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Abstract

Database engines often consume significant power during query processing activities espe-

cially during complex query processing, which is motivating researchers to investigate the

redesign of their database internals to minimize the energy overheads. While the prior lit-

erature has dealt exclusively with average power considerations, our focus here is on peak

power consumption. We begin by profiling the peak power behavior of a representative suite

of popular commercial database engines in benchmark environments, and demonstrate that

their consumption can often be substantial and we have also shown that average power con-

sumption behavior of optimizers are very different from the peak power consumption behavior

of queries. Then, we develop a pipeline-based model of query execution plans that lends it-

self to accurately estimating peak power consumption, suggesting its gainful employment in

server design and capacity planning. More potently, the model can be incorporated in current

query optimizers to identify relatively “green” plans. We demonstrate sample instances of

this application wherein power-hungry plans are replaced with alternatives that substantially

reduce peak power requirements, without materially compromising query execution times. In

the end we also show our preliminary work on inductive pipeline (i.e. when we have modeled

a pipeline and a new pipeline comes which has just one join operation more so we can predict

its peak power) and multiquery environment ( when more than one queries are running over a

single server.
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Chapter 1

Introduction

Technological advances, environmental concerns and mobility considerations has fuelled the

power consumption of computational hardware and software, because of which addressing

the power consumption of it has become an active area of research. As Database engines

are one of the key component of many enterprise information systems and it has been seen

that they are major power consumers during the data processing activities specially during

the complex query execution. The above fact led the Claremont report on database research

directions [2] to highlight “designing power-aware DBMSs that limit energy costs without

sacrificing scalability” as an important research area.

Concerns of Power. There are two aspects of power that are to be considered during the

evalution of power utilization. First is Average power whose impacts concerns such as long-

term energy expenses and design of heat dissipation systems, whereas the second is peak

power which is of relevance in server design, capacity planning, and prevention of overheating

surges. Also for peak power, it is mentioned in [9] that since cooling and power supplies

are designed to accomodate peak consumption, reducing this overhead mitigates power and

cooling limitations

Studies over Average power consumption in database engines were already done in prior

literatures (covered in detail in Chapter 6). But recently, the challenge of developing database

1



Chapter 1. Introduction 2

software that tunes the query execution to meet a given power budget was posed in [24]. Ac-

cordingly, we turn our attention here to profiling and modeling the peak power characteristics

of database engines. New problems are posed here since we have to now explicitly account for

:

1. The parallelism of operators, as peak power represents the maximum aggregate con-

sumption of concurrent operations; and

2. Capture what could well turn out to be bursty or short-term phenomena during the course

of a query’s execution.

Our work begins with the profiling of the peak power behavior of a representative set of three

state-of-the-art commercial database engines on query workloads sourced from the TPC-DS

benchmark [33]. After this we try to model the peak power of a query plans.

TPC-DS benchmark It models an industrial-strength data warehousing environment with

complex decision-support queries and large schema. It is considered to be an excellent plat-

form for testing query processing systems [20].

On performing various experiments it was inferred that, even when the queries are executed

in isolation the power consumption incurred by such query processing can often take up a sub-

stantial fraction of the machine’s dynamic power range. Often there are differences in the peak

power consumption of the various engines. As an example , for Query 8 of the benchmark,

two of the engines utilize around 30 Watts of peak power, whereas the third engine consumes

over 70 Watts! This heavy usage lasts for a short initial burst of about 9 seconds, as shown in

Figure 1.1(a), which tracks the power consumption over the query’s 16 minute lifetime. And,

its source can be traced back to the “pipeline” (sequence of concurrently executing operators)

segment highlighted in the execution plan tree shown in Figure 1.1(b).

Regression Model. Above obtained empirical observations motivated us to investigated about

the possibility to a priori estimate the peak power consumption of a query. Our interest was

to know if this estimation could be carried out solely using information provided by the query

execution plan, without requiring any run-time inputs.
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(a) Temporal Power Behavior

(b) Optimizer Plan

Figure 1.1: TPC-DS Query 8



Chapter 1. Introduction 4

The main concern is that on today’s multi-core computing platforms, multiple operators

may be executing in parallel, and we need to capture their aggregate power utilization. Fur-

ther, in pipelined plans, power consumption of an operator is dependent on the maximum

rate at which upstream operators are funnelling data into the pipeline. The next step was to

develope a model based on these observations, wherein a query plan is first segmented into

pipelines, using techniques developed previously for resource management in parallel query

processing [6] and for SQL progress indicators [5, 14]. A mathematical function has been

developed through fitting step-wise linear regression models [25, 26] on a small set of training

examples. This function that takes as input the data rates and sizes of the inputs and outputs

of the pipeline operators, is applied on each of these pipelines. This gives an estimate of the

peak power consumption. Our evaluation shows that this model is typically able to estimate

peak power within 15% of the consumption encountered at run-time, when the plan parame-

ters are accurately modeled in the database system. Therefore, it appears to be a useful tool

for incorporation in the design workbench of database servers.

Optimizer Integration. As per our knowledge, the selection of query execution plans by

modern database engines is based on minimizing the estimated query execution time, power

considerations are currently not directly taken into account. In this scenario, it is entirely

possible that power-efficient plans may be discarded in favor of time-efficient plans. A po-

tentially potent application of the above-mentioned model is that it can help to quantify the

power-efficiency of the various plan alternatives considered by the optimizer, thereby support-

ing making weighted choices between power and time considerations. Following steps were

followed to explicitly assess this possibility:

• Sample TPC-DS queries were converted into parametrized templates.

• Then, by invoking the query optimizer at various locations over the parameter space, we

produced a parametric optimal set of plans (POSP) [12], over this space.

