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Abstract

Adequately testing a database engine requires synthesizing data that resembles the client data

processing environments. Contemporary data regenerators use declarative formalisms for con-

structing synthetic data. In particular, they specify operator output volumes through row

cardinality constraints. However, thus far, adherence to these volumetric constraints has been

limited in the scope of operators handled. For instance, none of the frameworks provide a

solution that supports cardinality constraints with Select-Project-Join (SPJ) operators. This

project aims to provide a comprehensive solution for such constraints involving SPJ operators.
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Chapter 1

Introduction

RDBMS vendors often require synthetic data to capture the data processing scenarios on the

client-side effectively. This need arises for use cases such as testing DBMS and database appli-

cations, benchmarking, etc.

In the past decade, several frameworks [1, 2, 4, 3] have been proposed that focus on workload-

aware data regeneration using constraints derived from the execution of client query workloads,

as described next.

Workload-Aware Data Regeneration

Consider a sample client scenario where we have the database schema and an example query as

shown in Fig. 1.1(a) and Fig. 1.1(b), respectively. Suppose that we get the execution plan for

this query, by running the query at the client deployment, as shown in Fig. 1.1(c). Note that

the edges in the plan tree are annotated with the number of rows flowing from one operator to

the other. We refer to this plan as an Annotated Query Plan (AQP). The set of row-cardinality

constraints (CCs) derived from this AQP is listed in Fig. 1.1(d).

The focus of the workload-aware data regeneration is to ensure volumetric similarity. That

is, on running the client query workload on the synthetic database produced at the vendor site,

the AQPs obtained are very similar to the ones fetched from the client site. In other words,

the synthetic data should adhere to the CCs obtained with respect to the input client AQPs.

Cardinality Constraint. A CC dictates that the output of a given relational expression

over the generated database should feature a specified number of rows. For Select-Project-Join

(SPJ) query formulations, the canonical constraint representation is:

|πP(σf (T1 ▷◁ T2 ▷◁ ...TN))| = k (1.1)
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Figure 1.1: Example AQP and CCs

where k is the number of rows that are output after applying the complete relational expression,

i.e., the output cardinality, P represents the set of attributes on which projection is applied

(PAS), and f represents the filter conditions on the inner join of relations T1, T2, ..., TN .

Background

The workload-aware data regeneration frameworks in the literature do not provide a compre-

hensive solution that handles CCs with SPJ operators. For instance, [2, 1, 3] model filter

constraints using a linear programming (LP) based approach at its core. However, they lack

the support for the projection operator. Likewise, [4] models filter and projection constraints

in the LP; but due to being limited to a single relation, it does not support the join operator.

A critical shortcoming of the prior work is the lack of modeling the join constraints accu-

rately. Unlike filter predicates that specify the constants/value-ranges that are permissible for

the constrained columns, modeling join predicates require constructing dependence with respect

to the join columns such that the generated tables obey the required join output cardinality.

With large number of input constraints, this problem gets even more challenging.

A way to handle joins was used in [1, 3], where they constructed the denormalized tables first

and then extracting the original tables from it. Specifically, for each table T to be constructed,

a corresponding view VT is synthesized first. This view captures the denormalized equivalent

of T (excluding the key columns). These views allow rewriting the join expression on a single

view. Therefore, processing on views help in generating correlations that are compatible with

the various join cardinality in the input. For example, the views constructed with respect to
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the two tables in Figure 1.1(a) are as follows:

VR(Course, Y ear, Score, Age, Scholarship,GPA),

VS(Age, Scholarship,GPA)

Further, the first two CCs from Figure 1.1(d) can now be rewritten as:

|(σAge≥25∧Y ear=21(VR))| = 3000

|πAge(σAge≥25∧Y ear=21(VR))| = 10

Using these views, filters on each view can be handled independently using the single table

algorithm. However, the challenge then lies in extracting the original tables back from their

denormalized versions. This is because these views need to obey referential integrity 1. For

example, the value-combinations for Age, Scholarship,GPA in VR should be a subset of VS in

order to replace the borrowed columns with the appropriate foreign-key value. In [1, 3], due

to the lack of consideration of projection operation, adding only a few spurious tuples in the

referenced table was sufficient to ensure referential integrity. This resulted in minor errors in

satisfying the CCs. However, this approach cannot be used in presence of projection because

each value-combination with respect to the borrowed columns need to be represented in the

referenced table. Therefore, the LP formulation and the subsequent data generation from the

solution need to explicitly model constraints to ensure referential integrity.

