will compute the hash of the tables and then compare their hash

values for table equivalence check.

1.4 Performance Evaluation

We have evaluated NEP extraction behavior on complex SQL queries containing <> and Not

Like, arising in a synthetic TPC-H environment. These complex queries are derived from

the popular TPC-H benchmark. Our experiments, conducted on a Google Cloud platform,

indicate that the hidden queries are precisely identified in a timely manner. As a case in point,

the running example query is extracted on a 100 GB TPC-H instance within 10 minutes.

1.5 Organization

The remainder of the paper is organized as follows: The background work is reviewed in Section

2. The problem framework is discussed in Section 3. Further, the solution overview for NEP

extraction is introduced in Section 4, and then described in detail in Sections 5 through 8.

The experimental evaluation is reported in Section 9. The related work is discussed in Section

10. Finally, our conclusions and future research avenues are summarized in Section 11. The

appendix contains some proofs and experimental test queries.
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Chapter 2

BACKGROUND

We have discussed some of the prerequisites of UNMASQUE, which will help to understand

the NEP extraction. The class of queries that UNMASQUE can handle is defined in [1] as

Extractable Query Class (EQC). EQC assumes : (i) {<>,Not Like} are out of the Extractable

Query Class. (ii) Filter predicate features only non-key columns and are of the type column

op value. For numeric columns op 2 {=,,�, <,>, between} and for textual columns op 2 {=
, like}; (iii) The join graph is a sub-graph of the schema graph(comprised of all valid PK-FK

and FK-FK edges); (iv) All the ordering columns appear in the projections; (v) The limit value

is at least 3; (vi) All joins are key based equi-joins.

2.1 Database Minimization

Database Minimizer identifies the smallest subset Dmin of the initial database instance DI such

that hidden query QH continues to produce the populated result on this Dmin. For EQC class

hidden queries, there will always exist single-row minimized tables. These single-row Dmin are

referred to as D1 in [1]. It uses a recursive database partitioning technique to find D1. It picks a

table t from TE(Set of tables in QE) that contains more than one row and divides it roughly into

two halves. Run QH on the first half, and if the result is populated, retain only this partition.

Otherwise, retain only the second half. Eventually, all the tables of TE have been reduced to a

single row by this process.

2.2 Filter Extraction

As per EQC, the filter predicates should be on non-key attributes and are of the type column op

value. The following steps are taken to check the presence of the filter predicate on attribute A.

Let [imin, imax] be the value spread of column A in the integer domain, and the range predicate
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in QH is of the form l  A  r, where l and r need to be identified. All the comparison operators

(=, <,>,,�, between) can be represented in this format (e.g. A < 5 ⌘ imin  A  4).

Table 2.1: Filter Predicate Cases

Case |R1| = � |R2| = � Predicate Type Action Required

1 No No imin  A  imax No Predicate
2 Yes No l  A  imax Find l
1 No Yes imin  A  r Find r
1 Yes Yes l  A  r Find l and r

Replace the value of column A with imin in D
1 and then execute QH. Similarly, replace the

value of column A with imax in D
1 and then execute QH. If we get a non-empty output result,

in either case, the filter predicate is present in column A. If the match is with Case 2, a binary-

search is conducted over (imin, a] to identify the value of l, where a is the value of column

A present in D1. Similarly, for Case 3, the search is over [a, imax) to identify the value of r.

Finally, Case 4 is a trivial combination of Cases 2 and 3, and handled in a similar manner.

2.3 Result Comparator

In the final module, UNMASQUE conducts a suite of automated tests to verify the extraction

correctness. First, several randomized large databases are created on which both the application

and the extracted query are run. The results are compared, and a non-zero di↵erence indicates

an error. We denote RH and RE as the result of the hidden query and extracted query,

respectively. The UNMASQUE comparison algorithm follows a brute force approach in which

each element of result RE is linearly searched into RH . This approach will slow down when the

cardinality of the output results is high.

6



Chapter 3

Problem Framework

In this section, we summarize the basic problem statement, and the underlying assumptions of

the NEP extraction.

Problem Statement: The hidden query QH contains Not Equal predicates, unmask QH to

reveal the original query such that 8i, QH(DI) = RI .

3.1 Assumptions

We define a new class of supported queries called Extractable Query Class with NEP(EQCN).

In addition to EQC assumptions, we require some additional mild assumptions to achieve this

extended coverage of Not Equal Predicate.

• The Not Equal Predicate present in the filter is only on the non-key columns and is of

the type column op value where op 2 {<>, not like}.

• When we execute hidden query QH on the database instance DI, each NEP present in

QH must separately impact the output result.

• There can be at most one NEP present per attribute. Extraction of the NOT IN operator

is out of our extractable domain.

• The possible wildcard characters that are used with the Not Like operator are ‘ ’ and ‘%.’

