
Balancing Money and Time for OLAP Queries on Cloud

Databases

A THESIS

SUBMITTED FOR THE DEGREE OF

Master of Science (Engineering)

IN THE

Faculty of Engineering

BY

Rafia Sabih

Department of Computational and Data Sciences

Indian Institute of Science

Bangalore – 560 012 (INDIA)

November, 2016

Declaration of Originality

I, Rafia Sabih, with SR No. 06-02-00-10-21-13-1-10500 hereby declare that the material

presented in the thesis titled

Balancing Money and Time for OLAP Queries on Cloud Databases

represents original work carried out by me in the Department of Computational and Data

Sciences at Indian Institute of Science during the years 2013-16.

With my signature, I certify that:

• I have not manipulated any of the data or results.

• I have not committed any plagiarism of intellectual property. I have clearly indicated and

referenced the contributions of others.

• I have explicitly acknowledged all collaborative research and discussions.

• I have understood that any false claim will result in severe disciplinary action.

• I have understood that the work may be screened for any form of academic misconduct.

Date: Student Signature

In my capacity as supervisor of the above-mentioned work, I certify that the above statements

are true to the best of my knowledge, and I have carried out due diligence to ensure the

originality of the report.

Advisor Name: Advisor Signature

1

c© Rafia Sabih

November, 2016

All rights reserved

DEDICATED TO

The One

who resides above all clouds and balances everything beneath it

Signature of the Author: .

Rafia Sabih

Department of Computational and Data Sci-

ences

Indian Institute of Science, Bangalore

Signature of the Thesis Supervisor: .

Jayant R Haritsa

Professor

Department of Computational and Data Sci-

ences

Indian Institute of Science, Bangalore

Acknowledgements

I can neither begin nor complete this acknowledgment without thanking Prof. Jayant Haritsa

for his utmost sincerity and support during the course of this work. Working with him was

both pleasure and privilege. Among many things I learned from him, the importance of humor

and humility is the most profound one.

Just like my time in IISc, this experience could not have been this great without the support

of Anshuman. Though I find thanks a small word to express my gratitude for you, but being

short on vocabulary, thanks for your critical and honest comments on almost everything. I also

thank some of my dear friends who helped me throughout my stay in IISc, specially Vineet

for all those encouragement and ‘I share the pain’ sessions. On a lighter note, thanks a ton

Pankhuri and Vibhuti for never believing that we all will live upto this day, and we lived each

day as the last day together (credits to Vibhuti). Thank you my namesake for your warm

friendship and adding an amazing experience in my life. Not to be missed, DSL-ites, thanks a

lot for everything.

Lastly, Jazak Allahu Khayran to my parents, siblings, and Sheez for their endless support.

Cheers!

i

Abstract

Enterprise Database Management Systems (DBMSs) have to contend with resource-intensive

and time-varying workloads, making them well-suited candidates for migration to cloud plat-

forms – specifically, they can dynamically leverage the resource elasticity while retaining af-

fordability through the pay-as-you-go rental interface. The current design of database engine

components lays emphasis on maximizing computing efficiency, but to fully capitalize on the

cloud’s benefits, the outlays of these computations also need to be factored into the planning

exercise. In this thesis, we investigate this contemporary problem in the context of industrial-

strength deployments of relational database systems on real-world cloud platforms.

Specifically, we consider how the traditional metric used to compare query execution plans,

namely response-time, can be augmented to incorporate monetary costs in the decision process.

The challenge here is that execution-time and monetary costs are adversarial metrics, with a

decrease in one entailing a rise in the other. For instance, a Virtual Machine (VM) with rich

physical resources (RAM, cores, etc.) decreases the query response-time, but is expensive with

regard to rental rates. In a nutshell, there is a tradeoff between money and time, and our

goal therefore is to identify the VM that offers the best tradeoff between these two competing

considerations. In our study, we profile the behavior of money versus time for a given query, and

define the best tradeoff as the “knee” – that is, the location on the profile with the minimum

Euclidean distance from the origin.

To study the performance of industrial-strength database engines on real-world cloud infras-

ii

Abstract

tructure, we have deployed a commercial DBMS on Google cloud services. On this platform, we

have carried out extensive experimentation with the TPC-DS decision-support benchmark, an

industry-wide standard for evaluating database system performance. Our experiments demon-

strate that the choice of VM for hosting the database server is a crucial decision, because: (i)

variation in time and money across VMs is significant for a given query, (ii) no one VM offers

the best money-time tradeoff across all queries.

To efficiently identify the VM with the best tradeoff from a large suite of available configura-

tions, we propose a technique to characterize the money-time profile for a given query. The core

of this technique is a VM pruning mechanism that exploits the property of partially ordered

set of the VMs on their resources. It processes the minimal and maximal VMs of this poset

for estimated query response-time. If the response-times on these extreme VMs are similar,

then all the VMs sandwiched between them are pruned from further consideration. Otherwise,

the already processed VMs are set aside, and the minimal and maximal VMs of the remaining

unprocessed VMs are evaluated for their response-times. Finally, the knee VM is identified

from the processed VMs as the one with the minimum Euclidean distance from the origin on

the money-time space. We theoretically prove that this technique always identifies the knee

VM; further, if it is acceptable to find a “near-optimal” knee by providing a relaxation-factor

on the response-time distance from the optimal knee, then it is also capable of finding more

efficiently a satisfactory knee under these relaxed conditions.

We propose two flavors of this approach: the first one prunes the VMs using complete

plan information received from database engine API, and named as Plan-based Identification

of Knee (PIK). On the other hand, to further increase the efficiency of the identification of the

knee VM, we propose a sub-plan based pruning algorithm called Sub-Plan-based Identification

of Knee (SPIK), which requires modifications in the query optimizer.

We have evaluated PIK on a commercial system and found that it often requires processing

for only 20% of the total VMs. The efficiency of the algorithm is further increased significantly,

iii

Abstract

by using 10-20% relaxation in response-time. For evaluating SPIK , we prototyped it on an

open-source engine – Postgresql 9.3, and also implemented it as Java wrapper program with

the commercial engine. Experimentally, the processing done by SPIK is found to be only 40%

of the PIK approach.

Therefore, from an overall perspective, this thesis facilitates the desired migration of enter-

prise databases to cloud platforms, by identifying the VM(s) that offer competitive tradeoffs

between money and time for the given query.

iv

Contents

Acknowledgements i

Abstract ii

Contents v

List of Figures viii

List of Tables x

1 Introduction 1

1.1 An Introduction to Cloud Framework . 2

1.2 Benefits for Databases in Cloud . 5

1.3 Conflicting Objectives for Cloud Databases: Money and Time 6

1.4 Traditional Versus Cloud Query Processing Model 8

1.5 Contributions . 8

1.6 Organization . 11

2 Survey of Related Research 13

2.1 Query Processing for Cloud Platforms . 13

2.1.1 Multi-objective Query Optimization (MOQO) 14

2.1.2 Resource Provisioning for Cloud Databases 17

v

CONTENTS

2.2 Our Problem Focus . 18

3 Problem Framework 20

3.1 Preliminaries . 20

3.1.1 Bi-objective Optimization Problem . 20

3.1.2 Concept of Dominance and Pareto-Optimality 21

3.1.3 Concept of Knee . 22

3.2 Problem Formulation . 23

3.3 Notations . 27

4 Database Performance on the Cloud Platform 28

4.1 Experimental Setup . 29

4.1.1 Cloud Platform Details . 29

4.1.2 Database and DBMS Setup . 30

4.2 Empirical Results . 31

4.2.1 Execution Time Experiments . 31

4.2.2 Compile Time Experiments . 35

4.2.3 Conclusions . 38

5 A Plan-based Approach to Identify the Knee VM 42

5.1 Partial Order on the Virtual Machines in RS . 44

5.2 Locating Virtual Machines on XTS . 46

5.3 Plan-based Identification of Knee (PIK) . 48

5.3.1 Preprocessing . 48

5.3.2 Identifying Potential Pareto-optimal VMs 48

5.3.3 Characterizing the Knee VM . 51

5.4 Guarantees on the Knee VM . 53

5.5 Summary . 54

vi

CONTENTS

6 Empirical Evaluation of PIK 56

6.1 Experimental Framework . 56

6.2 Performance of PIK . 57

6.2.1 Performance Microanalysis . 59

6.2.2 Effect of Time Threshold . 62

6.3 Summary . 65

7 Identification of the Knee VM: A Sub-plan based Approach 67

7.1 Traditional Query Optimizer . 68

7.2 Repetitive Sub-plans Across VMs . 69

7.3 Sub-Plan-based Identification of Knee (SPIK) 73

7.3.1 Challenges in the Sub-Plan-based Approach 73

7.3.2 Complete SPIK Algorithm . 76

7.4 Empirical Evaluation . 78

7.4.1 Performance metric . 78

7.4.2 Results on Postgresql . 79

7.4.3 Results on ComOpt . 86

7.4.4 Summary . 87

8 Conclusions and Future Work 89

8.1 Future Work . 91

Bibliography 93

Appendix A : 98

vii

List of Figures

1.1 Service models of cloud computing . 3

1.2 Expected money-vs-time profile of a query on the cloud 7

1.3 Performance of TPC-DS query 55 on the Google cloud platform 10

3.1 Pareto-front and knee solution in objective space 22

3.2 Concept of dominance in variable space . 25

3.3 Variable space for the VMs available on GCE 25

4.1 Execution time plot of DI-DSQ-52 . 33

4.2 Execution time plot of DI-DSQ-55 . 33

4.3 Execution time plot of DI-DSQ-71 . 34

4.4 Execution time plot of AI-DSQ-24 . 34

4.5 Execution time plot of AI-DSQ-67 . 35

4.6 Compile time performance of TPC-DS queries on DI 36

4.7 Compile time performance of TPC-DS queries on AI 37

4.8 Plan structure for DI-DSQ-6 on different VMs 40

4.9 Plans of AI-DSQ-24 on different VMs . 41

5.1 Concept of weaker and stronger VMs than a given VM 45

5.2 Hasse diagram of the VMs available on GCE . 46

5.3 Regions for the stronger/weaker VMs on the XTS for a given VM 47

viii

LIST OF FIGURES

5.4 Quality of the VM obtained by the algorithm 54

6.1 Performance summary of PIK . 59

6.2 Effect of λT on DI . 63

6.3 Effect of λT on AI . 63

6.4 Effect of λT for DI-DSQ-6 . 65

6.5 Effect of λT for DI-DSQ-52 . 66

7.1 DP based approach . 69

7.2 Query plans for DI-DSQ19 across VMs . 71

7.3 Query plans for AI-DSQ-24 across VMs . 72

7.4 Plan information of VMs required at higher nodes might be missing 74

7.5 A VM dominated at lower levels may be Pareto-optimal at higher nodes 75

7.6 Performance of SPIK on Postgresql 9.3 . 82

7.7 Query plans of DI-DSQ-45 . 83

7.8 Query plans of AI-DSQ-61 . 84

7.9 Effect of λT on SPIK for ComOpt . 87

ix

List of Tables

2.1 Related work at a glance . 19

3.1 Notations used in this thesis . 27

4.1 VMs available on GCE . 30

4.2 General behavior of operators with variations in hardware parameters 38

6.1 Performance of PIK on TPC-DS benchmark queries 60

6.2 Microanalysis of AI-DSQ-14 with λT = 0 . 61

6.3 Microanalysis of AI-DSQ-3 with λT = 0 . 62

6.4 Microanalysis of AI-DSQ-67 with λT = 0 . 62

6.5 Microanalysis of AI-DSQ-3 with λT = 10% . 64

6.6 Microanalysis of AI-DSQ-14 with λT = 10%, 20% 64

6.7 Microanalysis of AI-DSQ-14 with λT = 30% . 64

7.1 Cardinality of POS for TPC-DS queries on Postgresql 9.3 83

7.2 Computation overheads of SPIK . 85

7.3 Comparison of σ for PIK and SPIK on ComOpt 87

x

Chapter 1

Introduction

Cloud computing has emerged as a new force multiplier in the last decade, and has caused

a paradigm shift in the IT industry. Among its many features, on-demand availability and

pay-as-you-go scheme are pivotal towards its popularization. Cloud platform provides a wide

range of units, comprising of applications, infrastructure, and complex software systems, on

a rental basis. Consumers can select resources as per their requirements from a large pool

available with the chosen cloud provider, and pay only for the resources selected. Benefits of

the pay-as-you-go scheme are achieved best when the selected resources optimize the monetary

expenditure and execution-time of the user-application.

Relational Database Management Systems (RDBMSs) have to contend with resource-intensive

and time-varying workloads, making them promising candidates for migration to cloud plat-

forms. When setup on the cloud, RDBMS would be highly scalable: the hardware configuration

of the database server can be modified on the go. Moreover, cloud providers perform complex

hardware/software maintenance tasks of database servers, thereby provisioning an easy-to-use

interface to consumers. However, to leverage the most from this new infrastructure paradigm,

existing database systems need to be modified. Traditional database systems aim at minimizing

query response-time, but the pay-as-you-go scheme of the cloud makes monetary expenditure

1

of query execution an additional concern to users. Therefore, we need to modify database sys-

tems, such that both query response-time and total money expenditure are considered while

query processing, which is the focus of this thesis.

This chapter starts with an introduction of cloud computing and description of relevant

terminology. Next, we discuss advantages of migrating RDBMS to cloud platform. Further, we

analyze the challenges involved in the shift of RDBMS from the static setup to the on-demand

and dynamic platform of cloud. Finally, we mention the contributions and organization of the

thesis.

1.1 An Introduction to Cloud Framework

A well accepted definition for cloud computing is given by U.S. NIST (National Institute of

Standards and Technology) [21]: “computing is a model for enabling convenient, on-demand

network access to a shared pool of configurable computing resources (e.g., networks, servers,

storage, applications, and services) that can be rapidly provisioned and released with minimal

management effort or service provider interaction.” In other words, cloud computing is an

easy to access Internet based model with a large pool of configurable computing resources. It

enables easy sharing of computing power among a number of users, satiating demands of each by

keeping lower-level details of resource scheduling, etc. oblivious to consumers. Cloud providers

assign resources to users as per their requirements, keeping physical resources invisible to them

as if obscured in the cloud, and hence the name cloud computing. Pay-as-you-go scheme of

this model makes computing resources rentable units, just like our other necessities of water,

electricity, gas, etc. It also helps in reducing the upfront infrastructure cost for enterprises and

makes computing power an economical resource to reach the masses.

Next, we describe some relevant terminology of cloud computing.

Service models of cloud: Clouds are generally explained as a stack of services. Three most

popular service models offered by the cloud providers [6, 7] are shown in Figure 1.1:

2

Figure 1.1: Service models of cloud computing

• Software-as-a-Service (SaaS): The first in the stack is Software-as-a-service model,

providing easy access to the application software. Management of complete infrastructure

and required setup is taken care by cloud providers. With pay-as-you-go scheme, users

are charged only for the application and the duration of usage. As Figure 1.1 illustrates,

an end-user is relieved from the responsibility of configuring and maintaining the system,

hence, this model is often referred to as software on demand. Applications using this

service model can be easily accessed from around the globe, irrespective of user’s location.

Additionally any required update or upgrade in any layer of the software stack is taken

care by the vendor. Some of the common examples of this model are Gmail, Google docs,

Microsoft online services, etc.

• Platform-as-a-Service (PaaS): This model provides an accessible environment to de-

velop and provide web-applications without getting into the complexities of buying and

managing the required infrastructure. With PaaS, web-developers are free to work on

3

the application development alone and the cloud provider takes care of lower level sys-

tem details as shown in Figure 1.1. The main difference between SaaS and PaaS service

models is that former facilitates hosting of user-applications whereas latter provides the

required application development environment. Examples of this service model include

Google App engine, Azure service platform, etc.

• Infrastructure-as-a-Service (IaaS): Infrastructure-as-a-Service model enables users

to choose/construct virtual machines from a large set of system configurations to suit

their requirements [2]. These configurations differ in the tradeoffs they provide between

processing capability and monetary investment. This model allows consumers to modify

their rented resources (RAM size, CPU cores, etc.) as per demands. This particularly

helps when number of requests to an application fluctuates with time. With no up-

front infrastructure investment and hardware maintenance overheads, IaaS is helping

new enterprises to flourish. Examples: Google Compute Engine, Amazon Web Services,

etc.

Virtual Machines (VM): The concept of virtualization is used extensively in cloud computing

to create an illusion of infinite resources [9]. The mapping of virtual resources to the physical

ones enables cloud vendors to provide virtual machines of requested configuration. These VMs

might share the underlying resources, but to the user they appear as a single unit. Thus, cloud

is a setup of numerous computing resources which are available to end-users as smaller virtual

units.

Rental rates and pricing policies: The VM configuration selected by a user determines its

rental rate. Rental rate together with pricing policy of vendor, accounts for total monetary

expenditure of the user. Some of the most popular pricing policies offered by current cloud

providers [2, 5, 6] are per-minute, per-hour, per-month, etc. Policies like per-minute and per-

hour are preferred for tasks of shorter duration. However, when the applications are long

4

running, user gains additional monetary savings with per-month pricing. Other attractive

policies like sustained discount offers extra savings if the rented resources are heavily used.

Moreover, for load sharing at peak hours, consumers can utilize spot or preemptible instances

[1, 4]. Instead of fixed rental rate, spot instances are available at bidding, these instances are

accessible to the consumer till her bid is highest.

1.2 Benefits for Databases in Cloud

Before migrating to cloud, it is customary to check the offerings of the platform with respect

to requirements. Some noteworthy benefits of migrating RDBMSs to the cloud setup are as

follows:

• No maintenance overheads: Users are freed from maintenance issues of database

servers, such as wear-tear of machines or software, hardware/software upgradation, etc.

Thus, the overall maintenance expenses, including air-conditioning, power, etc., are taken

care of by the cloud providers. Additionally, cloud vendors prevent total loss of data in

the events of natural disasters, etc., by data replication across locations. Otherwise, such

replication might be a costly affair for enterprises.

• Scalability: On-demand availability of resources allows on-the-fly modifications of VM

configuration with fluctuations in requirements. This is useful for databases: at peak

hours users can rent high end resources, and free them when demand falls. It is expected

that such dynamic modifications in configurations would help in overall financial savings.

• Location independence: Cloud framework is a web-based model, this makes our data

easily available in different physical regions. Data collection, team collaboration, etc., can

be easily carried out irrespective of the residential location of data or users.

• Economical: Previously, setting up the infrastructure, maintenance of data servers,

etc., required huge upfront investment by enterprises. It is reduced to several cents with

5

pay-as-you-go scheme of cloud, making computing resources rent-able units. This model

encourages start-up culture, as now infrastructure is available on-demand, and developers

have almost any system configuration at their disposal.