Our Contribution

In this work, we provide a comprehensive solution to handle the SPJ-cardinality constraints.

Specifically, we use techniques proposed in PiGen [4] to model filter and projection conditions.

These conditions were used in [4] to form individual LPs for each of the participating relations.

Further, we also exploit the aforementioned denormalization strategy. A marked contrast is

the way we model join conditions into the solution pipeline. We construct a unified LP for the

linked (through referential constraints) tables. This LP models the referential constraints to

ensure that the number of distinct value-combinations generated, with respect to the borrowed

columns, in various intervals of the Foreign-Key table (referencing) view is upper bounded by

the corresponding interval in the (referenced) Primary-Key table. Further, our Key Curation

module ensure that the key values picked are such that the corresponding tuples in the dimension

table have the prescribed number of distinct value-combinations for borrowed columns.

1The joins considered are restricted to PK-FK joins.
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Additionally, our solution leverages the concept of dynamic regeneration [3], and constructs

Database Summary, that ensures data can be generated on-demand during query processing

while satisfying the input CCs. Therefore, no materialized table is required in the entire testing

pipeline. Further, the time and space overheads incurred in constructing the summary is

independent of the size of the table to be constructed and, in our evaluations, requires only a

few 100 KBs of storage.

A detailed evaluation on a workload derived from the standard TPC-DS decision support

benchmark has been conducted. The results demonstrates that the proposed solution accurately

and efficiently models the SPJ CCs. As a case in point, for a workload of over 20 queries, leading

to ∼130 CCs, the generated data satisfied all the CCs with perfect accuracy. Moreover, the

entire summary production pipeline completed within viable time and space overheads.

Organization. In Section 2, we formalize the problem statement and present assumptions

for our framework. Section 3 gives an overview of the proposed solution and some background

concepts used in our framework. Section 4 explains about the overlapping projection constraints

and workload decomposition to handle them. In Section 5, we model additional constraints for

ensuring referential integrity in the synthesized database. LP formulation module is explained

in Section 6 and Section 7 discusses how we materialize databases that satisfy the original

workload characteristics. The experimental evaluation of our solution is shown in Section 8 and

Section 9 concludes the report with a discussion of future work.
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Chapter 2

Framework

In this section, we summarize the basic problem statement, and the underlying assumptions of

our proposed solution.

Problem Statement. Given a workload W of SPJ queries with their corresponding AQPs,

derived from an original database with schema S, the objective is to generate synthetic database

D such that it conforms to S and the AQPs wrt W.

Assumptions. We assume that the input queries consist of only PK-FK joins, and the filters

and projections are on non-key columns. Further, for ease of presentation, we assume only star

joins are present. The ideas can be extended to more general join queries too.

Output. Given S and W, the proposed solution produces a collection of database summary.

Each summary s(D) can be used to deterministically produce the associated database D. The

databases produced are such that (a) all of them conform to S, and (b) for each query in W, its

AQP obtained from the original database matches the AQP obtained on at least one database

instance.
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Chapter 3

Solution Overview

We have extended the solution pipeline of PiGen [4] to include join operator in the CCs. The

complete pipeline is illustrated in Figure 3.1. The green boxes represent the additional modules

added/updated to the pipeline of PiGen. We now briefly explain these modules.

3.1 Denormalization

Inspired from [1, 3], we also have a denormalization step (described in Section ??) where the

views are constructed first. After expressing the CCs in terms of the views, we can express the

filter, projection and join output cardinality constraints as filter and projections on individual

views.

3.2 Workload Decomposition

The solution for handling CCs with filter and projection operation, as proposed in [4], assumed

non-overlapping constraints input prior to LP formulation stage. A pair of CCs were defined

to overlapping if their PASs partially intersect and their filters overlap. For example, in the

schema of 1.1, suppose one CC has PAS P1 of (Course, Y ear) and other CC has PAS P2 of

(Y ear, Score) and let both CCs have same filter conditions. Then, these CCs are said to be

overlapping. To handle this, [4] had an additional workload decomposition module that splits

the input workload into sub-workloads such that each of them is free from these overlapping

projection conflicts.

