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Abstract

Prediction of execution time for different queries is an important task in database field. Cost
models of optimizers are used for for this prediction. But the prediction is inaccurate due to
two types of errors: (i) selectivity estimation error and (ii) cost-modeling error. There are some
existing works for handling selectivity estimation error, like Plan Bouquet. But cost-modeling
error is still to be handled, so we are focusing on that.

A recent work shows that by adjusting the tunable parameters, cost-modeling errors asso-
ciated with current optimizers can be reduced significantly. In their experiments, when correct
cardinalities were substituted in query plans, mean relative error for a particular set of TPC-H
queries due to PostgreSQL cost model was within 47%.

Through our experiments, we found that if we vary the constants associated with selected
predicates of some queries, then errors are low for some constants but increase for others. Fur-
ther experiments indicated that this happens because some static parameters of the cost model,
which are hard-coded by the optimizer-designers, need to be tuned before using. Although these
errors were not more than 47%, these can be reduced by tuning the static parameters. So in
this thesis, we show our work with static parameters to reduce the cost-modeling errors. By
tuning these static parameters, errors are significantly reduced over some queries without much
increasing errors for other queries.

Moreover, previous work mentions that one of the parameters of PostgreSQL cost model,
namely random_page_cost, which is the cost of fetching a disk page randomly is difficult to
calibrate because pure random access is difficult to achieve and there are some uncertainties in
estimations related to this parameter. We designed such a query which could achieve pure ran-
dom access and we experimentally explored the reasons for poor prediction by this parameter.
We found that three parameters associated with random_page_cost can cause prediction errors.
We experimentally verified that out of these three parameters, one is not erroneous while the
other two static parameters are erroneous and it is equally important to correct both of them

for proper prediction. We also try to model one of these parameters correctly.
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Chapter 1

Introduction

1.1 Motivation and Contributions

Prediction of execution time for different queries is an important task in database field. Cost
models of optimizers are used for this prediction, but the prediction is inaccurate due to two
types of errors: (i) selectivity estimation error and (ii) cost-modeling error. By cost-modeling
error, we mean the error obtained after substituting correct cardinalities in the query plan.
There are some existing works for handling selectivity estimation error, like Plan Bouquet|7].
But cost-modeling error is still to be handled, so a cost model with as low modeling error as
possible is required.

We are working with PostgreSQL cost model since it is the most advanced open source
database. The optimizer designers have designed a default cost model for PostgreSQL which
needs to be tuned according to hardware configurations of the system on which queries have to
be executed, before using it. The authors of [8] proposed a method for adjusting the tunable
parameters of default PostgreSQL cost model. They calibrated these parameters, taking into
account hardware configurations of the system. They showed some experiments, where after
this calibration, mean relative error for a particular set of TPC-H queries due to PostgreSQL
cost model was within 47%.

Although the prediction errors using the approach of [8] was within 47% for that set of
queries, variation in the type of operations allowed in database should be properly taken into
account. For example, execution time for TPC-H query 3 involving hash join as a major part of
its query plan is predicted well by their cost model, on our system, giving a prediction error of
only 10%. But query 13 involving sort is predicted poorly giving error of 184%. On exploring
the reason for this behavior, we found that this happens because some static parameters of the

cost model, which are hard-coded by the optimizer-designers, need to be tuned before using.



So we calibrated these static parameters to reduce the prediction errors over such queries.

These static parameters can be calibrated and our experimental results show that the cost
model obtained after calibrating these parameters work as well as the approach in [8] in most
cases and shows significant improvement in some cases. For example, by calibrating the static
parameters, prediction error for query 13 is reduced to 42% without any significant increase in
error for other queries.

Moreover in [8], authors mention that one of the tunable parameters called random_page_cost,
which is the cost of fetching a disk page randomly is difficult to calibrate because pure random
access is difficult to achieve and there are some uncertainties in estimations related to this
parameter. Their cost model does not work well for query plans involving this parameter, like
TPC-H query 2. So a more accurate method than the one described by them is required for
calibrating this parameter.

We designed such a query which could achieve pure random access and calibrated ran-
dom_page_cost. But while calibrating this parameter, we found that it has many multipliers
and some of them are estimated by the optimizer. These estimators are static and calibration
of random_page_cost alone will not help unless these static parameters are tuned. The authors
of [8] also mention that there is uncertainty in some estimations related to random_page_cost.
We identified three parameters responsible for poor prediction by random_page_cost experimen-
tally and through carefully designed experiments, we were able to isolate the effect of these
parameters and study them. We found that out of these three parameters, one is not erroneous
while the other two are erroneous and it is important to correct both of them for proper cost

prediction. We also try to model one of the erroneous parameters correctly.

1.2 Organization

The remainder of this thesis is organized as follows. Chapter 2 gives background on cost model
and discusses the approach of [8]. In Chapter 3, we describe cost-modeling errors in detail.
In Chapter 4, we discuss the calibration of some specific static parameters of the cost model.
In Chapter 5, we discuss about the parameters related to random_page_cost. In Chapter 6, we
describe a methodology for calibration in an uncontrolled environment. In Chapter 7, we show

some experimental results and we conclude in Chapter 8.



Chapter 2

Background

2.1 PostgreSQL Cost Model

In general, whenever a query is given to the database engine, it goes to the optimizer which
explores various plans and finds the optimal plan using a Cost Model. The optimal plan is
given to the executor which executes the query using this plan. This is illustrated in Figure
2.1.

™

Executes the

Query ' o 1(
Optimizer Executor query

\ Database Engine

Expl o ) Finds the optimal plan
xplores various plans }4 using Cost Model

Figure 2.1: Execution of a query

Let us denote the cost of a plan by Cpan. The optimizer explores various plans for a query
and the one with minimum Cp,, is chosen as the optimal plan. We are looking at cost model
from the perspective that besides helping in selecting the optimal plan, Cp,, can also be used
to predict the execution time of a query. We try to explain the calculation of C,y, for a query
plan through Figure 2.2.

It shows the plan tree for TPC-H query 13. There are many nodes in the tree and cost for
each node k is calculated as C), = n;‘fc. Here C}, is the cost contributed by node k, n; is the

cardinality vector for node k£ and c is the cost vector for the respective cost model. Then cost
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Figure 2.2: Plan Tree for TPC-H query 13

of the whole plan, Cp,, is calculated as: Cpp, = > Ck, where n is the total number of nodes
k=1
in the query plan. In Figure 2.2, n=8.

In this thesis, we are dealing with PostgreSQL cost model since it is the most advanced
open source database. PostgreSQL cost model comprises of five cost parameters|1]:
seq_page_cost(cs): the cost of a sequential disk page fetch
random_page_cost (c,): the cost of fetching a disk page randomly
cpu_tuple_cost (c¢;): the cost of processing a tuple

cpu_index_tuple_cost(c;): the cost of processing an index entry during an index scan

SAE e

cpu_operator_cost(c,): the cost of performing an operation

The cost of an operator, C, is calculated as [8]:

Cy = ng.Cs + Np.Cp +Ny.Ct +14.¢; + Np.Cy (2.1)
where

ns: number of disk pages fetched sequentially
n,: number of disk pages fetched randomly
ng: number of tuples processed

n;: number of index entries processed during an index scan

4



n,: number of operations performed

The estimated cost of a query plan,Cpq, is given as :

Cplan = Z Coi7 (22)
=1

where C,; is the cost of i*" operator in the query plan having n operators. Let us represent the
cost vector as ¢ = [cs, ¢, ¢4, ¢, Co]T and the cardinality vector as n = [ng, n,., ng, ni, no|” .

