
Improving PostgreSQL Cost Model

A PROJECT REPORT

SUBMITTED IN PARTIAL FULFILMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

Master of Engineering

IN

Faculty of Engineering

BY

Pankhuri

Computer Science and Automation

Indian Institute of Science

Bangalore – 560 012 (INDIA)

June, 2015

Declaration of Originality

I, Pankhuri, with SR No. 04-04-00-10-41-13-1-10301 hereby declare that the material

presented in the thesis titled

Improving PostgreSQL Cost Model

represents original work carried out by me in the Department of Computer Science and

Automation at Indian Institute of Science during the year 2014-2015.

With my signature, I certify that:

• I have not manipulated any of the data or results.

• I have not committed any plagiarism of intellectual property. I have clearly indicated and

referenced the contributions of others.

• I have explicitly acknowledged all collaborative research and discussions.

• I have understood that any false claim will result in severe disciplinary action.

• I have understood that the work may be screened for any form of academic misconduct.

Date: Student Signature

In my capacity as supervisor of the above-mentioned work, I certify that the above statements

are true to the best of my knowledge, and I have carried out due diligence to ensure the

originality of the report.

Advisor Name: Advisor Signature

1

c© Pankhuri

June, 2015

All rights reserved

DEDICATED TO

My Family

for continuous support

Acknowledgements

I am deeply grateful to Prof. Jayant Haritsa for his unmatched guidance, enthusiasm and

supervision. He has always been a source of inspiration for me. I have been extremely lucky to

work with him.

Also, I am thankful to Prof. Matthew Jacob Thazhuthaveetil and Anshuman Dutt for

discussions and suggestions. My sincere thanks goes to my fellow lab mates for all the help and

suggestions.

Finally, I am indebted with gratitude to my family for their love and inspiration that no

amount of thanks can suffice. This project would not have been possible without their constant

support and motivation.

i

Abstract

Prediction of execution time for different queries is an important task in database field. Cost

models of optimizers are used for for this prediction. But the prediction is inaccurate due to

two types of errors: (i) selectivity estimation error and (ii) cost-modeling error. There are some

existing works for handling selectivity estimation error, like Plan Bouquet. But cost-modeling

error is still to be handled, so we are focusing on that.

A recent work shows that by adjusting the tunable parameters, cost-modeling errors asso-

ciated with current optimizers can be reduced significantly. In their experiments, when correct

cardinalities were substituted in query plans, mean relative error for a particular set of TPC-H

queries due to PostgreSQL cost model was within 47%.

Through our experiments, we found that if we vary the constants associated with selected

predicates of some queries, then errors are low for some constants but increase for others. Fur-

ther experiments indicated that this happens because some static parameters of the cost model,

which are hard-coded by the optimizer-designers, need to be tuned before using. Although these

errors were not more than 47%, these can be reduced by tuning the static parameters. So in

this thesis, we show our work with static parameters to reduce the cost-modeling errors. By

tuning these static parameters, errors are significantly reduced over some queries without much

increasing errors for other queries.

Moreover, previous work mentions that one of the parameters of PostgreSQL cost model,

namely random page cost, which is the cost of fetching a disk page randomly is difficult to

calibrate because pure random access is difficult to achieve and there are some uncertainties in

estimations related to this parameter. We designed such a query which could achieve pure ran-

dom access and we experimentally explored the reasons for poor prediction by this parameter.

We found that three parameters associated with random page cost can cause prediction errors.

We experimentally verified that out of these three parameters, one is not erroneous while the

other two static parameters are erroneous and it is equally important to correct both of them

for proper prediction. We also try to model one of these parameters correctly.

ii

Contents

Acknowledgements i

Abstract ii

Contents iii

List of Figures v

List of Tables vi

1 Introduction 1

1.1 Motivation and Contributions . 1

1.2 Organization . 2

2 Background 3

2.1 PostgreSQL Cost Model . 3

2.2 Problem Definition . 5

2.3 Existing Approach for Reducing Cost-Modeling Errors 6

2.3.1 Calibrated Values of the Cost Parameters 7

2.3.2 Prediction Errors on TPC-H Benchmark Queries 8

3 Cost-Modeling Errors 10

3.1 Motivation for Calibrating Static Parameters . 11

4 Calibrating Static Parameters Related to cpu operator cost 12

5 random page cost 14

5.1 Our Approach for calibrating random page cost 14

5.2 Cost Calculation in PostgreSQL for queries involving random page access 16

iii

CONTENTS

5.3 Static Parameters related to random page cost 18

5.4 Pages fetched . 18

5.4.1 Error in number of pages fetched . 19

5.4.2 Modeling the function of correlation . 21

5.5 Locality of reference . 23

5.5.1 Error in locality of reference . 23

5.5.2 Using correlation to find cache hit rate 24

6 Calibrating Cost Model Using CPU Ticks 28

7 Experiments 31

7.1 Experimental Setup . 31

7.2 Analysis of Static Parameters related to

cpu operator cost . 32

7.2.1 Calibration of Static Parameters . 32

7.2.2 Evaluation on TPC-H Query Template 32

7.2.3 Evaluation on TPC-H Benchmark Queries 33

7.2.4 Evaluation on TPC-DS Benchmark Queries 34

8 Conclusions 35

Bibliography 36

iv

List of Figures

2.1 Execution of a query . 3

2.2 Plan Tree for TPC-H query 13 . 4

5.1 Four different types of errors . 20

5.2 Relation between correlation and cache hit rate 25

5.3 Estimation of number of pages fetched and locality of reference in PostgreSQL . 27

6.1 Measurement of execution time for calibration queries 30

7.1 Error Diagram for TPC-H Query Template 3 . 33

v

List of Tables

2.1 Values of PostgreSQL Cost Parameters . 8

2.2 Errors for TPC-H Benchmark Queries . 9

5.1 Values of random page cost for different distances between the pages 15

5.2 Errors with estimated number of pages fetched 20

5.3 Errors with correct number of pages fetched . 21

5.4 Observed and estimated values of number of pages randomly accessed 22

5.5 Correlation and random page cost . 24

7.1 Values of static parameters for Different Operators 32

7.2 Relative Errors for TPC-H Benchmark Queries 34

7.3 Relative Errors for TPC-DS 10GB Benchmark queries 34

vi

Chapter 1

Introduction

1.1 Motivation and Contributions

Prediction of execution time for different queries is an important task in database field. Cost

models of optimizers are used for this prediction, but the prediction is inaccurate due to two

types of errors: (i) selectivity estimation error and (ii) cost-modeling error. By cost-modeling

error, we mean the error obtained after substituting correct cardinalities in the query plan.

There are some existing works for handling selectivity estimation error, like Plan Bouquet [7].

But cost-modeling error is still to be handled, so a cost model with as low modeling error as

possible is required.

We are working with PostgreSQL cost model since it is the most advanced open source

database. The optimizer designers have designed a default cost model for PostgreSQL which

needs to be tuned according to hardware configurations of the system on which queries have to

be executed, before using it. The authors of [8] proposed a method for adjusting the tunable

parameters of default PostgreSQL cost model. They calibrated these parameters, taking into

account hardware configurations of the system. They showed some experiments, where after

this calibration, mean relative error for a particular set of TPC-H queries due to PostgreSQL

cost model was within 47%.

Although the prediction errors using the approach of [8] was within 47% for that set of

queries, variation in the type of operations allowed in database should be properly taken into

account. For example, execution time for TPC-H query 3 involving hash join as a major part of

its query plan is predicted well by their cost model, on our system, giving a prediction error of

only 10%. But query 13 involving sort is predicted poorly giving error of 184%. On exploring

the reason for this behavior, we found that this happens because some static parameters of the

cost model, which are hard-coded by the optimizer-designers, need to be tuned before using.

