
On the stability of plan costs
and the costs of plan stability

A PROJECT REPORT

SUBMITTED IN PARTIAL FULFILMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

Master of Engineering

IN

COMPUTER SCIENCE AND ENGINEERING

by

Abhijit P. Pai

Computer Science and Automation

Indian Institute of Science

BANGALORE – 560 012

July 2008

Acknowledgements

I’d like to thank

• Prof. Jayant Haritsa for being who he is to play a good role in making me who I am;

• my parents, for their unquestioning support and love;

• all my labmates and friends for their co-operation and help during the course of this

work.

i

Abstract

Modern query optimizers choose their execution plans primarily on a cost-minimization basis,

assuming that the inputs to the costing process, such as relational selectivities, are accurate.

However, in practice, these inputs are subject to considerable run-time variation relative to

their compile-time estimates, often leading to poor plan choices that cause inflated response

times.

We present in the first chapter of this report, a suite of plan generation and selection algo-

rithms that substitute, whenever feasible, the optimizer’s solely cost-conscious choice with an

alternative plan that is (a) guaranteed to be near-optimal in the absence of selectivity estimation

errors, and (b) likely to deliver comparatively stable performance in the presence of arbitrary

errors. The proposed algorithms have been implemented within the PostgreSQL optimizer,

and their performance evaluated on a rich set of TPC-H and TPC-DS-based query templates

in a variety of database environments. Our experimental results indicate that it is indeed pos-

sible to efficiently identify robust plan choices that substantially curtail the adverse effects of

erroneous selectivity estimates.

The second chapter of this report deals with improvements made to Picasso and the Post-

greSQL optimizer from Picasso’s perspective. The Picasso tool produces various diagrams

which enable the study of the behavior of a database query optimizer. Picasso is based on

a client-server model. Both the client and server modules of this tool have been improved

in many aspects. Server-side improvements include the betterment of the (compilation) plan

diagram generation time estimator and porting of Picasso to IBM’s Informix Dynamic Server

database management system. Client-side enhancements include allowing for dynamic ma-

nipulation of Picasso user settings, saving diagram information into files, annotation of QTD’s

ii

iii

depending upon the query execution type, regular expression search for the QTD list, saving

of diagram visuals into the lossless .png format as well as other miscellaneous improvements.

Some functionality that required interaction with the server and database engine were made

client-only in order to speed up Picasso. All these enhancements have resulted in a much

more useful and faster Picasso. The advanced free and open source database management sys-

tem PostgreSQL’s optimizer was augmented to produce and display multiple plans to the user.

Also, remote costing was implemented in PostgreSQL.

Contents

Acknowledgements i

Abstract ii

Keywords vii

1 Introducing Stability in Cost-based Query Optimizers 1
1.1 Introduction . 1
1.2 Problem Formulation . 6

1.2.1 Cost Constraint on Plan Replacement 6
1.2.2 Selectivity Estimation Errors . 8
1.2.3 Error Resistance Metric . 9
1.2.4 Problem Definition . 10

1.3 Plan Selection Algorithms . 10
1.3.1 Generation of Candidate Replacement Plans. 11
1.3.2 Replacement Plan Selection . 17

1.4 Optimizations for InternalFixed . 18
1.5 Implementation in PostgreSQL . 20

1.5.1 Foreign Plan Costing. 20
1.5.2 Optimization Process . 22
1.5.3 Coding Effort . 22

1.6 Experimental Results . 22
1.7 Related Work . 28
1.8 Conclusions and Future work . 30

2 Enhancements to the Picasso Query Optimizer Visualizer tool 31
2.1 Introduction . 31
2.2 Enhancements to Picasso (Server-side) . 33

2.2.1 Improvement in estimation of time to generate compilation plan dia-
grams . 33

2.2.2 Porting of Picasso to Informix Dynamic Server 34
2.3 Enhancements to Picasso (Client-side) . 36

2.3.1 Dynamic manipulation of Picasso user settings 36

iv

CONTENTS v

2.3.2 Display of slice as well as total maximum and minimum cardinality
and cost values and plan counts . 37

2.3.3 Saving diagram information into files 37
2.3.4 Regular Expression Search for the QTD List 39
2.3.5 Annotation of QTD’s depending upon the query execution type . . . 40
2.3.6 Saving of diagram visuals into the .png format 41
2.3.7 Comparison of compilation and execution cardinalities 41
2.3.8 Client-side slicing of three and higher dimension Picasso Diagrams . 42
2.3.9 Compressed transmission of diagram packets with all Plan Trees . . . 43
2.3.10 Miscellaneous enhancements . 44

2.4 Enhancements to PostgreSQL . 44
2.4.1 Multiple plan output in PostgreSQL 44
2.4.2 Remote costing in PostgreSQL . 44

2.5 Experimentation . 46
2.6 Conclusion and Future work . 51

Bibliography 53

List of Figures

1.1 Sample Query and Selectivity Space (based on TPC-H Q10) 7
1.2 Dynamic Programming . 12
1.3 Root Algorithm (λ = 10%) . 13
1.4 Universal Algorithm (λ = 10%) . 14
1.5 InternalFixed Algorithm (λ = 10%) . 15
1.6 The InternalFixed Algorithm . 24
1.7 Sample Plan Diagram for DP and InternalFixed (QT8) 26

2.1 Picasso Local Settings . 36
2.2 Slice and Total Cost/Cardinality/PlanCount display 38
2.3 Slice selection dropdown - for 3rd (and greater) PSP’s 39
2.4 Regular Expression Search in the QTD Dropdown and QTD annotation . . . 40
2.5 Comparison of Compilation and Execution Cardinalities 42
2.6 DB2, OptLevel=9, Res=100, QT5 . 47
2.7 DB2, OptLevel=5, Res=100, QT8 . 47
2.8 Oracle, Res=100, QT8 . 47
2.9 Oracle, Res=100, QT9 . 48
2.10 PostgreSQL, Res=300, QT5 . 48
2.11 PostgreSQL, Res=100, QT9 . 48
2.12 Microsoft SQL Server, Res=100, QT2 . 49
2.13 Microsoft SQL Server, Res=100, QT3 . 49
2.14 Microsoft SQL Server, Res=100, QT5 . 49
2.15 Microsoft SQL Server, Res=100, QT8 . 50
2.16 Sybase, Res=100, QT9 . 50
2.17 Sybase, Res=100, QT16 . 51

vi

Keywords

Query optimization, stable plans, selectivity error resistant plans.

vii

Chapter 1

Introducing Stability in Cost-based Query
Optimizers

1.1 Introduction

In modern database engines, the query optimizers choose their execution plans largely based on

the classical System R strategy [16]: Given a user query, apply a variety of heuristics to restrict

the combinatorially large search space of plan alternatives to a manageable size; estimate, with

a cost model and a dynamic-programming-based processing algorithm, the efficiency of each

of these candidate plans; finally, choose the plan with the lowest estimated cost.

An implicit assumption in the above approach is that the inputs to the cost model, such as

selectivity estimates of predicates on the base relations, are accurate. However, it is common

knowledge that in practice, these estimates are often significantly in error with respect to the

actual values encountered during query execution. Such errors, which can even be in orders of

magnitude in real database environments [15], arise due to a variety of reasons [17], includ-

ing outdated statistics, attribute-value independence assumptions and coarse summaries. An

adverse fallout of these errors is that they often lead to poor plan choices, resulting in inflated

query execution times.

1

Chapter 1. Introducing Stability in Cost-based Query Optimizers 2

Robust Plans. To address the above problem, an obvious approach is to improve the quality

of the statistical meta-data, for which several techniques have been presented in the literature

ranging from improved summary structures [1] to feedback-based adjustments [17] to on-

the-fly reoptimization of queries [13, 15, 3]. A complementary and conceptually different

approach, which we consider in this chapter, is to identify robust plans that are relatively less

sensitive to such selectivity errors. In a nutshell, to “aim for resistance, rather than cure”

by identifying plans that provide comparatively good performance over large regions of the

selectivity space. Such plan choices are especially important for industrial workloads where

global stability is as much a concern as local optimality [14].

Over the last decade, a variety of strategies have been proposed to identify robust plans,

including the Least Expected Cost [5, 6], Robust Cardinality Estimation [2] and Rio [3, 4]

approaches. These techniques provide novel and elegant formulations (summarized in Sec-

tion 1.7). However, they are limited on some important counts: First, they do not all retain a

guaranteed level of local optimality in the absence of errors. That is, at the estimated query lo-

cation, the substitute plan chosen may be arbitrarily poor compared to the optimizer’s original

cost-optimal choice. Second, and on the other hand, neither have these techniques been shown

to provide sustained good performance throughout the selectivity space, i.e., in the presence

of arbitrary errors. Third, they require specialized information about the workload and/or the

system which may not always be easy to obtain or model. Finally, their query capabilities may

be limited compared to the original optimizer – e.g., only SPJ queries with key-based joins

were considered in [2, 3].

In this chapter, we present and evaluate a suite of plan generation and selection algorithms

whose objective is to deliver substitute plan choices that are both (a) guaranteed to be locally

near-optimal, and (b) likely to be globally stable, in comparison to the optimizer’s solely cost-

conscious choice. Of course, in some cases, the optimizer’s plan may itself provide stable

performance, in which case we retain it without substitution. An important criterion in the

evaluation are the overheads involved in generating and identifying these substitute choices

– if they are much larger than typical optimization costs, the database engine may be better

off attempting a fresh optimization at run-time based on the encountered values, rather than

Chapter 1. Introducing Stability in Cost-based Query Optimizers 3

attempting to “second-guess” the optimizer at compile-time.

In essence, we investigate the design of a multi-metric (cost and stability) query optimizer

in industrial-strength settings. Multi-metric considerations in optimizers is not a new concept

– for example, PostgreSQL [19] supports using a combination of response time and latency to

select execution plans. However, a critical difference in our work is the following: Our second

metric, stability, is a global criterion whereas previous multi-metrics have been local, relevant

only to the specific query instance under consideration.

Our proposed algorithms are based on judiciously expanding the candidate set of plan

choices that are retained during the core dynamic-programming procedure, followed by a final

selection heuristic that takes both cost and stability into account. These algorithms have been

implemented in the PostgreSQL optimizer kernel and their performance has been evaluated on

a rich set of TPC-H and TPC-DS-based query templates in a variety of database environments

with diverse logical and physical designs. The experimental results indicate that one of the se-

lection algorithms, called InternalFixed, is indeed capable of efficiently making plan choices

that substantially curtail the adverse effects of selectivity estimation errors. Specifically, while

incurring overheads that are within a few multiples of the normal optimization time, it delivers

plan choices that improve the selectivity error resistance by a factor of XX.

A valid question at this point would be whether in practice the optimizer’s cost-optimal

choice usually turns out to itself be the stable choice as well – that is, are optimizers inherently

stable? Our experiments clearly demonstrate that this is not the case since the proportion of

query points in the selectivity space for which plan substitution took place was quite large – in

the range of 30%–80% for the environments considered in our study.

