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Abstract

Graphics processor (GPU) have emerged as a powerful co-processor for general-purpose com-
putation. Compared with commodity CPUs, GPUs have an order of magnitude higher com-
putation power as well as memory bandwidth. The execution time of database query can be
reduced by using GPU as a coprocessor to CPU. This can be done by dividing the computation
task between both the processors optimally. Depending upon the data size, algorithm used for
operator and input data distribution, either of the CPU or the GPU could perform better than
the other respectively. We try to come up with the solution to partition the operators of query
plan tree on the CPU and GPU, so as to execute the query faster than executing query on
contemporary database engine. We have initial promising result in which our CPU-GPU based
query plan implementation is performing better than the contemporary database engines like
MonetDB [5].
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Chapter 1
Introduction

Since the invention of the relational database management system (RDBMS), perfor-
mance demands of the applications have been increasing. To achieve high performance
in RDBMS, queries processed in database engine should be executed as fast as possible.
A database execution plan tree which is usually a binary tree, consist of set of nodes.
Each node of the plan tree represents a operator. To execute a operator (e.g. : Join) an
algorithm (e.g.: Hash Join, Sort Merge Join etc.) is executed. A query plan tree is shown
in Figure 1.1.

In [1] a query plan tree was executed on discrete heterogeneous architecture having GPU
of compute capability 1.x, which does not support multiple stream execution [3]. They
reported no speed up of their GPU implementation or CPU-GPU implementation of plan
tree compared to the CPU implementation of their plan tree. In [2], researchers used
coupled architecture for processing the query. After advent of modern GPUs like Kepler
3.x [7] and Maxwell 5.x architecture the power of multiple streams can be exploited to

reduce the execution time of database query.
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Chapter 2

Background on GPU

There are two types of heterogeneous architecture
1. Discrete Heterogeneous Architecture
2. Coupled Heterogeneous Architecture

In discrete heterogeneous architecture, CPU and GPU are connected through PCle bus as
shown in Figure 2.1. Both CPU and GPU have their own memory designed specifically to
their requirements. In coupled architecture, CPU and GPU both are integrated on single chip.
The coupled architecture is less powerful than the discrete architecture because of the following

reasons:

e The number of cores dedicated to the GPU are lesser than the GPU in discrete het-
erogeneous architecture. This is because CPU and GPU have to share space on single

chip.

e GPU has the requirement of high bandwidth memory, as CPU and GPU are integrated
on single chip, GPU have to use memory designed specifically for the CPU which is low
latency and low bandwidth.

From now onwards we will regard CPU as the host and GPU as the device.
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Figure 2.1: Discrete Architecture

Kernel is a basic function which executes on GPU. It can be written in CUDA or OpenGL.
Whenever the host thread launches (calls) the kernel, kernel is scheduled on GPU and then
kernel is executed on the GPU along with the control returning to the host thread i.e launching
of the kernels by the host thread on the GPU is non blocking. Therefore host thread could
launch multiple kernels even though the first kernel has not even started execution.

Thread block is a collection of threads. Grid is a collection of thread blocks. When kernel is
launched on a GPU, the programmer have to specify the dimension of the grid i.e. number of
thread blocks, dimension of the thread blocks i.e. number of threads in the thread block. Each
thread runs the instructions in the kernel independent of each other, therefore each thread
requires its own set of registers for the variables. The programmer could write the kernel
in such a way that each thread can allocate memory for the variables on the on chip cache
(shared memory), so that the thread does not have to access the device memory repeatedly
for the variable. Shared memory is allocated on a per thread block basis therefore all the
threads belonging to same thread block can access shared memory allocated for that thread
block. From the above we conclude that the thread block is collection of threads and thread



block requires registers, shared memory to execute. From now onward we will call threads in
the thread block, registers and shared memory required by the thread block as the resources
required by the thread block to execute.

GPU contains few streaming multiprocessor (SMX). Each SMX has fixed

1. number of registers.

2. amount of shared memory (software controlled cache in contrast to CPU which has hard-

ware control cache).
Each SMX can have at most certain number of
1. threads to execute.
2. thread blocks to execute.

Table 2.1 shows the configuration of Tesla k40m GPU.

