
Search-Optimized Disk Layouts for

Suffix-Tree Genomic Indexes

A Thesis

Submitted for the Degree of

Master of Science (Engineering)

in the Faculty of Engineering

By

Rajul D Bhavsar

Supercomputer Education and Research Centre

INDIAN INSTITUTE OF SCIENCE

BANGALORE – 560 012, INDIA

August, 2011

Acknowledgements

I would like to thank my advisor Prof. Jayant Haritsa, for allowing me an opportunity to

work under him. I am also grateful to him for all his comments and suggestions, which

are critical and useful for the completion of my thesis.

I would also like to thank all the DSLites for their help during various stages of my

stay at DSL. I am thankful to my seniors Abhijit and Gourav for their help in initial days

in the lab and also to Shivashankar for helping me in the project related issues. I am also

grateful to my colleagues Atreyee, Abhirama, Ravi, Sourjya, and Harsh for their valuable

suggestions. Many thanks to Anshuman, Mayuresh, Mahesh, Rakshit and Sreepathi, for

their suggestions and solutions in various situations.

I am also thankful to Govindarajan Sir for his readiness to help me in every situation.

Many thanks to whole SERC staff, particularly to Ms. Mallika, Mr. Madan, and Mr.

Shekhar, for their help in various administrative issues. I specially thank Mr. Kiran, for

his quick help during the allocation of resources on Regatta machine. I would also like to

thank all the people from the Institute who directly or indirectly made this work possible.

Finally, it would not be possible without the support from my family members and

friends, whose constant encouragement gave me the strength to reach upto this stage.

i

Abstract

Over the last decade, biological sequence repositories have been growing at an exponen-

tial rate. Sophisticated indexing techniques are required to facilitate efficient searching

through these humongous genetic repositories. A particularly attractive index structure

for such sequence processing is the classical suffix-tree, a vertically compressed trie struc-

ture built over the set of all suffixes of a sequence. Its attractiveness stems from its

linearity properties – suffix-tree construction times are linear in the size of the indexed

sequences, while search times are linear in the size of the query strings.

In practice, however, the promise of suffix-trees is not realized for extremely long

sequences, such as the human genome, that run into the billions of characters. This is

because suffix-trees, which are typically an order of magnitude larger than the indexed

sequence, necessarily have to be disk-resident for such elongated sequences, and their

traditional construction and traversal algorithms result in random disk accesses.

We investigate, in this thesis, post-construction techniques for disk-based suffix-tree

storage optimization, with the objective of maximizing disk-reference locality during query

processing. Specifically, we consider approaches based on (a) reorganizing the layouts,

and (b) improving the physical structures of internal nodes of disk-resident suffix-trees.

In marked contrast to prior techniques in the literature that modify the suffix-tree itself

in order to gain performance (for example, by dropping the suffix-link edges), an impor-

tant aspect of our work is that the logical structure is retained in pristine form, thereby

retaining all the standard functionalities associated with these trees.

We begin by focusing on the layout reorganization, in which (i) complete reworking of

node-to-block assignments, and (ii) resequencing of storage blocks, are carried out. While

the classical suffix-tree construction algorithms deliver a depth-first layout, our node-to-

ii

Abstract iii

block assignments are based on combining the breadth-first layout approach advocated in

the recent literature with the increased restrictions on the assignments of nodes to blocks,

based on an analysis of node traversal patterns. Subsequently, in the second step, the

optimized sequence of disk blocks is determined by making the physical distance between

a pair of blocks commensurate with the estimated probabilities of visiting both these

blocks during the search traversals.

The second part of our thesis is directed towards improving the physical structures of

the suffix-tree internal nodes. In particular, we propose an embedding strategy whereby

leaf nodes can be completely represented within their parent internal nodes, without

requiring any space extension of the parent node’s structure.

To quantitatively evaluate the benefits of our reorganized and restructured layouts,

we have conducted extensive experiments on complete human genome sequences, with

complex and computationally expensive user queries that involve finding the maximal

common substring matches of the query strings. The experimental framework is instru-

mented to provide a variety of supporting statistics, such as intra-block localities, that

help explain the observed behavior of the various suffix-tree layouts.

We show, for the first time, that the layout reorganization approach can be scaled to

entire genomes, including the human genome. In the layout reorganization, with careful

choice of node-to-block assignment condition and optimized sequence of blocks, search-

time improvements ranging from 25% to 75% can be achieved with respect to the con-

struction layouts on such genomes. While the layout reorganization does take considerable

time, it is a one-time process whereas searches will be repeatedly invoked on this index.

The internalization of leaf nodes results in a 25% reduction in the suffix-tree space

occupancy. More importantly, when applied to the construction layout, it provides search-

time improvements ranging from 25% to 85%, and in conjunction with the reorganized

layout, searches are speeded up by 50% to 90%.

Overall, our study and experimental results indicate that through careful choice of

node implementations and layouts, the disk access locality of suffix-trees can be improved

to the extent that upto an order-of-magnitude improvements in search-times may result

relative to the classical implementations.

Contents

Acknowledgements i

Abstract ii

List of Figures vii

List of Tables ix

1 Introduction 1

1.1 Motivation and Research Challenges . 3

1.1.1 Motivation . 3

1.1.2 Research Challenges . 3

1.2 Notations . 4

1.3 Background . 5

1.3.1 Suffix-Tree . 5

1.3.1.1 Suffix-Links . 8

1.3.2 Construction of Disk-based Suffix-Trees 9

1.3.3 Search Algorithm . 12

1.4 Thesis Contributions . 15

1.4.1 Outline of Search-Optimization Process 16

1.5 Organization . 18

2 Survey of Related Research 19

2.1 Suffix-Tree Construction . 20

iv

Contents v

2.2 Suffix-Tree Search-Optimization . 22

3 Search-Optimized Suffix-Tree Layouts 25

3.1 Requirement for Search-Optimization of Suffix-Tree Storage 25

3.2 Reorganization of the Suffix-Tree Layout 26

3.2.1 Node Level Rearrangement: Node-to-Block Assignment 27

3.2.2 Block Level Rearrangement: Determining Optimized Block Sequence 28

3.3 Partition-based Suffix-Tree Layouts . 29

3.4 Search-Optimized Suffix-Tree Layouts . 30

3.4.1 Understanding Existing Suffix-Tree Layouts 30

3.4.1.1 Trellis Layout . 31

3.4.1.2 SBFS Layout . 31

3.4.1.3 Stellar Layout . 31

3.4.2 BFS Layouts: Node-to-Block Assignment 33

3.4.2.1 Common Rearrangement Function 36

3.4.2.2 1Cr4Cd Layout . 38

3.4.2.3 bfs-hybrid Layout . 39

3.4.2.4 OneLinkIn Layout . 41

3.4.2.5 Time-Complexity for Node-to-Block Assignment 42

3.4.3 BFS Layouts: Block Sequence Determination 43

3.4.3.1 Time-complexity for Block Sequence Determination 47

3.5 Implementation Issues . 50

4 Physical Structure Improvements of Internal Nodes 51

4.1 Understanding Physical Structures of Suffix-Tree Nodes 51

4.2 Structural Improvements of Suffix-Tree Nodes 53

4.2.1 Node Pointer Differentiation Bitmap 54

4.2.1.1 $-Leaf Pointer Usage Analysis 54

4.2.1.2 Implementation of Bitmap 55

4.2.2 Embedded Leaf Nodes . 56

Contents vi

4.2.3 Embedded Characters from the Indexed Sequence 57

4.2.3.1 Analysis of NULL Pointers 59

4.2.3.2 Analysis of Substring Length of Incoming Tree-Edge . . . 60

4.2.3.3 Multi-Character Child Edge Traversal Analysis 61

4.2.3.4 Implementation of Embedded Characters of Child Edge . 62

5 Experimental Evaluation 66

5.1 Experimental Setup . 66

5.2 Construction Time of Various Suffix-Tree Layouts 67

5.3 Search Results . 69

5.3.1 About Search Experiment Data . 69

5.3.2 Search Experiment Environment . 70

5.3.3 Search Results: Layout Reorganization 71

5.3.4 Quantification of Layout Goodness 76

5.3.4.1 Static Locality . 77

5.3.4.2 Dynamic Locality . 78

5.3.5 Search Results: Physical Structure Improvement of

Internal Nodes . 81

6 Conclusions 87

6.1 Future Work . 88

References 90

List of Figures

1.1 Vertical Compression of a Trie structure into a Suffix-Tree 6

1.2 Suffix-Tree for DNA fragment CAACAACCATCA$ 7

1.3 Online Suffix-Tree Construction Algorithm of Ukkonen 10

1.4 Algorithm – Maximal Common Substring Search 14

1.5 Outline of Search-Optimization Process . 17

3.1 Percentage of Nodes vs. nodeType for the Suffix-Tree built over the Human

Genome Sequence . 35

3.2 Number of Nodes vs. Tree Levels for each nodeTypes in the Suffix-Tree

built over the Human Genome Sequence 36

3.3 Common Rearrangement Function . 37

3.4 Algorithm – 1Cr4Cd Layout Generation 39

3.5 Algorithm – bfs-hybrid Layout Generation 40

3.6 Algorithm – OneLinkIn Layout Generation 41

3.7 Percentage of Total Nodes vs. Suffix-Link In-Degree for the Suffix-Tree

built over the Human Genome Sequence 42

3.8 Algorithm – Optimized Block Sequence Determination 48

4.1 Details of Suffix-Tree Node Structures . 52

4.2 Details of Internal Node Structure with Bitmap 56

4.3 Details of Internal Node Structure with Embedded Leaf Nodes 57

4.4 Incoming Tree-Edge Classification according to the Length of the Substring

represented by it for the Suffix-Tree built over the Human Genome Sequence 60

vii

List of Figures viii

4.5 Number of Child Nodes with Substring Length of Incoming Edge between

50 to 1000 and whose Parent Nodes have all the Internal Child Nodes present 63

4.6 Details of Internal Node Structure with Embedded Child Characters . . . 64

4.7 Details of NULL Child Pointer (of 4 Bytes) when Embedded with Child-

Edge Characters . 65

5.1 Layout Reorganization: Search-time for randomly generated search strings 71

5.2 Layout Reorganization: Search-time for search strings with 25% similarity

with the human genome sequence . 72

5.3 Layout Reorganization: Search-time for search strings with 50% similarity

with the human genome sequence . 73

5.4 Layout Reorganization: Search-time for search strings with 75% similarity

with the human genome sequence . 74

5.5 Layout Reorganization: Search-time for search strings fully drawn from

human genome . 74

5.6 Static Locality for various Layouts for the Suffix-Tree constructed over the

Human Genome Sequence . 77

5.7 Dynamic Locality for various Layouts for different kind of Search Strings . 79

5.8 Node Structure Improvement: Search-time for randomly generated search

strings . 81

5.9 Node Structure Improvement: Search-time for search strings with 25%

similarity with the human genome sequence 82

5.10 Node Structure Improvement: Search-time for search strings with 50%

similarity with the human genome sequence 82

5.11 Node Structure Improvement: Search-time for search strings with 75%

similarity with the human genome sequence 83

5.12 Node Structure Improvement: Search-time for search strings fully drawn

from human genome . 83

5.13 Percentage of Suffix-Tree Node Access : Internal node vs. Leaf node 84

List of Tables

1.1 Notations . 5

3.1 Percentage of occurrence of different characters in DNA sequence for Hu-

man Genome . 45

4.1 $-Leaf Pointer Usage Measurement . 55

4.2 NULL Pointers present in Suffix-Tree for different DNA Sequences 59

4.3 Unnecessary Child Node Traversal . 61

5.1 Construction Time of various Suffix-Tree Layouts on Machine R 68

5.2 Performance Improvement by bfs-hybrid-IBO Layout over existing Layouts 76

5.3 Performance Improvement by bfs-hybrid-IBO-EL layout over existing Layouts 85

ix

Chapter 1

Introduction

DNA sequence1 analysis is increasingly gaining importance in various scientific fields. The

well-known usage of DNA sequence analysis is in the diagnosis of different diseases in the

field of medical science2. Apart from this usage, DNA sequence analysis has found many

other applications. For example, it is used in the field of bioarcheology to study migration

of different population groups based on female genetic inheritance [35]. It is also used

in the field of DNA forensics to identify crime and catastrophe victims. There are even

efforts to build electronic micro-chips from DNA, due to its “reproducible, repetitive kinds

of patterns” [36]. So, going ahead in the future, DNA sequence analysis will play a crucial

role in almost every field of science.

On the other side of the DNA sequencing, the technological improvements have in-

creased the accuracy of genomic sequence mapping. But at the same time, there is

decrease in the cost and time duration for sequence mapping. Due to this, biological

sequence repositories (like GenBank [11] and EMBL [10]) are continuously growing at an

exponential rate. As a case in point, it has been estimated in [30] that the current growth

rate for biological sequence repositories is around 36 Gbp3 per month. Compare it with

the sequencing rate of the whole Human Genome Project [34], which took 13 years and

1Text sequence consisting of characters - A, C, G and T, which represents the order of occurrence of
nucleotide bases in DeoxyriboNucleic Acid.

2In 20th century, a disease had been identified based on symptoms, but in 21st century, it will be
DNA sequence with which it will be diagnosed. [33]

3A Gbp is billion base-pairs and one base-pair refers to either of the 4 characters - A, C, G and T.

1

Chapter 1. Introduction 2

3 billion USD to sequence the human genome which is around 3 Gbp. Today, efforts are

going on to sequence the human genome in 5000 USD [32]. This exponential decrease in

costing is complementary to the exponentially growing sequence repositories. The newer

and better technology has helped in continuing this increase in sequence mapping rate

and decrease in cost.

These humongous genetic repositories require sophisticated indexing techniques to

facilitate efficient searching on them. Due to lack of any particular structure in these

genetic sequences (like words in a sentence), the classical suffix-tree is an attractive choice

for indexing these sequences, as suffix-trees are full-text indexes [15], and suffix-trees are

constructed in times which are linear in the size of indexed sequences. Also, searching

on suffix-trees can be performed in times which are linear in the size of query strings. In

practice, however, the promise of suffix-trees is not realized for extremely long sequences,

such as the human genome, that run into the billions of characters. This is because

suffix-trees, which are typically order-of-magnitude larger than their indexed sequences,

necessarily have to be disk-resident for such elongated sequences, and their traditional

construction algorithms result in random disk accesses.

Recently, there are many algorithms (such as [21, 12]) which can construct the genome-

scale suffix-tree very quickly by localizing suffix-tree nodes. Using this criterion of lo-

calization, these algorithms have tried to avoid random disk accesses during suffix-tree

construction. But once the suffix-tree is constructed, it is going to be used many times

for various kind of search applications [13], which involve random disk accesses. These

unavoidable random disk accesses create performance bottleneck, as they take orders of

magnitude more time than random accesses to the main-memory. So, the more important

question is - How can we optimize storage for genome-scale disk-based suffix-trees such

that search-time over them can be reduced? In this thesis, we will attempt to address

this question by proposing various search-optimized layouts for genome-scale disk-based

suffix-trees, which reduce search-time by focusing on the optimization of random disk

accesses incurred during the usage of suffix-trees for searching.

Chapter 1. Introduction 3

1.1 Motivation and Research Challenges

1.1.1 Motivation

1. Due to the exponential rate of sequence mapping, the sizes of various biological

sequence repositories are currently in the order of Terabases4 [31]. So, considering

this humongous size, the efficient utilization of suffix-tree indexes (built over these

sequence repositories) requires search-optimized storage, along with their efficient

construction.

2. A DNA sequence is fairly static in nature and once a suffix-tree is constructed on

it, then that suffix-tree will be used again and again for the purpose of searching

only. So, the cost of one-time search-optimization of suffix-tree will yield better

throughput, while using it for searching. This is necessary from the viewpoint of

efficient sequence analysis.

3. There are many proposals (such as [21, 2, 12]) for efficiently constructing genome-

scale disk-based suffix-trees. Whereas, there are very few efforts (such as [5, 28, 16])

to make suffix-trees search-optimized. Also, most of these efforts had not shown

scalability of their search-optimization process for genome-scale suffix-trees.

1.1.2 Research Challenges

1. Genome-Scale: For the work on suffix-trees for genetic sequences to be useful,

it should be done on genome-scale and not just at chromosome-scale. Otherwise,

modern day computational biologists will find little use of it. But, the genome-scale

suffix-tree is huge in size (typically around 100 GBs) and demands tremendous

efforts for search-optimization.

2. Structural Intactness: In the process of search-optimization, we should be able

to reduce the search-time without altering the logical structure of the suffix-tree.

4A Terabase refers to trillion base-pairs.

Chapter 1. Introduction 4

Because, if we modify the logical structure of the suffix-tree to suit our requirement,

then we lose efficiency of various search algorithms, which rely on the original logical

structure of the suffix-tree. For example, in [14], suffix-links are removed to achieve

speedier construction of disk-based suffix-tree. But, in [21], it had been shown that

the performance of exact match alignment anchor finding algorithm (used in [8])

with suffix-links is 2 to 5 times faster in comparison to the performance of the

algorithm in which suffix-links are ignored.

1.2 Notations

Table 1.1 shows all the notations that are going to be used in this thesis. The used

notations have either explicit or implicit meaning given at their usage locations, but this

table describes all of them at one place.

Notation Description

Σ Finite set of possible alphabets used in a text sequence

S Indexed sequence containing characters only from Σ

n Number of characters present in S, i.e |S|
$ Special termination character, not present in Σ

si, S[i] Character at position i in S, must be drawn from Σ

S[i . . . j] Substring of S starting at position i and length (j − i+ 1)

Si Suffix of the sequence S starting at position i, i.e. S[i . . . n]

I Implicit suffix-tree constructed over the string S

T Suffix-tree constructed over the string S$

li Leaf in the suffix-tree T corresponding to the suffix Si

e(v) Incoming tree-edge to a node v of the suffix-tree T
sl(v) Suffix-link emanating from an internal node v

E(v) Edge length of a node v, i.e. number of characters in edge-label of v

L(v) Path length of a node v, the sum of edge lengths on the path

from root to v

σ(v) Substring S[i . . . i+ L(v)] associated with a node v in the suffix-tree

(where i is the number associated with a leaf node li under v)

parent(v) Parent internal node of a node v

Chapter 1. Introduction 5

Notation (cont.) Description (cont.)

child(v) Child node of an internal node v

slNode(v) Suffix-link node of an internal node v

slpNode(v) Suffix-link predecessor node of an internal node v

Q Query string containing characters only from Σ

m Number of characters present in Q, i.e |Q|
λ Minimum threshold length for the search result

B Suffix-tree storage block size

nb Total number of storage blocks of a suffix-tree

PCBS Probabilistic cost of a sequence of blocks

Table 1.1: Notations

1.3 Background

In this section, we present an overview of the suffix-tree. We also review the popular

algorithms used for the construction of in-memory suffix-trees as well as disk-based suffix-

trees. Then, the search algorithm considered for the performance analysis is also discussed.

The basic material for the background is obtained from [24].

1.3.1 Suffix-Tree

A suffix-tree is a highly compressed trie structure constructed over the set of all suffixes of

a given text sequence. The usual compression in the suffix-tree is in a vertical direction (as

shown in Figure 1.1), but a horizontal compression is also possible as mentioned in [20].