The second assumption is crucial to identify NEP e�ciently. If NEP doesn’t show any

visible impacts on the original database DI , we cannot identify NEP e�ciently.

For ease of presentation, we are assuming one NEP per attribute. The modifications made

in the filter extractor of UNMASQUE (Section 5) can handle one NEP per attribute. We can

7



extend the same idea to k NEP per attribute, i.e., NOT IN operator.

3.2 Notations

The main acronyms and key notations used in the rest of the paper are summarized in Table

3.1.

Table 3.1: Notations

Symbol Meaning(wrt query QE)

E Application Executable
DI Initial Database Instance
Dmin Reduced Database
Dmut Mutated Database
QH Hidden Query
QE Extracted Query
RH Result of Hidden Query
RE Result of Extracted Query
TE Set of tables in QE

FE Set of Filter predicates in QE

8



Chapter 4

Solution Overview

In this section, we overview the core design principles of NEP extraction, with the running

example of the Introduction used as a query to explain each module overview. Subsequently,

in Sections 5 through 8, all the architecture modules are described in detail.

The extracted query QE from UNMASQUE is given as input to our NEP extraction mod-

ule. When our running example query is given as input to the current UNMASQUE(with the

modifications of Section 5), all the query components will get successfully extracted except <>

and Not Like operators. The extracted query QE will be as follows:

Select l shipmode, count(*) as count

From lineitem

Where l quantity > 20

Group By l shipmode

Order By l shipmode;

The Figure 4.1 shown above is the architecture for NEP extraction. All of UNMASQUE’s

Figure 4.1: NEP Architecture

9



original code-base, other than the changes in Filter Extraction module, was used as a black-

box. The modification in the filter extractor clause is discussed in Section 5. We will use the

UNMASQUE pipeline extracted output query QE for NEP extraction. The key observation

helpful to extract NEP is the di↵erence in the output results from the hidden query QH and

extracted query QE. From these output results, we can detect whether the NEP is present and

find attribute values on which it is present.

The Result Comparator module will detect whether the Not Equal Predicate is present in

QH or not. If the hidden query QH 2 EQCN and extracted query QE produces di↵erent results

on DI , NEP is present in QH.

Result Comparator module will work as NEP detector. The hidden query QH, extracted

query QE and initial database DI are given as the input to the NEP DB Minimizer module.

This module will find a reduced database D
1 from DI such that QE gives a populated result

and QH gives an empty result on D
1. The reduced database D

1 for our running example is

shown in Table 4.1.

Table 4.1: Minimized lineitem table I

l orderkey l shipdate l commitdate l quantity l shipmode

10 1993-09-10 1994-02-05 25 MAIL

The reduced database instance D1 is given as an input to the NEP Extractor module. The

NEP Extractor module will extract one NEP at a time using database mutation techniques.

This module will extract l quantity <> 25 for our running example and updates the extracted

query by including extracted NEP. The updated extracted query QE

0
will be:

Select l shipmode, count(*) as count

From lineitem

Where l quantity > 20 and l quantity <> 25

Group By l shipmode

Order By l shipmode;

Using this updated extracted query QE

0
again, the presence of some other NEP is checked.

This cycle will repeat until all the NEP gets extracted from QH. The not like operator will

get extracted for our running example query in the next cycle. In the following sections, we

present the internal details of each of the aforementioned concepts.

10



Chapter 5

Modified Filter Extractor

If column <> val is present in the hidden query QH, then the filter extractor may extract a

subsumed filter predicate. We can understand this problem from our running example. Sup-

pose we are extracting the filter extractor on the l quantity attribute. The range of column

l quantity attribute is [1, 50], and the value of column l quantity in D1 is 50. As we have

discussed the working of filter extractor in Section 2.2. A binary search is conducted over [1,

50] to find the value of l. Due to the presence of l quantity <> 25 in QH, a subsumed filter

predicate A � 26 will get extracted. Due to the presence of NEP, the binary search finds the

incorrect value of l.

As per our EQCN assumptions defined in Problem Framework Section, there can be at

most one NEP per attribute in QH. By putting one additional check at Line 8 of Algorithm

1, we can avoid finding subsumed filter predicate. When we find the value of l, at any iteration

of Binary Search, if we get an empty result for the middle value and a populated result for the

middle� 1 value, then it means that NEP is present on the middle value.

If the condition of Line 9 in the following algorithm is true, then NEP is present on the mid

value. In our running example, QH produces empty result on D1 when the value of l quantity

attribute is 25 and non-empty results when the value of l quantity attribute is 24. It means

that l quantity <> 25 is present in QH. Similarly, when we find the value of r, we have put an

additional check for one larger value of mid. This modification ensures the correct working of

the UNMASQUE Filter extractor module under EQCN assumptions.