We are using Cp,, for predicting execution time of the query. Errors in this prediction
by Cpian may be due to: (i) selectivity estimation error and/or (ii) cost-modeling error. Here
we are concerned only with the cost-modeling error. All the errors in prediction by Cpan
after substituting true cardinalities in the plan are cost-modeling errors. By true cardinality

substitution, we mean correct substitution of number of tuples in the query plan.

2.2 Problem Definition

Let C be a given cost model and Q be the set of all queries of a given workload on a database
D. Let

¢; be the cost of plan,

t; be the actual execution time of query ¢; € () and

N be the total number of queries in Q.

Authors in [8] define an error metric called “Mean Relative Error”, which we also use:

C; —tz
7

1 N
MRE = —
v

In default PostgreSQL cost model, ¢; and t; can’t be mapped to one another, so like in [8],

(2.3)

we also use linear regression for calculating MRE. In the modified cost models which we will
be discussing throughout the thesis, ¢; is calibrated in units of time. So ¢; and ¢; are in same
units and thus, MRE can be calculated.

For an individual query ¢; € QQ, Relative Error is defined as:

C; — tz
t;

RE = (2.4)

MRE is mean over absolute values of the REs of the queries in Q, and absolute values are taken

in order to avoid cancellation of REs for different queries. MRE is always non-negative. RE



can be positive or negative, where positive RE means overestimation and negative RE means
underestimation of execution time by the cost model.

DEFINITION 1:(PROBLEM DEFINITION) For a set of queries @ on a database D, we are
concerned with the problem of improving the cost model of PostgreSQL by reducing its errors.
We aim to improve it in such a way that MRE is as low as possible.

MRE is calculated after correct cardinality substitution. If there are two cost models C1
and C2 with mean relative errors MRE1 and MRE2 respectively, over a given Q and D, then
the one with lower MRE is a better cost model, i.e., C1 is better than C2, if M RE1 < M RE2.
If MREs for two cost models are same, the one with lower value for maximum RE over a given
Q and D is better.

The authors in [8] were only dealing with MRE. We are also dealing with MRE for a set of

queries, but we mention Relative Error as well for individual queries.

2.3 Existing Approach for Reducing Cost-Modeling Er-

rors

This section describes the work done in [8] where the authors design a complete, concise and
simple set of five calibration queries for the five PostgreSQL cost parameters. They introduce

each cost parameter one by one for building up the five queries:

1. ecpu_tuple_cost: The calibration query is of the form:
select * from R
Here R is a buffer pool resident relation. No I1/O cost is involved and only ¢, plays role

in cost calculation :

ng.c; = 11
t1 is the execution time of this calibration query and n; = |R|. Thus, ¢, can be calculated
easily.
2. cpu_operator_cost: The calibration query is of the form:
select count(*) from R
Here also, R is buffer pool resident. No I/O cost is involved and only ¢, ¢, play role in

cost calculation :

N.C + Ny.Co = to
Here, n, = n, = |R| and t; is the query execution time. Having calculated ¢; from above,

C, can be computed.

3. cpu_index_tuple_cost: The calibration query is of the form:



select x from R where R.attr<a
Here R is buffer pool resident and so, no I/O cost is involved. attr is an attribute of R
on which a clustered index is built and «a is picked so that an index scan is chosen by the

optimizer. The cost is calculated as:

Ng.Cy + Ny.Co + Nj.c; = t3
t3 is query execution time and n; = n, = n; =Number of tuples returned by the query. ¢;

is the only unknown in this equation.

4. seq_page_cost: The calibration query is of the form:
select * from R

Here R is not buffer pool resident and is scanned sequentially. The cost is calculated as:

Ng.Cp + Ng.Cs = Ty
t4 is query execution time and the only unknown c; can be calculated easily.
5. random_page_cost: The calibration query is of the form:
select * from R where R.un_attr<b
Here R is not buffer pool resident and un_attr is an attribute of R on which an unclustered
index is built. b is chosen so that an index scan is chosen by the optimizer. According
to [8], it is difficult to get pure random access and some local sequential accesses are also

included. So all the five cost parameters play a role:

Ng.Ct + Ny.Co + Mj.C; + Ng.Cs + Npc = T5
Here, t5 is the query execution time and having calculated the four cost parameters above,

the only unknown ¢, can be calculated.

Multiple queries of each type were executed for more robustness. This procedure was used in

[8] and we repeated it for our experiments. We refer to this cost model as Calibyypape model.

2.3.1 Calibrated Values of the Cost Parameters

The values of the five calibrated parameters of the cost model, obtained on our system through
the approach of [8], are shown in Table 2.1. Column 2 shows the values of default cost param-
eters, while Column 3 shows the values of parameters obtained through the approach of [8] on
our system. In Column 4, we show the ratios among the cost parameters obtained through ap-
proach of [8] (normalized with respect to seq_page_cost) for our hardware configuration, which is
significantly different from the ratios among the default parameters. We can see that ¢, /cs = 4.0
according to the default cost model, but ¢,/c; = 2.6 for the calibrated parameters. So random
page fetch is not as costly as expected by the optimizer designers for our system, thus affecting

the choice of plans.



Table 2.1: Values of PostgreSQL Cost Parameters

Cost Default | Values of Ratios

Parameters | Values | Calibrated | among the
Parameters | Calibrated

Parameters

Cs 1.00 1.05e-1 1.00

Cr 4.00 2.73e-1 2.60

c 1.00e-2 | 2.88e-4 2.74e-3

G 5.00e-3 | 6.00e-5 5.72e-4

Co 2.50e-3 2.13e-4 2.03e-3

2.3.2 Prediction Errors on TPC-H Benchmark Queries

In Table 2.2, we show the relative errors in prediction of query execution time by the cost
model on 20" out of 22 TPC-H benchmark queries. Column 2 shows relative errors with the
default parameters after applying linear regression. Column 3 shows the errors with calibrated
parameters obtained using the approach of [§8] on our system. Errg and Err; denote the
relative error with default cost parameters and calibrated cost parameters, respectively. With
both the cost models, in most of the queries, cost is overestimating time, while for few queries
it is underestimating. Overestimation is shown by positive errors and underestimation is shown
by negative errors.

It is seen that for queries 2, 13 and 21, default cost model performs much better than the
calibrated cost model. But on an average, it predicts execution time poorly as can be seen from
the much higher MRE for default model as compared to the calibrated model. This happens
even on applying linear regression, since the ratios among the default parameters is not correct
for our system as can be seen from Table 2.1.

Although the errors with the default model are always within 100% for this set of query, but
since we are applying linear regression, if there is poor mapping between cost and time even for
a single query, errors for other queries in the set will also increase. So high error in one query
can affect other queries, but this is not the case with calibrated model. Moreover, MRE with
the calibrated model is significantly lower than the default model.