1

So we calibrated these static parameters to reduce the prediction errors over such queries.

These static parameters can be calibrated and our experimental results show that the cost

model obtained after calibrating these parameters work as well as the approach in [8] in most

cases and shows significant improvement in some cases. For example, by calibrating the static

parameters, prediction error for query 13 is reduced to 42% without any significant increase in

error for other queries.

Moreover in [8], authors mention that one of the tunable parameters called random page cost,

which is the cost of fetching a disk page randomly is difficult to calibrate because pure random

access is difficult to achieve and there are some uncertainties in estimations related to this

parameter. Their cost model does not work well for query plans involving this parameter, like

TPC-H query 2. So a more accurate method than the one described by them is required for

calibrating this parameter.

We designed such a query which could achieve pure random access and calibrated ran-

dom page cost. But while calibrating this parameter, we found that it has many multipliers

and some of them are estimated by the optimizer. These estimators are static and calibration

of random page cost alone will not help unless these static parameters are tuned. The authors

of [8] also mention that there is uncertainty in some estimations related to random page cost.

We identified three parameters responsible for poor prediction by random page cost experimen-

tally and through carefully designed experiments, we were able to isolate the effect of these

parameters and study them. We found that out of these three parameters, one is not erroneous

while the other two are erroneous and it is important to correct both of them for proper cost

prediction. We also try to model one of the erroneous parameters correctly.

1.2 Organization

The remainder of this thesis is organized as follows. Chapter 2 gives background on cost model

and discusses the approach of [8]. In Chapter 3, we describe cost-modeling errors in detail.

In Chapter 4, we discuss the calibration of some specific static parameters of the cost model.

In Chapter 5, we discuss about the parameters related to random page cost. In Chapter 6, we

describe a methodology for calibration in an uncontrolled environment. In Chapter 7, we show

some experimental results and we conclude in Chapter 8.

2

Chapter 2

Background

2.1 PostgreSQL Cost Model

In general, whenever a query is given to the database engine, it goes to the optimizer which

explores various plans and finds the optimal plan using a Cost Model. The optimal plan is

given to the executor which executes the query using this plan. This is illustrated in Figure

2.1.

Figure 2.1: Execution of a query

Let us denote the cost of a plan by Cplan. The optimizer explores various plans for a query

and the one with minimum Cplan is chosen as the optimal plan. We are looking at cost model

from the perspective that besides helping in selecting the optimal plan, Cplan can also be used

to predict the execution time of a query. We try to explain the calculation of Cplan for a query

plan through Figure 2.2.

It shows the plan tree for TPC-H query 13. There are many nodes in the tree and cost for

each node k is calculated as Ck = nT
k c. Here Ck is the cost contributed by node k, nk is the

cardinality vector for node k and c is the cost vector for the respective cost model. Then cost

3

Figure 2.2: Plan Tree for TPC-H query 13

of the whole plan, Cplan is calculated as: Cplan =
n∑

k=1

Ck, where n is the total number of nodes

in the query plan. In Figure 2.2, n=8.

In this thesis, we are dealing with PostgreSQL cost model since it is the most advanced

open source database. PostgreSQL cost model comprises of five cost parameters[1]:

1. seq page cost(cs): the cost of a sequential disk page fetch

2. random page cost (cr): the cost of fetching a disk page randomly

3. cpu tuple cost (ct): the cost of processing a tuple

4. cpu index tuple cost(ci): the cost of processing an index entry during an index scan

5. cpu operator cost(co): the cost of performing an operation

The cost of an operator, Co is calculated as [8]:

Co = ns.cs + nr.cr + nt.ct + ni.ci + no.co (2.1)

where

ns: number of disk pages fetched sequentially

nr: number of disk pages fetched randomly

nt: number of tuples processed

ni: number of index entries processed during an index scan

4

no: number of operations performed

The estimated cost of a query plan,Cplan is given as :

Cplan =
n∑

i=1

Coi, (2.2)

where Coi is the cost of ith operator in the query plan having n operators. Let us represent the

cost vector as c = [cs, cr, ct, ci, co]
T and the cardinality vector as n = [ns, nr, nt, ni, no]

T .

We are using Cplan for predicting execution time of the query. Errors in this prediction

by Cplan may be due to: (i) selectivity estimation error and/or (ii) cost-modeling error. Here

we are concerned only with the cost-modeling error. All the errors in prediction by Cplan

after substituting true cardinalities in the plan are cost-modeling errors. By true cardinality

substitution, we mean correct substitution of number of tuples in the query plan.

2.2 Problem Definition

Let C be a given cost model and Q be the set of all queries of a given workload on a database

D. Let

ci be the cost of plan,

ti be the actual execution time of query qi ∈ Q and

N be the total number of queries in Q.

Authors in [8] define an error metric called “Mean Relative Error”, which we also use:

MRE =
1

N

N∑
i=1

|ci − ti
ti
| (2.3)

In default PostgreSQL cost model, ci and ti can’t be mapped to one another, so like in [8],

we also use linear regression for calculating MRE. In the modified cost models which we will

be discussing throughout the thesis, ci is calibrated in units of time. So ci and ti are in same

units and thus, MRE can be calculated.

For an individual query qi ∈ Q, Relative Error is defined as:

RE =
ci − ti
ti

(2.4)

MRE is mean over absolute values of the REs of the queries in Q, and absolute values are taken

in order to avoid cancellation of REs for different queries. MRE is always non-negative. RE

5

can be positive or negative, where positive RE means overestimation and negative RE means

underestimation of execution time by the cost model.

DEFINITION 1:(PROBLEM DEFINITION) For a set of queries Q on a database D, we are

concerned with the problem of improving the cost model of PostgreSQL by reducing its errors.

We aim to improve it in such a way that MRE is as low as possible.

MRE is calculated after correct cardinality substitution. If there are two cost models C1

and C2 with mean relative errors MRE1 and MRE2 respectively, over a given Q and D, then

the one with lower MRE is a better cost model, i.e., C1 is better than C2, if MRE1 < MRE2.

If MREs for two cost models are same, the one with lower value for maximum RE over a given

Q and D is better.

The authors in [8] were only dealing with MRE. We are also dealing with MRE for a set of

queries, but we mention Relative Error as well for individual queries.

2.3 Existing Approach for Reducing Cost-Modeling Er-

rors

This section describes the work done in [8] where the authors design a complete, concise and

simple set of five calibration queries for the five PostgreSQL cost parameters. They introduce

each cost parameter one by one for building up the five queries:

1. cpu tuple cost : The calibration query is of the form:

select ∗ from R

Here R is a buffer pool resident relation. No I/O cost is involved and only ct plays role

in cost calculation :

nt.ct = t1

t1 is the execution time of this calibration query and nt = |R|. Thus, ct can be calculated

easily.

2. cpu operator cost : The calibration query is of the form:

select count(∗) from R

Here also, R is buffer pool resident. No I/O cost is involved and only ct, co play role in

cost calculation :

nt.ct + no.co = t2

Here, nt = no = |R| and t2 is the query execution time. Having calculated ct from above,

co can be computed.

3. cpu index tuple cost : The calibration query is of the form:

6

select ∗ from R where R.attr<a

Here R is buffer pool resident and so, no I/O cost is involved. attr is an attribute of R

on which a clustered index is built and a is picked so that an index scan is chosen by the

optimizer. The cost is calculated as:

nt.ct + no.co + ni.ci = t3

t3 is query execution time and nt = no = ni =Number of tuples returned by the query. ci

is the only unknown in this equation.

4. seq page cost : The calibration query is of the form:

select ∗ from R

Here R is not buffer pool resident and is scanned sequentially. The cost is calculated as:

nt.ct + ns.cs = t4

t4 is query execution time and the only unknown cs can be calculated easily.