The various terms required to define a suffix-tree are described below:

Let S = s1s2 . . . sn be a sequence of length n with each si drawn from an alphabet set

Σ. A substring of S is a string S[i . . . j] = sisi+1 . . . sj for some 0 < i ≤ j ≤ n. A suffix

of S is a substring of S with j = n. In other words, a suffix is a part of the sequence

starting at any location i in the sequence and continuing up to the end of the sequence.

We represent a suffix starting at position i as Si. Thus, there are exactly n suffixes from

a sequence of length n, one for each position in the sequence.

Chapter 1. Introduction 6

Figure 1.1: Vertical Compression of a Trie structure into a Suffix-Tree

Definition 1. (Suffix-Tree) A suffix-tree for an n-character sequence S is a rooted

directed tree with exactly n leaves numbered 1 to n. Each internal node, other than the

root, has at least two children and each edge is labeled with a nonempty substring of S.

No two edges out of a node can have edge-labels beginning with the same character. The

key feature of the suffix-tree is that for any leaf numbered i, the concatenation of the edge-

labels on the path from the root to that leaf exactly spells out the suffix of S that starts at

position i, i.e. Si.

Note that it is not possible to construct a suffix-tree for every sequence S as per

Definition 1. If there is a suffix Si that exactly matches another substring5 S[j . . . k] (for

j 6= i), then Si ends at a non-leaf node in the suffix-tree constructed over S. So, the

number of leaf nodes are not in one-to-one correspondence with the set of all suffixes of S

(as is the case in Figure 1.1). Such a suffix-tree is called as Implicit Suffix-Tree (denoted

by I), as not every suffix can be exactly determined from this tree. In order to overcome

5This is the situation when a suffix of S is also a prefix of some other suffix of S.

Chapter 1. Introduction 7

this, a delimiter symbol (usually denoted by $) is concatenated at the end of the indexed

sequence. It is assumed that $ does not appear anywhere else in the indexed sequence

and $ /∈ Σ. With this assumption, it is guaranteed that there is a suffix-tree T (built over

sequence S$), in which every suffix of the sequence S$ can be exactly located.

Figure 1.2: Suffix-Tree for DNA fragment CAACAACCATCA$

The suffix-tree for a DNA fragment CAACAACCATCA$ is shown in Figure 1.2. The

circular nodes are internal nodes and the square nodes are leaf nodes. The number in each

leaf node is the index i associated with the suffix corresponding to the leaf node. Note

that the total number of leaf nodes are exactly same as the number of characters present

in the sequence S$. Solid lines indicate tree-edges and each tree-edge has an associated

label, which is a substring of the sequence S$. Dashed lines indicate suffix-links. The

detailed explanation about suffix-links is given in the following section.

Chapter 1. Introduction 8

1.3.1.1 Suffix-Links

Although the definition given above is the commonly used one for suffix-trees, it does

not incorporate one significant structural augmentation to the suffix-tree – namely, the

notion of suffix-links. In practice, suffix-trees are augmented with additional edges called

suffix-links that are necessary to achieve their linear time construction (in traditional con-

struction algorithms, such as [27, 19, 26]) and also to significantly enhance the subsequent

string searches (by improving the time-complexity of searching). Suffix-links are edges

(or pointers) that span across the suffix-tree, between two internal nodes which may not

be related through a parent-sibling relationship. But, another kind of relationship exists

between them, which is described in the following definition of a suffix-link.

Definition 2. (Suffix-Link) Let xα denote an arbitrary string, where x denotes a single

character and α denotes (a possibly empty) substring of the sequence to be indexed. For

an internal node v with path-label xα, if there is another node sv with path-label α, then

a pointer/edge from v to sv is called a suffix-link.

The suffix-link of the root of a suffix-tree is defined to be pointing to itself. Other

than this, the suffix-links are well defined for all the internal nodes. The entire set of

suffix-links sl(.), forms a tree with many source nodes, but with the root of T as the only

sink node. In this alternative tree structure, there are exactly L(v) edges on the path

from an internal node v to the root node of T . In Figure 1.2, the dashed lines between

internal nodes of the tree are suffix-links, with the direction of the arrow indicating the

pointer direction.

The suffix-links, in the present form, were first introduced by McCreight [19] and since

then they are implicitly assumed to be present in the suffix-tree. In addition to the linear

time construction, the presence of these links enables a much richer set of traversals over

the suffix-tree resulting in many high-speed search algorithms. On the other hand, suffix-

links are also considered a source of additional space overhead, and more significantly,

a reason for poor locality properties of suffix-tree construction and search algorithms.

Therefore, there are some proposals which resort to quadratic time construction of suffix-

trees by completely dispensing with the suffix-links (such as [14, 25, 21]). But, some

Chapter 1. Introduction 9

of them introduce suffix-links at a later optional stage (which are described in following

section). For the search algorithms such as Maximal Common Substring Search (refer

Section 1.3.3 for details), the search time-complexity is linear in the size of the query

string, when suffix-links are used. But, with the ignorance of suffix-links, the search

time-complexity of these algorithms become quadratic in the size of query string. So,

suffix-links are also required for efficient usage of suffix-tree for searching.

1.3.2 Construction of Disk-based Suffix-Trees

Prior to disk-based suffix-trees, the popularly used algorithms to construct (in-memory)

suffix-trees were by Weiner [27], McCreight [19] and Ukkonen [26]. Each of these al-

gorithms construct the suffix-tree in a time which is linear in |S|. However, all these

algorithms required random accesses to the suffix-tree structure during its construction.

This does not create problem while suffix-tree fits in main-memory. But, when the size

of the suffix-tree exceeds the size of available main-memory, any of these construction

algorithms has to use secondary storage (mainly disk), which introduces random disk

accesses. The orders-of-magnitude difference between time taken for main-memory ran-

dom accesses and disk random accesses causes these theoretically efficient algorithms to

become practically infeasible for the construction of genome-level suffix-trees.

However, there are many efforts (starting from Hunt, et al. [14]), which tried to build

genome-scale disk-based suffix-trees by completely ignoring methods suggested by tradi-

tional linear-time construction algorithms. On the other hand, there are some disk-based

suffix-tree construction algorithms, who have not totally ignored the traditional linear

time algorithms. For example, the proposals given in [4] and [21] used Ukkonen’s algo-

rithm or a variant of it as an intermediate stage. The choice of Ukkonen’s algorithm over

the Weiner’s algorithm is due to its space-efficiency during the construction of suffix-tree.

Also, it had been chosen over McCreight’s algorithm due to its online nature and sim-

pler mechanism for the suffix-tree construction. The high-level description of Ukkonen’s

algorithm is given in Figure 1.3.

As the Ukkonen’s algorithm is online in nature, it incrementally builds the suffix-tree.

Chapter 1. Introduction 10

Algorithm Ukkonen (S)
Input:
S: Text sequence with n characters, i.e. S[1 . . . n]
Output:
In: Implicit suffix-tree over the text sequence S

1. I1 ← Implicit suffix-tree for S[1 . . . 1]

2. for i = 1 to n− 1 do

3. for j = 1 to i do

4. {LOCATE PHASE}
5. Locate β = S[j . . . i] in Ii
6. {INSERT PHASE}
7. if β ends at a leaf then

8. Ii+1 ← add S[i+ 1] to Ii
9. else {β ends at an internal node, or at the middle of an edge}

10. if from the end of β there is no path labeled S[i+ 1] then

11. Ii+1 ← split edge in Ii and add a new leaf

12. else

13. Ii+1 ← Ii{β already exists in Ii}
14. end if

15. end if

16. end for

17. end for

Figure 1.3: Online Suffix-Tree Construction Algorithm of Ukkonen

The algorithm consists of two phases –

1. Locate Phase: In this phase, the appropriate edge in the temporary suffix-tree

structure is located, to insert the character occurring just after the currently pro-

cessed substring.

2. Insert Phase: In this phase, the next character from the sequence is inserted in

the edge of the suffix-tree, which is determined earlier by Locate Phase. For this

either a new edge and a new node are created or the edge-label of the located edge

is expanded to include the new character.

With the sequence S consisting of n characters as input, the Ukkonen’s algorithm

outputs only an implicit suffix-tree over S. As we have seen earlier, in an implicit suffix-

Chapter 1. Introduction 11

tree, it is not necessary that every suffix of the sequence ends in a leaf. To obtain the

suffix-tree where each suffix ends in a leaf, we have to add a terminal symbol $ at the end

of S and continue the algorithm with this (n + 1)th character. The addition of terminal

symbol $ makes sure that no suffix will be a proper prefix of any other suffix of the same

sequence. This is not the case in an implicit suffix-tree produced by Ukkonen’s algorithm

with just sequence S, if it ends with a non-unique character.

At first glance, the algorithm seems to have cubic complexity, i.e. O(n3), because

locating a substring inside a suffix-tree requires scanning the whole sequence S in the

worst-case. But, this is true only if the algorithm is implemented naively. When the

algorithm is implemented with few tricks, it constructs suffix-tree in time which is linear

in the size of the indexed sequence S, i.e. O(n). For example, after processing of the

current substring is completed, the next substring can be located within the suffix-tree

(Locate Phase) in O(1) time, by following the suffix-link from the current node. Other

tricks for making algorithm linear-time can be found in [13].

Having looked at the traditional Ukkonen’s algorithm, we now review the Trellis algo-

rithm [21] which is the first disk-based algorithm to construct the genome-scale suffix-tree

with suffix-links. The Trellis algorithm is a partition-based approach for constructing the

disk-based suffix-tree. The different steps constituting the Trellis algorithm are described

below:

1. Prefix Creation Phase: In the first step, variable length prefixes are determined.

The main criterion in determining a prefix is that the suffix-tree partition corre-

sponding to it, should fit in main-memory. Otherwise, the prefix will get extended

further by appending more characters till the partition corresponding to each ex-

tended prefix fits in the main-memory. In this way, the suffix-tree partition size is

controlled and the skew present in the sequence data is also handled.

2. Partitioning Phase: In this step, the indexed sequence S is partitioned and the

suffix-tree for each of the sequence partition is built (which are called as suffix

subtrees). Ukkonen’s algorithm [26] is used in construction of these suffix subtrees.

When these suffix subtrees are stored on the disk, they are segregated according to

Chapter 1. Introduction 12

the prefixes obtained in Step 1. Each segregated portion of the suffix subtrees is

called a prefix-based suffix subtree.

3. Merging Phase: In this step, suffix subtrees corresponding to each variable length

prefix are merged into a single suffix-tree partition. At the completion of this step,

the partitioned suffix-tree without suffix-links is fully constructed. Here, the par-

titions of the suffix-tree are based on the prefixes obtained in Step 1. Whereas in

Step 2, the sequence S is partitioned and suffix-tree is built for each substring par-

tition. A point to note here is that the suffix-links that are created and used during

Ukkonen’s algorithm in step 2 are now discarded.

4. Suffix-Link Recovery Phase: Although this is an optional step, it is required to

recover the suffix-links, whose crucial role in efficient searching is already highlighted

in our earlier discussions. The Trellis algorithm recovers the suffix-links for each

suffix-tree partition, one at a time. It starts with finding the suffix-link for the root

node of a suffix-tree partition and then recursively finds the suffix-links for the child

nodes in a depth-first manner.

A point to note here is that suffix-links are not fully utilized during the construction

of suffix-tree and the recovery of suffix-links is optional. This is in contrast with the

traditional algorithms, which heavily rely on the suffix-links for the suffix-tree construc-

tion, in order to get better theoretical bound. On the other hand, Trellis tries to reduce

the active portion of the suffix-tree during construction by partitioning it. This smaller

active portion of the suffix-tree is handled in-memory and thus avoids the random disk

accesses. But, in achieving better localization during construction of the suffix-tree, the

time-complexity of the Trellis algorithm becomes quadratic in |S|, i.e. O(n2).

1.3.3 Search Algorithm

The important application of the suffix-tree is that the searching of query string Q is

performed in time that is linear in |Q| and is not dependent on |S|, which is usually very

large. That means the time-complexity for search is O(m) and not O(n), which is usually

Chapter 1. Introduction 13

the case with the methods other then the suffix-tree. There are many search algorithms

available [13] for the suffix-tree, but in our work, we are focusing on the algorithm of Max-

imal Common Substring Search for the purpose of measuring performance improvement.

The definition for the maximal common substring search is as follows:

Definition 3. (Maximal Common Substring Search) Given a database sequence

S, and a query sequence Q, the search which will locate all the occurrences of the longest

matching substring of Q that is present in S, for each position in Q, is called the Maximal

Common Substring Search. Usually, the matches having length greater than or equal to

threshold λ is returned to the user, where the threshold λ is provided by the user.

In other words, for each i, 1 ≤ i ≤ m, locate all (i, j, k) triples where j = max j′ such

that Q[i . . . i+ j′] = S[k . . . k + j′] and Q[i+ j′ + 1] 6= S[k + j′ + 1] and j ≥ λ.

The reason for the selection of this algorithm is that the first task of many well-known

sequence matching tools (such as [7]) is to find maximal common substrings between two

sequences. The algorithm of maximal common substring search was proposed in [6] and is

also used in various search-optimization proposals, such as [5]. The algorithm for maximal

common substring search is shown in Figure 1.4 and all the experimental search results

presented in Chapter 5 are based on this algorithm.

In the algorithm, the function charMatch returns the number of characters matched

between the edge-label of the leafChild and the portion of the query string still left to

be matched. The TraverseSubtree function visits all the nodes under the currNode in

depth-first manner (in order to find all occurrences of the maximally matched substring).

The complexity of the algorithm is O(m + occ), where occ is the number of times the

maximally matched substring of |Q| occurs in S. This algorithm heavily relies on the

presence of suffix-links. In absence of the suffix-links desired linear time bound cannot be

achieved and search has to begin from the root of the tree for every new substring of Q.

And in such case, the worst-case search complexity will be quadratic in |Q|.

In the algorithm, bold lines indicate that random disk accesses have to be performed

at those stages of the algorithm. Our focus in this thesis is to reduce the time incurred

during these random disk accesses, as they form a dominant part of the search-time.

Chapter 1. Introduction 14

Maximal Common Substring Search Algorithm (S, T , Q, λ)
Input:
S: Indexed sequence
T : Suffix-tree over the indexed sequence S
Q: Query sequence
λ: Minimum match-length to be reported
Output:
L = {(q, l, d) | Q[q . . . q+ l] = S[d . . . d+ l], Q[q+ l+ 1] 6= S[d+ l+ 1], l ≥ λ, and l is maximal given q}

1. currNode← root of T ; matchedChars← 0; L = φ;

2. for i = 1 to m do

3. mismatchF lag ← false; leafMatchedChars← 0;

4. Q ← Q[i . . .m]

5. while matchedChars < |Q| do

6. for j = 1 to E(currNode) do

7. if Q[matchedChars+ j] 6= currNode.edge[j] then

8. mismatchF lag ← true

9. exit while loop (line 24)

10. end if

11. end for

12. matchedChars← matchedChars+ j;

13. parentNode← currNode;

14. if currNode.child(Q[matchedChars+ 1]) exist & is an internal node

15. currNode ← currNode.child(Q[matchedChars + 1]);

16. continue to while loop (line 5)

17. else if currNode.child(Q[matchedChars+ 1]) exist & is a leaf node

18. leafChild← currNode.child(Q[matchedChars + 1]);

19. leafMatchedChars← charMatch(leafChild, Q[matchedChars+1 . . . |Q|]);
20. exit from while loop (line 24)

21. else

22. exit from while loop (line 24)

23. end if

24. end while

25. if (leafMatchedChars > 0) & (matchedChars+ leafMatchedChars ≥ λ) then

26. L← L ∪ (i,matchedChars+ leafMatchedChars, leafChild.Start)

27. else if matchedChars ≥ λ then

28. L← L ∪ TraverseSubtree(currNode)

29. end if

30. if mismatchF lag = true then

31. currNode← slNode(parentNode)

32. else

33. currNode← slNode(currNode)

34. end if

35. matchedChars← matchedChars - 1;

36. end for

Figure 1.4: Algorithm – Maximal Common Substring Search

Chapter 1. Introduction 15

1.4 Thesis Contributions

The major contributions of this thesis are briefly described as follows:

• First, we show that the Stellar algorithm [5] (which had advocated a breadth-first

or BFS approach and evaluated for chromosome-level sequences only) can be scaled

to entire genome level, to produce the search-optimized layout for the disk-based

suffix-tree. The resultant genome-scale layout by the Stellar algorithm also achieves

significant reduction in the search-time, when it is compared with the search-time

over the layout of the suffix-tree just after its construction.

• Secondly, we propose new layout reorganization algorithms, which are based on

the Stellar algorithm. These reorganization algorithms introduce various conditions

during the node-to-block6 assignments. These conditions consider the properties of

the suffix-tree nodes and blocks while rearranging them. Also, these reorganization

algorithms try to determine the sequence of storage blocks, which reduces random-

ness in the disk accesses encountered during search traversal on the suffix-tree. The

search-time over these resulting suffix-tree layouts not only outperforms the search-

time over the original Stellar layout, but when it is compared with the search-time

over the layout at the time of construction, the improvement is in the range of 25%

to 75%.

• In our next step, we consider improving the physical structures of the suffix-tree

internal nodes. In particular, we propose an embedding strategy whereby leaf nodes

can be completely represented within their parent internal nodes, without requiring

any space extension of the parent node’s structure. Overall, this optimization results

in a 25% reduction in the suffix-tree space occupancy. More importantly, when

applied to the construction layout, it provides search-time improvements ranging

from 25% to 85%, and when used in conjunction with the reorganized layouts, the

speedup achieved in search-time is in the range of 50% to 90%.

6Here, a block refers to a storage block which is further explained in Section 3.2.1.

Chapter 1. Introduction 16

• Finally, we provide a variety of supporting statistics, such as intra-block localities,

to help explain the observed behaviors of the various suffix-tree construction and

search-optimized layouts.

1.4.1 Outline of Search-Optimization Process

In this section, we outline how the task of search-optimization of the disk-based suffix-tree

layout has been accomplished. This is also represented diagrammatically in Figure 1.5.

• As the first step, we are using already constructed suffix-tree and then we try to

make it search-optimized by rearranging its nodes and blocks. So, the process of

search-optimization in our case is implemented as the post-construction processing

of the suffix-tree. For the construction of the suffix-tree, we have used the Trellis

algorithm [21], which constructs the suffix-tree with the suffix-links in a few hours

on a typical desktop machine.

• The suffix-tree constructed by Trellis algorithm is in the form of multi-partitions,

which is not suitable from the viewpoint of localization of both the tree-edges and

suffix-links. So, we have merged all the partitions of the suffix-tree into one file.

In doing so, we have not changed the internal storage of the nodes within the

partition. We have just concatenated these partitions along with the top portion7

of the suffix-tree. We call this layout of suffix-tree at this point of time as the

construction layout, because node arrangement in this layout is the direct result of

the suffix-tree construction algorithm.

• On the construction layout, we apply different algorithms for layout reorganization,

which rearrange the nodes and blocks according to the conditions defined in the

respective algorithms. So, in order to obtain search-optimized layout, we first apply

node-to-block assignment, in which different layout conditions based on the proper-

ties of the suffix-tree nodes, such as number of characters present in the edge-label,

7In the multi-partition storage, the top portion of the suffix-tree is stored as a separate prefix file.