Comparison with Stability through Plan Diagram Reduction. In an earlier work [10],

we had attempted to identify plans that are robust to selectivity errors through the following

process: First generate “plan diagrams” [26], which are color-coded pictorial enumerations of

the optimizer’s plan choices over the selectivity space. Then, apply “anorexic reduction algo-

rithms” [9, 10] to convert these diagrams to much simpler pictures featuring significantly fewer

Chapter 1. Introducing Stability in Cost-based Query Optimizers 4

plans, without materially degrading the processing quality of any individual query. The reduc-

tion process is usually highly successful in removing locally optimal plans that suffer from

globally volatile behavior, and the few retained plans typically exhibit good error resistance

characteristics.

There are some critical differences between this earlier “post-facto reduction” approach

and our current “online production” work:

• We do not have the luxury of assuming that the entire plan diagram is apriori available

when we optimize a given user query. Instead, our challenge is to identify, based on

comparatively very limited knowledge, the appropriate plan choices for an individual

query. That is, if all the queries in the selectivity space were to be individually optimized,

then the resultant plan diagram produced by our techniques should ideally have similar

characteristics to that of the post-facto reduced diagram.

• The set of plans in the plan diagram produced with our online approach could potentially

include plans, unlike the post-facto approach, that are outside of the parametric optimal

set of plans (POSP) [11]. This opens up the possibility, at least in principle, of obtaining

even greater reduction than that obtained by the post-facto approach. For example, con-

sider the situation wherein there is a very good plan that is always second-best by a small

margin over the entire selectivity space. In this case, the post-facto approach would, by

definition, not be able to utilize this plan, whereas it would certainly fall within the ambit

of the plan candidate set in our online approach. This is confirmed in our experimental

study wherein non-POSP plans do regularly feature in the set of recommended plans.

On the other hand, our strategies, due to employing sub-plan pruning techniques for

minimizing computational overheads, may fail to consider some POSP possibilities. Our

experience thus far has been that the tradeoff is always in favor of the online approach.

• Because the post-facto approach comes into play after the plan diagram has been fully

generated, it is able to provide guarantees about the global stability of its plan choices. In

our case, however, it is not possible to do so without incurring unviably large overheads,

and therefore we can only resort to empirical assessments to evaluate the stability of the

Chapter 1. Introducing Stability in Cost-based Query Optimizers 5

techniques. The silver lining is that our results show that the stability achieved is usually

comparable to the post-facto approach.

• Finally, and most importantly, the post-facto approach, which deals with complete plans

that have already been constructed, is able to address only selectivity errors that occur on

the base relations. However, in the online approach, stability criteria can be applied at

every stage of the plan generation process, that is, at the level of sub-plans. This means

that stability considerations are incorporated at all nodes in the entire operator tree, not

merely the leaves.

Contributions. In summary, we present a framework in this chapter to analyze the produc-

tion of query execution plans that take into account both local optimality and global stability

perspectives. The framework opens up a rich algorithmic design space, and we explore a part of

this space here in the context of industrial-strength database environments. The initial results

have turned out to be quite promising and we hope that they will trigger further investigation

of this highly practical issue. We expect that our strategies, which have been implemented in

PostgreSQL as a proof-of-concept, can easily be incorporated in commercial engines as well.

In fact, it may be even easier since most of these engines natively provide the “Foreign-Plan-

Costing” feature which supports costing of plans outside of their optimality regions, whereas

we have had to explicitly add this feature in the PostgreSQL optimizer.

Organization. The remainder of this chapter is organized as follows: in Section 1.2, we

describe the overall problem framework and motivation. Our new set of plan selection algo-

rithms are presented in Section 1.3, and strategies for minimizing their overheads are described

in Section 1.4. Implementation issues related to incorporating these algorithms within the Post-

greSQL codebase are narrated in Section 1.5. The experimental framework and performance

results are highlighted in Section 1.6. Related work is overviewed in Section 1.7. Finally, in

Section 1.8, we summarize our conclusions and outline future research avenues.

Chapter 1. Introducing Stability in Cost-based Query Optimizers 6

1.2 Problem Formulation

Consider the situation where the user has submitted a query and we would like to have sta-

bility with regard to selectivity errors on some or all of the base relations that feature in the

query. The choice of the relations could be based on user preferences and/or the optimizer’s

expectation of relations on which selectivity errors could have a substantial adverse impact

due to incorrect plan choices. Let there be n such “error-sensitive relations” – treating each of

these relations as a dimension, we obtain an n-dimensional selectivity space S. For example,

consider the query shown in Figure 1.1(a), which is based on Query 10 of the TPC-H bench-

mark [23] – this query has four base relations (NATION, CUSTOMER, ORDERS, LINEITEM),

two of which are deemed to be error relations (ORDERS, LINEITEM), symbolized by the dou-

ble boxes in Figure ??. For this query, the associated 2-D selectivity space S is shown in

Figure 1.1(b).

For ease of presentation, we will assume hereafter that S is two-dimensional (our experi-

ments in Section 1.6 consider 3-D spaces as well). Within S, each point q(x, y) corresponds

to a unique query with selectivities x, y in the X and Y dimensions, respectively. We use ci(q)

to represent the estimated cost of executing a query point q with plan Pi.

1.2.1 Cost Constraint on Plan Replacement

Consider a specific query point qe, whose optimizer-estimated location in S is (xe, ye). Denote

the optimal plan choice (as determined by the optimizer) at point qe by Poe. Now, given a

user-defined maximum-cost-increase threshold λ (λ ≥ 0), it is permissible to substitute Poe

with an alternative replacement choice Pre, only if

cre(qe)

coe(qe)
≤ (1 + λ) (1.1)

For example, setting λ = 10% stipulates that the estimated cost of a query point subject to

plan replacement is guaranteed to be within 1.1 times its original value. We will refer to this

constraint hereafter as λ-optimality.

Chapter 1. Introducing Stability in Cost-based Query Optimizers 7

select *
from customer, orders, lineitem,

nation
where c custkey = o custkey
and l orderkey = o orderkey
and c nationkey = n nationkey
and o totalprice ≤ 943.47
and l extendedprice ≤ 1279.13

(a) Query Instance

(b) Selectivity Space

Figure 1.1: Sample Query and Selectivity Space (based on TPC-H Q10)

Chapter 1. Introducing Stability in Cost-based Query Optimizers 8

1.2.2 Selectivity Estimation Errors

Due to errors in the selectivity estimates, the actual location of qe could be different at execution-

time – denote this location by qa(xa, ya), and the optimizer’s optimal plan choice at qa by Poa.

Now, given that the Poe choice at qe has been replaced by an alternative plan Pre due to stability

considerations, the actual query point qa will be located in one of the following disjoint regions

of Pre that together cover S:

Endo-optimal region of Pre: Here, qa is located in the optimality region of the replacement

plan Pre, which also implies that Pre ≡ Poa. Since cre(qa) ≡ coa(qa), it follows that the

cost of Pre at qa, cre(qa) < coe(qa) (by definition of a cost-based optimizer). Therefore,

improved resistance to selectivity errors is always guaranteed in this region.

Note that, as mentioned earlier, unlike in [9, 10], Pre is not restricted to be only from the

parametric optimal set of plans (POSP) over S, but in principle, could be any plan from

the optimizer’s search space that satisfies λ-optimality. If Pre is not from the POSP, then

it will not have any endo-optimal region.

Replacement-region of Pre: Here, qa is located in the region “swallowed” by Pre, replacing

the optimizer’s cost-optimal choices due to stability considerations. By virtue of the λ-

threshold constraint, we are assured that cre(qa) ≤ (1 + λ)coa(qa), and by implication

that cre(qa) ≤ (1+λ)coe(qa). Now, there are two possibilities: If cre(qa) < coe(qa), then

the replacement plan is again guaranteed to improve the resistance to selectivity errors.

On the other hand, if coe(qa) ≤ cre(qa) ≤ (1 + λ)coe(qa), the replacement is guaranteed

to not cause any real harm, given the small values of λ that we consider in this chapter.

Exo-optimal region of Pre: Here, qa is located outside both the endo-optimal and stability-

regions of Pre. At such locations, we cannot apriori predict Pre’s behavior, and therefore

the replacement may not always be a good choice – in principle, it could be arbitrar-

ily worse. Establishing that a replacement is not a bad choice anywhere in S, while

Chapter 1. Introducing Stability in Cost-based Query Optimizers 9

technically feasible, incurs hugely unviable overheads, as explained later in the chapter.

Therefore, we have to take recourse to heuristics instead – the silver lining is that, as

shown subsequently in our experimental results, there do exist simple heuristics that are

both efficient and mostly correct in their decisions.

1.2.3 Error Resistance Metric

To explicitly quantify the stability delivered through plan replacement, we use the Error Re-

sistance Metric defined in [10]. This states that given an estimated query location qe and an

actual location qa, the Selectivity Error Resistance Factor (SERF) of a replacement plan Pre

w.r.t. the optimal plan Poe is defined as:

SERF (qe, qa) = 1 −
cre(qa) − coa(qa)

(1 + λ)coe(qa) − coa(qa)
(1.2)

Intuitively, SERF captures the fraction of the performance gap between Poe and Poa that is

closed by Pre. In principle, SERF values can range over (−∞, 1], with the following interpre-

tations: SERF in the range (λ, 1] indicates that the replacement is beneficial, with values close

to 1 implying “immunity” to the selectivity error. For SERF in the range [0, λ], the replacement

is indifferent in that it neither helps nor hurts, while SERF values below 0 highlight a harmful

replacement that materially worsens the performance.

The above formula applies to a specific instance of replacement. To capture the net im-

pact of plan replacement on improving the resistance in the entire space S, we compute the

following:

AvgSERF =

∑
qe∈rep(S)

∑
qa∈exooe(S) SERF (qe, qa)

∑
qe∈rep(S)

∑
qa∈exooe(S) 1

(1.3)

where rep(S) is the set of points in S that were replaced, and exooe(S) is the set of points lying

in the exo-optimal region defined with respect to Poe, the optimizer’s plan choice for qe. The

normalization is with respect to the number of possible selectivity errors in the diagram.

Note that in the above formulation, we assume for simplicity that the actual location qa is

equally likely to be anywhere in Poe’s exo-optimal space, that is, that the errors are uniformly

Chapter 1. Introducing Stability in Cost-based Query Optimizers 10

distributed over this space. However, our conceptual framework is also applicable to the more

generic case where the error locations have an associated probability distribution.

We also compute the metrics MinSERF and MaxSERF, the minimum and maximum values

of SERF over all replacement instances. Values of MaxSERF that are close to the maximum

value of 1 indicate that some replacements have provided immunity to specific instances of

selectivity errors. On the other hand, negative values for MinSERF indicate that some re-

placements have been harmful. We measure the proportion of such harmful instances in our

experiments.

1.2.4 Problem Definition

With the above background, our stable plan selection problem can now be more precisely

stated as:

Stable Plan Selection Problem. Given a selectivity space S and maximum cost-increase-

threshold λ, implement a plan substitution strategy such that:

1. ∀q ∈ rep(S), cre(q)

coe(q)
≤ (1 + λ)

2. MinSERF ≥ 0, and

3. AvgSERF is maximized.

The first criterion guarantees λ-optimality, the second assures that there are no harmful re-

placements, while the third captures the stability improvement objective.