5. random page cost : The calibration query is of the form:

select ∗ from R where R.un attr<b

Here R is not buffer pool resident and un attr is an attribute of R on which an unclustered

index is built. b is chosen so that an index scan is chosen by the optimizer. According

to [8], it is difficult to get pure random access and some local sequential accesses are also

included. So all the five cost parameters play a role:

nt.ct + no.co + ni.ci + ns.cs + nr.cr = t5

Here, t5 is the query execution time and having calculated the four cost parameters above,

the only unknown cr can be calculated.

Multiple queries of each type were executed for more robustness. This procedure was used in

[8] and we repeated it for our experiments. We refer to this cost model as Calibtunable model.

2.3.1 Calibrated Values of the Cost Parameters

The values of the five calibrated parameters of the cost model, obtained on our system through

the approach of [8], are shown in Table 2.1. Column 2 shows the values of default cost param-

eters, while Column 3 shows the values of parameters obtained through the approach of [8] on

our system. In Column 4, we show the ratios among the cost parameters obtained through ap-

proach of [8] (normalized with respect to seq page cost) for our hardware configuration, which is

significantly different from the ratios among the default parameters. We can see that cr/cs = 4.0

according to the default cost model, but cr/cs = 2.6 for the calibrated parameters. So random

page fetch is not as costly as expected by the optimizer designers for our system, thus affecting

the choice of plans.

7

Table 2.1: Values of PostgreSQL Cost Parameters

Cost Default Values of Ratios
Parameters Values Calibrated among the

Parameters Calibrated
Parameters

cs 1.00 1.05e-1 1.00
cr 4.00 2.73e-1 2.60
ct 1.00e-2 2.88e-4 2.74e-3
ci 5.00e-3 6.00e-5 5.72e-4
co 2.50e-3 2.13e-4 2.03e-3

2.3.2 Prediction Errors on TPC-H Benchmark Queries

In Table 2.2, we show the relative errors in prediction of query execution time by the cost

model on 201 out of 22 TPC-H benchmark queries. Column 2 shows relative errors with the

default parameters after applying linear regression. Column 3 shows the errors with calibrated

parameters obtained using the approach of [8] on our system. Errdef and Errcalib denote the

relative error with default cost parameters and calibrated cost parameters, respectively. With

both the cost models, in most of the queries, cost is overestimating time, while for few queries

it is underestimating. Overestimation is shown by positive errors and underestimation is shown

by negative errors.

It is seen that for queries 2, 13 and 21, default cost model performs much better than the

calibrated cost model. But on an average, it predicts execution time poorly as can be seen from

the much higher MRE for default model as compared to the calibrated model. This happens

even on applying linear regression, since the ratios among the default parameters is not correct

for our system as can be seen from Table 2.1.

Although the errors with the default model are always within 100% for this set of query, but

since we are applying linear regression, if there is poor mapping between cost and time even for

a single query, errors for other queries in the set will also increase. So high error in one query

can affect other queries, but this is not the case with calibrated model. Moreover, MRE with

the calibrated model is significantly lower than the default model.

The above mentioned five cost parameters are set in terms of seq page cost in the default

cost model. These are set by the optimizer designers and the model is meant for selecting the

optimal plan out of the various possible plans for a query. In [8], the authors show that the same

cost model can also be used to predict execution time of a query if hardware configuration of

1Query 15 is excluded because it includes view and we have not worked on view yet.
Query 20 is excluded because cardinality substitution was difficult for it.

8

Table 2.2: Errors for TPC-H Benchmark Queries

Query Errdef Errcalib

1 0.95 -0.65
2 0.69 0.75
3 0.85 0.10
4 0.81 0.26
5 0.82 0.23
6 0.81 0.33
7 0.85 0.08
8 0.85 0.01
9 0.80 0.41
10 0.84 0.12
11 0.78 0.57
12 0.81 0.28
13 0.59 1.84
14 0.85 0.08
16 0.91 -0.35
17 0.86 0.03
18 0.88 -0.15
19 0.85 0.06
21 0.69 1.10
22 0.78 0.43

MRE 0.81 0.40

the system on which queries have to be executed are taken into account. They set these tunable

cost parameters in terms of execution time, rather than in terms of seq page cost.

This cost model works well for queries involving particular operations, like for hash in TPC-

H query 3 but may work poorly for some other queries involving other operations, like for sort

in TPC-H query 13. So we try to further improve the cost model by reducing its cost-modeling

errors, where we also take static parameters into account.

9

Chapter 3

Cost-Modeling Errors

The errors in prediction of execution time by cost model may be due to errors in: (i) selectivity

estimation and/or (ii) cost-modeling. Selectivity estimation error is handled by us by explicitly

substituting correct cardinalities in the plan. Cost-modeling errors can be due to: (i) tunable

parameters of the cost model and/or (ii) static parameters of the cost model. We define cost-

modeling error as:

Cost−modeling error = func(tunable parameters, static parameters) (3.1)

Thus cost-modeling error is a function of tunable and static parameters of the cost model.

In this thesis, we are considered with the cost-modeling errors of PostgreSQL only. Tunable

parameters are the five cost parameters of PostgreSQL: cs, cr, ct, co and ci. These have been

given some specific values by the optimizer designers, but are subject to change depending on

the hardware requirements.

Static parameters are hard-coded by the optimizer designers and can be of many types.

Some examples are given below:

1. Multipliers: In different operations, different multipliers of tunable parameters are used

while calculating the cost. In some cases, these operator-specific multipliers need to be

tuned. This is the case with sort, as described later.

2. Estimation: In some cases, estimations are made by PostgreSQL while calculating cost,

for example, number of pages to be accessed are estimated while calculating the cost of an

index scan. These estimations are made using various functions and are erroneous many

times.

10

3.1 Motivation for Calibrating Static Parameters

Using the approach of calibration suggested by [8], prediction errors for many queries reduced

significantly as compared to the default model. But let us consider TPC-H query 3 in which

we vary the selectivities over some chosen predicates. We observe that, at selectivity of 5%,

relative error was 3%. But at selectivity 95%, error increased to 39%. We found that this error

could not be handled by calibration of tunable parameters alone. There are various types of

operations in PostgreSQL and co is calibrated according to only one of these. So some static

parameters need to be tuned for other operations. Sort is one such operation. At selectivity

5%, sort had a little contribution in cost of the plan, but at selectivity 95%, this contribution

increased significantly, increasing the error. By calibrating the static parameters, the error

at 95% selectivity was reduced to 10%, which is further explained in Section 7.2.2. Thus,

calibration of static parameters is necessary for reducing cost-modeling errors of PostgreSQL.

Out of the five cost parameters in PostgreSQL cost model, three of them: cs, ct and ci

are used limited number of times. The calibration queries used by [8], corresponding to these

three parameters are similar to their use cases, and multipliers or estimations associated with

them are generally correct. For example, cs is only used in case of sequential scan where it is

multiplied by the number of pages scanned sequentially, which is correctly estimated by the

optimizer. The multiplier of ct is number of tuples processed, which we are ensuring is correct

by correct cardinality substitution. ci is used only in case of index scan and its multiplier is also

made correct through correct cardinality substitution. So the remaining two parameters are of

primary importance when calibrating the static parameters: co and cr. The static parameters

related to these two cost parameters are discussed in the following two chapters.

11

Chapter 4

Calibrating Static Parameters Related

to cpu operator cost

We discuss the calibration of static parameters related to co in this chapter.

PostgreSQL uses different formulas for calculating cost of different operations. We worked

with these formulas and tried to calibrate the multipliers of co in them. These multipliers are

static parameters. Let us refer to the multipliers as m, which will be different for different

operators. Then we define m.co as static parameter for that operator. We follow the following

approach for calibrating static parameters for different operators:

• Sort : As explained in Chapter 1, the cost model designed by [8] does not work well for

queries involving sort. So we calibrate the static parameter for sort.

