Turbo-charging Plan Bouquet Identification

A PROJECT REPORT
SUBMITTED IN PARTIAL FULFILMENT OF THE
REQUIREMENTS FOR THE DEGREE OF
Miaster of Engineerving
IN
Saculty of Engineering

BY

C Rajmohan

Computer Science and Automation
Indian Institute of Science
Bangalore — 560 012 (INDIA)

June, 2015

Declaration of Originality

I, C Rajmohan, with SR No. 04-04-00-10-41-13-1-10164 hereby declare that the material
presented in the thesis titled

Turbo-charging Plan Bouquet Identification

represents original work carried out by me in the Department of Computer Science and
Automation at Indian Institute of Science during the years 2013-15.

With my signature, I certify that:
e [have not manipulated any of the data or results.

e [have not committed any plagiarism of intellectual property. I have clearly indicated and

referenced the contributions of others.
e [have explicitly acknowledged all collaborative research and discussions.
e [have understood that any false claim will result in severe disciplinary action.

e [have understood that the work may be screened for any form of academic misconduct.

Date: Student Signature

In my capacity as supervisor of the above-mentioned work, I certify that the above statements
are true to the best of my knowledge, and I have carried out due diligence to ensure the

originality of the report.

Advisor Name: Advisor Signature

(© C Rajmohan
June, 2015
All rights reserved

DEDICATED TO

My Famaly

for their love and support

Acknowledgements

I am deeply grateful to Prof. Jayant R. Haritsa for his unmatched guidance, enthusiasm and
supervision. He has always been a source of inspiration for me. I have been extremely lucky to
work with him.

I am thankful to Anshuman Dutt for his assistance and guidance. It had been a great
experience to work with him. My sincere thanks goes to my fellow lab mates as well for all the
help and suggestions. Also I thank my CSA friends who made my stay at IISc pleasant, and
for all the fun we had together.

Finally, I am indebted with gratitude to my parents and sister for their love and inspiration
that no amount of thanks can suffice. This project would not have been possible without their

constant support and motivation.

Abstract

In database systems, the selectivities estimated for query predicates during the optimization
phase often differ significantly from the actual selectivities encountered during query execu-
tion, leading to sub-optimal performance. Plan Bouquet is a recently proposed technique that
eschews compile-time selectivity estimation and instead incrementally discovers selectivities
through a sequence of partial executions from a bouquet of plans identified at compile time.
Although this technique promises sub-optimality guarantees, its practicality is hindered by the
overheads of identifying the bouquet of plans which requires (a) optimizing the entire selectivity
error space; (b) reducing the bouquet cardinality to achieve practically useful guarantees.

In this work, we introduce a novel algorithm called NEXUS to identify the bouquet of plans
efficiently without enumerating the entire selectivity error space. Further, we propose efficient
variants of the existing bouquet cardinality reduction technique and show that the performance
is comparable to the best reduction that can be achieved, even with limited knowledge about
the selectivity space. The proposed techniques have been integrated within the prototype im-
plementation of Plan Bouquet. Also the ForcePlan feature, necessary for bouquet cardinality
reduction, has been implemented in PostgreSQL 9.4 database engine. With this setup, the
evaluation of the proposed algorithms over TPC-H and TPC-DS benchmark queries demon-
strates that (a) the preprocessing time reduces from hours to minutes, and (b) the memory
footprint reduces from GBs to MBs, without affecting the performance guarantees of Plan

Bouquet approach.

1

Contents

Acknowledgements
Abstract

Contents

List of Figures
List of Tables

1 Introduction

1.1 Background
1.2 Motivation
1.3 Contributions
1.4 Organization

2 Plan Bouquet technique

2.1 OVErVIEW o
2.2 Single Dimension Example oo

2.2.1 Bouquet Identification L

2.2.2 Bouquet Execution
2.3 Extension to multiple dimensionso
2.4 Robustness Metric
2.5 Plan Bouquet prototype system L

3 Problem Formulation
3.1 Overheads in Bouquet Identification
3.2 Problem Statement Lo

1l

ii

iii

vi

CONTENTS

Efficient Contour Identification 10
4.1 Algorithm for 2D ESS 12
4.1.1 Locating the initial Seedo 13
4.1.2 Neighbourhood EXploration Using Seed (NEXUS) 13
4.1.3 2-D ESS with multiple contours 15

4.2 Extension to 3D ESS 16
4.2.1 Locating the initial Seedo 16
4.2.2 Neighbourhood exploration using Seed 16

4.3 Impact on bouquet identification overheads 17
Contour-centric Reduction of Plans 18
5.1 Oracle Reduction 19
5.2 Contour-centric Reduction oo 19
5.2.1 Inter-contour Reduction 19
5.2.2 Intra-contour Reduction 19
5.2.3 Impact of Contour-centric Reduction 19
Implementation of ForcePlan feature 21
System Implementation 23
7.1 Modifications in database engine oo 24
7.2 Modifications in prototype system 24
Experimental Evaluation 25
8.1 Efficient Contour Identification 25
8.1.1 2D ESS 25
8.1.2 3D ESS 26
8.1.3 Time and Space overhead 27

8.2 Contour-centric Reduction of Plans 28
8.2.1 Reduced Contour Plan Density 29
8.2.2 Plan Bouquet MSO Bound 0L 29
823 FPCCalls 30

8.3 Plan Bouquet prototype system L. 31
9 Conclusion and Future Work 33
Bibliography 34

v

List of Figures

2.1
2.2
2.3

4.1
4.2
4.3

7.1

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9

Example Query (EQ) 4
POSP performance 5)
2-D Selectivity Space 6
Acceptable contour in 2D ESS 11
Contour Identification in 2D ESSo 14
Contour Identification in 3D ESS 16
QUEST System Overview 23
Isocost Contours for Example 1 26
[socost Contours for Example 2o 26
Isocost Contours for Example 3 27
Contour Identification: Time Overhead 28
Contour Identification: Space Overhead 28
Contours plans after reduction for Example 1 29
MSO bound 30
FPC calls made during reduction 31
Bouquet Identification Interface in QUEST 32

List of Tables

5.1 Number of FPC calls made during reduction in worst-case

8.1 Number of optimization calls made

8.2 Contour-wise plans count for Example 3

vi

Chapter 1
Introduction

We interact with database systems through declarative SQL queries. Given an SQL query,
there are typically a large number of alternative ways in which a database system could ex-
ecute the query. Though it does not change the results, each alternative way of executing a
given query varies widely in performance. Database systems have complex, cost based query
optimizers which devise an execution plan for each query that they receive. Execution plan is
an ordered sequence of steps to perform the operations requested by SQL query. The optimizer
will generate and evaluate many plans and choose the least cost plan as best plan. The esti-
mated cost of a plan is primarily a function of selectivity which is the estimated number of rows
of each relation relevant to producing the final result. Optimizer estimates many selectivities
while identifying the ideal execution plan for a query. In practice, these estimates are often
significantly different with respect to actual selectivities due to a variety of reason[6], resulting

in sub-optimal execution performance.

1.1 Background

The proposed techniques to solve the selectivity estimation problem (see [7] for a comprehensive
survey) include improving the statistical quality of the meta-data, re-optimization techniques
etc. each of which have their own limitations.

Recently, a different approach is proposed for handling error-prone selectivities, called Plan
Bouquet[1] approach. It completely skips error-prone selectivity estimation during planning
phase, rather query is executed through a calibrated sequence of cost bounded executions of a
bouquet of plans. Plan Bouquet approach provides guaranteed upper bounds on worst-case sub-
optimality for the first time in the literature but it requires a significant amount of preprocessing

to be done to identify the bouquet of plans at compile-time.