1.3 Plan Selection Algorithms

In this section, we present a set of plan selection algorithms that attempt to address the Stable

Plan Selection problem. Our algorithms cover a range of tradeoffs between the number and

diversity of the candidate replacement plans, and the computational overheads incurred in

generating and processing these candidates.

Chapter 1. Introducing Stability in Cost-based Query Optimizers 11

For ease of presentation, we will assume that there are no “interesting order” plans [16]

present in the search space – however, they are accounted for in our implementation. Further,

while any cost metric is acceptable in principle, we will assume that the cost is indicative of

the query response time.

There are two aspects to our algorithms: First, a procedure for the generation of candidate

replacement plans, and second, a selection strategy to pick a stable replacement from among

these candidates.

1.3.1 Generation of Candidate Replacement Plans.

In the normal dynamic-programming (DP) based exercise of building up the optimal plan for

a query, the cheapest sub-plan at each node is propagated to the nodes at the higher levels.

Finally, at the root of the DP tree, which signifies complete plans for the the entire query, the

cheapest strategy is chosen as the execution plan by the optimizer. An example DP tree is

shown in Figure 1.2, corresponding to the query of Figure 1.1(a). In this picture, the value

above each node signifies the cost of the optimal sub-plan to compute the relational expres-

sion represented by the node – for example, the cheapest method of joining ORDERS (O) and

LINEITEM (L) has an estimated cost of 312,593.

The Root Algorithm. Root, the first of our new algorithms, is a simple variant of the stan-

dard DP procedure, and is pictorially shown in Figure 1.3. Here, DP is used starting from

the leaves until the final root node is reached. At this point, the competing (complete) plans

that are evaluated at the root node are first filtered into a λ-compliant group with respect to

the cheapest plan. Subsequently, a stability criterion (discussed in the following sub-section)

is employed to decide which of the candidate plans in the λ-group is selected to execute the

query.

The filtration step at the root node ensures that Condition 1 of the Stable Plan Selection

Problem is satisfied, and is also followed by all our other algorithms. Further, the generation

overheads as compared to standard DP are minimal since the stability issue is only addressed

in the final root node. However, by the same token, the size and diversity of the candidate

Chapter 1. Introducing Stability in Cost-based Query Optimizers 12

Figure 1.2: Dynamic Programming

Chapter 1. Introducing Stability in Cost-based Query Optimizers 13

Figure 1.3: Root Algorithm (λ = 10%)

Chapter 1. Introducing Stability in Cost-based Query Optimizers 14

Figure 1.4: Universal Algorithm (λ = 10%)

Chapter 1. Introducing Stability in Cost-based Query Optimizers 15

Figure 1.5: InternalFixed Algorithm (λ = 10%)

Chapter 1. Introducing Stability in Cost-based Query Optimizers 16

replacement plan set is also extremely limited. This issue is addressed in our remaining algo-

rithms which allow a richer set of replacement plans to reach the root node.

The Universal Algorithm. The Universal algorithm represents the other end of the spectrum

to Root in that it propagates, beginning with the leaves, all sub-plans evaluated at a node to

the levels above. That is, there is absolutely no pruning anywhere in the internals of the tree,

resulting in the root node processing the entire set of complete plans present in the optimizer’s

search space for the query. A pictorial representation of Universal is shown in Figure 1.4.

Obviously, this approach represents the extreme with regard to maximizing the scope for

finding replacement plans. However, as should be expected given the well-known exponential

size of the search space, the overheads quickly become unviably large with increasing query

complexity.

The InternalFixed Algorithm. The InternalFixed Algorithm, shown in Figure 1.5, strikes

an intermediate balance between replacement richness and generation overheads, and repre-

sents the middle ground between Root and Universal. Specifically, it allows at each internal

node, the cheapest sub-plan and all other plans that are within (1 + λi) of its cost to be propa-

gated to the next level. Note that λi is an algorithmic parameter and therefore its setting can be

made independently of λ, the user’s constraint, which is always applied at the final root node.

If λi is set to 0, the Root algorithm results, whereas λi = ∞ is equivalent to the Universal

algorithm. Therefore, the choice of λi can be used to strike the desired tradeoff between these

extremes. The results reported in this chapter are for λi set to 10%.

A large number of variations on the above algorithms are feasible. As a case in point, the

λi setting could be a function of the individual nodes rather than a constant. For example, a

high value of λi could be used at the leaves, progressively becoming smaller as we move up the

tree. Or, we could try out exactly the opposite, with the leaves having low λi values and more

relaxed thresholds going up the tree. In essence, a rich design space opens up when stability

considerations are incorporated into classical cost-based optimizers, and our assessment here

explores only a part of this space. We intend to study other algorithmic constructions in our

Chapter 1. Introducing Stability in Cost-based Query Optimizers 17

future work.

1.3.2 Replacement Plan Selection

We now turn our attention to the second component of our algorithms, namely the stability

considerations determining plan selection from among the cost-compliant choices at the root

node.

For each plan Pre in the candidate replacement set, we evaluate its StabilityIndex with the

following simple equation which computes the inverse of the cumulative cost of the plan over

the entire space S, normalized to the corresponding value for the cost-optimal plan:

StabilityIndex(Pre) =

∑
q∈S coe(q)

∑
q∈S cre(q)

(1.4)

Then, the plan with the maximum StabilityIndex value is selected as the desired plan. That

is, our preferred choice is the plan that has the lowest cumulative cost over the entire space S.

Note that the StabilityIndex values greater than 1 indicate a plan that is more stable than the

cost-optimal plan, whereas values less than 1 indicate a less stable plan (the cost-optimal plan

itself will always have, by definition, a StabilityIndex of 1).

Note that the above is only one characterization of stability, and it is entirely possible to

contemplate alternate definitions. For example, in addition to the aggregate cost, we could also

take into account the variance of the cost distribution. However, as our experimental results

will demonstrate, the simple formulation of Equation 1.4 appears to work quite satisfactorily

for the rich environments that we have analyzed.

Irrespective of the specific choice of stability index, an important factor to ensure is that the

index should give the same ranking between a pair of plans irrespective of the specific query qe

that is currently being optimized. That is, the stability of a plan vis-a-vis another plan should

be determined by its global behavior over the entire space.

Finally, even with the simple definition of Equation 1.4, computing StabilityIndex can be

extremely expensive. This is because it requires evaluating the costs of all the candidate plans

over the entire selectivity space. Therefore, we need to take recourse to efficient heuristics,

Chapter 1. Introducing Stability in Cost-based Query Optimizers 18

Algorithm Internal Node Root Node
λi ξi λr ξr

Standard DP 0 – 0 –
Root 0 – λ Max(ξre)

InternalFixed > 0 > 1 λ Max(ξre)
Universal ∞ – λ Max(ξre)

Table 1.1: Constraints of Plan Selection Algorithms

like the one described next.

Corner Heuristic. In this heuristic, the costs of the entire space are simply represented by

the costs at the corners of the space, that is:

StabilityIndex(Pre) =

∑
q∈Corners(S)coe(q)

∑
q∈Corners(S) cre(q)

(1.5)

Specifically, in the 2-D case of Figure 1.1(b), the costs at the vertices V1(0,0), V2(0,100),
V3(100,0) and V4(100,100) in S would be evaluated for all the candidate replacement plans.

The constraints imposed by the various algorithms presented above are summarized in

Table 1.1, with ξ used to represent the StabilityIndex.

1.4 Optimizations for InternalFixed

As discussed in the previous section, the InternalFixed algorithm permits, in addition to the

cheapest sub-plan at each node, sub-plans that satisfy the λi constraint to also be propagated to

the upper levels. Due to the multiplicative nature of the DP tree, the computational overheads

arising out of these additional sub-plans, if not carefully regulated, can quickly spiral out of

control. In the remainder of this section, we describe a variety of optimizations that can be

collectively used to restrict the overheads to acceptable levels. Two of the optimizations are

theoretically justified based on sub-plan cost behavior, while the third is a worst-case heuristic.

For ease of understanding, we will use the term “train” to refer to the array of sub-plans

being propagated from one node to another, with the “engine” being the cost-optimal sub-plan

Chapter 1. Introducing Stability in Cost-based Query Optimizers 19

and the “wagons” being an ordered sequence of the other candidate sub-plans. The ordering

can be based on execution-cost or on stability-index, as described below.

Standard DP for Error-free Sub-Trees: The costs of sub-trees in the plan generation tree

that do not feature any error-sensitive relations in their leaves are expected to not be

materially impacted by selectivity errors. Therefore, the standard DP procedure wherein

only the cheapest sub-plan is propagated upwards can be used within these sub-trees.

This is the reason for only single plans being forwarded in the N-C sub-tree component

in Figure 1.5 since the leaves – NATION and CUSTOMER – are not error-sensitive rela-

tions.

Reusing Engine Costs for Wagons: When two plan-trains arrive and are combined at a node,

note that the costs of combining the engines of the two trains in a particular method is

exactly the same cost as that of combining any other pair from the two trains. This is

because the engines and wagons in any train all represent the same input data. There-

fore, we need to only combine the two engines in all possible ways, just like in standard

DP, and then simply reuse these associated costs to evaluate the total costs for all other

pairings between the two trains.

Cap on Wagon Length: Even with the above two optimizations, it is possible that with cer-

tain queries, due to the presence of a large number of λi-compliant sub-plans, the plan-

train may become rather long and result in a runaway situation with regard to overheads.

Therefore, an absolute length-cap (l̂) can be enforced at each node to prevent such situ-

ations. For example, a limit of l̂ = 5 sub-plans to be forwarded from each internal node

is enforced in Figure 1.5.

Now, given a situation where the wagon-length exceeds l̂, making the cap come into play,

an issue that immediately arises is how should the l̂ survivors be chosen? One obvious

possibility is to retain the cheapest l̂ plans, in the expectation that they would survive

Chapter 1. Introducing Stability in Cost-based Query Optimizers 20

until the root node. However, given our eventual stability objective and the fact that cost

has already been taken into account using the λi constraint, a more attractive alternative

is to choose the l̂ plans based on their stability indices. This would explicitly implement

our intuition that stable complete plans tend to be built from stable sub-plans. That is,

we build a stability-based-train instead of a cost-based-train, and this notion is shown in

Figure 1.5. By deliberate design, the cap operates only on the wagons while the engine

(cost-optimal sub-plan) is always forwarded to the upper levels no matter what. This is

because we would like to ensure that the normal DP-based plan always features in the

final root node.

When all the above optimizations are included, our experience has been, as borne out

quantitatively in the experimental results (Section 1.6), that the overall optimization time is

always within a few multiples of the standard DP time for the benchmark queries. For example,

for 2D selectivity spaces, the running time is usually within twice that of DP, while for 3D

spaces, it is generally within or around three times that of DP. The important point to note

here is that the savings in execution time due to selecting robust plans can far outweigh the

additional effort spent in optimization.

An abstract version of the InternalFixed algorithm, incorporating all the above optimiza-

tions, is shown in Figure 1.6.