We have extended this case of overlapping projections to include the projection conflicts that

surface in the presence of joins. For example, a pair of queries Q1, Q2 including a dimension

table D, with PASs P1 and P2 induce a conflict if P1,P2 ⊆ D, and partially overlap with each

other. We discuss the details of all the conflicts in Section ??. These conflicts are additionally

6



Figure 3.1: Solution Pipeline

used by the workload decomposition module to do the workload splitting.

3.3 Data Space Partitioning

Region Partitioning [3]. To model the filter predicates associated with W, the data space

of each view is logically partitioned into a set of blocks. Each block satisfies the condition that

every data point in it satisfies the same subset of filter predicates. To do this partitioning, we

leverage the region partitioning technique from [3, 4], which partitions the data space into the

minimum number of blocks. Each resultant block is referred to as a filter-block (FB).

Figure 3.2: Region Partitioning
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Figure 3.3: Symmetric Refinement

To make the above concrete, consider the following two filter CCs on Student table.

CC1 : |(σ15≤Age<35∧6≤GPA<8(VS))| = 40000

CC2 : |(σ20≤Age<40∧5≤GPA<9(VS))| = 45000

For simplicity, Figure 3.2 shows only the 2D data space comprising the Age and GPA attributes

since no conditions exist on the other attributes. In this figure, the filter predicates are rep-

resented using regions delineated with colored solid-line boundaries. When region partitioning

is applied on this scenario, it produces the four disjoint FBs: b1, b2, b3, b4, whose domains are

depicted with dashed-line boundaries.

Symmetric Refinement [4]. To handle various projection subspaces (corresponding to the

different PASs in the input queries) independently, a Symmetric Refinement strategy is adopted.

Specifically, it refines an FB into a set of disjoint refined blocks (RBs) such that each resultant

RB exhibits translation symmetry along each applicable projection subspace. That is, for each

domain point of an RB along a particular PAS, the projection of the RB along the remaining

attributes is identical.

For instance, consider b2 in Figure 3.2. Clearly, it is asymmetric along Age – specifically,

compare the spatial layout in the range 20 ≤ Age < 35 with that in 35 ≤ Age < 40. After

refinement, this block breaks into r2a and r2b as shown in Figure 3.3 – it is easy to see that

r2a and r2b are symmetric. This refinement allows for the values along different projection

subspaces to be generated independently.

Align Refinement. To be able to obtain original tables back from their denormalized equiv-

alents, the views need to obey referential integrity. We know that referential integrity constraint

between a fact table F containing foreign key F.fk referencing dimension table D with primary

8



key D.pk is expressed as πF.fk(F ) ⊆ πD.pk(D). The equivalent expression of this constraint in

terms of the views is the following:

πB(VF ) ⊆ πB(VD)

where B is the set of columns in VD, and hence is borrowed in VF . To be able to add referential

constraints, the RBs of VF need to be aligned with each other. Therefore, as a precursor, an

Align Refinement stage is required, to ensure that each RB in VF is either identical or is disjoint

with another RB in VF along the subspace spanned by B. This is achieved by splitting the RBs

into a set of Aligned Refined Blocks (ARBs). We discuss this further in Section 5.1.

Projection Subspace Division [4]. This technique divides each projection subspace into

regions that allow modeling the unions into a summation of the cardinality of a subset of

the regions obtained. For instance, by using projection subspace division strategy to divide the

subspace with respect to Age attribute from our running example, we can express |πAge(b2a∪b2b∪
b3)| (projection of CC2 along Age) as the following summation of cardinality of four projection

regions: |(πAge(b2a) \ πAge(b3))|+ |(πAge(b2a) ∩ πAge(b3))|+ |(πAge(b3) \ πAge(b2a))|+ |πAge(b2b)|.
PiGen’s strategy for projection subspace division gives the minimum number of such pro-

jection regions. These are called constituent projection blocks (CPBs).

3.4 LP Formulation

After the above processing is completed for each view, we formulate a single linear program

(LP) for modeling CCs. The LP is constructed using variables representing the cardinalities

of ARBs and CPBs. Specifically, Filter Constraints and Projection Constraints are

modelled for each view in the same way as proposed in PiGen.

Referential Constraints. We include additional constraints that ensure these referential

dependencies. Specifically, these referential constraints ensure that for each interval of the

borrowed columns, the number of distinct values present in VF is at most equal to the number

of distinct values present in VD. Once this is ensured, the exact subset property is ensured in

the final Key Curation stage.