We calibrate static parameter only for quicksort and it has been verified experimentally

that it works well for all types of sort, except for disk-based sort as it involves ran-

dom page cost. For this, we use calibration query of the form:

select ∗ from R order by R.attr1

Here, R is a buffer pool resident relation, so no I/O cost is involved. Sequential scan and

quicksort are forced here. Quicksort is forced by increasing the work mem. The estimated

cost of this query is calculated as:

ct.nt + 2m.co.T.log(T) + m.co.T = t6

t6 is the query execution time and T is the number of tuples sorted. Here, nt = T = |R|.
As discussed above, m is the multiplier of co and m.co is the desired static parameter.

Having the ct value as calculated in Section 2.3, m.co is the only unknown and can be

calculated easily. We refer to this static parameter as msort
o .

12

• Nested Loop Join : We calibrate a static parameter for nested loop join and we currently

consider the case of queries involving nested loop join in which both the inner and outer

children are sequentially scanned. The calibration query is of the following form after

forcing nested loop join:

select ∗ from R1, R2 where R1.A=R2.B

The inner relation being scanned sequentially is materialized and cost of rescan of inner

relation is: cost rescan = I.m.co. Thus, the cost for whole query is calculated as:

O.cost rescan + O.I.ct + C1 + C2 = t7

Here, t7 is the query execution time and the relations R1, R2 are not buffer pool resident.

O: Number of rows in outer child

I: Number of rows in inner child

C1: Cost of sequential scan on R1

C2: Cost of sequential scan on R2

ct is computed in Section 2.3 and hence, m.co is the only unknown here. We refer to this

static parameter as mnest
o .

• Generic : This static parameter is generic and is defined for all operations other than

sort and nested loop join described above, like hash and aggregation. co for this case

is calibrated for count() as in [8] and shown in Section 2.3. This co value has been

confirmed experimentally to work well for hash and aggregation operations. Thus, m=1

and no calibration of any static parameter was required in this case as co was working

well for these operations. We can say that static parameter= co in this case. We refer to

this as mgeneric
o .

We worked with multiple queries for calibrating static parameter related to each type of opera-

tion. We refer to the model obtained by us after calibrating the static parameters as Calibstatic

model. Thus, the Calibstatic model consists of five tunable parameters :seq page cost, ran-

dom page cost, cpu tuple cost, cpu operator cost and cpu index tuple cost. It also consists of

three static parameters:

msort
o : static parameter for Sort operation,

mnest
o : static parameter for Nested Loop Join (involving both sequentially scanned children)

and

mgeneric
o : static parameter for the Generic cases, where mgeneric

o = co.

13

Chapter 5

random page cost

We have observed that queries involving cr are difficult to predict by the cost model. Also the

authors in [8] mention that cr needs a better calibration than the approach proposed by them.

So we study cr in detail and present our observations in this section. We found that some static

parameters are related to cr which must be tuned for better prediction by the cost model and

calibrating cr alone will not help.

The authors of [8] mention that it is difficult to achieve pure random access, but we designed

a query that could achieve pure random access and used it to calibrate cr. We found three

parameters which can be responsible for poor prediction by cr and we designed experiments

to isolate the impact of each one of them from the other two. Thus, we studied the impact of

these parameters on cost calculation and found that one of the parameters is not erroneous,

while the other two are equally important for predicting the cost properly.

This section is organized as follows. In Section 5.1, we discuss our approach for calibrating

cr and in Section 5.2, we discuss about the cost calculation by PostgreSQL for queries involving

random page access. In Section 5.3, we enumerate the parameters related to cr which may

cause error in cost calculation. In further sections, we discuss about each parameter in detail.

5.1 Our Approach for calibrating random page cost

The authors of [8] mention that it is difficult to calibrate cr because achieving pure random

access is difficult and local sequential accesses are unavoidable. But we designed a query that

could achieve pure random access and is of form:

select * from R where R.attr=a1 or R.attr=a2 or ...or R.attr=an

Here, R.attr is an attribute of R on which an unclustered index is built and R is not memory

resident. The values of a1, a2,..., an are chosen such that each of these is on a different data page.

14

Let the tuple of R corresponding to R.attr=a1 be on page p1, tuple corresponding to R.attr=a2

be on page p2,..., tuple corresponding to R.attr=an be on page pn. Our idea is to choose a1,

a2,..., an such that p1, p2,..., pn are different pages, i.e., pi 6= pj, if i 6= j,∀i, j ∈ {1, ..., n}.
Now, depending upon the values of a1, a2,..., an, we can control the locations of p1, p2,...,

pn on disk. For example, we can create a query in which we will choose the values of ais such

that each pi is 1000 pages away from the other. In such a way, we can create different queries

and experiment for different disk locations.

We did this experiment for different queries where we picked values of ais in such a way

that we could maintain desired distance between the pages accessed. By distance between the

pages accessed, we mean difference between their page-identifiers. These are the number of

pages as measured by us while query execution and page-identifiers were noted from the file

descriptor of PostgreSQL. Table 5.1 shows the number of pages accessed and distance between

the pages for different queries. We measure query execution time and then cr is calculated from

the following equation:

nt.ct + no.co + ni.ci + ns.cs + nr.cr = time

Here,

nt = ni = no = No. of tuples returned by the query,

ns =No. of index pages accessed by the query,

nr =No. of data pages accessed by the query.

ct, co, ci, cs are same as defined earlier and their values are already known.

In this query, we could achieve pure random access of the data pages, which is verified by

the fact that number of data pages accessed by this query is equal to the number of tuples

returned by the query and all the data pages are far from each other.

Table 5.1 shows the values of cr obtained for different distances between the pages. By

distance, we mean the minimum distance between the pages.

Table 5.1: Values of random page cost for different distances between the pages

No. of Data Distance % of data cr

Pages Fetched pages scanned (ms)

60 10000 0.01 44.90
400 1000 0.07 37.29
6000 100 1.00 36.31
10000 60 1.67 43.58

The mean of the different values of cr obtained can be used as calibrated value for cr.

15

This cr value is actually the time taken to fetch a page randomly from disk and we call it as

random disk access time.

5.2 Cost Calculation in PostgreSQL for queries involving

random page access

There is a parameter called correlation which is used by PostgreSQL. Correlation indicates the

statistical correlation between physical row ordering and logical ordering of the column values

and ranges from -1 to +1[5]. Value of correlation close to 0 indicates lack of correlation and

value close to ±1 indicates good correlation.

Let us consider the case of a simple query where index scan is done over a relation. In

perfectly uncorrelated case and in absence of any buffer, a new data page would have to be

fetched for each new tuple. Total no. of data pages that have to be accessed in this case=N1,

say.

Mackert-Lohman formula takes the effect of buffer, b into account and reduces the no. of

data pages that have to be accessed from N1 to N2, say. In other words, Mackert-Lohman

formula takes N1 and b as input, applies a function M over them and produces N2 as output.

Lets refer to N2 as Mackert pages.

N2 = M(N1, b) (5.1)

Thus, maximum number of data pages that can be accessed randomly is equal to Mackert pages.

Now, let us discuss about the minimum number of pages that can be accessed by a query.

Let us assume there are 1000 pages in a relation and each page has a certain number of tuples,

and we want to access one-tenth of the total number of tuples present in the entire relation.

Then according to the pigeonhole principle[2], at least one-tenth of the total number of pages

in the relation, i.e., 1/10 * 1000 = 100 pages have to be accessed. PostgreSQL does the same

estimation for the minimum number of pages that have to be accessed in a perfectly correlated

case, i.e., product of selectivity and size of the relation. Let us refer to these minimum number

of pages as min pages and denote it by N‘. In a perfectly correlated case, these pages will be

accessed sequentially.