1.5 Implementation in PostgreSQL

We have implemented the various algorithms described in the previous section inside the Post-

greSQL [19] kernel, specifically version 8.2.5 [20]. In this section, we discuss the issues

related to our implementation experience.

1.5.1 Foreign Plan Costing.

In order to implement the CornerStability heuristic described in Section 1.3.2, we need to be

able to cost, at all corners of S, the set of sub-plans featuring in the λ-set at a node. This

Chapter 1. Introducing Stability in Cost-based Query Optimizers 21

requires the underlying database engine to support the costing of “foreign plans”, that is,

of costing plans in their exo-optimal regions. On the bright side, the foreign-plan-costing

(FPC) feature has become available in the recent versions of several commercial optimizers,

including DB2 [18] (Optimization Profile), SQL Server [21] (XML Plan) and Sybase [22]

(Abstract Plan). However, on the down side, this feature is not available in PostgreSQL.

Forced Optimality. One option that we could consider to get around this lacuna in Post-

greSQL is to force the plan whose cost we wish to evaluate at an exo-optimal location to be-

come the optimal plan at that location – this could be attempted, for example, by employing the

PostgreSQL feature that allows users to enable or disable operators like hash-join, merge-join,

etc. However, this proves to be an extremely cumbersome and mostly infeasible scheme for

the complex plans encountered in practice, especially since the enabling and disabling cannot

be conditionally applied at selective locations in the plan-tree.

Universal Plan Generation. An alternative approach is to utilize the fact that there are only

a few corner locations at which we wish to carry out FPC. Specifically, we could generate the

Universal set of plans at these locations and amortize the associated overheads over all future

instances of the user query. However, even this is not feasible since the universal set becomes

unmanageably large once the query complexity goes beyond a few relations.

Plan-tree Costing. Therefore, we have taken the alternative tack of directly implementing

remote costing in the PostgreSQL optimizer kernel. Our initial idea was to merely carry out a

bottom-up traversal of the foreign-plan’s operator tree and at each node appropriately invoke

the optimizer’s costing and output estimation routines. This approach is reasonably straight-

forward to implement, and more importantly, very efficient.

However, this approach failed to work because PostgreSQL caches certain temporary re-

sults during the optimization process which have an impact on the final plan costs – these

cached values are not available to a pure costing approach and we found significant discrepan-

cies between our non-cached estimation of costs and the corresponding cache-based estimates

provided by PostgreSQL.

Chapter 1. Introducing Stability in Cost-based Query Optimizers 22

Piggybacked Plan-tree Costing. To resolve the caching issue, we decided to perform antic-

ipatory FPC at the desired locations in parallel with the local costing of each sub-plan during

the optimization process. That is, we resorted to “piggy-backing” on the local cost computa-

tions. This solution does work out well but, on the down side, incurs unnecessary overheads

since even those sub-plans that are later discarded in the plan generation process have to be

remotely costed along the way.

1.5.2 Optimization Process

The PostgreSQL optimizer usually optimizes for a combination of latency and response-time,

especially if the access to the output data is through a cursor or a limit on the number of output

tuples is specified. In order to simplify our study, we modified the optimization objective to be

solely response-time.

1.5.3 Coding Effort

The optimizer component of PostgreSQL 8.2.5 has five sub-modules which cumulatively con-

tain close to 40000 lines of code. On this codebase, implementing the above-mentioned fea-

tures required adding or modifying around 2500 lines of code in 650 locations.

1.6 Experimental Results

The algorithms were implemented on PostgreSQL 8.2.5 [20] on a Sun Ultra 20 workstation

with an AMD Opteron dual core 2.5 Ghz processor, 4 GB of main memory and 500 GB of

hard disk, running Redhat Enterprise Linux 9.

In order to validate our performance characteristics over the entire selectivity space, plan

diagrams were produced using the Picasso query optimizer visualization tool [25] for our mod-

ified versions of the optimizer as well as a base version that uses the regular DP strategy for

optimization.

A variety of two and three-dimensional TPC-H-based query templates (with uniformly

Chapter 1. Introducing Stability in Cost-based Query Optimizers 23

Algorithm InternalFixed ()
For each level of the DP search tree starting with level 1

If we are at the topmost level of the plan tree, set λ equal to the user-specified threshold

Else, set λ = λi

if level is equal to 1

• Evaluate all applicable access paths to the base relations; use add SubPlan errDP
for error-sensitive base relations; for all other relations, propagate only the
cheapest-cost access path.

else

• Construct all possible joinnodes at this level from every available and feasible pair
of lower-level nodes. In doing so, use add SubPlan errDP to add generated candi-
date subplans for nodes that have at least one error-sensitive base relation; propa-
gate only the cheapest-cost plan at that level for all other nodes.

For each of these (join)nodes j

if j is made up of an error-sensitive base relation
j.SubPlanlist = filter and cap(j.SubPlanlist)

SubP lanlist add SubPlan errDP(SubP lanlist plist, SubP lan p)
if p would have been produced in normal DP

• Set p.DPProduced to be true

• plist = plist ∪ p

• Among all plans in plist where p.DPProduced = true, remove the DPProduced flag
on all but the cheapest plan

else

plist = plist ∪ p

return plist

Chapter 1. Introducing Stability in Cost-based Query Optimizers 24

SubP lanlist filter and cap(SubP lanlist plist)

1. Let SubP lanlist result = φ

2. Let pch be the cheapest SubPlan in the SubP lanlist such that pch.DPProduced = true

3. Let cost upper bound = pch.cost ∗ (1 + λ/100)

4. Sort plist in the descending order of StabilityIndex

5. For each SubP lanp in plist for this join node

if not p.DPProduced and p.cost ≤ cost upper bound and p.StabilityIndex ≥ 1

if we are at the top level of the plan tree or | result ∪ p |≤ l̂level

result = result ∪ p

6. result = result ∪ pch

7. return result

Figure 1.6: The InternalFixed Algorithm

distributed data) and TPC-DS-based query templates (with skewed data) are considered in

our study. All 2-dimensional diagrams have been generated with a grid resolution of 300 and

3-dimensional diagrams with a resolution of 100.

Physical Design. We considered two physical design configurations in our study: Prima-
ryKey (PK) and AllIndex (AI). PK represents the default physical design of our database

engine, wherein a clustered index is created on each primary key. AI, on the other hand, rep-

resents an “index-rich” situation wherein (single-column) indices are available on all query-

related schema attributes.

Query Distribution. The performance results shown with the suffix exp in this section are

for plan diagrams generated with exponentially distributed locations for the query points across

the selectivity space, resulting in higher query densities near the selectivity axes and towards

the origin. All other experiments have a uniform distribution of query locations.

Chapter 1. Introducing Stability in Cost-based Query Optimizers 25

Query Algo Time Pro-rated Plans AvgSERF
Template (min, sec) time

QT5 DP 8 m 27 s 8 m 27 s 14 -
Root 11 m 21 s 8 m 34 s 6 0.24

InternalFixed 16 m 38 s 14 m 45 s 6 0.96
QT7 DP 7 m 2 s 7 m 3 s 8 -

Root 9 m 11 s 7 m 6 s 7 -14.32
InternalFixed 11 m 46 s 10 m 55 s 2 0.89

QT8 DP 9 m 44 s 9 m 44 s 20 -
Root 14 m 30 s 9 m 54 s 9 -0.34

InternalFixed 22 m 46 s 20 m 17 s 2 0.96
QT9 DP 9 m 11 s 9 m 11 s 6 -

Root 10 m 25 s 9 m 20 s 4 0.81
InternalFixed 17 m 20 s 16 m 50 s 1 0.99

QT10 DP 3 m 36 s 3 m 36 s 12 -
Root 3 m 52 s 3 m 37 s 4 0.2

InternalFixed 5 m 2 s 4 m 45 s 3 0.99

Table 1.2: Comparative performance and overheads of various strategies

Performance Metrics. In the remainder of this section, we first show some comparative

examples of the computational overheads and error-resistance characteristics of the various

algorithms we have proposed. Then, we evaluate our algorithm of choice and compare it to

SEER-based post-facto reduction with regard to the following performance parameters: di-

agram reduction quality, the error-resistance obtained through reduction and computational

efficiency.

InternalFixed in the experiments refers to the algorithm where the stability index is cal-

culated using the Corner heuristic mentioned previously, and the stability criterion applied

at every level of the plan tree. The IF (MaxSel) refers to a lite version of the InternalFixed

algorithm where the stability is calculated only on the basis of the cost at the corner of the

space with highest selectivity. We also tried another strategy where propagation of plans were

done solely on the basis of the cost at the lower levels of the tree, and the stability metric was

used only at the final level to decide the plan to be output. We refer to this algorithm as IF

(CostOnly). For the Internal algorithms, both λi and λ were set to 10% and a uniform plan

cap of 5 plans was applied at each node. Post-facto reduction was performed using the SEER

algorithm [10] with λ set to 10%. In order to factor out the effects of the caching problem

faced in PostgreSQL, we also present pro-rated running times for our algorithms where the

time taken to cost all candidate sub-plans outside our λ thresholds at the remote points is de-

ducted from the total running time. A sample plan diagram for DP shown in Figure 1.7(a) and

the corresponding diagram obtained when InternalFixed is used is shown in Figure 1.7(b).

Chapter 1. Introducing Stability in Cost-based Query Optimizers 26

(a) DP

(b) InternalFixed (λ = 10%)

Figure 1.7: Sample Plan Diagram for DP and InternalFixed (QT8)

Chapter 1. Introducing Stability in Cost-based Query Optimizers 27

Query DP InternalFixed SEER
Template Plans Plans Non- Replaced MinSERF AvgSERF Negative Plans MinSERF AvgSERF

POSP (%) (%)
QT5 14 6 1 67.98 -5.99 0.12 0.01 5 0.78 0.96
QT7 8 2 1 59.81 0.19 0.24 0.00 2 0.35 0.89
QT8 20 2 0 72.05 -0.26 0.89 1.07 2 0.41 0.96
QT9 6 1 0 33.81 0.38 0.99 0.00 1 0.38 0.99

QT10 12 3 0 43.22 -0.40 0.99 0.07 2 0.92 0.99
Q8 3d 59 21 3 54.23 -15.63 0.13 0.12 18 0.00 0.84
Q9 3d 64 11 2 57.44 -35.21 0.25 0.88 12 0.11 0.66

QT5 exp 27 6 1 98.43 -93.51 0.11 4.43 5 0.41 0.98
QT7 exp 17 2 1 85.04 -48.01 -0.04 12.43 3 0.07 0.97
QT8 exp 31 2 0 97.84 -0.24 0.73 0.01 2 0.40 0.73
QT9 exp 9 1 1 25.55 0.61 0.99 0.00 2 0.54 0.99

QT10 exp 16 8 1 85.08 -21.15 0.91 0.75 2 0.69 0.95
Q8 3d exp 118 33 5 64.66 -15.63 0.13 0.12 30 0.00 0.84
Q9 3d exp 82 22 4 43.22 -35.21 0.25 0.88 12 0.11 0.66