11



The following algorithm is the modified filter extraction algorithm of UNMASQUE under

EQCN assumptions:

Algorithm 1: Modified Filter Extraction

Data: TE,D1

Result: FE

1 left imin

2 right D
1.A

3 while left < right do
4 mid (left+ right)/2
5 D

1.A mid
6 r1  QH(D1

mut
)

7 D
1.A mid� 1

8 r2  QH(D1
mut

) ; // Additional check
9 if r1 = � and r2 6= � then

10 FE.add(‘A <> mid’)
11 right mid
12 end
13 else if r1 = � and r2 = � then
14 left mid+ 1
15 end
16 else
17 right mid
18 end
19 end
20 l  left
21 FE.add(‘A � l’)
22 return FE

12



Chapter 6

NEP Database Minimizer

To extract every Not Equal Predicate present in QH, We invoke the NEP DB Minimizer mod-

ule to minimize the database as far as possible while maintaining di↵erent output results on

extracted queryQE and hidden query QH. If we can find such minimized single-row database,

we can extract NEP by database mutation techniques discussed in the NEP Extractor module.

6.1 Reducing DI to D1

Lemma 6.1.1 For the EQCN , there always exists a D
1 identified by NEP DB Minimizer on

which QH and QE produce di↵erent output results.

Proof of Correctness: Given an initial database instance DI , extracted query QE from UN-

MASQUE, and hidden query QH containing NEP, our NEP DB Minimizer module will always

identify reduced database instance D1.

Firstly, since the output result from QH and QE are di↵erent on D1, the intermediate output

results obtained after the evaluation of the SPJ core of the query are also guaranteed to be

di↵erent. This is because the subsequent GAOL elements only perform computations on the

intermediate result but do not add to it. Now, if we consider the provenance for each row ri in

the intermediate result, there will be exactly one row as input from each table in TE on which

QH and QE give the di↵erent results because: (i) If there is no row from table t, ri cannot be

derived because the inner equi-join with table t will result in an empty output from both QH

and QE.(ii) If there are k rows (k > 1) from table t on which QH and QE give di↵erent outputs,

(k � 1) rows either do not satisfy one or more join/filter FE predicates and can therefore be

removed, or they will produce a result of more than one row. We can trace back to the single-row

database(containing NEP value) on which QH and QE give di↵erent output results.

13



We will discuss the overview of the following Algorithm 2. It works similar to the database

minimization algorithm of UNMASQUE with the changes in line number 9. It picks a table

T from TE that contains more than one row and divides it roughly into two halves. Run the

Match algorithm on the first half, and if it returns false, retain only this partition. Otherwise,

retain only the second half. The Match algorithm will e�ciently compare the result of extracted

query QE with the result of hidden query QH. The output of the Match algorithm is true if

RH and RE are equivalent otherwise false. Each time after table halving, Match Algorithm is

executed.

The following NEP DB Minimizer algorithm is used to identify reduced database instance

D
1:

Algorithm 2: NEP DB Minimizer
Data: QH,QE,DI

Result: D1

1 D
1  �

2 foreach Table T in TE do
3 while | T |> 1 do
4 Divide T into two halves Tu and Tl

5 T  Tu

6 DI.update(T )
7 RH  QH(DI)
8 RE  QE(DI)
9 if not Match(RH,RE) then

10 drop Tl

11 end
12 else
13 drop Tu

14 T  Tl

15 end
16 end
17 D

1.add(T )
18 end
19 return D

1

6.2 Correctness

Lemma 6.2.1 For EQCN class of assumptions, NEP DB Minimizer will correctly identify a

reduced database D
1 such that QE(D1) = � and QH(D1) 6= �.

14



Proof of Correctness: Under EQCN assumptions, if RH and RE are di↵erent on DI , then

NEP must present in QH as the other UNMASQUE modules don’t get impacted due to the

presence of NEP. NEP DB Minimizer will find a reduced database D
1 from DI such that

RH = QH(D1) and RE = QE(D1) are di↵erent. As the cardinality of input reduced database

D
1 is one, the cardinality of the output results RH and RE must be at most one. This implies

that some attribute of D1 contains NEP value. Therefore, the cardinality of RH must be zero

because D
1 has the NEP value.

Since RH and RE are di↵erent and RH is empty, RE must be non-empty. Hence, NEP DB Minimizer

will identify a D
1 such that RH is empty and RE is non-empty. From Lemma 6.1.1 and 6.2.1, we

can conclude that the NEP DB Minimizer algorithm will always identify the reduced database

instance D
1 such that QE(D1) = � and QH(D1) 6= �. We can identify all NEPs from D

1 by

simple mutation techniques.