The above mentioned five cost parameters are set in terms of seq_page_cost in the default
cost model. These are set by the optimizer designers and the model is meant for selecting the
optimal plan out of the various possible plans for a query. In [8], the authors show that the same

cost model can also be used to predict execution time of a query if hardware configuration of

1Query 15 is excluded because it includes view and we have not worked on view yet.
Query 20 is excluded because cardinality substitution was difficult for it.
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Table 2.2: Errors for TPC-H Benchmark Queries
| Query | Erraee | Errean |

1 0.95 -0.65
2 0.69 0.75
3 0.85 0.10
4 0.81 0.26
) 0.82 0.23
6 0.81 0.33
7 0.85 0.08
8 0.85 0.01
9 0.80 0.41
10 0.84 0.12
11 0.78 0.57
12 0.81 0.28
13 0.59 1.84
14 0.85 0.08
16 0.91 -0.35
17 0.86 0.03
18 0.88 -0.15
19 0.85 0.06
21 0.69 1.10
22 0.78 0.43
MRE | 0.81 0.40

the system on which queries have to be executed are taken into account. They set these tunable
cost parameters in terms of execution time, rather than in terms of seq_page_cost.

This cost model works well for queries involving particular operations, like for hash in TPC-
H query 3 but may work poorly for some other queries involving other operations, like for sort
in TPC-H query 13. So we try to further improve the cost model by reducing its cost-modeling

errors, where we also take static parameters into account.



Chapter 3
Cost-Modeling Errors

The errors in prediction of execution time by cost model may be due to errors in: (i) selectivity
estimation and/or (ii) cost-modeling. Selectivity estimation error is handled by us by explicitly
substituting correct cardinalities in the plan. Cost-modeling errors can be due to: (i) tunable
parameters of the cost model and/or (ii) static parameters of the cost model. We define cost-

modeling error as:

Cost —modeling error = func(tunable_parameters, static_parameters) (3.1)

Thus cost-modeling error is a function of tunable and static parameters of the cost model.
In this thesis, we are considered with the cost-modeling errors of PostgreSQL only. Tunable
parameters are the five cost parameters of PostgreSQL: ¢, ¢, ¢, ¢, and ¢;. These have been
given some specific values by the optimizer designers, but are subject to change depending on
the hardware requirements.

Static parameters are hard-coded by the optimizer designers and can be of many types.

Some examples are given below:

1. Multipliers: In different operations, different multipliers of tunable parameters are used
while calculating the cost. In some cases, these operator-specific multipliers need to be

tuned. This is the case with sort, as described later.

2. Estimation: In some cases, estimations are made by PostgreSQL while calculating cost,
for example, number of pages to be accessed are estimated while calculating the cost of an
index scan. These estimations are made using various functions and are erroneous many

times.

10



3.1 Motivation for Calibrating Static Parameters

Using the approach of calibration suggested by [8], prediction errors for many queries reduced
significantly as compared to the default model. But let us consider TPC-H query 3 in which
we vary the selectivities over some chosen predicates. We observe that, at selectivity of 5%,
relative error was 3%. But at selectivity 95%, error increased to 39%. We found that this error
could not be handled by calibration of tunable parameters alone. There are various types of
operations in PostgreSQL and ¢, is calibrated according to only one of these. So some static
parameters need to be tuned for other operations. Sort is one such operation. At selectivity
5%, sort had a little contribution in cost of the plan, but at selectivity 95%, this contribution
increased significantly, increasing the error. By calibrating the static parameters, the error
at 95% selectivity was reduced to 10%, which is further explained in Section 7.2.2. Thus,
calibration of static parameters is necessary for reducing cost-modeling errors of PostgreSQL.

Out of the five cost parameters in PostgreSQL cost model, three of them: ¢, ¢; and ¢;
are used limited number of times. The calibration queries used by [8], corresponding to these
three parameters are similar to their use cases, and multipliers or estimations associated with
them are generally correct. For example, ¢, is only used in case of sequential scan where it is
multiplied by the number of pages scanned sequentially, which is correctly estimated by the
optimizer. The multiplier of ¢; is number of tuples processed, which we are ensuring is correct
by correct cardinality substitution. ¢; is used only in case of index scan and its multiplier is also
made correct through correct cardinality substitution. So the remaining two parameters are of
primary importance when calibrating the static parameters: ¢, and ¢,.. The static parameters

related to these two cost parameters are discussed in the following two chapters.
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Chapter 4

Calibrating Static Parameters Related

to cpu_operator_cost

We discuss the calibration of static parameters related to ¢, in this chapter.

PostgreSQL uses different formulas for calculating cost of different operations. We worked
with these formulas and tried to calibrate the multipliers of ¢, in them. These multipliers are
static parameters. Let us refer to the multipliers as m, which will be different for different
operators. Then we define m.c, as static parameter for that operator. We follow the following

approach for calibrating static parameters for different operators:

e Sort : As explained in Chapter 1, the cost model designed by [8] does not work well for

queries involving sort. So we calibrate the static parameter for sort.

We calibrate static parameter only for quicksort and it has been verified experimentally
that it works well for all types of sort, except for disk-based sort as it involves ran-
dom_page_cost. For this, we use calibration query of the form:

select * from R order by R.attrl
Here, R is a buffer pool resident relation, so no I/O cost is involved. Sequential scan and
quicksort are forced here. Quicksort is forced by increasing the work_mem. The estimated

cost of this query is calculated as:

ce.ng + 2m.c,. T.log(T) + m.c,. T = tg
tg is the query execution time and T is the number of tuples sorted. Here, n, =T = |R|.
As discussed above, m is the multiplier of ¢, and m.c, is the desired static parameter.

Having the ¢; value as calculated in Section 2.3, m.c, is the only unknown and can be

sort

calculated easily. We refer to this static parameter as m;"".

12



e Nested Loop Join : We calibrate a static parameter for nested loop join and we currently
consider the case of queries involving nested loop join in which both the inner and outer
children are sequentially scanned. The calibration query is of the following form after
forcing nested loop join:

select x from R1, R2 where R1.A=R2.B
The inner relation being scanned sequentially is materialized and cost of rescan of inner

relation is: cost_rescan = I.m.c,. Thus, the cost for whole query is calculated as:

O.cost_rescan +O.1.c; + C1+C2 =t
Here, t7 is the query execution time and the relations R1, R2 are not buffer pool resident.
O: Number of rows in outer child
I: Number of rows in inner child
C1: Cost of sequential scan on R1
C2: Cost of sequential scan on R2

¢; is computed in Section 2.3 and hence, m.c, is the only unknown here. We refer to this

nest
° .

static parameter as m

e Generic : This static parameter is generic and is defined for all operations other than
sort and nested loop join described above, like hash and aggregation. ¢, for this case
is calibrated for count() as in [8] and shown in Section 2.3. This ¢, value has been
confirmed experimentally to work well for hash and aggregation operations. Thus, m=1
and no calibration of any static parameter was required in this case as ¢, was working
well for these operations. We can say that static parameter= ¢, in this case. We refer to

: generic
this as mJ .