Let us call the space formed by erroneous selectivities as Error-prone Selectivity Space
(ESS). Firstly, the entire selectivity error space is optimized and the set of plans that cover the
entire selectivity range are identified. These set of plans are called as Parametric Optimal Set
of Plans(POSP). Secondly, by locating the isocost contours on the ESS that are in geometric
progression, a small bouquet of plans is identified from the POSP set such that at least one
among this subset is near-optimal at each location in the space. In order to have practically
useful guarantees, the POSP set is reduced using Cost Greedy FPC[3, 4] plan reduction al-
gorithm before locating isocost contours. For this purpose, database engine should support

FPC(Foreign Plan Costing) feature to cost plans outside their optimality regions.

1.2 Motivation

Producing the POSP set for the entire ESS requires repeated invocations of the query optimizer
at a high degree of resolution over ESS. If the resolution of a d-dimensional ESS is ‘res’ and the
number of plans on the ESS is ‘n’ then, the number of optimization calls made for producing
the POSP is res?, which is computationally expensive. In order to have practically useful
guarantees, the POSP set is reduced using Cost Greedy FPC plan reduction algorithm before

4 number of FPC calls to be made,

identifying isocost contours on the ESS. This requires n.res
which is computationally expensive as well.

Optimized locations in the ESS need to be held in memory until anorexic reduction is
performed leading to high memory overheads as well. The overheads increase exponentially
with ESS dimensionality. This necessitates an efficient and scalable technique to be proposed
that reduces preprocessing overhead of Plan Bouquet approach. Here, the challenge is to not
only minimize the number of optimizer invocations and memory overhead but also ensure that
the performance guarantees assured by Plan Bouquet technique are not affected.

Finally, anorexic plan reduction techniques used in bouquet identification phase require
costing plans outside their native optimality regions in ESS motivating us to develop a generic

ForcePlan feature which can also be used in bouquet execution.

1.3 Contributions

In this work, we propose techniques to reduce the preprocessing overhead of Plan Bouquet
approach by identifying bouquet plans efficiently. Our contributions can be divided into 4

categories broadly.

e Efficient Contour Identification: We propose an efficient algorithm to identify the

isocost contours directly without exploring locations that lie between the contours in the

ESS. We discuss the efficiency of our algorithm in terms of time and space.

e Contour-centric Reduction of Plans: We propose variants of the existing plan
reduction techniques to reduce plans on the contours efficiently. We show that the per-
formance of our proposed variants is comparable to the ‘oracle’ technique which knows

all plans in the ESS and achieves the best possible reduction always.

e ForcePlan Feature: We describe our implementation of ForcePlan feature in Post-
greSQL 9.4[10] database engine, which is required during plan reduction to cost plans
at their exo-optimal regions. This feature guides the query optimizer into picking user
specified execution plan as the plan of choice for a given query, bypassing the query

optimization.

e System Implementation: We describe how the proposed bouquet identification tech-
niques are integrated with Plan Bouquet prototype system and evaluated on PostgreSQL
9.4 database engine over TPC-H and TPC-DS benchmark environments. We discuss the
modifications done in database engine and Plan Bouquet prototype system to migrate the
system to the latest PostgreSQL engine. We show empirically that we reduce bouquet
identification overheads to a great extent while preserving the performance guarantees of

Plan Bouquet approach.

1.4 Organization

The remainder of this thesis is organized as follows:

Chapter 2 provides the background details about Plan Bouquet technique. Chapter 3 for-
mulates the bouquet identification problem. Chapter 4 and Chapter 5 elaborate contributions
of our work in contour identification and contour-centric reduction of plans respectively followed
by a detailed explanation of ForcePlan feature in Chapter 6. Chapter 7 covers integration of our
work with Plan Bouquet prototype system. Experimental evaluation of our work is presented

in Chapter 8. Finally, in Chapter 9, our work is summarized and future work is outlined.

Chapter 2
Plan Bouquet technique

In this chapter, we present necessary background details about Plan Bouquet approach for

robust query processing, as given in Plan Bouquet|[1] paper.

2.1 Overview

Plan Bouquet is a new approach wherein the compile-time estimation process is completely
shunned for error-prone selectivities. Instead, these selectivities are learnt systematically at
run-time by executing a carefully chosen small set of plans called “Bouquet plans” in a partic-
ular sequence in cost-limited manner. Partial executions are controlled by a graded progression
of isocost surfaces projected onto the POSP curve. It has been proved in [1] that this con-
struction results in guaranteed worst-case performance. It assumes Plan Cost Monotonicity
(PCM) property, which states that cost of POSP plans increases monotonically with increasing

selectivity values.

2.2 Single Dimension Example

Consider the simple query shown in Figure 2.1. This example query contains one base pred-
icate selectivity and two join selectivities. Out of these, assume selectivity of base predicate

p_retailprice < 1000 is error-prone.

select * from lineitem, orders, part
where p_partkey = | partkey and | orderkey =
o_orderkey and p_retailprice < 1000

Figure 2.1: Example Query (EQ)

2.2.1 Bouquet Identification

Firstly, the Parametric Optimal Set of Plans (POSP) that cover the entire selectivity range of
the error-prone predicate is identified through repeated invocations of the optimizer and explicit
injection of selectivities from lowest to highest values.

Let POSP set be comprised of plans P1 through P5. Further, each plan is optimal over a
certain selectivity range. The costs of these five plans, P1 through P5, over the entire selectivity
range are enumerated as shown in Figure 2.2(on a log-log scale), using foreign plan costing.
From these plots, the trajectory of the minimum cost from among the POSP plans is obtained
as a curve which represents the ideal performance. This curve is called as POSP Infimum Curve
(PIC).

Next, the PIC is discretized by projecting a graded progression of isocost (IC) steps onto
the curve. In Figure 2.2, the dotted horizontal lines represent a geometric progression of isocost
steps, IC1 through IC7, with each step being double the preceding value. The intersection of
each isocost step with the PIC (indicated by) gives an associated selectivity, and the identity
of the best POSP plan for this selectivity.

1.2E+07
6.1E+06
3.1E+06
1.5E+06
7.7E+05 1C7
I1C6
1C5
Ic4

3.8E+05 -

1.9E+05
9.6E+04

Estimated Costs (log-scale)

4.8E+04
2.4E+04
1.2E+04 -

6.0E+03

Selectivity of p_retailprice (log-scale)

Figure 2.2: POSP performance

For example, in Figure 5, the intersection of IC5 with the PIC corresponds to a selectivity
of 0.65% with associated POSP plan P2. The subset of POSP plans that are associated with
the intersections forms the plan bouquet for the given query. So in Figure 2.2, the bouquet
plans are P1, P2, P3 and P5.

2.2.2 Bouquet Execution

At run-time, through a sequence of cost-limited executions of bouquet plans, the actual query
selectivities are discovered. Specifically, execution begins with the cheapest isocost step, and
iteratively executes the bouquet plan assigned to each step with a cost budget. At each step,

either

1. The plan does not complete execution within the allotted budget, which means the actual
selectivity location lies beyond the current step, causing execution to be switched to next

isocost step in the sequence; or

2. The current plan completes execution within the budget, which means the actual selec-
tivity location has been reached, and a plan that is at least 2-competitive with respect to

the ideal choice was used for the final execution.

2.3 Extension to multiple dimensions

In a multi-dimensional selectivity environment, the IC steps and the PIC curve become surfaces,
and their intersections represent selectivity surfaces on which many bouquet plans may be
present.