Resources Quantity
# of SMX 15
# of registers on SMX 64K of 4 Bytes each
Shared Memory Per SMX 48KB
Max # of threads on SMX 2048
Max # of thread blocks on SMX 16

Table 2.1: Configuration of Tesla k40m

We will define some terms which we will use further in the report:

1. A thread block is scheduled when it gets resources to execute on any SMX of the
GPU.

2. A thread block is executed when all of its threads have executed the instructions in

the kernel and released their resources back to their SMX.
3. A kernel is scheduled when atleast one thread block of kernel has been scheduled.

4. A kernel is executed when all of its thread blocks have been executed and released

their resources back to their SMX respectively.



5. A kernel is not resource configurable when we cannot control the number of thread
blocks launched for that kernel. The number of thread blocks launched depends upon the
size of the input data to the kernel and number of threads launched in the thread block.

Two kernels in GPU cannot communicate with each other therefore no pipelining is possible
between two kernels in GPU, hence every kernel is blocking node in tree. A thread block of a
kernel is a schedulable unit on SMX i.e. either all the threads of a thread block are scheduled
on SMX or non of them is scheduled on SMX. Once the thread block is scheduled to SMX
it will not be preempted from that SMX i.e. until all of its threads had executed all of the

instructions in its kernel, it will not be preempted from that SMX.

2.1 Maximum resident thread block of kernel

Each thread block of the kernel requires the resources in the GPU, therefore only limited number
of thread blocks could be launched on the GPU. The maximum number of thread blocks of
the kernel that can be resident on the GPU simultaneously is called max residency of kernel.
The maximum resident thread block of any kernel can be computed by Algorithm 1, given the

resources available with GPU and the resources required by a thread block.
int MaxResidentTBOfKernel( ResourcesGPU,ResourcesTB) {

registerT B « SEUSMXregisters (Gipyy SN[ X registers = 64K for k40m}

T B.registers

GPU.SM X .threads
threadsT B <+ T 1Ty

GPU.SM X.sharedMemory

sharedMemoryT B < TB.sharcdMemory

return min(registerT B, threadsT B, sharedMemoryT B)

}
Algorithm 1: Max resident thread block of kernel.
From now onwards, we will specify kernel K by

K(number of registers used per thread, shared memory used per thread block,

number of threads in a thread block, number of thread blocks).

2.2 Streams

Stream is a sequence of operations that execute in issue-order on the GPU i.e. the operation
in a stream start execution only when earlier operations in that stream have completed their

execution. Operations in different streams may run concurrently or may be interleaved i.e.
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different streams may execute their operation concurrently or out of order with respect to each
other. Operation could be memory transfer operation from host to device memory or from
device to host memory or it can be a kernel launch. In Figure 2.2 kernel K5, P, and (); can be
executed concurrently while kernel K, will only be scheduled when K is executed i.e. when
all the thread blocks of kernel K are executed.

From now onwards we will say

1. A stream is executed when all its kernels are executed on the GPU.
2. A stream is activated when it is ready to schedule its front kernel on the GPU.

3. A stream is deactivated when it is not ready to schedule its front kernel on the GPU.

For example in Figure 2.2, stream; is ready to schedule kernel K; on the GPU. Once the GPU
scheduler has schedule all the thread blocks of kernel K; on the GPU then Stream; will be
deactivated as it is not ready to schedule its kernel K5 on the GPU. This is because stream; is

waiting for kernel K7 to be executed.

1 B HEE
Stream 2 Resource
= 0000

Figure 2.2: GPU Scheduler

Stream 1

Streaming Multiprocessors

2.2.1 How streams can be created
Streams can be created in two ways:

1. By calling CUDA function cudaStreamCreate explicitly and launching the kernel in the

respective streams.

2. By creating POSIX pthread (only available after CUDA 7.0), each pthread will have
its respective default stream. Kernels launched by the pthread will be executed in its
own pthread’s default stream. Therefore kernels launched by different pthreads can run

concurrently and may be interleaved.



Chapter 3

Our Contribution

3.1 Assigning the stream Id to nodes in plan tree

In a database query plan tree, many nodes in a tree could be executed concurrently, for example
all the leaf nodes of the tree could be executed concurrently. With the help of multiple streams,
multiple kernels could be executed concurrently by spawning each of them into distinct streams.
Assigning different streams to nodes in the plan tree, which could run concurrently, helps us in

following ways:
1. To have more possible ways to divide the task between CPU and GPU.