We worked with multiple queries for calibrating static parameter related to each type of opera-
tion. We refer to the model obtained by us after calibrating the static parameters as C'alibsqy;c
model. Thus, the Calibgq;. model consists of five tunable parameters :seq_page_cost, ran-
dom_page _cost, cpu_tuple_cost, cpu_operator_cost and cpu_index_tuple_cost. It also consists of
three static parameters:

msrt: static parameter for Sort operation,

m2°t: static parameter for Nested Loop Join (involving both sequentially scanned children)

and

mBse"er¢: static parameter for the Generic cases, where mJ“"“"¢ = ¢,.
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Chapter 5
random_page_cost

We have observed that queries involving ¢, are difficult to predict by the cost model. Also the
authors in [8] mention that ¢, needs a better calibration than the approach proposed by them.
So we study ¢, in detail and present our observations in this section. We found that some static
parameters are related to ¢, which must be tuned for better prediction by the cost model and
calibrating ¢, alone will not help.

The authors of [8] mention that it is difficult to achieve pure random access, but we designed
a query that could achieve pure random access and used it to calibrate ¢,. We found three
parameters which can be responsible for poor prediction by ¢, and we designed experiments
to isolate the impact of each one of them from the other two. Thus, we studied the impact of
these parameters on cost calculation and found that one of the parameters is not erroneous,
while the other two are equally important for predicting the cost properly.

This section is organized as follows. In Section 5.1, we discuss our approach for calibrating
¢, and in Section 5.2, we discuss about the cost calculation by PostgreSQL for queries involving
random page access. In Section 5.3, we enumerate the parameters related to ¢, which may

cause error in cost calculation. In further sections, we discuss about each parameter in detail.

5.1 Owur Approach for calibrating random_page_cost

The authors of [8] mention that it is difficult to calibrate ¢, because achieving pure random
access is difficult and local sequential accesses are unavoidable. But we designed a query that
could achieve pure random access and is of form:

select * from R where R.attr=a; or R.attr=ay or ...or R.attr=a,
Here, R.attr is an attribute of R on which an unclustered index is built and R is not memory

resident. The values of a1, as,..., a, are chosen such that each of these is on a different data page.
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Let the tuple of R corresponding to R.attr=a; be on page p;, tuple corresponding to R.attr=as
be on page ps,..., tuple corresponding to R.attr=a, be on page p,. Our idea is to choose aq,
as,..., a,, such that py, ps,..., p, are different pages, i.e., p; # p;, if i # j,Vi,j € {1,...,n}.

Now, depending upon the values of ay, as,..., a,, we can control the locations of py, ps,...,
pn on disk. For example, we can create a query in which we will choose the values of a;s such
that each p; is 1000 pages away from the other. In such a way, we can create different queries
and experiment for different disk locations.

We did this experiment for different queries where we picked values of a;s in such a way
that we could maintain desired distance between the pages accessed. By distance between the
pages accessed, we mean difference between their page-identifiers. These are the number of
pages as measured by us while query execution and page-identifiers were noted from the file
descriptor of PostgreSQL. Table 5.1 shows the number of pages accessed and distance between
the pages for different queries. We measure query execution time and then ¢, is calculated from

the following equation:
Ng.Ct + Ny.Co + Ni.C; + Ng.Cs + Ny, = time

Here,

n; = n; = n, = No. of tuples returned by the query,

ns =No. of index pages accessed by the query,

n, =No. of data pages accessed by the query.

Ct, Co, Ci, Cs are same as defined earlier and their values are already known.

In this query, we could achieve pure random access of the data pages, which is verified by
the fact that number of data pages accessed by this query is equal to the number of tuples
returned by the query and all the data pages are far from each other.

Table 5.1 shows the values of ¢, obtained for different distances between the pages. By

distance, we mean the minimum distance between the pages.

Table 5.1: Values of random_page_cost for different distances between the pages

No. of Data Distance | % of data Cr

Pages Fetched pages scanned | (ms)
60 10000 0.01 44.90
400 1000 0.07 37.29
6000 100 1.00 36.31
10000 60 1.67 43.58

The mean of the different values of ¢, obtained can be used as calibrated value for c,.
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This ¢, value is actually the time taken to fetch a page randomly from disk and we call it as

random_disk_access_time.

5.2 Cost Calculation in PostgreSQL for queries involving

random page access

There is a parameter called correlation which is used by PostgreSQL. Correlation indicates the
statistical correlation between physical row ordering and logical ordering of the column values
and ranges from -1 to +1[5]. Value of correlation close to 0 indicates lack of correlation and
value close to 1 indicates good correlation.

Let us consider the case of a simple query where index scan is done over a relation. In
perfectly uncorrelated case and in absence of any buffer, a new data page would have to be
fetched for each new tuple. Total no. of data pages that have to be accessed in this case=N1,
say.

Mackert-Lohman formula takes the effect of buffer, b into account and reduces the no. of
data pages that have to be accessed from N1 to N2, say. In other words, Mackert-Lohman
formula takes N1 and b as input, applies a function M over them and produces N2 as output.

Lets refer to N2 as Mackert_pages.
N2 = M(N1,b) (5.1)

Thus, maximum number of data pages that can be accessed randomly is equal to Mackert_pages.

Now, let us discuss about the minimum number of pages that can be accessed by a query.
Let us assume there are 1000 pages in a relation and each page has a certain number of tuples,
and we want to access one-tenth of the total number of tuples present in the entire relation.
Then according to the pigeonhole principle|2], at least one-tenth of the total number of pages
in the relation, i.e., 1/10 * 1000 = 100 pages have to be accessed. PostgreSQL does the same
estimation for the minimum number of pages that have to be accessed in a perfectly correlated
case, i.e., product of selectivity and size of the relation. Let us refer to these minimum number
of pages as min_pages and denote it by N'. In a perfectly correlated case, these pages will be
accessed sequentially.

For partially-correlated cases, PostgreSQL uses a function of correlation to interpolate be-
tween the cost estimates for perfectly correlated and perfectly uncorrelated cases. This is done
as:

N2 % (1 — (correlation)?) * ¢, + N* * (correlation)?  c, (5.2)
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In general, when a query is executed, all the pages are not accessed randomly, rather some
sequential accesses are also there if nearby tuples are brought from nearby data pages. This
locality of reference is captured through the use of correlation by PostgreSQL.

Let us look at Equation (5.2) in a different way. Let N3™"%*™ and N3 denote the number
of pages randomly and sequentially accessed during execution of a query, as estimated by
PostgreSQL, respectively. In Equation (5.2), N grandom and N3°¢¢ are the multipliers of ¢, and

cs, respectively:

n, = N3™%™ — N2 x (1 — (correlation)?) (5.3)
ny = N3°°? = N* x (correlation)? (5.4)

We can say that N379"%™ ig calculated by PostgreSQL after applying some function of corre-

lation and N2, and N3 is calculated after applying some function of correlation and N°.

N3ramdem — funcl(N2, correlation) (5.5)
N3 = func2(N*, correlation) (5.6)

There is one more aspect related to ¢,. Optimizer designers assume 90% cache_hit_rate
for the queries being executed. If random_disk_access_time is the time taken to fetch a page

randomly from the disk, then ¢, is defined as:
¢, = random_disk_access_time x cache_miss_rate,

or,

¢, = random_disk_access_time x 0.10

Let us denote random_disk_access_time as Cgr. So,
¢, = Cr+0.10 (5.7)

As discussed earlier, for cost calculation, ¢, is multiplied by the number of pages randomly
accessed:

NSTandom  C,

or,

N3random o e % 0.10 (5.8)
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This is summarized in part (a) of Figure 5.3.