3.5 Summary Construction.

The formulated LP is solved using an SMT solver. Once we obtain the solution, we build a

summary data structure for each view that contains all the relevant information of the regions

in that view required for regenerating the base relation of that view. Specifically, from the view

9



Figure 3.4: Sample Summary

summary the base relation summary is obtained by replacing the borrowed columns with the

appropriate FK column. The process to do this is described next.

Key Range Curation. This final stage is responsible for the curation of tuples in F . Specif-

ically, for each ARB r in VF , to construct its equivalent in F , a range of fk values is assigned

to it. This assignment is done using a range of pk values associated to a set of regions R in VD,

such that:

1. The regions in R are contained within the boundaries of r after projecting it along B.

2. The tuples associated with the selected pk values have the desired number of distinct

values along the PASs prescribed by the projections applied on the r.

In this way, we get the summary for each table, which is used for dynamic data regeneration.

A sample summary is shown in Figure 3.4. Note that this summary does not reflect the exact

solution of the query mentioned in Fig. 1.1

10



Chapter 4

Workload Decomposition

As discussed in Section ??, the case of overlapping projection constraints is handled by splitting

the workload into sub-workloads such that each sub-workload is free from such conflicts. In

addition to the characterization of such overlapping projections in case of single table queries

(mentioned in [4]), we have extended the class of overlapping projections to include the cases

that appear in presence of joins. These additional cases of projection conflicts can be categorized

based on the nature of referential dependencies as follows:

1F : 1D. Assume a pair of queries Q1 and Q2 comprising of a same pair of fact table F

and dimension table D and the PASs applicable are P1 and P2 respectively, where P1 ̸= P2.

Further, the filter conditions in the queries intersect. In this case, Q1 and Q2 are conflicting if

and P1,P2 ⊆ D. This is because there is an implied projection dependency between F and D

with respect to P1∪P2 as well. Therefore, this adds projection constraints on F along P1∪P2,P1

and P2, which are overlapping.

nF : 1D. Assume a pair of queries Q1, Q2 with PASs P1 and P2. Further, both the queries

involve a dimension table D such that the filters along D in the queries are overlapping. Now,

if P1,P2 ⊆ D and partially overlaps with each other, then this is a straightforward case of

overlapping constraints on D. Therefore, Q1 and Q2 form a conflicting pair of queries.

1F : nD. Assume a query Q involving fact table F and dimension tables D1 and D2. Further,

the PAS P applied on Q is such that P ⊆ D1 ∪D2 and P ⊊ D1,P ⊊ D1. To ensure referential

integrity, projection constraint on F along P∩D1 and P∩D2 is required. Both these constraints

conflict with the preexisting projection constraint along P.

The conflicts in the 1F : 1D and nF : 1D category can be handled by splitting the workload into

sub-workloads. Specifically, we construct a graph with each query being a vertex and adding

11



an edge between two queries if there is conflict between them. Now, if we run vertex coloring

algorithm on this, the subset of queries having the same color assigned form a sub-workload.

Unlike the previous two conflicts which were inter-query, the third case of 1F : nD type

conflict is intra-query. A workaround to handle these queries is to generate all distinct tuples

along P ∩ D1 for filter compliant region of the dataspace in D1 and along P ∩ D2 in D2.

Subsequently, for F , the requisite number of distinct rows along P are generated by curating

FKs from D1 D2. This is always possible since the distinct row cardinality along P in F can at

most be the product of the distinct cardinality along P∩D1 in D1 and the distinct cardinality

along P ∩D2 in D2. Due to this explicit distinct row cardinalities being generated in D1 and

D2, any other query with overlapping filters on D1 (or D2) will lead to a conflict. Again, we

use the workload decomposition to also take care of these conflicts.

12



Chapter 5

Modeling RI Constraint

As discussed earlier, referential integrity has to be ensured in the data that is generated. We

describe the modeling of this using a single pair of fact table F and dimension table D, i.e. the

1F:1D case. Let us first describe referential integrity in the view semantics.

Theorem 5.1 Two tables F and D such that F holds FK referencing D satisfy a referential

integrity dependency, iff the corresponding views VF and VD obey the following condition:

πB(VF ) ⊆ πB(VD)

where B is the set of columns in VD that are borrowed by VF .

In other words, for any region r in the data space of VF , the following should hold:

πB(σB∈r(VF )) ⊆ πB(σB∈r(VD)) (5.1)

where r = πB(r).