For example, in the 2-D case, the IC steps are horizontal planes cutting through a hollow
3D PIC surface, typically resulting in hyperbolic intersection contours with different plans
associated with disjoint segments of this contour, an instance of this scenario is shown in

Figure 2.3.

arigin

Figure 2.3: 2-D Selectivity Space

2.4 Robustness Metric

Robustness is measured in terms of maximum sub-optimality (MSO) for plan bouquet. Given

a query Q and an ESS; let g. denote the optimizer’s estimated query location, and ¢, denote

6

the actual run-time location in ESS. Also, denote the plan chosen by the optimizer at ¢. by P,.
and the optimal plan at ¢, by P,,. Finally, let cost(P;, ¢;) represent the execution cost incurred

at actual location ¢; by plan P;. Then, robustness is defined by the normalized metric:

t(P,
MSO — max [COS (067Qa)]
1e,:0a€ESS" OSt(Py, qa)

which ranges over [1,00). Plan Bouquet gives robustness guarantee in terms of MSO as:

MSO < 4p

h

If there exist K total contours and n; plans lie on #*"* contour then,

= max n;
i=1to K

It is clear from the above expression that bouquet MSO is a direct function of POSP plans,
so MSO can be decreased by reducing number of plans in POSP. It can be done through anorexic
plan reduction which decreases number of plans in POSP without substantially affecting the

quality of query processing for any individual query in the selectivity space.

2.5 Plan Bouquet prototype system

QUEST [2](QUery Execution without Selectivity esTimation) is a prototype implementation
of Plan Bouquet approach. It visually shows bouquet execution process. Picasso [5] tool is
used in preprocessing phase to identify POSP set and then reduce the POSP set in ESS. The
preprocessed data is then used by QUEST to pick bouquet plans on the contours and execute
them in a carefully chosen manner as explained in Section 2.2.2. Currently, PostgreSQL 8.3 [9]

database engine is enhanced with required features and used by QUEST for bouquet execution.

Chapter 3

Problem Formulation

3.1 Overheads in Bouquet Identification

Existing Bouquet Identification approach[2] follows a brute-force mechanism to identify con-
tours, wherein the entire ESS is optimized first, then anorexic reduction is performed on the
entire ESS using Cost Greedy FPCJ[3, 4] technique to get reduced plans. Finally contours are
identified by searching through the entire ESS. This approach mainly suffers from the following

overheads.

Time Overhead: While optimizing the ESS, in order to determine the cost of any ESS location
we need to invoke the database query optimizer to perform optimization which is a time-
consuming operation. Though it is negligible for a single optimization call, it is a very high
computational overhead when it comes to finding bouquet plans in higher dimensional

ESS since millions of optimization calls will be made.

Space Overhead: Plan Bouquet MSO is dependent on number of plans on the densest con-
tour. As contour plan density is typically huge for higher dimensions, plan reduction
techniques are used to reduce it. For this purpose, all optimized locations are kept in
memory till anorexic reduction. Due to this, memory space becomes a bottleneck espe-

cially in higher dimensions.

To understand the amount of overhead in preprocessing, consider an example query having
5 dimensions in ESS with a resolution of 50. Then approximately, it takes around 30 days
to optimize the entire ESS (with PostgreSQL 9.4 database engine) and 4.7GB of memory to

maintain the ESS locations.

3.2 Problem Statement

Given a d-dimensional ESS space, we want to find bouquet plans in a time-efficient manner
with minimum invocations to optimizer without affecting the performance guarantees of Plan
Bouquet technique. We need to ensure that only the required ESS locations are maintained in
memory during preprocessing to avoid memory overhead in higher dimensions.

Formally, given a set of contour costs C = {01, Cs, C’n} such that C;’s are in geometric
progression, Bouquet Identification needs to find a set P = {Pl, b, ...Pn} where P; is a minimal
set of plans such that there exists atleast one plan in the set P; that is optimal for each location
of the ESS where cost is C;.

Since Bouquet MSO depends on contour plan density and plan density is typically high
for a higher dimensional ESS, we split this problem into two sub-problems namely Contour
Identification and Contour Plans Reduction as follows.

Contour Identification: Given an ESS and a set of contour costs C = {01,02, ...C’n},
‘Contour Identification problem’ is to find all locations in ESS having cost equal to C; for each
1 efficiently.

Contour Plans Reduction: Given a set of isocost contours IC;, ¢ = 1 : n with P; plans
on contour ¢, ‘Contour Plans Reduction problem’ is to find a reduced plan set R; with minimum
plan cardinality for each contour ¢ where R; << P;(given P; is not small) such that cost of no
isocost contour location in ESS increases by more than A%(near optimal).

The bouquet identification techniques should not affect performance guarantees assured
by Plan Bouquet approach. Further, Cost Greedy FPC plan reduction requires costing plans
at their exo-optimal regions in ESS, which compels ForcePlan feature in database engine.
Specifically, given a query () and a feasible plan P, we need to force the optimizer to use plan

P as the plan of choice bypassing the default optimization process.

Chapter 4

Efficient Contour Identification

Consider an ESS grid with a fixed resolution ‘res’ on each dimension. An isocost contour of
cost C is a contour formed by locations in ESS having cost = C. It is to be noted that the
discretized ESS may not contain locations with optimal cost exactly C. In such cases, it is safe
to accept a neighbouring location ¢ with C' < copi(q) < (1 + €)C' as a substitute, where ¢,p:(q)
is the optimal cost of query location ¢ and € is a tolerance factor. We assume that the ESS
grid resolution is sufficiently high such that we can always find adjacent approximate locations

with small value of €, say 0.05.

Acceptable contour in a grid: Let us define the notion of an acceptable contour with a 2D
ESS grid. Say for a given location L with coordinates (x,y), the location (x + 1,y) is denoted
with L4, location (z —1,y) with L,_; and location (z — 1,y — 1) with L_; (Ly4, and L, 4
are also similarly defined).

Let us say that we want to find the contour of cost C. In this setting, location L, is

acceptable for contour cost C' if it satisfies following conditions,
o [Validity check] C < cop(L) < (14 ¢€)C
o [Non-redundancy check| If cop(Ly—1) > C and cop(Ly—1) > C then cop(L_q1) < C

Here the first condition ensures the validity of a contour location by stating that the optimal
cost of the location must be equal to C or above C but within a tolerance factor of cost C. The
second condition ensures that we do not consider any location which is redundant.

Figure 4.1 provides visual explanation for the acceptable contour. Here, say all marked(o)
locations in the ESS are valid. Out of these locations, the acceptable contour locations are
shown in green colour and redundant locations are shown in blue colour. For example, location

L is redundant since location L_;(which is valid) itself covers the third quadrant of the ESS

10

sel-y J
L1 L
Ll Ly_l. e L 4 L 4
c
min sel-x /qright

Figure 4.1: Acceptable contour in 2D ESS

region that can be covered by L in all dimensions as far as the current contour is concerned.
Note that if we had taken the blue locations rather than green locations as acceptable contour
locations, then the space covered by the contour would have been more. But, this requires
tuning parameter € according to the context which is unnecessary. Hence, we stick to green

locations as acceptable contour locations.

Our Approach: The isocost contours can be identified through a brute force exploration of
the ESS. However, the overheads of such exploration increase exponentially with ESS dimen-
sionality. But, in principle, the bouquet execution can be started with plans from only the first
contour and plans on other contours can be identified in parallel with the partial execution of
plans on earlier contours.

With the above observation, we present an approach that can quickly identify query lo-
cations for a particular isocost contour without exploring locations that either correspond to
other contours or lie between the contours in the ESS. We exploit the basic assumptions of
monotonicity and smoothness of plan costs which together imply that the optimal costs are
in ascending order with respect to each dimension in the discretized ESS and do not change
abruptly. This also means that the problem is similar to searching for an element in a sorted
matrix with n? elements, which can be solved in O(n) using Saddleback Search[8].

Firstly, we present the algorithm for 2D ESS, that explores the ESS in order to find locations
with a given optimal cost C, followed by its extension to higher-dimensional ESS. Our goal is to
reduce the number of optimization calls and the number of optimized locations to be maintained
in memory while identifying the contours, to achieve efficiency in time and space respectively.

It is to be noted that identification of contours is simple in one dimensional case since any

11

contour corresponds to exactly one location (and hence one plan as explained in Chapter 2)
which can be located using binary search over the ESS locations that are sorted on cost due to

PCM property.