To summarize, cloud framework is in vogue because of its flexible, scalable and on-demand

nature that is oriented towards self-service and easy management. Databases are good candi-

dates for migration to the cloud as they exhibit varied workload requirements, huge maintenance

overheads, and high infrastructural demands. There might be queries that have response-times

varying from minutes to hours depending on the underlying system configuration; addition-

ally, individual query requirements may also differ greatly, resulting in poor performance of

some queries when a configuration is fixed for the entire workload. Therefore, availability of an

on-demand infrastructure is beneficial for setting up a database server.

1.3 Conflicting Objectives for Cloud Databases: Money

and Time

Typically, one of the main concerns of end-users on the cloud are money and time required for

their query execution. This resulted into a significant amount of work on the optimization of

money and time for the database queries on the cloud in recent years [22, 28, 29].

Naturally, to optimize the query response-time we can rent a VM with higher resources.

However, as the resources of the VMs increase so do their rental-rates, which eventually increases

their total monetary expenditure. The expected behavior of VMs on money versus time space

for a given query is shown in Figure 1.2. For the expensive VMs, query response-time is low,

but money expenditure is high, similarly, for cheaper VMs required monetary investment is less

but the response-time of the query is high.

In essence, total money expended and query response-time are conflicting in nature, and

a tradeoff exists between the two objectives. Hence, simultaneous optimization of both is not

possible. We will present the empirical evidence of such a behavior on real-world cloud platform

6

with a commercial engine and benchmark queries, in Chapter 4.

Observe that in Figure 1.2, all the Pareto-optimal VMs give lesser value for both the objec-

tives as compared to the dominated VMs. But, among the Pareto-optimal VMs, each VM is

lesser in one but greater in other objective, hence, none is better than the other. However, the

VM marked as the “knee” in green, balances the two objectives – further decrement in the mon-

etary expenditure comes at the high expense of response-time; and for a minuscule improvement

in time, substantial money has to be expended. Therefore, in this thesis we aim at finding the

VM with best tradeoff, also referred as the knee VM for the given query. The mathematical

notion of domination, Pareto-optimality, knee, etc. is discussed later in Chapter 3.

Note that for this thesis we consider the reservation-based rental policy i.e. the users are

charged for the resources reserved irrespective of how much of these resources are actually

used. Also, it is one of the most popularly used rental policy by the current cloud providers

[3, 5]. Additionally, this thesis targets the scenario only when money and time are conflicting

objectives.

Figure 1.2: Expected money-vs-time profile of a query on the cloud

7

1.4 Traditional Versus Cloud Query Processing Model

In traditional query optimization, an execution plan with minimum response-time is identi-

fied for the given query; underlying system, database schema, etc. are fixed in this setup.

Evidently, hardware parameters are treated as constants in such setups. It is justified there,

because configuration of the underlying system largely remains the same. Precisely, as given in

Equation 1.1, query plan is a function of the given query, database and the underlying system.

Query P lan = f(Query,Database, System) (1.1)

Cloud provides a flexibility of choosing a VM that is best suited for our query requirements,

from a large pool of configurations. To know the performance of a query on a number of different

VMs, the execution plan of query on all of these VMs are required. One alternative for this is

to include system configuration as a variable parameter in query processing. Thus, changing

the overall model of query optimization. For this new model, the query plan is a function of

only the given query and database as given in Equation 1.2.

Query P lanC = f ′(Query,Database, Cloud) (1.2)

Where, a query plan Query PlanC is identified alongwith a VM, which balances the monetary

investment and execution-time of the query. Note that unlike the traditional setups, here the

underlying system is not fixed, instead a set of VM configurations available on the cloud platform

is considered by the query optimizer. Additionally, the goal of cloud query optimizer is to find

the query plan that provides the best tradeoff between monetary investment and response-time.

1.5 Contributions

In this thesis, we consider how the traditional metric used to compare query execution plans,

namely response-time, can be augmented to incorporate monetary costs in the decision process.

Since, there is a tradeoff between money and time, our goal therefore is to identify the VM

configuration that offers the best tradeoff between these two competing considerations.

8

Database Performance on Real-world Cloud Platforms

To study the performance of modern database engines on available cloud platforms, we test a

popular commercial database engine – ComOpt 1 on the Google cloud platform for a repre-

sentative set of queries sourced from the TPC-DS decision-support benchmark. An exemplar

money-vs-time plot is shown in Figure 1.3 for Query 55 of the benchmark – in this figure, the

red dots denote Pareto-optimal VMs, whereas the one labeled in green is the knee VM.

Some of the notable observations from these experiments include that:

• There are VMs requiring large monetary investments but their query performances are

similar to that of substantively cheaper configurations. For instance, in Figure 1.3, the

VMs [104 GB RAM, 16 core] and [60 GB RAM, 16 core], both complete the query in

around 22 minutes, but the monetary expenditure on the former is close to twice that of

the latter.

• There are VMs whose monetary investments are comparable, but the variation in their

response times for a query is significant. For example, in Figure 1.3, both the VMs [30

GB, 8 core] and [6 GB, 1 core] entail a payment of 10 cents to complete the query, but

the former executes three times faster.

• No single VM acts as the knee across all the queries.

To summarize, our experiments demonstrate that the choice of VM for a user query is a crucial

decision, because: (i) variation in money and time across VMs is significant for a given query,

(ii) no one VM offers the best money-time tradeoff across all queries.

Identifying the Knee VM

A straightforward approach to identify the knee VM from among a large pool of VM config-

urations is to exhaustively enumerate the behavior of the individual VMs. However, this can

1The name of the database engine is masked for legal reasons.

9

Figure 1.3: Performance of TPC-DS query 55 on the Google cloud platform

prove to be inefficient, especially since the process has to be carried out afresh for each new

query, given that the knee VM is query-specific, as highlighted above.

We can do better by observing that the computation power of a VM is a function of its

resources, such as RAM size, number of cores, etc. Specifically, query response-time is an anti-

tone function of the hardware resources, i.e., response-time of a query monotonically decreases

with increase in resources. Leveraging this fact, we propose PIK (Plan-based Identification of

Knee), which exploits this behavior to efficiently identify the knee VM, without requiring any

modifications to the database engine. Specifically, it creates a partial order of the VMs on their

resources, and subsequently uses this poset order, on the money-time space to identify the knee

VM for the query. To estimate the query response-time for different VMs, it uses the query

execution plan available from the database engine’s API on the respective VMs.

The empirical evaluation of PIK on the commercial engine indicates that, for most of the

queries, only 20% of the total available VMs are processed to identify the knee VM. Further,

for most of the queries, the efficiency of the algorithm increases materially when a relaxation

factor of 10-20% is provided with respect to the response-time.

10

Sub-plan-based Identification of the Knee VM

As described above, the PIK algorithm decides the VMs to prune based on information received

in the form of complete query plans from the engine’s API. However, on observing query plans

across VMs, it is often found that sub-plans are repeated. This motivates us to internally

modify the query optimizer such that VMs can be pruned at a sub-plan level also, and increase

the efficiency of knee identification.

We propose sub-plan-based pruning algorithm – Sub-Plan-based Identification of Knee

(SPIK), wherein, at each sub-plan the pruning mechanism of PIK is applied and only the

Pareto-optimal VMs of the node are forwarded to the higher plan-nodes. In a nutshell, by sav-

ing only the Pareto-optimal sub-plans the computation is reduced compared to the complete

plan identification for all the Pareto-optimal VMs. Finally, to ensure that it never misses the

knee VM, the dominated VMs are efficiently analyzed at the sub-plan levels for dominance.

We have prototyped SPIK inside Postgresql 9.3, and also implemented it as a Java wrapper

program with the commercial engine. Our experimental results indicate that the total com-

putation carried out by SPIK is within 40% of PIK approach. Further, the efficiency of the

algorithm increases significantly when a relaxation factor of 20 to 30 % is permitted on the

time axis.

1.6 Organization

The remainder of this thesis is organized as follows, survey of related work is given in Chapter

2, discussing recent advancements in database query processing to leverage benefits of the cloud

platform. Chapter 3 updates the reader on prerequisites, and gives precise problem definition

and required notations for the thesis. This is followed by a detailed study of the performance

of a popular commercial database engine, ComOpt , on the Google cloud platform in Chapter

4. Subsequently, description of the plan-based pruning algorithm –PIK is given in Chapter 5.

Following it is the empirical evaluation of PIK on TPC-DS benchmark database in Chapter 6.

11

To further increase the efficiency of the identification of the knee VM, we propose an algorithm –

SPIK to apply pruning at sub-plan levels in Chapter 7. This chapter also discusses experimental

results of the algorithm on ComOpt as well as on open-source engine – Postgresql 9.3. Finally,

the thesis is concluded in Chapter 8, with discussion on some future avenues of the problem.

12

Chapter 2

Survey of Related Research

Advent of cloud framework encouraged a great deal of activity in database research to utilize

benefits of this new platform. Unlike traditional setups where infrastructure is fixed, in cloud

environment we can modify the infrastructure as per our requirements. This poses the problem

of deciding the best infrastructural setup for given requirements. Additionally, this paradigm

shift encourages rethinking of the database query optimizer model. Earlier, additional metrics

used in query optimization were system throughput, power, robustness, etc., but when migrated

to cloud, financial expenditure also surfaces as an important objective that is largely irrelevant

for the traditional setups.

This chapter presents a survey of some recent work that propose approaches to leverage

benefits of the cloud for database query processing. Thereafter, we discuss change in overall

perspective in database systems with the emergence of cloud technology. We conclude this

chapter, with a discussion on the problem of choosing the infrastructure giving best tradeoff

between money and time, which is the central interest of this thesis.

2.1 Query Processing for Cloud Platforms

In traditional query processing [25], the objective is minimization of optimizer’s cost, which

is an approximation of response-time of the query. The plan with minimum estimated cost is

13

identified from the exponential space of query plans, and used for query execution. However,

when databases are ported to the cloud, consumers become interested in the minimization

of monetary expenditure along with query response-time. Extension of traditional dynamic

programming approach of query optimizer to this bi-objective problem is not straightforward.

Because, with these additional objectives search space might bloat up, resulting in unreasonable

optimization time, or these new objectives violate the basic dynamic programming property

used in the query optimizers [17, 28]. Thus, presenting this challenging bi-criteria optimization

problem for cloud databases.

Research done in query processing for cloud platforms can be divided into two main themes.

One is to use the concepts of multi-objective optimization to consider response-time, money,

etc., as additional objectives for query processing; other being the schemes for resource provi-

sioning to minimize overall money and/or time consumption.

2.1.1 Multi-objective Query Optimization (MOQO)

The use of multi-objective optimization techniques is not new in database query optimization.

Many approaches were developed for simultaneous optimization of other objectives such as

system throughput [17], robustness [8], power-consumption [32] etc. Further, with developments

in cloud technology, monetary cost, attained significance and approaches are proposed to include

them into optimization.

Violation of Principle of Optimality in MOQO

Ganguly et al. proved in their work concerning query optimization problem to minimize the

response-time of the queries with a constraint on the throughput, that multi-objective query

optimization with conflicting objectives cannot be solved by a mere conversion to single objec-

tive [17]. The reason being pruning of plans rely on the single objective principle of optimality.

According to this principle, among two sub-plans for the same output, the one with lower es-

timated response-time is better. On consolidation of all the objectives into one, this principle

14

breaks down. Now, the sub-plans worse in one objective may be better for the other. Ganguly

et al. suggested modifications to keep a set of incomparable sub-plans at each of the plan-node

instead of only one optimal plan. Two plans are incomparable if neither is better than the

other in all the objectives.

The primary challenge in such multi-objective techniques is that, with an increase in the

number of objectives, cardinality of incomparable plans at each node increases, eventually

requiring longer optimization times.

Approximation Schemes for MOQO

To increase efficiency of the algorithm, an approximate algorithm employing a user-defined

approximation parameter (αU) was proposed [28]. In this work, a user provides αU and a

weight vector as the inputs. The weight vector signifies the importance of respective objectives

for the user. Their algorithm – RTA aims at finding the Pareto-optimal set of plans using the

weighted cost of the objectives. Also, they only consider objectives whose cost functions satisfy

the Principle Of Near-Optimality (PONO) that is an extension to the principle of optimality.

The intuitive meaning of the Principle Of Near-Optimality is that, if the cost of the sub-plan

increases by certain percentage then total cost of the plan cannot increase by more than that

percentage. They show that this principle holds for the cost functions that uses sum, maximum,

minimum, or multiplication by a constant, to calculate the cost of the plan. Observe that, in

this thesis we take total money expenditure as the multiplication of query response-time and

rental rate of the VM. Since, the rental rate changes with the VM, PONO would not hold for

the given set of VMs.

Though it is guaranteed that the obtained plan is sub-optimal within the user-defined ap-

proximation factor, it is not ensured if this is the best plan for that cost. Also, it is not

advisable to expect from users to know what value of αU will give the balance between the

latency of the algorithm and quality of obtained plans. Additionally, user would not know

what approximation would keep the optimization time within desired time-frame, since, time

15

taken by optimization algorithm depends on the size of the resultant set of plans. Furthermore,

if the user tries to adapt the cost bounds for the given query, the algorithm starts from scratch

for each such invocation.

Therefore, the same set of authors presented its extension to an incremental anytime algo-

rithm, which starts with a coarse solution and keeps on improving the quality of plans with

iterations, and reuses previous result for further refinement of the output [29].

Solving MOQO for the Query Workload

The aforementioned approaches give the Pareto-optimal plans for a given query, however, in

a more practical setup the requirement would be to balance the two objectives for a given

workload [15]. Additionally, instead of whole Pareto-front as the output, if one plan that

minimizes both the objectives if possible i.e. utopia solution is given, it would suffice for most

of the users. Since, money and time are mutually conflicting objectives, utopia point for them

would not exist. Hence, they aim at finding the knee solution defined as the solution with

minimum Euclidean distance from the utopia point.

They have formulated the problem for distributed databases without replication, where

each sub-database is stored on a different and independent VM. The number and configuration

of these VMs is variable depending on the number of large tables in the database, etc. The

query workload is distributed among the independent copies of the database, depending on the

tables in the copy and those required by the query. Now, among many choices of query plans

pertaining to the tables and the configuration of the VMs, the one acting as the knee of the

Pareto-front is selected. The authors have given a heuristic solution using genetic algorithms

for multi-objective optimization to find the set of VMs which would balance the overall money

and time for the given workload i.e. the knee solution.

The solution given in [15] cannot be used for the work in this thesis because, they extended

the genetic algorithms for multi-objective optimization for their problem. These algorithms

focus on finding the desired solution in the infinite space, without considering the total number

16

of evaluated solutions. Since, they used distributed database setup, they expect an almost

infinite set of solutions. Next, to evaluate a solution they used a simplified model to estimate

response-time of the query. However, for the problem in this thesis we use the centralized

setup and the actual cost-model of the database engine to get better estimates, thus, our aim

is minimizing the number of optimizer calls without deteriorating the quality of the solution.

2.1.2 Resource Provisioning for Cloud Databases

In IaaS service model, vendors provide pre-configured Virtual Machines (VM) as per the re-

quests of the consumer. These VMs are differentiated by the RAM, CPU cores, clock speed,

etc., and users are charged for the resources employed and the duration of usage. In shared

nothing and fully replicated database, likely concern is to select a set of heterogeneous VM

configuration(s) that satisfies workload requirements with minimization of total financial bud-

get [22]. Their approach take a representative workload that specifies query classes along with

query distribution for each class. Server configuration is characterized by a performance vector

for each pair of query class and rate of input for that class. Precisely, this performance vector

consists of three values: input rate for a given query class, monetary cost per query, and cu-

mulative distribution function of latency for given combination of query class and distribution.

They propose two techniques: black-box and white-box resource provisioning. The black-box

approach profiles performance and monetary cost for different types of VMs for varying input

queries, using sample executions. Among the set of VMs in this profile, one with minimum

monetary cost under specified latency-bound is selected for database servers. There is a tradeoff

between input rate of queries and latency, as input rate increases, financial investment per

query goes down because of amortization of money. Similarly, with high input rate, resource

contention increases that results in subsequent increase in latency of queries. Therefore, they

select a server configuration for each query class and given input rate. In their white-box

approach, resources are quantified by a profile on VM configurations. Next, requirements of the

representative workload are studied using explain utility of the database optimizer for different

17

configurations. Lastly, these two profiles are fed to constraint-solver of multi-dimensional bin-

packing problem. The final output is a set of VMs for the given workload, ensuring each query

class gets different server and maintaining user-defined latency bound.

2.2 Our Problem Focus

A summary of similarities and differences between the problem of interest for this thesis and

those discussed in this chapter are as follows:

• System model: Similar to the works in [15, 22], the service model of cloud used in this

work is IaaS. Unlike the other approaches that used replicated database [22], or distributed

database [15], we used a centralized database without replication, wherein database is

partitioned and all data disks attached to the VM of the desired configuration.

• Objectives: Unlike the formulation of Trummer et al. [28, 29], where buffer pool, cache

size, number of cores, etc, were taken as different objectives, we consolidated them into

one – money; considering importance of monetary investment in recent literature [16].

Therefore, we use only two objectives – money and time required by the user-query.

• Input: We solve optimization problem for a given query and not the workload, unlike

the problem formulation in [15, 22]. We know that the formulation for workload is more

practical and consider it as the future extension of this work.

We have used an optional user-defined threshold on time, and do not expect any manda-

tory input as latency bounds [22], approximation parameter [28], or resolution value [29]

from the users.

• Output: Similar to [15], but dissimilar to the interest of [22, 28, 29] our intended output

is a VM configuration which gives the best tradeoff between money and time for the given

query.

18

In short, within the scope of our knowledge there is no direct prior literature for the prob-

lem formulated in this thesis, these differences are summarized in Table 2.1. Though many

approaches have same objectives for cloud databases but with different aim or for the different

input set. However, some have common output but they solved it for a different database or

cloud service model. Moreover, we are aiming at knee as the final output instead of the whole

Pareto-front, which is considered a better preferred choice in literature [10, 13, 24, 27].

Reference System Model Objectives Input Output

[15] Distributed

Database

Time and Money Workload Knee set of

VMs

[22] Shared Nothing

Replicated Database

Time and Money Representative

Workload

A set of VMs

[28] Centralized

Database

Nine objectives

(satisfying PONO)

Query, αU Pareto-front

This thesis Centralized

Database

Time and Money Query, λT Knee VM

Table 2.1: Related work at a glance

19

Chapter 3

Problem Framework

As discussed in the last chapter, this thesis solves the problem of identifying the VM that

balances the two objectives– money and time, for the given query. To acquaint the reader

with the related terms, we provide a background description for the concepts of bi-objective

optimization, Pareto-optimality and knee of the curve. Further, we present details of the

framework including service model of cloud, etc. used in this work. Thereafter, we state precise

problem definition, followed by the table of notations used in the remainder of this thesis.

3.1 Preliminaries

3.1.1 Bi-objective Optimization Problem

As the name suggests, in a bi-objective optimization problem, two objective functions are to

be minimized1. The optimization problem statement for the set S ⊆ Rn of feasible solutions is

as follows [13]:

Minimize { f1 (x), f2 (x) }

subject to x ∈ S

The vector x is formed by n decision variables representing the quantities for which values are

1The maximization problem can also be dealt in a similar way.