5.1 Align Refinement

The LHS in Equation 5.1 requires computing σB∈r(VF ). That is, the interval in VF along B which

is aligned with a region r in VF . To be able to determine this, the stage of Align Refinement is

needed. The RBs for VD, obtained from Symmetric Refinement, need to be aligned with each

other along B. That is, they are either identical or disjoint with each other along the subspace

spanned by B. Let us understand this using an example.

Example: Consider the RBs shown in Fig. 5.1 for a FK view where ’b’ is a borrowed

attribute. RB2 and RB3 have overlapping boundaries across column ’b’ and are not aligned

13



Figure 5.1: RBs before splitting

Figure 5.2: RBs after splitting (ARBs)

with each other along ’b’ column. These RBs would be broken into smaller ARBs such that

each ARB formed would be aligned with every other ARB as shown in Fig. 5.2.

Now, once we get blocks that are aligned, we can express the data subspace spanned by B using

a collection of intervals such that a group of ARBs are associated with an interval. Let the

group of ARBs associated with an interval I be represented as RI . Now, we can rewrite the RI

constraint as ensuring the following condition for each such interval I:

πB(σB∈I(VF )) = πB(∪r∈RI
r) ⊆ πB(σB∈I(VD)) (5.2)

14



5.2 Region Mapping

The RHS in Equation 5.1 requires computing σB∈r(VD). That is, the fraction of VD that is

aligned with a region r in VD along B. Since, we have assumed star join queries, any filter on

F ▷◁ D along B would have been also applied on D at one of the nodes in the AQP. Therefore,

the domain split points in VF along B would also be present in the domain split points of VD.

As a result, we only need a mapping from the ARBs in VF to ARBs in VD to be able to

express the RHS in the RI constraint using a union of blocks. We would like to clarify that we

are only splitting fact table blocks into ARBs, but we use the term ARBs for dimension table

also to be consistent in the naming. Therefore, ARBs in dimension table are same as RBs.

Now, say M(rf ) be the set of ARBs in VD that are aligned with a ARB rf ∈ VF along B.
Then the Equation 5.2 can be rewritten as:

πB(∪rf∈RI
rf ) ⊆ πB(∪rd∈M(rf )rd) (5.3)

15



Chapter 6

LP Formulation

In order to ensure that Equation 5.3 is satisfied for each ARB rf ∈ VF , as part of the LP

formulation stage, we ensure that the LHS cardinality is upper bounded by the RHS cardinality.

The explicit subset condition is ensured during summary construction. Therefore, the LP

formulation ensures the following for each rf ∈ VF :

|πB(∪rf∈RI
rf )| ≤ |πB(∪rd∈M(rf )rd)| (6.1)

6.1 Optimizations

The above condition can be simplified depending on the projection conditions applied on VF .

Specifically, there are the following three cases applicable for a region rf ∈ VF :

Case 1: No Projection along any attribute of B is applied on rf .

Case 2: Projection along at least one attribute of F is applied on rf .

Case 3: Projection only along a subset of B is applied on rf .

We discuss each of these cases separately next.

Case 1

In this case, we can generate only one distinct value along B such that this value is also present

in VF . Therefore, the LP formulation stage needs to ensure that if |rf | > 0 then |rd| > 0, where

rd ∈ M(rf ). This condition is expressed as the following referential constraint in the LP:

xrf ≤ |F |
∑

rd∈M(rf )

xrd
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Here, xr denotes a variable in the LP that represents the cardinality of the ARB r.

Case 2

Say the PAS applicable on rf is P. Here we replace P with P \ B. Further, again we generate

only one distinct value along B in rf . Note that since distinctness along a set of attributes also

imply distinctness along the any of its superset, this condition ensures correctness. Hence, we

use the same referential constraint in the LP as Case 1.