4.1 Algorithm for 2D ESS

Assume that the 2D ESS is available in the form of a grid (res x res) bounded by ¢, = (1,1)
and ¢e: = (res,res) as shown in Figure 4.1, where ‘res’ is grid resolution. Then, any valid
isocost contour on the ESS must have cost C' such that, copt(gmin) < C < Copt(Gmaz) and satisfy

the following properties,

Property 1: For an isocost contour of cost C, there must be a location g5 on the left/top
boundary of the ESS.
Proof: 1t is given that,

Copt (@min) < C < Copt(Gmaz)

Further, PCM implies that,

Copt(Qmin) S Copt(qleft> S Copt(Qmaa:)

Hence, there are two cases: (&) Copt(qmin) < C < Copt(Qieft) or (b) Copt(Giest) < C < Copt(Gmaz)-
In case (a), there must be a location ¢ with cost C on the left boundary due to the assumptions
of smoothness of plan costs and high grid resolution. Similarly, in case (b), there must be a

location ¢ with cost C on the top boundary.

Property 2: For an isocost contour of cost C', there must be a location ¢y on the right /bottom
boundary of the ESS.
Proof: Similar to the proof of Property 1.

Property 3: For a given isocost contour, the location ¢; must lie in the 4t quadrant of g,.
Proof: This property is true because for a given g, either 1 and 4" quadrant lie in ESS (g,
on left boundary) or 3" and 4" quadrant lie in ESS (g5 on top boundary) but ¢; cannot lie in
1%t and 3¢ quadrant of ¢, due to PCM.

With the above, to identify a contour of cost C in ESS, our idea is to locate ¢, as initial seed
location on the contour, then grow the seed along its neighbourhood in small steps to trace the

complete contour until it reaches q;. Thus, the algorithm works in two phases:

1. Locating the initial seed

2. Neighbourhood exploration using seed

12

4.1.1 Locating the initial Seed

Let us locate the seed that has maximum ‘y’ coordinate which corresponds to the location gs.
There are two possibilities (a) y < res, (b) y = res.

To this end, we need to explore only the left and top boundaries of the ESS. Firstly, the
correct boundary is determined by costing the end points of the boundaries and secondly the

initial seed location (S) is determined by binary search along the boundary.

4.1.2 Neighbourhood EXploration Using Seed (NEXUS)

Here we trace the contour curve by growing the initial seed found in last step along its neigh-
bourhood. The primary observation here is that, with maximum ‘y’ location as origin, only
37" and 4" quadrants are present and the locations in the 3" quadrant are already known to
be unacceptable due to PCM. With the above observation, the initial seed location S can be
used to recursively generate new seed locations in the 4" quadrant and thus grow the isocost
contour.

For a given seed location S(;), having C' < ¢ (S) < (1 + €)C, we find optimal cost for
new candidates for seed, i.e., S;4+1 and S,_;. Here, PCM implies that cp(Syt+1) > copt(S) and

Copt (Sy—1) < Copt(S). Now, the new seed is chosen using the following criterion,
o If copt(Sy—1) > C, then set S = 5,4

o If c,pi(Sy—1) < C, then set S = S,

If neither of Sy41 or Sy_; exist in the grid, the algorithm ends since it implies that the
contour has been completely explored.

Figure 4.2 provides visual explanation for the above algorithm. Figure 4.2(a) shows the
process of identifying the initial seed location(S) using 6 optimization calls. As the contour
exploration proceeds in the 4" quadrant of S, as shown in Figure 4.2(b), the optimized loca-
tions are marked with a symbol (red colored A or green colored o) - those marked with green
constitute the accepted contour locations and red marks the locations that were explored but
rejected. Figure 4.2(c) shows that the contour exploration is complete when S hits the ESS
boundary and hence no more seeds could be generated. Here, it is worth noting that red A =

green o leading to the following result.

Theorem 1: NEXUS algorithm performs exactly twice the number of optimization calls as

compared to the optimal algorithm that finds only acceptable contour locations.

13

2a 5 6 4 3
/ N tunsss A \%
\ [
\ f
A 3
o i
sel-y sel-y A
~_|C ~|C
mEEs e
1 - !
origin sel-x > origin sel-x >
(a) Finding initial seed (b) Contour exploration
location (intermediate)
N ‘\’} N
1\:37?
sel-y e sel-y
p}“‘ N
g
s
origin sel-x > origin sel-x >

(d) Contour exploration
(multiple contours)

(c) Contour exploration
(finished)

Figure 4.2: Contour Identification in 2D ESS

Proof: During contour exploration by NEXUS algorithm, at any location S there are exactly
two candidates for new seed(S,+1 and S,_1) and one of them is definitely on the (accepted)
contour. Hence NEXUS algorithm optimizes exactly twice the number of locations(ignoring
the small number of optimization calls made for locating the initial seed) as compared to the
optimal algorithm that optimizes only acceptable contour locations.

Also note that when the contour exploration is at seed location S, if location S,_; is found
to be on the (accepted) contour after optimization, then there is no need to optimize S,
location since the new seed will be S_;.

A similar explanation can be given for tracing an isocost contour that starts at left boundary
rather than top boundary using the NEXUS algorithm.

The pseudocode for identifying a contour is given in Algorithm 1. This algorithm takes
two arguments — ESS is the error-selectivity space with resolution res and contourCost is the
cost of the contour to be identified. The following are the external functions referred in the

pseudocode.

14

Algorithm 1 2D Contour Identification Algorithm

FindContour2D(ESS, contourCost)
/* Locate the initial seed */
tople ft_point_cost = ESSPointCost(ESS, 1, res)
if topleft_point_cost > contourCost then
/* binary search along left most edge */

z=1
y = BSearchEdge(1, contourCost)
else
/* binary search along top most edge */
y = Tes
x = BSearchEdge(0, contourCost)
end if

/* Initial seed S,) */
AddContourLocation(ESS, x, y, contourCost);

/* Trace contour curve by neighbourhood exploration using seed */
while x < resand y > 1 do
candlCost = ESSPointCost(ESS, = + 1, y)
cand2Cost = ESSPointCost(ESS, z, y — 1)
if cand1Cost > contourCost and cand2Cost < contourCost then
/* New seed S = Sy41 */
x=x+1
else if cand1Cost > contourCost and cand2Cost > contourCost then
/* New seed S = 5,1 */

y=y-1
end if
AddContourLocation(ESS, x, y, contourCost);
end while

ESSPointCost(ESS, x, y): This function returns cost of ESS point (x,y). This function
queries database to find cost of given point.

AddContourLocation(ESS, x, y, C): This function stores (x, y) as contour location with
cost C.

BSearchEdge(d, C): This function performs binary search by varying coordinate value for
d’th dimension(other dimensions are fixed) and returns the coordinate value in that dimension

at which cost is C.

4.1.3 2-D ESS with multiple contours

The above algorithm that works for a given C (isocost contour) can be extended naturally to
identify multiple contours that are in geometric progression on 2D ESS as shown in Figure 4.2(d)

where different isocost contours are explored independent of one another.

15

sel-y

[origind

origin

sel-x sel-x sel-x

o
y+1/52-1
S#Sxﬂ

sel-z sel-z sel-z

(1) (2a) (2b)

Figure 4.3: Contour Identification in 3D ESS

4.2 Extension to 3D ESS

Next, we show that the neighbourhood exploration approach for contour identification can be
extended to general multi-dimensional ESS. For this purpose, we explain the algorithm for 3D

ESS that systematically invokes different instances of the 2D algorithm.

4.2.1 Locating the initial Seed

Here, the initial seed (S) is the contour location with maximum z coordinate(In principle, we
can start with an initial seed having maximum x coordinate or maximum y coordinate as well).
For this purpose, it is first checked whether the seed lies on the boundary (1,1,1) to (1,1, res)
which implies z < res. If yes, then the seed can be determined by using binary search on the
above boundary as shown in shown in case (1) of Figure 4.3. If no, the initial seed is located
using a process similar to 2D ESS (for the XY-slice with z = res) which is visualized as case(2)

in Figure 4.3 | with two possibilities: (2a) y < res and (2b) y = res.