AIQT8 38 2 1 86.07 -30.86 0.12 1.76 4 0.23 0.94
AIQT9 14 1 0 41.52 -161.48 -1.00 4.43 4 0.60 0.94

AIQT10 25 3 2 74.38 -1.76 0.89 1.20 5 0.27 0.96
AIQT8 3d 90 34 3 66.33 -34.23 0.33 1.54 33 0.00 0.44
AIQT9 3d 107 38 4 21.58 -15.23 0.21 2.99 34 0.00 0.56
AIQT8 exp 77 2 1 80.54 -80.34 0.06 2.23 4 0.23 0.93
AIQT9 exp 31 2 1 31.64 -123.44 -1.22 6.87 4 0.60 0.95

AIQT10 exp 32 4 2 68.44 -20.63 0.78 1.19 5 0.27 0.95
DS18 20 3 1 64.28 -36.03 0.89 0.02 2 0.43 0.83
DS19 36 2 0 74.38 0.21 0.76 0.00 2 0.21 0.76

DS18 exp 29 4 2 77.35 -42.63 0.84 0.20 2 0.44 0.97
DS19 exp 49 2 0 75.86 0.16 0.77 0.00 2 0.16 0.77

Table 1.3: Performance comparison of InternalFixed and SEER-based post-facto reduction

Query DP InternalFixed Pro-rated IF PIF
Template / DP

QT5 8 min 27 sec 16 min 38 sec 14 min 45 sec 1.75
QT7 7 min 2 sec 11 min 46 sec 10 min 55 sec 1.55
QT8 9 min 44 sec 22 min 46 sec 20 min 17 sec 2.08
QT9 9 min 11 sec 17 min 20 sec 16 min 50 sec 1.83

QT10 3 min 36 sec 5 min 2 sec 4 min 45 sec 1.32
Q8 3d 1 hr 32 min 4 hr 1 min 3 hr 55 min 2.55
Q9 3d 1 hr 33 min 3 hr 24 min 3 hr 14 min 2.09

QT5 exp 7 min 11 sec 16 min 30 sec 14 min 40 sec 2.04
QT7 exp 6 min 39 sec 11 min 16 sec 10 min 51 sec 1.63
QT8 exp 8 min 16 sec 25 min 10 sec 22 min 11 sec 2.68
QT9 exp 8 min 4 sec 19 min 21 sec 17 min 55 sec 2.22

QT10 exp 3 min 16 sec 4 min 56 sec 4 min 40 sec 1.43
Q8 3d exp 1 hr 27 min 4 hr 2 min 3 hr 36 min 2.48
Q9 3d exp 1 hr 41 min 3 hr 45 min 3 hr 35 min 2.13

AIQT8 11 min 28 sec 24 min 58 sec 20 min 21 sec 1.77
AIQT9 10 min 49 sec 23 min 27 sec 22 min 28 sec 2.08

AIQT10 4 min 30 sec 7 min 8 sec 6 min 40 sec 1.48
AIQT8 3d 2 hr 5 min 6 hr 6 min 5 hr 40 min 2.72
AIQT9 3d 2 hr 2 min 7 hr 9 min 6 hr 41 min 3.29
AIQT8 exp 11 min 13 sec 26 min 43 sec 22 min 49 sec 2.03
AIQT9 exp 10 min 48 sec 23 min 15 sec 22 min 30 sec 2.08

AIQT10 exp 4 min 26 sec 7 min 11 sec 6 min 30 sec 1.47
DS18 8 min 40 sec 17 min 59 sec 16 min 0 sec 1.85
DS19 6 min 30 sec 13 min 18 sec 12 min 14 sec 1.88

DS18 exp 8 min 46 sec 18 min 13 sec 17 min 2 sec 1.94
DS19 exp 6 min 30 sec 15 min 23 sec 12 min 59 sec 2.00

Table 1.4: Computational Overheads of the InternalFixed algorithm

Chapter 1. Introducing Stability in Cost-based Query Optimizers 28

Table 1.2 shows that, though the Root, IF (MaxSel) and IF (CostOnly) algorithms have

significantly lower overheads than the InternalFixed algorithm using the Corner Heuristic,

in many cases, they are not generally reliable as demonstrated by the negative values for

AvgSERF. The universal algorithm had running times at least greater than ten times that of

the other algorithms and we do not present the results for it here.

From Table 1.3 we see that in most cases, the AvgSERF value is positive and increases

resistance to selectivity errors. Though a good fraction of the MinSERF values are negative,

we see that the fraction of values that have a negative SERF value is very small, generally

less than 2%. In the AIQT9 and AIQT9 exp, the low average SERF value is caused by a few

pairs of estimated and actual locations for a replacement plan we chose over the optimizer’s

optimal plan; on removing these negative values, the average SERF value becomes 0.36 and

0.33 respectively. Our plan cardinalities are also very low, thereby also garnering the other

benefits got by post-facto reduction.

Finally, Table 1.4 shows that we are able to achieve both a good quality reduced diagram

and high error-resistance with an overhead of about two times for 2-dimensional spaces and a

little over three times for 3-dimensional selectivity spaces.

1.7 Related Work

Over the last decade, a variety of compile-time strategies have been proposed to identify robust

plans. For example, in the Least Expected Cost (LEC) approach [5, 6], it is assumed that the

distribution of predicate selectivities is apriori available, and then the plan that has the least-

expected-cost over the distribution is chosen for execution. While the performance of this

approach is likely to be good on average, it could be arbitrarily poor for a specific query as

compared to the optimizer’s optimal choice for that query. Moreover, it may not always be

feasible to provide the selectivity distributions.

An alternative Robust Cardinality Estimation (RCE) strategy proposed in [2] is to model

the selectivity dependency of the cost functions of the various competing plan choices. Then,

given a user-specified “confidence threshold” T , the plan that is expected to have the least

Chapter 1. Introducing Stability in Cost-based Query Optimizers 29

upper bound with regard to cost in T percentile of the queries is selected as the preferred

choice. The choice of T determines the level of risk that the user is willing to sustain with

regard to worst-case behavior. Like the LEC approach, this too may be arbitrarily poor for a

specific query as compared to the optimizer’s optimal choice.

In the (initial) optimization phase of the Rio approach [3, 4], a set of uncertainty modeling

rules from [13] are used to classify selectivity errors into one of six categories (ranging from

“no uncertainty” to “very high uncertainty”) based on their derivation mechanisms. Then, these

error categories are converted to hyper-rectangular error boxes drawn around the optimizer’s

point estimate. Finally, if the plans chosen by the optimizer at the corners of the principal

diagonal of the box are the same as that chosen at the point estimate, then this plan is assumed

to be robust throughout the box.

However, in our framework, the above box essentially turns out to be the entire selectivity

space and it is very unlikely that the plans chosen along the principal diagonal would be the

same with respect to each other, let alone that at the point estimate. Therefore, it would be hard

to obtain positive results for robustness. In contrast, our approach is to invoke plan replacement

from a global perspective using the aggregate behavior over the corners of the selectivity space

as indicators.

Finally, as mentioned in the Introduction, in our own recent work [10], a post-facto ap-

proach to determining robust plans was taken. Here, a “plan diagram” [26], which is a color-

coded pictorial enumeration of the plan choices of the optimizer over the relational selectivity

space, is first generated. On this diagram, “anorexic reduction algorithms” [9, 10] that operate

with low values of λ are employed to convert it to a much simpler picture featuring signif-

icantly fewer plans. The reduction process is usually highly successful in removing locally

optimal plans that suffer from globally volatile behavior, with the few retained plans typically

exhibiting good error resistance characteristics.

There are several critical differences between the techniques proposed in this chapter and

the post-facto approach, as outlined in detail in the Introduction, the most important of course

being that we implement an online approach based on individual query instances, and not

requiring any global summary information.

Chapter 1. Introducing Stability in Cost-based Query Optimizers 30

1.8 Conclusions and Future work

We have shown in this chapter that it is possible to reasonably efficiently incorporate stability

criteria in the DP-based optimization process that is the cornerstone of modern industrial-

strength database query optimizers. Specifically, we proposed the InternalFixed algorithm

that strikes a balance between the competing demands of enriching the candidate space for

replacement plans, and the computational overheads involved in this process. Our extensive

set of experiments, which covered a variety of logical and physical designs, indicate that a

significant degree of robustness can be obtained with relatively minor conceptual changes to

current optimizers, especially those that already support a foreign-plan-costing feature. We

hope that our promising results would encourage commercial database vendors to incorporate

such stability considerations in their optimization framework.

Chapter 2

Enhancements to the Picasso Query
Optimizer Visualizer tool

2.1 Introduction

Modern database systems use a query optimizer to identify the most efficient strategy to exe-

cute the SQL queries that are submitted by users. The efficiency of the strategies, called plans,

is usually measured in terms of query response time. For a given database and system config-

uration, the optimal plan choice given by a cost-based query optimizer is mainly the function

of the selectivities of the relations participating in the query. The selectivity is defined as the

estimated number of tuples or rows of a relation that are relevant for producing the result of the

query. A Picasso query template is an SQL query that additionally features predicates of the

form “relation.attribute :varies”. These attributes are termed as Picasso Selectivity Predicates

(PSP). Each such query template defines an n-dimensional relational selectivity space, where n

is the number of PSP’s. The response to the variation of selectivity of each of the PSP relations

over the range 0 to 100% characterizes the optimizer behavior over this selectivity space.

Picasso [25] is a database query optimizer visualizer software developed at the Database

Systems Lab [29], Indian Institute of Science. Given a query template that defines a relational

selectivity space and a choice of database engine, Picasso generates a variety of diagrams that

characterize the behavior of the engine’s optimizer over this relational selectivity space. The

31

Chapter 2. Enhancements to the Picasso Query Optimizer Visualizer tool 32

diagrams include the (compilation) plan diagram, which is a color-coded pictorial enumeration

of the execution plan choices; the Compilation Cost Diagram, a visualization of the associated

estimated plan execution costs; the Compilation Cardinality Diagram which is a visualization

of the associated estimated query result cardinalities and the Reduced plan diagram that shows

the extent to which the original plan diagram may be simplified (by replacing some of the

plans with their siblings in the plan diagram) without increasing the estimated cost of any

individual query by more than a user-specified threshold value [28]. Picasso can also display

visualizations of plan trees or highlight the differences between a selected pair of plans in the

plan diagram, or display plan trees of plans two database engines produce at a given query

point in the plan diagram. Picasso also has support for Abstract plan diagrams which are a

visualization of the behavior of a selected plan in the plan diagram, when the optimizer is

requested to use this specific plan throughout the selectivity space. This feature is currently

fully operational only on the Microsoft SQL Server and Sybase database engines.

Apart from query compilation-related diagrams, Picasso also produces the execution coun-

terparts of the cost and cardinality diagrams where the Execution Cost Diagram is based on

the query response times and the Execution Cardinality Diagram represents the actual query

result cardinalities over the given selectivity space.

PostgreSQL [19] is a scalable, SQL compliant, object-relational database management sys-

tem. It is free software and its source code is freely available for download and modification

under the BSD license. The PostgreSQL query optimizer performs a near-exhaustive search

over the space of alternative strategies while deciding on the optimal plan to execute a given

query using an algorithm first introduced in IBM’s System R database [16]. The PostgreSQL

optimizer does not support any alternate (sub-optimal) plan costing mechanisms as of its cur-

rent release.