20

to be chosen in the optimization problem.

3.1.2 Concept of Dominance and Pareto-Optimality

The notion of optimum is changed in bi-objective optimization problem when the two objective

functions are conflicting in nature, as the problem studied in this thesis; there the commonly

adopted notion of optimum is the one termed as Pareto-optimality. For such instances, the aim

is to find a set of compromised solutions rather than a single optimal solution [11, 12, 18]. The

related definitions are as follows [18]:

Definition 1 Pareto-dominance

A solution x is said to Pareto-dominate another solution y, denoted by x �p y, if and only if

∀i fi (x) ≤ fi (y) and ∃j fj (x) < fj (y) where i, j ∈ { 1,2 }

i.e. a solution Pareto-dominates another solution, if it either gives lower value in both the

objectives, or in atleast one objective when value for other objective is equal.

Definition 2 Pareto-optimality

A solution x∗ ∈ S is Pareto-optimal if and only if

@x ∈ S such that x �p x∗

The definition says that x∗ is Pareto-optimal if there does not exist any feasible solution which

dominates x∗, following Definition 1.

Definition 3 Pareto-optimal set

For a given bi-objective optimization problem, Pareto-optimal set P∗ is defined as:

P∗ = { x∗ | x∗ ∈ S and @x ∈ S, such that x �p x∗ }

In other words, P∗ is the set of all mutually incomparable Pareto-optimal solutions.

Definition 4 Pareto-optimal front

For a given bi-objective optimization problem, Pareto-optimal front PF∗ is defined as:

PF∗ = { (f1(x
∗), f2(x

∗)) | ∀ x∗ ∈ P∗ }

In simpler words, the set of locations of all x∗ ∈ P∗ in the objective space is termed as Pareto-

front. Figure 3.1 shows the objective space, where each axis represents an objective function,

21

and each point in the space denotes a solution. Here, x1 and x2 are Pareto-optimal solutions,

and dominate all solutions in their respective first quadrants. Particularly, in Figure 3.1, x1, x2

∈ P∗ and (f1(x1), f2(x1)), (f1(x2), f2(x2)) ∈ PF∗.

Typically, Pareto-optimal set is given as the solution to the bi-objective optimization prob-

lem [11, 13]. Now, it is the task of the user to select one of these solutions as the final choice,

depending on her requirements.

Figure 3.1: Pareto-front and knee solution in objective space

3.1.3 Concept of Knee

Definition 5 Knee of Pareto-front

A Pareto-optimal solution xi will qualify as the knee if

di :=
√
f1(xi)2 + f2(xi)2 is minimum among all the feasible solutions.

Here di is the Euclidean distance of the solution xi from the origin on the objective space.

In Figure 3.1 the point in green color shows the pictorial representation of the knee for the

given Pareto-front. On tracing left to right a non-increasing L-shaped curve, the points up

to the knee provide significant improvement in f2(x) with minuscule degradation of f1(x),

and the solutions after the knee show tiny improvement of f2(x) with a substantial decay in

22

f1(x). Thus, intuitively it appears that such a point balances the two objectives. In case, there

are more than one solution with equal di and it is the minimum value, all of them would be

considered as the knee solutions.

Also, it is well argued that knee solution is a commonly preferred choice in the obtained

Pareto-front [10, 12, 13, 24]. However, in spite of the established preference for knee solution

there does not exist any standard definition for it in the current literature [24]. Based on the

application or nature of the targeted Pareto-front, different definitions of knee were used [10,

12, 13, 24, 27]. For the purpose of this thesis we employ the definition used in [27], which is

given as Definition 5.

3.2 Problem Formulation

Before we get into the precise problem definition, it is necessary to discuss the service model of

the cloud, and other framework related details used in this work.

Infrastructure-as-a-Service model (IaaS): As discussed in Chapter 1, there are a number

of different service models like IaaS, PaaS, SaaS, etc. currently available with a number of

cloud providers [6, 7]; for this work, we are using IaaS provided by Google that is commonly

referred as Google Compute Engine (GCE) [2]. GCE offers a pool of infrastructure in the form of

resource parameters, viz., the user can choose number of cores, CPU speed, RAM size, operating

system, hard disk size, speed, etc. A combination of these configuration parameters denotes

a Virtual Machine (VM) which can be rented for the desired duration. There is flexibility of

modifying these parameters as per the requirements. Also, every VM has a fixed rental rate

given by Google, which depends on the configuration of the rented VM. Among multiple pricing

mechanisms available we used per minute policy.

Monetary cost: Total money charged to the users is calculated using the rental rate of the

resources and the duration of rent.

Total Money Expenditure = Timei × Rental Rate of VMi, (3.1)

23

where VMi is the VM reserved by the user and Timei denotes the duration for which she rented

it.

Certainly, as we configure a VM with more resources i.e. employ a CPU with higher pro-

cessing speed, or more number of cores, or with a larger RAM, the associated rental rate of

the VM increases. Like most applications, database queries also show a decrease in the query

response-time with the increase in resources. Hence, it is likely that as we try to decrease query

response-time by increasing resources, the total money required would increase. This leads

to the need of minimizing two conflicting objectives – query response-time and total money

expenditure.

Variable space: For this optimization problem, the variable space is the set of all the VMs

available with the chosen cloud provider. As shown in Figure 3.2, each dimension of this space

denotes a resource parameter, and every location in the space is an available VM. A VM Pareto-

dominates other in the variable space if it is higher in all the resources than other, which is

inverse to the Pareto-dominance in the objective space. For example, in Figure 3.2, all the

other black colored VMs are Pareto-optimal, particularly, VM1 and VM2 dominate every VM in

their respective third quadrants and are Pareto-optimal. In the remainder of this thesis we use

Resource Space (RS) to denote the variable space and total money eXpenditure vs Time Space

(XTS) for the objective space. The RS for GCE is given in Figure 3.3, where the dimensions are

RAM size and the number of cores, the red points in the plot are the VMs available on GCE.

For this work, we are using only two dimensional variable space, however the idea of dominance

is extensible to any number of dimensions.

Problem definition: For a given set of Virtual Machines (VM), a query Q, and objective

functions MoneyQ (VMi) and TimeQ (VMi), the formal problem statement is

Minimize { MoneyQ (VMi), TimeQ (VMi) }

subject to VMi ∈ VM

The notation VM stands for the set of all Virtual Machines available with the chosen cloud

24

Figure 3.2: Concept of dominance in variable space

Figure 3.3: Variable space for the VMs available on GCE

provider. Each VMi ∈ VM is a vector of resources, i.e. VMi = [RAM, Cores, ...].

We know that objectives – time and money are mutually conflicting, hence, their simulta-

neous minimization is not possible. Therefore, we aim at identifying the knee VM as our final

25

output.

Solution Approximation: Finding an exact knee VM may be computationally expensive

[20], consequently, we also consider approximating it by employing a user-defined threshold on

time, denoted by λT . In this approximation, we ensure that the knee solution satisfies

Ta ≤ (1 + λT)Te and Ma ≤ Me

where Ta, Ma denote time and money, respectively, of VMa which is the approximate knee, i.e

when λT > 0. Likewise Te and Me represent time and money, respectively, for the VMe which

is the exact knee, i.e., with λT = 0.

Note that we are applying the threshold on time and not on money, this is because we can

estimate the response-time of a query using the respective VM configuration. In short, if a

VM is stronger than the other, then we know that the response-time of the query on stronger

VM is upper-bounded by the weaker VM. However, the total money expenditure of the VMs

cannot be estimated by their configurations alone. Since, total monetary cost is the product

of rental-rate of the VM and its query response-time, therefore, total money expenditure of a

cheaper VM may be more than its expensive counterpart. For example: RRi = 1, RRj = 2, Ti

= 25 and Tj = 10, hence, Xi = 25 and Xj = 20. Here, although RRi is lesser than VMj, but

the total money expenditure of VMi is greater than VMj.

Identifying Pareto-optimal Solutions: The techniques proposed in this thesis are extensible

to output the Pareto-optimal VMs, in case user wants to know all the VMs in the Pareto-front

of the query.

Time or Money Budgeted Solution: If the user wants her query to finish within a specified

time and/or money budget, the extensions of our proposed technique to include these budgets

are discussed later in the thesis.

26

3.3 Notations

Before we delve into the details of the algorithms for the identification of the knee VM in

subsequent chapters, the notations used in the remainder of the thesis are given in Table 3.1:

Notations

VM Virtual Machine

Q Given query

λT User-defined threshold on time

VM The set of Virtual Machines

R The set of Resources ={ RAM, Cores, CPUSpeed, ...}

ri ith element of R

VMi ith element of VM , VMi = [r1, r2, ...]

rij jth resource of VMi

Ti Response time of Q on VMi

Xi Total Money expenditure for Q on VMi

RRi Rental Rate of VMi

XTS Money eXpenditure versus Time space

RS Resource Space

PPOS Potential Pareto-Optimal Set

POS Pareto-Optimal Set

Table 3.1: Notations used in this thesis

27

Chapter 4

Database Performance on the Cloud

Platform

In this chapter, we discuss the performance of a popular commercial database engine Co-

mOpt on Google cloud platform. We present our experiments on the standard decision-support

benchmark database – TPC-DS, with its default size of 100 GB.

In our execution-time experiments, query-level details like variations in response-times and

total money expenditure with changes in RAM size and number of cores is analyzed for a

number of queries. Furthermore, we show experimentally that there is no one VM that acts

as knee for all of the queries. We found that the knee VM for one query is a costlier and/or

slower alternative for other queries compared to their respective knee VMs. These observations

highlight the importance of selecting the right VM for a given query, cloud platform, and

database engine. Additionally, the effects of these hardware related parameters on the different

query-operators such as scan, join, etc. are studied in compile-time experiments.

Note that, the magnitude of money and time values could create a bias. For example,

if the money is in the range of 1-10 cents and time in the range of 50-300 minutes, then

the VM with lower response-time but higher monetary expenditure is likely to be selected as

28

the knee. Therefore, to give equal importance to both the objectives we normalize the axes

using the feature scaling technique - Xi−Xmin

Xmax−Xmin
, this brings all the values in the range [0,1]

for both the axes. Specifically, actual units of money and time are there just to present a

better understanding of the situation, like the range of variation in these values, etc., but the

identification of the knee VM is carried out on the normalized axes.

4.1 Experimental Setup

This section gives a detailed description of the experimental framework comprising of cloud

platform, database engine, and the database used in this work.

4.1.1 Cloud Platform Details

As discussed in the previous chapter, we are using IaaS model of cloud available as Google

Compute Engine (GCE) [2]. While there are a number of options available for configuring a

VM, we performed our experiments varying RAM size and number of cores only.

The pricing model we used for these experiments is per-minute, where all machines are

charged a minimum of 10 minutes by Google. However, for simplification we discard the

minimum quanta of 10 minutes. So, if a query runs for 2 minutes, we calculated the total

money expenditure for 2 minutes only and not 10 minutes. The details of the per-minute price

of VMs is available at [3].

On GCE, for a fixed number of cores there is a window within which RAM size can be

varied. For instance if the number of cores is 4, then RAM could be any integer value between

4 GB to 26 GB. We maintained a granularity of 5 GB while configuring the VMs. Thus if core

size is 4 then RAM sizes used are – 4 GB, 10 GB, 15 GB, 20 GB and 26 GB. Table 4.1 gives

details of the combinations for configuring a VM, with total VMs used in these experiments

summing to 186.

While performing the experiments, one base disk is kept which has necessary software in-

cluding operating system and ComOpt installed on it. For creating a VM, first a combination

29

of RAM and core size is selected from the provided cloud interface. Next, the base disk and

the other disks containing the database are attached to this newly created VM.

Number of
cores

Range of
RAM size

Number of
VMs

1 4-6 1
2 4-13 3
4 4-26 5
6 5-39 8
8 7-52 10
10 10-65 12
12 11-78 15
14 13-91 17
16 14-104 19
18 16-117 21
20 18-130 23
22 20-143 25
24 22-156 27

Total number of VMs = 186

Table 4.1: VMs available on GCE

4.1.2 Database and DBMS Setup

We used 100 GB TPC-DS database which is partitioned across four disks, with partitioning

handled by ComOpt itself, after specifying the disk and the partition size on each disk. Each

of these disks are in the same region as the base disk and the VM.

Physical design: The experiments are performed on two physical schema of TPC-DS database

– Default Index(DI) and All Index (AI). In DI configuration, the default physical design

of the database is available with clustered index on each primary key. AI, on the other hand

is an index rich schema with indices available on every column, along with the clustered index

on each primary key.

Query descriptors: In this chapter as well as in the remainder of this thesis, the queries are

denoted in the format x-DSQ-n. Here, x stands for the physical design of the database, and n

30

for the query number in the benchmark.

Interaction with database engine: To ensure that ComOpt reflects the configuration pa-

rameters of the chosen VM, system values of hardware related parameters based on the VM

configuration are updated. After manually changing the values of these parameters in the

system file, ComOpt is restarted so that it uses the updated values. Next, using auto tuner

utility of ComOpt, different parameters such as database-memory, sort-memory, degree of

parallelism, buffer size, etc. are set to their recommended values. Thereafter, the queries

are executed sequentially with no other process running on the machine. Moreover, to ensure

cold-cache environment the DBMS and OS cache are cleared after each query execution.

4.2 Empirical Results

We experimented on a number of TPC-DS queries for both execution-time as well as compile-

time query processing. The observations regarding the knee VM, variations in time and money,

query plans etc. are discussed next.

4.2.1 Execution Time Experiments

We executed a number of TPC-DS queries on the VMs available on GCE and profiled them

on the XTS (money eXpenditure vs Time Space), with time on x-axis and money on y-axis.

Because of long response-times of queries particularly on low-end machines, we could not run

these queries on all of the 186 VMs. Instead, for each core size (2, 4, 8, etc.), we used the

VMs with minimum and maximum RAM size available for that core number, as per GCE

specifications given in Table 4.1. For the core size where the range of RAM size is large, we

used some in between VMs also to cover the spectrum of the VMs.

The XTS plots of a few TPC-DS queries are shown in Figures 4.1, 4.2, 4.3, 4.4, and 4.5.

Each of the points on these graphs represents a VM, the red points denote the Pareto-optimal

VMs, and the knee VM is labeled green.

Significant variation in time and money across VMs: It is evident from these plots that

31

the variation in time and money is substantial with the changes in the configurations of VM.

For example, DI-DSQ-52 can be completed in 40 minutes on [60 GB, 16 core] but if run on

[6 GB, 1 core] it would take several hours to complete. Similarly, AI-DSQ-24 completes in 30

minutes on [65 GB, 10 core], however it would require 90 minutes when the VM is [10 GB

RAM, 4 core]. These variations in the response-time with the VM configurations are due to

the resource requirement of the query plan.

Expensive but slow VMs: These plots also show that there are certain VMs which are

expensive but do not improve response-time of the query. For example in Figure 4.1, the

response-time of DI-DSQ-52 is similar on [104 GB, 16 core] and [60 GB, 16 core], but the

former VM is twice as expensive as the latter. Thus, once the resources required by the query

plan are attained, any further increase in resources does not decrease query response-time

significantly. Similarly, there are VMs which require similar monetary investment but give

materially different response-times. For instance in Figure 4.2 both [30 GB, 8 core] and [6 GB,

1 core] require around 10 cents to run DI-DSQ-55, but the former executes three times faster.

Hence, renting an expensive VM may not decrease the response-time.

Knee VM is query specific: Another observation is that the knee VM is query specific.

For queries DI-DSQ-52 (Figure 4.1) and DI-DSQ-55 (Figure 4.2), the VM [60 GB, 16 core]

acts as the knee, but the same VM is around two times costlier compared to the knee VM of

DI-DSQ-71 (Figure 4.3). Similarly, the knee VM of AI-DSQ-67 (Figure 4.5) is approximately

two times slower to the knee VM of AI-DSQ-24 (Figure 4.4). Hence, there is no one VM that

can be the knee for all of the queries.

In short, selecting the right VM for running the given user query is of paramount importance,

otherwise one might end up paying too much in time and/or in money.

32

Figure 4.1: Execution time plot of DI-DSQ-52

Figure 4.2: Execution time plot of DI-DSQ-55

33

Figure 4.3: Execution time plot of DI-DSQ-71

Figure 4.4: Execution time plot of AI-DSQ-24

34

Figure 4.5: Execution time plot of AI-DSQ-67

4.2.2 Compile Time Experiments

To analyze the performance of the queries on all of the available machines, we use compile-

time plots for pragmatic reasons. We understand that compile-time plots do not give accurate

approximation of execution-time performance, but the recent works on bridging the gap between

the two, provides the hope of having similar compile-time and execution-time plots in coming

years [30, 31].

For these experiments, explain utility of ComOpt is used to obtain the optimal query plan

for each VM, and we use plan cost as the estimated response-time. The compile-time plots

for a few benchmark queries are given in Figure 4.6 and Figure 4.7. In these plots, x-axis

represents optimizer’s estimated time and y-axis is the calculated total money. The VMs on

the Pareto-front of the query are shown as red dots and the dominated ones are in blue.

Effects of configuration on the query-operators: On observing the behavior of individual

operators with changes in configuration, we found that with every small increase in per node

memory, cost of nested loop join is reduced; however cost of hash join decreases only when per

node memory is doubled.

35

(a) Compile time plot of DI-DSQ-6

(b) Compile time plot of DI-DSQ-71

Figure 4.6: Compile time performance of TPC-DS queries on DI

Similarly, cost of parallel operators in plans decreases with added parallelism and gives the

arc like patterns exhibited by queries given in Figure 4.6, where each arc corresponds to a

different core size.

It is visible from Figure 4.8 and Figure 4.9 that along with join algorithms, join orders and

degree of parallelism also change with per node memory. The reason being that when available

36

(a) Compile time plot of AI-DSQ-24

(b) Compile time plot of AI-DSQ-59

Figure 4.7: Compile time performance of TPC-DS queries on AI

memory is low, indexed nested loop or sort-merge join with index is cheap; however, hash join

is preferred when available memory is high.

The general behavior of the query-operators is summarized in Table 4.2. The optimizer’s

cost for Hash-join and unclustered indexes is reduced when the size of node per memory is

doubled. However, sort and nested-loop joins show a smooth variation with every small increase

37

in available memory. Similarly, the change in the costs of parallel operators is smooth with the

changes in core-size of the system.

Parameter Behavior Operators

Memory
Bursty

Hash-join,
Unclustered indexes

Smooth
Sort, Nested-loop
join, Set operators

Core-size Smooth
Parallel join, Parallel

scan

Table 4.2: General behavior of operators with variations in hardware parameters

From execution-time to compile-time plots: Some notable observations pertaining to

the comparison of compile-time and execution-time plots include: Pareto-fronts in compile-

time plots are nearly linear and difference in their extreme virtual times is also low. However,

Pareto-fronts of execution-time plots are more like L-shaped and the difference in extreme

values is large. The number of elements in the Pareto-front of execution-time plots is lesser

than the number of Pareto-optimal solutions in compile-time plots. These differences in the

plots are owed to the cost model of ComOpt query optimizer. The point to note is that the

definition of knee (Definition 5) we are using in this thesis, gives the solution with best tradeoff

for any L-shaped Pareto-front. Therefore, although we are using compile-time plots to evaluate

our approaches, later in the thesis, it is only for practical concerns. The techniques will work

fine even with execution-time plots or with compile-time plots that are accurate approximation

of the execution-time performance.