5.3 Static Parameters related to random_page_cost

As discussed in the previous section and in Equation (5.8), while calculating the cost of a query,
¢, is multiplied by number of pages_fetched, i.e., N3"%"%™ and ¢, is itself a product of Cg and
cache_miss_rate. So error in predicting execution time of a query by ¢, can be due to error in

either one or more of the following parameters:
1. random_disk_access_time
2. pages_fetched

3. locality of reference

grandom “and cache_hit_rate is included in locality of reference.

Here, pages_fetched means N

In Section 5.1, we designed queries that could isolate the impact of random_disk_access_time
from pages_fetched and locality of reference. There is no effect of locality of reference and
estimation of number of pages_fetched in those queries. If many tuples are accessed from a
relation, effect of locality of reference cannot be avoided. But since we are accessing few tuples
and ensuring that contiguous pages are not accessed, there is no effect of locality of reference.
As we are measuring and using the correct number of pages accessed by the query, errors of
estimation in pages_fetched are also avoided. Thus, this query isolates C'r from the other two
parameters related to ¢,.. We observed that Cr does not vary much for different disk locations
implying that this parameter is not erroneous in cost calculation for queries involving c,..

So out of the three factors responsible for prediction error due to ¢, in cost of a plan: (i) ran-
dom_disk_access_time (ii) pages_fetched and (iii) locality of reference, random_disk_access_time

does not vary much and hence, is not a source of error in most cases.

Thus, the following static parameters related to ¢, are responsible for poor prediction:

1. pages_fetched

2. locality of reference

We have studied both of these parameters separately, as described in the following sections.

5.4 Pages_fetched

In this section, we describe about some queries designed by us where we tried to isolate the

impact of number of pages_fetched from the other two parameters. After this, there were still
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errors in cost prediction implying that number of pages_fetched is erroneous in many queries
and needs to be corrected for proper cost prediction.

We also show some experimental observations which illustrate the fact that both pages_fetched
and locality of reference are equally important for correct cost prediction. Even if one is erro-

neous, we can get high errors.

5.4.1 Error in number of pages_fetched

In this subsection, we show the impact of error in number of pages_fetched in some specially
designed queries. We use queries of the form:

select * from R where R.attr<a
Here index scan is forced on relation R and R.attr is some chosen attribute of R. We experiment
with many queries of this form by selecting different R.attr and a values.

We measure execution time of these queries and define four types of cost here: (i) Costl,ages_est
is the cost of a query when we substitute correct cardinalities in the query, but number of
pages_fetched is left to the optimizer to estimate and the value of ¢, used is that calculated
by the approach of [8]. (ii) Cost2p4ges est 15 same as Costlygges est €xcept that the value of ¢,
used is substituted after ensuring correct locality of reference. The details of finding this c,
which ensures correct locality of reference is discussed in Section 5.5. (iili) Costlpages_corr 18
the cost of a query when along with correct cardinalities, we also substitute correct number of
pages_fetched in the query plan and the value of ¢, used is that calculated by the approach of
[8]. (iv) Cost2pages_corr 1S same as Costlygges_corr €xcept that the value of ¢, used is substituted
after ensuring correct locality of reference.

The values of remaining four cost parameters, except for ¢, are same in all these four types
of costs and are the same as calculated using the approach of [8] and shown in Section 2.3.

When we say we substituted correct number of pages_fetched, we mean we substituted
only correct number of total pages accessed. We were not able to substitute correct values of
N3random and N34 since currently there is no way of correctly estimating it, but substituting
correct total number of pages_fetched gives better estimation of pages_fetched than the one used
by PostgreSQL. So, although we could not completely remove, but we have reduced the error
due to incorrect estimation in the number of pages_fetched.

Errorlpages est, E1170r2p0ges esty 1707 1pages corr a0d ETT0T2p00¢5 corr are the relative errors
of Costlyages est; Co5t2pages_est; C05tlpages_corr a0d C05t2p0ge5 corr, Tespectively with respect to
execution time.

The four different types of errors are illustrated in Figure 5.1. Errorlp.ges st shows the

case where neither pages_fetched nor locality of reference is correct. This is shown in Column
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pages_fetched: Estimated] pages_fetched: Estimated
locality of reference: Estimated] locality of reference: Correct

Error]lpages ost: Low Error2pages_est: High
pages_fetched: Correct | pages fetched: Correct
locality of reference: Estimated| locality of reference: Correct
Errorlpagasicorr: ngh Error2pagesicm: Low

Figure 5.1: Four different types of errors

6 of Table 5.2 and in this case, we get low errors because multiple errors are canceling each
other. Error in number of pages_fetched makes overestimating prediction error in these queries,
while error in locality of reference makes underestimating prediction error, thus canceling each
others effect when both are present. Error2pqges_corr sShows the case when both number of
pages_fetched and locality of reference are correct. These errors are low as can be seen from
Column 7 of Table 5.3. As discussed in next Section 5.5, this is the best prediction possible by
the cost model, but it is shown just to illustrate that both both pages_fetched and locality of
reference need to be correct for proper prediction of queries involving random page access. If
even one is erroneous, errors can be high. Both Errorlp,ges est and Error2,qges est are low for
the bottom rows of Tables 5.2 and 5.3 because estimation of the number of pages_fetched by

the optimizer is good for those queries.

Table 5.2: Errors with estimated number of pages_fetched

R.attr a Time | Costl | Cost2 | Errorlpages est | Error2pages est
(s) (s) (s)

ss_store_sk 10 516.7 716.0 | 3913.2 | 0.386 6.573
ss_store_sk 40 1815.2 | 2493.7 | 13628.5 | 0.374 6.508
cs_call_center_sk 2 102.0 375.4 607.1 | 2.680 4.952
cs_call_center_sk 16 532.6 | 1948.1 | 3150.6 | 2.657 4.915
cs_catalog_page_sk | 1000 47.8 33.4 41.9 | -0.301 -0.123
cs_catalog_page_sk | 8000 205.6 150.2 188.2 | -0.269 -0.085
ss_ticket_number | 100000 4.6 5.0 4.7 | 0.075 0.003
ss_ticket_number | 1500000 69.3 75.2 70.2 | 0.084 0.011

It is difficult to measure the correct number of pages_fetched by each relation in benchmark
queries and hence, experiments with those queries after substituting the correct number of
pages_fetched are not done.

Our conclusion is that number of pages_fetched is erroneous in many queries and needs to be
corrected for proper cost prediction. One more observation is that both number of pages_fetched

and locality of reference are equally important for proper cost prediction.
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Table 5.3: Errors with correct number of pages_fetched

R.attr a Time | Costl | Cost2 | Errorlpages corr | EITOr2pages corr
(s) (s) (s)

ss_store_sk 10 516.7 95.7 516.2 | -0.811 -0.001
ss_store_sk 40 1815.2 334.7 | 1804.7 | -0.810 -0.006
cs_call_center_sk 2 102.0 63.2 101.7 | -0.381 -0.002
cs_call_center_sk 16 532.6 332.4 534.7 | -0.370 0.004
cs_catalog_page_sk | 1000 A47.8 37.8 48.0 | -0.210 0.004
cs_catalog_page_sk | 8000 205.6 167.5 212.4 | -0.180 0.030
ss_ticket_number | 100000 4.6 5.3 4.6 | 0.080 0.010
ss_ticket_number | 1500000 69.3 75.4 70.3 | 0.090 0.010

5.4.2 Modeling the function of correlation

As discussed in Section 5.2, N3"4"4™ ig calculated by PostgreSQL after applying some function
of correlation and Mackert_pages, i.e., N2. N3°°? is calculated after applying some function of

correlation and min_pages, i.e., N°.