The rest of this chapter highlights the various enhancements made to Picasso and Post-

greSQL. This is followed by some experimental results indicating the performance of the

changed plan diagram generation time estimator. We then conclude and outline some future

enhancement avenues.

Chapter 2. Enhancements to the Picasso Query Optimizer Visualizer tool 33

2.2 Enhancements to Picasso (Server-side)

2.2.1 Improvement in estimation of time to generate compilation plan
diagrams

Old plan diagram generation time Estimator

In the earlier versions of Picasso, the estimator worked as follows: The two farthest points on

the principal diagonal of the selectivity space corresponding to selectivity values (0.5%, ... ,

0.5%) and (99.5%, ... , 99.5%) were compiled and their times noted. The average of these

were taken and extrapolated over the entire selectivity space (depending upon the number

of query points). However, the performance of this estimator was observed to be poor in

practice. This is because of multiple reasons. First, because it is the first time a JDBC call

is made and the database engine invoked, it takes some time for the operating system to get

engine process code from swap space into main memory, and thus this estimate would be much

longer than that when Picasso is actually in the process of generating a plan diagram when the

database engine is constantly being accessed, there being no latency of getting the engine code

into memory. Even if this problem is rectified, because averaging is done, even if exactly

one of the two estimates were correct, the estimate would be off because of the other wrong

value. The other problem was that the timer provided in Java, though it provides values in

milliseconds, the value itself is actually updated less frequently depending on the underlying

operating system (nearly 10 milliseconds on both Windows and GNU/Linux platforms). Thus,

if a query compiled in less than that amount of time, and the clock was checked before and

after this compilation, it is possible that the value returned is the same, thus giving a value of

0 milliseconds for the compilation of this query, resulting in a totally wrong estimate.

New plan diagram generation time Estimator

The estimator code was changed to now extrapolate the median of five estimates uniformly

spaced over the principal diagonal of the selectivity space. Five was chosen since it was not

too high a number while still providing decent accuracy - higher numbers would have lead to

Chapter 2. Enhancements to the Picasso Query Optimizer Visualizer tool 34

a longer time in providing estimates, and lower numbers lead to decreased accuracy. The new

estimator almost always gives an estimate within five seconds, and in the worst case has been

seen to provide an estimate in about ten seconds, which can be considered as an acceptably

long time that a user of Picasso can wait for a plan diagram estimate. The median was taken

instead of the average so that the estimate is not affected by the boundary values. To solve

the precision problem of the timer, if the value given is 0 milliseconds, it is changed to 10

milliseconds. Note that this value will be used to calculate the final estimate only if a majority

(here: three or more) queries compile in under 10 milliseconds.

2.2.2 Porting of Picasso to Informix Dynamic Server

IBM’s Informix Dynamic Server did not have any facility to store execution plans generated by

the query optimizer into tables or have any histograms in SQL accessible format. We worked

with the IBM team in order to incorporate these features into Informix and then ported Picasso

to read plan and histogram tables to enable the generation of plan diagrams on Informix as

well. The following table structure was chosen for the plan table:

CREATE TABLE SQEXPLAIN PLAN

(

STATEMENT ID INTEGER,

OPERATION VARCHAR(30),

OPTIONS VARCHAR(255),

OBJECT NAME VARCHAR(30),

ID INTEGER,

PARENT ID INTEGER,

COST DECIMAL(12,2),

CARDINALITY DECIMAL(12,2)

);

Chapter 2. Enhancements to the Picasso Query Optimizer Visualizer tool 35

where Statement id holds the unique ID for the given statement that is passed from EX-

PLAIN PLAN FOR or generated depending on the context, Operation specifies which oper-

ation is being done at that node in the plan: for example, Dynamic Hash Join, Nested loop

join, Index Path or Sequential Scan, Options are parameters for the Operation specified above,

Object name is the name of the base table on which the operation operates, Id holds the ID

unique for that node in the plan, Parent id holds the ID of the parent node of this current node

in the plan, Cost holds the estimated cost of computing the sub-tree below this node in the

plan, and Cardinality holds the estimate of the cardinality of the result of the sub-tree below

this node in the plan.

The following table structure was chosen for the equi-depth histogram table:

CREATE TABLE SQEXPLAIN HIST

(

TABID INTEGER,

COLNO INTEGER,

BINNO INTEGER,

BINSIZE INTEGER,

FREQUENCY INTEGER,

BOUNDVAL VARCHAR(255)

);

where Tabid holds table ID comparable with systables.tabid and syscolumns.tabid, Colno

holds column number comparable with the syscolumns.colno, Binno holds the bin number,

Binsize holds the size of the bin, Frequency is number of distinct values in the bin, and Bound-

val contains the upper bound within the bin. systables and syscolumns are already existing

Informix tables that have information about all tables and columns currently in the database

respectively.

Chapter 2. Enhancements to the Picasso Query Optimizer Visualizer tool 36

2.3 Enhancements to Picasso (Client-side)

2.3.1 Dynamic manipulation of Picasso user settings

Picasso has various user-settable settings such as low video (which is generally set on ma-

chines with low video memory to disable caching of the display so that diagrams still display

correctly), the plan diagram reduction algorithm and the desired number of plans, thresholds

for the Selectivity Log and cost domination, debug modes and other default values such as the

server port and plan diagram reduction threshold. Earlier, these settings had to be set man-

ually by the user in the Java source file PicassoSettings.java and then the entire code had to

be recompiled. This was cumbersome and also it was not possible to change these settings in

binary-only releases. So, support was added to read these settings dynamically through a set-

tings file called local conf when Picasso is started; the format of this file was made ASCII text

so that users could directly manipulate the file if they chose to. Also, a dialog was added to the

client as in Figure 2.1 using which the user could manipulate these settings. This ensures that

the local settings of the user can be changed dynamically as well as that they are persistent,

i. e. will remain even if the Picasso server and/or client are restarted.

Figure 2.1: Picasso Local Settings

Chapter 2. Enhancements to the Picasso Query Optimizer Visualizer tool 37

2.3.2 Display of slice as well as total maximum and minimum cardinality

and cost values and plan counts

If the number of Picasso Selectivity Predicates is three or above, the selectivity space is a

(hyper)volume. However, it is only possible to easily visualize a 2-d slice out of this. Picasso

allows the user to select which slice out of the selectivity volume (s)he wants to view and

displays this slice. However, earlier, the maximum and minimum cardinality and cost values

as well as plan count displayed represented information about the current slice only. This made

it hard to understand the behavior of the entire space as well as the relative behavior of this slice

with respect to the entire volume. So, the Picasso client was augmented to show maximum and

minimum cardinality and cost values as well as plan counts over both the current slice being

displayed as well as the entire selectivity (hyper)volume as shown in Figure 2.2. Also, earlier,

the selectivity percentages of the third and higher dimensions (to choose the required slice)

had to be entered manually, and Picasso would display the nearest slice; this was cumbersome

and the user needed to guess the correspondence of the selectivity value with the given slice

- now a dropdown is provided as in Figure 2.3 filled with values depending upon the diagram

resolution and query point distribution (uniform or exponential) and the user can select the

required selectivity value, and thus the slice.

2.3.3 Saving diagram information into files

Picasso is based on a client-server model and the client and server communicate using packets.

A diagram packet contains the entire description of the plan diagram including the resolution,

total number of plans, maximum and minimum costs and cardinalities, selectivity values and

their corresponding constants, information about the plan number, cost and cardinality of each

query point compiled or executed, as well as query-specific information such as the QTD iden-

tifier and the actual query template string, the query execution type, query point distribution,

number of dimensions, etc. Picasso uses three main types of high level packets. These are:

• The compilation diagram packet, which has information about the plan diagram, the

compilation cost diagram and the compilation cardinality diagram.

Chapter 2. Enhancements to the Picasso Query Optimizer Visualizer tool 38

Figure 2.2: Slice and Total Cost/Cardinality/PlanCount display

• The execution diagram packet, which has information about the execution cost and car-

dinalities.

• The reduced plan diagram packet, which has information about plan numbering once

plan diagram Reduction has been applied on the original plan diagram. This is a front-

end only packet, and is handled completely at the client end.

Code was added to enable the saving of these three packets into external binary files with

the extension .pkt. The benefits of saving into external files are many. One is to take a backup

of the diagram information. Also, Picasso uses ViSAD (Visualization for Algorithm Devel-

opment) [30] which is a Java component library for interactive and collaborative visualization

and analysis of numerical data based on Java3d for visualization purposes in the client front-

end. However, Java3d, though works well with Sun’s java implementation, does not work

with certain distributions of Java such as that provided by IBM. Thus, for reasons of universal

Chapter 2. Enhancements to the Picasso Query Optimizer Visualizer tool 39

Figure 2.3: Slice selection dropdown - for 3rd (and greater) PSP’s

accessibility as well as due to legal restrictions in certain companies, it becomes important to

provide information collected and created by Picasso into a textual format or a format which

can be read through a computer program so that new front ends may be created on platforms

which cannot display this information directly through the Picasso client. So, support for

saving diagram information into external files was added. The Picasso distribution was also

updated with code which reads .pkt files and clearly writes all the information contained in

the packet into a textual format; this would allow users to look at information contained in

the .pkt files without needing a front end as well as guide front end developers as to how to

programmatically access the fields in the packet.

2.3.4 Regular Expression Search for the QTD List

When Picasso generates a plan diagram, it saves the information about the diagram persis-

tently in the database, so that it can be directly retrieved the next time the user wants to see

a plan diagram over the same query template and exactly the same settings. For this purpose,

a unique user specified identifier string known as the query template Descriptor (QTD) is as-

signed before the generation of every plan diagram. We have observed that these QTD lists

can grow really long over the course of time making it hard for the user to scroll through and

select the required QTD of a diagram which was generated earlier. To solve this problem, a

regular expression based search facility was added to the search box which filters the QTD list

Chapter 2. Enhancements to the Picasso Query Optimizer Visualizer tool 40

on the basis of user entry as shown in Figure 2.4, thus making it convenient to find the required

QTD.

Figure 2.4: Regular Expression Search in the QTD Dropdown and QTD annotation

2.3.5 Annotation of QTD’s depending upon the query execution type

Picasso can be used to generate both compile-time diagrams (got using plans generated from

EXPLAIN output) as well as execution diagrams (got by actually executing queries and ob-

serving their output count, time, etc.). Generally, execution diagrams take far longer than

compilation diagrams to produce, and execution diagrams are always produced after the corre-

sponding compilation diagram is produced so that values from the compilation diagram can be

used to provide an estimate of the execution diagram production time as well as to aid compar-

ison of compilation and execution diagrams. By looking at the QTD, the user may not be able

to figure out whether both the compilation and execution diagrams have been generated for it,

or only the compilation diagram. Earlier, to do this, the user had to choose the compilation

diagram, click on an execution tab such as the Exec Cost Diag tab, and see if it directly gave

a diagram or an estimate. However, this is cumbersome and also time consuming since the

execution diagram time estimate itself takes quite some time to calculate. Note that this prob-

lem cannot be got away with by aptly naming the QTD as it is possible that the user initially

generates only the compilation diagram for a particular query template and settings, and later

decides to generate the corresponding execution diagram as well, at which point (s)he cannot

change the QTD identifier. Thus, the QTD dropdown list itself is now annotated with (C)

which indicates that only a compilation diagram has been generated or (C,E) which indicates

Chapter 2. Enhancements to the Picasso Query Optimizer Visualizer tool 41

that both the compilation and execution diagrams have been generated for that QTD. Note that

this string can also be a part of the regular expression search mentioned previously; thus, if the

user wanted to search for all QTD’s which have their execution diagrams already generated,

all (s)he had to do is to search for the string (C,E) and the list would be appropriately filtered.