2. If one stream of GPU is blocked, then other stream could be processed by GPU scheduler,

hence efficient utilization of resources of the GPU.

Database plan tree executes in following manner. If a node has child nodes then it should start
executing only after its child nodes had completed their execution. Therefore we will require
synchronization between the execution of parent node with child node. We assign distinct
streams to the nodes of the binary plan tree by the Algorithm 2. The Algorithm 2 assigns
distinct streams to nodes which could run concurrently and synchronize the streams which

requires synchronization to execute the plan tree correctly.



void AssignStreamld (root, streamld) {
if root=NULL then

return;
end
root.streamld=streamld;
streamStack[streamId].push(root);
if root has two child then
leftStreamId=getNewStreamld();
rightStreamId=getNewStreamld();
AssignStreamld (root.left, le ftStreamld);
AssignStreamld (root.right, rightStreamlId);
streamld has to synchronize with the execution of the le ftStreamlId and

rightStreamlId
else

AssignStreamld (root.left, streamld);
AssignStreamld (root.right, streamld);

end

}
Algorithm 2: Converting binary tree into set of streams
Figure 3.1 gives running example of our Algorithm2. The binary tree shown in Figure 3.1 is

cut down into five distinct stream each with different color. Stream yellow have to synchronize
with stream blue and stream green and stream red have to synchronize with the execution of
stream yellow and stream purple.

By the Algorithm 2, for a parent node having one child node, both the nodes will be put up
in a single stream. Implicit synchronization (i.e. nodes in stream will be executed in order)
will maintain the execution order child — parent. For nodes having two child nodes, all three
nodes will be put in three distinct streams therefore we have to use explicit synchronization
i.e. making wait the stream in which parent node belongs for the streams in which child nodes

belongs, to maintain the execution order. child, — parent, childs — parent.
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Figure 3.1: Assigning stream to nodes of binary tree

O&Qb

3.2 Round robin scheduler of Nvidia

Nvidia does not provide any official documentation of how the scheduling of kernels from mul-
tiple streams takes place, therefore we conducted some experiments to know the algorithm.
There are other internal information about the GPU which are not revealed by Nvidia because
of the business strategy or rapid change in the architecture of GPU. It might happen that
some features are upgraded in such a way that program written for previous generation are
not portable to next generation of GPU. Therefore Nvidia doesn’t reveal some features which
might affect program portability.

We launched two kernels K7(20,48K B, 128,16), K2(18,0K B, 64, 1) in two different streams
St and S5. The maximum thread block residency of K is fifteen on k40m GPU from Algorithm
1 and Table 2.1. We launched sixteen thread blocks which is one greater than maximum thread
block residency of K;. We observe that

e When two streams were activated in order S; — Sy, then the 16" thread block was
scheduled only after any one thread block of K; was executed and release its shared
memory resources to SMX. Kernel K5 was not scheduled until the 16" thread block of
kernel K7 had been scheduled, although resources were available to execute the single
thread block of kernel K5 with the first fifteen executing thread blocks of kernel Kj.

e When we altered the launching order of streams i.e Sy — S7 then both the kernels K;

and K5 start simultaneously, hence may reduce the total execution time of two kernels.

10



Similar experiment was conducted by launching two kernels K; (28, 0K B, 992, 31), K5(28,0K B, 32,1).
The max residency of K is 30 from Algorithm 1 and Table 2.1. We observed that

e S; — So: The 31% thread block was scheduled only after any one thread block of K; was
executed and release its thread resources to SMX. The kernel K5 was not scheduled until
315t thread block of kernel K; is scheduled.

e 57 — S5: Both the kernels K; and K5 start simultaneously.
From the above observation we conclude that

1. The stream scheduler will schedule all the thread blocks of kernel in the stream it processes
currently. If it is not able to schedule all the thread blocks, it will wait for resources to
be freed and will not process any other stream, even though kernel in different streams

can be launched concurrently.

2. After scheduling all the thread blocks of kernel in current stream, it will start processing

another stream in round robin order.