For partially-correlated cases, PostgreSQL uses a function of correlation to interpolate be-

tween the cost estimates for perfectly correlated and perfectly uncorrelated cases. This is done

as:

N2 ∗ (1− (correlation)2) ∗ cr + N ‘ ∗ (correlation)2 ∗ cs (5.2)

16

In general, when a query is executed, all the pages are not accessed randomly, rather some

sequential accesses are also there if nearby tuples are brought from nearby data pages. This

locality of reference is captured through the use of correlation by PostgreSQL.

Let us look at Equation (5.2) in a different way. Let N3random and N3seq denote the number

of pages randomly and sequentially accessed during execution of a query, as estimated by

PostgreSQL, respectively. In Equation (5.2), N3random and N3seq are the multipliers of cr and

cs, respectively:

nr = N3random = N2 ∗ (1− (correlation)2) (5.3)

ns = N3seq = N ‘ ∗ (correlation)2 (5.4)

We can say that N3random is calculated by PostgreSQL after applying some function of corre-

lation and N2, and N3seq is calculated after applying some function of correlation and N‘.

N3random = func1(N2, correlation) (5.5)

N3seq = func2(N ‘, correlation) (5.6)

There is one more aspect related to cr. Optimizer designers assume 90% cache hit rate

for the queries being executed. If random disk access time is the time taken to fetch a page

randomly from the disk, then cr is defined as:

cr = random disk access time ∗ cache miss rate,

or,

cr = random disk access time ∗ 0.10

Let us denote random disk access time as CR. So,

cr = CR ∗ 0.10 (5.7)

As discussed earlier, for cost calculation, cr is multiplied by the number of pages randomly

accessed:

N3random ∗ cr

or,

N3random ∗ CR ∗ 0.10 (5.8)

17

This is summarized in part (a) of Figure 5.3.

5.3 Static Parameters related to random page cost

As discussed in the previous section and in Equation (5.8), while calculating the cost of a query,

cr is multiplied by number of pages fetched, i.e., N3random and cr is itself a product of CR and

cache miss rate. So error in predicting execution time of a query by cr can be due to error in

either one or more of the following parameters:

1. random disk access time

2. pages fetched

3. locality of reference

Here, pages fetched means N3random, and cache hit rate is included in locality of reference.

In Section 5.1, we designed queries that could isolate the impact of random disk access time

from pages fetched and locality of reference. There is no effect of locality of reference and

estimation of number of pages fetched in those queries. If many tuples are accessed from a

relation, effect of locality of reference cannot be avoided. But since we are accessing few tuples

and ensuring that contiguous pages are not accessed, there is no effect of locality of reference.

As we are measuring and using the correct number of pages accessed by the query, errors of

estimation in pages fetched are also avoided. Thus, this query isolates CR from the other two

parameters related to cr. We observed that CR does not vary much for different disk locations

implying that this parameter is not erroneous in cost calculation for queries involving cr.

So out of the three factors responsible for prediction error due to cr in cost of a plan: (i) ran-

dom disk access time (ii) pages fetched and (iii) locality of reference, random disk access time

does not vary much and hence, is not a source of error in most cases.

Thus, the following static parameters related to cr are responsible for poor prediction:

1. pages fetched

2. locality of reference

We have studied both of these parameters separately, as described in the following sections.

5.4 Pages fetched

In this section, we describe about some queries designed by us where we tried to isolate the

impact of number of pages fetched from the other two parameters. After this, there were still

18

errors in cost prediction implying that number of pages fetched is erroneous in many queries

and needs to be corrected for proper cost prediction.

We also show some experimental observations which illustrate the fact that both pages fetched

and locality of reference are equally important for correct cost prediction. Even if one is erro-

neous, we can get high errors.

5.4.1 Error in number of pages fetched

In this subsection, we show the impact of error in number of pages fetched in some specially

designed queries. We use queries of the form:

select * from R where R.attr<a

Here index scan is forced on relation R and R.attr is some chosen attribute of R. We experiment

with many queries of this form by selecting different R.attr and a values.

We measure execution time of these queries and define four types of cost here: (i) Cost1pages est

is the cost of a query when we substitute correct cardinalities in the query, but number of

pages fetched is left to the optimizer to estimate and the value of cr used is that calculated

by the approach of [8]. (ii) Cost2pages est is same as Cost1pages est except that the value of cr

used is substituted after ensuring correct locality of reference. The details of finding this cr

which ensures correct locality of reference is discussed in Section 5.5. (iii) Cost1pages corr is

the cost of a query when along with correct cardinalities, we also substitute correct number of

pages fetched in the query plan and the value of cr used is that calculated by the approach of

[8]. (iv) Cost2pages corr is same as Cost1pages corr except that the value of cr used is substituted

after ensuring correct locality of reference.

The values of remaining four cost parameters, except for cr are same in all these four types

of costs and are the same as calculated using the approach of [8] and shown in Section 2.3.

When we say we substituted correct number of pages fetched, we mean we substituted

only correct number of total pages accessed. We were not able to substitute correct values of

N3random and N3seq since currently there is no way of correctly estimating it, but substituting

correct total number of pages fetched gives better estimation of pages fetched than the one used

by PostgreSQL. So, although we could not completely remove, but we have reduced the error

due to incorrect estimation in the number of pages fetched.

Error1pages est, Error2pages est, Error1pages corr and Error2pages corr are the relative errors

of Cost1pages est, Cost2pages est, Cost1pages corr and Cost2pages corr, respectively with respect to

execution time.

The four different types of errors are illustrated in Figure 5.1. Error1pages est shows the

case where neither pages fetched nor locality of reference is correct. This is shown in Column

19

Figure 5.1: Four different types of errors

6 of Table 5.2 and in this case, we get low errors because multiple errors are canceling each

other. Error in number of pages fetched makes overestimating prediction error in these queries,

while error in locality of reference makes underestimating prediction error, thus canceling each

others effect when both are present. Error2pages corr shows the case when both number of

pages fetched and locality of reference are correct. These errors are low as can be seen from

Column 7 of Table 5.3. As discussed in next Section 5.5, this is the best prediction possible by

the cost model, but it is shown just to illustrate that both both pages fetched and locality of

reference need to be correct for proper prediction of queries involving random page access. If

even one is erroneous, errors can be high. Both Error1pages est and Error2pages est are low for

the bottom rows of Tables 5.2 and 5.3 because estimation of the number of pages fetched by

the optimizer is good for those queries.

Table 5.2: Errors with estimated number of pages fetched

R.attr a Time Cost1 Cost2 Error1pages est Error2pages est

(s) (s) (s)

ss store sk 10 516.7 716.0 3913.2 0.386 6.573
ss store sk 40 1815.2 2493.7 13628.5 0.374 6.508
cs call center sk 2 102.0 375.4 607.1 2.680 4.952
cs call center sk 16 532.6 1948.1 3150.6 2.657 4.915
cs catalog page sk 1000 47.8 33.4 41.9 -0.301 -0.123
cs catalog page sk 8000 205.6 150.2 188.2 -0.269 -0.085
ss ticket number 100000 4.6 5.0 4.7 0.075 0.003
ss ticket number 1500000 69.3 75.2 70.2 0.084 0.011

It is difficult to measure the correct number of pages fetched by each relation in benchmark

queries and hence, experiments with those queries after substituting the correct number of

pages fetched are not done.

Our conclusion is that number of pages fetched is erroneous in many queries and needs to be

corrected for proper cost prediction. One more observation is that both number of pages fetched

and locality of reference are equally important for proper cost prediction.