2.3.6 Saving of diagram visuals into the .png format

Picasso’s Save feature which can be used to save plan diagrams, cost diagrams as well as plan

trees saved these diagrams into the .jpg (Joint Pictures Experts Group) format. While this

format is popularly used on the internet especially for storing photographs, the compression

mechanism that it uses is lossy and thus, if images such as plan diagrams are stored in the

format, there is loss of quality of the image as well as smudging of text. It is important that in

images of plan diagrams, the colors exactly represent the regions as they did when displayed

as different colors represent distinct plans over the selectivity space. Thus, the ability to save

into the popular (and thus universally readable) as well as lossless .png (Portable Network

Graphics) format was added. This lossless format was chosen over others since the highly

compressed .gif (Graphics Interchange Format) format did not allow for a large number of

colors that were required to accurately save the plan diagram, and the .bmp (Bitmap) and .tiff

(Targa Information File Format) occupied huge amounts of hard disk space per image, unlike

.png files, whose size is comparable to their .jpg counterparts. Also, fonts for selectivity labels

(the scales of the plan diagram) were chosen so that they appear better on the screen as well as

in print (or when saved as a .png image).

2.3.7 Comparison of compilation and execution cardinalities

Current optimizers use cardinality estimates during the choosing of an appropriate plan for the

given query. The correctness of these estimates severely affect the quality of the plan chosen

which has direct impact on the quality of the optimizer itself. Thus, it might be important

to see how correct these estimates are by comparing the estimated (compilation) cardinality

values to the actual execution cardinalities over the selectivity space. While Picasso allows the

Chapter 2. Enhancements to the Picasso Query Optimizer Visualizer tool 42

production of both compilation and execution cardinality diagrams, it is hard to visualize and

compare them together - firstly, because they are in different tabs and do not display together.

Even if multiple clients are used to display these diagrams side by side for comparison, it is

hard to compare the values since each of these diagrams are normalized with respect to the

maximum values over these individual diagrams which are generally different for the compila-

tion and execution cardinality diagrams. An additional tab was added to Picasso which shows

both the compilation and execution cardinality plots on a single 3-dimensional graph colored

appropriately. The maximum and minimum compilation and execution cardinality values are

also displayed as in Figure 2.5.

Figure 2.5: Comparison of Compilation and Execution Cardinalities

2.3.8 Client-side slicing of three and higher dimension Picasso Diagrams

In the earlier release, for diagrams which had 3 or more dimensions, Picasso required the user

to specify before the diagram was read as to which 2-dimensional slice of the diagram was

required to be displayed. This made the interface to read multiple slices one after the other

cumbersome as the user had to repeatedly switch between the query template entry tab and the

diagram display tab and also extremely slow because the client would ask the server to retrieve

Chapter 2. Enhancements to the Picasso Query Optimizer Visualizer tool 43

the slice and the server would read the entire diagram from the database each time and then

extract the required slice.

So, the server was made to send information about the entire volume rather than a slice, and

slicing was performed as a client-only feature. GZIP-based compression was used to reduce

the size of the diagram packet so as to reduce the one-time overhead of sending the diagram

from the server to the client. Note that the entire diagram was being read even in the earlier

case even when just a slice was required to be displayed in order to extract global information

such as the total number of plans over the entire space as well as maximum and minimum

estimated costs and cardinalities. This also made it feasible to perform plan diagram reduction

over the entire diagram directly. Plan diagram reduction over the entire volume is different

from reduction of each slice, since in the earlier case, neighbors from other slices can also be

considered swallowers [9].

2.3.9 Compressed transmission of diagram packets with all Plan Trees

Picasso allows the user to view the plan tree structure for any plan in the plan diagram or

visually view the difference between two plan trees in the diagram. Earlier, this required the

client to go to the server for the plan trees, and then they were displayed (after tree differencing,

if required). This made the process of getting plan trees very slow, since for each tree, the

client would have to communicate with the server, and the server in turn would have to get

the required tree from the database. To improve this, all plan trees were sent along with the

Picasso diagram. This one time overhead of sending all trees with the diagram is mitigated

due to the use of compression.

The Parameter↔Operator difference feature allows the user to display a plan diagram when

two plans are considered different either only on the basis of operators in the plan tree or also

with the consideration of parameters to these operators. This earlier required the client to go

to the server, and the server in turn to go back to the database to get all the plan trees, and

then conversion was performed on the client. Now, however, since all plan trees are directly

available on the client side, this feature has been made client-only, thus improving its speed.

Chapter 2. Enhancements to the Picasso Query Optimizer Visualizer tool 44

2.3.10 Miscellaneous enhancements

Picasso was made available as a Windows Setup executable with only binaries included so that

people could use Picasso without looking at its code which is a legal restriction at many com-

panies, and also for ease of installation. The Picasso documentation which includes the user

manual was made available in the .pdf (Portable Document Format) format. The server con-

sole output earlier displayed only numeric message ID’s for messages received from the client.

Now, descriptive identifiers were added to the output which made debugging easier. Also, ma-

jor and minor bugs in the earlier version of Picasso were fixed and other minor improvements

were made.

2.4 Enhancements to PostgreSQL

2.4.1 Multiple plan output in PostgreSQL

Plans are accessed through the PostgreSQL client by executing a query of the form ‘EXPLAIN

...’ where the explain keyword is followed by the actual query whose optimal plan is needed

to be obtained. However, it might sometimes be necessary to obtain sub-optimal plans over

the search space too. This might be to observe cost differences of plans whose costs are

near that of the optimal plan, to aid in generation of plan diagrams using sampling [7], etc.

Thus, functionality was added to PostgreSQL to output multiple plans given a single explain

query. The PostgreSQL code was also modified so as to output certain plans considered by the

optimizer before making its final choice which are within a specified threshold of the optimal

(and cheapest) plan generated by the optimizer.

2.4.2 Remote costing in PostgreSQL

For a given point in the selectivity space, using its cost model, the database engine generates

a query execution plan which has the lowest estimated execution cost and this plan is deemed

optimal for the query, and is used to execute the query. A feature which will enable users to cost

the optimal execution plan at one point in the selectivity space at some other point in the space

Chapter 2. Enhancements to the Picasso Query Optimizer Visualizer tool 45

where it may or may not be optimal has multiple uses. This would provide for the abstract-plan

like diagrams on the PostgreSQL engine. In Picasso, with Microsoft SQL Server and Sybase,

the Abstract Plan feature is implemented as follows. The required plan whose behavior over

the entire selectivity space has to be observed is obtained by first selecting a point in the plan

diagram with that plan and then acquiring from the engine in the XML format, the plan at that

point. This XML string is attached to the query template and the template is now processed like

in a normal plan diagram generation. Picasso would now generate queries with actual values

over the selectivity space and each of these queries would be appended with this XML string,

thus providing a hint to the query optimizer for each of the points over the space. However,

this method is expensive (with respect to time) because the input XML string that is tagged

along with the input query has to be parsed and checked for syntactic and semantic correctness

because the optimizer has no way of knowing that it was itself responsible in generating that

output plan. Note that this will be done at each point over the selectivity space when the

Abstract Plan based diagram is being generated. Also, the Abstract Plan output provided by

the optimizer is incomplete in the sense that some sub-operators (parameters to operators)

among other values are not emitted; and thus will be recalculated independently for the other

selectivity point by the query optimizer, which might lead to different values from that at the

original query point. Also, we have noticed that the subset of plan XML strings accepted

as a hint by the Microsoft SQL Server query optimizer is a strict subset of the plans that it

actually emits. This means that some plans generated by it cannot be passed back as a hint to

it. Also, since the plan is passed only as a hint, it is up to the optimizer to accept or reject it

and sometimes it might not be possible at all to obtain and observe the behavior of a single

plan over the entire selectivity space due to this, because at certain points, the optimizer may

reject the hint and re-optimize from scratch, which might lead to a different plan.

Remote-costing was implemented inside the PostgreSQL database engine - all validity

checks are skipped to save time as the plan would be passed around in the optimizer module

itself. Also, the optimizer always uses the plan provided and we are assured of getting the

required results unlike in the other engines.

Chapter 2. Enhancements to the Picasso Query Optimizer Visualizer tool 46

DB Engine Opt. Level Query template Resolution Estimated Time Actual Time Absolute Error Relative Error
SQL Server Default QT2 100 1 hr 6 min 1 hr 3 min 3 min 4.76%
SQL Server Default QT3 100 13 min 45 sec 13 min 15 sec 30 sec 3.77%
SQL Server Default QT5 100 1 hr 9 min 1 hr 3 min 6 min 9.52%
SQL Server Default QT8 100 1 hr 54 min 1 hr 46 min 8 min 7.55%

DB2 9 QT5 100 45 min 43 sec 46 min 34 sec -51 sec -1.83%
DB2 5 QT8 100 24 min 18 sec 26 min 48 sec -2 min 30 sec -9.33%

Sybase Default QT9 100 35 min 25 min 11 sec 9 min 49 sec 38.98%
Sybase Default QT16 100 27 min 1 sec 17 min 21 sec 9 min 40 sec 55.72%

PostgreSQL Default QT5 300 24 min 39 sec 23 min 25 sec 1 min 14 sec 5.27%
PostgreSQL Default QT9 100 3 min 3 sec 2 min 43 sec 20 sec 12.27%

Oracle Default QT8 100 11 min 12 sec 10 min 24 sec 48 sec 7.69%
Oracle Default QT9 100 11 min 12 sec 13 min 40 sec -2 min 28 sec -18.05%

Table 2.1: Accuracy of the new plan diagram generation time estimator

2.5 Experimentation

The changed (compilation) plan diagram generation time estimator using the median of five

values was tried multiple times on a number of queries and was found to be more consistent

and more accurate than the earlier estimator.

The new estimator was tested with a variety of query templates over all supported database

engines. The results are tabulated in Table 2.1. We find that the performance of the new

estimator is good and the estimate is very close to the actual generation time in most cases.

Also, the estimator generally overestimates which is as required, because it is worser to take

more time than presented to the user than to finish earlier. The estimator refines its estimate as

queries are compiled and displays these changing estimates on the status bar by using informa-

tion about the time the already compiled queries took and extrapolating this over the remaining

query points. We plotted graphs of actual remaining time vs. the estimated remaining time for

these query templates to see how quickly the estimator converges to a value near the actual

remaining (which gives an idea as to how many queries need to be compiled before giving a

highly accurate estimate of generation time). These graphs are presented below. They show

that in almost all cases, the estimator presents a very good estimate within the compilation of

very few queries.