4.2.2 Neighbourhood exploration using Seed

We first explain the contour exploration phase for case (2b). To identify all contour locations
with z = res, we can use the 2D exploration algorithm for the XY-slice with z = res and grow
the initial seed S as explained in Section 4.1. For exploring the locations with lower values of
z, the initial seeds for each XY-slice can be generated by 2D exploration of the XZ-slice (with
y = res) with initial seed S and candidate locations S,;; and S,_;. Similarly in case(1), the

initial seeds for each lower value of z can be generated by exploring the YZ-slice (with x = 0),

16

starting with an initial seed S and candidate locations Sy; and S, .
Finally, the algorithm for case (2a) proceeds in two sub-phases where the first sub-phase is
similar to case(1) until it finds a seed with y = res (shown as S” in case (2a) of the Figure 4.3)

and thereafter in second phase it follows algorithm similar to case (2b).

4.3 Impact on bouquet identification overheads

NEXUS algorithm optimizes only that portion of ESS which is close to a given isocost contour
while ignoring the remaining space. This reduces the computational overhead to a great extent.
It also allows us to quickly identify the first contour and hence start bouquet execution without
even exploring locations on later isocost contours. In addition, this approach also makes contour
exploration a highly parallelizable task. A new thread can be created whenever a seed is
generated for lower dimensional subspace. NEXUS algorithm uses very low memory to perform
its task since only the locations on the (accepted) contour are maintained in memory. A

thorough empirical analysis of this algorithm is done in Chapter 8.

17

Chapter 5
Contour-centric Reduction of Plans

Plan Bouquet MSO is dependent on number of plans on the contours. Typically, number of
plans on the contours will be very high for any complex query with higher dimensions in ESS.
To handle this, earlier, we optimized the entire ESS and reduced plans on the whole ESS using
anorexic reduction techniques[3, 4]. Let us call it as Global Reduction technique. Though it is
computationally intensive, contour plan density is observed to be low after reduction empirically.
With the advent of NEXUS algorithm for contour identification, we are restricted to only the
plans on the contours as candidates for reduction. In this scenario, we discuss the techniques to
reduce contour plan density, considering only the plans on the contours as swallowers of other
plans on contours. We measure reduction quality in terms of number of plans on the densest
contour.

Each point on the contour is associated with an optimal plan and its cost. Let us consider
an ESS location L on the contour with optimal plan ‘p’. If a contour plan ‘q’, when evaluated
using FPC at its non-optimal location L, does not increase cost(L) by more than A(reduction
parameter)% then p reduces to q at L. We say ‘q’ is A-optimal at L.

All contour locations where ‘p’ is optimal belong to endo-optimal region of ‘p’. Any location
L on the contour at which ‘p’ is not optimal but it does not increase cost(L) by more than A%
than its optimal cost, belong to A-optimal region of ‘p’. Otherwise it belongs to exo-optimal
region.

A plan p; can swallow a plan p;, if V contour points ¢ € p;(i.e. p; is optimal at g¢),
cj(q)/ci(q) <= (1 + A) where ¢;(q) is cost of plan p; at g.

We first define the Oracle Reduction technique as follows.

18

5.1 Oracle Reduction

In Oracle reduction, all plans on the ESS are candidate swallowers of plans on an individual
contour. Given an isocost contour on the ESS, this technique provides the best reduction
possible by identifying a minimum size subset of plans in the ESS, that can swallow all plans
on the contour. But, it is exponential in complexity and hence not practical. Nevertheless,
we will compare the performance of our contour-centric greedy reduction techniques with the

oracle reduction by experiments in Chapter 8.

5.2 Contour-centric Reduction

We propose two contour-centric variants of Cost Greedy algorithm with Foreign Plan Cost-
ing(FPC) [3, 4] to reduce plans on the contours directly. One performs reduction locally among
plans lying on a single contour whereas the other uses plans on all contours to reduce plans
on a single contour. FPC refers to estimating the cost of a plan outside its optimality region

which is explained in Chapter 6.

5.2.1 Inter-contour Reduction

Reduction is performed using plans on all contours of the ESS together as shown in Algorithm 2.
Here ‘contourPointsSet’ contains points lying on a single contour, ‘plansSet’ is the set of plans
on all contours and ‘N is reduction parameter. If a contour point belongs to more than one
plan in reducedPlansSet returned by our algorithm then we pick the plan that results in least

cost increase for that point.

5.2.2 Intra-contour Reduction

Here reduction is done on each contour independently to reduce plans lying on that contour.
Algorithm 2 is invoked for each contour independently where ‘contourPointsSet’ contains points

lying on a single contour, ‘plansSet’ contains set of plans on this contour.

5.2.3 Impact of Contour-centric Reduction

Let res = resolution of ESS, n = total number of plans on ESS, p; = number of plans on
contour ‘¢’ and |C] is the number of contours to find. Then in worst-case, the number of FPC
calls made by reduction techniques are compared in Table 5.1.

Inter-contour reduction can not be performed until NEXUS algorithm explores all contours
since it considers plans on all contours as candidates for reduction whereas intra-contour reduc-
tion can be run in parallel with exploration of subsequent contours by NEXUS algorithm since

it requires plans on a single contour only at a time. Also inter-contour reduction uses more

19

Algorithm 2 Contour Plans Reduction

ReduceContours(contourPointsSet, plansSet, \)
create n sets S = {51, Sa,...5,} corresponding to n plans in plansSet where S; = {L € contoursPointsSet
where L is M-optimal with regard to plan S;}.

create n sets E = {F1, E», ...E, } corresponding to n plans where F; = {eating capacity of plan P;} calculated
using S.
reducedPlansSet = ¢
while contour PointsSet # ¢ do
pick plan p; from plansSet such that |E;| = max(|E;|), VE; € E
reducedPlansSet = reducedPlansSet U p;
S =58\9;
E=E\E
for each L € contour PointsSet do
if L is A-optimal with regard to ‘p’ then
contour PointsSet = contour PointsSet — L
end if
end for
end while

return reducedPlansSet

Algorithm | FPC Calls
Global n.res
IC]
Oracle > 2.n.res
i=1
Inter-contour | 2.n.res.|C|
IC|
Intra-contour 2.p;.res
i=1

Table 5.1: Number of FPC calls made during reduction in worst-case

memory since we need to maintain information about locations on all contours till the end.
Inter-contour reduction results in plans being highly repetitive among neighbouring contours.
Therefore, in bouquet execution phase, if we intend to carry forward the work done by a plan
in an earlier contour, then inter-contour reduction would be more beneficial. We compare the

performance of reduction techniques empirically in Chapter 8.

20

Chapter 6
Implementation of ForcePlan feature

At compile time phase of Plan Bouquet approach, in order to reduce plans on isocost contours,
we need to invoke optimizer to cost ESS locations with sub-optimal plans. At run time, we
need to do several partial executions of a query with different plans lying on contours. These
require database systems to support costing as well as executing a query with different user
supplied execution plans. This feature is not supported in PostgreSQL. For this purpose, we

have implemented a generic ForcePlan feature in latest PostgreSQL database engine.

Definition: Let us call the query plan py that optimizer chooses for a query Q as optimal
plan. A query plan p is called a feasible plan for @, if it can be considered as a candidate
plan by the typical search strategy of the query optimizer. Any feasible plan for @) that is not
optimal is called foreign plan for Q. ForcePlan feature can force optimizer to choose a user
supplied foreign plan for a given query (). This powerful option provides us with full control
over influencing the execution of a query as well since the plan chosen by optimizer is directly
passed to executor. The process of costing a foreign plan on an ESS location using ForcePlan
feature is called Foreign Plan Costing(FPC). 1deally FPC call should take less time compared
to optimization since optimizer is not considering all candidate plans before choosing the plan

of choice.