• Next, using our model, we evaluated the feasibility of replacing power-hungry plans
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chosen by the optimizer with POSP alternatives that materially reduce peak power re-

quirements without incurring excessive increases in query execution times.

As a specific example, we were able to reduce the peak power by around 20 to 40 watts in some

instances, a significant reduction given that the dynamic power range of our testbed machine

was of the order of 80 watts. Further, these improvements were obtained at a relatively modest

execution-time increase. In fact, in some cases, we were serendipitously able to even achieve

improvements in execution-time, due to inaccuracies in the optimizer’s cost model pushing

forth sub-optimal plan choices.

Black Box Environment. Our entire study has treated the commercial database systems as

“black boxes”, utilizing only the API functions provided by the query engines due to not be-

ing privy to the internals. Thus our attribution of plan operator activity to the temporal power

behavior in the training examples is perforce a coarse association. We could improve the accu-

racy in the peak power estimation functions if the correspondence could be established more

precisely. Which in turn depends on the availability to access the engine internals. Further, it

would be feasible to consider power-efficient replacements from the enormously larger native

plan search space, rather than merely the restricted POSP space constructed by us.

In this thesis we attempt to demonstrate a proof-of-concept that it is indeed feasible to

efficiently extend current database engines to be peak-power-conscious, taking another step

towards the ultimate objective of designing “green” database systems. To the best of our

knowledge, our results represent the first peak power characterization of database query pro-

cessing.

Organization Of Thesis. The remainder of this thesis is organized as follows: In Chapter 2,

we profile the peak power performance of a representative set of commercial database engines

on the TPC-DS benchmark. The pipeline-based model for identifying power-hungry segments

of query execution plans is presented in Chapter 3. Then, in Chapter 4, we demonstrate in-

stances wherein power-hungry plan choices can be replaced by comparatively power-efficient

plans without incurring an excessive increase in execution times. Interesting extensions to the
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work described here are discussed in Chapter 5. The prior literature on profiling and improving

power characteristics of database systems is reviewed in Chapter 6. Finally, in Chapter 7, we

summarize our conclusions.



Chapter 2

Peak Power Profiles

This chapter contains the results of profile the peak power behavior on a representative set

of three popular commercial relational database engines. These engines are anonymously

referred to as EngineA , EngineB and EngineC in the sequel.The workload consists of complex

SQL queries sourced from the TPC-DS decision support benchmark [33]. Now we explain the

enviornment in which our experiments were done.

2.1 Experimental Environment

Our experiments were conducted on system platform with the specifications mentioned in

Table 2.1.

We have used a Scale 1 version of the TPC-DS benchmark, corresponding to a disk occupancy

Platform sun Ultra 24 workstation
Processor Intel Core 2 Extreme Quad Core 3GHz

RAM 8 GB
SAS hard disks four 300 GB (15K RPM)

Operating system 64-bit Windows Vista Business

Table 2.1: System Specification

7



Chapter 2. Peak Power Profiles 8

of about 100 GB was used to populate the database for our experiment. 1

2.1.1 Query Workload

Results are presented based on an illustrative subset of 16 queries from the 99 SQL queries

that feature in the TPC-DS benchmark. Classification of queries based on their coverage of

fact and dimension tables in the data warehouse schema is present in [20]. The choice of these

queries was motivated by this categorization. The classification is as follows:

• Queries involving dimension tables only (6 queries)

• Queries involving a single fact table (54 queries)

• Queries involving multiple fact tables with join of sub-queries (22 queries)

• Queries involving multiple fact tables with union of sub-queries (17 queries)

Our chosen queries include one from the first category (Q41), nine from the second (Q8, Q16,

Q24, Q57, Q59, Q61, Q82, Q88, Q98), three from the third (Q58, Q64, Q83), and three from

the fourth (Q49, Q66, Q76). These queries cover a wide spectrum of SQL features ranging

from Aggregate functions to CASE statements.

2.1.2 Memory Management

The assigned memory is set to the same value for each database engine, namely 6 GB of the

8 GB physical memory installed in the machine. Further, each query execution is carried out

under “cold-cache” conditions. “cold-cache” is the conditions wherein the data required for the

execution of the query is not present in the memory. Steps followed to ensure this environment

are:

• Restarting the database engine’s server process to clean up the DBMS buffer pool, and

1EngineA , EngineB and EngineC corresponds to the three database engines IBM DB2 9.7, Oracle 11g and
Microsoft SQL Server 2008 respectively.



Chapter 2. Peak Power Profiles 9

• Sequentially scanning a large unrelated table from the database to wipe out the operating

system’s cached contents, prior to executing the query.

2.1.3 Power Measurement

To measure power usage, a digital power meter (Brand Electronics model 20-1850/CI [30])

with a resolution of 1 Watt and a sampling frequency of 1 Hz, was employed in our experi-

ments. The meter is directly connected between the electrical mains and the database work-

station, and therefore measures the workstation’s overall power consumption. This is the same

measurement setup used in [19, 20, 22, 24]. Ideally, we would like to separately measure

the consumption at various hardware resources such as the processor, memory and hard disks.

However, since this required considerably more instrumentation, we chose to use a single hard-

ware meter in conjunction with the Windows built-in resource activity meters to divvy up the

cumulative usage across the various components. The power meter has a computer interface

cable through which the measured power values are transmitted, and these were logged and

processed on a separate monitor machine to ensure that they did not influence the measure-

ments.

In order to obtain the active or dynamic power usage corresponding to a database query

execution, we subtracted the ambient power consumption of the system in its idle state from

the measured values. For our configuration, the ambient power was around 145 W, and the

saturation power value was close to 225 W, corresponding to an active range of roughly 80 W.