6.3 Optimizations in MINIMIZER

The MINIMIZER module of the UNMASQUE pipeline takes up more than 98 % of the ex-

traction time. It is a bottleneck in the UNMASQUE pipeline. Database minimization is a

one-time process in UNMASQUE. But in NEP extraction, for each NEP extraction database

minimization is done. Therefore, to make NEP extraction time practical, we need to work on

the e�ciency of minimizer.

We can see in Algorithm 2 that in each iteration of the while loop, we are creating a new

table by copying the upper half of the current table. This copying of tables will incur time and

space overhead. We can avoid this extra time and space overhead by avoiding the materializa-

tion of the tables. We have used virtual views for table halving rather than materializing a new

table every time.

We have used systems tuple identifiers to create views. A tuple identifier represents a

physical location of a row. They are database vendor dependent. For, e.g., ctid in PostgreSQL

and rowid in Oracle. It is the fastest way of locating a row. A Ctid of a row is represented as

a pair (block number, tuple number within block). The Ctid of the first row of the table is ‘(0,

1)’. The number of tuples present in a block is table-width dependent. Based on the number

of tuples per block, we can estimate the ctid of the middle row of the table. Suppose one block

contains 50 tuples, then the following query will create a view Tu which contains roughly the

upper half of table T :

15



Create View Tu as

Select * From T Where ctid � ‘(0, 1)’ and ctid  ‘(|T |/100, 1)’ ;

The view Tu roughly contains the upper half of table T . The approximate block number

of the middle row of table T would be |T |/50 * 1/2. Using Ctid’s, we can quickly locate the

required chunk of large tables. We can query the view through hidden query QH. View creation

is a constant-time operation. The extra time and space of materializing the table Tu is avoided.

If the database vendor doesn’t provide the system’s tuple identifier, we create an extra column

in the schema that acts as pseudokey. We will create an index on this column and create the

views Tu using this extra column instead of ctid. This Approach will work similarly to the

previous tuple identifier approach.

We have performed the empirical analysis of minimization time for both the UNMASQUE

and Views Approach in the experiments section. These experiments justify the above theoretical

claims. We have also recorded the extra disk space for both approaches to verify no extra disk

requirement in the Views Approach. The result comparator module internally uses Match

Algorithm for table equivalence check. We have described the working of an e�cient Match

Algorithmin the next section.

6.4 Time Complexity

We assume a simple cost model, defined as follows: Let |T | denote the size of table T , measured

in terms of the row-cardinality. Then, the time to run a query that includesm tables (say T1, T2,

..., Tm) is directly proportional to the product of the table sizes. NEP DB Minimizer algorithm

will recursively halve the selected table through Views (which is constant-time operation) and

then execute the hidden query. Every time, the query cost is reduced by half. The time taken

by the NEP DB Minimizer algorithm to reduce the table to a single row can be computed as

( ⌧2 +
⌧

4+ . . .+1), which is upper bounded by O(⌧).
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Chapter 7

RESULT COMPARATOR

The Match procedure of Algorithm 2 will compare the result RH of the hidden query with the

result RE of the extracted query QE. For a query in EQCN , the matching algorithm will work

as a Not Equal Predicate detector. If results RH and RE are di↵erent, then it means that some

NEP is not extracted. The UNMASQUE comparison algorithm follows a quadratic approach

in which each tuple of result RE is linearly searched into result RH.

We have proposed some methods which have lower overheads for result comparison. We

have devised two algorithms for the result comparison, i.e., Faster Comparison-based and

Computation-based algorithms. Tables RE and RH are explicitly created from extracted query

QE and hidden query QH outputs, respectively.

7.1 Comparison-based Methods

Each tuple’s presence in the other table is checked in a comparison-based algorithm. We have

used the ‘Except All’ SQL operator for result comparison. We will count the number of rows

left after subtracting the result tables RE and RH from each other.

C1  Select count(*) From (Select * From RE

Except All Select * From RH) T ;

C2  Select count(*) From (Select * From RH

Except All Select * From RE) T ;

If the value of both C1 and C2 equals zero, RE and RH are equivalent. The benefit of using

the SQL operator for result comparison is that the database optimizer will intelligently switch
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the query plan having less cost. When the cardinality of the result is less, it uses the Sort Merge

plan; Otherwise, it uses Hashing. We have used ‘All’ because of the possibility of duplicate

rows in RE and RH.

7.2 Computation-based Methods

In this method, a hash is generated row-wise or table-wise, and then these hash values are

compared for result comparison. If aggregated hash values of table RE and RH are equal, they

are equivalent. The contents of each tuple of the table are not compared. We have discussed

two types of computation-based methods:

1. Table Hash Method: We compute the hash value of the entire result tables RE and RH.

If the computed hash value is equal, the result tables are equivalent. The drawback of the

table hash method is that before computing hash, we need to sort both the tables on all

attributes of RE and RH. The sorting will ensure the same tuple ordering in both tables.