20

Table 5.3: Errors with correct number of pages fetched

R.attr a Time Cost1 Cost2 Error1pages corr Error2pages corr

(s) (s) (s)

ss store sk 10 516.7 95.7 516.2 -0.811 -0.001
ss store sk 40 1815.2 334.7 1804.7 -0.810 -0.006
cs call center sk 2 102.0 63.2 101.7 -0.381 -0.002
cs call center sk 16 532.6 332.4 534.7 -0.370 0.004
cs catalog page sk 1000 47.8 37.8 48.0 -0.210 0.004
cs catalog page sk 8000 205.6 167.5 212.4 -0.180 0.030
ss ticket number 100000 4.6 5.3 4.6 0.080 0.010
ss ticket number 1500000 69.3 75.4 70.3 0.090 0.010

5.4.2 Modeling the function of correlation

As discussed in Section 5.2, N3random is calculated by PostgreSQL after applying some function

of correlation and Mackert pages, i.e., N2. N3seq is calculated after applying some function of

correlation and min pages, i.e., N‘.

N3random = func1(N2, correlation) (5.9)

N3seq = func2(N ‘, correlation) (5.10)

In order to model appropriate functions for estimating N3random and N3seq, we performed some

experiments which are shown in this subsection.

It is difficult to determine the number of pages accessed randomly and sequentially accessed

while executing a query, i.e., N3random and N3seq respectively, so we followed a heuristic to

get an approximation of these numbers. By making some changes in the PostgreSQL code,

we noted the time interval to access each page and we also measured the distinct number of

pages accessed while executing each query. We observed that in perfectly correlated case where

all pages are sequentially accessed, all pages were accessed in microseconds and from queries

in Section 5.1, we can see that pages accessed randomly take milliseconds. So we assumed

the pages for which access time was greater than a millisecond to be randomly accessed, i.e.,

N3random. We ensured that the buffer cache is greater than the size of relation being used,

thus, every page was accessed maximum once. So each distinct page was either sequentially or

randomly accessed and hence, subtracting N3random from the distinct number of pages gives

N3seq.

The experiment performed by us is discussed here. We create a relation R and its columns

are generated by us corresponding to different correlation values. Then we execute queries of

21

form:

select * from R where R.attr<a

R.attr are different columns of R corresponding to different correlation values and index scan

is forced on R. We execute these queries for correlation values in the ranges -0.89 to -0.30 and

+0.10 to +0.89. Values of a were chosen for varying selectivities and we measure Mackert pages,

min pages, N3random and N3seq for each query we execute.

Generating two orderings having desired correlation is a difficult task and so, we had limited

data to model the functions for N3random and N3seq. However, we modeled some crude functions

using some of the data we had and we tested these functions over the remaining data generated

by us. These functions are:

N3random = N2− 242 ∗ (correlation)2 −N2 ∗ correlation + 343 ∗ correlation (5.11)

N3seq = (N ‘)2− 2050 ∗ (correlation)2 +N ‘ ∗ correlation− 38 ∗N ‘ + 2210 ∗ correlation (5.12)

These functions give better estimates of number of pages randomly and sequentially accessed,

respectively as compared to the functions used by PostgreSQL. Some of the observed and

estimated values for N3random are shown in Table 5.4. The observed values are shown in

Column 2, and the values estimated using the function of PostgreSQL are shown in Column 3.

Column 4 shows the values estimated by the function modeled by us. Root-mean-square errors

using the functions modeled by us are lower than the functions used by PostgreSQL. These

functions can be modeled better if more data is available.

Table 5.4: Observed and estimated values of number of pages randomly accessed

Correlation Observed N3random Estimated N3random Estimated N3random

by PostgreSQL by Equation (5.11)

0.48 2720 1000 2619
0.09 4539 264 4414
0.89 222 773 639
0.29 3937 508 3531
0.68 1244 1343 1658

The functions plotted in this way would model the estimation of number of pages fetched

while executing the query. This model will also estimate locality of reference at higher granu-

larity since it is a function of correlation.

22

The functions used by PostgreSQL for estimating N3random and N3seq are not actually meant

to estimate number of pages randomly and sequentially accessed respectively and hence, gives

high errors in Table 5.4. PostgreSQL uses these functions just to interpolate between maximum

and minimum costs for a partially correlated case. Since we are interested in using the cost

model for predicting query execution time, we are modeling the functions for N3random and

N3seq such that they estimate number of pages randomly and sequentially accessed respectively.

5.5 Locality of reference

By locality of reference, we mean two things:

1. locality of reference at a higher granularity which is captured by PostgreSQL using corre-

lation. Correlation accounts for sequential accesses for the case where nearby tuples are

fetched from nearby pages on disk.

2. locality of reference at a lower granularity, i.e., cache hit rate. It captures the case where

nearby tuples are fetched from pages already in the buffer cache.

5.5.1 Error in locality of reference

Lets consider queries of the following form:

select * from R where R.attr < a

where index scan is forced on R. We performed some experiments with these queries to calibrate

cr. R.attr were chosen to correspond to different correlation values. We have measured the total

number of pages fetched in these queries and substitute it while calculating the cost of query

execution. Because of the reasons mentioned in Section 5.4.1, we were not able to substitute

correct values of N3random and N3seq, but substituting correct total number of pages fetched

gives better estimation of pages fetched than the one used by PostgreSQL. So, although we

could not completely remove, but we have reduced the error due to incorrect estimation in

the number of pages fetched. Some error due to incorrect function of correlation, which again

indicates locality of reference at a higher granularity as discussed in Section 5.2 is still there.

In the Section 5.1, we verified that random disk access time is not erroneous. Thus we are able

to isolate the effect of locality of reference from the other static parameters related to cr. Here,

by locality of reference, we mean both cache hit rate and the locality of reference at higher

granularity which is captured by correlation.

The calibration queries were selected such that R.attr correspond to different columns of

store sales and catalog sales relations of TPC-DS 10GB database which are the largest relations

of this database.

23

For each R.attr, we experimented with different a values corresponding to varying selectiv-

ities in the query and take the average of cr values obtained for different a as the calibrated cr

for that R.attr. Table 5.5 shows calibrated values of random page cost for different R.attr and

correlation. We can see that for different R.attr and correlation values, we obtain different val-

ues of cr. Since we have isolated the impact of locality of reference from other two parameters,

the only reason for obtaining different cr values for different queries can be the difference in

locality of reference.

Thus, we have experimentally verified that locality of reference, including cache hit rate is

not correctly captured by PostgreSQL. If it was captured correctly, we would have obtained

similar values of cr in all the queries. The function we tried to model in Section 5.4.2 will

help in correction in locality of reference at higher level, which is captured by correlation but

cache hit rate still needs to be corrected and we propose an idea for it in the next subsection.

The way we ensured correct locality of reference in Cost2pages est and Cost2pages corr of Section

Table 5.5: Correlation and random page cost

R.attr Correlation cr

ss store sk 0.018 1.495
cs call center sk 0.082 0.442
cs catalog page sk 0.980 0.381
ss ticket number 1.000 0.145

5.4.1 is discussed here. The queries used in this section for calibrating cr are the ones used

in Section 5.4.1 and since these different cr values capture the different values of locality of

reference for different queries, we could ensure correct locality of reference for Cost2pages est

and Cost2pages corr when we substitute the calibrated cr values obtained here, in them. This

is also the reason we mentioned that Cost2pages corr shown in Table 5.3 is the best prediction

possible because the values of cr are substituted in the calibration queries itself, but it was

shown just to indicate that proper prediction by cost model is possible if both pages fetched

and locality of reference are correct.

5.5.2 Using correlation to find cache hit rate

There is no guarantee that assumption of the optimizer designers that cache hit rate is 90%

for all queries is correct. It should depend on the query in consideration. For example, in the

queries in Section 5.1, cache hit rates were close to 0%. Thus, we need some measure to predict

cache hit rate of the query to be executed.