All measurements in this paper are with respect to this active range.

2.2 Experimental Results

Under the ambit of the above experimental framework, we evaluated the peak power values

obtained on the three database engines (EngineA, EngineB, EngineC) over each of the sixteen

TPC-DS queries featuring in our workload. These results are presented in Figure 2.1(a). To

provide the complete picture, we also provide the average power values and the query execu-

tion times in Figures 2.1(b) and 2.1(c), respectively.
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(a) Peak Power (b) Average Power

(c) Execution Time (d) Power versus Time

Figure 2.1: Power and Time Performance on TPC-DS Queries

From the Figure 2.1(a) we can see that, there exist queries covering the various categories

that exercise the underlying computational platform through a substantial range of the 80W

dynamic power limit. For example, with EngineA, about half-a-dozen queries (e.g. Q16) use

more than 40W, while about four do so on EngineB (e.g. Q83). Turning to EngineC, we find

that it has the maximum number of power “skyscrapers”, with queries such as Q8 taking in

excess of 60W. Further, there are some queries, with Q41 and Q59 being prime examples,

wherein all three engines incur high power requirements.

Interestingly, with both Q8 and Q64, the average power consumption is roughly similar

across the three engines (Figure 2.1(b)) but their peak power behavior is very different (Fig-

ure 2.1(a)). This clearly demonstrates that peak power behavior cannot be easily correlated
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with average power characteristics, and several such instances are present in Figures 2.1(a)-

2.1(c).

The above results gives sufficient evident to show that there is a material need to study and

address the peak power consumption of database engines. Our first task was to assess the dis-

tribution of the power consumption over the various hardware resources – as mentioned earlier,

we did this through an approximate temporal correlation of the operating system’s resource uti-

lization charts with the power meter readings. Based on this analysis, we found that virtually

all the peak power consumption occurs at the processors and the main memory, whereas the

disk overheads are negligible in comparison. These results are also corroborated in the recent

work of [24], and we therefore only incorporate CPU and memory-related parameters in the

prediction model proposed in the following chapter.



Chapter 3

Modeling Peak Power

A peak power estimator algorithm for query execution plans is proposed in this chapter. Our

approach for the same is optimizer-agnostic but we restrict our attention to modeling EngineC

for ease of presentation in the remainder of this thesis. Proposed algorithm is based on a

regression model developed from a small set of heuristically chosen training examples. Inputs

for the algorithm are solely based on information available in the plan descriptions provided

by current optimizers. We hasten to add here an important caveat: In order to separate the

estimation errors that may arise due to inaccurate optimizer estimates, as opposed to our own

modeling errors, we assume for all the results presented in this thesis that the correct values for

all plan parameters, such as operator input and output cardinalities, are available in the training

samples (these correct values are determined through execution of the sample queries). While

this assumption is obviously untenable in practice, our objective here is to assess the innate

quality of our estimation model.

Average power and peak power. Average power can be easily estimated by aggregating the

estimates of energy consumption of each individual operator in the tree and dividing by the ex-

pected execution time. Peak power, on the other hand, poses the difficulty of having to account

for the concurrent execution of a sequence of operators, commonly referred to as “pipelines”.

In order to identify the pipelines present in a plan tree, we leverage the previous work on de-

velopment of SQL progress indicators [5, 14] – in particular, we use the algorithm presented

12
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in [5]. As an example, the optimizer plan for benchmark query Q59 is shown in Figure 3.1(a),

segmented into its constituent pipelines – here, there are 8 pipelines, PL1 through PL8 and

there is an partial order of execution of pipelines enforced by blocking operators of the plan.

e.g. PL4 can’t start executing until PL3 is finished.

In Figure 3.1(a), the power figures in black on the various pipelines are the estimates from

our model, and the peak power prediction for the entire execution plan is simply the maximum

of these estimates – in this case, it would be 57.1 W. On the other hand, the power figures in

red are the actual consumption at run-time, as determined from the temporal log of the power

behavior during execution, shown in Figure 3.1(b). This attribution process is discussed later

in Chapter 3.2.

We next explain the methodology by which the peak power consumption of an individual

pipeline is estimated.

3.1 Pipeline Modeling

Each pipeline contains a set of driver nodes, comprised of the operators providing inputs to

the pipeline, and a termination node consisting of a blocking operator. (A physical operator is

termed blocking if it doesn’t produce any output until it has consumed at least one of its inputs

completely.) An example pipeline, ePL, is shown in Figure 3.2, which features in EngineC’s

plans for the Q8 and Q59 queries. This pipeline is driven by a Clustered Index Scan

operator and is terminated by a Hash Aggregate operator. Since the build input of the

Hash Match operator is itself blocking, this input is associated with a different pipeline that

needs to be completed before execution of the ePL pipeline can commence.

From the 99 TPC-DS benchmark queries, we created a large number of variants with no

two queries having same query plan, and collected statistics on the kinds of pipelines present

in the associated optimizer plans. These results are shown in Table 3.1, where we see that al-

though a large number (5765) of pipelines are present, most of them are structurally identical

to others. Only 419 structurally-distinct pipelines were found in these plans. Further we re-

moved power-significant operators, such as Compute Scalar from these distinct pipelines.
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(a) Pipeline Annotated Optimizer Plan

(b) Temporal Power Behavior

Figure 3.1: TPC-DS Query 59
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Figure 3.2: Example Pipeline (ePL)

The resulting pipelines are termed as power-distinct pipelines and are only 247 in number, and

even among these, the number that appear frequently (more than 100 times) are only 10 but

not all of these frequent pipelines are neccesarily power hungery pipeline.