Firstly, we need to apply the ‘Order By’ on all the attributes and compute the table

hash. PostgreSQL has many Hash functions; we have used the HashText hash function.

HashText function calculates a 32-bit signed integer hash value of the input string.

2. Row Hash Method: We compute the integer hash values of the individual tuples of

the table, then take the aggregate sum of all these integer hash values. We will call this

as checksum value of a table. If the checksum value of both the table RE and RH are

equal, then it means that the tables are equivalent. The advantage of using the Row hash

method is that there is no need to sort the tables. The checksum value with or without

sorting would be the same. We have used the same HashText function for calculating the

checksum value.

We have conducted the empirical analysis of execution time for all the above result com-

parison techniques in the experiments section. The Table Hash method is the slowest because

of the extra cost of sorting the tables on all attributes. The Row hash method is the fastest

result comparison technique. We have used the Row Hash method as our Match algorithm.

We have compared the results comparison time of the UNMASQUE approach with our

fastest Row Hash approach. The comparison time in the UNMASQUE approach increases ex-

ponentially as the result cardinality increases. We have improved the output results comparison

time by orders of magnitude. Match procedure algorithm is frequently executed in Algorithm

2. The row hash method reduces the overall NEP comparison time significantly.
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The following algorithm is our final Result Comparison Algorithm:

Algorithm 3: Match Algorithm
Data: RH,RE

Result: Comparison of RH,RE

1 H1  Sum of all rows integer hash values of RH

2 H2  Sum of all rows integer hash values of RE

3 if H1 == H2 then
4 return True ; // RH and RE equivalent
5 end
6 else
7 return False ;
8 end
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Chapter 8

NEP Extraction

The reduced database instanceD1 from NEP DB Minimizer is given as input to theNEP Extractor

module. Using database mutation techniques NEP Extractor module will extract the Not Equal

Predicate source attribute and its corresponding value. The filter extractor module of UN-

MASQUE extracts all the filter and join predicates under EQC assumptions. Therefore, we

can refer to the values of the attribute which satisfy the corresponding filter and join predicates

of QE, and are termed as filter-compliant values.

NEP Extractor algorithm will iteratively explore all the attributes of D1. It will mutate

each attribute value with some other filter predicate compliant value and then run QH. If QH

gives a populated output result, it means that the present attribute is the source NEP column,

and the associated value present in D
1 before the mutation is the NEP value. We are mutating

the attribute values of D1 with the values that satisfy the corresponding filter and join predi-

cates in the QE.

The following procedure for NEP exploration is skipped for equality predicate attributes.

If the hidden query QH contains both equality and not equal predicate, i.e., A = m1 and

A <> m2. It is equivalent to A = m1. There is no need to find NEP for equality predicate

attributes. NEP Extractor module updates QE by including the extracted NEP. This cycle of

NEP DB Minimizer and NEP Extractor repeats until all the NEP of di↵erent attributes gets

extracted.
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The following NEP Extraction algorithm is used to extract the NEP from D
1:

Algorithm 4: NEP Extractor

Data: QH,QE,D1

Result: QE containing NEP
1 foreach Table T in TE do
2 flag  0
3 foreach Attribute A in T do
4 val1 T.A
5 T.A val2 ; /* Update the value of A with other filter compliant

value */
6 if QH(D1

mut
) 6= � then

7 FE.add(‘A <> val1’)
8 QE.update(FE)
9 flag  1

10 break
11 end
12 end
13 if flag == 1 then
14 break
15 end
16 end
17 return QE

8.1 Textual Not Like predicate

The NEP Extraction will work correctly for numeric, decimal, boolean, and date data types.

The extraction procedure for character columns is significantly more complex because (a) strings

can be of variable length, and (b) the filters may contain wildcard characters (‘ ’ and ‘%’).

NEP DB Minimizer will find a string that satisfies the actual filter value. In our running

example, the ‘AIR’ string will be extracted from D1. We aim to extract the actual filter value

from this string if Not Like is present in the where clause of QH. The reduced database D
1 for

Not Like extraction in our running example will be:

Table 8.1: Minimized lineitem table II

l orderkey l shipdate l commitdate l quantity l shipmode

12 1994-12-10 1996-11-05 22 AIR
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8.1.1 Identify MQS

The following algorithm for finding the actual filter value of Not Like operator is similar to

Algorithm 2 defined in [2]. The only possible wildcard characters that are used with the Not

Like operator are ‘ ’ and ‘%.’ The basic logic in the algorithm is that when we replace or

remove a character in the string of an attribute in D
1 and then run QH. If we get a non-empty

result on this mutated D1
mut, then this character is part of the actual filter value of Not Like.

We will define Minimal Qualifying String(MQS) – given a character string expression str, its

MQS is the string obtained by removing all occurrences of ‘%’ from str. For example, “AIR ”

is the MQS for “%AIR %.” The following algorithm will identify MQS using the string value

of Column A in D
1, denoted as rep str.