Chapter 1. Introduction 17

Figure 1.5: Outline of Search-Optimization Process

are considered. In the next step of layout reorganization, we apply inter-block opti-

mization, which determines the optimized sequence of storage blocks by considering

block-to-block traversal probabilities.

• Finally, the improvements in the physical structures of the suffix-tree internal nodes

can be applied to various layouts. So, these improvements are applied to the con-

struction layout, to the Stellar layout and also to the search-optimized layouts pro-

posed by us. But, these improvements on different layouts are also considered as

separate layouts in themselves, as they need separate storage and separate interface

for searching over them. In the outline, we have mentioned one of these improve-

ments which completely embeds leaf nodes in their parent internal nodes.

Chapter 1. Introduction 18

1.5 Organization

The remainder of this thesis is organized as follows: In Chapter 2, we review related

research in the field of suffix-tree indexing. Details about implementation of various disk-

based suffix-tree layouts proposed by us are presented in Chapter 3 and improvements

related to physical structures of the suffix-tree internal nodes are illustrated in Chap-

ter 4. The experimental evaluation is presented in Chapter 5. Finally, in Chapter 6, we

summarize our conclusions and outline future research avenues.

Chapter 2

Survey of Related Research

The suffix-tree index exists for more than three decades. The initial construction algo-

rithms for the suffix-tree index have emphasized on achieving theoretical efficiency. But

in later years, the focus of suffix-tree construction algorithms have shifted to practical

feasibility of suffix-tree construction, I/O efficiency and parallelization.

Although Weiner [27], McCrieght [19] and Ukkonen [26] gave linear complexity algo-

rithms, the construction of the suffix-tree remained impractical for large sequences. For

example, in the mid 90’s, suffix-trees have found applications in computational genomics

for exponentially growing genetic sequence repositories. For the genome-level sequences,

the size of suffix-trees became so huge that it compelled the construction algorithms to

use the disk. This is also necessary from the viewpoint of subsequent usage of suffix-tree

for various search applications.

But, in [1], authors have predicted that the construction of the suffix-tree on secondary

storage will remain impractical. The basis for their prediction was their observation that

suffix-tree construction suddenly takes huge time, when the size of the suffix-tree exceeds

available main-memory size. This sudden surge in construction time is due to random

accesses made to the temporary tree structure during the construction process by the

traditional construction algorithms. As the main-memory is designed for random accesses,

the increase in construction time remained linear with the increase in indexed sequence

size (till suffix-tree fits in main-memory). But, when the construction algorithm has to

19

Chapter 2. Survey of Related Research 20

use disk, the performance degrades due to random disk accesses. Because, disk accesses

are already taking orders-of-magnitude more time than the main-memory accesses and

this difference is more highlighted when accesses to the disk are random in nature (instead

of serial). The random disk accesses cannot take advantage of the page cache maintained

in the main-memory by the operating systems.

However, in recent years, the construction of the suffix-tree for large genome sequences

become possible due to evolution in the construction algorithms. These algorithms have

focused on achieving better locality of reference during construction of the suffix-tree,

instead of getting better theoretical bounds (which is the main focus area of the traditional

construction algorithms).

On the other side of the suffix-tree construction, the search aspect of the suffix-tree

is largely ignored. The reason for this ignorance is the fact that till recent time the

construction of the suffix-tree itself was very difficult for large sequences, such as the

human genome sequence. Hence, the major focus remained on the efficient construction

of the suffix-tree and not on the search-optimization of the suffix-tree storage.

So, we review the research work on the suffix-tree in two parts. In the first part, we

see various efforts for the construction of disk-based suffix-trees. Then we go through

different proposals for the search-optimization of disk-based suffix-trees. Although, our

research focus in this thesis is always on the search-optimization of the suffix-tree, a quick

review of the suffix-tree construction algorithms is also desirable.

2.1 Suffix-Tree Construction

In the last decade, there were numerous efforts for the construction of the disk-resident

suffix-tree. Hunt, et al. [14] constructed one of the first disk-resident suffix-tree for human

chromosomes, but with the removal of suffix-links to achieve better locality of reference.

Hunt’s method is also one of the first to introduce prefix-based partition method for

the construction of disk-based suffix-tree. In their method, length of all the prefixes

are incremented till the partition corresponding to each prefix, fits in the main-memory.

Thus, all prefixes have same fixed length. So, this approach does not handle skew present

Chapter 2. Survey of Related Research 21

in the data which results in suffix-tree partitions of varying sizes. The complexity of

Hunt’s method is O(n2), where n is length of the sequence on which suffix-tree is to be

constructed. After this initial effort, there are many efforts to build the suffix-tree on

secondary storage in more and more efficient way. Here, we mention few of them, which

have significantly enhanced the process of suffix-tree construction.

Bedathur, et al. [4], provided the buffering strategy TOP-Q, to build the disk-based

suffix-tree with suffix-links for larger sequences. Although TOP-Q is built upon linear

complexity algorithm of Ukkonen [26], their significant contribution is to show that com-

plete suffix-trees can be built on larger sequences. They have also shown that the array

representation of the suffix-tree nodes are superior than the space-efficient linked-list rep-

resentation.

The approach of Tata, et al. [25] is similar to that of Hunt’s, as they abandon the

suffix-links for better locality of reference and their approach has the time-complexity

O(n2). But, even with these loopholes, they are the first to scale upto human genome

level. In their approach they are able to reduce massive random disk accesses and hence

outperform the Hunt’s and TOP-Q approaches for the construction of the suffix-tree.

The first complete genome-scale disk-based suffix-tree was constructed in the Trellis

by Phoophakdee, et al. [21], in which they used partition and merge approach with vari-

able length prefixes in order to handle the skew present in the genome sequence. The

Trellis algorithm initially constructs suffix-tree without suffix-links. But, in the last op-

tional phase, there is a choice to recover suffix-links. The detail mechanism for suffix-tree

construction by the Trellis algorithm is already explained in Section 1.3.2. Like other

partition-based approaches, the time-complexity of the Trellis algorithm is O(n2). But,

due to its majority of operations are in-memory, it completely avoids the random disk

accesses. Later on, they also come up with newer algorithm - Trellis+ [22], which is not

just speedier than Trellis with the same memory constraints, but, it also removes the

restriction of keeping whole indexed sequence in the main-memory.

After Trellis, there are a few proposals for the construction of genome-scale suffix-trees.

In DiGeST [2], Barsky, et al. claimed the construction of suffix-trees which can handle the

Chapter 2. Survey of Related Research 22

sequences greater then the human genome sequence. In the DiGeST method, the indexed

sequence is first partitioned and each partition is then sorted lexicographically. After that,

sorted partitions are merged using suffix-arrays to yield the final suffix-tree. But, again

in their effort, they discarded suffix-links, and hence we are not considering it further,

because of our focus on suffix-links for search applications. In continuing their effort to

build suffix-tree for very large sequences, Barsky, et al. also come up with the algorithm of

B2ST [3], which can construct suffix-tree even for text sequences of size 12 GB, but again

without suffix-links. They have also implemented an important enhancement in this effort

– the indexed sequence need not be kept in the main-memory, during the construction of

a suffix-tree.

Recently, WAVEFRONT [12] by Ghoting, et al., does speedier construction of the

suffix-tree with limited memory. Unlike the “partition-and-merge” approach of the earlier

efforts, WAVEFRONT constructs the suffix-tree by dividing it in disjoint tiles (which are

similar to diagonal partitions of the suffix-tree, instead of usual vertical partitions). The

WAVEFRONT algorithm outperforms Trellis algorithm when the indexed sequence does

not fit fully in the main-memory. The parallel version of the WAVEFRONT algorithm

constructs the suffix-tree in a few minutes on the high-performance systems.

2.2 Suffix-Tree Search-Optimization

In this section, we review various efforts for search-optimization of the suffix-tree. Al-

though these efforts are less in number than the suffix-tree construction efforts, their role

in search-time reduction is very important. This is because, after one-time construction,

suffix-trees are going to be used many times for searching.

Bedathur, et al. [5] proposed Stellar layout, to optimize disk-based suffix-tree from

search perspective. Their main contribution is to show that a balance between tree-edge

localization and suffix-link localization can be achieved, which results in reduced I/O

operations for search algorithms involving suffix-links. But, their approach of localizing

tree-edges and suffix-links had not considered any suffix-tree property which is also im-

portant from the search perspective. Therefore, Stellar arbitrarily brings the tree-edges

Chapter 2. Survey of Related Research 23

and suffix-links together. Due to this, it achieves unnecessary localization at some places,

while at other places, it has to content with lower localization in comparison to over-

all possible localization of the suffix-tree nodes. So, although Stellar achieves noticeable

performance improvements, it is arbitrary in nature.

The efforts in [16], tried to give theoretically better disk-layout for suffix-tree. But,

there main focus was to show the usefulness of secondary storage for the suffix-tree and

to show how the suffix-tree can be updated efficiently. Both of these areas are not focused

in our work. Because, DNA sequences are fairly static in nature and considering huge

size of suffix-tree there is no other option then the secondary storage in the present time.

The efforts in [9], though not directly related to suffix-tree, provides the tree-layout

which give near-optimal suffix-tree layout for exact match searches.

The work of Phoophakdee, et al. [21] showed that for exact match alignment anchor

finding algorithm [8], the suffix-link version has better performance then the non-suffix-

link version. But, they nowhere compare the search results involving suffix-links with the

search results from other layouts.

The search-optimization effort in [23], improves the search-time after doing post-

processing on the constructed suffix-tree. But, their medium of storage to have im-

provement in the search-time is suffix-array (which is a space-efficient alternative to the

suffix-tree, proposed by Manber, et al. [18]) augmented with a small trie structure, which

they called as LOF-SA. Our work is different from this approach as we have retained the

suffix-tree structure for all kind of search-optimizations.

The CPS-tree proposed by Wong, et al. [28] is search-optimized version of suffix-tree

which reduces the number of page-faults during the search traversal. It partitions the

suffix-tree in various local trees, where each local tree gives priority to the nodes with

maximum number of leaf nodes under it, for localization. It also implements forward

links which limits the worst case logical block access to O(log n), where n is number of

characters in the indexed sequence. But, in this search-optimization effort, they just resort

to exact-match searching which avoids complex traversal patterns by not considering

suffix-links. In this effort, authors have not demonstrated scaling of the CPS-tree to the

Chapter 2. Survey of Related Research 24

human genome sequence.

Like many other search-optimization approaches (such as Stellar, LOF-SA), our ap-

proach is also a post-construction approach. So, we take already constructed suffix-tree

from the disk and rearrange its nodes and blocks, to obtain the search-optimized suffix-tree

layout. Our approach for search-optimization of suffix-tree through layout reorganization

(Section 3.2) is independent of any particular suffix-tree construction algorithm. How-

ever, the suffix-tree search-optimization through improvements in physical node structure

(Chapter 4) is dependent on the implemented data-structure to a certain extent.

Chapter 3

Search-Optimized Suffix-Tree

Layouts

In this chapter, we propose search-optimized layouts for efficient storage of suffix-trees on

disk, which give significant search performance improvements (as we quantitatively see

later in Chapter 5). These new layouts are based on the Stellar layout, proposed in [5].

So, we also look into the details of the Stellar and other existing suffix-tree layouts. But,

before moving onto the details of these existing as well as new layouts, we analyze the

requirement for the search-optimization and different levels of implementation of search-

optimization process.

3.1 Requirement for Search-Optimization of Suffix-

Tree Storage

The disk access time is the major constituent of the search-time for the search performed

on the disk-based suffix-tree. In our case, disk accesses took more than 99% of the total

search time. This is because of the following two reasons:

1. The major task to be performed during the search traversal is to visit different nodes

of the suffix-tree, which causes random accesses to the suffix-tree file which resides on

25

Chapter 3. Search-Optimized Suffix-Tree Layouts 26

the disk. On the other hand, processing in terms of character comparison constitute

very less fraction of the overall search-time (refer to algorithm in Figure 1.4).

2. There is orders-of-magnitude difference between main-memory access time and disk

access time.

So, the disk access time remains a performance bottleneck in the searching over the disk-

based suffix-tree.

The huge cost of these random disk accesses during search traversal is mainly at-

tributed to the enormous size of the disk-based suffix-tree. Because, for smaller suffix-

trees, the caching effect of the operating system would have reduced the impact of huge

cost of random disk accesses. So, it is desirable to have some storage optimization within

the disk-based suffix-tree which makes it more tolerant to randomness occurring in disk

accesses and thus helps in reducing the search-time. As mentioned in Section 1.1.2, this

process of storage optimization should not alter the logical structure of the suffix-tree.

So, the alternative ways for achieving search-optimization are mentioned as follows:

1. Search-optimization of the suffix-tree through just rearrangement of various portions

of it, i.e. layout reorganization of the suffix-tree.

2. Search-optimization of the suffix-tree through improving physical structures of suffix-

tree internal nodes without affecting the logical structure of the suffix-tree.

The first option is the subject matter of this chapter, which totally focus on finding

appropriate rearrangement of various suffix-tree portions, in order to make it search-

optimized. While the search-optimization process using second option is explained in

Chapter 4.

3.2 Reorganization of the Suffix-Tree Layout

The basic constituent of the suffix-tree is a node. But, from the perspective of the op-

erating system, the suffix-tree stored on disk is just a collection of different disk pages.

Chapter 3. Search-Optimized Suffix-Tree Layouts 27

So, in order to enhance the localization of nodes within a group of disk pages, the layout

reorganization process can be performed at two different levels of the suffix-tree storage.

These two levels are mentioned below:

1. Node Level Rearrangement: Finding an appropriate group of disk pages (which

we call as Block) for a suffix-tree node.

2. Block Level Rearrangement: Finding the optimized sequence of blocks, which

reduces randomness in disk accesses.

These two rearrangement levels are described (in more detail) in the following subsec-

tions:

3.2.1 Node Level Rearrangement: Node-to-Block Assignment

The main aim of the node rearrangement is to reduce search-time by physically localizing

neighboring nodes1. This rearrangement of nodes should be done in such a way that the

next node required during search traversal (which is either child or suffix-link node of the

currently processed node) is either in the main-memory or at the least possible distance

on the disk.

For this, we have to fix the size of a storage block which decides the extent of local-

ization. Due to aggressive fetching of disk pages in advance by an operating system, we

have set the size of a storage block to 64 kB. So, our first goal should be to increase the

relevance of a node to the other nodes present in the same block, such that fetching of the

extra amount of data by the operating system can be utilized meaningfully. In this way,

we can also avoid bringing of extraneous pages into the main-memory as far as possible.

In order to localize nodes within a block, we have to consider properties of suffix-tree

nodes which are important from the search perspective. For example, if a node have all

the internal child nodes present, with their incoming edge representing just one character,

then the suffix-link node of the current node will never be visited. So, there is no need

1Neighboring nodes are those nodes which are related with each either other by parent-child relation-
ship or by suffix-link predecessor-follower relationship.

Chapter 3. Search-Optimized Suffix-Tree Layouts 28

to place the suffix-link node of the current node in its vicinity. Similarly, we try to bring

the most relevant nodes together by identifying certain properties (as we see in detail in

Section 3.4.2), so that they can form a cluster of relevant nodes within a block. Now, if

during the search traversal, any one of the node from this cluster gets visited, then there

is a high probability that the next required node is obtained from the cluster itself. This

criterion is also used in measuring the layout goodness, as we see later in Chapter 5.

3.2.2 Block Level Rearrangement: Determining Optimized Block

Sequence

In the previous criterion of node level rearrangement, we looked at the question: how can

the relevance of nodes within a block of a suffix-tree be increased? Now, we ask a broader

question: How are the related blocks distributed within the suffix-tree file (which resides

on the disk)? For example, if there is a high probability to go to a block from the current

block, then that block should be placed physically nearer to the current block on the disk.

Because, placing relevant blocks nearer to each other, reduces seek time and rotational

latency2, which are expensive operations in comparison to data transfer time of the disk,

when disk accesses are random in nature [17].

A point to note here is that the process of determining optimized block sequence de-

pends on how nodes are assigned to blocks. Because, this assigning of nodes determines

how much these blocks are related with each other. Although most of the earlier efforts for

search-optimization of suffix-trees had looked into node-to-block assignment, they have

largely ignored the determination of optimized block sequence.

Both the above criteria for structural rearrangement play important role in the achieve-

ment of search-optimized storage for the suffix-tree.

2Assuming there is less or no fragmentation within the suffix-tree file.

Chapter 3. Search-Optimized Suffix-Tree Layouts 29

3.3 Partition-based Suffix-Tree Layouts

Now, we analyze the storage of existing construction layouts, which used either partition

(or tiling3) based approaches for the efficient construction of the suffix-tree. This type of

storage mechanism has following advantages and disadvantages:

• Advantages of Partition-based Layouts:

1. Easier to Construct: In order to take the advantage of locality of refer-

ence for efficient suffix-tree construction, various construction approaches have

considered suffix-tree as combination of different parts. If the construction ap-

proaches ignore the locality of reference (like Ukkonen’s algorithm [26]), then

there is a huge increase in the random disk accesses, which in turn, drastically

increase the construction time of the disk-based suffix-tree.

2. Possibility of Parallelization: As the suffix-tree is divided into different

parts, the parallel construction of these parts is also possible (as shown in the

approach of [12]). Parallelizing can significantly reduce the suffix-tree construc-

tion time.

• Disadvantages of Partition-based Layouts:

1. Limitation to Localization: In most of the approaches, the suffix-tree par-

titions are created vertically, considering tree-edges only. So, the localization

of suffix-links within these suffix-tree partitions cannot be achieved as they

span across the tree. Hence, with these kind of layouts, we can never get bal-

ance between tree-edge localization and suffix-link localization, if the storage

mechanism for partitions are not going to be changed.

2. Complex Structure: With this kind of storage mechanism, it is hard to

determine the exact locations of suffix-link nodes across different partitions.

First, we have to keep information about σ(v) of an internal node v (during

3A different kind of division of the suffix-tree into disjoint parts, which is based on the start values of
incoming edges to the suffix-tree internal nodes [12].

Chapter 3. Search-Optimized Suffix-Tree Layouts 30

the search traversal) and then we have to perform extra calculations for deter-

mining partition of slNode(v). This is in contrast to suffix-tree storage in one

file, where it is straightforward to find the location of slNode(v).

So, these partition-based layouts cannot be utilized directly to build search-optimized

layouts, considering their limitation in achieving overall localization of nodes. In contrast

to these partition-based layouts, all the search-optimized layouts that we have developed

contain the suffix-tree in one file without dividing it into different partitions.

3.4 Search-Optimized Suffix-Tree Layouts

In the initial part of this section, understanding about various existing suffix-tree layouts

have been provided. After that various types of search-optimized layouts proposed by us

are mentioned, along with their implementation details.

3.4.1 Understanding Existing Suffix-Tree Layouts

Based on the purpose of layout origination, the existing suffix-tree layouts can be catego-

rized into two types. These categories are mentioned as follows:

1. Construction Layouts: These are the layouts which are direct result of the suffix-

tree construction. These type of layouts have focused on how to build the suffix-tree

as quickly as possible and the handling of search aspect have been comparatively

ignored. An example of this type of layout is the partition-based suffix-tree layout

at the end of suffix-tree construction by the Trellis algorithm [21].