Total Number of query plans 585
Total Number of pipelines 5765
Number of structurally-distinct pipelines 419
Number of power-distinct pipelines 247
Frequent power-distinct pipelines 10

Table 3.1: Pipeline Analysis of Query Execution Plans

3.1.1 Model Parameters

We now discuss our choice of regression model parameters. For ease of presentation, we make

a distinction between two types of pipelines: (a) Leaf Pipelines, wherein at least one of the

driver nodes to the pipeline is a leaf node in the query plan, which usually corresponds to a

base relation, and (b) Internal Pipelines, wherein all inputs are from intermediate relations,

that may be hosted on disk or are purely memory-resident. Our running pipeline example,

ePL in Figure 3.2, is an example of a leaf pipeline.
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Leaf Pipelines

We incorporate two kinds of parameters in leaf pipelines: Rate Parameters and Size Parame-

ters, discussed below.

Rate Parameters. Since the pipelines are fed data by driver nodes, the rate at which the

input arrives is a critical parameter. Specifically, a scan or index operation on a disk-based

relation is estimated to produce data at a rate equal to the size of the retrieved data divided by

the estimated time for transferring this data from the disk. That is, for a driver node D, the rate

is computed as

RateD =
InputD

DiskT imeD
(3.1)

where InputD denotes the size of data retrieved from disk by D and DiskT ime is the disk

transfer time (for EngineC, these values are computed from EstimateRows * AvgRowSize and

EstimateIO plan annotations, respectively).

With the above formulation and given a pipeline PL, the rates of the downstream operators

in PL are derived using the formula shown in Equation 3.2. Here, N is a generic downstream

node in the pipeline, SubtreePLN is the subtree of pipeline PL rooted at node N , DriverPL is

the set of driver nodes in pipeline PL, SourcePLN is the set of nodes in the pipeline PL that

directly provide inputs to node N , and Outputi denotes the size of data output by node i.

Let DriverN = SubtreePLN ∩DriverPL

Then RateN =

∑
i∈SourcePLN

Outputi

maxx∈DriverN DiskT imex
(3.2)

The reason for the max operator in the denominator is that it selects the slowest driver among

the pipeline’s driver nodes, incorporating the assumption that the whole pipeline can only run

as fast as its slowest driver. Intuitively, our approach is to model the rates of downstream nodes

as the ratio of the amount of data they process to the time taken for generating the data at the

head of the pipeline.
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Size Parameters. In addition to data rates, we may also need to consider the sizes of the

incoming and/or outgoing data for some operators in the pipeline. As a case in point, the

size of the hash table for the Hash Match operator is proportional to the build input size, and

therefore needs to be reflected in the model. Similarly, for the Hash Aggregate operator, which

utilizes memory proportional to the number of output groups, the output data size is a model

parameter.

Internal Pipelines. For internal pipelines, the driver nodes are the blocking termination

nodes from other pipelines. There are two possibilities here:

• One or more of the driver nodes writes its data to disk, and the internal pipeline then

reads this information from disk. This scenario can be treated in the same manner as

leaf pipelines, using only the disk-based driver nodes in Equation 3.2.

• The outputs produced by all the driver nodes are small enough to be fully memory

resident, in which case the internal pipeline reads its entire input data directly from

memory. This scenario is more complicated since current optimizers typically do not

provide memory costs for operators. Therefore, we have taken the workaround of using

only size-based model parameters for such pipelines – specifically, the input size to each

operator in the pipeline. And as an effect of this, entire modeling of these pipelines need

to be carried out separately.

Parameter Example. Consider again the ePL pipeline shown in Figure 3.2. This is a leaf

pipeline consisting of a scan, a hash join and two hash-based aggregates. For this pipeline, the

associated set of candidate regression model parameters are described in Table 3.2, and shown

in the operator annotations of Figure 3.2. Specifically, each operator has an associated input

data rate; in addition, the Hash Match has an input data size, while the two aggregates have

output sizes, amounting to 7 parameters in toto.
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Table 3.2: Candidate Parameters for ePL

Parameter Description
R1 Input rate for Clustered Index Scan
R2 Input rate for Hash Match
R3 Input rate for Partial Aggregate
R4 Input rate for Hash Aggregate
B2 Size of build input to Hash Match
O3 Output Size of Partial Aggregate
O4 Output Size of Hash Aggregate

3.1.2 Generating Training Instances

Given the above modeling paradigm with the multiplicity of parameters, each covering a sub-

stantial range of values, it might appear at first glance that a computationally impractical num-

ber of training instances may be required to accurately model a pipeline’s peak power behavior.

However, using the methodology described next, our experience has been that even complex

pipelines, running to double-digit number of operators, can be accurately modeled with a mod-

est number of samples, typically in the range of 20 to 30. Overall, we estimate that modeling

the entire set of 247 power-distinct pipelines could be completed in less than three months on

a single state-of-the-art workstation.

In our methodology, the first step is to decide how many samples to take. While this

obviously depends on what kind of samples are subsequently chosen, an upper bound can be

estimated assuming a simple random sampling of the parameter space. Specifically, given a set

of desired statistical indicators (p-value, number of predictors, squared multiple correlation,

and statistical power level), a sample size requirement can be calculated using the method

presented in [7]. As a case in point, using standard values for the indicators, such as p-value of

5 percent and statistical power level of 80 percent, the number of suggested samples for ePL

is about 40.

We now optimize on the above sample requirement by using the targeted Latin Hypercube

Sampling (LHS) technique [16] instead of simple random sampling. The LHS approach is

guaranteed to be representative of the real variability in the underlying model space, and re-

quires that the range of each pipeline variable be partitioned into equi-probable strata, with
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the number of partitions being equal to the sample size. This partitioning information can

be derived from the statistics and histograms that are typically available in database system

catalogs.