Implementation details: ForcePlan feature is implemented in PostgreSQL 9.4[10] database
engine. It is integrated with Picasso[5] Query Optimizer Visualizer tool and tested exten-
sively by forcing plans throughout ESS, including their exo-optimal regions where they are not
optimal. It is implemented as a shared library module which can be loaded on demand by
PostgreSQL at run time. It is easily portable and the generic interface simplifies using this
feature from other applications. We can vary the selectivity of predicates in a query ‘Q’ and

get a corresponding execution plan in XML format using Explain command in PostgreSQL.

21

Let us call the file that contains the XML plan to be forced as ‘plan.xml’. This XML plan can
then be forced at a different selectivity location of query Q using ForcePlan feature as shown

below.
<Query> FPC <plan.xml>

Parser Module: Here input XML file is parsed and information about scans, joins and order
of joins are extracted and populated in custom data structures. To parse XML, libxml2[12] C

parser library is used.

GUC Configuration: Optimizer behaviour can be controlled through GUC(Grand Unified
Configuration) run time configuration parameters of PostgreSQL. They can be used to en-
able/disable a specific type of scan or join at run time and can be configured at different granu-
larities. We leverage these parameters to implement ForcePlan feature by transient assignment

of values at a finest granularity i.e. for the duration of a function call.

Base Access Paths: PostgreSQL gets relevant information from catalogs when building
access paths for a base relation. At this juncture, we disable all but the scan type to be forced,
through GUC transiently for the duration of base access path selection, making the optimizer
build only one access path using forced scan type which will essentially be chosen as best path.

IndexOptInfo structures need to be cleared to skip index scan based access paths.

Join Access Paths: PostgreSQL builds a JoinRelOptInfo structure for each feasible join
combination. It also tries different inner, outer combinations for the given relations. It calls
make_join_rel() and builds Join RelOptIn fo structure that represents the join of the two given
relations. Then PostgreSQL adds it to the path information for paths created with the two
relations as inner and outer relation. Our implementation will allow JoinRelOptInfo to be
built only for the join combinations occurring in the input XML plan. In this way, the order
of joining relations and inner, outer relationships are maintained.

Similarly we have modified standard_join_search() method such that only the join types
that are to be used to join given 2 relations are allowed at each level through transient setting
of GUC parameters. The best path is chosen in normal way and its plan will reflect exactly
the forced plan which will be passed to executor. Currently ForcePlan feature supports all but

nested sub-queries in ‘where’ clause.

22

Chapter 7
System Implementation

In this chapter, we mention our contributions in Plan Bouquet prototype system implementa-
tion. The overview of existing Plan Bouquet prototype system is shown in Figure 7.1(a). There
are two phases in Plan Bouquet approach as mentioned in Chapter 2. In the preprocessing
phase, Picasso tool is used to optimize the entire ESS in order to find POSP set, and then
reduce the POSP set. The pre-processed data from Picasso is then fed to QUEST, which picks
bouquet plans on isocost contours and performs bouquet execution. QUEST is a front-end
tool for visualization and bouquet execution. PostgreSQL 8.3 database engine is modified with
required features and used in the backend.

We have replaced the bouquet identification approach mentioned above with our proposed
bouquet identification techniques. Prior to that, since PostgreSQL 8.3 database engine is

obsolete, we have migrated features required for Plan Bouquet technique to latest PostgreSQL

PREPROCESSING PHASE EXECUTION PHASE PREPROCESSING PHASE EXECUTION PHASE

Query with error-

Query template
prone predicates

with error-prone

predicates PICASSO

Reduced ESS

1. Identify bouquet plans
in ESS(NEXUS)

2. Reduce bouquet plans
(Contour Centric)

3. Execute bouquet plans

3. Identify bouquet plans
on reduced ESS

4. Execute bouquet plans

1. Optimize entire ESS
2. Reduce plans in ESS

POSTGRESQL9.4
(Generic plan

POSTGRESQL8.3

(Naive plan
override, Cost
limited Execution)

forcing, Cost limited
Execution)

(a) Existing QUEST System (b) Proposed QUEST System

Figure 7.1: QUEST System Overview

23

database engine. The following are the major enhancements and feature additions done in
PostgreSQL 9.4 database engine and QUEST front-end tool.

7.1 DModifications in database engine

e We have implemented ForcePlan feature with a generic interface in PostgreSQL 9.4

database engine as explained in Chapter 6.

e We have migrated the following features implemented in PostgreSQL 8.3 database engine

for Plan Bouquet execution like

— cost monitoring

cost bounded plan execution
— sub-plan execution

— selectivity monitoring

to PostgreSQL 9.4 database engine.

7.2 Modifications in prototype system

e We have implemented and integrated the NEXUS' contour identification algorithm pro-
posed in Chapter 4 and contour-centric plan reduction techniques proposed in Chapter 5
with QUEST system.

e We have enhanced QUEST front-end tool to use our ForcePlan feature proposed in Chap-

ter 6 during bouquet identification and bouquet execution.

e We have used GNUPIlot[13] for visualization of 2D and 3D diagrams since it is lightweight
and powerful. We have also improved the GUI aspects of QUEST front-end.

The overview of QUEST system with our enhancements is shown in Figure 7.1(b). We have

evaluated Plan Bouquet prototype system over TPC-H and TPC-DS benchmark environments.

24

Chapter 8
Experimental Evaluation

We now turn our attention towards analysing the performance of our contour identification al-
gorithm and contour-centric plan density reduction techniques on a variety of complex queries.
Time overhead and memory space overhead are the major evaluation criteria for contour identi-
fication. Memory is critical since maintaining contour locations in memory during preprocessing
is a huge overhead in higher dimensions. We compare and contrast the performance of differ-
ent techniques to reduce contour plans in detail with various experiments. Finally we show
how the bouquet identification phase works with our contour identification and contour-centric
reduction techniques incorporated in Plan Bouquet prototype system.

The database engine used in our experiments is a modified version of PostgreSQL 9.4[10],
incorporating the changes outlined in Section 7.1. The hardware platform is a vanilla Sun Ultra
24 workstation with 8 GB of memory and 728 GB of hard disk. Experiments are conducted
with TPC-H 1GB database using TPC-H benchmark queries, and TPC-DS 100GB database
using TPC-DS benchmark queries[11].

8.1 Efficient Contour Identification

Experimental results for identifying isocost contours using our NEXUS algorithm in 2D and
3D ESS are presented here followed by an analysis of overheads. Inter contour cost ratio r = 2

is used throughout this Section.

8.1.1 2D ESS

Example 1: TPC-H Query Template 5, ESS Dimensions: 2, ESS Resolution: 300
There are totally 8 contours on the 2D ESS for Example 1. Contours produced by NEXUS
algorithm are shown in Figure 8.1(a) where each isocost contour is denoted with a unique colour.

Figure 8.1(b) shows optimizer chosen plans on isocost contours where each colour denotes a

25

B e#@@aQ@ ¥ ? E fr@@@a »?