2. Search-Optimized Layouts: These type of existing layouts consist of layouts

which have mainly focused on increasing the search performance of the suffix-tree,

by optimizing its storage through a post-construction reorganization process. For

example, SBFS [9] and Stellar [5], which can improve search performance by local-

izing nodes of a suffix-tree.

Now, we go through the details of existing layouts, which are mentioned as follows:

Chapter 3. Search-Optimized Suffix-Tree Layouts 31

3.4.1.1 Trellis Layout

As we have seen in Section 1.3.2, each partition in the Trellis layout contains a differ-

ent sub-tree of the suffix-tree which also corresponds to a unique variable length prefix.

As each partition is processed within the main-memory, the Trellis algorithm had not

considered any kind of block size for the disk storage of the suffix-tree. The nodes in a

partition are arranged in a depth-first order, without considering any kind of suffix-tree

node properties.

We have built a layout from the Trellis layout, which has whole suffix-tree stored in

one file (as we have seen in Section 1.4.1). We call this layout as the construction layout,

because it is the result of merging of the suffix-tree partitions, which are constructed by

the Trellis algorithm directly from the genome sequence.

3.4.1.2 SBFS Layout

SBFS layout was proposed by Diwan et al. in [9]. The basic strategy in constructing the

SBFS layout is to pack nodes in a block by doing localized breadth-first traversal in the

source layout, until either the block is filled or there are no more nodes left to visit. This

packing of nodes starts with the root node as the initial node for the first block. For the

remaining blocks the initial nodes are provided by the FIFO queue of the nodes that are

left to be visited (from the earlier breadth-first traversals). So, basically in this layout,

SBFS algorithm tries to put the child nodes in the same block as that of the parent node.

For the suffix-tree, this layout has maximum possible localization of tree-edges, if

suffix-links are completely ignored during the rearrangement process. But, when the

suffix-links are taken into consideration, the theoretical bound given in [9] may not hold,

as the suffix-tree becomes graph (and not just tree) after the consideration of suffix-links.

3.4.1.3 Stellar Layout

In Stellar layout [5], the localization criterion considers suffix-links at par with tree-edges

and then rest of the approach for rearrangement of nodes is similar to SBFS. But, in the

SBFS layout the child nodes are always available to place with the parent node during

Chapter 3. Search-Optimized Suffix-Tree Layouts 32

rearrangement process (because, the considered suffix-tree structure is acyclic). Whereas,

this is not the case with the Stellar layout, in which the child nodes may or may not be

available for placement near the parent node (because, now the structure is a cyclic graph

due to consideration given to suffix-links and so a node can be demanded from a suffix-link

predecessor before its parent node). So, it seems that Stellar will give better performance

in search involving suffix-links. Whereas, the SBFS will give better performance in the

search not involving suffix-links (like exact match search).

In this layout, no particular criterion is considered for node localization. That is,

Stellar tries to bring all the neighboring nodes4 together without checking the degree of

relevance between those nodes. This method of localization in which no properties of

suffix-tree are taken into consideration, creates certain undesired node arrangement in

the final layout. For example, consider the scenario in which an internal node v does not

have any internal child present. This means node v has two or more leaf child nodes only.

So, when the search traversal reaches node v, it is highly likely that slNode(v) gets visited

from v. Hence, we want to place slNode(v) physically nearer to node v. But, there can

be more link-predecessor nodes of slNode(v) other than the node v, which also demand

slNode(v) for placing nearer to them. But when node v is the only link-predecessor of

slNode(v) then v should have gotten slNode(v) nearer to it. We found that there are 13.5

million such cases in the suffix-tree built over the human genome sequence. But in Stellar

we found that only 6 million slNode(v) are localized to node v. This means that in 55% of

such cases, the Stellar layout had ignored the necessary and non-conflicting availability of

suffix-link nodes for localization. This happens due to the first-come-first-serve approach

adopted by the Stellar for localization of the suffix-tree nodes.

So, the usual search traversal patterns are ignored by the Stellar algorithm during the

rearrangement of suffix-tree nodes.

4In this thesis, when we talk about neighborhood of a node, it is always logical neighborhood in which
nodes are related with either parent-child relationship or suffix-link predecessor-follower relationship.

Chapter 3. Search-Optimized Suffix-Tree Layouts 33

3.4.2 BFS Layouts: Node-to-Block Assignment

Now, we see the details about the variant of BFS layouts suggested by us. As described in

Section 3.2, there are two levels in the reorganization of any layout, namely - localization

based on node rearrangement and localization based on block rearrangement. In this

section, layouts based on node rearrangement are proposed, whereas layouts based on

block rearrangement are explained in Section 3.4.3.

A point to note here is that we are focusing only on the localization of internal nodes

skipping the criteria of localization of leaf nodes. Although internal nodes are less in

number than leaf nodes (about 70% to 80% of leaf nodes), still localization of internal

nodes are given more attention from the search-optimization point of view. This is because

of the following reasons:

1. During the search traversal, majority of accesses in the suffix-tree require internal

nodes. The combination of tree-edge traversal and suffix-link traversal during visits

to different internal nodes causes disk accesses to be random, and create performance

bottleneck in search. On the other hand, accesses to leaf nodes are restricted by the

sub-tree below a particular internal node. Because, unlike internal nodes, the leaf

nodes have an in-degree of just one.

2. Usually, the size of internal nodes are greater then the size of leaf nodes (4 times

larger in our case). So, even though internal nodes are less in number, the space

occupied by them on disk is quite large in comparison to the space occupied by leaf

node file (near to 3 times larger). Hence, from the localization point of view, larger

file needs more consideration than the comparatively smaller file.

Before going into the details of various layouts based on node rearrangement, let us

see the notion of nodeType, which is actually a numbering mechanism for combining two

different information in one number.

The nodeType of an internal node v depends on two values:

1. Number of characters present in the edge-label of v (call it as inChar).

Chapter 3. Search-Optimized Suffix-Tree Layouts 34

2. Number of internal child nodes of v (call it as iChildCount).

Based on these two entities, the value for the nodeType can be uniquely assigned as

nodeType(v) = (inChar − 1) ∗ (|Σ|+ 1) + iChildCount

For a DNA sequence, |Σ| equals 4 (as the characters in DNA sequence are - A, C, G,

T). So, for the suffix-tree built on a DNA sequence the nodeType of a node5 v can be

calculated as

nodeType(v) = (inChar − 1) ∗ 5 + iChildCount

Now, let us see an example, how this notion can be useful for determination of the

vicinity of a node in search-optimized layout. Inside the suffix-tree constructed over a

DNA sequence, if the nodeType of a node v is 4 and the nodeTypes of all its child

nodes are less than 5, then the suffix-link from v can never be visited. This is because,

nodeType of v is 4 only when its edge-label has just 1 character and all 4 child nodes

exist as internal nodes. The nodeTypes less than 5 represents single character in the

edge-label of its child nodes. So, when the search traversal reaches v, the only character

in its edge-label must have matched and since all 4 internal child nodes of v have just 1

character in their edge-labels, the search traversal must move on to any one of the child

nodes. But, on the contrary, if some of the internal child node’s edge-label contains more

than 1 character (i.e., nodeTye ≥ 5), then there are chances that the search traversal may

mismatch characters on that edge and in that case the slNode(v) from v will get visited.

So, nodeType is a single notion, which provides the information for both the characters

in the edge-label to a node and the number of internal child nodes. Due to this reduction

in dimensions of available information, the visual analysis of suffix-tree data becomes

easier, as shown below.

The percentage of nodes having different nodeTypes for the suffix-tree built on the

human genome sequence are shown in Figure 3.16. In this figure, we can see that almost

5From now onwards, a node refers to an internal node, if not specified explicitly.
6If not mentioned specifically, the suffix-tree used in this thesis is always built on the human genome

sequence.

Chapter 3. Search-Optimized Suffix-Tree Layouts 35

60% of nodes have nodeType less than or equal to 4. This means that these are the nodes

with just one character in their edge-label. But, in this 60% of nodes, majority of them

have very few child nodes or no child node at all (for example, nodes with nodeType 0, 1

or 2). So, when search traversal reaches these kind of nodes, it is very likely that suffix-

links from these nodes will be followed, instead of following tree-edges leading to their

child nodes. So, for such nodes, during search-optimization process, suffix-link nodes are

given more preference than their child nodes for localization.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 >=20

0

5

10

15

20

25

30

nodeTypes

P
e
rc

e
n
ta

g
e
 o

f
T

o
ta

l
N

o
d
e
s

Figure 3.1: Percentage of Nodes vs. nodeType for the Suffix-Tree built over the Human
Genome Sequence

Figure 3.1 does not include the classification of nodes according to different depth

levels of suffix-tree which is provided in Figure 3.2. In Figure 3.2, we can observe that up

to a certain level (i.e. level 13), the number of nodes present is very much less than the

total nodes present in the suffix-tree. But, just after that level, majority of the suffix-tree

nodes are accommodated within 5 to 6 levels. For the remaining levels of the suffix-tree,

number of nodes goes on decreasing. So, our primary focus for the search-optimization is

on the middle dense levels.

As we have seen in analysis of Figure 3.1, majority of nodes in suffix-tree have their

nodeTypes as either 0, 1 or 2. According to Figure 3.2, these type of nodes are concen-

trated in the middle dense levels and require suffix-link nodes to be placed nearer to them.

So, requirement of giving more preference to suffix-links than tree-edges starts at early

levels in the suffix-tree. Also, with the increase in levels of suffix-tree, the percentage

Chapter 3. Search-Optimized Suffix-Tree Layouts 36

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 >=

40

 −

10,00,00,000

20,00,00,000

30,00,00,000

40,00,00,000

50,00,00,000

60,00,00,000

>=20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

Levels

N
um

be
r

of
 N

od
es

Figure 3.2: Number of Nodes vs. Tree Levels for each nodeTypes in the Suffix-Tree built
over the Human Genome Sequence

of nodes with multi-character edge-labels increase. These multi-character edges help in

determining whether a suffix-link node should be localized with its predecessor node or

not. The analysis presented here is static in nature, as we have used only the suffix-tree

structure for the analysis.

3.4.2.1 Common Rearrangement Function

After going through the analysis based on the numbering scheme of nodeType, let us

now see, a common rearrangement function which is used in various layouts for actual

rearrangement of nodes. This function is shown in Figure 3.3.

This function converts an existing suffix-tree layout into the desired layout by con-

sidering the block size and two bitmaps - markedForLinkPredecessor and followLink.

These two bitmaps play an important role in deciding the vicinity of a node.

The bitmap markedForLinkPredecessor indicates that whether child node should

be placed near to parent node or should it be left for its suffix-link predecessor node.

Whereas bitmap followLink indicates whether a node should bring its suffix-link node

Chapter 3. Search-Optimized Suffix-Tree Layouts 37

Common Rearrangement Function(T , B, markedForLinkPredecessor[], followLink[])
Input:

• T : Suffix-tree given by the user

• B: Block size

• markedForLinkPredecessor[]: Bitmap indicating whether an internal node should be placed
near to its parent node or near to its suffix-link predecessor node

• followLink[]: Bitmap indicating whether suffix-link node of an internal node should be brought
near to it or not

Output:
Suffix-tree T2 which is similar to T in structure and semantics, but different in node arrangement

1. GlobalQ.push(T .rootNode)
2. currBlock ← T .rootNode
3. currBlockSize← sizeof(T .rootNode)
4. markVisited(T .rootNode)
5. while GlobalQ.notEmpty() do

6. currNode← GlobalQ.pop()

7. LocalQ.push(currNode)

8. while LocalQ.notEmpty() do

9. currNode← LocalQ.pop()

10. for each childNode of currNode do

11. if not markedForLinkPredecessor[childNode] then do

12. if notVisited(childNode) then do

13. currBlock ← currBlock + childNode

14. currBlockSize← currBlockSize + sizeof(childNode)

15. LocalQ.push(childNode)

16. markVisited(childNode)

17. end if

18. end if

19. end for

20. if followLink[currNode] & notVisited(linkNode) then do

21. currBlock ← currBlock + linkNode

22. currBlockSize← currBlockSize + sizeof(linkNode)

23. LocalQ.push(linkNode)

24. markVisited(linkNode)

25. end if

26. if currBlockSize ≥ B then

27. write nodes from currBlock up to size B onto the disk

28. currBlock ← overflow nodes of currBlock

29. currBlockSize← currBlockSize−B
30. transfer all nodes from LocalQ to GlobalQ

31. end if

32. end while

33. end while

Figure 3.3: Common Rearrangement Function

Chapter 3. Search-Optimized Suffix-Tree Layouts 38

into its vicinity or not. These two bitmaps are created and initialized by the different

layout algorithms according to their logic and passed on to this function. A point to note

here is that each suffix-tree node is assigned to a block only once, during the rearrangement

process of this function. Also, a node (which is pushed into the localQ) is considered only

once for the visit to its child nodes and its suffix-link node. So, it is straightforward

to observe that the time-complexity of this function is linear in the number of nodes of

the suffix-tree. But, the number of nodes are linearly dependent on size of S (about 0.7

times |S|, for a typical human genome sequence [21]). Hence, the time-complexity for this

function is linear in |S|, i.e. O(n). The output of this function is a suffix-tree, which is

same as input suffix-tree, but with different node arrangement in its storage.

3.4.2.2 1Cr4Cd Layout

As we have seen (in our analysis based on nodeTypes) that there are substantial chances of

visiting suffix-link nodes even in the early levels of the suffix-tree. This layout generation

algorithm tries to exploit this observation, by preferring suffix-link nodes over child nodes

for localization with nodes not having nodeTypes as 4.

In this layout, all the child nodes of a node are placed near to it, if it has 1 character

in its edge-label and all the 4 internal child nodes exist. Otherwise, all child nodes of v

are left for their suffix-link predecessor nodes, if there are any. Due to this condition of 1

Character and 4 Children, this layout is called as 1Cr4Cd. As we can see in Figure 3.2 that

the portion of suffix-tree till level 14 has significant number of nodes with nodeType = 4.

So, in such cases, tree-edges are given full preference for localization and suffix-links

are totally ignored. Hence, the top portion in this layout is similar to SBFS. On the

other hand, the bottom portion has almost total preference to suffix-links for localization.

However, the clear cut boundary between the two portions cannot be identified at a

particular level, as in the middle levels both the criteria are followed. The algorithm for

1Cr4Cd layout generation is presented in Figure 3.4.

Chapter 3. Search-Optimized Suffix-Tree Layouts 39

1Cr4Cd Layout Generation(T , B)
Input:
T : Suffix-tree given by the user
B: Block size
Output:
Suffix-tree T2 which is similar to T in structure and semantics, but different in node arrangement

1. markedForLinkPredecessor[.]← false /* “[.]” represents all elements in an array */

2. followLink[.]← false

3. existLinkPredecessor[.]← false

4. for each node n in suffix-tree T do

5. existLinkPredecessor[n.link]← true

6. end for

7. for each node n in suffix-tree T do

8. if internalChildrenCount(n) 6= 4 OR incomingEdgeCharCount(n) 6= 1 then do

9. for each childNode of n do

10. if existLinkPredecessor[childNode] then do

11. markedForLinkPredecessor[childNode]← true

12. end if

13. end for

14. followLink[n]← true

15. end if

16. end for

17. Call CommonRerrangementFunction(T , B, markedForLinkPredecessor[], followLink[])

Figure 3.4: Algorithm – 1Cr4Cd Layout Generation

3.4.2.3 bfs-hybrid Layout

In this layout, we try to get the maximum possible localization for the tree-edges (as in

SBFS), but at the same time, we are not ignoring localization of suffix-links, where it is

indeed necessary. This means that, unless and until it becomes necessary to put a node

adjacent to its suffix-link predecessor node, we try to put it with its parent node.

The name given to the layout is because of its resemblance with SBFS layout to a

certain extent, as it gives more weightage to tree-edges for localization. At the same

time, localization of suffix-links is also done wherever it is found to be necessary. This is

illustrated in the algorithm for bfs-hybrid layout generation (refer Figure 3.5).

In the algorithm bfs-hybrid layout generation, cCountArray stores the minimum num-

ber of child pointers from all the suffix-link predecessor nodes (which is done in the first

for loop). In the second for loop, appropriate values are assigned to the two arrays –

Chapter 3. Search-Optimized Suffix-Tree Layouts 40

bfs-hybrid Layout Generation(T , B, linkPredChild)
Input:
T : Suffix-tree given by the user
B: Block size
linkPredChild: Minimum number of children of a node to demand its link node to be placed with it
Output:
Suffix-tree T2 which is similar to T in structure and semantics, but different in node arrangement

1. markedForLinkPredecessor[.]← false; followLink[.]← false

2. cCountArray[.]← |Σ| /*Array for storing least child count among all suffix-predecessor*/

3. for each node n in suffix-tree T do

4. if cCountArray[n.link] > internalChildrenCount(n) then do

5. cCountArray[n.link]← internalChildrenCount(n)

6. end if

7. end for

8. for each node n in suffix-tree T do

9. if internalChildrenCount(n) < linkPredChild then do

10. if internalChildrenCount(n) = cCountArray[n.link] then do

11. markedForLinkPredecessor[n.link]← true

12. followLink[n]← true

13. cCountArray[n.link]← -1

14. end if

15. end if

16. end for

17. Call CommonRerrangementFunction(T , B, markedForLinkPredecessor[], followLink[])

Figure 3.5: Algorithm – bfs-hybrid Layout Generation

markedForLinkPredecessor and followLink, using the values of cCountArray.

The significance of linkPredChild is that a node v is allowed to have slNode(v)

adjacent to it only when it has fewer children than linkPredChild. So, if v has children

less than linkPredChild and its number of children equals the number in cCountArray

(which is present at the offset of slNode(v)), then v is marked to follow its suffix-link and

the slNode(v) is marked to be left for its suffix-link predecessor node (i.e. v).

The assignment of -1 in line 13 of the algorithm avoids the case of multiple suffix-link

predecessor nodes claiming their common suffix-link node. This case can arise when there

are multiple suffix-link predecessor nodes (of a common node) with same number of child

nodes (which are also less than linkPredChild). If we assign -1 after the visiting the first

predecessor node then the remaining predecessor nodes cannot claim already considered

suffix-link node.

Chapter 3. Search-Optimized Suffix-Tree Layouts 41

3.4.2.4 OneLinkIn Layout

The algorithm of OneLinkIn layout generation (refer Figure 3.6) is similar to the algo-

rithm of bfs-hybrid layout generation presented in Figure 3.5. In both the cases the first

condition for a node v to has slNode(v) in its vicinity is that the number of child nodes

of v should be fewer than linkPredChild. But, the difference between the two algorithms

occurs in the second condition.

OneLinkIn Layout Generation(T , B, linkPredChild)
Input:
T : Suffix-tree given by the user
B: Block size
linkPredChild: Minimum number of children of a node to demand its link node to be placed with it
Output:
Suffix-tree T2 which is similar to T in structure and semantics, but different in node arrangement

1. markedForLinkPredecessor[.]← false

2. followLink[.]← false

3. linkInDegreeArray[.]← 0 /*Array for storing link in-degree for all nodes*/

4. for each node n in suffix-tree T do

5. linkInDegreeArray[n.link]← linkInDegreeArray[n.link] + 1

6. end for

7. for each node n in suffix-tree T do

8. if internalChildrenCount(n) < linkPredChild then do

9. if linkInDegreeArray[n.link] = 1 then do

10. markedForLinkPredecessor[n.link]← true

11. followLink[n]← true

12. end if

13. end if

14. end for

15. Call CommonRerrangementFunction(T , B, markedForLinkPredecessor[], followLink[])

Figure 3.6: Algorithm – OneLinkIn Layout Generation

In bfs-hybrid algorithm, slNode(v) is placed near to v only when the number of chil-

dren of v is fewer among all predecessor nodes of slNode(v). Whereas in OneLinkIn

algorithm, v should be the only predecessor of slNode(v), to get slNode(v) near to it.