Since it is expected that LHS will require fewer samples than random sampling [15], we

incrementally carry out the sampling using LHS, stopping stop as soon as the desired statis-

tical power for the model is reached. Using this strategy with ePL, we were able to achieve

satisfactory results with only 26 samples.

Note that LHS merely indicates the desired values of the pipeline parameters in each sam-

ple. But ensuring these values is a non-trivial task since it is not feasible to instrument the

system internals. Therefore, our mechanisms to influence the parameter values are perforce

indirect – specifically, by varying the database schema and queries. The situation is further

complicated by the dependencies existing between the various parameters (e.g. the various

rates in a pipeline are correlated). Therefore the process for creating the LHS samples has to

be carefully planned. For example, to model the ePL pipeline, we used the following strategies

to generate the training instances:

• The size of the scanned relation was altered to vary R1 .

• The selectivities of the probe and build inputs were altered to vary R2 and B2, in the process

having a follow-on impact on the values of R3 and R4.

• The join conditions were altered to vary R3 without affecting R2 and R1.

• Various aggregates were added or modified to vary O3, O4 and R4 without affecting R3.

3.1.3 Regression Model

For all our pipelines, we use stepwise multi-linear regression models, which are recommended

when there are several candidate explanatory variables, and no pre-defined theory on which to

base the model selection [25, 26]. A further motivation to opt for the stepwise technique was

that our candidate parameters are not independent features – for example, the various rates in a

pipeline are correlated. A beneficial side-effect is that over-fitting of the model on the training

data is also reduced in this approach.
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We used the XLSTAT statistical analysis software [34] to fit our training data in a stepwise

regression model. As a case in point, for ePL, we executed the 26 training queries and from

the associated execution plans, created the training data with all seven parameters along with

the observed peak power value for every query. The final model retains only four parameters,

as shown below:

PeakPower(ePL) = 1.25× 10−6 ×R1

+7.75× 10−6 ×R3

+3.67× 10−6 ×R4

−6.00× 10−10 ×X3

(3.3)

A graph of the observed values against the fitted values from Equation 5.1 is shown in

Figure 3.3, with the dashed line signifying the ideal situation. It can be easily seen that all the

training examples fall fairly close to the ideal, with the overall co-efficient of variation of the

RMS error being only 0.13. The relative error between observed and predicted values is never

more than 10% here.

Figure 3.3: Regression Model on ePL
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Query Peak Power
Number Predicted (W) Observed (W)
Q8 10.7 13
Q59 57.1 65

Table 3.3: Modeling Quality on ePL

Power Bounds. While the above peak power model has a reasonable fit for generic database

environments, we have empirically observed on our database platform that the peak power

taken by any pipeline is lower bounded by around 10 W when the input rates are low, and upper

bounded by 80 W when the inputs are very large and the CPU is fully saturated. Therefore, we

add these bounds to our peak power estimator in Equation 5.1.

Modeling Accuracy. As mentioned earlier, ePL features in the optimizer plans for TPC-DS

queries Q8 and Q59. We provide in Table 3.3 the model’s prediction quality on ePL in these

plans, where we see that the predicted values are in the neighborhood of the observed values.

3.1.4 Complex Pipelines

The sizes of the pipelines in the plans considered thus far feature between 1 to 10 operators, and

this range covers the vast majority of pipelines found in the TPC-DS query plans. However,

we have also encountered a few instances of significantly more complex pipelines – a sample

instance, cPL, consisting of 15 operators is shown in Figure 3.4, where an initial hash-join is

followed by a sequence of five nested-loop joins. This pipeline appears in EngineC’s plans for

TPC-DS queries Q17 and Q25, and in our rate-and-size based modeling framework, has an

associated 14 parameters.

In spite of its apparent complexity, training this pipeline did not turn out to be an arduous

task. The initial estimate of sample size based on random sampling was 68, but on using LHS-

based samples, a statistical power of 0.99 was achieved with only 20 instances, and the entire

training was completed in around 6 hours. The final regression model obtained for cPL was

the following, with just two parameters retained:
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Figure 3.4: Complex Pipeline cPL

PeakPower(cPL) = 11.1 + 1.05× 10−5 R3 + 1.02× 10−6 I5 (3.4)

Table 3.4 quantitatively demonstrates that this model accurately captures the peak power con-

sumed by cPL during the execution of the two test queries. An interesting point to note here

is that the size of a pipeline does not necessarily translate to proportional peak power – cPL,

for instance, only expends around 10 W. In general, our experience has been that most large

pipelines consume only a modest amount of peak power.

Table 3.4: Modeling Quality on cPL

Query Peak Power
Number Predicted (W) Observed (W)
Q17 11.1 10
Q25 11.1 11
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3.2 Results for Complete Plans

Thus far, we were discussing individual pipelines. We now move on to evaluating how our

predictions perform on entire query plans.

Query Peak Power Relative
Number Predicted (W) Observed (W) Error
Q8 74.0 72.0 +3%
Q24 53.4 58.0 -8%
Q41 78.8 74.0 +6%
Q57 34.9 38.0 -8%
Q59 57.1 65.0 -12%
Q82 38.8 36.0 +8%

Table 3.5: Predictions on Power-Intensive TPC-DS Queries

Reverting our attention to Figure 3.1(a), we show there the predicted peak power values

for each pipeline. We intended to also measure the actual values for all these pipelines, but

it proved infeasible for those that were of sub-second duration since our power meter only

operates at one-second granularity. Further, due to our black-box environment, in order to

measure the actual peak power for a pipeline, we had to manually look through the temporal

power log and approximately identify the time segment of its execution. Due to the complex

query plans, it was not always easy to make an accurate association between the temporal

power log and the pipeline execution periods. However, these problems were circumvented

for two pipelines PL4 and PL7, which are driven by fifteen-minute scans on the 40GB-sized

STORE SALES relation, and their observed values are shown in the red boxes of Figure 3.1(a).