11



The r

ound robin algorithm is illustrated in Algorithm 3.

Result: Schedule all the streams launched on GPU.

1
2

3:
4
5
6
T
8
9
10:
11:

12:
13:

14

: void RoundRobin(streamStack, numberO fStreams) {
: for ¢ < 0, numberO fStreams do
if streamStackli].empty() then

numberO fStreams < numberO fStreams — 1;
remove the streamStackli];
else if streamStack][i] is active then
kernel < streamStackli].top();
streamStackli].pop();
for all threadBlock in kernel do
ScheduleThreadBlockSMX (threadBlock);
end for
deactivate the streamStack[i] until all the thread block of kernel are executed;
end if
: end for

}
Algorithm 3: Round Robin Scheduler of k40m

Result: Schedule the given threadBlock on any one SMX.

void ScheduleThreadBlockSMX (threadBlock) {
while True do
for i < 0, numberOfSMX do
if CompareResources(threadBlock.resources, SM X [i].resources) then
AllocateResources(threadBlock.resources,
SM Xi].resources);
return;
end if
end for

end while

}

Result: Returns true when resources are available to execute the given T'B on given

SMX.
bool CompareResources(7'B, SMX) {
b0 <— T'B.registers < SM X.registers;
bl < T'B.sharedMemory < SM X.sharedMemory;
b2 < T B.threads < SM X .threads;
b3 + SMX.threadBlock > 1; 12
returnb0&b1&b2&:b3;

}



Result: Allocate resources for the thread block T'B from given SM X
AllocateResources(T'B, SMX) {
SMX.registers < SMX.registers — T B.registers
SMX.sharedMemory <— SM X.sharedMemory — T B.shared Memory
SM X .threads < SM X .threads — T'B.threads
SM X .threadBlock <— SM X .threadBlock — 1

}

As the scheduling of streams should be efficient and fast, it should be less complex and have
less storage requirement. Therefore Nvidia might have choose algorithm 3 for scheduling the

streams.

3.3 Executing the plan tree

Assume that the plan tree has directed edge from child node to parent node, the topological
ordering of tree gives the valid execution sequence of kernel nodes because in the topological
ordering of tree all the child nodes will be executed before the parent node which is our require-
ment to execute the database plan tree. To execute the given plan tree, we will cut down the
tree into set of streams by Algorithm 2. Then the streams having leaf nodes will be activated
initially. For the stream which have to synchronize with the execution of two other streams,
will be activated as soon as two others streams had been executed. By this way, whole plan
tree is executed by the GPU.

We observed that the order in which streams are initially activated can give different execu-
tion time of the tree. For example: In Figure 3.2, we have tree with six kernel nodes. Node
K (20,48 K B, 64, 15) signifies that each of its thread blocks will acquire all the shared memory
on each SMX of GPU k40m. While node Kygn(28,0K B, 64, 4) signifies that each of its thread
blocks will not acquire any shared memory on SMX. We cut down this tree into five streams
by the Algorithm 2. Stream,,, Streamy, Stream, will be activated initially as they contain the
leaf node while Stream, has to wait for execution of Stream,, Stream; and Stream,, has to

wait for execution of Stream,, Stream,.

13
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Figure 3.2: Tree with six kernel nodes and five streams.

We executed the plan tree on GPU and observed the following

o If streams are activated in the order Stream, — Stream;, — Stream, then kernel in
Stream;, has to wait for completion of a thread block of kernel in Stream, because of the
lack of shared memory resource. This will in turn make wait kernels in Stream, because

round robin scheduler will not process Stream, unless it schedules kernel in Stream,.

o If they are activated in the order Stream, — Stream, — Stream; then the kernel in

Stream, will be executed concurrently with kernel in Stream,,.

The time line diagram for both the cases generated by nvce pro-filer is shown in Figure 3.3 and
Figure 3.4. The overlapping sequence has less execution time than non overlapping sequence.
For some cases it might happen that two kernels which are both memory intensive might degrade
the performance of each other and get more execution time if they are overlapped rather than if
they were not overlapped. From above we conclude that the order in which streams are initially

activated can give different execution time of the tree.