300 | | | E 300 -y - I |
250 |- i 250 - =
Z
= 2 200 —
S 200 4 8
k] T
o w150 =
3 150 F 4 &
o =
8 S 100 -
o >
2 100 - w
: or \“-‘—I
50 - T 0 I I I I
] 50 100 150 200 250 300
0 I I 1 1 .
0 50 100 150 200 250 300 customer selectivity
customer selectivity plano + plan 4 plang & plan12 planle o
planl = plans plang « plan 13
Contour 0 + Contour 2 Contour 4 Contour6 e plan2z % plané e plan10 ~ plan 14
Contour 1 Contour3 o Contour 5 Contour7 = plan3 = plan7 = planll o plan15
(a) (b}

Figure 8.1: Isocost Contours for Example 1

B gr@aa ? H fg@aa v ?
300 - 300 I . . . ‘ . \ .
250 - , 250 \ -4
2z
= 2 200
S 200 | 4 8
o @
% w150
w150 [- E
£ £ 10
W @
T 100 £
£ 50
50 -
]
0 50 100 150 200 250 300
0 o
0 50 100 150 200 250 300 customer selectivity
customer selectivity plano + plan 4 plang & plan12 + plan16 o
plan1 plan 5 plang = plan 13 planl7 =
Contour0 + Contour2 Contour 4 Contour6 e plan2 plané e plan10 ~ plan 14 plan18 o
Contour 1 Contour3 o Contour 5 Contour 7 = plan3 &= plan7 = plan1l ¢ plan15 = plan19 e
(a) (b)

Figure 8.2: Isocost Contours for Example 2

unique plan in the ESS.
Example 2: TPC-H Query Template 10, ESS Dimensions : 2, ESS Resolution : 300
There are totally 8 contours on the 2D ESS for Example 2. Contours produced by NEXUS
algorithm are shown in Figure 8.2(a) where each isocost contour is denoted with a unique colour.
Figure 8.2(b) shows optimizer chosen plans on isocost contours where each colour denotes a

unique plan in the ESS.

8.1.2 3D ESS

Example 3: TPC-H Query Template 8, ESS Dimensions : 3, ESS Resolution : 100
There are totally 7 contours on the 3D ESS for Example 3. Contours produced by NEXUS
algorithm are shown in Figure 8.3 where each isocost contour is denoted with a unique colour.

Table 8.1 compares the number of optimization calls made by the algorithms where ‘Global’

26

B @@ ¥ ?

100

80

60

40

20

part 0
selectivity

20 20 0 lineitem selectivity

supplier selecti\.ritg0 80

Contourd + Contour3 o Contouré e
Contour 1 x Contour 4
Contour2 * Contour 5

Figure 8.3: Isocost Contours for Example 3

denotes the existing bouquet identification technique which optimizes the entire ESS, ‘Ideal’

denotes the ideal case and ‘NEXUS’ denotes the NEXUS algorithm.

Example # | Global | Ideal | NEXUS
1 90000 | 2585 5220
2 90000 | 2904 5856
3 1000000 | 76300 | 152660

Table 8.1: Number of optimization calls made

Note that the NEXUS algorithm performs twice the number of optimization calls as com-
pared to Ideal case, barring the small number of optimization calls made to locate the initial

seed for each contour.

8.1.3 Time and Space overhead

To understand the magnitude of savings we get in terms of time and space, refer to Figure 8.4
and Figure 8.5. The time overheads of existing technique(‘Global’) and NEXUS algorithm are
shown in minutes on a log-scale in Figure 8.4. Similarly, their space overheads are shown in
KBs on a log-scale in Figure 8.5.

The terminology used for the queries is wD _x_Qy_z, where w indicates the number of di-
mensions, x the benchmark (H or DS), y the query number in the benchmark and z the ESS

resolution(optional). So, for example, 2D_H_Q5_300 indicates a two-dimensional ESS of resolu-

27

tion 300 on Query 5 of the TPC-H benchmark. For a query with 5 dimensions in ESS(resolution
= 50), the projected requirements are 625 hours of time and 4.7GB of memory for existing tech-
nique against 28 hours and 143MB required for NEXUS algorithm.

Global NEXUS

1.E+o4
— %
Y 1.E+o3
<=
e 7 7
é '7'8 1.E+02 % \2
)
S oo N N
R= E - - I I L
\q_: é 1E+o1 7 7 N
g 1.E+oo0 —
=
1.E-o1 % % §
© © ° © 0 A0 0
o @? 7 o o o 7
oRTpNT BT o ¥ T o
2 o) D~ 2 B - o)
Figure 8.4: Contour Identification: Time Overhead
@Global mNEXUS
1.E+06
v 7
@ 1.E+o5
) 7
& @ 1.E+og % NE
3 3
N op | |
3 é 1E+03 7 7 7 S N N
é 1.E+o2 —
95)
1.E+o1 N N §
° © o © 0 A0 0
o @” 7 o o
o W -9 PR o pa
DU S D K - P

Figure 8.5: Contour Identification: Space Overhead

8.2 Contour-centric Reduction of Plans

In this section, we analyse how reducing plans on the contours identified by NEXUS algorithm
performs in comparison with reducing plans on the contours identified by optimizing the entire

ESS and finding the complete POSP set as well as oracle plan reduction that we introduced in

28

E R#te@@a ¥ ? H PgH@aaa v ?

300 T T T T 300 .

250 - 250 -

200 B

™~
=]
=1
T
I

supplier selectivity

-

o

o

T

Il

supplier selectivity

=

@

o
T
Il

-

1=}

=}
T

L 0 50 100 150 200 250 300
0 50 100 150 200 250 300

customer selectivity

/4

customer selectivity

plan0 + plan2z * plan & planl0 e plan1l4 &
plan0 + plan1 plané * plangd o plen 1 plan3 o plan 9 plan13 = planls =

(a) After Inter-contour Reduction (b) After Intra-contour Reduction

Figure 8.6: Contours plans after reduction for Example 1

Chapter 5. The reduction quality is measured in terms of number of plans on the densest contour
since plan bouquet MSO is directly dependent on this. We have used reduction parameter A
= 20% and ESS resolution of 300 for 2D, 30 for 3D, 20 for 4D and 10 for 5D throughout this

section.

8.2.1 Reduced Contour Plan Density

Figure 8.6(a) shows contour plans after inter-contour reduction and Figure 8.6(b) shows contour
plans after intra-contour reduction for Example 1. Each colour denotes a unique plan in ESS.
As can be seen, after intra-contour reduction there is less repetition of plans among contours but
after inter-contour reduction there is a high repetition of plans among neighbouring contours.

Table 8.2 shows the number of plans per contour for Example 3(with an ESS resolution
of 30), before reduction and after each of the reduction technique is applied. Here, ‘Global’
is the existing technique used for contour plan density reduction, wherein the entire ESS is
optimized first. Then anorexic reduction is performed on the entire ESS to identify reduced
contour plan set. ‘Inter-contour’ is the inter-contour reduction technique and ‘Intra-contour’
is the intra-contour reduction technique and ‘Oracle’ is the oracle reduction technique. As
shown in the figure, contour-centric reduction techniques perform on par with global reduction

technique and oracle reduction as well.

8.2.2 Plan Bouquet MSO Bound

Figure 8.7 compares reduction techniques in terms of plan bouquet MSO bound, which is
dependent on number of plans on the densest contour.

The reduction quality of contour-centric plan reduction techniques is on par with oracle

29

Contour Plans Count
Before
. Global | Oracle | Inter-contour | Intra-contour
Reduction

1 36 3 3 3 3
2 34 4 4 4 4
3 33 4 4 4 4
4 58 5 4 4 4
5 33 5 3 4 3
6 30 4 4 4 4
7 1 1 1 1 1

Table 8.2: Contour-wise plans count for Example 3

plan reduction and better than global reduction technique.

@ Global ®=Oracle BElinter-contour mlIntra-contour

AORRNRNRY

AN o@ S N NN NN

©c H A

yF

S RN,

O 9@
‘)‘Q/

Figure 8.7: MSO bound

8.2.3 FPC Calls

Figure 8.8 compares number of FPC calls made by these algorithms. Though query optimization
is not performed for an FPC call, it is still an overhead since it invokes the optimizer for each
call. Hence, lesser the number of FPC calls, lesser the overhead. Among the new schemes,
number of FPC calls made by intra-contour reduction is always low when compared with inter-
contour reduction since reduction is local to single contour.