Algorithm 5: Identifying MQS

Data: Column A, rep str,D1

Result: MQS
1 itr = 0; MQS = “”;
2 while itr < len(rep str) do
3 temp = rep str
4 temp[itr] = c where c 6= rep str[itr]
5 D1

mut
 D1 with value temp in column A

6 if E(D1
mut

) 6= � then
7 MQS.append(rep str[itr ++])
8 end
9 else

10 temp.remove char at(itr)
11 D1

mut
 D1 with value temp in column A

12 if E(D1
mut

) 6= � then
13 MQS.append(’ ’); itr ++
14 end
15 else
16 rep str.remove char at(itr)
17 end
18 end
19 end
20 return MQS

The idea here is to loop through all the characters of rep str and determine whether it is

present as an intrinsic character of MQS or invoked through wildcards (‘ ’ or ‘%’). Replace

each character of rep str in D
1 with a di↵erent character and then execute QH on this mutated
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database. If the result is non-empty, the replaced character is part of MQS. Otherwise, that

character was invoked through wildcard characters.

After obtaining the MQS, we need to find the location of the ‘%’ wildcard character. We

will linearly select each pair of consecutive characters in MQS, and a random character that

is di↵erent from both these characters is inserted between them. Then, we replace the current

value in attribute A with this new string. The non-empty result of QH on this mutated database

instance indicates the existence of ‘%’ between the pair of characters. The inserted character

is removed after each iteration and we start with the initial MQS for each successive pair of

consecutive characters. It is done to ensure that the character length limit for A is not exceeded.

In the case of our running example MQS for l shipmode attribute will be ‘AIR’ and the actual

filter value will be ‘%AIR%’.

Lemma 8.1.1 For a query in EQCN , Algorithm 5 will correctly identify MQS for the Not

Like operator on the textual attribute.

Proof of Correctness: The correctness of Algorithm 5 can be established using contradiction.

For example, let us say a character ‘a’ belonged to MQS, but the procedure fails to identify

it. After removing ‘a’ from rep str, the result is still empty (the filter condition for not like

was satisfied). It is only possible when ‘a’ occurs more than once in rep str and at least

one occurrence is part of the replacement for wildcard ‘%’. However, the procedure will keep

removing ‘a’ until there is no occurrence left which is part of the replacement for wildcard ‘%’.

After that, removing ‘a’ will lead the corresponding filter predicate to fail. If this is not the

case, ‘a’ is not present in the MQS, a contradiction. This proof is similar to the identification

of MQS for the Like operator in [2].

8.1.2 Time Complexity to identify MQS

If len is the character limit of the textual attribute, then the time complexity of the Algorithm

5 is O(len). Because the algorithm will linearly iterate the rep str string, and in each iteration,

it will perform constant-time operations. After finding MQS, one more single pass is required

to find the location of the ‘%’ wildcard character. Therefore, the time complexity for actual

filter value extraction of the Not Like operator is linear in the maximum number of characters

allowed by the textual attribute.
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8.2 Time Complexity NEP Extraction

We have already discussed the time complexity of NEP DB Minimizer module in Section 6.4.

It is upper bounded by O(⌧). In the NEP Extractor module, we are iterating over all the

attributes and performing a constant-time operation. The time complexity for this module will

be O(m), where m is the total number of attributes in all the tables.

If k NEPs are present in the hidden query QH, then this cycle of NEP DB Minimizer and

NEP Extractor repeats k times. Therefore, the overall time complexity is O(k(⌧ +m)).
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Chapter 9

Experiments

We now move on to empirically evaluating Minimizer, Result Comparator, and NEP extraction

e�ciency. Our experiments are carried out on the google cloud platform, installed PostgreSQL

11 database (Intel Xeon 2.3 GHz CPU, 32GB RAM, 3TB Disk, Ubuntu Linux) with default

primary-key indices. Our experiments cover the accuracy, time and space overhead aspects of

NEP extraction.

9.1 Copy-based Minimizer Vs Views-based Minimizer

The proposed optimized approach of database minimization using views is implemented in

Python 3.6 and integrated with the UNMASQUE pipeline. We have compared the Minimizer

time of UNMASQUE with the Views approach. We also compared the extra disk space re-

quirement of UNMASQUE and Views Approach.

9.1.1 Empirical Analysis of Running Time

We have conducted experiments on di↵erent sized TPC-H databases and compared the execu-

tion times. The hidden query QH on which the minimization times are reported is the TPC-H

Q1 query. We have used a stacked bar chart to show the table creation time and rest minimizer

time separately.