Case 3

In this case, we ensure the condition in Equation 6.1 as it is. This is achieved by using the

CPBs. Let the CPBs associated with an ARB r along B be represented as P (r). Then, the

condition can be rewritten as: ∑
pf∈P (rf )

|pf | ≤
∑

pd∈P (rd),rd∈M(rf )

|pd|

Therefore the following constraint in added in the LP in this case:∑
pf∈P (rf )

ypf ≤
∑

pd∈P (rd),rd∈M(rf )

ypd

Here, yp denotes a variable in the LP that represents the cardinality of the CPB p.
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Chapter 7

Data Generation

After adding all the constraints to LP, Z3, a popular SMT solver, is called to get the LP

solution. A variable in the LP represents a region of a particular view, and its assigned value

is the total number of rows in that region. We denote such a variable as ’X-var’. In addition,

there are special variables associated with a region that represent smaller regions within that

region, and their values indicate the number of distinct tuples that are to be instantiated from

that region. We denote this special variable as ’Y-var’. A region may have zero or more such

special variables associated with it. We summarize all information from the LP solution in a

compact table summary (one summary for each table), which will subsequently be used for

tuple generation. The summary data structure was used in [3, 4] and we build upon those

concepts.

For a particular table, the summary is maintained region-wise. A sample template is shown

in Fig. 8. In addition to the total cardinality (value of X-var), for each region, for every PAS

acting on that region, all Y-vars associated with that PAS and their distinct cardinalities are

maintained. Also, for the attributes not involved in any projections (Aleft), only the domain

is stored without any distinct cardinality. Besides this, to ensure referential integrity, we also

store the Foreign Key values for every PK table to which this table references. Instantiating

these FK values will be explained in the following subsection.

7.1 FK Curation

As discussed in section 4, for each region in the Fact table view (VF ), we obtain a map of

corresponding regions in the Dimension table view (VD). We will now use the same mapping

to populate the FK values in the summary data structure. For every region r in VF , we have

the following 4 cases :
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Figure 7.1: Sample Region Summary

(1) No Projection constraints i.e. PAS = Φ. In this case, we use the FK region to

PK region mapping to get the corresponding PK regions for region r. Since no projections are

acting on r, a single FK value will suffice. Now, to ensure referential integrity, we pick any

of the PK values from the set of corresponding regions to instantiate as the FK value in the

summary of region r.

(2) Projection constraints are only on FK attributes i.e. PAS ⊆ F. Since the pro-

jection constraints are only on the Fact table and [4] already handles such constraints, we need

to only work on ensuring referential integrity. This is done by again using the corresponding

regions of r, choosing one PK value from those regions, and using it as the FK value for region

r.

(3) Projection constraints are on both FK and PK attributes i.e PAS ⊆ F ∪ D, PAS

⊈ F and PAS ⊈ D. In this case, to simplify the generation process, we drop the borrowed

attributes of D from the PAS acting on r. The idea is to generate the distinct cardinality from

F only, thereby eliminating additional constraints for ensuring referential integrity. Now the

problem is like case (2), and we proceed similarly. Suppose that the PAS consists of both A and

B in our running example. Further, suppose that a particular constraint on this PAS requires

1000 rows in its output. To solve this, we generate 1000 unique values for the A column and

couple it with any value from B’s domain. Thus, the projection condition on A union B is

satisfied, and referential integrity is maintained.

(4) Projection constraints are only on PK attributes i.e. PAS ⊆ D. This case requires

a distinct cardinality of tuples to be generated from the D table. So, for region r of the F table,
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we get the set of corresponding regions from the D table. We select as many unique PK values

from those regions as the distinct cardinality. In the summary data structure, for region r, we

store these values as the FK values to be used during tuple generation.

7.2 Tuple Generation

Using the information in summary, the tuples of the table are instantiated. Specifically, we

iterate over each region and generate the number of rows specified in the associated total

cardinality value. Each Y-var is picked for any region r and an associated PAS A, and the

corresponding partial tuples are generated. This gives a collection of partial tuples for A, which
may be less than the total cardinality. To make up the shortfall without altering the number

of distinct values, we repeat the generated partial tuples until the total cardinality is reached.

Any partial tuple within its boundaries can be picked for repetition for the Aleft component,

which only has a single interval. Finally, partial tuples across all projection spaces of the region

are concatenated to construct its output tuples.

If region r is of the Fact(F) table, then the summary also contains FK values for tuple gener-

ation. Based on the cases mentioned in the previous subsection, the FK values are instantiated

as follows:

For any region r matching cases (1),(2), and (3) a single FK value would be stored in

summary. Each tuple generated from such regions is given the same FK value.