14



KNSM(int2*, int, int...
KNSM(int2*, int, Int, Int¥, int, in... KNSM(int2*, int, int, int*, int, in...

KNSM(int2*, int, int...

KSM(int2*, int, int, in...

Figure 3.3: Non overlapping Stream, and Stream,

KNSM(int2*, int, int, i
KNSM(int2¥, int, int, i...

KNSM(int2*, int, int, int*, int, int, in...|KNSM(int2*, int, int, int*, int, int, in...

KSM(int2*, int, int, intx, i..
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Chapter 4

Experiments

4.1 Machine configuration

The architecture of machine we used for our experiments is discrete heterogeneous architecture.
Table 4.1 and Table 4.2 shows the configuration of the Xeon CPU and Tesla k40m GPU [7]

used, respectively.

Number of cores in CPU 6
L3 cache size 15MB
Host memory 24GB

Table 4.1: CPU: Intel(R) Xeon(R) CPU E5-2620

Number of SMX 15
Number of cores per SMX 192
Number of registers per SMX 64K
Size of on chip shared memory per SMX | 48KB
Size of each register 4B
Device memory 12GB

Table 4.2: GPU: Tesla k40 GPU

4.2 Available algorithm for database operators

We have an implementation of most of the logical database operators algorithm for GPU in
CUDA, for CPU in OpenMP from [6] shown in Table 4.3.

16



Operator Algorithm on CPU | Algorithm on GPU
Sort Quick sort Bitonic sort, Radix sort
Aggregate Parallel aggregate Parallel reduce

Group By Sort group by Sort group by

Filter Sequential scan Sequential scan

Join HJ, SMJ, INLJ, NLJ [ Hash join

Table 4.3: Algorithms for database operators on CPU and GPU

Currently algorithms are implemented in OpenMP for CPU and in CUDA for GPU [6].
Algorithms are not able to handle:

e Multiple attribute group by operator.

Multiple attribute sort operator.

e Non equi joins.

Date, string and float data type.
e Like and EXISTS operator.

e Nested queries.

Because of the above limitations, we cannot execute any TPC-H query [8] without modification.
Therefore we selected three TPC-H queries from twenty two TPC-H queries and modified them
by replacing

e Multi attribute group by by single attribute group by.

e Multi attribute sort by single attribute sort.

e Non equi join with equi join.

Date or string data type attribute of a relation with similar selectivity integer or float

data type attribute of respective relation.

Rounded off float values of attribute to greatest integer values.

e Unnested the nested TPC-H Query 17.

The algorithms were using multiple global variable which lead to inconsistent value in mul-
tithreaded environment. We modified the algorithm as per the requirement of multithreaded

environment.

17



4.3 TPC-H Database

TPC-H Database [8] with scaling factor of 10 was generated i.e. size of whole database was
10GB. While executing query on GPU, we didn’t want to transfer some intermediate output
to host memory because of insufficient space on GPU device memory therefore we scaled our
database to 10GB only which is less than 12GB size of device memory. A higher scaling factor
may be tried out as current scaling factor didn’t cause insufficient device memory for queries
which we used for our experiments. The generated database contains eight relations. Relations

and their respective cardinalities are shown in Table 4.4.

Relation | Cardinality
Customer 1.5m
Lineitem 59m
Part 2m
Partsupp 8m
Region )
Nation 25
Supplier 0.1m
Order 15m

Table 4.4: TPC-H Database of size 10GB

4.4 TPC-H Queries

Modified TPC-H queries used for our experiments are following:

4.5 TPC-H Query 5

e Select c_custkey, sum(c_acctbal)
From orders, lineitem, supplier, nation, customer, region
Where c_custkey = o_custkey
and l_orderkey = o_orderkey
and | suppkey = s_suppkey
and s_nationkey = n_nationkey
and n_regionkey = r_regionkey
and r_regionkey = 3
and o_totalprice < 50000

18



and c_custkey
and c_custkey
Limit 20

4.6 TPC-H Query 10

e Select c_custkey, sum(l_extendedprice) as revenue
From customer, orders, lineitem
Where c_custkey = o_custkey
and 1 orderkey = o_orderkey
and o_totalprice < 20000
and l_quantity < 12
Group by c_custkey
Order by c_custkey
Limit 20