We can see that the blue part (table creation time) shares the maximum chunk of minimiza-

tion time in UNMASQUE. The views approach is significantly faster because there is no table

creation part. On large databases like 100GB, UNMASQUE took close to 4500 seconds, whereas

the Views approach completed the minimization in only 320 seconds. The minimization time

improved by orders of magnitude.
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Figure 9.1: UNMASQUE and Views Comparison Time

9.1.2 Empirical Analysis of Disk Space

We have recorded the extra disk space required by both copy-based and views-based mini-

mizer. The total extra disk space required by UNMASQUE is dependent on the size of the

initial database instance DI . The views-based minimizer avoids the extra disk space required

for materializing the tables. There is no requirement for disk space in the proposed optimized

minimizer. We have used this optimization in NEP extraction.

Figure 9.2: UNMASQUE and Views Space Overhead

9.2 Result Comparator Techniques

We have conducted the experiments to compare the three Result comparison techniques i.e.,

Comparison-based, Table Hash and Row Hash method. The execution time is recorded for each

technique with di↵erent cardinality of the result tables. There are 16 attributes in each result

table.
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Figure 9.3: Performance Comparison

The Table Hash method is the slowest because of the extra cost of sorting the tables on

all attributes. The sorting cost will increase as the number of attributes of the result table

increases. The computation-based methods are faster than comparison-based methods because

computing a hash is a one-time process, whereas checking each row’s presence is expensive.

The computation-based Row Hash technique is the fastest result comparator method. We have

used it as our final Match algorithm.

We have compared the results comparison time of the UNMASQUE approach with our

fastest Row Hash approach.

Figure 9.4: UNMASQUE and Row-Hash Comparison Time

We have compared the result comparison time of our faster row hash approach with the

UNMASQUE approach. The comparison time in the following graph also contains additional

time required to create the output result RH and RE tables. We have improved the output
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results comparison time by orders of magnitude, specifically when the size of result tables is

large. The result comparator has a crucial role in NEP extraction.

9.3 NEP Extraction time

We implemented the proposed NEP algorithm in Python 3.6 and integrated with the existing

UNMASQUE codebase. The new modules were tested against a set of NEP queries to verify the

correctness and to see how much overhead is incurred due to the additions. The experiments are

conducted on a basal suite of EQCN class queries. All these complex queries contain Not Equal

operators. These queries are derived from the popular TPC-H benchmark queries. To conduct

a better evaluation, we need complexity in queries that TPC-H provides. We have reported

the extra overhead incurred due to the addition of this new module. We have incorporated

the View-based minimizer and modified filter extractor in the UNMASQUE codebase. The

UNMASQUE’s codebase with modifications was used as a black box in NEP extraction.

All these derived benchmark queries are listed in the appendix. The total end-to-end time

taken to extract each of the 12 queries on a 100 GB initial instance (with a populated result) is

shown in Figure 9.5. In addition, the breakup of the NEP extractor module and UNMASQUE

module execution time is shown in the Figure.

Figure 9.5: Time Breakup for SF 100

We have done the manual verification of all the output extracted queries. The extraction

times are practical for o✏ine analysis environments, with all extractions being completed

within 10 minutes. When we drilled down into the performance profile, both Minimizer and

NEP DB Minimizer take up the maximum shares of extraction time. The Minimizer module

operates on the large database tables, where as the rest modules work with miniscule databases.
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Chapter 10

Related Work

Over the past decades, a variety of novel approaches have been proposed for the query reverse-

engineering (QRE) problem. The general QRE problem statement is: Given a database instance

DI and a populated result RI , identify a candidate SQL query QC such that QC(DI) = RI .

This problem has a wide variety of use cases. There has been a lot of work done in this area,

with the development of elegant tools such as TALOS [5], REGAL [6], and SCYTHE [7]. The

ground-truth query is not available in QRE, due to which the output query QC is organically

dependent on the specific (DI , RI ) instance provided by the user.

A variant of the QRE problem was recently introduced in [1], where a ground-truth query

is additionally available in hidden form. This problem is termed Hidden Query Extraction

(HQE). HQE problem is described in the introduction section. The output query now becomes

independent of the initial (DI , RI ) instance. Our work is enhancing the scope and e�ciency of

hidden query extraction. We extended the scope of HQE by including the Not Equal predicates

into its extractable domain.
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Chapter 11

Conclusion and Future Work

We can now extract the hidden queries containing Not Equal and Not Like operators under

EQCN assumptions. Experiments are performed to verify the proposed solution on complex

TPC-H-based queries. We have implemented the suggested optimizations in the UNMASQUE

tool’s Minimizator and Result Comparator module. We minimized the extraction overhead of

UNMASQUE by orders of magnitude. We can extract the NEP hidden queries e�ciently and

accurately.

There are some operators that cannot be extracted by UNMASQUE yet. One possible

direction for future work would be to come up with new ideas to extract the filter predicate of the

type column <> column. These types of extraction come under Algebraic predicates extraction.