N3rendem — funcl(N2, correlation) (5.9)
N3 = func2(N*, correlation) (5.10)

In order to model appropriate functions for estimating N34 and N3*¢?, we performed some
experiments which are shown in this subsection.

It is difficult to determine the number of pages accessed randomly and sequentially accessed
while executing a query, i.e., N3 and N3%4 respectively, so we followed a heuristic to
get an approximation of these numbers. By making some changes in the PostgreSQL code,
we noted the time interval to access each page and we also measured the distinct number of
pages accessed while executing each query. We observed that in perfectly correlated case where
all pages are sequentially accessed, all pages were accessed in microseconds and from queries
in Section 5.1, we can see that pages accessed randomly take milliseconds. So we assumed
the pages for which access time was greater than a millisecond to be randomly accessed, i.e.,
N3random — \We ensured that the buffer cache is greater than the size of relation being used,
thus, every page was accessed maximum once. So each distinct page was either sequentially or
randomly accessed and hence, subtracting N3"%™ from the distinct number of pages gives
N 3%,

The experiment performed by us is discussed here. We create a relation R and its columns

are generated by us corresponding to different correlation values. Then we execute queries of
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form:
select * from R where R.attr<a

R.attr are different columns of R corresponding to different correlation values and index scan
is forced on R. We execute these queries for correlation values in the ranges -0.89 to -0.30 and
+0.10 to +0.89. Values of a were chosen for varying selectivities and we measure Mackert_pages,
min_pages, N3"%™ and N3*¢ for each query we execute.

Generating two orderings having desired correlation is a difficult task and so, we had limited
data to model the functions for N37%"%™ and N3*¢. However, we modeled some crude functions
using some of the data we had and we tested these functions over the remaining data generated

by us. These functions are:

N3randem — N9 — 242 x (correlation)® — N2  correlation + 343  correlation (5.11)

N3 = (N*)? — 2050 * (correlation)® + N*x correlation — 38 x N* + 2210  correlation (5.12)

These functions give better estimates of number of pages randomly and sequentially accessed,
respectively as compared to the functions used by PostgreSQL. Some of the observed and
estimated values for N37@™ are shown in Table 5.4. The observed values are shown in
Column 2, and the values estimated using the function of PostgreSQL are shown in Column 3.
Column 4 shows the values estimated by the function modeled by us. Root-mean-square errors
using the functions modeled by us are lower than the functions used by PostgreSQL. These

functions can be modeled better if more data is available.

Table 5.4: Observed and estimated values of number of pages randomly accessed

Correlation | Observed N3random | Estimated N3™22dom | Estimated N3random
by PostgreSQL by Equation (5.11)

0.48 2720 1000 2619

0.09 4539 264 4414

0.89 222 773 639

0.29 3937 508 3531

0.68 1244 1343 1658

The functions plotted in this way would model the estimation of number of pages_fetched
while executing the query. This model will also estimate locality of reference at higher granu-

larity since it is a function of correlation.
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The functions used by PostgreSQL for estimating N3"%%™ and N3% are not actually meant
to estimate number of pages randomly and sequentially accessed respectively and hence, gives
high errors in Table 5.4. PostgreSQL uses these functions just to interpolate between maximum
and minimum costs for a partially correlated case. Since we are interested in using the cost
model for predicting query execution time, we are modeling the functions for N3"*@™ and

N3°¢? such that they estimate number of pages randomly and sequentially accessed respectively.

5.5 Locality of reference

By locality of reference, we mean two things:

1. locality of reference at a higher granularity which is captured by PostgreSQL using corre-
lation. Correlation accounts for sequential accesses for the case where nearby tuples are

fetched from nearby pages on disk.

2. locality of reference at a lower granularity, i.e., cache_hit_rate. It captures the case where

nearby tuples are fetched from pages already in the buffer cache.

5.5.1 Error in locality of reference

Lets consider queries of the following form:
select * from R where R.attr < a

where index scan is forced on R. We performed some experiments with these queries to calibrate
¢,. R.attr were chosen to correspond to different correlation values. We have measured the total
number of pages_fetched in these queries and substitute it while calculating the cost of query
execution. Because of the reasons mentioned in Section 5.4.1, we were not able to substitute
correct values of N37®4m and N3%4, but substituting correct total number of pages_fetched
gives better estimation of pages_fetched than the one used by PostgreSQL. So, although we
could not completely remove, but we have reduced the error due to incorrect estimation in
the number of pages_fetched. Some error due to incorrect function of correlation, which again
indicates locality of reference at a higher granularity as discussed in Section 5.2 is still there.
In the Section 5.1, we verified that random_disk_access_time is not erroneous. Thus we are able
to isolate the effect of locality of reference from the other static parameters related to c¢,.. Here,
by locality of reference, we mean both cache_hit_rate and the locality of reference at higher
granularity which is captured by correlation.

The calibration queries were selected such that R.attr correspond to different columns of
store_sales and catalog_sales relations of TPC-DS 10GB database which are the largest relations
of this database.

23



For each R.attr, we experimented with different a values corresponding to varying selectiv-
ities in the query and take the average of ¢, values obtained for different a as the calibrated ¢,
for that R.attr. Table 5.5 shows calibrated values of random_page_cost for different R.attr and
correlation. We can see that for different R.attr and correlation values, we obtain different val-
ues of ¢,. Since we have isolated the impact of locality of reference from other two parameters,
the only reason for obtaining different ¢, values for different queries can be the difference in
locality of reference.

Thus, we have experimentally verified that locality of reference, including cache_hit_rate is
not correctly captured by PostgreSQL. If it was captured correctly, we would have obtained
similar values of ¢, in all the queries. The function we tried to model in Section 5.4.2 will
help in correction in locality of reference at higher level, which is captured by correlation but
cache_hit_rate still needs to be corrected and we propose an idea for it in the next subsection.

The way we ensured correct locality of reference in C'ost2,qges_est and C'0st2,qges_corr 0f Section

Table 5.5: Correlation and random_page_cost

’ R.attr ‘ Correlation ‘ Cr ‘
ss_store_sk 0.018 1.495
cs_call_center_sk 0.082 0.442
cs_catalog_page_sk | 0.980 0.381
ss_ticket_number | 1.000 0.145

5.4.1 is discussed here. The queries used in this section for calibrating ¢, are the ones used
in Section 5.4.1 and since these different ¢, values capture the different values of locality of
reference for different queries, we could ensure correct locality of reference for Cost2pages est
and Cost2pqges_corr When we substitute the calibrated ¢, values obtained here, in them. This
is also the reason we mentioned that C'0st2,44es_corr shown in Table 5.3 is the best prediction
possible because the values of ¢, are substituted in the calibration queries itself, but it was
shown just to indicate that proper prediction by cost model is possible if both pages_fetched

and locality of reference are correct.