4.2.3 Conclusions

In this chapter, we discussed the effects of VM configurations on the query plans, response-time,

and the monetary expenditure for a commercial database engine on an actual cloud platform.

The gist of these experiments is as follows:

• Renting an expensive VM may not decrease the response-time of the query. Specifically,

38

there may be a cheaper alternative with similar query response-time.

• For a given query, the total money expended by two VMs may be similar even if their

configuration and query response-times are significantly different. For example, the total

money expenditure for VMi and VMj might be similar, i.e.,

RRi × Ti ≈ RRj × Tj (4.1)

Where, VMj is a richer VM than VMi, with RRi < RRj and Ti > Tj.

• The query plans may or may not change with the alterations in VM configuration de-

pending on the query requirements.

39

(a) Query plan for DI-DSQ-6 on VMs with low parallelism

(b) Query plan for DI-DSQ-6 on VMs with high parallelism

Figure 4.8: Plan structure for DI-DSQ-6 on different VMs

40

(a) Query plan for AI-DSQ-24 on VM with 4GB RAM and no parallelism

(b) Query plan for AI-DSQ-24 on VM with 21GB RAM and parallelism

Figure 4.9: Plans of AI-DSQ-24 on different VMs

41

Chapter 5

A Plan-based Approach to Identify the

Knee VM

In the previous chapter, we have seen that the response-times of the queries vary significantly

with the change in VMs, and so does the total money. Thus, the choice of VM for a given

query and database system is a crucial step, while migrating to the cloud environment. A

straightforward approach to identify the knee VM from among a large pool of VM configurations

is to exhaustively enumerate the behavior of the individual VMs. However, this can prove to

be inefficient, especially since the process has to be carried out afresh for each new query, given

that the knee VM is query-specific, as highlighted in the previous chapter. We can do better if

the VMs can be compared among themselves for query performance.

Configurations of the VMs and query response-times: Observe that the computation

power of a VM is a function of its resources, such as RAM size, number of cores, etc. Let

there be VMw and VMs, where VMw �p VMs in RS (Resource Space) with their corresponding query

response-time be Tw and Ts respectively. Now, every VMi bounded by these two VMs in RS would

have query response-time Ti ∈ { Tx | Ts ≤ Tx ≤ Tw }. In other words, the response-time of the

query for a VM is within the range of response-times of its bounding VMs.

42

Specifically, query response-time is an antitone function of the hardware resources, i.e.,

response-time of the query shows monotonic decrease with the increase in resources. We exploit

this behavior by ordering the VMs on RS and subsequently using this order to locate them on

XTS (money eXpenditure versus Time Space) to get the knee VM for the query.

Notion of similarity between VMs on query response-times: For a given query Q and

the VMs VMw, VMs such that VMw �p VMs. The response-times of Q on VMw, VMs are said to be

similar, if
Tw ≤ Ts + ε i.e.

Ts

Tw
u 1

where ε is a very small number, and Tw and Ts are the response-times of Q on VMw and VMs

respectively.

Algorithm for efficient identification of knee VM: We propose the algorithm – PIK (Plan-

based Identification of Knee), to identify the knee VM for the given query and the set of VMs.

The algorithm uses partial ordering on the set of VMs to locate a VM on XTS. It evaluates

the query execution plans on the minimal and maximal VMs of each poset for their estimated

query response-times – if the response-times are estimated to be similar, then all the VMs

bounded by these extreme VMs are pruned. Otherwise, the already processed VMs are set

aside, and the minimal and maximal VMs of the remaining unprocessed VMs are evaluated for

their response-times. Finally, the knee VM is identified from the processed VMs as the one with

the minimum Euclidean distance from the origin on the money-time space. To estimate the

query response-time for different VMs, the query execution plan available from the database

engine’s API is used.

Later, we theoretically prove that PIK always identifies the knee VM; further, if it is ac-

ceptable to find a “near-optimal” knee by providing a relaxation-factor on the response-time

distance from the optimal knee, then PIK is also capable of finding even more efficiently a

satisfactory knee under these relaxed conditions.

Note that we are identifying the knee VM at the compile-time and we have an additional

assumption that the resources available at run-time to be at least commensurate with that

43

expected at compile-time.

5.1 Partial Order on the Virtual Machines in RS

A virtual machine is represented as a tuple of resources, e.g. VMi = [r1, r2, ...]. To compare

different VMs and establish a relation between them, we define the relation � on the set of

VMs. Later, we prove that this relation forms a poset on the set of available VMs, denoted by

VM.

Weaker and stronger VM: For VMi, VMj ∈ VM, VMi is the weaker VM if

∀ rs ∈ R, ris ≤ rjs and ∃ rt ∈ R, rit < rjt

E.g. for R= {RAM, Cores}, if RAMi ≤ RAMj and Coresi < Coresj then VMi � VMj.

Similarly, VMi is referred as the stronger VM if

∀ rs ∈ R ris ≥ rjs and ∃ rt ∈ R, rit > rjt

In short, if VMi � VMj then VMj � VMi.

Incomparable VM: If VMi and VMj are such that neither is weaker or stronger than the

other, then they are incomparable.

Bounded VM: VMk ∈ VM, is said to be bounded by VMi and VMj with VMi � VMj if,

VMi � VMk � VMj

Figure 5.1 shows the notion and corresponding locations of weak and strong VMs pictorially.

For the given machine VM1 ∈ VM , all VMj � VM1 will fall in the region labeled as stronger VMs.

Similarly, all VMj � VM1will fall in the region marked as weaker VMs and rest of the VMs are

incomparable to VM1.

44

Figure 5.1: Concept of weaker and stronger VMs than a given VM

Claim: Any set of VMs with relation � forms a poset.

Proof: Each property of a poset on the set of VMs for relation � can be proved as follows.

For virtual machines VMi, VMj, VMk ∈ VM and ∀ rs ∈ R,

Reflexivity: We know that ∀ rs, ris ≤ ris therefore, VMi � VMi. Hence, VMi � VMi.

Antisymmetry: If VMi � VMj and VMj � VMi, then it implies that ∀ rs, ris ≤ rjs and

rjs ≤ ris. It can only be possible if ris = rjs. Thus, VMi = VMj.

Transitivity: If VMi � VMj and VMj � VMk, then ∀ rs, ris ≤ rjs and rjs ≤ rks, which

implies that ris ≤ rks, thus VMi � VMk.

Hence, � forms the poset on VM .

Hasse diagram of the VMs available on GCE is given in Figure 5.2. It shows that for the VMs

available on GCE as per Table 4.1, the minimal VM is [4 GB, 1 core] and the maximal VM is

[156 GB, 24 core] for the entire set of VMs. Also, there are certain VMs which are incomparable

among themselves like [4 GB, 2 core], [6 GB, 1 core] at the first level and [10 GB, 2 core],

[4 GB, 4 core] at the second level, so on and so forth.

45

Figure 5.2: Hasse diagram of the VMs available on GCE

5.2 Locating Virtual Machines on XTS

In this section, we will see how to use the aforementioned partial ordering on the VMs to

locate them on the XTS. From the previous section, we know that VMi � VMj implies that

VMj has atleast as much resources as VMi. Now, either the query benefits from these additional

resources of VMj, or these are superfluous to the requirements of the query, which gives no

further improvement in the performance of the query on VMj. Therefore, we can say that the

response-time of the query on VMj would be atmost that on VMi i.e. Tj ≤ Ti.

Now, using the response-time of the query on a VM (say VMi), we can calculate the total

money required by the query on VMi and can locate it on XTS. Once the location of VMi on

XTS is known, following can be concluded:

1. From the antitonic nature of response-time with resources, we know that all the VMj � VMi

46

will have Tj ≤ Ti. Therefore, all such VMj will lie in the second or the third quadrant of

VMi on the XTS. Figure 5.3 enumerates this pictorially, for the given location of VM1 on

XTS, all the stronger VMs are to the left of the VM1, shown in red color.

2. Similarly, for all the VMj � VMi, Tj ≥ Ti, thus, all such VMj will be in the first or fourth

quadrant of VMi. In Figure 5.3, blue colored region shows the location of all the VMs

weaker than VM1.

Observe that we are making this conclusion by comparing the VMs on RS, hence, we cannot

conclude anything for the VMs incomparable on RS . Although rental-rates of VMs would be

comparable for all VMs, but total money expenditure depends on both the query response-time

and the rental rate of the VM. Particularly, a VM with lesser rental-rate but higher response-

time may require more money consumption than the one with higher rental rate but lesser

response-time and vice-versa. Thus, the domination of VMs on RS does not always follow on

the XTS.

Figure 5.3: Regions for the stronger/weaker VMs on the XTS for a given VM

47

5.3 Plan-based Identification of Knee (PIK)

This section describes the algorithm to pick the knee VM among hundreds of VMs, for the

given query. The algorithm is divided into three steps; firstly, the VMs are arranged in poset

order of their resources. This is a one time preprocessing and does not change with the query

or the database engine used. Secondly, using this arrangement of VMs, they are processed

for their estimated query response-times. Lastly, among the processed VMs, the knee VM is

characterized as the one with minimum Euclidean distance from origin on the XTS.

5.3.1 Preprocessing

In this step, we arrange all the VMs in the poset order of their resources. This is done by a

simple algorithm for sorting ordered pairs, with each resource parameter taken at an iteration

of sorting. For example, if R= {Core, RAM}, at first iteration take r0 = Core and sort all the

VMs on their core size. Subsequently, take r1 = RAM as the next sort parameter. The second

sorting iteration maintains the sort of previous iteration and sorts on r1, i.e., all the VMs with

same core size are now sorted on their RAM sizes. The order in which sort parameters are

selected does not matter. Note that this phase only depends on the configuration of the VMs

available on the cloud platform and not on the query, database, or database engine.

The sorting of this kind would ease in the subsequent identification of minimal and maximal

elements, while identifying the knee VM. As shown in Figure 5.2, the bottom-most VM is the

minimal of the poset and is least in resources, similarly top-most VM is the maximal.

5.3.2 Identifying Potential Pareto-optimal VMs

This step creates the PPOS (Potential Pareto-Optimal Set) of VMs, one among them is the

knee VM of the query. It processes the minimal and maximal VMs of the poset (VM, �),

and compares their query response-times. If the response-times are similar then all the VMs

bounded by them are pruned. Otherwise, identify the next pair of minimal and maximal VMs

48

from the remaining unprocessed VMs and process them. This continues till we get a pair of

VMs with similar response-times or the number of VMs is exhausted.

The reason for pruning the sandwiched VMs without worrying about loosing the knee VM

is that, from the previous discussion we know that, for all these VMs the response-time will

be similar, and the rental-rate of the minimal VM among them is least. Hence, the minimal

VM is the one with minimum monetary expenditure and similar response-time, thus, it Pareto-

dominates all the sandwiched VMs. Again, knee VM is the one among the dominating VMs,

and cannot be dominated by other VMs.

Finding Minimal VM

The algorithm FindMinimal identifies the set of minimal VM(s), its complete routine is given

in Algorithm 1. We know that preprocessing ensures that the VMs that appear later in the set

VM will have r0 atleast that of their predecessor, so the function FindMinimal compares the

VMs on their second resource – r1. If a later VM has smaller r1 then it means that these two

are mutually incomparable and minimal. Such VMs are added to the sets MinimalVM. It also

uses a set XcludeVM which contains all the processed as well as pruned VMs. To ensure that a

VM is not processed more than once, it is checked if it is not in XcludeVM. Finally, MinimalVM

is given as the output of this sub-routine.

Finding Maximal VM for a Given VM

The function FindMaximal given in Algorithm 2 finds the set of maximal VMs. The input

arguments are VM , XcludeVM and the VMm that is the chosen minimal VM. After preprocessing,

the VMs are sorted in the increasing order of resources, and we need to find the VM with highest

resources or the maximal VM. So, we process VM in reverse order of resources which is denoted

by VM rev. At first, we check if the concerned VM is comparable to VMm and maximal in the

available set of VMs. Finally, we add it in the sets MaximalVM and XcludeVM after ensuring

that it is not already processed.

49

Algorithm 1: FindMinimal

Initialization: MinimalVM = NULL
VMi = first VM ∈ VM such that VMi /∈ XcludeVM
MinimalVM ∪ VMi

currVM= VMi

j = 0
while j < | VM | do

if rj1 ≤ ri1 and VMj /∈ XcludeVM then
MinimalVM ∪ VMj

currVM = VMj

end
j = j + 1

end
return MinimalVM

Algorithm 2: FindMaximal

Initialization: MaximalVM = NULL
VMi = first VM ∈ VM rev such that VMi /∈ XcludeVM
MaximalVM ∪ VMi

currVM= VMi

j = | VM |
while j ≥ 0 do

if VMj.r1 ≥ currVM.r1 and VMj /∈ XcludeVM then
MaximalVM ∪ VMj

currVM = VMj

end
j = j - 1

end
return MaximalVM

Populating Potential Pareto-Optimal Set (PPOS)

The pseudocode of the complete routine to populate PPOS is given in Algorithm 3, the inputs to

this algorithm are the set of preprocessed VMs – VM and the query. It also accepts an optional

input λT , which is a user-defined threshold on time. The algorithm uses the aforementioned

routines – Algorithm 1 and Algorithm 2, to identify the minimal and maximal VMs respectively.

Once the minimal and maximal VMs are identified, query response-time on them are ob-

tained using the sub-routine GetQTime (VMi, Q). The function GetQTime (VMi, Q) makes a

50

call to the optimizer after setting parameter values that reflect VMi to the optimizer. These pro-

cessed VMs are then added to the PPOS and XcludeVM. Note that the set XcludeVM contains

the pruned and processed VMs, also, it is common in all the three algorithms. Its purpose is

to ensure that each VM is processed only once and pruned VMs are never processed. Before

processing any VM it is checked if it is not already in this set. Next, if response-times on the

minimal and maximal VMs are significantly different, then search for the knee VM is continued

in the set of unprocessed VMs. As soon as a pair of minimal and maximal VMs that give

similar query response-times is identified, all the VMs that are bounded by these two VMs are

added to the set XcludeVM. The algorithm continues till the size of XcludeVM is equal to that

of VM, implying that the number of VMs is exhausted. The set PPOS is the final output of

this algorithm.

On the availability of λT , the notion of similar response times changes to Ti ≤ (1+λT) Tj,

with VMi � VMj and Ti, Tj be the respective response-times.

Note that there could be more than one maximal VM, but in Algorithm 3 we use only first

element of the set MaximalVM. In case, a VM is the last or the only minimal VM with more

than one maximal VM, we pair it again with the remaining maximal VMs.

5.3.3 Characterizing the Knee VM

Once the set PPOS is populated, no further calls to the query optimizer are required. The

total money required by each of the VM in PPOS is calculated using respective rental rates and

response-times.

Normalizing the money and time axes: While calculating the Euclidean distance of the

VMs from origin to identify the knee VM, the magnitude of the money and time values could

create a bias. For example, if the money is in the range of 1-10 cents and time in the range

of 50-300 minutes, then the VM with lower response-time but higher monetary expenditure is

likely to be selected as the knee. Therefore, to give equal importance to both the objectives we

51

Algorithm 3: Populating PPOSfor the given VM and query Q

Initialization: XcludeVM = NULL, PPOS = NULL
while |XcludeVM| < |VM | do

MinimalVM = FindMinimal (VM , XcludeVM)
foreach VMi ∈ MinimalVM do

XcludeVM ∪ VMi

MaximalVM = FindMaximal (VM , XcludeVM, VMi)
XcludeVM ∪ MaximalVM[0]
GetQTime (VMi , Q)
GetQTime (MaximalVM[0], Q)
PPOS ∪ VMw ∪ MaximalVM[0]
if Ti ≈ TMaximalV M [0] then

Add all VMs bounded by VMi and MaximalVM[0] to XcludeVM
end
if VMi+1 = NULL and MaximalVM1 6= NULL then

i = i - 1
continue

end

end

end

normalize the axes using the feature scaling technique – Xi−Xmin

Xmax−Xmin
. It brings all the values in

the range [0,1] for both the axes.

Finally, the knee VM of the query is identified by calculating Euclidean distance of each VM

in PPOS from the origin in the XTS. The VM with minimum Euclidean distance is selected as

the preferred choice following Definition 5 in Chapter 3.

Obtaining all the Pareto-optimal VMs: If the user asks for all the Pareto-optimal VMs,

then PPOS is filtered to get the final set of VMs which are Pareto-optimal. We used standard

algorithm of Kung et al.[19] for this filtering. This approach first sorts the solutions of PPOS

in the ascending order of time. Thereafter, they are recursively halved into two subsets as

Top (T, say) and Bottom (B, say). Knowing that the solutions in T are better (lesser) in time,

bottom-half is checked with top-half for domination. The solutions of B that are not dominated

by any members of T are combined with members of T to give a final set – POS . The check for

domination and merging starts with the innermost subset and proceeds in bottom-up manner.

52

Solution for constrained time and/or money budget: In case, user has provided some

fixed budget on time and/or money, the VMs falling out of the budget are simply ignored. The

knee VM is then identified from the remaining set of the VMs.

5.4 Guarantees on the Knee VM

In this section, we will show that the aforementioned algorithm never misses an optimal knee

VM when the value of λT is zero i.e. no time threshold is given. Also when a relaxation is

provided with λT > 0, then PIK finds a sub-optimal VM as mentioned in Chapter 3, which has

higher response-time than the optimal knee VM but is within λT , and its money requirement

is lesser. This way, when time threshold is provided we get the knee VM, worse in one objective

but within the provided threshold and better on other objective. The proof for the claim is as

follows.

Claim: The knee VM obtained by PIK satisfies:

Ti ≤ (1 + λT)TO and Mi ≤ MO

where TO, MO denote time and money respectively, of the knee VM on the actual Pareto-front

and Ti, Mi are time and money respectively, of the knee VM on the Pareto-front obtained by

PIK .

Proof: Let there be a VMO on the Pareto-front of an oracle algorithm and missed by PIK. Let

VMO be in between some VMw and VMs which are processed by PIK . Now, to investigate further

we divide the proof in two cases – one with λT = 0 and other with non-zero value of λT .

Case a: λT = 0 : VMO can be missed by PIK if the VMs in between VMw and VMs are not

processed. This could happen, either if there is no VM bounded by them (i.e. there is no such

VMO possible) or they have similar response-times as shown in Figure 5.4a.