4.7 TPC-H Query 17

e Select sum(R.l_extendedprice)
From
(
select *
from lineitem, part
where p_partkey = 1 partkey
and p_size=1
and p_retailprice < 1040.99
) as R,
(
select
p_partkey, floor(avg(l_quantity)/33) as avg_quantity
from lineitem, part
where | partkey = p_partkey
group by p_partkey
having floor(avg(l_quantity)/33) > 1
) as S
Where R.1_quantity=S.avg_quantity

19



4.8 Experimental setup

e Columnar Storage: We used columnar storage model for storing our relations on the
file-system as well as in the memory. Each attribute of relation was represented by
an array of structures. Each structure element is represented by a pair of integers <

row_id,value >. Each integer was of 4B.

e In Memory Database: To be fair with execution of plan tree on CPU and GPU, we
assume that both of the processing unit have required input data for processing, in their
respective memory i.e. we excluded initial disk transfer cost and host to device memory

transfer cost in the reported execution time.

e MultiCore OpenMP: We had exported GOMP_CPU_AFFINITY environment variable
of operating system to 701234501234 5" which signals the operating system to
schedule the OpenMP threads consecutively to the cores i.e. " thread of OpenMP will
be scheduled to (i%6)™" core of the Xeon six core CPU.

4.9 Performance

We analysed the performance of each available algorithm and modified TPC-H queries. We
validated the output of algorithms by running queries shown in Table 4.5 on MonetDB database
engine [5] so as to be sure that the algorithms are working correctly. We similarly validated the
output of modified TPC-H queries with MonetDB database engine. The MonetDB database
engine is multicore, in memory, columnar storage database engine. All the performance reading
of MonetDB are given by running the query iteratively until the execution time is same for three
consecutive reading. This is done so that required data is in the host memory. Comparing our
performance with MonetDB is unfair for our OpenMP, CUDA implementation because of the

following reasons:

1. The database on MonetDB has indexes built already on some of the columns in relation
according to TPC-H benchmark index queries. While currently we don’t have provision
for building the indexes on the columns in OpenMP or CUDA.

2. The MonetDB also stores some intermediate results and creates indexes on the fly for the

columns, so that it could improve the performance of the query.

3. MonetDB has provision for pipelining of data between operators. In pipelining between

operator nodes, parent node operator can start processing data from child node operator

20



even though child operator has not completely processed its input data. Pipelining helps

to improve the performance of plan execution.

4. The plan chosen by MonetDB for particular query is generated by estimating cardinality
of the nodes, computing cost of each node in tree etc. while plan chosen for our discrete

heterogeneous architecture is random.

Therefore MonetDB is expected to perform much faster than our OpenMP, CUDA based im-
plementation which does not have any indexes built, storing of intermediate result and pipelin-
ing between operators. In favor of MonetDB, MonetDB has little additional overhead of parsing

the query, finding the optimal execution plan tree to execute the query than our implementation
of OpenMP and CUDA.

Operator | Query

Filter Select count(*) from lineitem where l quantity > 1 and

l_quantity <5

Aggregate | Select max(l_quantity) from lineitem

Sort Select 1_quantity from lineitem order by l_quantity limit 10

Group By | Select sum(l linenumber) from lineitem group by 1_quantity

Table 4.5: Operator and its corresponding query

4.10 Performance of database algorithm

Performance of each database operator on CPU, GPU and MonetDB is shown in Table 4.6.

Operator | CPU (ms) GPU(ms)
Filter 127 127
Aggregate 47 41
Sort 3200 1000(radix sort)
Group By 3300 1017

Table 4.6: Performance of operators on CPU(6 threads), GPU(1024 threads, 128 thread blocks)
and MonetDB

e Performance of algorithms on CPU: As Xeon CPU has six cores, we launched six
threads in OpenMP. The increase in number of OMP threads didn’t increase the perfor-

mance of filter and aggregate operator as the algorithm used, have sequential memory

21



access pattern which exploit the spatial locality property of the cache. In other words the
algorithms are cache friendly which lead to very high CPU utilization (close to 100%).