5.5.2 Using correlation to find cache_hit _rate

There is no guarantee that assumption of the optimizer designers that cache_hit_rate is 90%
for all queries is correct. It should depend on the query in consideration. For example, in the
queries in Section 5.1, cache_hit_rates were close to 0%. Thus, we need some measure to predict
cache_hit_rate of the query to be executed.

PostgreSQL takes into account locality of reference at a higher granularity through the use
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Correlation close to =1 indicates
nearby tuples will be fetched
from nearby pages,implying
higher locality of reference. data

Correlation close to 0 indicates

nearby tuples will be fetched from
far away pages,implying lower
locality of reference.

data
page

data
page
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data data
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Correlation 1 Correlation 0

Figure 5.2: Relation between correlation and cache_hit_rate

of correlation as discussed in Section 5.2. Correlation accounts for sequential accesses for the
cases when nearby tuple are fetched from nearby pages. But locality of reference at a lower
granularity should also be taken into account, where nearby tuples are fetched from the pages
already in the buffer cache. This locality of reference is captured by cache_hit_rate. Thus, both
correlation and cache_hit_rate account for locality of reference and thus, are similar.

Also, as explained by Figure 5.2, if the value of correlation between physical row ordering
and logical ordering of column values for an attribute is close to 0, nearby tuples will be fetched
from pages far way from each other and there will be low locality of reference. If correlation is
close to 1, nearby tuples will be fetched from pages which are physically close to each other and
there will be high locality of reference. So correlation is a parameter which indicates locality
of reference and hence, can be used as an indicator of cache_hit_rate.

Thus, both correlation and cache_hit_rate account for locality of reference and hence, are
similar. PostgreSQL uses correlation for taking locality of reference into account at a higher
granularity and at lower granularity, it assumes cache_hit_rate to be 90% always, which is not
correct. So, locality of reference needs to be taken into account, depending upon the query,
at lower granularity also. Since correlation and cache_hit_rate are similar, correlation is the

parameter which we propose to use for taking locality of reference at this lower granularity, or
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cache_hit_rate into account.

In Section 5.2, we discussed that cost for random page access is calculated as:

N3random  C'p % 0.10 (5.13)
We can rewrite this equation as:
Cr * N3mmdom 010 (5.14)
or,
Cr * (N37m4°m 4 (.10) (5.15)

Thus effectively, one-tenth of the pages are assumed to be randomly accessed. We denote this
number of pages by N4""%™ and they are defined by PostgreSQL as:

N4random — N3random % 0.10 (516)

Here, 0.10 is the cache_miss_rate assumed by the optimizer designers. Our proposal is to use a

function of correlation to estimate N4™"%™ instead of defining it as in Equation (5.16):
N4random — func3(N3™om correlation) (5.17)

The func3 stated above is a function of correlation, which should be defined in such a way as to
indicate cache_hit_rate for the query. Modeling of func8 can be done by measuring cache_hit_rate
for some queries. This would require implementation of some counters at the O.S. cache levels
and is not done by us.

The above discussion is summarized in Figure 5.3. Currently PostgreSQL uses correlation
at one place to interpolate between costs for random and sequential access on execution of a
query. Our proposal is to use correlation at one more place for taking cache_hit_rate of the

query into account.
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N2=M(N1,b) N2=M(N1,b)

N3randem=func1(N2,correlation) N3randem=funcI(N2,correlation)

N3sea=func2(N" ,correlation) N39=funcZ(N" ,correlation)

N4"‘3|—|dc’rn=N3"‘3'-‘dc".n * 0.10 N4random=funCS(Nsrandnm ,correlation)

a) PostgreSQL implementation b) Our proposal

Figure 5.3: Estimation of number of pages_fetched and locality of reference in PostgreSQL
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Chapter 6

Calibrating Cost Model Using CPU
Ticks

Since we are dealing with measurement of execution time, it is important to do the measurement
accurately and precisely. According to [6], it is hard to do accurate and precise measurement
of query execution time and they propose a technique for doing so.

It is tiresome to follow this approach for all the queries. But time measurements are crucial
during calibration. So we followed their approach only for the calibration queries for getting
a good calibration. We observed that the values of cost parameters obtained through this
experiment are significantly different from the values obtained earlier. The reason for this is
explained below.

We define query_ezecution_time as time taken for query execution only. This excludes time
for triggers or acquiring/releasing of resources. Gap_time is defined as the time taken for
triggers or acquiring/releasing of resources during query execution. Background_processes_time
is defined as the time taken by the O.S. background processes. Lets denote the time obtained
through the approach followed in [6] as Metrology_time. PostgreSQL gives us two types of time
during query execution: (i) actual time, which is the same as query_ezecution_time and we call
this as Postgres_actual_time (ii) total time, which is query_execution_time and gap_time together
and we call it as Postgres_total_time. These two time intervals also include the time taken for

0O.S. background processes. Thus

Metrology_time = query_execution_time + gap_time (6.1)

Postgres_actual_time = query_execution_time + background_processes_time (6.2)
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Postgres_total_time = query_execution_time + gap_time + background_processes_time — (6.3)

For calibration, query_execution_time is the most appropriate time interval to use and while
calibrating through the approach of [8] earlier, we were using Postgres_actual_time which is dif-
ferent from Metrology_time and hence we obtained different values for cost parameters through
the two approaches.

However, precise and accurate time measurement for the calibration queries can be done
if we follow the approach described in [6], but execution time is not taken as Metrology_time,

rather
execution time = Metrology_time — (Postgres_total_time — Postgres_actual_time) (6.4)

This gives us query_ezecution_time. This is explained by Figure 6.1. All the three readings:
Metrology_time, Postgres_total_time and Postgres_actual_time have to be taken simultaneously
for each query execution.

This whole procedure of calibration using ticks is time-consuming. We are working in a con-
trolled environment, where we take multiple readings of execution time (Postgres_actual_time)
for a query and drop the readings showing significant deviations from majority of the readings.
Then average over the remaining executions is taken. Moreover, cost-modeling errors are much
higher than the error contributed by the measurement of execution time for calibration queries
in this environment. So the approach of calibration using ticks will not give much different
results than the ones we are getting in this controlled environment.

However, in an uncontrolled environment where many O.S. background processes are run-
ning and readings of execution time for a query show significant variations, the approach using

ticks which is discussed above can be used for calibration.
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Figure 6.1: Measurement of execution time for calibration queries
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Chapter 7
Experiments

In this chapter, we show our experimental setup and results obtained after calibrating the static

parameters related to c,.

7.1 Experimental Setup
PC: configured with a dual core 2.30 GHz Intel (Core i5) CPU and 4 GB memory

Linux Kernel: 3.2.0-23-generic-pae
PostgreSQL version: 9.0.4
Databases: TPC-H 1GB (Sections 7.2.1 - 7.2.3)
TPC-DS 10GB (Section 7.2.4)

Queries: 20 benchmark queries of TPC-H and
some benchmark queries of TPC-DS, not involving c,..
The indexes specified by TPC-H/TPC-DS specification [4, 3] are created on the databases.