In case Tw ≈ Ts, from the discussion of Section 5.2 we know that TO ≈ Ts. Since VMw � VMs,

RRw < RRO therefore, Mw < MO. Thus, contradicting the claim that VMO is given by oracle as it

is clearly dominated by VMw.

53

Case b: λT > 0 : Again, VMs between VMs and VMw remain unprocessed by PIK, if either

there is no VM bounded by them (i.e. there is no such VMO possible) or Tw ≤ (1 + λT) Ts.

Since, VMO is bounded by these two VMs, therefore Ts ≤ TO ≤ Tw as shown in Figure 5.4b and

Mw ≤ MO, hence VMw is the VM satisfying the claim.

Since, knee VM ∈ PPOS, it will also satisfy the above claim. Thus, the proposed algorithm

will find the knee, with either the same performance as the optimal or with response time

≤ (1 + λT) of the optimal and lesser total money, if such a VM exists.

(a) Case a: No time threshold is given (b) Case b: Non-zero time threshold is given

Figure 5.4: Quality of the VM obtained by the algorithm

5.5 Summary

In this chapter, we described our plan-based algorithm to identify the knee VM among the

given set of VMs, for a given query. To start with, the available VMs were arranged in the

poset order of their resources. Subsequently, in every iteration the complete plan was obtained

for the minimal and maximal VMs of the poset. Now, if their estimated query response-times

were similar then all the sandwiched VMs were pruned, since none of them could qualify for

knee, as they were dominated by the minimal VM. Otherwise the next pair of minimal and

54

maximal VMs was identified among the unprocessed VMs. This continues till all the VMs were

either processed or pruned. The knee VM was then identified among the processed VMs.

Lastly, we proved that PIK identifies the optimal knee VM when no relaxation in response-

time is given, otherwise it finds a near-optimal knee VM within the user-defined threshold as

explained in Chapter 3. The algorithm is empirically evaluated in the following chapter.

55

Chapter 6

Empirical Evaluation of PIK

This chapter gives a detailed account of the experimental performance of – PIK. The perfor-

mance results of PIK are given, after detailing the experimental setup. Experiments are done

for the queries on the standard decision-support benchmark – TPC-DS. It was found that most

of the time PIK identifies the knee VM by processing only 20% of the total VMs.

Next, we delve into the performance details of PIK for a few queries to understand in-depth

working of the algorithm. Later, the effect of user-defined threshold – λT on the efficiency of

the algorithm is studied. Empirical results show that often, giving a value of 10-20% to λT gives

material improvement in the efficiency of the algorithm.

6.1 Experimental Framework

To evaluate PIK, we implemented it as a Java program that uses JDBC calls to get the

execution-plans of queries for different VMs on ComOpt. The testbed for these experiments

is a GCE VM comprising of 24 core Intel Ivy Bridge processor with 155 GB main memory,

all the other required VMs are virtualized over it. Since, the experiments are done using the

query execution-plans available from explain utility of ComOpt, the required VMs can be easily

reflected by updating the different parameter values of ComOpt query optimizer.

Experiments are performed on the standard benchmark TPC-DS of size 100 GB. the database

56

is partitioned into four different hard disks which are in the same physical region as the VM.

We experimented on two physical schema of the database – Default Index(DI) and All Index

(AI) that are explained in Chapter 4.

The number of queries in our experiments is limited, because not many queries show notable

difference in optimizer’s plan cost with change in VM configurations. This is due to coarse

cost modeling in ComOpt with respect to hardware related parameters. We have seen its

evidence in the experiments of Chapter 4 also. There are many VMs giving small difference in

response-time for compile-time plots but are significantly apart on execution-time plots. Hence,

the following evaluation of PIK can be expected to be coarser than its evaluation on actual

execution-time. Therefore, we also present the performance of PIK on actual response-times

for a few queries only, due to pragmatic constraints.

6.2 Performance of PIK

The performance of PIK for some benchmark queries of TPC-DS is presented in Table 6.1a for

DI schema and in Table 6.1b for AI schema, with λT = 0. The leftmost column specifies the

query, next column gives the cardinality of PPOS, which is essentially the number of VMs for

which PIK queried the database query optimizer, and the last column gives the selected knee

VM. It is clear from Table 6.1 that PIK never performs as bad as the exhaustive enumeration

of the VMs.

Variations in PPOS and knee VM with the schema: Observe that the cardinality of

PPOS and the knee VM changes with schema. E.g. for query DI-DSQ-4, minimal VM of the

poset (VM , �) is selected as the knee, since there is no significant variation in the response-time

of minimal and maximal VMs. However, same query on AI-schema, processed 12 VMs to find

the knee. This is due to the changes in query plans with physical schema.

Specifically, as seen in Chapter 4 also, query plans are more sensitive to available memory

when the indexes are available. Since, these indexes are non-clustered and can be used only if

57

enough main memory is available.

However, for some queries e.g. AI-DSQ-6, AI-DSQ-19, the cost of query plans on AI schema

show no significant variation for the minimal and the maximal VMs. In these queries the

cardinality of scan nodes is low and the memory available in minimal VM is sufficient for the

chosen query plan. Hence, no variation in query response-time across VMs is visible. However,

without indexes, query plans use sort nodes which are more sensitive to memory availability,

leading to varying response-time across VMs.

Minimal VM as the knee: Another notable point is that, for some queries, size of PPOS

is high, still the minimal VM is chosen as the knee, e.g. DI-DSQ-14 and DI-DSQ-24. Queries

exhibit such behavior when variation in response-times is low with respect to the rental rates

of virtual machines. Hence, there is no significant reduction in the monetary investment for the

VMs of higher configuration, and the minimal VM qualifies as the knee.

High cardinality of PPOS: Table 6.1 shows that for some queries e.g. DI-DSQ-19, DI-DSQ-

52, DI-DSQ-55, and DI-DSQ-71, 85% of the total VMs are processed. The number of tried

VMs is high for these queries because of operators like nested-loop joins and sort. As discussed

in Chapter 4, presence of these operators in the query plans lead to response-time variation

even with small increase in available memory, even though it is a small variation.

The other factor which plays a role in increasing the cardinality of PPOS, is the construction

of PIK itself. All the minimal and maximal VMs are tried at every iteration. Therefore, as the

number of iterations increases more incomparable VMs are found, resulting in more processed

VMs. The required per-node memory is high for these queries, which requires more iterations

to get the VM with enough required memory, hence, higher cardinality of PPOS.

However, when using PIK on actual response-times for DI-DSQ-19 and DI-DSQ-55, the

size of PPOS is 18 and 36 respectively. This indicates that the high cardinality of PPOS for

estimated response-times is because of coarse cost-modeling of ComOpt .

Performance summary: Figure 6.1 summarizes the performance of PIK , indicating that for

58

most of the queries PIK finds the Pareto-front by trying only 20% of the total VMs for both

AI as well as DI schema. The cardinality of PPOS for AI is within 40% of the total VMs, for

all the tested queries. On the other hand, for DI there are a few queries requiring 85% of total

VMs to be processed to identify the knee VM. The reasons for these differences with schema

are already explained.

(a) Performance summary for DI (b) Performance summary for AI

Figure 6.1: Performance summary of PIK

6.2.1 Performance Microanalysis

This section discusses the in-depth performance of PIK in detail. There are three main issues

we want to highlight:

• Issue 1: increase in cardinality of PPOS with number of required iterations

• Issue 2: trying incomparable VMs even after identifying a pair with similar response-

times

• Issue 3: different minimal-maximal pair for same iterations across queries

To explain the reasons for each of these cases, we picked queries exhibiting atleast one of these

behaviors.

59

Query |PPOS| Knee VM

DI-DSQ-3 12 [8 core, 7 GB]

DI-DSQ-4 2 [1 core, 4 GB]

DI-DSQ-6 94 [2 core, 10 GB]

DI-DSQ-14 76 [1 core, 4 GB]

DI-DSQ-19 158 [6 core, 10 GB]

DI-DSQ-24 12 [1 core, 4 GB]

DI-DSQ-47 2 [1 core, 4 GB]

DI-DSQ-55 158 [2 core, 13 GB]

DI-DSQ-59 68 [2 core, 10 GB]

DI-DSQ-67 6 [2 core, 5 GB]

DI-DSQ-71 158 [2 core, 10 GB]

DI-DSQ-74 2 [1 core, 4 GB]

(a) DI schema and λT = 0

Query |PPOS| Knee VM

AI-DSQ-3 12 [6 core, 5 GB]

AI-DSQ-4 12 [2 core, 5 GB]

AI-DSQ-6 2 [1 core, 4 GB]

AI-DSQ-14 32 [4 core, 15 GB]

AI-DSQ-19 2 [1 core, 4 GB]

AI-DSQ-24 60 [10 core, 30 GB]

AI-DSQ-47 6 [2 core, 5 GB]

AI-DSQ-55 2 [1 core, 4 GB]

AI-DSQ-59 67 [20 core, 18 GB]

AI-DSQ-67 6 [2 core, 5 GB]

AI-DSQ-71 2 [1 core, 4 GB]

AI-DSQ-74 30 [2 core, 10 GB]

(b) AI schema and λT = 0

Total Number of available VMs = 186

Table 6.1: Performance of PIK on TPC-DS benchmark queries

Issue 1: Table 6.2 gives per iteration breakdown of AI-DSQ-14. As the number of iterations

increase, more incomparable minimal VMs are found, eventually increasing the size of PPOS.

This increase in the number of incomparable VMs is owed to the configurations of VMs available

with GCE. We have already seen in Chapter 5 the Hasse diagram of GCE which explains it.

However, if the VMs are in total order or with lesser incomparable VMs then the cardinality of

PPOS might decrease.

Issue 2: In Table 6.3, analysis of AI-DSQ-3 is given where total number of VMs processed

is 12. This is an aggregate query with join of three tables – date dim, store sales, and item.

The query plan is same across VMs and have simple join operators without parallelism. Thus

available memory is the only significant factor in plan cost reduction. Since, two tables out of

three are small, per-node memory requirement of plan is low. Also, from Table 6.3 it is evident

that, once RAM size reaches 10 GB, any further increase in resources does not reduces plan

cost. Therefore, all the VMs bounded by [2 core, 10 GB] and [24 core, 140 GB] are pruned.

But, the algorithm does not terminate at this iteration, as there are more incomparable pairs

60

AI-DSQ-14

Iteration Weakest VM Strongest VM Number of VMs pruned

1 [1 core, 4GB] [24 cores, 155GB] 2

2
[1 core, 6GB] [24 cores, 150GB] 2
[2 cores, 5GB] [24 cores, 145GB] 2

3
[2 cores, 10GB] [24 cores, 140GB] 2
[4 cores, 5GB] [24 cores, 135GB] 2

4
[2 cores, 13GB] [24 cores, 130GB] 2
[4 cores, 10GB] [24 cores, 125GB] 2
[6 cores, 5GB] [24 cores, 120GB] 2

5
[4 cores, 15GB] [24 cores, 115GB] 154
[6 cores, 10GB] [22 cores, 143GB] 2
[8 cores, 7GB] [22 cores, 140GB] 2

6 [8 cores, 10GB] [22 cores, 135GB] 2

7 [10 cores, 10GB] [22 cores, 130GB] 2

8 [12 cores, 11GB] [22 cores, 125GB] 2

9 [14 cores, 13GB] [22 cores, 120GB] 2

10 [16 cores, 14GB] [20 cores, 130GB] 2

|PPOS| = 32

Knee VM =[2 cores, 13GB]

Table 6.2: Microanalysis of AI-DSQ-14 with λT = 0

of minimal-maximal VMs.

Based on the construction of PIK , all of these pairs are tried irrespective of query response-

time on the incomparable VMs. Also, at every iteration atleast two VMs that constitute the

minimal-maximal pair of that iteration are pruned.

Issue 3: The minimal-maximal VM pair at same iteration number is different for AI-DSQ-3

and AI-DSQ-14. At iteration 4 of AI-DSQ-3 the minimal-maximal pair is [6 cores, 5 GB] and

[8 cores, 7 GB] but for AI-DSQ-14 it is a set of three incomparable VMs. The reason is that in

AI-DSQ-3 at iteration 3 we found a pair with same cost which pruned all the VMs in between

them, so the next minimal-maximal pair is selected from the remaining subset of VMs.

All the VMs are covered efficiently: Further, from the third column in each of the afore-

mentioned tables it is evident that the algorithm covers all the VMs by either trying or pruning

them, since it always sums up to the total number of available VMs – 186.

61

AI-DSQ-3

Iteration Weakest VM Strongest VM Number of VMs pruned

1 [1 core, 4 GB] [24 core, 155 GB] 2

2
[1 core, 6 GB] [24 core, 150 GB] 2
[2 core, 5 GB] [24 core, 145 GB] 2

3
[2 core, 10 GB] [24 core, 140 GB] 176
[4 core, 5 GB] [22 core, 143 GB] 2

4 [6 core, 5 GB] [8 core, 7 GB] 2

|PPOS| = 12

Knee VM = [1 core, 6 GB]

Table 6.3: Microanalysis of AI-DSQ-3 with λT = 0

6.2.2 Effect of Time Threshold

The effect of time threshold (λT) on the size of PPOS for different queries is shown in Figure 6.2

for DI schema and in Figure 6.3 for AI schema. The value of λT is varied from 10% to 50%. It

is evident that for most of the queries, cardinality of PPOS reduces with increase in λT .

No effect of λT on the cardinality of PPOS: However, for some queries, e.g., AI-DSQ-67

the number of processed VMs remains constant. The reason can be explained using Table 6.4,

which gives microanalysis of the query when no time threshold is provided. Table 6.4 illustrates

that further reduction in the size of PPOS can be seen only when the difference between the

response-times for the minimal-maximal pair of VMs at first iteration is within the provided

threshold.

AI-DSQ-67

Iteration Weakest VM Strongest VM Number of VMs pruned

1 [1 core, 4GB] [24 cores, 155GB] 2

2
[1 core, 6GB] [24 cores, 150GB] 181
[2 cores, 5GB] [6 cores, 5GB] 3

|PPOS| = 6

Knee VM = [1 core, 6GB]

Table 6.4: Microanalysis of AI-DSQ-67 with λT = 0

Effect of λT on the knee VM: For query AI-DSQ-14, effect of λT on the size of PPOS can be

62

Figure 6.2: Effect of λT on DI

Figure 6.3: Effect of λT on AI

seen in Table 6.6 and Table 6.7. The VM selected as the knee also changes with the threshold

value. Further, Table 6.5 shows that the knee VM remains same as when no time threshold is

provided (given in Table 6.3). The reason being low resource requirements of the query, hence,

no reduction in query response-time with additional resources.

63

Additionally, from Figure 6.3 it is clear that when λT=20% the total number of tried VMs

for AI-DSQ-3 is reduced to 2, which means that the difference in the response-times of the

minimal and maximal VM of first iteration are within 20%. Hence, even though more VMs are

tried at lower values of λT , now the difference is low enough to select same VM as the knee.

AI-DSQ-3, λT =10%

Iteration Weakest VM Strongest VM Number of VMs pruned

1 [1 core, 4GB] [24 cores, 155GB] 2

2
[1 core, 6GB] [24 cores, 150GB] 181
[2 cores, 5GB] [6 cores, 65GB] 3

|PPOS| = 6

Knee VM = [1 core, 6GB]

Table 6.5: Microanalysis of AI-DSQ-3 with λT = 10%

AI-DSQ-14, λT =10%, 20%

Iteration Weakest VM Strongest VM Number of VMs pruned

1 [1 core, 4GB] [24 cores, 155GB] 2

2
[1 core, 6GB] [24 cores, 150GB] 2
[2 cores, 5GB] [24 cores, 145GB] 2

3
[2 cores, 10GB] [24 cores, 140GB] 176
[4 cores, 5GB] [22 cores, 143GB] 2

4 [6 cores, 5GB] [8 cores, 7GB] 2

|PPOS| = 12

Knee VM = [2 cores, 10GB]

Table 6.6: Microanalysis of AI-DSQ-14 with λT = 10%, 20%

AI-DSQ-14, λT =30%

Iteration Weakest VM Strongest VM Number of VMs pruned

1 [1 core, 4GB] [24 cores, 155GB] 2

2
[1 core, 6GB] [24 cores, 150GB] 181
[2 cores, 5GB] [24 cores, 145GB] 3

|PPOS| = 6

Knee VM = [1 core, 6GB]

Table 6.7: Microanalysis of AI-DSQ-14 with λT = 30%

Location of omitted VMs with λT : Furthermore, Figure 6.4 shows the effect of λT on

the size of PPOS along with corresponding locations of VMs in XTS , for DI-DSQ-6. Similarly,

64

Figure 6.5 gives the plots of DI-DSQ-52 for different values of λT . Evidently, the VMs which are

omitted when higher threshold is given, are the dominated VMs for lower values of λT . Observe

that when a non-zero value of threshold is provided the knee VM selected is always to the right

of the ideal knee VM (when λT = 0), as mentioned in last chapter about the near-optimal

solution. Note that the threshold is always applied on non-normalized values.

(a) DI-DSQ-6 with λT = 0 (b) DI-DSQ-6 with λT = 10%

Figure 6.4: Effect of λT for DI-DSQ-6

6.3 Summary

To summarize, the size of PPOS remained within 20% of the total VMs, for the most of the

queries. However, for some queries, upto 85% of the total VMs were processed to find the knee

VM. The query plans for these queries have operators that were highly sensitive to available

memory e.g. sort operators and nested-loop joins. Further, the efficiency of the algorithm

increased significantly when user-defined threshold of 20-30% is applied on time. However, the

effect of time-threshold was found negligible for few queries; the notable point was that these

queries already had small PPOS.

65

(a) DI-DSQ-52 with λT = 0 (b) DI-DSQ-52 with λT = 10%

(c) DI-DSQ-52 with λT = 20% (d) DI-DSQ-52 with λT = 50%

Figure 6.5: Effect of λT for DI-DSQ-52

66

Chapter 7

Identification of the Knee VM: A

Sub-plan based Approach

In the previous chapter, we have seen that for most of the queries, PIK identifies the knee VM

by processing only 20% of the total VMs. We know that, it receives the complete query plan

given by the database engine’s API for every required VM. However, while observing these

query plans, we found that often there are repetitive sub-plans across VMs. In that case,

same computation is performed by the query optimizer for many sub-plans for different VMs.

However, if the query optimizer is modified, such that it prunes the VMs at sub-plan levels

also to find the knee VM, then this extra computations could be reduced. This motivated

us to augment the optimizer algorithm for the optimization of money expenditure alongwith

response-time.

We use the concept of partial ordering of the VMs on their resources as discussed in Chap-

ter 5, to devise a Sub-Plan-based Identification of Knee (SPIK). This algorithm prunes the

VMs at the sub-plan levels and retains only the Pareto-optimal sub-plans and their correspond-

ing VMs. An important point to note here is that a VM whose sub-plan is not Pareto-optimal

at a lower node may turn out to be so at higher nodes. To ensure that we never miss such

67

a VM and its plan, for all the non-Pareto-optimal VMs, we check if their minimum possible

monetary expenditure is lesser than their stronger alternative. If yes, then we explicitly obtain

the sub-plan on that VM, otherwise the VM is discarded from consideration.