Sorting of the array in OpenMP is done by splitting the array into » number of parti-
tion and sorting each partition individually by quick sort. In six thread configuration, 16
independent partitions and for ten threads, 32 independent partitions were created for
same data-set. The Table 4.7 shows thread assignment per core TAPC and partition as-
signment per core PAPC. In 10 thread configuration, only eight thread will be active for
sorting the partitions, because OpenMP starts giving four partitions (ceil(32/10)) to each
thread consecutively and end up giving no partition to 9* and 10** thread. The 10 thread
configuration have execution time 600ms less than six thread configuration as shown in

Table 4.7 although split time for the relation was same for both of the configuration.

# of OpenMP threads TAPC PAPC Time(ms)
6 threads (1,1,1,1,1,1) | (3,3,3,3,3,1) 3200
10 threads (2,2,1,1,1,1) | (8,84,44.4) | 2600

Table 4.7: Performance of sort on CPU(6threads) and CPU(10 threads)

Group by requires array to be sorted first and then aggregate is performed on each of
the group. Sort has more complexity than aggregate, therefore group by performance is
much similar to sort. We didn’t compare our performance with MonetDB because of the

reasons mentioned in Section 4.6.

Performance of algorithms on GPU: The performance of the filter operator is shown
in Figure 4.1 with varying the number of threads in thread block and thread blocks (Blue
line represents operator with one thread block).Filter operator has following five kernels:
memset, map, prefix scan, uniform add and scatter. Filter operator had non resource
configurable prefix scan kernel. Rest of the kernels in the filter are high throughput
kernel. Therefore execution time of configuration (*,*,1024,1) i.e. 351ms is just three
times lower than (*,*,1024,128) although number of thread block given to execute in later
128 times higher.

The Performance of aggregate operator is shown in Figure 4.2. Aggregate operator uses
single kernel K(32,528,**). It has linear speed up from 1 thread block to 30 thread block
(With (32,528,1024,30) its execution time is 50ms). This is because max residency for
K(32,528,1024,*) is 30 thread block.

We use radix sort algorithm imported from thrust library [9] for the sort operator in our
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Execution Time(ms)

experiments as it is performing three times faster than bitonic sort from [6].
Group by operators are implemented by performing sorting followed by aggregate on each
group. Bitonic sort group by execution time is much lower than radix sort group by as

can be seen from the Figure 4.3 and 4.4.
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Figure 4.1: Execution time of filter operator on GPU
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Figure 4.2: Execution time of aggregate operator on GPU
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Figure 4.3: Execution time of bitonic sort group by operator on
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Radix Sort Group By
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Figure 4.4: Execution time of radix sort group by operator on GPU

4.11 Performance of TPC-H Queries

Whenever a query is fired on the database engine to execute, it first parse the query and then
create a physical execution plan tree for the query. The execution plan tree is created by
performing cost analysis of each operator to be executed in the plan tree. Our objective in this
project is to execute the given physical execution plan tree on the heterogeneous architecture as
fast as possible. Following are the five ways to execute the plan tree on discrete heterogeneous

architecture.

1. Sequential execution on CPU (SEC): In this each node of plan tree is executed on
the CPU one after the completion of another. The nodes are executed in topological order
of the tree.

2. Sequential execution on GPU (SEG): In this each node of plan tree is executed on

the GPU one after the completion of another.

3. Concurrent execution on the GPU (CEG): In this we divide the tree into set of
streams, then execute the stream concurrently on GPU. Currently the kernels of the
algorithms like hash join, filter are not resource configurable. Hence each operator node
in tree consumed all the resources and didn’t allow any other operator node to execute

concurrently with it on the GPU. Therefore performance of CEG is similar to SEG.

25



4. Sequential Execution on CPU-GPU (SEH): We first executed the plan tree on the
GPU & CPU sequentially. Whenever a node is outsourced to CPU, GPU has to transfer
the input data of the node to host memory then it has to wait for the execution of the
node on the CPU. After execution of node on CPU, CPU transfers output data to device
memory and then GPU starts execution on output data. We apply following greedy rule to
outsource the node to CPU. Nodes whose summation of execution time on CPU, transfer
time of its input data from device to host memory and transfer time of its output data
from host to device memory is lesser than execution of nodes on GPU, were outsourced to
CPU so that overall execution time reduces. Ideally to calculate to execution time, a cost
formulae for the operator should be built which takes into consideration algorithm used
for the operator, input data size and input data distribution. Similarly for calculating
transfer time we should estimate the input and output cardinality of the outsourced

operator accurately.
5. Concurrent execution on CPU-GPU (CEH): It is combination of CEG and SEH.