As can be seen, the predicted values (57 W and 11 W) are in the ballpark of the observed

values (65 W and 13 W).

To generalize the above example, we show in Table 3.5 the summary set of prediction

results for all the TPC-DS queries in Figure 2.1(a) on which EngineC consumed significant

power – specifically, in excess of 30 W. In this table, we see that the predictions are consis-

tently within 15 percent of the observed values, indicating that the model is, to the first degree

of approximation, sufficiently accurate for the intended applications. Further, as mentioned
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earlier, if access to the engine internals were available, we expect that the accuracy could be

improved even further.



Chapter 4

Power Efficiency through Alternative Plan

Choices

The results of the previous sections highlighted that database queries often trigger high-power

bursts during the course of their execution. We now turn our attention to investigating how

these peak power characteristics could be improved. One approach is to utilize standard power-

reduction techniques such as “dynamic voltage scaling” (A detailed discussion is given in

Section 6). A complementary and database-centric approach that we investigate here is to

assess whether the peak power profile could be improved through a change of query execution

plans. That is, while modern database systems typically choose the fastest executing plan,

we wish to gauge whether there exist alternative plans that are more desirable from a power-

efficiency perspective, while retaining an acceptable level of time-efficiency.

Explicitly evaluating the above approach on a database engine is predicated on the engine’s

support for the execution of user-specified plans, which we term as “foreign plan execution”

(FPE). Fortunately, EngineC, which exhibited the most extreme behavior in the experiments

of Section 2, natively provides the FPE facility through its API, and we use this facility for all

the results presented in this section.

A related issue is the search space for alternative plans. While going through the opti-

mizer’s entire search space would provide the maximum coverage, this is obviously impracti-

cal from a computational perspective. Further, most of these plans are likely to be much worse

25
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on their time-efficiency, making them unviable alternatives. Finally, current query optimizers

typically do not directly support the enumeration of alternative plans through their APIs, and

it is therefore not straightforward to identify any such plan, let alone the entire search space.

To address the above issue, we take the following approach instead: We first convert the

TPC-DS queries into parametrized query templates. The parametrization is on the selectivities

of a subset of the base relations participating in the query, and are implemented through the

incorporation of additional range predicates. An example query template, QT59, derived from

Q59, is shown in Figure 4.1), where the selectivities of the STORE SALES and DATE DIM tables

are varied through their sales price and d quarter seq attributes, respectively (the associated

predicates are shown in bold-face).

On this query template, we produce a “plan diagram” [21], which is a color-coded pictorial

enumeration of the plan choices of the optimizer over the selectivity space defined by the

template. That is, the plan diagram is a visual representation of the parametric optimal set

of plans (POSP) [12]. As a case in point, the 2D plan diagram corresponding to the QT59

template is shown in Figure 4.2, drawn at a resolution of 100*100. This picture features 47

different plans, P1 through P47, with P1 (red color) occupying the largest region of the space,

amounting to 24 percent.

Note that the set of POSP plans is (a) relatively very small as compared to the exponen-

tially large search space, and (b) likely to have a reasonable time-efficiency compared to the

optimizer’s choice since each member is itself optimal at some region of the space.

Fortunately again, it is feasible with EngineC to provide the original TPC-DS query as

input, along with any of the POSP plans corresponding to the associated template, and the

optimizer automatically modifies the template plan to match the query instance. For example,

when plans generated from the QT59 plan diagram are supplied to the optimizer along with

query Q59, these plans are automatically modified to be consistent with the query. Using this

facility, we can deterministically identify a quality set of candidate alternative plans for the

query. Of course, the specific set of candidates is a function of the template that we have

constructed, but a more comprehensive coverage could easily be achieved by generating a

number of templates and taking the union of their POSP plan sets. We show a graph of peak
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power against response time for Q59 with some plans from the POSP set in Figure 4.3. Observe

that there is one plan: P8(green color) whose peak power, 45W, is significantly lower than

that of the optimizer’s plan choice (red color), 65W. Interestingly, in this case, the candidate

replacement plans also happen to be much more time-efficient than the optimizer’s choice –

however, we hasten to add that this is a serendipitous improvement arising out of weaknesses

in the optimizer’s cost model, and not a conscious outcome of our replacement technique.

The replacement plan P8 is shown in Figure 4.4(a). It is segmented into pipelines and

annotated with predicted peak power values. Also the temporal power log is given in Fig-

ure 4.4(b). It can be seen that our model accurately predicts the peak power and thus will be

able to suggest replacing the original plan (given in Figure 3.1(a)) with P8.

We show in Figure 4.5, which captures peak power against response time for Q65, yet

another situation where power-and-time efficient replacements can be identified. Here, there

are replacement plans available which reduce peak power consumption substantially (by about

35 W) incurring a time penalty of less than 10%.

4.1 Power Diagrams

We further leveraged the query template plan diagrams by not only evaluating all the alter-

native plans at the original query location (corresponding to (100%,100%) selectivities in the

diagram), but also at all the other locations in the parameter space.