We have prototyped SPIK inside Postgresql 9.3, and also implemented it as a Java wrapper

program with the commercial engine. Our experimental results indicate that the total com-

putation carried out by SPIK is within 40% of PIK. Further, the efficiency of the algorithm

increases significantly when a relaxation factor of 20 to 30 % is permitted on the time axis.

Since, this algorithm aims at pruning the VMs at sub-plan levels, it requires modifications

in the query optimizer’s selection process of the query-plan. Therefore, before discussing our

algorithm, we present a brief background of the traditional query optimizer approach. Also, we

discuss the challenges in the adaptation of this approach for the twin objectives of money and

time.

7.1 Traditional Query Optimizer

In the traditional optimizer algorithm, a Dynamic Programming (DP) based approach is used

to find the plan with minimum response-time [25]. To explain the general terminology of this

approach, an abstract three level DP-tree is given in Figure 7.1a. The base tables are at the leaf

nodes of the DP tree, while the join nodes feature at the higher levels. Now, at each node in

the tree the sub-plan with the least response-time is selected and forwarded to the higher nodes

to incrementally construct the complete plan tree. This way at each node only the sub-plan

with the least response-time is retained. For instance the plan shown in Figure 7.1b, i.e, the

selected join order is ((A./C)./B).

Challenges for Cloud Query Optimizer

Unlike the conventional query optimizer, the goal for cloud databases is to consider both the

response-time and total money expense. More importantly, instead of finding the query-plan

for the fixed infrastructure, here hundreds of VMs are given as the input. Therefore, the

68

(a) DP tree for a sample query
(b) Selected query-plan with

minimum response-time

Figure 7.1: DP based approach

information saved at each node is a quadruple – (VMi, Pi, Ti, Xi), where Pi is the plan with

time Ti and Xi monetary expenditure on VMi. Since, in this quadruple a VM is associated with

a single sub-plan, we will use the terms VM and sub-plan interchangeably hereafter. Now, if a

VM requires more time but lesser money, then it has to be saved at that node. Thus, increasing

the number of sub-plans saved at each node. Consequently, the total number of VMs to be

tried at the nodes of higher levels may lead to unreasonable optimization time. On the other

hand, naive pruning may miss out the knee VM.

In short, the main challenges in the modification of this approach are – (i) keeping the plan

information for too many VMs would cause an exponential blow-up at higher nodes of the

DP tree, and (ii) deciding which VMs to keep is not straightforward, as a VM may be in the

POS (Pareto-Optimal Set) at the root node but absent in the POS of some intermediate nodes.

7.2 Repetitive Sub-plans Across VMs

On observing the query plans, we found that the change in operator algorithm and/or cost,

etc. in the query plans with respect to the changes in hardware related parameters is fairly

slow. In Figure 7.2, the query plans which are repeated across several VMs are shown. Note

that the plans are same in structure as well as in optimizer’s cost. These query plans remain

unchanged when the provided resources are superfluous to their requirements. For example,

69

in Figure 7.2a, the cost of the query plan is not influenced by the parallelism provided by

the different VMs. Hence, the plan remains the same for given RAM size, irrespective of the

number of cores available in the VMs. Similarly, in Figure 7.2b the maximum memory required

by the nodes of the plan is attained when the RAM size is 60 GB, henceforth the provision of

additional memory does not alter the plan.

Similarly, for the query plans shown in Figure 7.3, the repeated sub-plans are shown within

the dashed box. The highlighted sub-plans remain unchanged with the change in VMs. Again,

it is because the resources required by the highlighted sub-plan are already attained.

Thus, if the query plans for all these VMs are computed, then at the nodes with same

sub-plans query optimizer does redundant computation. This extraneous computation can be

omitted, if we can control the query optimization process to prune the VMs at the sub-plans.

Overall, the objective is to include an array of VM configurations with their respective rental

rates, as the additional inputs to the query optimization phase, and select the knee VM with

its corresponding plan.

70

(a) For all VMs with 20 GB RAM, irrespective of number of cores

(b) For all VMs from 60 GB to 104GB RAM and 16 cores

Figure 7.2: Query plans for DI-DSQ19 across VMs

71

(a) For VM with 21 GB RAM and parallelism

(b) For VM with 10 GB RAM and no parallelism

Figure 7.3: Query plans for AI-DSQ-24 across VMs

72

7.3 Sub-Plan-based Identification of Knee (SPIK)

We present our algorithm – SPIK that spans over the entire space of VMs and picks the knee

VM and its corresponding query plan. In this algorithm, at each node, the VMs are processed

in the poset order of their resources as explained previously in Chapter 5. Specifically, at each

DP node, it obtains the query response-time for the minimal and maximal VMs only. If these

response-times differ significantly, then it identifies the next pair of minimal and maximal VMs

from among the unprocessed VMs. Otherwise, it prunes all the VMs bounded by these extreme

VMs. This continues this till a pair of minimal-maximal VMs with similar response-times at

that node are identified or the number of VMs is exhausted.

Next, total money expenditure is calculated for all the processed VMs at a node. Now, at

every node only Pareto-optimal sub-plans in XTS are saved alongwith their VMs. Further, they

are forwarded to the higher nodes for the incremental plan tree construction.

7.3.1 Challenges in the Sub-Plan-based Approach

Currently only Pareto-optimal VMs of a node are selected and forwarded to higher nodes, it

may lead to following anomalies:

• Missing VMs: Plan information required for some VMs might be missing. Specifically,

when the plan is to be constructed at a node for a VM which is not in the POS of one

or both of the children node(s). For example in Figure 7.4, the plan of node B for VMm is

required at node AB.

• Returning VMs: Constructing the sub-plans only for the VMs in the POS of the children

nodes, might lead to the omission of VMs which are Pareto-optimal in XTS at higher but

not in the lower nodes of the plan-tree. For example in Figure 7.5, the VMm is dominated

at node A but Pareto-optimal at ABC.

A detailed discussion on the occurrences and solution for each of these problems, and their

73

proposed solutions is followed next.

Providing Missing Plan Information for VM(s)

Since, at every node we forward only the plans which are Pareto-optimal in the XTS at that

node, this may lead to the unavailability of some descendant sub-plans. Particularly, this

is problematic when we want to construct a plan for the VM that is not in the POS of the

children node(s). Without these sub-plans further plan construction for the VM(s) could not

be completed. For example in Figure 7.4, VMm is not Pareto-optimal at node B, hence, it is

omitted. However, to know the Pareto-optimal VMs at node AB, the plan for VMm at AB is

required, which in turn requires the sub-plan of node B.

Figure 7.4: Plan information of VMs required at higher nodes might be missing

We know that, the VMs for which sub-plans are stored at a node are Pareto-optimal in the

XTS at that node. This confirms that the missing VM(s) is dominated by some VM in the

POS of that node. In simpler words, at a node the time as well as money expenditure for the

missing VM(s) is greater than some VM in the POS of that node. Hence, it is dominated and

subsequently removed from the POS of that node.

Now, let there be two VMs VMm, VMp such that VMp � VMm and VMm be dominated

by VMp at the node of level n (say). Now, from the discussion of Section 5.2, we know that,

74

Tm ≤ Tp. Therefore, max(Tm) = Tp, thus, for each missing VM, we can use the sub-plan of a

weaker VM as the upper-bound sub-plan.

To ensure that we always have a weaker VM for any given VM at any node, we save the

plan information for the minimal VM(s) at every node. Also, for each missing VM, we opt for

the VM that is weaker and have minimum Euclidean distance from the concerned VM on RS.

If two such incomparable VMs are found, then pick any.

Identifying the Dominated VMs that may Dominate Later

In SPIK, at each node, only the VMs that are Pareto-optimal in the XTS are saved. This might

cause the omission of the VMs that are Pareto-optimal at higher nodes but not at the lower

nodes. An example for such a case is given in Figure 7.5, where VMm is dominated at lower

node (A) but is Pareto-optimal at the root node (ABC).

Figure 7.5: A VM dominated at lower levels may be Pareto-optimal at higher nodes

Let there be two VMs such that VMm �p VMi. Now at every level following will hold,

RRm < RRi and Ti ≤ Tm (7.1)

At level x: Let VMi be a Pareto-optimal and VMm be a dominated VM at level x. Therefore,

Xi ≤ Xm ⇒
RRi

RRm
<

Tm

Ti
, (7.2)

75

At level x+k: We will use subscript x+k to denote the quantities of this level. Now, VMm can

be Pareto-optimal at this level, only if Xx+k
m ≤ Xx+k

i . Since, from equation 7.1, Ti ≤ Tm. But,

to calculate Xx+k
m the value of Tx+k

m is required, rather we check the following condition,

min (Xx+k
m) < Xx+k

i (7.3)

= RRm ×min(Tx+k
m) < RRi × Tx+k

i

Where, min(Tx+k
m) = Tm + (Tx+k

i - Ti). Note that, we are not taking min(Tx+k
m) = Tx+k

i ,

to ensure that Tm < Tx+k
m , because, response-time is cumulative in nature. Since, we are

comparing minimum value of Xx+k
m with Xx+k

i , it may happen that the actual value of Xx+k
m is

greater than Xx+k
i and VMm remains dominated. But, by checking condition 7.3 for the dominated

VMs, we will never miss any VM that can be Pareto-optimal at the current level. In short,

condition 7.3 may give false positives but not false-negatives.

Observe that we do not need actual value of Tx+k
m to check condition 7.3, instead we can use

the a lower-bound of it, which is the response-time of the weaker VM (VMp � VMm) at level y

(say) such that y < x, as discussed in the previous section.

Also, to check this condition we need response-time of a stronger VM (VMi). To ensure that

plan information for such a VM is available, we save the plan of the maximal VM of the poset

at every node. For each missing VM, we opt for the VM that is stronger and have minimum

Euclidean distance from the concerned VM on RS. If two such incomparable VMs are found,

then pick any.

7.3.2 Complete SPIK Algorithm

The complete algorithm to modify the planning process of the query optimizer is given in

Algorithm 4. At the leaf level, it obtains the sub-plans for minimal-maximal VMs of the poset

in that order, till either all the VMs are processed or pruned. Next, filter the Pareto-optimal

VMs of the node and forward them to the higher nodes (set ForwardVM constitute such VMs).

For the remaining nodes, it constructs the sub-plans for the VMs received from lower nodes and

76

those satisfying condition 7.3. If the response-times are found to be similar for any two VMs,

then all the VMs sandwiched between them are pruned. Finally, at the root node it identifies

the knee VM by calculating their Euclidean distance on the XTS , after applying normalization

as given in Section 5.3.3.

Algorithm 4: Sub-Plan based Identification of Knee

for Each node n in DP tree do
Initialization: XcludeVM = NULL, PPOS = NULL, ForwardVM = NULL,
ReceivedVM = Union of the ForwardVMi set of each child
MinimalVM = FindMinimal (VM , XcludeVM)
MaximalVM = FindMaximal (VM , XcludeVM, MinimalVM0)
GetQTime (MinimalVM0, Q)
GetQtime (MaximalVM0, Q)
ForwardVMn ∪ MinimalVM0

ForwardVMn ∪ MaximalVM0

if optimizer’s cost on minimal and maximal VMs are similar then
Add all the VMs in between the minimal and maximal VMs to the set XcludeVM

else
for each VMi ∈ ReceivedVM and VMi /∈ XcludeVM do

GetQTime (VMi, Q)
PPOS ∪ VMi

if any two VMs give similar optimizer’s cost then
Add all the VMs in between these two VMs to the set XcludeVM

end

end
for all the VMi /∈ XcludeVM and PPOS do

if min(Xi) < Xj then
GetQTime (VMi, Q)
PPOS ∪ VMi

end
if any two VMs give similar optimizer’s cost then

Add all the VMs in between these two VMs to the set XcludeVM
end

end

end
Filter the Pareto-optimal VMs from the set PPOS and add them to set ForwardVMn

end

77

7.4 Empirical Evaluation

This section details the empirical performance of SPIK on Postgresql and ComOpt. To start

with, we specify the performance metric used for this evaluation. Next, the implementation

details as well as the performance results for both of these engines are discussed. We prototyped

SPIK for Postgresql 9.3 and since, ComOpt is a commercial engine and does not provide access

to its source, therefore, we implemented SPIK as a Java wrapper program with it.

7.4.1 Performance metric

Unlike PIK , this algorithm processes the VMs at a sub-plan level, thus, the number of VMs

processed changes at each node of the plan. Hence, evaluating it on the previously used metric

– cardinality of PPOS would not be fair. Instead, we propose the following performance metric

to evaluate SPIK.

Total Costing Calls: The total computation done by SPIK for a given query is the sum total

of the processing done at each DP-node of the query. We refer to the computation done at

a node as one costing call. Therefore, to evaluate the performance of SPIK we have used the

total number of costing calls as our metric, denoted by σ. It is the summation of the number

of VMs in the set PPOS for every DP node of the query, i.e.

σ =
n∑

i=1

|PPOS| at node i (7.4)

where n is total number of DP-nodes in query. For the brute-force approach, value of |PPOS|

at every node is equal to the total number of available VMs.

78

7.4.2 Results on Postgresql

Implementation Details on Postgresql 9.3

Postgresql 9.3 has a single threaded architecture, which means that for a single query it does not

use the parallelism provided by the underlying system. So, the only system related parameter

considered in query optimization for our model, is memory. The most influential configuration

parameters in Postgresql are work mem and effective cache size [14]. We use an array of

main-memory values to simulate different VM configurations to the optimizer, which determine

the corresponding values of work mem and effective cache size. The alterations done in

Postgresql 9.3 to implement SPIK are explained next.

Modifications in Data-structures: Unlike traditional query optimization, in SPIK we store

plans for a set of VMs, and along with usual plan information it requires money expenditure

of plans. In the work flow of Postgresql 9.3, firstly query paths are constructed, and then they

are converted to query plans, which are used in explain utility to output cheapest cost query

plan. We made following changes to Path and Plan data structures to implement SPIK .

• Path: this data-structure is defined in plannodes.h, and it saves the access paths for join

or base relations. To distinguish the access paths for different VMs, we add variables for

work mem and effective cache size. Now, for each path, its corresponding memory

parameters are also stored, which identifies the corresponding VM.

• Plan: This is defined in plannodes.h and saves the final plan. SPIK requires comparison

on money as well as response-time of plans, so we add money variable to Plan. Similar

to Path, to distinguish the plans for different VMs we add variables for work mem and

effective cache size, these values are passed from the respective paths while conversion

of path to plan.

Saving Pareto-optimal Set of Plans: In Postgresql 9.3, plans are filtered such that only

79

the interesting order or cheapest costs plans are saved. For SPIK, we modified the plan filtering

mechanism such that they are pruned only when dominated in terms of both time as well as

money. Thus, at each node, all Pareto-optimal paths are saved and forwarded to higher nodes.

To implement this mechanism, we have to make changes in the following parts of the optimizer:

• Costing for the given set of VMs

• Modify the plan selection mechanism

The costing functions are modified to calculate the total money expenditure of the operator.

Now, each operator has a cost and money expense associated with it. The plans that have more

cost as well as money than some other plan of that node are pruned. We modified the pruning

routine of Postgresql 9.3, to prune only when the plan is dominated in terms of both optimizer

cost and money or it is an interesting order plan.

1. For every node, plans for a number of different VMs are created. Firstly we change the

values of work mem and effective cache size using the sub-routine SetConfigOption,

to reflect the configuration of the chosen VM. Now, while costing of operators these new

values of parameters are used. We calculate the total money expenditure for each operator

and save it in the respective Path structure.

2. When creating the plans for a node, we use all the saved Pareto-optimal plans of the

children nodes. It is ensured that considered sub-plans are for weaker or equivalent of the

current VM.

3. The plans with more optimizer cost and money expenditure than some other plan at that

node are pruned. All the remaining plans are saved since they form the Pareto-optimal

set of the node. The plans with interesting order are also saved irrespective of their cost

and money values compared to their non-interesting counterparts. However, among the

interesting order plans the dominated ones are pruned. Finally, at the root node, the one

80

with minimum Euclidean distance on XTS is selected as the knee plan, and given as the

output of the explain utility. Note that if user wants to know all the Pareto-optimal plans

for the query, modifications can be done to output this set of plans.

Amendments were made in the costing functions of operators in costsize.c, in add path routine

of pathnode.c, make join rel function of joinrels.c, and in modules of createplan.c to convert

knee path to plan.

Performance Results

The testbed for these experiments is a SUN Utra 20, AMD-Opteron workstation with dual core

2.5 GHz, 4GB RAM and two 240GB hard disks, running Ubunutu 12.04. We have evaluated

the algorithm for both DI as well AI schema on TPC-DS benchmark queries, with database

size being 100 GB. We have also calculated the computation overheads for SPIK in terms of

memory and time.

An array of 40 different memory values ranging from 1 GB to 200 GB is given as the input to

optimizer, along with query. A difference of 5 GB is maintained between consecutive memory

values. The parameter effective cache size is given 50% and work mem 5% of the given

memory size.

As mentioned before, Postgresql uses a single threaded architecture for a given query, thus,

there are no interesting variations in the behavior of the queries on multi-core machines. Hence,

we compared PIK with exhaustive approach on Postgresql. However, on ComOpt we compared

the performance of PIK and SPIK which is given later in Section 7.4.3.

Comparison of σ values for SPIK and brute-force is given in Figure 7.6. It is evident from

the chart that the value of σ is at most 30% of the brute-force. To give a clearer picture of the

optimization phase, we present cardinality of POS at the root and its maximum size in the plan

tree in Table 7.1. This table illustrates that only a small number of VMs are Pareto-optimal

and with our pruning mechanism, only few reach the root of the plan tree. Thus, avoiding

exponential breakout of plans at higher nodes. For instance in AI-DSQ-17 and AI-DSQ-29,

81

although there are 12 plans in the POS at intermediate nodes, but only half of them make it to

the POS of the root node, rest are pruned in between.

Variations in the selected query-plan: The changes in the selected plan with the

introduction of monetary expenditure metric is given in Figure 7.7 for DI-DSQ-45 and in Figure

7.8 for AI-DSQ-61. To show the difference between the two plans, the nodes in Figures 7.7b

and 7.8b are outlined by red if they are different from their knee plan counterparts.

It is clear from these figures that when response-time alone is not the deciding metric, join

algorithms as well as join order change. Also, hash join appears to be the cheapest alternate

when only the optimizer’s cost is to be minimized. However, when both money and time are

taken into consideration, nested-loop join surfaces as a better option though not the fastest,

because it requires lesser memory and thus a cheaper VM. Note that the VM corresponding to

the knee plan gives a different value of memory parameters than default values of Postgresql.

The plans we present in Figures 7.7b and 7.8b are with the parameter values of the knee VM

and not the default parameter values.