This condition also explains the name chosen for this layout. So, the OneLinkIn layout

has more restricted condition for the localization of suffix-links than the condition for the

bfs-hybrid layout, as nodes with more than one incoming link are not considered for link

localization. In this way, the chances of finding slNode(v) near to v increase, when there

Chapter 3. Search-Optimized Suffix-Tree Layouts 42

is indeed high possibility of visiting slNode(v) from v.

In the algorithm of OneLinkIn layout generation, linkInDegreeArray stores the

suffix-link in-degree of all nodes of the suffix-tree. The first for loop is for calculating

and assigning these in-degree values to the array and rest of the algorithm is similar to

the algorithm of bfs-hybrid layout generation (except for the condition on line 9 which is

already discussed before).

In support of this algorithm, we found that there are 37% of total suffix-tree nodes that

have just one incoming suffix-link (refer Figure 3.7). So, if suffix-link predecessor nodes

of such nodes satisfy the condition of linkPredChild, then this algorithm ensures that

they are placed in the neighborhood of their suffix-link predecessors, instead of placing

them in the neighborhood of their parent.

0 1 2 3 4

0

10

20

30

40

50

60

Suffix−Link In−Degree

P
e
rc

e
n
ta

g
e
 o

f
T

o
ta

l N
o
d
e
s

Figure 3.7: Percentage of Total Nodes vs. Suffix-Link In-Degree for the Suffix-Tree built
over the Human Genome Sequence

3.4.2.5 Time-Complexity for Node-to-Block Assignment

All three layouts mentioned above consist of two for loops (iterated for each node of the

suffix-tree) and a call to the CommonRerrangementFunction. The time-complexities of

all these steps are linear in the number of suffix-tree nodes. So, the overall time-complexity

of any node-to-block assignment algorithm is linear in the number of suffix-tree nodes. As

we have seen earlier, the number of suffix-tree nodes are limited by the size of S, which

makes the time-complexity of any node-to-block assignment algorithm as O(n).

Chapter 3. Search-Optimized Suffix-Tree Layouts 43

3.4.3 BFS Layouts: Block Sequence Determination

For the rearrangement of blocks (in order to get optimized sequence of blocks, as men-

tioned in Section 3.2.2), there can be two criteria for quantifying the relevance between

any pair of blocks. These criteria consider either number of edges between pair of blocks

or the overall probability of traversal between pair of blocks. These criteria are described

as follows:

1. Out-Degree of a block with respect to another block: In this criterion, the

consideration is given to how many tree-edges and links are going from one block to

another block. But, the quantification of relevance between two blocks based on just

the number of connecting tree-edges and links seems to be misguiding. Because, an

edge from the initial node in a block have higher chances to get traversed, than the

edge from the bottom part of that block. So, considering both the edges with equal

weightage is not appropriate. This criteria can also fail under certain situations.

For example, there can be many suffix-links from a block to another block, but they

may not be used during search-traversal, if the nodeTypes of the majority of nodes

are 4. So, we need the criterion which gives due weight to each edge connecting two

blocks. This results in the formation of the basis for next criterion.

2. Probability of Traversal from one block to another block: This criterion con-

siders the probability of going from one block bs to another block bd (i.e. P (bs, bd)),

given that the search-traversal have already reached one of the independent nodes

(which is defined shortly) in bs. This probability of traversal can be measured as

follows:

(a) Independent nodes are the nodes whose parents or any of the suffix-link prede-

cessors are not present in the current block bs. We consider the probability of

accessing these independent nodes as 1 (with respect to bs). Because, accessing

any independent node is not dependent on any other node present in bs.

(b) For an internal node v in block bs, if parent(v) is also in bs, then the probability

of visiting node v (given that the search-traversal has accessed parent(v)) can

Chapter 3. Search-Optimized Suffix-Tree Layouts 44

be calculated as follows:

pv/parent(v) =
1

|Σ|E(parent(v))−1 ∗
1

|Σ|
(3.1)

In order to understand formula 3.1, we need one basic information about how nodes

in the suffix-tree are stored. In our implementation, an internal node v contains

start and end positions of the substring represented by e(v) (refer Section 4.1 for

more details). This means access to v is necessary to know the characters on e(v).

So, a node v gets visited from parent(v) only when parent(v) gets accessed first

and then all the characters on e(parent(v)) are matched with the characters from

Q. The denominator in the first fraction (i.e. |Σ|E(parent(v))−1) of formula 3.1 depicts

this situation by indicating number of possible sequences of length E(parent(v))−1.

The subtraction by 1 is due to the fact that the first character on e(parent(v)) is

always matched before parent(v) is visited. The denominator in the second fraction

depicts equal chances for all the child nodes of parent(v) to get visited.

From formula 3.1, it is obvious that the probability of visiting a node v from

parent(v) is limited by 0.25 (if |Σ| = 4). The reason for this limitation is that these

probability calculations are done keeping in mind the arbitrariness of characters of

query sequence Q (which are drawn from Σ) and not the number of children actually

present in parent(v).

In formula 3.1, we have made simplistic assumptions that all the characters

are equally likely to occur in a sequence and their occurrences are independent of

each other. But, this is not the case with real DNA sequences (as shown in [21]).

Consider the table 3.1 for actual data regarding the percentage of occurrence of

DNA characters within the human genome sequence.

So, if all the characters of S are given weights according to their occurrences (and

the assumption of independent occurrences still holds), then formula 3.1 becomes

pv/parent(v) = (fA)OccA ∗ (fC)OccC ∗ (fG)OccG ∗ (fT)OccT ∗ fv
fparent

(3.2)

Chapter 3. Search-Optimized Suffix-Tree Layouts 45

Character Percentage of Occurrence
A 29.51
C 20.53
G 20.52
T 29.44

Table 3.1: Percentage of occurrence of different characters in DNA sequence for Human
Genome

where, for X = A, C, G or T, fX indicates the fraction of X character in S, and

OccX represents the number of times the characters X occurred in the substring

represented by e(parent(v)). The terms fparent and fv represent the fraction of first

character in the substring represented by e(parent(v)) and e(v) respectively.

Till now, we have discussed traversal probability from a parent to its child

node. But, the traversal probability from the suffix-link predecessor node also needs

consideration. Unlike the visit from parent(v), node v gets visited from slpNode(v)

only when there is a mismatch on the edge e(child(slpNode(v))). This means that

the grandchildren of slpNode(v) should not be visited, if the link of slpNode(v) has

to be followed. So, the probability of visiting node v from slpNode(v) is given as

pv/slpNode(v) = 1−
∀g∑
pg/slpNode(v) (3.3)

where, g is a grandchildren of slpNode(v). The probability pg/slpNode(v) can be

calculated as the product of pg/child(slpNode(v)) and pchild(slpNode(v))/slpNode(v), where

child(slpNode(v)) should be the parent(g).

If v has parent(v) and slpNode(v) in the same block, then the probability to

reach v is the summation of probabilities of reaching v from both the parent(v)

and slpNode(v). When a tree-edge from v is going from one block to another

block, the probability associated with that edge is the product of pv/parent(v) and

pparent(v)/indAncestor(parent(v)), where indAncestor(parent(v)) is the independent node

which is also the ancestor of parent(v). Similarly,the probability associated with a

suffix-link to another block can calculated using above discussions.

Chapter 3. Search-Optimized Suffix-Tree Layouts 46

Although these probabilities become smaller and smaller as we go deeper in a

block, they play crucial role in assigning weights to edges which are at almost same

level. For example, if a child of an independent node v is in another block then

the child(v) is surely going to have higher probability than some other node in the

same block of v (which is neither an independent node nor its child node). But,

when two grandchildren of v are located in two different blocks, the probabilities

associated with them indicate that which one is going to carry more weightage from

the viewpoint of visit by search traversal.

In order to calculate P (bs, bd), we first find edges from bs to bd and probabilities

associated with those edges. Then P (bs, bd) is simply the summation of all such

probabilities. When P (bd, bs) is calculated, we just add it to P (bs, bd) to obtain

P (bsbd)
7 which is the probability of traversal in both direction. We have converted

probabilities in both direction into one entity, as they jointly give indication of

relevance between the two blocks. This P (bsbd) is taken into consideration during

determination of closeness of blocks bs and bd.

Now, in order to reduce the effect of assumption of independence that we have

made earlier, we can consider the frequency of two or more characters taken together

for calculation of traversal probabilities. But, we leave this fine-grained calculations

as future work.

For the optimized rearrangement of blocks, we are considering the second option of

block-to-block traversal probability. This block-to-block traversal probability helps us to

determine the cost of a sequence of blocks, which is defined in the following definition:

Definition 4. Probabilistic Cost of a Block Sequence (PCBS): In a sequence of

block numbers, the summation over products of all block-to-block traversal probabilities and

the inter-block distance between them is called as probabilistic cost of that block sequence.

This measure of probabilistic cost is just a comparative and not an absolute one for the

optimized block sequence. The lower value of probabilistic cost indicates better sequence

7Given that block number associated with bs is less then block number associated with bd.

Chapter 3. Search-Optimized Suffix-Tree Layouts 47

of blocks. Because, probabilities associated with the blocks remain same, but the inter-

block distances associated with them get changed after rearrangement of blocks. We

want to bring blocks with high probabilities as close as possible for maximum reduction

in probabilistic cost.

The algorithm for optimized block sequence determination is presented in Figure 3.8.

In the algorithm, we always try to extend the optimized block sequence in such a way

that increase in the probabilistic cost is least. The sequence determination starts with the

pair of blocks with highest probability and then the pairs with next highest probabilities

are considered. So, in this way, the approach of the algorithm is greedy, as it starts with

local optimized sequence and continue to find overall optimized sequence.

3.4.3.1 Time-complexity for Block Sequence Determination

In the algorithm of Figure 3.8, we are considering calculation of block-to-block traversal

probability for a pair of blocks as a basic operation, because the number of calculations

to be done for it are restricted by the number of nodes in a block, which is a constant for

the fixed block size.

Now, the first for loop (line 2) is iterated for each block in the suffix-tree. The nested

for loop (line 3) is iterated for the number of connected blocks to the block of main

for loop. But, the number of connected blocks to a block are limited by the size of the

block and the cardinality of the alphabet set. For example, in our case, for block size

of 64 kB, the maximum number of blocks that can be connected to a block (i.e. nmcb)

is 2048 * 5, where 2048 is maximum number of nodes accommodated in a block and 5

is the maximum out-degree of a node (including suffix-link pointer), which is |Σ| + 1.

This is with the assumption that all the nodes in a block are independent nodes and all

the pointers point to a different block. So, if we consider block size and cardinality of

alphabet set as fixed (which is usually the case), then the time-complexity of the first for

loop is linear in the number of blocks nb (although constant factor is high).

For sorting of the list L (line 13), the worst-case entries in the list L could have been

quadratic in nb. But, we have seen that maximum connection from a block to other blocks

Chapter 3. Search-Optimized Suffix-Tree Layouts 48

Optimized Block Sequence Determination (T , nb, B)
Input:
T : Suffix-tree given by the user
nb: Total number of blocks
B: Block size
Output:
Suffix-tree T2 which is similar to T in structure and semantics, but differ in arrangement of blocks

1. Create an empty list L for the insertion of triplets {bs, bd, Pbsbd}, where bs and bd refers to block
numbers of two storage blocks of T such that bs < bd

2. for each storage block b1 in T do

3. for each storage block b2 connected to b1 do

4. if b1 < b2 then do

5. Calculate Pb1b2

6. L.insert({b1, b2, Pb1b2})
7. else if there is no edge from b2 to b1 then do

8. Calculate Pb2b1

9. L.insert({b2, b1, Pb2b1})
10. end if

11. end for

12. end for

13. Sort elements of L according to block-to-block traversal probabilities

14. Create an empty master-list Lm for the storage of sub-lists of optimized block sequences

15. Create an empty sub-list αempty in Lm

16. for each triplet {b1, b2, Pb1b2} in list L do

17. if b1 and b2 /∈ any of the sub-list of Lm then do

18. Create new sub-list αnew such that b1, b2 ∈ αnew

19. Lm.insert(αnew)

20. else if b1 ∈ Lm.αsub1 and b2 ∈ Lm.αsub2 and Lm.αsub1 6= Lm.αsub2 then do

21. if PCBS(Lm.αsub1||Lm.αsub2) < PCBS(Lm.αsub2||Lm.αsub1) then do
/* || symbol indicates concatenation operation */

22. αresult = Lm.αsub1||Lm.αsub2

23. else

24. αresult = Lm.αsub2||Lm.αsub1

25. end if

26. Lm.remove(αsub1); Lm.remove(αsub2); Lm.insert(αresult)

27. else if either b1 or b2 ∈ any of the sub-list of Lm then do

28. if b1 ∈ Lm.αsub then do

29. if PCBS(Lm.αsub||b2) < PCBS(b2||Lm.αsub) then Lm.αsub = Lm.αsub||b2
30. else Lm.αsub = b2||Lm.αsub

31. else if b2 ∈ Lm.αsub then do

32. if PCBS(Lm.αsub||b1) < PCBS(b1||Lm.αsub) then Lm.αsub = Lm.αsub||b1
33. else Lm.αsub = b1||Lm.αsub

34. end if

35. end if

36. if Lm has only one sub-list αfinal and |αfinal| = nb then exit for loop

37. end for

38. Rearrange the blocks of T according to the sequence in the αfinal

Figure 3.8: Algorithm – Optimized Block Sequence Determination

Chapter 3. Search-Optimized Suffix-Tree Layouts 49

are restricted by nmcb (which is a constant number). So, the number of entries in L is

linear in nb. Hence, the time-complexity for sorting operation is O(nb log nb).

In the third for loop (line 16), we are accessing each entry in the list L, till all the

blocks get consideration in the optimized block sequence. Now, in order to determine

the presence of blocks (obtained from L) in sub-lists of Lm, the comparison operations

required in the worst-case could be as many as total number of blocks. Also, during the

calculation of PCBS values, each pair of blocks from L is considered only once. But,

it requires access to all blocks within a sub-list, to find all the connected blocks for a

given block, and a sub-list can contain O(nb) blocks in the worst case. Hence, the time-

complexity of this for loop is cubic in nb. The remaining operations, like concatenation

of two sub-lists or the creation of a sub-list, can be done in O(1) time.

So, the overall time-complexity for the block sequence determination is O(nb
3). Now,

the total number of blocks nb is linearly dependent on the total number of nodes. The

value of nb can be obtained by dividing the size of total nodes by the block size. But, as

we have seen earlier, the total number of nodes is also limited by the size of S. Hence,

the time-complexity for optimized block sequence determination becomes O(n3), where

n = |S|.

In our work, we have used the Trellis algorithm for suffix-tree construction, whose

time-complexity for construction is quadratic in the size of |S|, i.e. O(n2). So, the

time-complexity for the generation of the search-optimized layout with node-to-block

assignment becomes O(n2). Whereas the overall time-complexity for the generation of

the search-optimized layout with optimized block sequence remains unchanged, which is

O(n3). But, for our search-optimized layout generation, it is not necessary to use only

Trellis algorithm. We could have used traditional linear time algorithm, such as Ukkonen’s

algorithm, for the construction of the suffix-tree (if practical construction time would not

have been a major concern). This would have changed the overall time-complexity for the

generation of the search-optimized layout with node-to-block assignment to O(n). But,

it would not affect the overall time-complexity for the generation of the search-optimized

layout with optimized block sequence, which is cubic in n.

Chapter 3. Search-Optimized Suffix-Tree Layouts 50

However, like many earlier disk-based suffix-tree construction approaches, our focus

is on the practical aspect (of the search-time improvement) and not on the theoretical

efficient algorithms (for various layout generation). So, even with this cubic complexity

algorithm for the optimized block sequence determination, we have obtained substantial

improvement in actual search-time (refer Chapter 5 for details), and the search algorithm

for searching on these search-optimized layouts is still linear in the size of query sequence.

3.5 Implementation Issues

1. Post-Construction Optimization: Various search-optimized layouts proposed

by us are implemented by rearranging nodes and blocks from already constructed

suffix-tree. So, our approach is post-construction and we need the suffix-tree at

least in construction layout to perform the process of layout reorganization. Our

dependence (on the suffix-tree instead of the sequence on which it is built) is due

to the requirement of advance knowledge of child nodes as well as suffix-link nodes,

during rearrangement process.

2. Dependency of Rearrangement Levels: The two levels of the layout reorgani-

zation process mentioned in Section 3.2 are dependent on each other. We have to

perform the block level rearrangement only after the node level rearrangement is

done. This is due to the fact that the sequence of blocks generated by the block

level rearrangement depends on how the relevant nodes are grouped together inside

different blocks. If we do the reverse, then the node level rearrangement will nullify

the optimization obtained by the block level rearrangement.

Chapter 4

Physical Structure Improvements of

Internal Nodes

In this chapter, we propose a few improvements for the physical structures of suffix-tree in-

ternal nodes. These improvements have taken advantage of unused space and redundancy

present in suffix-tree nodes by making data-structural changes in them. In Chapter 3,

search-optimized layouts for suffix-trees have been constructed by just rearrangement of

nodes and blocks. Whereas here, we are building search-optimized layouts by considering

structural changes to suffix-tree nodes and so these changes are mentioned separately

from Chapter 3. A point to note here is that although we are changing the data-structure

used to implement suffix-tree nodes, we are not tampering with the logical structure of

the suffix-tree itself.

4.1 Understanding Physical Structures of Suffix-Tree

Nodes

In order to understand the improvements given in this chapter, the basic understanding

of structures of suffix-tree nodes is desirable. In our implementation of suffix-tree, we are

using suffix-tree node structures of Trellis [21]. In this implementation, suffix-tree nodes

have array representation instead of linked-list representation. The array representation

51

Chapter 4. Physical Structure Improvements of Internal Nodes 52

of suffix-tree nodes is not only superior for the construction of the suffix-tree [4], but it

also performs better during searching over the suffix-tree. This is because, parent to child

node traversal always require maximum one access in array representation, which is not

the case in linked-list representation.

As we have seen in Chapter 1, the suffix-tree has two kind of nodes - internal nodes and

leaf nodes. Structures of these nodes for the suffix-tree built over a DNA sequence (where

|Σ| = 4) are shown in Figures 4.1. All node sizes are fixed in our implementation. Due

to the difference of what they represent, the two kind of nodes have different structures

and so different files for their storage.

(a) Internal Node Structure

(b) Leaf Node Structure

Figure 4.1: Details of Suffix-Tree Node Structures

In Figure 4.1(a), the structure of an internal node (say vi) is shown. In this structure,

Start and End indicate the start and end positions of the substring of the indexed sequence

S (i.e. S[Start . . . End]), which is represented by the edge e(vi). Every Child Pointer,

either points to an internal node, to a leaf node or to nothing (i.e. a NULL pointer).