Here we present results for QT59 (given in Figure 4.1) on the SQL Server. There are 47

plans in the plan diagram generated by Picasso at a resolution of 100*100. The plan diagram

over 25 locations is shown in Figure 4.6(a). The diagram contains 10 different plans as can be

seen. We then executed all these plans at all 25 locations and noted the peak power consumed

during the execution. The plans were then replaced with peak power optimal plans at each

location and a new plan diagram was formed which is given in Figure 4.6(b). The number of

plans is reduced to only 4 in this diagram; these 4 plans are clearly peak power efficient in

majority of the space and thus replace other plans.
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Figure 4.1: Query Template 59



Chapter 4. Power Efficiency through Alternative Plan Choices 29

Figure 4.2: Plan diagram of QT59

Figure 4.3: Peak power against Response time for Q59
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(a) Pipeline Annotated Optimizer Plan

(b) Temporal Power Behavior

Figure 4.4: Plan P8 of Query 59



Chapter 4. Power Efficiency through Alternative Plan Choices 31

Figure 4.5: Peak power against Response time for Q65

(a) Compile-time plan diagram (b) Peak power optimal plan diagram

Figure 4.6: Plan diagrams of QT59
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Modeling Extensions

In the previous chapters, we have presented the basic mechanisms for profiling and utilizing

peak power behavior. We now discuss a variety of ways in which this framework could be

extended to enhance these capabilities.

5.1 Inductive Modeling

A new pipeline may often turn out to be an extension of a previously modeled pipeline. For

example, we may encounter a pipeline with n+ 1 hash-joins after having previously modeled

the n hash-joins scenario. In this situation, it would be beneficial if the existing model could be

incrementally extended to handle the additional join operator. Our preliminary assessment of

this issue has yielded promising results in the case of hash-join sequences, as explained next.

We initially analyzed a pipeline with a sequence of two hash joins terminated by a sort

operation, coming up with the following model, where O1 and O2 are the output sizes of the

two hash joins:

PP2 = 45.384 + 5.556× 10−5 ×R2 − 1.302× 10−4 ×R1 (5.1)

This model was then generalized to the case of n+1 (n ≥ 2) hash-joins through the recurrence

shown in Equation 5.2:
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PeakPowern+1 = K × PeakPowern + Cn+1 +An+1 ×Rn+1 (5.2)

where On+1 denotes the output size of the additional hash join, Cn+1 and An+1 being the

associated parameter coefficients; PeakPowern denotes the peak power of the same pipeline

with n hash joins, and K reflects the “back-pressure” impact of the additional join on the

upstream operators. Note that the number of training instances constructed for these inductive

equations are much fewer than those required for the corresponding native “developed-from-

scratch” model since now the equation is predefined and only the values of the coefficients

have to be identified.

Based on the above approach, the following equations were developed for pipelines with

sequences of 3, 4 and 5 hash-joins (with PP used as shorthand to denote PeakPower):

PP3 = −26.214 + 0.71× PP2 + 8.326× 10−4 ×R3 (5.3)

PP4 = 2.28 + 0.71× PP3 + 9.28× 10−4 ×R4 (5.4)

PP5 = 26.714 + 0.71× PP4 + 2.01× 10−4 ×R5 (5.5)

The prediction quality of each of these recurrence-based models is shown in Table 5.1, for

a variety of test-cases. We observe from the results that the relative error is always within 15%.

Further, for reference purposes, the accuracy of the associated native model is also given in

Table 5.1. We observe that the accuracies of both models are comparable, while the training

overheads for the inductive model are considerably lower than those of the native model.

5.2 Multi-query Workloads

So far, we considered the TPC-DS queries to be executing one at a time, in isolation. In

practice, however, there may be multiple queries that are concurrently executing and exercising

the system resources, and an interesting research problem is to investigate how the single-query
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Table 5.1: Inductive Modeling Accuracy

Test Inductive Observed Peak Native
Query Prediction (W) Power (W) Prediction (W)

3 Hash Join Pipeline
Test1 36 42 34.8
Test2 53 47 42.6
Test3 10 12 11.8

4 Hash Join Pipeline
Test1 49.7 50 46.1
Test2 10 10 13

5 Hash Join Pipeline
Test1 60.8 61 53.7
Test2 16.3 18 17.3
Test3 40 47 43.2

models could be extended to accurately capture multi-query environments.

To assess the above, we carried out exploratory experiments with two concurrent queries.

Our initial results suggest that if the queries are “data-disjoint”, that is, they do not share

inputs, then the peak power of the combined workload can be approximated by merely taking

the maximum of the independent peak powers of the two queries. This is because only a single

pipeline is in execution at any given time in EngineC, independent of the number of concurrent

queries.

On the other hand, if the two queries share part of their inputs, then some of the leaf

pipelines may behave like memory-resident internal pipelines due to one query bringing into

memory the inputs required by the other. In this scenario, it is hard to know in advance the

temporal sequencing between interacting pipelines, especially if they start at staggered time

instants. Therefore, we assume the worst-case – that is, where all input-sharing pipelines are

modeled as memory-resident internal pipelines instead of leaf pipelines. With this assump-

tion, we found that we were always able to provide an upper bound on the actual peak power

consumed during the concurrent execution.
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5.3 Incorporation in Engine

As mentioned previously, we have treated the database engines as black boxes, using only

the functions available in their query processing APIs for developing our models. The limita-

tions of this outside-the-engine approach are that we are never precisely sure about when one

pipeline ends execution and another begins, or as to which operators are executing concurrently

– in a nutshell, all our attributions are through inference. It would therefore be instructive to

implement the model within a public-domain database engine such as PostgreSQL and as-

sess how the additional information that becomes available to such an implementation can be

leveraged to further improve the models.

5.4 Incorporation in Optimizer

We could also envisage a scenario where the query optimizer is given a specific peak power

budget and asked to produce a time-efficient query execution plan that adheres to this budget.

There are two approaches that could be taken here:

• Produce the most time-efficient plan as usual, and then identify whether one or more

pipelines within this plan would violate the specified power budget. If so, then replace

only the violating pipelines with acceptable greener alternatives.