(a) We divide the tree into set of streams.
(b) We follow greedy rule mentioned in SEH.

(c¢) Execute the streams concurrently on GPU.

In CFEH, if GPU has some operations to execute in other stream then GPU does not
have to wait for memory transfer from GPU to CPU, CPU to execute node and memory
transfer from CPU to GPU i.e. nodes are concurrently executed on CPU or GPU.

It is truly unfair to run same execution plan tree on CPU and GPU separately and compare the
execution times with respect to each other. Because they both might require different plans to
execute optimally. Therefore SEC and SEG should not been compared with each other. The
physical execution plan tree for modified TPC-H queries are shown in Figure 4.5, Figure 4.6
and Figure 4.7 respectively. The performance of modified TPC-H queries are shown in Table
4.8, 4.9 and 4.10.
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Figure 4.5: TPC-H Query 5 execution plan tree for CPU and GPU

Time(ms)
MonetDB 830
SEC 3200
SEG 1581

SEH Not Beneficial
CEH Not Beneficial

Table 4.8: Performance of TPC-H Q5 on CPU(6 threads), GPU(256 threads, 90 thread blocks)
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Figure 4.6: TPC-H Query 10 execution plan tree for CPU and GPU

Time(ms)
MonetDB 580
SEC 750
SEG 720

SEH Not Beneficial
CEH Not Beneficial

Table 4.9: Performance of TPC-H Q10 on CPU(6 threads), GPU(1024 threads, 16 thread
blocks)
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Figure 4.7: TPC-H Query 17 execution plan for CPU and GPU

Time(s)
MonetDB 11.5
SEC 13
SEG 21
SEH
CEH

Table 4.10: Performance of TPC-H Q17 on CPU(6 threads), GPU(1024 threads, 30 thread
blocks)

Observations:

e SEH & CEH of TPC-H 5, TPC-H 10 is not beneficial because GPU is performing either

better or close to CPU on all the operator nodes of their respective tree.

29



e In SEH of TPC-H 17: Hash join in Stream, was outsourced to CPU as this join was
taking 15s to execute on GPU. All the other nodes were executed on the GPU.

e In CEH of TPC-H 17: when the hash join of Stream, was outsourced to CPU then GPU

has kernels to execute on Stream;. Therefore CEH has less execution time than SEH.

e The execution time of SEC is similar to MonetDB execution time proves that the choice
of execution plan tree is not too bad for TPC-H 10 and TPC-H 17.
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Chapter 5

Conclusion and Future work

5.1

Conclusions

. We propose the algorithm to cut down the tree into set of streams which can execute

concurrently on the GPU.

. We analyse the scheduler of Tesla k40m GPU and conclude that the order in which stream

are activated has an effect of overall execution of the plan tree.

. With the help of multiple streams, we were able to execute the operators on the GPU

concurrently with CPU which reduced the overall execution time of the TPC-H query 17.

5.2 Future work

1.

The assignment of the operator to the processing unit used in CEH is greedy algorithm.
The greedy rule is not optimal for CEH. Therefore it is still an open problem to design
an algorithm which do optimal assignment of the operators on the CPU or GPU.

. Designing an algorithm which assigns optimal number of thread block to each node of

the plan tree so that total execution time of the plan tree on CEG is reduced. The
assignment should be such that both the child nodes of parent node should complete in
same time because their is no benefit for one child node to finish significantly fast and

other significantly slow because parent node had to wait for both of its child node.

Hash join in CUDA implementation is not resource configurable i.e number of thread block
launched by the kernels of hash join is dependent upon the data size which is typically

large enough to make number of thread blocks launched much greater than max residency
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thread block of that kernel. Therefore two hash joins sent on different streams will not

overlap each others executions. Hash Join should be made resource configurable.

4. Join algorithm such as INLJ, NLJ, SMJ are yet to be integrated into system and made

to be resource configurable.
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