PostgreSQL takes into account locality of reference at a higher granularity through the use

24

Figure 5.2: Relation between correlation and cache hit rate

of correlation as discussed in Section 5.2. Correlation accounts for sequential accesses for the

cases when nearby tuple are fetched from nearby pages. But locality of reference at a lower

granularity should also be taken into account, where nearby tuples are fetched from the pages

already in the buffer cache. This locality of reference is captured by cache hit rate. Thus, both

correlation and cache hit rate account for locality of reference and thus, are similar.

Also, as explained by Figure 5.2, if the value of correlation between physical row ordering

and logical ordering of column values for an attribute is close to 0, nearby tuples will be fetched

from pages far way from each other and there will be low locality of reference. If correlation is

close to 1, nearby tuples will be fetched from pages which are physically close to each other and

there will be high locality of reference. So correlation is a parameter which indicates locality

of reference and hence, can be used as an indicator of cache hit rate.

Thus, both correlation and cache hit rate account for locality of reference and hence, are

similar. PostgreSQL uses correlation for taking locality of reference into account at a higher

granularity and at lower granularity, it assumes cache hit rate to be 90% always, which is not

correct. So, locality of reference needs to be taken into account, depending upon the query,

at lower granularity also. Since correlation and cache hit rate are similar, correlation is the

parameter which we propose to use for taking locality of reference at this lower granularity, or

25

cache hit rate into account.

In Section 5.2, we discussed that cost for random page access is calculated as:

N3random ∗ CR ∗ 0.10 (5.13)

We can rewrite this equation as:

CR ∗N3random ∗ 0.10 (5.14)

or,

CR ∗ (N3random ∗ 0.10) (5.15)

Thus effectively, one-tenth of the pages are assumed to be randomly accessed. We denote this

number of pages by N4random and they are defined by PostgreSQL as:

N4random = N3random ∗ 0.10 (5.16)

Here, 0.10 is the cache miss rate assumed by the optimizer designers. Our proposal is to use a

function of correlation to estimate N4random instead of defining it as in Equation (5.16):

N4random = func3(N3random, correlation) (5.17)

The func3 stated above is a function of correlation, which should be defined in such a way as to

indicate cache hit rate for the query. Modeling of func3 can be done by measuring cache hit rate

for some queries. This would require implementation of some counters at the O.S. cache levels

and is not done by us.

The above discussion is summarized in Figure 5.3. Currently PostgreSQL uses correlation

at one place to interpolate between costs for random and sequential access on execution of a

query. Our proposal is to use correlation at one more place for taking cache hit rate of the

query into account.

26

Figure 5.3: Estimation of number of pages fetched and locality of reference in PostgreSQL

27

Chapter 6

Calibrating Cost Model Using CPU

Ticks

Since we are dealing with measurement of execution time, it is important to do the measurement

accurately and precisely. According to [6], it is hard to do accurate and precise measurement

of query execution time and they propose a technique for doing so.

It is tiresome to follow this approach for all the queries. But time measurements are crucial

during calibration. So we followed their approach only for the calibration queries for getting

a good calibration. We observed that the values of cost parameters obtained through this

experiment are significantly different from the values obtained earlier. The reason for this is

explained below.

We define query execution time as time taken for query execution only. This excludes time

for triggers or acquiring/releasing of resources. Gap time is defined as the time taken for

triggers or acquiring/releasing of resources during query execution. Background processes time

is defined as the time taken by the O.S. background processes. Lets denote the time obtained

through the approach followed in [6] as Metrology time. PostgreSQL gives us two types of time

during query execution: (i) actual time, which is the same as query execution time and we call

this as Postgres actual time (ii) total time, which is query execution time and gap time together

and we call it as Postgres total time. These two time intervals also include the time taken for

O.S. background processes. Thus

Metrology time = query execution time + gap time (6.1)

Postgres actual time = query execution time + background processes time (6.2)

28

Postgres total time = query execution time + gap time + background processes time (6.3)

For calibration, query execution time is the most appropriate time interval to use and while

calibrating through the approach of [8] earlier, we were using Postgres actual time which is dif-

ferent from Metrology time and hence we obtained different values for cost parameters through

the two approaches.

However, precise and accurate time measurement for the calibration queries can be done

if we follow the approach described in [6], but execution time is not taken as Metrology time,

rather

execution time = Metrology time− (Postgres total time− Postgres actual time) (6.4)

This gives us query execution time. This is explained by Figure 6.1. All the three readings:

Metrology time, Postgres total time and Postgres actual time have to be taken simultaneously

for each query execution.

This whole procedure of calibration using ticks is time-consuming. We are working in a con-

trolled environment, where we take multiple readings of execution time (Postgres actual time)

for a query and drop the readings showing significant deviations from majority of the readings.

Then average over the remaining executions is taken. Moreover, cost-modeling errors are much

higher than the error contributed by the measurement of execution time for calibration queries

in this environment. So the approach of calibration using ticks will not give much different

results than the ones we are getting in this controlled environment.

However, in an uncontrolled environment where many O.S. background processes are run-

ning and readings of execution time for a query show significant variations, the approach using

ticks which is discussed above can be used for calibration.

29

Figure 6.1: Measurement of execution time for calibration queries

30

Chapter 7

Experiments

In this chapter, we show our experimental setup and results obtained after calibrating the static

parameters related to co.

7.1 Experimental Setup

PC: configured with a dual core 2.30 GHz Intel (Core i5) CPU and 4 GB memory

Linux Kernel: 3.2.0-23-generic-pae

PostgreSQL version: 9.0.4

Databases: TPC-H 1GB (Sections 7.2.1 - 7.2.3)

TPC-DS 10GB (Section 7.2.4)

Queries: 20 benchmark queries of TPC-H and

some benchmark queries of TPC-DS, not involving cr.

The indexes specified by TPC-H/TPC-DS specification [4, 3] are created on the databases.

Each query is executed multiple times after clearing the file system and database buffers.

While executing the queries, we tried to keep the system in a state such that no significant

process was running on it except for the PostgreSQL (and some O.S. background processes

which could not be killed). We did multiple executions of each query and the executions

showing significant variation from execution times of majority of the executions were dropped.

We took five execution time measurements from the remaining executions and their mean

execution time is taken. This was a controlled environment. Correct and precise measurement

of execution time is crucial in these experiments, so in an uncontrolled environment, where

execution time of queries are showing major deviations, a more careful approach is required for

this measurement, as described in Chapter 6 and based on the approach of [6].

Cost is obtained from the optimizer after explicitly substituting true cardinalities in the

31

query plan, obtained through actual pre-running of the queries.

7.2 Analysis of Static Parameters related to

cpu operator cost

7.2.1 Calibration of Static Parameters

The values of calibrated tunable parameters were shown in Table 2.1 in Section 2.3.1. The

values of calibrated static parameters of the cost model, obtained on our system, are shown in

this section in Table 7.1. Column 2 shows the actual values of static parameters obtained for

the three types of operations and Column 3 shows the ratios among these values normalized

with respect to seq page cost.

The tunable parameters of Calibstatic model have the same values as for Calibtunable model

and shown in Table 2.1.

Table 7.1: Values of static parameters for Different Operators

Operators Values of Ratios
Static among the
Parameters Parameters

Sort 3.14e-5 2.99e-4
Nested Loop Join 1.41e-4 1.34e-3
Generic 2.13e-4 2.03e-3

7.2.2 Evaluation on TPC-H Query Template

In this section, we show experimental results with a TPC-H query template. We define Error

Diagram to be a three-dimensional visualization of relative errors over the relational selectivity

space. In this, one axis shows the relative error associated with prediction of query execution

time at different query points. The other two axes show the varying relational selectivities over

some selected predicates.