Each query is executed multiple times after clearing the file system and database buffers.
While executing the queries, we tried to keep the system in a state such that no significant
process was running on it except for the PostgreSQL (and some O.S. background processes
which could not be killed). We did multiple executions of each query and the executions
showing significant variation from execution times of majority of the executions were dropped.
We took five execution time measurements from the remaining executions and their mean
execution time is taken. This was a controlled environment. Correct and precise measurement
of execution time is crucial in these experiments, so in an uncontrolled environment, where
execution time of queries are showing major deviations, a more careful approach is required for
this measurement, as described in Chapter 6 and based on the approach of [6].

Cost is obtained from the optimizer after explicitly substituting true cardinalities in the
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query plan, obtained through actual pre-running of the queries.

7.2 Analysis of Static Parameters related to

cpu_operator_cost

7.2.1 Calibration of Static Parameters

The values of calibrated tunable parameters were shown in Table 2.1 in Section 2.3.1. The
values of calibrated static parameters of the cost model, obtained on our system, are shown in
this section in Table 7.1. Column 2 shows the actual values of static parameters obtained for
the three types of operations and Column 3 shows the ratios among these values normalized
with respect to seq_page_cost.

The tunable parameters of C'alibs;c model have the same values as for Calibyynape model
and shown in Table 2.1.

Table 7.1: Values of static parameters for Different Operators

Operators Values of Ratios
Static among the
Parameters | Parameters
Sort 3.14e-5 2.99¢-4
Nested Loop Join | 1.41e-4 1.34e-3
Generic 2.13e-4 2.03e-3

7.2.2 Evaluation on TPC-H Query Template

In this section, we show experimental results with a TPC-H query template. We define Error
Diagram to be a three-dimensional visualization of relative errors over the relational selectivity
space. In this, one axis shows the relative error associated with prediction of query execution
time at different query points. The other two axes show the varying relational selectivities over
some selected predicates.

Figure 7.1 shows the Error Diagram corresponding to QT3 based on Query 3 of TPCH-
benchmark, where x and y axes show varying selectivities over ORDERS and LINEITEM
relations over o_totalprice:varies and 1 extendedprice:varies predicates respectively. Relative
prediction error for each query is plotted on the z-axis. In both the cost models, cost is always
overestimating time for these queries.

From the Error Diagram in Figure 7.1, we can see that the relative error obtained us-

ing Calibynape model increases with increasing relational selectivities. But the error using
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Calibgiqiie model does not increase much and is always below the error using C'altbyynape model.

B Calibunable
B Calib,

static

P y )
2 70 20 =
o_totalprice R Saact s 1_extendedprice

Figure 7.1: Error Diagram for TPC-H Query Template 3

The reason behind it is that a sort operator is used in these queries near the root of the
plan tree. The Calibyy,qpe model does not include calibration of static parameter for sort and
hence, introduces some error in predicting query execution time. As the relational selectivities
increase, more number of tuples are returned to the root, thereby increasing contribution of
sort and hence, the error. But introduction of m2™* in C'alibsui;c model handles the error due
to sort and hence, gives lower error even at higher selectivities. Although overall error with
Calibyynape model remains around 40% at highest relational selectivities , error imparted by

sort increases upto 200%, whereas this error remains only 22% with the Calibgasi. model.

7.2.3 Evaluation on TPC-H Benchmark Queries

In this section, we show the relative errors in prediction of execution time by the cost model on
TPC-H benchmark queries with Calibgatie model. With Calibyasi. model, in cases where mgeneri
is being significantly used by the optimizer in cost estimation, performance is comparable to
Calibyynape model. So we do not show the results on queries where error was same as with
Calibiynapie model as these are the same values as shown in Table 2.2 of Section 2.3.2.

Table 7.2 shows these cost-modeling errors. Column 2 shows the errors with Calibinapie
model obtained using the approach of [8] on our system, while Column 3 shows the errors with
Calibgigric model. Erregiv_wun a0d ErTeqiin_staic denote the relative error with Calibyynane model
and the relative error with C'alibgq. model respectively. With both the cost models, in most
of the queries, cost is overestimating time, while for few queries it is underestimating.

Calibyynapie model shows significant improvement over default parameters on average which
is evident from the much lower MRE for it. C'alibg,i. model performs as good as the C'alibynapie
model in most cases (all cases, except query 16) and shows significant improvement in some

cases.
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Table 7.2: Relative Errors for TPC-H Benchmark Queries

’ Query ‘ E'r"r'calib,tun ‘ E"V"calib,static ‘

10 0.12 0.08
11 0.57 0.51
13 1.84 0.42
16 -0.35 -0.44
MRE | 0.40 0.32

MRE is reduced from 0.81 in case of the default cost model to 0.40 by using C'alibiypapie
model of [8]. This was further reduced by our Calibga. model to 0.32. Thus, our cost model

is at least as good as C'alibynane model and significantly better in some cases.

7.2.4 Evaluation on TPC-DS Benchmark Queries

Earlier we were dealing with TPC-H 1GB database which could entirely fit into memory of the
system. We decided to switch to a larger and more skewed database for testing effectiveness of
the cost model.

We tested the prediction of execution time by the cost model on some benchmark queries of
TPC-DS. In Table 7.3, we show the results on some benchmark queries not involving c,. This
was done to check if the calibrated cost models work well on queries over this database in case
no random access is there. As with TPC-H 1GB, these queries performed well, giving small
relative errors, except for query 62.

The reason for high prediction error for query 62 by Calibyynape model is that we forced
sequential scan and merge join on this query, making the contribution of sort significant. So

Calibyynape model gives a huge prediction error, while C'alibgs;. model performs good as it

Sort
o -

has calibrated value of m

Table 7.3: Relative Errors for TPC-DS 10GB Benchmark queries

’ Query ‘ Errcalib,tun ‘ Errcalib,static ‘

7 0.07 0.07
21 0.35 0.34
28 0.40 0.40
43 0.09 0.09
62 1.75 0.04
66 0.03 0.03
96 0.03 0.03
98 -0.09 -0.09
MRE | 0.35 0.14
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Chapter 8
Conclusions

We are working in the direction of finding a good PostgreSQL cost model and we started with
the calibration idea of [8]. In [8], the authors propose a Calibyynape model where they find the
appropriate values of tunable parameters taking the hardware configurations of the system on
which queries have to be executed into account. Along with these tunable parameters, we also
consider the static parameters and propose a Calibg;. model. Through our experiments, we
show that it provides at least as good execution time prediction as the Caliby,pape model in
most of the cases and significantly better than it in some cases. This cost model is better than
the Calibynape model suggested in [8] as can be seen from the values of MRE in Tables 7.2
and 7.3, and the results in Section 7.2.2 for QT3.

We designed a query which could achieve pure random access and hence, calibrated ran-
dom_page_cost. We experimentally explored the reasons for poor prediction by this parameter
and found that three parameters associated with random_page_cost can cause prediction errors.
We further found that out of the three factors responsible for error in cost due to ¢,: (i) ran-
dom_disk_access_time, (ii) pages_fetched, and (iii) locality of reference, random_disk_access_time
is correct. Pages_fetched and locality of reference need correction. We tried to model some
functions of correlation in order to get a good estimate of pages_fetched. We propose to use

correlation to predict the cache_hit_rate of queries.
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