The $-Leaf Pointer (if it is not NULL) points to a child leaf node (say vl$) only. The

difference between $-Leaf Pointer and other Child Pointers pointing to leaf nodes is that

the edge e(vl$) represents only ‘$’ as its substring. The number associated with each

Child Pointer is indicative of the first character of the substring represented by respective

e(child(vi)). Finally, the Suffix-Link Pointer points to slNode(vi). So, in our case, the

size of an internal node is 32 bytes.

The structure of a suffix-tree leaf node (say vl) is given in Figure 4.1(b). It contains

Chapter 4. Physical Structure Improvements of Internal Nodes 53

two fields, which represent positions into S. The value of Suffix-ID (or equivalently i

in Si) indicates the position in S, from where a suffix of S starts and this suffix is fully

represented by the substring σ(vl). The value of Actual Leaf Start indicates the position

in S, which represents a suffix of Si. This suffix of Si is fully represented by the edge

e(vl). To illustrate this with an example refer to Figure 1.2, where the leaf node labeled

with number 3 has value of Suffix-ID as 3, whereas value of Actual Leaf Start as 5. The

size of a leaf node is 8 bytes.

As genome-level sequences are less than 4 Gbp, the fields of size 4 bytes in suffix-tree

nodes, which refer to various positions in the indexed sequence S (i.e. Start, End fields

of an internal node and Suffix-ID, Actual Leaf Start fields of a leaf node), can indicate

any position in S. Each Child Pointer points to its child(vi) (whether child(vi) is an

internal node or a leaf node) by referring to the offset of child(vi) within its file. As we

have appended a unique character at the end of S (refer Section 1.3.1 for details), the

number of leaf nodes are guaranteed to be same as the number of characters present in S

(i.e. less than 4 billion). Therefore, the size of Child Pointer (4 bytes) pointing to a leaf

node is sufficient to point to any leaf node within the leaf node file. This pointer size is

also sufficient to point to any internal node, as the number of internal nodes are around

0.7 times the number of leaf nodes [21]. Although the space in these pointer fields are

sufficient to point to any node, it is not sufficient for the differentiation of node pointer

types. That is, by referring just the value of a pointer, one cannot say whether the pointer

is an internal node pointer or a leaf node pointer. For this purpose, a separate bitmap is

required to distinguish between leaf node and internal node pointers. The implementation

detail for this bitmap is given in Section 4.2.1.

4.2 Structural Improvements of Suffix-Tree Nodes

In this section, we suggest a few improvements for the structure of suffix-tree nodes.

These improvements are based on a few observations and their subsequent analysis, which

expose the inability of the structure of the suffix-tree and its nodes to fully utilize the

space allocated to them. The improvements mentioned in this section attempt to utilize

Chapter 4. Physical Structure Improvements of Internal Nodes 54

this unused space present in suffix-tree nodes by filling it with useful information that can

be utilized during the search traversal. With these improvements, the search traversal gets

most of the required information from the internal node itself, instead of fetching it from

the other parts of the same file or from a different file (such as the leaf node file). So, these

improvements result in reduced disk accesses as well as reduced main-memory accesses.

In addition to this, space reduction on disk is also achieved. These improvements are

independent of suffix-tree layouts and can be applied to any suffix-tree layout discussed

in Chapter 3.

4.2.1 Node Pointer Differentiation Bitmap

In Section 4.1, we mentioned the requirement of a bitmap to distinguish between an

internal node pointer and a leaf node pointer. For this purpose, the bitmap requires

1-bit per each child pointer , i.e. |Σ| bits per internal node. The suffix-tree on a DNA

sequence requires 4-bits per node. Now, there are two options for storage of this bitmap -

either it can be stored in a separate file or embedded in the related node itself. While the

first option is straightforward, implementation of second option requires analysis of space

within the suffix-tree nodes, which should be available for use in every internal node.

4.2.1.1 $-Leaf Pointer Usage Analysis

As we have seen in Section 1.3.1, a special character which is not present in the indexed

sequence S (usually ‘$’) is appended to the end of S. Although this unique character is

appeared only once in S$, the fan-out of internal-nodes has to be increased by one (we

have indicated this pointer as $-Leaf Pointer in Figure 4.1(a)), as the number of different

characters in the sequence S$ is incremented by one.

As this character does not occur anywhere within S, there is not a single internal node

vi whose e(vi) contains this character. So, the tree-edges that contain this character must

directly lead to a leaf node only, where this is always the last character in the substring

represented by that tree-edge. If any tree-edge starts with this character, then that is

the only character represented by that tree-edge. The edge in such case is represented by

Chapter 4. Physical Structure Improvements of Internal Nodes 55

$-Leaf Pointer and occurs when a proper suffix of S ends within the internal node of the

suffix-tree. But, the quantitative measurement in Table 4.1 indicates that in real genome

sequences, such suffixes occur less frequently, when compared with the total number of

suffixes of S.

Indexed sequence Total nodes Number of nodes having Percentage of space
in suffix-tree meaningful $-leaf pointer wastage by $-leaf pointer

Chromosome - 22 24005631 10 99.9999
Chromosome - 16 54222324 16 99.9999
Chromosome - 01 154429037 14 99.9999
Human Genome 2641873380 786 99.9999

Table 4.1: $-Leaf Pointer Usage Measurement

Due to the huge unused space inside $-Leaf Pointer of internal nodes, it seems that

the addition of unique terminal character is wasting space unnecessarily. But, from the

perspective of correctness, addition of unique terminal character is necessary. Otherwise,

the suffix which is prefix of another suffix will not get detected as a proper suffix of S.

Detailed discussion about importance of $-Leaf Pointer is given Section 1.3.1.

4.2.1.2 Implementation of Bitmap

In order to utilize the unused space of $-Leaf Pointer across all internal nodes, the leaf

nodes pointed by $-Leaf Pointers have to be separated from the main leaf node file to

a different file (which we call as “$-leaf file”). As there are fewer number of nodes in

the $-leaf file, the $-Leaf Pointers pointing to them do not require all bits of its 4-byte

pointer. For example, in the suffix-tree on human genome sequence, 10-bits are sufficient

for $-Leaf Pointer. The remaining space can be utilized for implementation of bitmap.

However, in this implementation of bitmap we took only 4-bits in the most-significant

part of a $-Leaf Pointer field. The remaining available bits can be used for further usage.

For example, as shown in Section 4.2.3, this bitmap is further extended to 1 byte in order

to accommodate improvement of embedded characters.

In our implementation, if a bit is 1 in the bitmap then the corresponding Child Pointer

points to an internal node. On the other hand, if the bit is 0 then the corresponding Child

Chapter 4. Physical Structure Improvements of Internal Nodes 56

Pointer (if not NULL) points to a leaf node.

This bitmap is implemented in the same way across all the layouts that we have

discussed in Chapter 3. This implementation changes the structure of internal nodes

only. The structure of leaf nodes remains unaltered. The new structure for internal

nodes is shown in Figure 4.2. This implementation saves space for storage of bitmap by

embedding it inside internal nodes of the suffix-tree.

Figure 4.2: Details of Internal Node Structure with Bitmap

4.2.2 Embedded Leaf Nodes

For a leaf node vl, if we store only the Actual Leaf Start instead of both - Suffix-ID and

Actual Leaf Start, then from the explanation of Figure 4.1(b), we know that there is a

problem in finding the actual suffix corresponding to a leaf node vl, whose position in the

sequence S is indicated by Suffix-ID field. But, the value of Suffix-ID can be calculated

dynamically at the time of search by keeping track of how many characters are present

on the path from the root node to parent(vl). Because, those characters precede the

substring represented by e(vl) in the sequence S and when we subtract that number of

characters from the start position (which is indicated by Actual Leaf Start) of the edge

e(vl), we get the position of required suffix in S as indicated by the Suffix-ID.

Now, the size of Actual Leaf Start field of vl is 4-bytes and the size of pointer to vl

is also 4 bytes. So, with our decision to store just Actual Leaf Start, we can replace

the pointer to vl in parent(vl) with its Actual Leaf Start value. This change altogether

removes the requirement of leaf nodes and hence a separate leaf node file. In this way, all

the leaves of a suffix-tree are absorbed by its corresponding parent internal nodes without

increasing the size of the internal node file.

Chapter 4. Physical Structure Improvements of Internal Nodes 57

The removal of separate leaf node file not just reduced the space requirement of suffix-

tree by 25%, but it also decreases the amount of disk accesses as well as main-memory

accesses required to fetch the leaf data during the search traversal. Because, part of the

required leaf data (i.e. Actual Leaf Start) is already present in the internal node that we

are accessing and remaining information related to Suffix-ID can be obtained from the

search completed till that point (as mentioned earlier). Also, the size of the internal node

is 32 bytes, which will easily get accommodated within a processor cache-block whose

minimum size is usually 64 bytes, so that the chances of processor cache-miss on a leaf

node access also diminishes. And thus, this improvement also increases the processor

cache-consciousness of the suffix-tree layout.

The changes in the structure of an internal node for this improvement is illustrated in

Figure 4.3. Note that instead of a leaf child pointer, Actual Leaf Start of respective leaf

child node is stored.

Figure 4.3: Details of Internal Node Structure with Embedded Leaf Nodes

4.2.3 Embedded Characters from the Indexed Sequence

In this improvement, we embed characters from the sequence S into internal nodes of the

suffix-tree. The need for embedding of characters is due to two requirements:

1. During search traversal, access to S is required, when characters from Q are com-

pared with the characters of substring represented by e(v) of an internal node v.

2. The information about substring represented by e(v) is placed in node v only. So,

the characters of edge e(child(v)) cannot be known from v (except the first charac-

Chapter 4. Physical Structure Improvements of Internal Nodes 58

ter), without accessing child(v). This may lead to unnecessary traversal to a child

node, if a mismatch occurs during comparison of characters of Q with the substring

represented by e(child(v)).

These requirements also lead us to two choices for embedding of characters (with

respect to an internal node v). These choices describing which characters should be

embedded are given below:

1. Characters from the substring represented by e(v).

2. Characters from the substring represented by e(child(v)).

When the first choice is selected, then there are less chances that access to S is required

for the matching of the substring represented by e(v) with Q. So, even if we assume

that whole sequence S is accommodated in main-memory, then also it improves search

performance by increasing processor cache-hits. Because the required information for

matching is already in the processor cache which is brought along with v.

The embedding strategy mentioned in the second choice, makes the search more I/O

efficient as well as cache-conscious. Because, decision on whether to traverse child(v)1 or

slNode(v) is taken mostly from the data present in v itself. Otherwise, this decision can

be taken only after accessing child(v), which may resides in the main-memory or on the

disk.

So, the obvious choice is to go for the second option, mainly because of the possibility

of reducing heavy cost of disk accesses during the search traversal. Also, the analysis

done in Section 4.2.3.3 justifies our choice by showing that there are substantial number

of cases, where implementation of second choice can help. A point to note here is that, we

are not considering the case of embedding characters represented by e(slNode(v)). There

are two reasons for ignoring it:

1. For an internal node v, the substring σ(v) has one more character than the substring

σ(slNode(v)). This difference of one character is at the start of substrings and not at

1Assuming that the required child(v) for the search traversal is present.

Chapter 4. Physical Structure Improvements of Internal Nodes 59

the end of substrings. So, the end parts of σ(v) and σ(slNode(v)) are same (unless

one of v or slNode(v) is the root node). That means, the characters represented by

e(slNode(v)) are already matched with Q, as all characters on e(v) are also matched

(otherwise, search traversal would not have visited slNode(v) from v).

2. If the search algorithm has to traverse slNode(v) from v, then it cannot be avoided.

This is in contrast to the case of a mismatch which occurs on the multi-character

edge e(child(v)). In such a situation, if we knew that a mismatch is going to happen

in advance, then we can avoid visiting child(v) node.

Now, we have to find unused space in the suffix-tree internal nodes apart from unused

space of $-Leaf Pointer. We have to also analyze this unused space for embedding of

characters, which are mentioned in following two subsections.

4.2.3.1 Analysis of NULL Pointers

The NULL pointers present in the suffix-tree indirectly reduce the locality of nodes by

wasting the space allocated to the suffix-tree nodes (if the node size is considered as fixed).

Table 4.2 shows the average NULL pointers per internal node within the suffix-tree for

various DNA sequences.

Indexed DNA Total nodes Total NULL Average NULL pointers
sequence in suffix-tree pointers per internal node

Chromosome - 22 24005631 36958263 1.539
Chromosome - 16 54222324 83676796 1.543
Chromosome - 01 154429037 237083043 1.535
Human Genome 2641873380 4306914607 1.630

Table 4.2: NULL Pointers present in Suffix-Tree for different DNA Sequences

In the suffix-tree for a DNA sequence, there are maximum 4 child pointers per inter-

nal node2. So, the maximum number of allowed NULL pointers per internal node is 2.

Because, if there exist only one meaningful child pointer of node v then the child node

2We are not including $-Leaf Pointer, because in majority cases it is null and its unused space is
already considered for a different case.

Chapter 4. Physical Structure Improvements of Internal Nodes 60

corresponding to that pointer gets pulled up and merged with v. So, the amount of NULL

pointers per node is more than 80% of the permitted value (in case of suffix-tree built

on the human genome sequence). Our aim is to utilize this unused space to embed the

characters from S.

4.2.3.2 Analysis of Substring Length of Incoming Tree-Edge

For any internal node v, there is exactly one incoming tree-edge e(v) (except the root

node). This e(v) is representative of some substring from S, which is indicated by Start

and End fields of v (refer Section 4.1). The internal node classification (or alternatively

incoming tree-edge classification, due to one-to-one correspondence of incoming tree-edges

with internal nodes) according to the length of substring represented by e(v) in the suffix-

tree built on the human genome sequence is shown in Figure 4.4.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 >=20

0

10

20

30

40

50

60

70

Incoming Edge Characters

P
e
rc

e
n
ta

g
e
 o

f
T

o
ta

l
E

d
g

e
s

Figure 4.4: Incoming Tree-Edge Classification according to the Length of the Substring
represented by it for the Suffix-Tree built over the Human Genome Sequence

The graph in Figure 4.4 indicates that there exist nearly 60% of total internal nodes

in the suffix-tree built on human genome sequence, whose incoming tree-edges represent

just one character. Now, in the structure of an internal node v, the length of substring

represented by e(v) is equal to End − Start + 1. So, if the length of e(v) is just one

character, then the value of End field becomes redundant (as the value of End field in

such cases becomes equal to the value of Start field). Hence, the space allocated to End

field remains unused in 60% of total internal nodes.

In this analysis, we have considered static structural property of the suffix-tree, i.e.

Chapter 4. Physical Structure Improvements of Internal Nodes 61

classification of incoming tree-edge according to the length of the substring represented by

it. In the following section, we observe the effect of multi-character substring of incoming

tree-edges on searching. So, in that analysis, our focus is on dynamic behavior of the

suffix-tree during the search traversal.

4.2.3.3 Multi-Character Child Edge Traversal Analysis

As we have already discussed in the start of Section 4.2.3 that in some cases search traver-

sal has to visit slNode(v) even after visiting child(v), due to mismatch on e(child(v)).

These cases are quantitatively shown in Table 4.3, which are taken from a sample search.

The search consists of different kinds of search strings which are partially drawn from the

human genome sequence. The characters in search strings vary from 500 to 10000.

Percentage of search Total tree-edges Number of tree- Percentage of
string taken from the traversed during edges traversed unnecessary tree-

indexed sequence the search unnecessarily edge traversal
0 1198194 177553 14.82
25 1106957 165680 14.97
50 982943 143678 14.61
75 835201 102249 12.24
100 616771 0 0

Table 4.3: Unnecessary Child Node Traversal

From Table 4.3, we can observe that when at most half part of a search string Q

is drawn from the indexed sequence S, then the search traversal accesses nearly 15% of

tree-edges unnecessarily. Although this constitutes fewer number of edge traversals (when

compared with total tree-edge and suffix-link traversals), the disk accesses introduced by it

not only take considerable time during the search traversal, but also increases randomness

in the overall disk accesses that are performed during the search traversal. So, if we are

able to avoid this unnecessary child node traversal, then the performance improvement

can be achieved. But, not all unnecessary child node traversals can be avoided. It depends

on how many characters can be embedded in the current node and how many characters

get matched during the search. Also, if the child node is physically nearer to the parent

node on the disk, then the performance improvement due to character embedding is not

Chapter 4. Physical Structure Improvements of Internal Nodes 62

noticeable, as even without this improvement there is no disk access involved for visiting

the child node. Because, read-ahead of data done by operating systems can also bring the

nearby nodes into the main-memory.

4.2.3.4 Implementation of Embedded Characters of Child Edge

For implementation of this improvement, there are two places within an internal node v,

where characters from e(child(v)) can be embedded. The appropriateness of these two

places are discussed below:

1. End field of an Internal Node: As analyzed in Section 4.2.3.2, there is lot of

unused space in the End field of an internal node. But, we want to further analyze

the effect of utilization of this space for embedding of characters.

A detailed analysis of incoming edge substring length (Section 4.2.3.2), indicates

that almost 82% of internal nodes have less then 64 characters in the substring

represented by their incoming edge. So, in that case, if we decide to represent only

the length of the substring and not the end position (as in original node structure

of Figure 4.1(a)) in the End field, then we require only one byte (6-bits to indicate

substring length and 2-bits to indicate overflow child pointer location). That leaves

3 bytes for character embedding in every internal node. But, for the remaining

internal nodes with length ≥ 64, there must be some other vacant space (like NULL

pointers) in the internal node itself, where we can extend the value of the substring

length.

Figure 4.5 shows that there exists a node child(v) whose e(child(v)) edge’s substring

length is greater than or equal to 64 and also node v has all the internal child nodes

present. So, in such cases, we may not find the void space within v to accommodate

the extended value of the difference between its End and Start fields. The same

situation will arise, even if the represented length inside End field is increased. And

hence, we are not considering this option of embedding characters inside End field,

even though the field has lot of unused space in it. Because, if we choose this option,

Chapter 4. Physical Structure Improvements of Internal Nodes 63

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

0

2000

4000

6000

8000

10000

12000

14000

16000

Subtring Length of Incoming Edge to Child Nodes

N
u

m
b
e

r
o

f
C

h
il
d

 N
o

d
e

s

Figure 4.5: Number of Child Nodes with Substring Length of Incoming Edge between 50
to 1000 and whose Parent Nodes have all the Internal Child Nodes present

then suffix-tree will lose correctness (as the value of incoming edge’s length cannot

be represented correctly in all cases), which cannot be allowed.

2. NULL Pointers: As there are 1.6 NULL pointers per internal node of the suffix-

tree built on human genome sequence (refer Section 4.2.3.1), we can utilize this

unused space for embedding of characters from a child edge.

Unlike the option of End field, embedding of characters in this option is done without

affecting the correctness of the suffix-tree. Here, only unused space (in the form of

NULL pointers) in an internal node v is considered for embedding. If NULL pointers

are not present in v then we do not embed the characters from S.

The number of NULL pointers in v (in the suffix-tree built over a DNA sequence)

can vary from 0 to 2. Now, we briefly see how these 3 cases for NULL pointers are

used to embed characters of e(child(v)).

• 0 NULL Pointer in v: In this case, there is no NULL pointer in v. So, no

embedding of characters is done in v and it is left with its original content.