Figure 7.6: Performance of SPIK on Postgresql 9.3

82

Query |POS |max |POS |root
DI-DSQ-6 4 4
DI-DSQ-7 3 2
DI-DSQ-15 4 2
DI-DSQ-17 8 3
DI-DSQ-19 6 4
DI-DSQ-45 4 2
DI-DSQ-46 4 3
DI-DSQ-68 3 2
AI-DSQ-6 6 4
AI-DSQ-17 12 6
AI-DSQ-29 12 7
AI-DSQ-61 5 2
AI-DSQ-63 3 2
AI-DSQ-91 3 2

Table 7.1: Cardinality of POS for TPC-DS queries on Postgresql 9.3

(a) Knee query plan for DI-DSQ-45 by SPIK

(b) Query plan for DI-DSQ-45 by native Postgresql 9.3

Figure 7.7: Query plans of DI-DSQ-45

83

(a) Knee query plan for AI-DSQ-61 by SPIK

(b) Query plan for AI-DSQ-61 by native Postgresql 9.3

Figure 7.8: Query plans of AI-DSQ-61

84

Computation overheads

Now, we take a look at the overheads paid for identifying the knee VM for the given set of

configurations in terms of increased optimization time and memory. Time aspect of SPIK com-

pared to native DP algorithm is captured in Table 7.2a, and Table 7.2b gives the account of

extra memory required by SPIK during optimization. Clearly, optimization time taken by this

new algorithm, which takes tens of VM configurations as input and identifies knee among them

is around one second for the majority of queries. Similarly, peak memory expenditure is less

than 10 MB, which appears acceptable overhead for todays’ rich computing systems leveraging

the benefits of cloud platform.

However, for some queries e.g. DI-DSQ-17, AI-DSQ-17, and AI-DSQ-61, the optimization

time as well as peak memory is high because they have a large number of DP nodes. Specifically,

DI-DSQ-17 and AI-DSQ-17 have 85 and AI-DSQ-61 has 58 DP nodes. When the number of

DP nodes is this large, storing Pareto-optimal plans at each node is costly in terms of both

time and memory, and the overall optimization is slow for such queries.

Query SPIK (ms)
Native DP

(ms)

DI-DSQ-6 200 14
DI-DSQ-7 150 10
DI-DSQ-15 80 12
DI-DSQ-17 750 45
DI-DSQ-19 200 18
DI-DSQ-45 150 15
DI-DSQ-46 80 15
DI-DSQ-68 100 15
AI-DSQ-6 300 30
AI-DSQ-17 1500 120
AI-DSQ-61 2000 90
AI-DSQ-63 150 25
AI-DSQ-91 700 40

(a) Time overheads of SPIK

Query SPIK (KB)
Native DP

(KB)

DI-DSQ-6 285 280
DI-DSQ-7 280 220
DI-DSQ-15 285 220
DI-DSQ-17 7200 250
DI-DSQ-19 330 220
DI-DSQ-45 250 220
DI-DSQ-46 6500 2600
DI-DSQ-68 290 220
AI-DSQ-6 240 220
AI-DSQ-17 600 280
AI-DSQ-61 550 260
AI-DSQ-63 230 220
AI-DSQ-91 300 220

(b) Memory overheads of SPIK

Table 7.2: Computation overheads of SPIK

85

7.4.3 Results on ComOpt

Since, ComOpt is a commercial engine, therefore it is not possible for us to modify its query

optimizer. Hence, we implemented it as a Java wrapper program around ComOpt , to evaluate

the performance of SPIK. This program obtains the complete query plans given by the explain

utility of ComOpt for the required VMs and then compares their sub-plans. The comparison of

sub-plans is not possible when the DP-nodes are different across VMs, since, that information

is missing in the optimizer’s chosen plan. Also, only those DP nodes are considered by this

program that are in the optimizer’s chosen plan, the information for the rest of the nodes is

missed by this implementation. Hence, certain coarseness is expected in these empirical results.

To compare the performance of our two algorithms on ComOpt we calculated σ values for

PIK as well. To calculate σ value for PIK, we summed up the cardinality of PPOS for each

of the DP-nodes in the query execution plan. The comparative numbers for a few queries is

given in Table 7.3. It is clear from this table that SPIK is within 40% of the PIK for most of

the queries. However, for query DI-DSQ-3, the performance of PIK and SPIK are close to each

other, it is because the number of Pareto-optimal VMs is small for this query and the number

of nodes in the execution-plan is also low. Hence, the total processing done by PIK is also low

for this query. Observe that this comparison is not exact, the ideal comparison could be done

by comparing the optimization times for the two approaches after implementing SPIK inside

ComOpt query optimizer.

Effect of time-threshold

The effect of time threshold (λT) on the efficiency of SPIK is given in Figure 7.9. The figure

illustrates that often allowing a threshold of 20% on time, decreases the value of σ by upto

40%. Additionally, it is visible that for some queries the effect of λT is almost negligible. Note

that this behavior is shown by the queries that already have a very low value of σ. According

to the construction of SPIK , at every node atleast minimal and maximal VMs are tried. So,

86

Query PIK (σ) SPIK (σ)
DI-DSQ-3 24 14
DI-DSQ-6 376 140
DI-DSQ-19 790 223
DI-DSQ-25 280 90
DI-DSQ-75 460 65
AI-DSQ-4 120 40
AI-DSQ-24 300 60
AI-DSQ-67 469 22
AI-DSQ-74 240 42

Table 7.3: Comparison of σ for PIK and SPIK on ComOpt

the minimum value of σ is two times the number of nodes in the DP lattice and this remains

unaffected by the value of λT .

Figure 7.9: Effect of λT on SPIK for ComOpt

7.4.4 Summary

We prototyped SPIK on Postgresql 9.3, and found that it required only 30% of the processing

as required by the exhaustive enumeration. To evaluate SPIK on ComOpt, we implemented

it as a Java wrapper program, since modification in the ComOpt is not possible because

87

of its commercial nature. On comparing the two algorithms on ComOpt , we found that

SPIK requires only 40% of the computation as compared to PIK. Thus, the pain of intrusion

in the query optimizer seems worth the gain in the performance of the knee identification.

88

Chapter 8

Conclusions and Future Work

The flexibility of infrastructure provided by the cloud platform encouraged migration of RDBMSs

to cloud and opened many interesting arenas in the database system research. One of them

is to optimize monetary investment along with query response-time. In the traditional multi-

objective database query optimization, money is commonly ignored objective [16]. Since in

traditional setups money consumption is more or less static, as infrastructural framework is

worked up once and for all. However, IaaS model of cloud provides the capability of renting

a different machine configuration for each of our queries, this raises the question of identifying

the best configuration for a given query and database.

In this thesis, we considered the problem of balancing money and time investment for a

given query and database. We used the concept of Pareto-optimality, which is the standard

notion of optimality in multi-objective optimization. But, instead of overwhelming the user

with too many details of all the query-plans, etc. on the Pareto-front, we chose to output just

the knee VM and corresponding plan.

We analyzed the performance of a popular commercial database engine ComOpt on the

Google cloud platform using benchmark queries of standard decision support benchmark database

TPC-DS. We found that the execution-time of queries vary greatly with the changes in VM con-

89

figuration, and so does the monetary expenditure. Additionally, this experimentation confirmed

that there was no one VM that could act as the knee VM for all the queries. Hence, choosing

the right VM for executing queries when migrating to the cloud framework is of paramount

importance.

To identify the knee VM among hundreds of available configurations, we proposed an ap-

proach (PIK) that uses the partial ordering on the resources of the VMs. The algorithm was

based on two main observations:

• the set of VMs for the relation � forms a poset

• if a VM dominates another on RS and both have similar response-times, then all the VMs

bounded by them would also have same response-times

Therefore, once the maximal and minimal VMs of the poset with similar response-time were

identified, all the VMs bounded by them were pruned. However, a noteworthy difference in the

response-times on the two boundary VMs signals the presence of the knee VM in the poset.

We then created a subset of VMs by excluding previously selected minimal and maximal VMs,

and processed this subset for the knee VM. We continued this search till all the VMs were

exhausted or we reached a smaller subset with no difference in response-times. Finally, we

calculated Euclidean distance of each processed VM from origin on the XTS , and selected the

one with minimum distance as the knee VM.

The empirical evaluation of PIK was done on ComOpt for the benchmark queries of TPC-

DS database of size 100 GB. It was found that for the majority of the queries, PIK identified

the knee VM by processing only 20-30% of the available VMs. To further decrease the number

of processed VMs, a user-defined threshold (λT) on time was used. Giving a mere value of

10-20% to λT , the number of processed VMs reduced significantly.

However, PIK was relying on the response-time of the queries alone without considering

the query specific details as the query plan. On observing the query plans across the VMs for

90

a given query, it was found that often sub-plans were repeated. Thus, while computing the

optimal plan for each required VM, redundant processing was done for the same sub-plan(s).

This propelled us to make changes in the query optimizer module such that it can omit this

redundant computation by pruning the VMs at sub-plan levels also. The additional input to

this new query optimizer was the set of VM configurations, and it selected the knee VM and

the corresponding plan as the final output.

The proposed sub-plan based algorithm – SPIK , used the concept of partially order set on

the VMs and saved only Pareto-optimal VMs at each node of the query plan. Also, it ensure

that no interesting VM went missing, it checks if the minimum possible monetary expenditure

of the dominated VM is lesser than some stronger and dominating VM.

To empirically evaluate SPIK , we prototyped SPIK for Postgersql 9.3, and also implemented

it as a Java wrapper program with ComOpt . Our experimental results indicate that the total

computation carried out by SPIK is within 40% of PIK . Further, the efficiency of the algorithm

increases significantly when a relaxation factor of 20 to 30 % is permitted on the time axis.

Therefore, from an overall perspective, this thesis facilitates the desired migration of enter-

prise databases to cloud platforms, by identifying the VM(s) that offer competitive tradeoffs

between money and time for the given query.

8.1 Future Work

It would be interesting to extend this work for the query workload, which would be useful in

pragmatic setups. Using the algorithms given in this thesis, we can identify the knee VM for

individual queries of the workload, and execute them accordingly. However, if the database

used by the queries is same and the size of workload is large then keeping multiple copies of the

database might be cumbersome. In other words, if we aim at minimizing the number of VMs

also, then we can identify the near-optimal knee VMs for some of the queries and execute them

accordingly.

91

However, ideal solution for the workload is to find a knee VM that provides the best tradeoff

between the money and time required by the workload. Similar to our approach, there might

be two threads for this extension. The plan-based approach for can be extended for workload

by assigning weights to the queries. The user-provided query weights would symbolize the

importance of the respective query and the solution would give higher priority to the queries

with greater weights. The objectives could be weighted too, signifying the worth of each, to

the user. For example, if more weight is given to the response-time then solution VMs would

complete queries as fast as possible, giving more importance to the queries with higher weight.

The balance between time and money can be attained by controlling the query optimization

process by an extension in the multi-query optimization [23, 26]. It is a challenging task to add

objective in the multi-query optimization for money. However, the motivation for the multi-

query optimization was that many queries share the sub-plans. In Chapter 7, we have witnessed

that often query plans across VMs have common sub-plans. Thus, it is a viable option to extend

multi-query optimization for this problem. In that case, the query-plans would be chosen such

that queries can leverage from this repetitive computation.

Furthermore, we have considered the problem only for the IaaS model of cloud, however it

would be more challenging to study it for preemptive or spot instances on cloud [1, 4]. Instead

of fixed rental rate given by cloud vendors, these VMs are available to users with highest bid,

and the user has to preempt it as soon as someone else bids a higher value. The simultaneous

optimization of monetary expenditure and query execution-time is tricky for such instances.

It would be an interesting problem to decide not only the VM configuration but also time of

the day for OLAP query executions. If the query is not executed in the stipulated time, the

VM might be preempted resulting in failed query execution, hence some penalty function for

incorrect estimation could be used.

92

Bibliography

[1] Amazon ec2 spot instances. https://aws.amazon.com/ec2/spot/. 5, 92

[2] Compute engine - iaas google cloud platform. https://cloud.google.com/compute/. 4,

23, 29

[3] Google cloud pricing. https://cloud.google.com/pricing/. 7, 29

[4] Preemptible vm instances - compute engine google cloud platform. https://cloud.

google.com/compute/docs/instances/preemptible. 5, 92

[5] Pricing - cloud services — microsoft azure. https://azure.microsoft.com/en-in/

pricing/details/cloud-services/. 4, 7

[6] Types of cloud computing. https://aws.amazon.com/types-of-cloud-computing/. 2,

4, 23

[7] Understanding the cloud computing stack: Saas, paas,

iaas. https://support.rackspace.com/white-paper/

understanding-the-cloud-computing-stack-saas-paas-iaas/. 2, 23

[8] M. Abhirama, Sourjya Bhaumik, Atreyee Dey, Harsh Shrimal, and Jayant R. Haritsa.

On the stability of plan costs and the costs of plan stability. Proc. of 36th International

Conference on Very Large DataBase (VLDB), pages 1137–1148, September 2010. 14

93

https://aws.amazon.com/ec2/spot/
https://cloud.google.com/compute/
https://cloud.google.com/pricing/
https://cloud.google.com/compute/docs/instances/preemptible
https://cloud.google.com/compute/docs/instances/preemptible
https://azure.microsoft.com/en-in/pricing/details/cloud-services/
https://azure.microsoft.com/en-in/pricing/details/cloud-services/
https://aws.amazon.com/types-of-cloud-computing/
https://support.rackspace.com/white-paper/understanding-the-cloud-computing-stack-saas-paas-iaas/
https://support.rackspace.com/white-paper/understanding-the-cloud-computing-stack-saas-paas-iaas/

BIBLIOGRAPHY

[9] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neuge-

bauer, Ian Pratt, and Andrew Warfield. Xen and the art of virtualization. SIGOPS Oper.

Syst. Rev., pages 164–177, October 2003. 4

[10] Jürgen Branke, Kalyanmoy Deb, Henning Dierolf, and Matthias Osswald. Finding knees in

multi-objective optimization. In Parallel Problem Solving from Nature-PPSN VIII, pages

722–731. Springer, 2004. 19, 23

[11] Massimiliano Caramia and Paolo Dell’Olmo. Multi-objective management in freight logis-

tics: Increasing capacity, service level and safety with optimization algorithms. Springer

Science & Business Media, 2008. 21, 22

[12] Indraneel Das and John E Dennis. Normal-boundary intersection: A new method for

generating the pareto surface in nonlinear multicriteria optimization problems. SIAM

Journal on Optimization, 8(3):631–657, 1998. 21, 23

[13] Kalyanmoy Deb and Shivam Gupta. Understanding knee points in bicriteria problems and

their implications as preferred solution principles. Engineering optimization, 43(11):1175–

1204, 2011. 19, 20, 22, 23

[14] Biplob K Debnath, David J Lilja, and Mohamed F Mokbel. Sard: A statistical approach

for ranking database tuning parameters. In IEEE 24th International Conference on Data

Engineering Workshop, 2008. ICDEW 2008, pages 11–18. IEEE, 2008. 79

[15] Tansel Dokeroglu, Seyyit Alper Sert, and Muhammet Serkan Cinar. Evolutionary mul-

tiobjective query workload optimization of cloud data warehouses. The Scientific World

Journal, 2014, 2014. 16, 18, 19

[16] Daniela Florescu and Donald Kossmann. Rethinking cost and performance of database

systems. ACM Sigmod Record, 38(1):43–48, 2009. 18, 89

94

BIBLIOGRAPHY

[17] Sumit Ganguly, Waqar Hasan, and Ravi Krishnamurthy. Query optimization for paral-

lel execution. In Proceedings of the 1992 ACM SIGMOD International Conference on

Management of Data, SIGMOD ’92, pages 9–18, New York, NY, USA, 1992. ACM. 14

[18] Antonio López Jaimes, Saúl Zapotecas Martınez, and Carlos A Coello Coello. An intro-

duction to multiobjective optimization techniques. Optimization in Polymer Processing,

pages 29–57, 2009. 21

[19] Hsiang-Tsung Kung, Fabrizio Luccio, and Franco P Preparata. On finding the maxima of

a set of vectors. Journal of the ACM (JACM), 22(4):469–476, 1975. 52

[20] Julien Legriel, Colas Le Guernic, Scott Cotton, and Oded Maler. Approximating the pareto

front of multi-criteria optimization problems. In TACAS, pages 69–83. Springer, 2010. 26

[21] Peter Mell and Tim Grance. Draft nist working definition of cloud computing. Referenced

on June. 3rd, 15:32, 2009. 2

[22] Jennie Rogers, Olga Papaemmanouil, and Ugur Cetintemel. A generic auto-provisioning

framework for cloud databases. In IEEE 26th International Conference on Data Engineer-

ing Workshops (ICDEW), 2010, pages 63–68. IEEE, 2010. 6, 17, 18, 19

[23] Prasan Roy, S. Seshadri, S. Sudarshan, and Siddhesh Bhobe. Efficient and extensible

algorithms for multi query optimization. In Proceedings of the 2000 ACM SIGMOD In-

ternational Conference on Management of Data, SIGMOD ’00, pages 249–260, New York,

NY, USA, 2000. ACM. 92

[24] Ville Satopää, Jeannie Albrecht, David Irwin, and Barath Raghavan. Finding a” kneedle”

in a haystack: Detecting knee points in system behavior. In 31st International Conference

Distributed Computing Systems Workshops (ICDCSW), 2011, pages 166–171. IEEE, 2011.

19, 23

95

BIBLIOGRAPHY

[25] P. Griffiths Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price.

Access path selection in a relational database management system. In Proceedings of the

1979 ACM SIGMOD International Conference on Management of Data, SIGMOD ’79,

pages 23–34. ACM, 1979. 13, 68

[26] Timos K. Sellis. Multiple-query optimization. ACM Transaction on Database Systems,

ACM TODS 1988, (1):23–52, March 1988. 92

[27] Pradyumn Kumar Shukla, Marlon Alexander Braun, and Hartmut Schmeck. Theory and

algorithms for finding knees. In Evolutionary Multi-Criterion Optimization, pages 156–170.

Springer, 2013. 19, 23

[28] Immanuel Trummer and Christoph Koch. Approximation schemes for many-objective

query optimization. In Proceedings of the 2014 ACM SIGMOD International Conference

on Management of Data, pages 1299–1310. ACM, 2014. 6, 14, 15, 18, 19

[29] Immanuel Trummer and Christoph Koch. An incremental anytime algorithm for multi-

objective query optimization. In Proceedings of the 2015 ACM SIGMOD International

Conference on Management of Data, SIGMOD ’15, pages 1941–1953, New York, NY,

USA, 2015. ACM. 6, 16, 18

[30] Wentao Wu, Yun Chi, Hakan Haćıgümüş, and Jeffrey F. Naughton. Towards predicting

query execution time for concurrent and dynamic database workloads. Proceedings on 39th

International Conference on Very Large DataBase (VLDB), 6(10):925–936, August 2013.

35

[31] Wentao Wu, Yun Chi, Shenghuo Zhu, Junichi Tatemura, Hakan Hacigumus, and Jeffrey F

Naughton. Predicting query execution time: Are optimizer cost models really unusable? In

IEEE 29th International Conference on Data Engineering (ICDE), 2013, pages 1081–1092.