Figure 7.1 shows the Error Diagram corresponding to QT3 based on Query 3 of TPCH-

benchmark, where x and y axes show varying selectivities over ORDERS and LINEITEM

relations over o totalprice:varies and l extendedprice:varies predicates respectively. Relative

prediction error for each query is plotted on the z-axis. In both the cost models, cost is always

overestimating time for these queries.

From the Error Diagram in Figure 7.1, we can see that the relative error obtained us-

ing Calibtunable model increases with increasing relational selectivities. But the error using

32

Calibstatic model does not increase much and is always below the error using Calibtunable model.

Figure 7.1: Error Diagram for TPC-H Query Template 3

The reason behind it is that a sort operator is used in these queries near the root of the

plan tree. The Calibtunable model does not include calibration of static parameter for sort and

hence, introduces some error in predicting query execution time. As the relational selectivities

increase, more number of tuples are returned to the root, thereby increasing contribution of

sort and hence, the error. But introduction of msort
o in Calibstatic model handles the error due

to sort and hence, gives lower error even at higher selectivities. Although overall error with

Calibtunable model remains around 40% at highest relational selectivities , error imparted by

sort increases upto 200%, whereas this error remains only 22% with the Calibstatic model.

7.2.3 Evaluation on TPC-H Benchmark Queries

In this section, we show the relative errors in prediction of execution time by the cost model on

TPC-H benchmark queries with Calibstatic model. With Calibstatic model, in cases where mgeneric
o

is being significantly used by the optimizer in cost estimation, performance is comparable to

Calibtunable model. So we do not show the results on queries where error was same as with

Calibtunable model as these are the same values as shown in Table 2.2 of Section 2.3.2.

Table 7.2 shows these cost-modeling errors. Column 2 shows the errors with Calibtunable

model obtained using the approach of [8] on our system, while Column 3 shows the errors with

Calibstatic model. Errcalib tun and Errcalib static denote the relative error with Calibtunable model

and the relative error with Calibstatic model respectively. With both the cost models, in most

of the queries, cost is overestimating time, while for few queries it is underestimating.

Calibtunable model shows significant improvement over default parameters on average which

is evident from the much lower MRE for it. Calibstatic model performs as good as the Calibtunable

model in most cases (all cases, except query 16) and shows significant improvement in some

cases.

33

Table 7.2: Relative Errors for TPC-H Benchmark Queries

Query Errcalib tun Errcalib static

10 0.12 0.08
11 0.57 0.51
13 1.84 0.42
16 -0.35 -0.44

MRE 0.40 0.32

MRE is reduced from 0.81 in case of the default cost model to 0.40 by using Calibtunable

model of [8]. This was further reduced by our Calibstatic model to 0.32. Thus, our cost model

is at least as good as Calibtunable model and significantly better in some cases.

7.2.4 Evaluation on TPC-DS Benchmark Queries

Earlier we were dealing with TPC-H 1GB database which could entirely fit into memory of the

system. We decided to switch to a larger and more skewed database for testing effectiveness of

the cost model.

We tested the prediction of execution time by the cost model on some benchmark queries of

TPC-DS. In Table 7.3, we show the results on some benchmark queries not involving cr. This

was done to check if the calibrated cost models work well on queries over this database in case

no random access is there. As with TPC-H 1GB, these queries performed well, giving small

relative errors, except for query 62.

The reason for high prediction error for query 62 by Calibtunable model is that we forced

sequential scan and merge join on this query, making the contribution of sort significant. So

Calibtunable model gives a huge prediction error, while Calibstatic model performs good as it

has calibrated value of mSort
o .

Table 7.3: Relative Errors for TPC-DS 10GB Benchmark queries

Query Errcalib tun Errcalib static

7 0.07 0.07
21 0.35 0.34
28 0.40 0.40
43 0.09 0.09
62 1.75 0.04
66 0.03 0.03
96 0.03 0.03
98 -0.09 -0.09
MRE 0.35 0.14

34

Chapter 8

Conclusions

We are working in the direction of finding a good PostgreSQL cost model and we started with

the calibration idea of [8]. In [8], the authors propose a Calibtunable model where they find the

appropriate values of tunable parameters taking the hardware configurations of the system on

which queries have to be executed into account. Along with these tunable parameters, we also

consider the static parameters and propose a Calibstatic model. Through our experiments, we

show that it provides at least as good execution time prediction as the Calibtunable model in

most of the cases and significantly better than it in some cases. This cost model is better than

the Calibtunable model suggested in [8] as can be seen from the values of MRE in Tables 7.2

and 7.3, and the results in Section 7.2.2 for QT3.

We designed a query which could achieve pure random access and hence, calibrated ran-

dom page cost. We experimentally explored the reasons for poor prediction by this parameter

and found that three parameters associated with random page cost can cause prediction errors.

We further found that out of the three factors responsible for error in cost due to cr: (i) ran-

dom disk access time, (ii) pages fetched, and (iii) locality of reference, random disk access time

is correct. Pages fetched and locality of reference need correction. We tried to model some

functions of correlation in order to get a good estimate of pages fetched. We propose to use

correlation to predict the cache hit rate of queries.

35

Bibliography

[1] http://www.postgresql.org/docs/9.0/static/runtime-config-query.html.

[2] http://en.wikipedia.org/wiki/Pigeonhole_principle.

[3] http://www.tpc.org/tpcds/, .

[4] http://www.tpc.org/tpch/, .

[5] http://www.postgresql.org/docs/9.0/static/view-pg-stats.html.

[6] S. Currim, R. T. Snodgrass, Y-K. Suh, R. Zhang, M. W. Johnson, and C. Yi. Dbms

metrology: Measuring query time. SIGMOD, 2013.

[7] A. Dutt and J.R. Haritsa. Plan bouquets: Query processing without selectivity estimation.

SIGMOD, 2014.

[8] W. Wu, S. Zhu Y. Chi, J. Tatemura, H. Hacigümüş, and J.F. Naughton. Predicting query

execution time: Are optimizer cost models really unusable? ICDE, 2013.

36

http://www.postgresql.org/docs/9.0/static/runtime-config-query.html
http://en.wikipedia.org/wiki/Pigeonhole_principle
http://www.tpc.org/tpcds/
http://www.tpc.org/tpch/
http://www.postgresql.org/docs/9.0/static/view-pg-stats.html

	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation and Contributions
	1.2 Organization

	2 Background
	2.1 PostgreSQL Cost Model
	2.2 Problem Definition
	2.3 Existing Approach for Reducing Cost-Modeling Errors
	2.3.1 Calibrated Values of the Cost Parameters
	2.3.2 Prediction Errors on TPC-H Benchmark Queries

	3 Cost-Modeling Errors
	3.1 Motivation for Calibrating Static Parameters

	4 Calibrating Static Parameters Related to cpu_operator_cost
	5 random_page_cost
	5.1 Our Approach for calibrating random_page_cost
	5.2 Cost Calculation in PostgreSQL for queries involving random page access
	5.3 Static Parameters related to random_page_cost
	5.4 Pages_fetched
	5.4.1 Error in number of pages_fetched
	5.4.2 Modeling the function of correlation

	5.5 Locality of reference
	5.5.1 Error in locality of reference
	5.5.2 Using correlation to find cache_hit_rate

	6 Calibrating Cost Model Using CPU Ticks
	7 Experiments
	7.1 Experimental Setup
	7.2 Analysis of Static Parameters related to * cpu_operator_cost
	7.2.1 Calibration of Static Parameters
	7.2.2 Evaluation on TPC-H Query Template
	7.2.3 Evaluation on TPC-H Benchmark Queries
	7.2.4 Evaluation on TPC-DS Benchmark Queries

	8 Conclusions
	Bibliography