It is evident from the above experiments that the contour-centric reduction techniques

perform well in comparison with full-blown reduction technique. Their performance is also

30

@ Global =Oracle ESlnter-contour mlintra-contour

1.E+08

1.E+07

1.E+06

1.E+05

FPC calls
[log scale]

1.E+04

NN RN NN

NN NN NN

e

1.E+03

(7]
N O; B
Q [7|

N Ov‘) e A
6’0 W

Ly
Ly

)
%
2 @
Vo
O S
£}

‘DO \Q) >\\\\\\\\\\\\\\\\\\\ 0
N
0 @
N
AN
D
N
%
N

Figure 8.8: FPC calls made during reduction

comparable with oracle reduction as far as Plan Bouquet reduction quality is concerned. Among
the contour-centric reduction techniques, intra-contour reduction makes lesser number of FPC
calls, uses less memory space and still provides reasonably good reduction quality.

It is highly beneficial to use our contour identification algorithm in order to identify iso-
cost contours directly and then utilize our contour-centric reduction techniques to get reduced
bouquet plans. In this way, we achieve good MSO in plan bouquet approach with enormous

savings in time and memory space, which is very critical when ESS dimensionality is higher.

8.3 Plan Bouquet prototype system

Our proposed bouquet identification techniques are integrated within Plan Bouquet prototype
system(QUEST). As an example, TPC-H Query 5 with 2D ESS is given as input to QUEST
and its graphical display for bouquet identification is shown in Figure 8.9. Here, Contour plan
diagram, which is on the left side of the figure shows isocost contours identified by our contour
identification algorithm with plans. There are totally 8 contours in the ESS. The contour plans
are then subjected to inter-contour plan reduction. The reduced plans on the contours are
shown in Reduced contour plan diagram, on the right side of Figure 8.9. Contour-wise plan

details and MSO guarantees are shown in lower right side of the figure.

31

Database
Diboratory QUEST (QUery Execution without Selectivity esTimation)

Query Input Native Sub-optimality Bouquet Identification | Bouquet Execution Performance Comparison
Plan Bouquet
O Plan0
i . O Plan1
Contour plan diagram Reduced contour plan diagram
Plan 6
Plan9
Show Plan
300 - 300 Isocost Contours (IC)
ic1
250 - 250 1 ! Plans=1,6,9
>
2 200F 2 200} | Ic2
g 2 Plans=1,6,9
1 K9
% 1m0} 3 1s0f ic3
3 5 Plans=1,6,9
2 w0l % o) ica
2 Plans=1,6,9
50 - 50 e | IC5
Plans=1,9
0 - ; - - ° 0 ;U]‘DU 150 2‘00 2;0 300 1ce
0 50 100 150 200 250 300 customer selectivity Plans=1,9
customer selectivity Ic7
pan0 + planl < plan6 x plan9 o Plans=0,9
pan0 + pland pang + plnl2 o panls o cs
planl x plans pans v plan13 _
pan2 ¥ pan6 e planlo v planls Plans =0
Jan3 7 & planll lan 15
plans e plan pen ¢ pan * MSO Guarantee(log scale)
16 = == ===
8
o
a4
b3
2
1
(20%, 2.0)
Anorexic Reduction Parameter (%) 20 Reduce Plans Contour Cost Ratio (2 | |Find Isocost Contours Bouquet Parameters

Showing Isocost Planes

Figure 8.9: Bouquet Identification Interface in QUEST

32

Chapter 9
Conclusion and Future Work

In this work, we have proposed efficient techniques to identify bouquet plans for Plan Bouquet
approach. Specifically, we introduced an efficient algorithm to identify isocost contours on a
multi-dimensional ESS and explored contour-centric variants of plan reduction technique. Also,
a generic ForcePlan feature has been implemented in PostgreSQL database engine. Our bouquet
identification techniques are integrated within Plan Bouquet prototype system and evaluated
on PostgreSQL 9.4 over TPC-H and TPC-DS benchmark environments. The experimental
evaluation exhibits that our bouquet identification techniques reduce the preprocessing overhead
of Plan Bouquet approach to a great extent. Further, the reduction quality is shown to be
comparable to oracle reduction technique, thereby preserving the performance guarantees.

It would be an interesting future work to explore whether it is feasible to identify plans on
the contour without explicitly optimizing all the contour locations since many of them return

identical plans.

33

Bibliography

[1] A. Dutt and J. Haritsa, “Plan Bouquets: Query Processing without Selectivity Estima-
tion”, SIGMOD, 2014. http://dsl.serc.iisc.ernet.in/publications/conference/
bouquet. pdf.

2] A. Dutt, S. Neelam and J. Haritsa, “QUEST: An Exploratory Approach to Robust Query
Processing”, PVLDB, 2014. http://dsl.serc.iisc.ernet.in/projects/QUEST/.

[3] Harish D., P. Darera and J. Haritsa, “On the Production of Anorexic Plan Diagrams”,
VLDB, 2007.

[4] Harish D., P. Darera and J. Haritsa, “Identifying Robust Plans through Plan Diagram
Reduction”, VLDB, 2008.

[5] J. Haritsa, “The Picasso Database Query Optimizer Visualizer”, VLDB, 2010.

[6] M. Stillger, G. Lohman, V. Markl and M. Kandil, “LEO - DB2’s LEarning Optimizer”,
VLDB, 2001.

[7] A. Deshpande, Z. Ives and V. Raman, “Foundations and Trends in Databases”, 2007.

[8] David Gries, “The Science of Programming”, 1st ed., Springer-Verlag New York, Inc., 1987.
[9] http://www.postgresql.org/docs/8.3/static/index.html.

[10] http://www.postgresql.org/docs/9.4/static/index.html.

[11] http://www.tpc.org.

[12] http://xmlsoft.org/index.html.

[13] http://www.gnuplot.info.

34

http://dsl.serc.iisc.ernet.in/publications/conference/bouquet.pdf
http://dsl.serc.iisc.ernet.in/publications/conference/bouquet.pdf
http://dsl.serc.iisc.ernet.in/projects/QUEST/
http://www.postgresql.org/docs/8.3/static/index.html
http://www.postgresql.org/docs/9.4/static/index.html
http://www.tpc.org
http://xmlsoft.org/index.html
http://www.gnuplot.info

	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Background
	1.2 Motivation
	1.3 Contributions
	1.4 Organization

	2 Plan Bouquet technique
	2.1 Overview
	2.2 Single Dimension Example
	2.2.1 Bouquet Identification
	2.2.2 Bouquet Execution

	2.3 Extension to multiple dimensions
	2.4 Robustness Metric
	2.5 Plan Bouquet prototype system

	3 Problem Formulation
	3.1 Overheads in Bouquet Identification
	3.2 Problem Statement

	4 Efficient Contour Identification
	4.1 Algorithm for 2D ESS
	4.1.1 Locating the initial Seed
	4.1.2 Neighbourhood EXploration Using Seed (NEXUS)
	4.1.3 2-D ESS with multiple contours

	4.2 Extension to 3D ESS
	4.2.1 Locating the initial Seed
	4.2.2 Neighbourhood exploration using Seed

	4.3 Impact on bouquet identification overheads

	5 Contour-centric Reduction of Plans
	5.1 Oracle Reduction
	5.2 Contour-centric Reduction
	5.2.1 Inter-contour Reduction
	5.2.2 Intra-contour Reduction
	5.2.3 Impact of Contour-centric Reduction

	6 Implementation of ForcePlan feature
	7 System Implementation
	7.1 Modifications in database engine
	7.2 Modifications in prototype system

	8 Experimental Evaluation
	8.1 Efficient Contour Identification
	8.1.1 2D ESS
	8.1.2 3D ESS
	8.1.3 Time and Space overhead

	8.2 Contour-centric Reduction of Plans
	8.2.1 Reduced Contour Plan Density
	8.2.2 Plan Bouquet MSO Bound
	8.2.3 FPC Calls

	8.3 Plan Bouquet prototype system

	9 Conclusion and Future Work
	Bibliography