• 1 NULL Pointer in v: If there is just one NULL pointer in v, then we look for

an internal child(v) with maximum number of characters on edge e(child(v)).

Chapter 4. Physical Structure Improvements of Internal Nodes 64

If we find one, then we embed its characters in this NULL pointer.

• 2 NULL Pointers in v: In this case, if there is only one internal child(v)

then the task of characters embedding is straightforward. Because, if child(v)

is having multiple characters on e(child(v)), then those characters are embed-

ded in both the NULL pointers. But, when there are two internal child(v)

nodes, we have to choose either one of them or both of them for characters em-

bedding. If only one of the two internal child(v) nodes has multiple characters

on its incoming edge, then that child(v) is chosen for embedding of charac-

ters. Otherwise, both child(v) nodes are chosen in order of occurrence of their

pointers in v.

For the embedding of characters in NULL pointers, we need to extend the already

present bitmap used for differentiation between internal node and leaf node pointer

(see Section 4.1), to indicate the presence of embedded characters. So, the current

form of bitmap (1-bit per pointer) is changed to 2-bits per pointer, in order to

accommodate the third alternative of embedded characters. The mapping of these

2-bits in this implementation is as follows:

• 00 - NULL pointer

• 01 - Embedded characters

• 10 - Pointer to a leaf node

• 11 - Pointer to an internal node

The modified structure of an internal node is shown in following figure.

Figure 4.6: Details of Internal Node Structure with Embedded Child Characters

Chapter 4. Physical Structure Improvements of Internal Nodes 65

Now, when we store embedded characters in the field of Child Pointer, the bits

of this field are used as shown in Figure 4.7. The first field (of 2 bits) shows for

which child pointer the characters are embedded. The next field (of 4 bits) shows

how many characters are embedded in this pointer. The remaining 26-bits are used

to store embedded characters. With 2 bits per character (as we have |Σ| = 4),

maximum of 13 characters can be stored.

Figure 4.7: Details of NULL Child Pointer (of 4 Bytes) when Embedded with Child-Edge
Characters

Chapter 5

Experimental Evaluation

Initially, in this chapter, we see the details about experimental setup which is used to

carry out various experiments. Then, we provide the construction and layout modification

timings for all layouts which are used for performance measurement. After that we go

through the search results obtained from the layout reorganizations proposed by us (as

suggested in Chapters 3) and compare them with the results obtained from the existing

state-of-the-art layouts. Along with these results, we also analyze various supporting

statistics which present justification for the result obtained. Towards the end of this

chapter, we also analyze the significant reduction in search-time due to the improvements

introduced in Chapter 4.

5.1 Experimental Setup

In the evaluation of experimental results, we have used two machines at different stages

of experimentation. The details of these machines are given as follows:

1. Machine R: IBM P690 Reggata machine with AIX 5.2L operating system, powered

with 32 IBM Power-4 processors operating at 1.9 Ghz, having 256 GB RAM and

1000 GB disk-space.

2. Machine S: Sun Ultra 24 machine with Ubuntu Linux 10.04 operating system,

powered with Intel Core2 Extreme processor operating at 2 GHz, having 8 GB

66

Chapter 5. Experimental Evaluation 67

RAM. In this machine, there are 4 Hitachi SATA hard-disks, each with rotational

speed of 7200 rpm and 750 GB capacity.

Machine R is a high-end system with large main-memory. In our experiments, this ma-

chine is only used for the construction of various disk-based suffix-tree layouts. The reason

for the usage of this machine in our experimentation is that due to its large main-memory,

we can overcome heavy I/O costs incurred during the construction of various suffix-tree

layouts. The resources involved in the construction of various suffix-tree layouts are of

less concern to us, as we are focusing mainly on the search aspect of the suffix-tree. But,

we are mentioning it over here for the sake of completeness of the experimentation. So,

this machine is not used for any kind of further experimental analysis, such as searching

on the suffix-tree. On the other hand, machine S is a typical desktop system which is

used for all the measurement related to the search performance of already constructed

disk-based suffix-tree layout.

All layout algorithms are implemented in C++ and compiled with the XL C++ version

5.0.2.0 on machine R and with the GNU g++ compiler version 4.4.3 on machine S. In all

the cases compilation is done with the optimization flag ‘-O3’.

One last point related to the experimental environment is the file-system used. Al-

though we have given consideration to the location of pages within the suffix-tree file, we

have never considered the actual physical location of the pages of suffix-tree file on the

disk. But, we have tried to make it as less fragmented as possible which ensures that

the nearness of pages within the suffix-tree file also results in physical nearness of pages

on disk. This requires an efficient file-system which is good for handling large files. For

this purpose, all our search-time related performance measurements are done on xfs file

system [29] which is also known for excellent bandwidth for data-transfer.

5.2 Construction Time of Various Suffix-Tree Layouts

Table 5.1 shows construction time of various suffix-tree layout algorithms on machine R.

The construction time of various layouts (except Trellis layout) includes either reorgani-

Chapter 5. Experimental Evaluation 68

zation of layout (Chapter 3) or improvement in physical structures of internal nodes of

the suffix-tree (Chapter 4) or both. Although layout reorganizations had taken consid-

erable time, their large reorganization time is not an obstacle in the process of search-

optimization because search-optimization is a one time process, whereas search applica-

tions can be repeatedly invoked on these resultant search-optimized suffix-tree layouts.

Suffix-Tree Layout Source Layout or Time Taken
Sequence (in hrs.)

Trellis Human Genome Sequence 62.87
(construction layout)

SBFS Trellis 33.17
Stellar Trellis 43.02

1Cr4Cd Trellis 35.32
bfs-hybrid Trellis 25.09
OneLinkIn Trellis 30.02

bfs-hybrid-IBO bfs-hybrid 103.8
Trellis-EL Trellis 3.49

bfs-hybrid-IBO-EL bfs-hybrid-IBO 5.10
Trellis-ECC Trellis 8.48

bfs-hybrid-IBO-ECC bfs-hybrid-IBO 8.93

Table 5.1: Construction Time of various Suffix-Tree Layouts on Machine R

In the table, we can see that the time taken for the Trellis construction layout is larger

than the construction time on a typical desktop machine (as mentioned in [21] and also

observed by us on machine S). But, this timing also includes the time taken for merging

of suffix-tree partitions (which is nearly 33% of total time taken to build the final Trellis

construction layout). Also, the Trellis algorithm is main-memory intensive program and

machine R has the main-memory shared across all processor through a common shared

bus. As the Trellis code is not parallelized, it is using one processor only. In such cases

the main memory latency on machine R is 4 times more than the main-memory latency

on machine S. So, a program with frequent memory accesses is bound to take more time

on machine R than on machine S. Similarly, large time taken by bfs-hybrid-IBO is due

to computationally intensive optimized block sequence determination which took 98% of

the total time taken for the construction of bfs-hybrid-IBO layout.

Chapter 5. Experimental Evaluation 69

5.3 Search Results

Before moving onto actual search results, we first see the data-set used for searching and

the environment in which the search experiments are conducted.

5.3.1 About Search Experiment Data

• All our experiments are performed on the suffix-tree built on the actual DNA se-

quence and not on the randomly generated sequence. In the suffix-tree built on

randomly generated sequence, the data skew is absent and it will not represent the

real world scenario in which searching is done on actual genome sequences.

• In most of the prior techniques for search-optimization mentioned in the literature,

the search data-set contains either randomly generated sequences or sequences which

are fully drawn from the indexed sequence. In both the cases, the search results do

not represent the real world searches performed on actual DNA sequences. Because,

in randomly generated sequence data, each of the character have equal probability

of occurrence within the sequence, which is not the case in real DNA sequence. On

the other hand, the data fully drawn from indexed sequence does not mismatch at

any particular point in the suffix-tree traversal during search traversal.

So, all our experiments use different kind of search sequences, i.e. randomly gener-

ated sequences, sequences which are fully drawn from indexed sequence and search

sequences which have partial similarity with the indexed sequence. In each case,

200 sequences of length 500 to 10,000 characters with a stride of 500 are considered.

We have kept the value of minimum threshold length (λ) to 40.

• For all the cases in search results, we have kept indexed sequence in the main-

memory. The results could have been affected, if it cannot be accommodated in the

main-memory. But, we can ignore it due to the following reasons:

1. The size of search sequence is comparatively lesser than the size of the suffix-

tree. And with frequent accesses to it, its referred portions are more likely to

Chapter 5. Experimental Evaluation 70

remain in the main-memory then the portions of the suffix-tree (due to the

caching effect of the operating system).

2. In the suffix-tree node, the relative position of pointers depict the first character

represented by the edge going to the child node (refer Section 4.2.3.2). So, if

the edge has just one character (which is the case for about 60% of the tree-

edges as indicated in Figure 4.4), then we may not even need to access the

indexed sequence.

3. When the indexed sequence is not fully accommodated into the main-memory,

the increase in search-time would have been in same proportion across the

results of all layouts.

5.3.2 Search Experiment Environment

We have tried to perform all the search experiment in the same environment. So, apart

from the same hardware and same system parameters, we have tried to retain exactly the

same situation for all the search experiments. Some of the obviously looking precautions

are mentioned as follows:

1. No major background process from the user is initiated during this time, so that

there will not be any impact on the resources that is being used.

2. All the files are kept on the same disk. For example, a search experiment with

internal node file and leaf file kept on different disk, performed significantly better

than the experiment with all the files on the same disk.

3. We have cleared the cache after every sequence is searched. So that the page cached

during searching of previous sequence do not affect the searching of the current

sequence.

Chapter 5. Experimental Evaluation 71

5.3.3 Search Results: Layout Reorganization

Here, we present the search results on the layouts which are modified by just rearrange-

ment of nodes and blocks. The results are presented in Figures 5.1 to 5.5.

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 500 1500 2500 3500 4500 5500 6500 7500 8500 9500

T
im

e
 T

a
k
e

n
 (

in
 S

e
c
)

Number of Characters in Search Sequence

Layouts :

Trellis

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 500 1500 2500 3500 4500 5500 6500 7500 8500 9500

T
im

e
 T

a
k
e

n
 (

in
 S

e
c
)

Number of Characters in Search Sequence

Layouts :

SBFS

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 500 1500 2500 3500 4500 5500 6500 7500 8500 9500

T
im

e
 T

a
k
e

n
 (

in
 S

e
c
)

Number of Characters in Search Sequence

Layouts :

Stellar

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 500 1500 2500 3500 4500 5500 6500 7500 8500 9500

T
im

e
 T

a
k
e

n
 (

in
 S

e
c
)

Number of Characters in Search Sequence

Layouts :

bfs-hybrid

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 500 1500 2500 3500 4500 5500 6500 7500 8500 9500

T
im

e
 T

a
k
e

n
 (

in
 S

e
c
)

Number of Characters in Search Sequence

Layouts :

1Cr4Cd

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 500 1500 2500 3500 4500 5500 6500 7500 8500 9500

T
im

e
 T

a
k
e

n
 (

in
 S

e
c
)

Number of Characters in Search Sequence

Layouts :

OneLinkIn

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 500 1500 2500 3500 4500 5500 6500 7500 8500 9500

T
im

e
 T

a
k
e

n
 (

in
 S

e
c
)

Number of Characters in Search Sequence

Layouts :

bfs-hybrid-IBO

Figure 5.1: Layout Reorganization: Search-time for randomly generated search strings

In the results, we can observe a continuous increase in the search-time with the increase

in the length of query strings. For example, in Figure 5.1, we get almost every result as

a straight-line with positive slope. In this case the search strings are randomly generated

and the average number of characters matched in this case is around 22 (which is lesser

than our λ value of 40). So, the search traversal do not visit the sub-trees of the suffix-tree

and it accessed nodes till middle dense levels of the suffix-tree (max level depth accessed

is 15). But, even with only top portion access, all the layouts proposed by us outperform

construction layout, whereas bfs-hybrid-IBO layout performed better then the existing

layouts.

But, this trend of continuous increase in search-time is violated at a few places. This

can be seen in the case of search strings whose 25% portion is similar to the indexed

sequence (Figure 5.2). Let us analyze a case for the Trellis layout, when the length

Chapter 5. Experimental Evaluation 72

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

 320

 340

 500 1500 2500 3500 4500 5500 6500 7500 8500 9500

T
im

e
 T

a
k
e

n
 (

in
 S

e
c
)

Number of Characters in Search Sequence

Layouts :

Trellis

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

 320

 340

 500 1500 2500 3500 4500 5500 6500 7500 8500 9500

T
im

e
 T

a
k
e

n
 (

in
 S

e
c
)

Number of Characters in Search Sequence

Layouts :

SBFS

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

 320

 340

 500 1500 2500 3500 4500 5500 6500 7500 8500 9500

T
im

e
 T

a
k
e

n
 (

in
 S

e
c
)

Number of Characters in Search Sequence

Layouts :

Stellar

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

 320

 340

 500 1500 2500 3500 4500 5500 6500 7500 8500 9500

T
im

e
 T

a
k
e

n
 (

in
 S

e
c
)

Number of Characters in Search Sequence

Layouts :

bfs-hybrid

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

 320

 340

 500 1500 2500 3500 4500 5500 6500 7500 8500 9500

T
im

e
 T

a
k
e

n
 (

in
 S

e
c
)

Number of Characters in Search Sequence

Layouts :

1Cr4Cd

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

 320

 340

 500 1500 2500 3500 4500 5500 6500 7500 8500 9500

T
im

e
 T

a
k
e

n
 (

in
 S

e
c
)

Number of Characters in Search Sequence

Layouts :

OneLinkIn

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

 320

 340

 500 1500 2500 3500 4500 5500 6500 7500 8500 9500

T
im

e
 T

a
k
e

n
 (

in
 S

e
c
)

Number of Characters in Search Sequence

Layouts :

bfs-hybrid-IBO

Figure 5.2: Layout Reorganization: Search-time for search strings with 25% similarity
with the human genome sequence

of search string is increased from 8500 to 9000, the search-time is actually decreased.

This seems to contradict the general sense of increase in search-time with the increase in

string string length. But, after doing thorough analysis of this anomaly, we come to the

conclusion that this case can happen with the searching over the suffix-tree. Let us call

this situation as IDI (Increase-Decrease-Increase) situation in the search-time results.

There can be multiple reasons for this IDI situation to occur. For example, we have

observed in this case that going from string length 8500 to string length 9000, the number

of accessed leaf nodes actually decreased by 8%. And this decrease in leaf node access

is common across many IDI situations that we have observed. Let us understand it,

by taking an example from Figure 1.2. If we have to find the string AAC (for all its

occurrences) in this tree, we have to visit 3 internal nodes and 2 leaf nodes. On the other

hand if we try to find string CA (for all its occurrences), we have to visit 4 internal nodes

and 4 leaf nodes. So, even with smaller length string, we have to traverse more nodes to

locate it. And, if those nodes are far apart then the search-time may increase drastically.

So, this reason for IDI situation, also leads us to the need of node rearrangement in the

Chapter 5. Experimental Evaluation 73

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

 320

 340

 360

 380

 400

 420

 440

 460

 500 1500 2500 3500 4500 5500 6500 7500 8500 9500

T
im

e
 T

a
k
e

n
 (

in
 S

e
c
)

Number of Characters in Search Sequence

Layouts :

Trellis

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

 320

 340

 360

 380

 400

 420

 440

 460

 500 1500 2500 3500 4500 5500 6500 7500 8500 9500

T
im

e
 T

a
k
e

n
 (

in
 S

e
c
)

Number of Characters in Search Sequence

Layouts :

SBFS

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

 320

 340

 360

 380

 400

 420

 440

 460

 500 1500 2500 3500 4500 5500 6500 7500 8500 9500

T
im

e
 T

a
k
e

n
 (

in
 S

e
c
)

Number of Characters in Search Sequence

Layouts :

Stellar

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

 320

 340

 360

 380

 400

 420

 440

 460

 500 1500 2500 3500 4500 5500 6500 7500 8500 9500

T
im

e
 T

a
k
e

n
 (

in
 S

e
c
)

Number of Characters in Search Sequence

Layouts :

bfs-hybrid

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

 320

 340

 360

 380

 400

 420

 440

 460

 500 1500 2500 3500 4500 5500 6500 7500 8500 9500

T
im

e
 T

a
k
e

n
 (

in
 S

e
c
)

Number of Characters in Search Sequence

Layouts :

1Cr4Cd

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

 320

 340

 360

 380

 400

 420

 440

 460

 500 1500 2500 3500 4500 5500 6500 7500 8500 9500

T
im

e
 T

a
k
e

n
 (

in
 S

e
c
)

Number of Characters in Search Sequence

Layouts :

OneLinkIn

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

 320

 340

 360

 380

 400

 420

 440

 460

 500 1500 2500 3500 4500 5500 6500 7500 8500 9500

T
im

e
 T

a
k
e

n
 (

in
 S

e
c
)

Number of Characters in Search Sequence

Layouts :

bfs-hybrid-IBO

Figure 5.3: Layout Reorganization: Search-time for search strings with 50% similarity
with the human genome sequence

suffix-tree layout. As we know that in Trellis the neighboring nodes are scattered (due to

its DFS approach), this effect of IDI is more noticeable than the other layout, which have

tried to bring the neighboring nodes as close as possible (by following certain criteria for

localization).

Also, we have found that although the number of tree-edges traversed in case of se-

quence length 9000 is greater than the edges traversed in case of sequence length 8500,

the percentage increase in the number of multi-character edges is more in the case of

strings with length 9000. For example, going from 8000 to 8500, the percentage increase

in multi-character edges is 11%, whereas in case of 8500 to 9000, this increase is 15%.

Along with it, the average characters on multi-character edges in case of search strings

with length 8000, 8500, 9000 are 1067, 221 and 1209 respectively. This means that more

characters from search strings are considered with less number of edge traversals during

searching.