Chapter 2. Enhancements to the Picasso Query Optimizer Visualizer tool 47

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 500 1000 1500 2000 2500 3000

(s
ec

s)

Elapsed Time (secs)

DB2 Bhairav Q5 opt=9 res=100

Estimated Remaining
Actual Remaining

Figure 2.6: DB2, OptLevel=9, Res=100, QT5

 0

 500

 1000

 1500

 2000

 2500

 0 200 400 600 800 1000 1200 1400 1600

(s
ec

s)

Elapsed Time (secs)

DB2 Bhairav Q8 opt=Default res=100

Estimated Remaining
Actual Remaining

Figure 2.7: DB2, OptLevel=5, Res=100, QT8

 0

 100

 200

 300

 400

 500

 600

 0 100 200 300 400 500 600

(s
ec

s)

Elapsed Time (secs)

Oracle Bhairav Q8 res=100

Estimated Remaining
Actual Remaining

Figure 2.8: Oracle, Res=100, QT8

Chapter 2. Enhancements to the Picasso Query Optimizer Visualizer tool 48

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 100 200 300 400 500 600 700 800

(s
ec

s)

Elapsed Time (secs)

Oracle Bhairav Q9 res=100

Estimated Remaining
Actual Remaining

Figure 2.9: Oracle, Res=100, QT9

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 100 200 300 400 500 600 700 800 900 1000

(s
ec

s)

Elapsed Time (secs)

Postgres Bhairav Q5 res=300

Estimated Remaining
Actual Remaining

Figure 2.10: PostgreSQL, Res=300, QT5

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120

(s
ec

s)

Elapsed Time (secs)

Postgres Bhairav Q9 res=100

Estimated Remaining
Actual Remaining

Figure 2.11: PostgreSQL, Res=100, QT9

Chapter 2. Enhancements to the Picasso Query Optimizer Visualizer tool 49

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 500 1000 1500 2000 2500 3000 3500 4000

(s
ec

s)

Elapsed Time (secs)

SQL Server Bhairav Q2 res=100

Estimated Remaining
Actual Remaining

Figure 2.12: Microsoft SQL Server, Res=100, QT2

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 100 200 300 400 500 600 700 800

(s
ec

s)

Elapsed Time (secs)

SQL Server Bhairav Q3 res=100

Estimated Remaining
Actual Remaining

Figure 2.13: Microsoft SQL Server, Res=100, QT3

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 500 1000 1500 2000 2500 3000 3500 4000

(s
ec

s)

Elapsed Time (secs)

SQL Server Bhairav Q5 res=100

Estimated Remaining
Actual Remaining

Figure 2.14: Microsoft SQL Server, Res=100, QT5

Chapter 2. Enhancements to the Picasso Query Optimizer Visualizer tool 50

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 1000 2000 3000 4000 5000 6000 7000

(s
ec

s)

Elapsed Time (secs)

SQL Server Bhairav Q8 res=100

Estimated Remaining
Actual Remaining

Figure 2.15: Microsoft SQL Server, Res=100, QT8

 0

 500

 1000

 1500

 2000

 2500

 0 200 400 600 800 1000 1200 1400

(s
ec

s)

Elapsed Time (secs)

Sybase Bhairav Q9 res=100

Estimated Remaining
Actual Remaining

Figure 2.16: Sybase, Res=100, QT9

Chapter 2. Enhancements to the Picasso Query Optimizer Visualizer tool 51

 0

 500

 1000

 1500

 2000

 2500

 0 100 200 300 400 500 600 700 800 900 1000

(s
ec

s)

Elapsed Time (secs)

Sybase Bhairav Q16 res=100

Estimated Remaining
Actual Remaining

Figure 2.17: Sybase, Res=100, QT16

2.6 Conclusion and Future work

Various enhancements were made to both the client and server modules of Picasso to make

it more usable and user-friendly. These included improving the compilation plan diagram

generation time estimator, allowing for dynamic manipulation of Picasso user settings, saving

diagram information into files, porting to IBM’s Informix Dynamic Server among other im-

provements. Also, the commercially supported database engine PostgreSQL was augmented

to output multiple (and sub-optimal) plans for a given explain query. Remote costing was also

implemented on PostgreSQL.

Currently, in Picasso, diagrams can be generated only over the entire selectivity range and

with an equal grid resolution on each dimension. However, for many applications, it is re-

quired to generate high-resolution diagrams over only a small part of the selectivity range.

Generating such diagrams over the entire range and then filtering is a prohibitively expensive

consideration. Also, sometimes users may be interested in varying the selectivity of one rela-

tion more finely than another, and that requires allowing for different resolutions for different

dimensions. Allowing flexibility in these aspects would improve Picasso considerably.

In PostgreSQL, remote costing has currently been implemented internally. In order for it

to be universally used, an external API must be written for it that allows the user to input a

plan in some format along with the query and selectivity constant values of a remote point and

in return receive the sent plan with costs that the given plan would have at the given remote

point.

Chapter 2. Enhancements to the Picasso Query Optimizer Visualizer tool 52

In Picasso, plan diagram reduction is generally done using a cost-bounding approach [26].

This principle is conservative in that it does not capture all swallowing possibilities, because

it restricts its search only to the first quadrant. The benefits of doing actual costing have been

observed with Microsoft’s SQL Server and Sybase database engines using the Abstract Plan

feature where most plan diagrams reduced to just one or a couple of plans, instead of just the

low absolute number got on doing plan diagram reduction using the cost-bounding approach.

Whether the same benefits can be garnered by using remote costing on PostgreSQL remains

to be seen.

Bibliography

[1] A. Aboulnaga and S. Chaudhuri, “Self-tuning Histograms: Building Histograms without

Looking at Data”, Proc. of ACM SIGMOD Intl. Conf. on Management of Data, May

1999.

[2] B. Babcock and S. Chaudhuri, “Towards a Robust Query Optimizer: A Principled and

Practical Approach”, Proc. of ACM SIGMOD Intl. Conf. on Management of Data, June

2005.

[3] S. Babu, P. Bizarro and D. DeWitt, “Proactive Re-Optimization”, Proc. of ACM Sigmod

Intl. Conf. on Management of Data, June 2005.

[4] S. Babu, P. Bizarro and D. DeWitt, “Proactive Re-Optimization with Rio”, Proc. of ACM

SIGMOD Intl. Conf. on Management of Data, June 2005.

[5] F. Chu, J. Halpern and P. Seshadri, “Least Expected Cost Query Optimization: An Ex-

ercise in Utility”, Proc. of ACM Symp. on Principles of Database Systems (PODS), May

1999.

[6] F. Chu, J. Halpern and J. Gehrke, “Least Expected Cost Query Optimization: What Can

We Expect”, Proc. of ACM Symp. on Principles of Database Systems (PODS), May 2002.

[7] A. Dey, S. Bhaumik, Harish D. and J. Haritsa, “Efficient Generation of Approximate Plan

Diagrams”, Proc. of 34th Intl. Conf. on Very Large Data Bases (VLDB), August 2008.

[8] R. Guravannavar and S. Sudarshan, “Reducing Order Enforcement Cost in Complex

Query Plans”, Proc. of Intl. Conf. on Data Engineering (ICDE), April 2007.

53

BIBLIOGRAPHY 54

[9] Harish D., P. Darera and J. Haritsa, “On the Production of Anorexic Plan Diagrams”,

Proc. of 33rd Intl. Conf. on Very Large Data Bases (VLDB), September 2007.

[10] Harish D., P. Darera and J. Haritsa, “Robust Plans through Plan Diagram Reduction”,

Proc. of 34th Intl. Conf. on Very Large Data Bases (VLDB), August 2008.

[11] A. Hulgeri and S. Sudarshan, “Parametric Query Optimization for Linear and Piecewise

Linear Cost Functions”, Proc. of 28th Intl. Conf. on Very Large Data Bases (VLDB),

August 2002.

[12] A. Hulgeri and S. Sudarshan, “AniPQO: Almost Non-intrusive Parametric Query Opti-

mization for Nonlinear Cost Functions”, Proc. of 29th Intl. Conf. on Very Large Data

Bases (VLDB), September 2003.

[13] N. Kabra and D. DeWitt, “Efficient Mid-Query Re-Optimization of Sub-Optimal Query

Execution Plans”, Proc. of ACM SIGMOD Intl. Conf. on Management of Data, May

1998.

[14] L. Mackert and G. Lohman, “R* Optimizer Validation and Performance Evaluation for

Local Queries”, Proc. of ACM SIGMOD Intl. Conf. on Management of Data, May 1986.

[15] V. Markl, V. Raman, D. Simmen, G. Lohman, H. Pirahesh and M. Cilimdzic, “Robust

Query Processing through Progressive Optimization”, Proc. of ACM SIGMOD Intl. Conf.

on Management of Data, June 2004.

[16] P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie and T. Price, “Access Path Selection

in a Relational Database System”, Proc. of ACM SIGMOD Intl. Conf. on Management of

Data, June 1979.

[17] M. Stillger, G. Lohman, V. Markl and M. Kandil, “LEO, DB2’s LEarning Optimizer”,

Proc. of 27th VLDB Intl. Conf. on Very Large Data Bases (VLDB), September 2001.

[18] http://publib.boulder.ibm.com/infocenter/db2luw/

v9/index.jsp?topic=/com.ibm.db2.udb.admin.doc/doc/t0024533.htm

BIBLIOGRAPHY 55

[19] http://postgresql.org

[20] http://www.postgresql.org/docs/8.2/static/release-8-2-5.html

[21] http://msdn2.microsoft.com/en-us/library/ms189298.aspx

[22] http://infocenter.sybase.com/help/index.jsp?

topic=/com.sybase.dc34982 1500/html/mig gde/BABIFCAF.htm

[23] http://www.tpc.org/tpch

[24] http://www.tpc.org/tpcds

[25] Picasso Database Query Optimizer Visualizer,

http://dsl.serc.iisc.ernet.in/projects/PICASSO/picasso.html

[26] N. Reddy and J. Haritsa, “Analyzing Plan Diagrams of Database Query Optimiz-

ers”, Proc. of 31st Intl. Conf. on Very Large Data Bases (VLDB), August 2005.

http://dsl.serc.iisc.ernet.in/publications/conference/picasso-revised.pdf

[27] Tarun Ramsinghani, “Picasso 1.0: Design and Analysis”, Master’s Thesis, CSA, IISc,

July 2007. http://dsl.serc.iisc.ernet.in/publications/thesis/tarun.pdf

[28] Harish D., P. Darera and J. Haritsa, “Reduction of Query Optimizer Plan Di-

agrams”, Tech. Rep. TR-2007-01, DSL/SERC, Indian Inst. of Science, 2007.

http://dsl.serc.iisc.ernet.in/publications/report/TR/TR-2007-01.pdf

[29] http://dsl.serc.iisc.ernet.in/

[30] http://www.sourceforge.net/projects/visad/