For any region r matching case (4) a set of FK values would be stored in summary. Each

Y-var value represents the distinct tuple cardinality for any such region r and an associated

PAS A. We select the same number of FK values stored in summary, and each partial tuple

generated is assigned an FK value from these selected values in a round-robin manner.
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Chapter 8

Experimental Evaluation

In this section, we evaluate the empirical performance of a Java based implementation of our

proposed solution. The popular Z3 solver [6] is invoked to compute the solutions for the LP

formulations. Our experiments cover the accuracy, time and space overheads aspects of our

work. The experiments were conducted using the PostgreSQL v9.6 engine [5] on a vanilla HP

Z440 workstation.

Workload Construction. We designed a workload of 28 SQL queries derived from the TPC-

DS decision support benchmark such that they satisfy the aforementioned assumptions. These

queries covered four fact tables and their corresponding dimension tables. These fact tables

were – store sales (ss), catalog sales (cs), web sales (ws), inventory (inv). The

distribution of queries among these four tables were: ss (12 Queries), cs (6 Queries), ws (6

Queries), inv (4 Queries). We have shown the snapshot of a fraction of the schema graph in

Figure 8.1. We can see the four fact tables with their dimension tables in the figure.

We show a sample SQL query from our input workload along with its corresponding AQP

in Figure 8.2.

Sample SQL Query.

Select Distinct i item id

From store sales, date dim, item,

customer demographics, promotion

Where ss sold date sk = d date sk

and ss item sk = i item sk

and cd demo sk = ss cdemo sk

and p promo sk = ss promo sk

and d year = 2001 and cd gender = ‘M’
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Figure 8.1: Schema Graph
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Figure 8.2: AQP of Sample Query

and cd marital status = ‘M’

and cd education status = ‘4 yr Degree’

and p channel email = ‘N’ ;

These 28 queries led to a tally of 134 CCs. The constraints had PAS of upto 4 length. The

join distribution in these CCs is shown in Figure 8.3. As we can see from the figure, the number

of joins range from 1 to 4.

8.1 Workload Decomposition

We decompose this suite into three sub-workloads such that all the conflicts discussed are

resolved. The complexity of these sub-workloads is quantitatively characterized in Table 8.1.
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Figure 8.3: Distribution of Joins over All CCs

Table 8.1: Workload Characteristics

Workloads #Queries #CCs Max.

PAS

Length

Max.

Joins

W1 9 47 3 4

W2 8 39 3 4

W3 11 48 3 4

8.2 Constraint Accuracy

We ran our framework on the workloads mentioned before and the generated data satisfied

all the constraints with 100% accuracy. This is because – (a) additional constraints were
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included in the LP to ensure distinct cardinality relationship between each pair of fact table and

its corresponding dimension table (s); (b) key curation ensured the explicit subset requirement,

hence ensuring referential integrity.

8.3 Time and Space Overheads

We now turn our attention to the computational and resource overheads. The summary pro-

duction times and sizes corresponding to the three sub-workloads is shown in Table 8.2. We see

here that the summary construction times range from a few seconds to a few minutes. From a

deployment perspective, these times appear acceptable since database generation is usually an

offline activity. Moreover, the summary sizes are minuscule, within a few 100 KBs.

Drilling down into the summary production time, we find that all of it is consumed in LP

solving stage. The collective time spent in other stages is usually less than ten seconds. The LPs

constructed contains severely underdetermined system of constraints. Therefore, the number of

variables in these LPs largely characterize the complexity of the LPs. To obtain a quantitative

understanding of the LPs produced, we also report the number of variables constructed for

the three LPs corresponding to the sub-workloads. As a case in point, the largest LP was

formulated for workload W2 with about 32 thousand variables. This LP took 2 minutes to

solve.

Table 8.2: Time Overheads

Workload # of LP

Vari-

ables

Total

Time

W1 1218 5 s

W2 33157 2 min 13

s

W3 1196 6 s
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Chapter 9

Conclusion and Future Work

Synthetic data generation from a set of cardinality constraints has been strongly advocated in

the contemporary database testing literature. Our work expands the scope of the supported

constraints to collectively include Select, Project and Join operators. The main challenge was

to ensure referential integrity among tables so that the join constraints are handled effectively.

Further, a unified LP was constructed comprising of cardinality constraints over all tables. The

experimental evaluation on workloads derived from TPC-DS benchmark indicated that our

solution accurately models the SPJ CCs and produces generation summaries with viable time

and space overheads.

In this work we focused on Star schema queries and in our future work, we would like to

extend the scope to more general schemas. Also, here we used the workload decomposition

technique to work with the overlapping projection constraints. We would like to investigate if

there exists other solution for the same.
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