• Use the power budget as a pruning mechanism for the enumeration carried out during

the standard dynamic programming exercise to find the best plan, and thereby ensure

that the final plan output by the optimizer automatically adheres to the budget.
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Related Work

Over the last decade, issues related to power and energy consumption have attracted consid-

erable attention from the research community, fuelled by technological advances, environ-

mental concerns and mobility considerations. The prior literature can be classified into two

broad categories: (a) Hardware techniques intended for developing power-conscious compu-

tational platforms, and (b) Software techniques intended for programming power-conscious

systems/application software. In this chapter, we review the salient highlights of this related

work, covering power-aware database systems in most detail.

6.0.1 Hardware Techniques

In the early work of [13], hardware idleness was monitored by the operating system and a pol-

icy of powering down currently unused components was shown to provide significant power

savings. Similar OS-driven energy reduction techniques, such as fine-grain adjustment of the

clock speed, were discussed in [27, 29]. Making application server farms energy efficient

through techniques such as dynamic voltage scaling have been analyzed through simulation

in [8]. Compiler-directed schemes for reducing cache power consumption by turning off

idle memory modules, and by modifying data transfer patterns across the memory hierar-

chy, are presented in [17]. Recently, [19] carried out a detailed survey to identify the most

power-intensive components of data centers, and recommended strategies to reduce this bur-

den through changes in the hardware components and their organization.
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6.0.2 Software Techniques

Many applications possess a variety of execution paths to choose from in order to accomplish a

given computational task, and software techniques that determine how applications can adjust

their behavior according to the power-state of the underlying systems have been developed dur-

ing the last few years. The need for incorporating power-awareness in database systems was

keenly recognized and highlighted in the 2008 Claremont research vision report [2]. A vari-

ety of recent projects, primarily arising in industrial research labs, address such power-related

issues. For example, an external sort benchmark called Joule-Sort was developed in [22] for

holistically evaluating the energy efficiency of computer systems, with the metric being the

number of records sorted per joule of consumed energy. The energy-performance tradeoffs of

a variety of spatial access methods in memory-resident databases, typical of mobile systems,

is profiled in [4]. Extensive empirical results on power consumption patterns in commercial

database platforms are reported in [19]. A simple peak power model is built by summing name-

plate power values of all the components, and this model is used to analyse power performance

trends on TPC-C benchmark environment [32]. A common theme in all these prior efforts is

that their attention is primarily focused on leveraging hardware opportunities, whereas our

work attempts to analyze the problem from the software perspective.

In the last couple of years, the re-engineering of database optimizers to gain power effi-

ciency has been increasingly viewed as a promising approach. For example, software develop-

ers are challenged in [10] to develop energy-efficient databases through reworking optimiza-

tion choices, scheduling algorithms, physical database design and database update techniques.

These thoughts were echoed in the visionary views of [11] wherein experimental evidence was

provided to demonstrate that current query optimizers may not choose energy-efficient plans.

Energy-aware enhancements through leveraging system-wide tuning knobs and query opti-

mizer parameters are suggested, and the need for rethinking database algorithms and policies

is emphatically made.

There has also been some explicit work on modifying the database query optimizer to
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choose more energy efficient query plans. Interestingly, the first such attempt was in [3], al-

most two decades ago. Here, the goal is to increase the effective battery life of mobile comput-

ers by selecting energy-efficient query plans, using a energy predictor model developed from

optimizer cost estimates and system parameters. Since a client-server framework is assumed,

their emphasis is on optimizing the network throughput and overall energy consumption. More

recently, plan-based energy management schemes for memory-resident databases on banked

memory architectures were proposed in [18]. Here, query execution plans are explicitly aug-

mented with turn on/off instructions for individual memory banks, and these plans are then

restructed and regrouped to gain energy efficiency. A simulation-based study of the scheme

indicated a good potential for improvements but these results are yet to be validated on real

systems.

The study of average power behavior in database query optimizers presented last year in

[28], is perhaps the closest to our current work. Here, opportunities for power savings in cur-

rent database optimizers are initially highlighted. Then, the query optimizer is modified to

take power costs explicitly into account with an average consumption power model developed

on the lines of PostgreSQL’s cost model. In a concurrent research study, a thorough inves-

tigation of both hardware and software knobs to improve energy efficiency on PostgreSQL

and a commercial database engine, was presented in [24]. Interestingly, and contrary to [28],

they found that the best performing configuration is the most energy efficient configuration as

well. Our own experience has also been the same, corroborating these results. Finally, they

also highlight the potential for using software mechanisms to cap peak power consumption of

database systems, and our work attempts to substantiate these views in a quantitative manner

on industrial-strength platforms.



Chapter 7

Conclusions

We have investigated here, for the first time, the peak power behavior of modern database

engines when processing complex SQL queries. Our “black box” study of a representative set

of popular engines on the TPC-DS benchmark shows that the peak power consumption could

be quite significant, covering the entire dynamic range of the underlying computing platform,

which in our case was 80 watts. The results also bear testimony that the peak power behavior

could be quite different to the corresponding average power behavior, highlighting the need

for studying these metrics separately.

We proposed a pipeline-based model for predicting the peak power consumed by query

execution plans, developed through step-wise linear regression over some carefully chosen

sets of training examples. Our initial experimental results indicate that this model, which only

uses generic plan parameters as inputs, is reasonably accurate in its predictions. It can therefore

be a useful tool in designing database engines that robustly handle worst-case scenarios.

Through the development of “power diagrams”, we also demonstrated how parametric op-

timal plan sets often throw up power-efficient alternatives to the optimizer’s original choice

without materially compromising the query running times. This observation serves to encour-

age the design of query optimizers that organically include power characteristics as a selection

metric during their exploration of the plan space.
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