IEEE, 2013. 35

96

BIBLIOGRAPHY

[32] Zichen Xu, Yi-Cheng Tu, and Xiaorui Wang. Exploring power-performance tradeoffs in

database systems. In IEEE 26th International Conference on Data Engineering (ICDE),

2010, pages 485–496. IEEE, 2010. 14

97

Appendix

Query Text (based on benchmark queries)

select dt.d year, item.i brand id brand id, item.i brand brand,
sum(ss ext discount amt) sum agg

from date dim dt, store sales, item
where dt.d date sk = store sales.ss sold date sk

and store sales.ss item sk = item.i item sk
and item.i manufact id = 783
and dt.d moy=11

group by dt.d year, item.i brand, item.i brand id
order by dt.d year, sum agg desc, brand id;

TPC-DS Query 3

98

with year total as

(select c customer id customer id, c first name customer first name,

c last name customer last name, c preferred cust flag

customer preferred cust flag, c birth country customer birth country,

c login customer login, c email address customer email address,

d year dyear, sum(((ss ext list price-

ss ext wholesale cost- ss ext discount amt)+ss ext sales price)/2)

year total, ’s’ sale type

from customer, store sales, date dim

where c customer sk = ss customer skand ss sold date sk = d date sk

group by c customer id, c first name, c last name, c preferred cust flag,

c birth country, c login, c email address, d year

union all

select c customer id customer id, c first name customer first name, c last name

customer last name, c preferred cust flag customer preferred cust flag,

c birth country customer birth country, c login customer login,

c email address customer email address, d year dyear,

sum((((cs ext list price - cs ext wholesale cost-cs ext discount amt) +

cs ext sales price)/2))

year total, ’c’ sale type

from customer, catalog sales, date dim

where c customer sk = cs bill customer sk and cs sold date sk = d date sk

group by c customer id, c first name, c last name, c preferred cust flag,

c birth country, c login, c email address, d year,

union all

99

select c customer id customer id, c first name customer first name, c last name

customer last name, c preferred cust flag customer preferred cust flag,

c birth country customer birth country, c login customer login,

c email address customer email address, d year dyear,

sum((((ws ext list price-ws ext wholesale cost-ws ext discount amt) +

ws ext sales price)/2)) year total, ’w’ sale type

from customer, web sales, date dim

where c customer sk = ws bill customer skand ws sold date sk = d date sk

group by c customer id, c first name, c last name, c preferred cust flag,

c birth country, c login, c email address, d year)

select t s secyear.customer login

from year total t s firstyear, year total t s secyear, year total t c firstyear,

year total t c secyear, year total t w firstyear, year total t w secyear

where t s secyear.customer id = t s firstyear.customer id

and t s firstyear.customer id = t c secyear.customer id

and t s firstyear.customer id = t c firstyear.customer id

and t s firstyear.customer id = t w firstyear.customer id

and t s firstyear.customer id = t w secyear.customer id

and t s firstyear.sale type = ’s’ and t c firstyear.sale type = ’c’

and t w firstyear.sale type = ’w’ and t s secyear.sale type = ’s’

and t c secyear.sale type = ’c’ and t w secyear.sale type = ’w’

and t s firstyear.dyear = 1999 and t s secyear.dyear = 1999+1

and t c firstyear.dyear = 1999 and t c secyear.dyear = 1999+1

and t w firstyear.dyear = 1999 and t w secyear.dyear = 1999+1

and t s firstyear.year total > 0 and t c firstyear.year total > 0

and t w firstyear.year total > 0 and case when t c firstyear.year total > 0

100

then t c secyear.year total / t c firstyear.year total else null end > case

when t s firstyear.year total > 0 then t s secyear.year total /

t s firstyear.year total else null end

and case when t c firstyear.year total > 0 then t c secyear.year total /

t c firstyear.year total else null end > case when t w firstyear.year total > 0

then t w secyear.year total / t w firstyear.year total else null end

order by t s secyear.customer login ;

TPC-DS Query 4

101

select a.ca state state, count(*) cnt

from customer address a, customer c, store sales s , date dim d, item i

where a.ca address sk = c.c current addr sk

and c.c customer sk = s.ss customer sk

and s.ss sold date sk = d.d date sk

and s.ss item sk = i.i item sk

and d.d month seq = (select distinct (d month seq)

from date dim

where d year = 1998

and d moy = 5)

and i.i current price > 1.2 * (select avg(j.i current price)

from item j

where j.i category = i.i category)

group by a.ca state

having count(*) >= 10

order by cnt ;

TPC-DS Query 6

102

select i brand id brand id, i brand brand, i manufact id, i manufact,

sum(ss ext sales price) ext price

from date dim, store sales, item,customer,customer address,store

where d date sk = ss sold date sk

and ss item sk = i item sk

and i manager id=91

and d moy=12

and d year=2002

and ss customer sk = c customer sk

and c current addr sk = ca address sk

and substr(ca zip,1,5) ¡¿ substr(s zip,1,5)

and ss store sk = s store sk

group by i brand, i brand id, i manufact id, i manufact,

order by ext price desc, i brand, i brand id, i manufact id, i manufact;

TPCDS Query 19

103

with ssales as

(select c last name, c first name, s store name, ca state, s state, i color,

i current price, i manager id, i units,

i size, sum(ss ext sales price) netpaid

from store sales, store returns, store, item, customer, customer address

where ss ticket number = sr ticket number and ss item sk = sr item sk

and ss customer sk = c customer sk and ss item sk = i item sk

and ss store sk = s store sk and c birth country = upper(ca country)

and s zip = ca zip and s market id=8

group by c last name, c first name, s store name, ca state,

s state, i color, i current price,

i manager id, i units, i size)

select c last name, c first name, s store name, sum(netpaid) paid

from ssales

where i color = ’lawn’

group by c last name, c first name, s store name

having sum(netpaid) > (select 0.05*avg(netpaid) from ssales);

TPCDS Query 24

104

select i item id, i item desc, s store id, s store name, max(ss net profit) as store sales profit,

max(sr net loss) as store returns loss,max(cs net profit) as catalog sales profit

from store sales, store returns, catalog sales, date dim d1, date dim d2,

date dim d3, store, item

where d1.d moy = 4 and d1.d year = 2001 and d1.d date sk = ss sold date sk

and i item sk = ss item sk and s store sk = ss store sk

and ss customer sk = sr customer sk

and ss item sk = sr item sk and ss ticket number = sr ticket number

and sr returned date sk = d2.d date sk and d2.d moy between 4 and 10

and d2.d year = 2001 and sr customer sk = cs bill customer sk

and sr item sk = cs item sk and cs sold date sk = d3.d date sk

and d3.d moy between 4 and 10 and d3.d year = 2001

group by i item id, i item desc, s store id, s store name

order by i item id, i item desc, s store id, s store name;

TPCDS Query 25

105

with v1 as (select i category, i brand, s store name, s company name, d year, d moy,

sum(ss sales price) sum sales, avg(sum(ss sales price)),

over (partition by i category, i brand, s store name,

s company name, d year), avg monthly sales, rank()

over (partition by i category, i brand, s store name, s company name

order by d year, d moy) rn

from item, store sales, date dim, store

where ss item sk = i item sk and ss sold date sk = d date sk

and ss store sk = s store sk and (d year = 2000 or

(d year = 2000-1 and d moy = 12) or (d year = 2000+1 and d moy = 1))

group by i category, i brand, s store name, s company name, d year, d moy),

v2 as

(select v1.s store name, v1.s company name, v1.d year, v1.avg monthly sales,

v1.sum sales, v1 lag.sum sales psum, v1 lead.sum sales nsum

from v1, v1 v1 lag, v1 v1 lead

where v1.i category = v1 lag.i category and v1.i category = v1 lead.i category

and v1.i brand = v1 lag.i brandand v1.i brand = v1 lead.i brand

and v1.s store name = v1 lag.s store name

and v1.s store name = v1 lead.s store name

and v1.s company name = v1 lag.s company name

and v1.s company name = v1 lead.s company name

and v1.rn = v1 lag.rn + 1 and v1.rn = v1 lead.rn - 1)

select *

from v2

where d year = 2000 and avg monthly sales > 0

106

and case when avg monthly sales > 0 then

abs(sum sales - avg monthly sales) avg monthly sales

else null end > 0.1

order by sum sales - avg monthly sales, 3;

TPCDS Query 47

107

select dt.d year, item.i brand id brand id, item.i brand brand, sum(ss ext sales price) ext price

from date dim dt, store sales, item

where dt.d date sk = store sales.ss sold date sk and store sales.ss item sk = item.i item sk

and item.i manager id = 1 and dt.d moy=12 and dt.d year=2000

group by dt.d year, item.i brand, item.i brand id

order by dt.d year, ext price desc, brand id;

TPC-DS Query 52

select i brand id brand id, i brand brand, sum(ss ext sales price) ext price

from date dim, store sales, item

where d date sk = ss sold date sk and ss item sk = i item sk

and i manager id = 40 and d moy = 12 and d year = 2001

group by i brand, i brand id

order by ext price desc, i brand id;

TPC-DS Query 55

108

with wss as (select d week seq, ss stor e sk, sum(case when (d day name=’Sunday’)

then ss sales price else null end) sun sales, sum(case when (d day name=’Monday’)

then ss sales price else null end) mon sales, sum(case when (d day name=’Tuesday’)

then ss sales price else null end) tue sales, sum(case when (d day name=’Wednesday’)

then ss sales price else null end) wed sales, sum(case when (d day name=’Thursday’)

then ss sales price else null end) thu sales, sum(case when (d day name=’Friday’)

then ss sales price else null end) fri sales, sum(case when (d day name=’Saturday’)

then ss sales price else null end) sat sales

from store sales,date dim

where d date sk = ss sold date sk

group by d week seq,ss store sk)

select s store name1,s store id1,d week seq1, sun sales1/sun sales2, mon sales1/mon sales2,

tue sales1/tue sales1, wed sales1/wed sales2, thu sales1/thu sales2,

fri sales1/fri sales2, sat sales1/sat sales2

from (select s store name s store name1,wss.d week seq d week seq1, s store id s store id1,

sun sales sun sales1, mon sales mon sales1, tue sales tue sales1,

wed sales wed sales1, thu sales thu sales1, fri sales fri sales1, sat sales sat sales1

from wss,store,date dim d

where d.d week seq = wss.d week seq and ss store sk = s store sk

and d month seq between 1184 and 1184 + 11) y,

(select s store name s store name2,wss.d week seq d week seq2, s store id s store id2,

sun sales sun sales2, mon sales mon sales2, tue sales tue sales2,

wed sales wed sales2, thu sales thu sales2, fri sales fri sales2, sat sales sat sales2

from wss,store,date dim d

where d.d week seq = wss.d week seqand ss store sk = s store sk

109

and d month seq between 1184+ 12 and 1184 + 23) x

where s store id1=s store id2 and d week seq1=d week seq2-52

order by s store name1,s store id1,d week seq1;

TPC-DS Query 59

110

select *

from (select i category, i class, i brand, i product name, d year, d qoy, d moy, s store id,

sumsales, rank() over (partition by i category order by sumsales desc) rk

from (select i category, i class, i brand, i product name, d year, d qoy, d moy,

s store id, sum(coalesce(ss sales price*ss quantity,0)) sumsales

from store sales, date dim, store, item

where ss sold date sk = d date sk and ss item sk=i item sk

and ss store sk = s store sk and d month seq between 1214 and 1214+11

group by rollup (i category, i class, i brand, i product name,

d year, d qoy, d moy,s store id))dw1) dw2

where rk ≤ 100

order by i category, i class, i brand, i product name, d year,

d qoy, d moy, s store id, sumsales, rk;

TPC-DS Query 67

111

select i brand id brand id, i brand brand,t hour, t minute, sum(ext price) ext price

from item, (select ws ext sales price as ext price, ws sold date sk as sold date sk,

ws item sk as sold item sk, ws sold time sk as time sk

from web sales, date dim

where d date sk = ws sold date sk and d moy=12 nd d year=2002

union all

select cs ext sales price as ext price, s sold date sk as sold date sk,

cs item sk as sold item sk, cs sold time sk as time sk

from catalog sales,date dim

where d date sk = cs sold date sk and d moy=12 and d year=2002

union all

select ss ext sales price as ext price, ss sold date sk as sold date sk,

ss item sk as sold item sk, ss sold time sk as time sk

from store sales,date dim

where d date sk = ss sold date sk and d moy=12 and d year=2002)

as tmp,time dim

where sold item sk = i item sk and i manager id=1and time sk = t time sk

and (t meal time = ’breakfast’ or t meal time = ’dinner’)

group by i brand, i brand id,t hour,t minute

order by ext price desc, i brand id;

TPC-DS Query 71

112

with year total as (select c customer id customer id, c first name customer first name,

c last name customer last name, d year as year,

max(ss net paid) year total, ’s’ sale type

from customer, store sales, date dim

where c customer sk = ss customer sk and ss sold date sk = d date sk

and d year in (1998,1998+1)

group by c customer id, c first name, c last name, d year

union all

select c customer id customer id, c first name customer first name,

c last name customer last name, d year as year,

max(ws net paid) year total, ’w’ sale type

from customer, web sales, date dim

where c customer sk = ws bill customer sk

and ws sold date sk = d date sk and d year in (1998,1998+1)

group by c customer id, c first name, c last name, d year)

select top 100 t s secyear.customer id, t s secyear.customer first name,

t s secyear.customer last name

from year total t s firstyear, year total t s secyear, year total t w firstyear,

year total t w secyear

where t s secyear.customer id = t s firstyear.customer id

and t s firstyear.customer id = t w secyear.customer id

and t s firstyear.customer id = t w firstyear.customer id

and t s firstyear.sale type = ’s’ and t w firstyear.sale type = ’w’

and t s secyear.sale type = ’s’ and t w secyear.sale type = ’w’

and t s firstyear.year = 1998 and t s secyear.year = 1998+1

113

and t w firstyear.year = 1998 and t w secyear.year = 1998+1

and t s firstyear.year total > 0 and t w firstyear.year total > 0

and case when t w firstyear.year total > 0 then t w secyear.year total /

t w firstyear.year total else null end > case when t s firstyear.year total > 0 then

t s secyear.year total / t s firstyear.year total else null end

order by 1,2,3;

TPC-DS Query 74

114

with all sales as (select d year, i brand id, i class id, i category id, i manufact id,

sum(sales cnt) as sales cnt, sum(sales amt) as sales amt

from (select d year, i brand id, i class id, i category id, i manufact id,

cs quantity - coalesce(cr return quantity, 0) as sales cnt,

cs ext sales price - coalesce(cr return amount, 0.0) as sales amt

from catalog sales join item on i item sk=cs item sk

join date dim on d date sk=cs sold date sk

left join catalog returns on (cs order number=cr order number

and cs item sk=cr item sk)

where i category=’Shoes’

union

select d year, i brand id, i class id, i category id, i manufact id,

ss quantity - coalesce(sr return quantity,0) as sales cnt,

ss ext sales price - coalesce(sr return amt,0.0) as sales amt

from store sales join item on i item sk=ss item sk

join date dim on d date sk=ss sold date sk

left join store returns on (ss ticket number=sr ticket number

and ss item sk=sr item sk)

where i category=’Shoes’

union

select d year, i brand id, i class id, i category id, i manufact id,

ws quantity - coalesce(wr return quantity,0) as sales cnt

ws ext sales price - coalesce(wr return amt,0.0) as sales amt

from web sales join item on i item sk=ws item sk

join date dim on d date sk=ws sold date sk

115

left join web returns on (ws order number=wr order number

and ws item sk=wr item sk)

where i category=’Shoes’) sales detail

group by d year, i brand id, i class id, i category id, i manufact id)

select top 100 prev yr.d year as prev year, curr yr.d year as year,

curr yr.i brand id, curr yr.i class id, curr yr.i category id, curr yr.i manufact id,

prev yr.sales cnt as prev yr cnt, curr yr.sales cnt as curr yr cnt,

curr yr.sales cnt-prev yr.sales cnt as sales cnt diff,

curr yr.sales amt-prev yr.sales amt as sales amt diff

from all sales curr yr, all sales prev yr

where curr yr.i brand id=prev yr.i brand id

and curr yr.i class id=prev yr.i class id

and curr yr.i category id=prev yr.i category id

and curr yr.i manufact id=prev yr.i manufact id

and curr yr.d year=2000

and prev yr.d year=2000-1

and cast(curr yr.sales cnt as decimal(17,2))/

cast(prev yr.sales cnt as decimal(17,2)) < 0.9

order by s sales cnt diff;

TPC-DS Query 75

116

	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 An Introduction to Cloud Framework
	1.2 Benefits for Databases in Cloud
	1.3 Conflicting Objectives for Cloud Databases: Money and Time
	1.4 Traditional Versus Cloud Query Processing Model
	1.5 Contributions
	1.6 Organization

	2 Survey of Related Research
	2.1 Query Processing for Cloud Platforms
	2.1.1 Multi-objective Query Optimization (MOQO)
	2.1.2 Resource Provisioning for Cloud Databases

	2.2 Our Problem Focus

	3 Problem Framework
	3.1 Preliminaries
	3.1.1 Bi-objective Optimization Problem
	3.1.2 Concept of Dominance and Pareto-Optimality
	3.1.3 Concept of Knee

	3.2 Problem Formulation
	3.3 Notations

	4 Database Performance on the Cloud Platform
	4.1 Experimental Setup
	4.1.1 Cloud Platform Details
	4.1.2 Database and DBMS Setup

	4.2 Empirical Results
	4.2.1 Execution Time Experiments
	4.2.2 Compile Time Experiments
	4.2.3 Conclusions

	5 A Plan-based Approach to Identify the Knee VM
	5.1 Partial Order on the Virtual Machines in RS
	5.2 Locating Virtual Machines on XTS
	5.3 Plan-based Identification of Knee (PIK)
	5.3.1 Preprocessing
	5.3.2 Identifying Potential Pareto-optimal VMs
	5.3.3 Characterizing the Knee VM

	5.4 Guarantees on the Knee VM
	5.5 Summary

	6 Empirical Evaluation of PIK
	6.1 Experimental Framework
	6.2 Performance of PIK
	6.2.1 Performance Microanalysis
	6.2.2 Effect of Time Threshold

	6.3 Summary

	7 Identification of the Knee VM: A Sub-plan based Approach
	7.1 Traditional Query Optimizer
	7.2 Repetitive Sub-plans Across VMs
	7.3 Sub-Plan-based Identification of Knee (SPIK)
	7.3.1 Challenges in the Sub-Plan-based Approach
	7.3.2 Complete SPIK Algorithm

	7.4 Empirical Evaluation
	7.4.1 Performance metric
	7.4.2 Results on Postgresql
	7.4.3 Results on ComOpt
	7.4.4 Summary

	8 Conclusions and Future Work
	8.1 Future Work

	Bibliography
	Appendix A :