The extraction of nested queries and MINUS set operator is also out of the extractable domain.
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Appendix

TPC-H Based Queries

Q.1:

Select l returnflag, l linestatus, sum(l quantity) as sum qty, sum(l extendedprice) as sum base price,

sum(l discount) as sum disc price, sum(l tax) as sum charge, avg(l quantity) as avg qty,

avg(l extendedprice) as avg price, avg(l discount) as avg disc, count(*) as count order

From lineitem

Where l shipdate  date ’1998-12-01’ and l extendedprice <> 33203.72

Group by l returnflag, l linestatus

Order by l returnflag, l linestatus;

Q.2:

Select s acctbal, s name, n name, p partkey, p mfgr, s address, s phone, s comment

From part, supplier, partsupp, nation, region

Where p partkey = ps partkey and s suppkey = ps suppkey and p size = 38 and p type like

’%TIN’ and s nationkey = n nationkey and n regionkey = r regionkey and r name = ’MID-

DLE EAST’ and p mfgr <> ’Manufacturer#5’

Order by s acctbal desc, n name, s name, p partkey

Limit 100;

Q.3:

Select l orderkey, sum(l discount) as revenue, o orderdate, o shippriority

From customer, orders, lineitem

Where c mktsegment <> ’BUILDING’ and c custkey = o custkey and l orderkey = o orderkey

and o orderdate <’1995-03-15’ and l shipdate >’1995-03-15’

Group by l orderkey, o orderdate, o shippriority

Order by revenue desc, o orderdate, l orderkey
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Limit 10;

Q.4:

Select o orderdate, o orderpriority, count(*) as order count

From orders

Where o orderdate <’1997-09-01’ and o orderdate � date ’1997-07-01’ and o orderdate <>’1997-

07-01’

Group By o orderdate, o orderpriority

Order By o orderpriority

Limit 10;

Q.5:

Select n name, sum(l extendedprice) as revenue

From customer, orders, lineitem, supplier, nation, region

Where c custkey = o custkey and l orderkey = o orderkey and l suppkey = s suppkey and

c nationkey = s nationkey and s nationkey = n nationkey and n regionkey = r regionkey

and r name = ’MIDDLE EAST’ and o orderdate � date ’1994-01-01’ and n name not like

’%IRAN%’

Group By n name

Order By revenue desc

Limit 100;

Q.6:

Select l shipmode, sum(l extendedprice) as revenue

From lineitem

Where l shipdate � date ’1994-01-01’ and l shipdate <date ’1994-01-01’ and l quantity < 24

and l shipmode not like ’%AIR%’ and l shipdate <>’1994-01-02’

Group By l shipmode

Limit 100;

Q.10:

Select c name, sum(l extendedprice) as revenue, c acctbal, n name, c address, c phone,

c comment

From customer, orders, lineitem, nation

Where c custkey = o custkey and l orderkey = o orderkey and o orderdate � date ’1994-
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01-01’ and o orderdate < date ’1994-01-01’ + interval ’3’ month and l returnflag = ’R’ and

c nationkey = n nationkey and c name <> ’Customer#000100867’

Group By c name, c acctbal, c phone, n name, c address, c comment

Order By revenue desc

Limit 20;

Q.11:

Select ps COMMENT , sum(ps availqty) as value

From partsupp, supplier, nation

Where ps suppkey = s suppkey and s nationkey = n nationkey and n name= ’ARGENTINA’

and ps comment not like ’%regular%dependencies%’ and s acctbal <> 449.54

Group By ps COMMENT

Order By value desc

Limit 100;

Q.16:

Select p brand, p type, p size, count(ps suppkey) as supplier cnt

From partsupp, part

Where p partkey = ps partkey and p brand = ’Brand#45’ and p type not like ’SMALL

PLATED%’ and p size � 4

Group By p brand, p type, p size

Order By supplier cnt desc, p brand, p type, p size;

Q.17:

Select AVG(l extendedprice) as avgTOTAL

From lineitem, part

Where p partkey = l partkey and p brand = ’Brand#52’ and l shipdate <> ’1994-05-29’;

Q.18:

Select c name, o orderdate, o totalprice, sum(l quantity)

From customer, orders, lineitem

Where c phone LIKE ’27- %’ and c custkey = o custkey and o orderkey = l orderkey and

c name <> ’Customer#000060217’

Group By c name, o orderdate, o totalprice

Order By o orderdate, o totalprice desc
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Limit 100;

Q.21:

Select s name, count(*) as numwait

From supplier, lineiteml1, orders, nation

Where s suppkey = l1.l suppkey and o orderkey = l1.l orderkey and o orderstatus = ’F’

and s nationkey = n nationkey and n name <> ’GERMANY’

Group By s name

Order By numwait desc, s name

Limit 100;
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