This IDI situation is also visible in other layouts, but with lesser deviations (the reason

for which has already been discussed). For example, in case of 1Cr4Cd layout, when search

Chapter 5. Experimental Evaluation 74

 20

 60

 100

 140

 180

 220

 260

 300

 340

 380

 420

 460

 500

 540

 500 1500 2500 3500 4500 5500 6500 7500 8500 9500

T
im

e
 T

a
k
e

n
 (

in
 S

e
c
)

Number of Characters in Search Sequence

Layouts :

Trellis

 20

 60

 100

 140

 180

 220

 260

 300

 340

 380

 420

 460

 500

 540

 500 1500 2500 3500 4500 5500 6500 7500 8500 9500

T
im

e
 T

a
k
e

n
 (

in
 S

e
c
)

Number of Characters in Search Sequence

Layouts :

SBFS

 20

 60

 100

 140

 180

 220

 260

 300

 340

 380

 420

 460

 500

 540

 500 1500 2500 3500 4500 5500 6500 7500 8500 9500

T
im

e
 T

a
k
e

n
 (

in
 S

e
c
)

Number of Characters in Search Sequence

Layouts :

Stellar

 20

 60

 100

 140

 180

 220

 260

 300

 340

 380

 420

 460

 500

 540

 500 1500 2500 3500 4500 5500 6500 7500 8500 9500

T
im

e
 T

a
k
e

n
 (

in
 S

e
c
)

Number of Characters in Search Sequence

Layouts :

bfs-hybrid

 20

 60

 100

 140

 180

 220

 260

 300

 340

 380

 420

 460

 500

 540

 500 1500 2500 3500 4500 5500 6500 7500 8500 9500

T
im

e
 T

a
k
e

n
 (

in
 S

e
c
)

Number of Characters in Search Sequence

Layouts :

1Cr4Cd

 20

 60

 100

 140

 180

 220

 260

 300

 340

 380

 420

 460

 500

 540

 500 1500 2500 3500 4500 5500 6500 7500 8500 9500

T
im

e
 T

a
k
e

n
 (

in
 S

e
c
)

Number of Characters in Search Sequence

Layouts :

OneLinkIn

 20

 60

 100

 140

 180

 220

 260

 300

 340

 380

 420

 460

 500

 540

 500 1500 2500 3500 4500 5500 6500 7500 8500 9500

T
im

e
 T

a
k
e

n
 (

in
 S

e
c
)

Number of Characters in Search Sequence

Layouts :

bfs-hybrid-IBO

Figure 5.4: Layout Reorganization: Search-time for search strings with 75% similarity
with the human genome sequence

 20

 60

 100

 140

 180

 220

 260

 300

 340

 380

 420

 460

 500

 540

 580

 620

 500 1500 2500 3500 4500 5500 6500 7500 8500 9500

T
im

e
 T

a
k
e

n
 (

in
 S

e
c
)

Number of Characters in Search Sequence

Layouts :

Trellis

 20

 60

 100

 140

 180

 220

 260

 300

 340

 380

 420

 460

 500

 540

 580

 620

 500 1500 2500 3500 4500 5500 6500 7500 8500 9500

T
im

e
 T

a
k
e

n
 (

in
 S

e
c
)

Number of Characters in Search Sequence

Layouts :

SBFS

 20

 60

 100

 140

 180

 220

 260

 300

 340

 380

 420

 460

 500

 540

 580

 620

 500 1500 2500 3500 4500 5500 6500 7500 8500 9500

T
im

e
 T

a
k
e

n
 (

in
 S

e
c
)

Number of Characters in Search Sequence

Layouts :

Stellar

 20

 60

 100

 140

 180

 220

 260

 300

 340

 380

 420

 460

 500

 540

 580

 620

 500 1500 2500 3500 4500 5500 6500 7500 8500 9500

T
im

e
 T

a
k
e

n
 (

in
 S

e
c
)

Number of Characters in Search Sequence

Layouts :

bfs-hybrid

 20

 60

 100

 140

 180

 220

 260

 300

 340

 380

 420

 460

 500

 540

 580

 620

 500 1500 2500 3500 4500 5500 6500 7500 8500 9500

T
im

e
 T

a
k
e

n
 (

in
 S

e
c
)

Number of Characters in Search Sequence

Layouts :

1Cr4Cd

 20

 60

 100

 140

 180

 220

 260

 300

 340

 380

 420

 460

 500

 540

 580

 620

 500 1500 2500 3500 4500 5500 6500 7500 8500 9500

T
im

e
 T

a
k
e

n
 (

in
 S

e
c
)

Number of Characters in Search Sequence

Layouts :

OneLinkIn

 20

 60

 100

 140

 180

 220

 260

 300

 340

 380

 420

 460

 500

 540

 580

 620

 500 1500 2500 3500 4500 5500 6500 7500 8500 9500

T
im

e
 T

a
k
e

n
 (

in
 S

e
c
)

Number of Characters in Search Sequence

Layouts :

bfs-hybrid-IBO

Figure 5.5: Layout Reorganization: Search-time for search strings fully drawn from human
genome

Chapter 5. Experimental Evaluation 75

strings have around 50% similarity with the indexed sequence (Figure 5.3), the search-

time decreases when search string length is increased from 9000 to 9500. For this case

also, we have observed similar deviations in traversal access pattern, as we have observed

in the case of Trellis layout.

Let us now compare the performance of intra-block rearrangement layouts proposed

by us with the existing layouts. Although for random search strings, these layouts have

good performance, they are not consistent in their performance for different kind of search

strings. For example, the bfs-hybrid layout, whose performance improves with the increase

in the similarity portion, sometimes outperformed by the Stellar layout (for example, in

Figure 5.5). This particular situation happened for the search strings which are fully

drawn from the indexed sequence. In such cases mismatch on the tree-edges do not occur

and suffix-links are visited only after leaf nodes get visited. Since, the Stellar had arbitrary

localization of nodes, it is getting its localization exploited even in this situation (but, with

the undesired effect of IDI). For the bfs-hybrid layout, the link nodes are given higher

priority than the tree-edges for localization, when there is higher chances of mismatch

(particularly in lower portion of the suffix-tree), which does not occur in this case.

For the remaining layouts with intra-block rearrangement, the search performance is

not satisfactory when the search strings have more and more similarity with the indexed

sequence. The reason given above is also applicable to the performance of the OneLinkIn

layout. But, the consistent poor performance by 1Cr4Cd layout is due to its more weigh-

tage to suffix-links than tree-edges. In our search, the traversal ratio of tree-edges to

suffix-links is around 70% to 30%. So, giving more weightage to suffix-links is actually

not helping in reducing the search-time.

When a particular substring is located within the suffix-tree, whose length is more

than the given threshold λ, the subtree below that node location is traversed in depth-

first manner. So, it is surprising that all the layouts (existing as well as those proposed

by us) consistently outperformed the construction time layout (whose nodes are store in

depth-first manner). This shows the importance of search-optimization which is done by

just rearranging nodes in breadth-first (or its variant) manner.

Chapter 5. Experimental Evaluation 76

When inter-block optimization is applied to the bfs-hybrid layout (which is best among

all the intra-block layouts), the layout of bfs-hybrid-IBO1 is obtained, which significantly

outperforms the construction layout for every kind of search strings. It also dominates

state-of-the-art layouts in majority of the cases. The improvement in the search-time by

this layout over the construction layout of Trellis is in the range of 25% to 75%. But,

the average improvement over the different type of layouts is enlisted in Table 5.2. These

results also highlight the need for rearrangement of blocks for search-optimization, which

was not considered by the earlier techniques for search-optimization.

Improvement Average Improvement
over Layout in Percentage

Trellis 55.06%
SBFS 15.27%
Stellar 18.22%

Table 5.2: Performance Improvement by bfs-hybrid-IBO Layout over existing Layouts

For performance analysis of physical node structure improvement, we have chosen two

extremely performing layouts – construction layout of Trellis and bfs-hybrid-IBO layout.

Although physical structure improvements for suffix-tree internal nodes can be applied to

any layout, we have restricted it to just two layouts, because of numerous combinations

of layouts that will result from the application of these improvements. Now, we see the

measurements for layout goodness, which also supports the results obtained in this section.

5.3.4 Quantification of Layout Goodness

In order to compare different layouts, based on their inherent characteristics, we need

some quantification criteria for the layout goodness. Now, this quantification is also an

indicative of the search performance measurements obtained earlier and depends either

partially or fully on the properties of the layouts. It also depends on the type of search-

data used, but it is independent of the machine on which it is generated or used. The

various measurements for quantification of layout goodness are described as follows:

1IBO stands for Inter-Block Optimization.

Chapter 5. Experimental Evaluation 77

5.3.4.1 Static Locality

In a disk-based suffix-tree layout, the static locality determines for every node in a block,

how much percentage of its immediate child nodes or its immediate suffix-link node lie in

the same block. The name of this criterion itself suggest the nature of the measurement

performed on the suffix-tree layout. As this measurement is directly obtained from the

layout, it is fully dependent on the properties of layout. This criteria was also used in [5]

to show the goodness of a layout. The static localities for various layouts are shown in

Figure 5.6.

Trellis SBFS Stellar 1Cr4Cd bfs−hybrid OneLinkIn

0

10

20

30

40

50

60

70

80

90

100

Perc. of Local Edges

Perc. of Local Links

Layouts

P
e
rc

e
n

ta
g

e
 o

f
L
o
c

a
liz

a
tio

n

Figure 5.6: Static Locality for various Layouts for the Suffix-Tree constructed over the
Human Genome Sequence

These measurements of static locality indicates the nature of node arrangement within

the suffix-tree layouts. For example, while Trellis has nodes arranged in depth-first man-

ner, it is actually localizing very few nodes. On the other hand, full emphasis on tree-edges

by SBFS layout, gives it more than 90% static locality for tree-edges, while almost nil for

suffix-links. The Stellar and the layouts proposed by us have emphasized both tree-edges

and suffix-links, such that a balance is obtained between static locality for both kind of

edges, which is necessary for complex traversal patterns involving both tree-edges and

suffix-links.

Although the static locality gives good indication for tree-edge locality and suffix-link

locality, we cannot take it as a final quantifying criteria for goodness. The reasons for

this are illustrated as follows:

Chapter 5. Experimental Evaluation 78

1. In this criterion, the localization of nodes within the blocks are considered, but no

consideration is given to block sequence optimization (Section 3.4.3) which needs

measurement for inter-block localization. This is the reason that we have not in-

cluded bfs-hybrid-IBO layout in this analysis. Otherwise, this intra-block locality

measurement would have given same measurement for bfs-hybrid and bfs-hybrid-

IBO.

2. Although the percentage of local nodes are measured, it does not capture the rel-

evance between localized nodes. For example, If a node with nodeType 4 has its

suffix-link node local to it, then that is not of much use, because it is hardly going

to get followed. This kind of relevance just skipped in this measurement.

In order to make static locality more effective, one more level of measurement can

be added to its measurement. For example, instead of just analyzing whether immediate

child nodes or suffix-link node are local or not (this is now the First-Level of Static Locality

measurement), if we want Second-Level of Static Locality, then we also have to measure

for the localization of child nodes and suffix-link nodes of immediate child nodes and

immediate suffix-link node. This can be more accurate indication to the goodness of the

layout. But, again it has same flaws as that of First-Level of Static Locality measurement.

5.3.4.2 Dynamic Locality

Dynamic locality is similar to static locality, in a way that it also measures percentage of

localization of immediate child and link nodes within a block. But, it is a representative

of only a restricted subset of overall edges or links, which play important role in actual

searching. This quantifying criterion is measured, when the actual search is being per-

formed on the layout. So, measurement in this criterion is done at the time of searching,

by determining how many of the child nodes or suffix-link node are local to a tree node.

Dynamic locality depends on what kind of search strings are selected and based on

that dynamic locality measurement changes. Few measurements of dynamic localities for

Chapter 5. Experimental Evaluation 79

Trellis SBFS Stellar 1Cr4Cd bfs−hybrid OneLinkIn

0

10

20

30

40

50

60

70

80

Layouts

P
e
rc

e
n
ta

g
e
 o

f
L
o
c
a

lit
y

Perc.of Local Edges

Perc. of Local Links

(a) Randomly generated search strings

Trellis SBFS Stellar 1Cr4Cd bfs−hybrid OneLinkIn

0

10

20

30

40

50

60

70

80

90

Layouts

P
e
rc

e
n

ta
g

e
 o

f
L
o
c

a
lit

y

Perc.of Local Edges

Perc. of Local Links

(b) Search strings with 25% part from human
genome

Trellis SBFS Stellar 1Cr4Cd bfs−hybrid OneLinkIn

0

10

20

30

40

50

60

70

80

90

Layouts

P
e
rc

e
n

ta
g

e
 o

f
L
o
c
a

lit
y

Perc.of Local Edges

Perc. of Local Links

(c) Search strings with 50% part from human
genome

Trellis SBFS Stellar 1Cr4Cd bfs−hybrid OneLinkIn

0

10

20

30

40

50

60

70

80

90

100

Layouts

P
e
rc

e
n

ta
g

e
 o

f
L
o
c
a

lit
y

Perc.of Local Edges

Perc. of Local Links

(d) Search strings with 75% part from human
genome

Trellis SBFS Stellar 1Cr4Cd bfs−hybrid OneLinkIn

0

10

20

30

40

50

60

70

80

90

100

Layouts

P
e
rc

e
n
ta

g
e
 o

f
L
o
c

a
lit

y

Perc.of Local Edges

Perc. of Local Links

(e) Search strings with 100% part from human
genome

Figure 5.7: Dynamic Locality for various Layouts for different kind of Search Strings

Chapter 5. Experimental Evaluation 80

various kinds of search strings are shown in Figures 5.7(a) to 5.7(e)2. In our case, for all the

layouts, the dynamic locality measurements mimic static locality measurements (obtained

in previous section). So, in that sense, static locality is also indicative of dynamic locality

to some extent. For example, for Trellis layout, static as well as dynamic localities never

exceeds 2% (for both tree-edge and suffix-link localization).

Since, dynamic locality represents only a subset of edges or links that have been

considered in measuring the static locality, it need not always be lesser then the static

locality which represents the average locality over whole of the suffix-tree. For example,

when the search strings fully drawn from human genome sequence are used in searching

over the SBFS layout, the dynamic locality obtained for tree-edges is 94.28%. Whereas

the static locality of SBFS layout for tree-edges is 93.93%. Such situations with higher

dynamic localities can arise when a particular path with higher locality is followed. And

if the whole of search-string data is likely to follow localized path, then we can get overall

dynamic locality either near to the overall static locality (or even higher in some cases).

This also shows that the localization done statically in the suffix-tree layout is actually

giving good localization at the time of search.

From the dynamic locality measurements, we can see the trends as we go from random

search strings to search strings which are completely taken from the indexed sequence -

the edge locality as well as link locality increases (except for edge locality for 1Cr4Cd

Layout). The reason for increase in edge locality is that, as more part of search strings

are taken from the indexed sequence, there is lesser and lesser chances of mismatch on the

suffix-tree edges. And, if the localization criterion has given weightage to the tree-edges

then tree-edge locality also increases. Note that 1Cr4Cd layout has not given weightage

to tree-edges (except node with type 4 which constitutes only a smaller portion of the

whole suffix-tree) and hence its tree-edge locality is bound to reduce. Similar reason can

be given for the locality of the suffix-link as well.

2Each dynamic locality graph is corresponding to the search results of Figures 5.1 to 5.5

Chapter 5. Experimental Evaluation 81

5.3.5 Search Results: Physical Structure Improvement of

Internal Nodes

Here, we present the performance gain obtained by improving the physical structure of

the suffix-tree internal nodes (refer Figure 5.8 to Figure 5.12). These improvements are

implemented on the Trellis and the bfs-hybrid-IBO layout (as we have mentioned earlier

in Section 5.3.3). The search data-set used in these experiments are same as the search

data-set of previous experiments.

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 500 1500 2500 3500 4500 5500 6500 7500 8500 9500

T
im

e
 T

a
k
e
n
 (

in
 S

e
c
)

Number of Characters in Search Sequence

Layouts :

Trellis

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 500 1500 2500 3500 4500 5500 6500 7500 8500 9500

T
im

e
 T

a
k
e
n
 (

in
 S

e
c
)

Number of Characters in Search Sequence

Layouts :

bfs-hybrid-IBO

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 500 1500 2500 3500 4500 5500 6500 7500 8500 9500

T
im

e
 T

a
k
e
n
 (

in
 S

e
c
)

Number of Characters in Search Sequence

Layouts :

Trellis-EL

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 500 1500 2500 3500 4500 5500 6500 7500 8500 9500

T
im

e
 T

a
k
e
n
 (

in
 S

e
c
)

Number of Characters in Search Sequence

Layouts :

bfs-hybrid-IBO-EL

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 500 1500 2500 3500 4500 5500 6500 7500 8500 9500

T
im

e
 T

a
k
e
n
 (

in
 S

e
c
)

Number of Characters in Search Sequence

Layouts :

Trellis-ECC

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 500 1500 2500 3500 4500 5500 6500 7500 8500 9500

T
im

e
 T

a
k
e
n
 (

in
 S

e
c
)

Number of Characters in Search Sequence

Layouts :

bfs-hybrid-IBO-ECC

Figure 5.8: Node Structure Improvement: Search-time for randomly generated search
strings

Now, we first look into the performance improvement obtained due to embedding of

leaf nodes inside suffix-tree internal nodes (refer Section 4.2.2 for details). The two re-

sulting layouts, i.e. Trellis-EL3 (obtained from the Trellis layout) and bfs-hybrid-IBO-EL

(obtained from the bfs-hybrid-IBO layout) consistently outperforms their parent layout.

The improvement in search-time by Trellis-EL over Trellis Layout is in the range of 25%

to 85%. Whereas the improvement by bfs-hybrid-IBO-EL over bfs-hybrid-IBO is in the

3Where EL stands for Embedded Leaf.

Chapter 5. Experimental Evaluation 82

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

 320

 340

 500 1500 2500 3500 4500 5500 6500 7500 8500 9500

T
im

e
 T

a
k
e

n
 (

in
 S

e
c
)

Number of Characters in Search Sequence

Layouts :

Trellis

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

 320

 340

 500 1500 2500 3500 4500 5500 6500 7500 8500 9500

T
im

e
 T

a
k
e

n
 (

in
 S

e
c
)

Number of Characters in Search Sequence

Layouts :

bfs-hybrid-IBO

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

 320

 340

 500 1500 2500 3500 4500 5500 6500 7500 8500 9500

T
im

e
 T

a
k
e

n
 (

in
 S

e
c
)

Number of Characters in Search Sequence

Layouts :

Trellis-EL

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

 320

 340

 500 1500 2500 3500 4500 5500 6500 7500 8500 9500

T
im

e
 T

a
k
e

n
 (

in
 S

e
c
)

Number of Characters in Search Sequence

Layouts :

bfs-hybrid-IBO-EL

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

 320

 340

 500 1500 2500 3500 4500 5500 6500 7500 8500 9500

T
im

e
 T

a
k
e

n
 (

in
 S

e
c
)

Number of Characters in Search Sequence

Layouts :

Trellis-ECC

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

 320

 340

 500 1500 2500 3500 4500 5500 6500 7500 8500 9500

T
im

e
 T

a
k
e

n
 (

in
 S

e
c
)

Number of Characters in Search Sequence

Layouts :

bfs-hybrid-IBO-ECC

Figure 5.9: Node Structure Improvement: Search-time for search strings with 25% simi-
larity with the human genome sequence

 40

 80

 120

 160

 200

 240

 280

 320

 360

 400

 440

 500 1500 2500 3500 4500 5500 6500 7500 8500 9500

T
im

e
 T

a
k
e
n
 (

in
 S

e
c
)

Number of Characters in Search Sequence

Layouts :

Trellis

 40

 80

 120

 160

 200

 240

 280

 320

 360

 400

 440

 500 1500 2500 3500 4500 5500 6500 7500 8500 9500

T
im

e
 T

a
k
e
n
 (

in
 S

e
c
)

Number of Characters in Search Sequence

Layouts :

bfs-hybrid-IBO

 40

 80

 120

 160

 200

 240

 280

 320

 360

 400

 440

 500 1500 2500 3500 4500 5500 6500 7500 8500 9500

T
im

e
 T

a
k
e
n
 (

in
 S

e
c
)

Number of Characters in Search Sequence

Layouts :

Trellis-EL

 40

 80

 120

 160

 200

 240

 280

 320

 360

 400

 440

 500 1500 2500 3500 4500 5500 6500 7500 8500 9500

T
im

e
 T

a
k
e
n
 (

in
 S

e
c
)

Number of Characters in Search Sequence

Layouts :

bfs-hybrid-IBO-EL

 40

 80

 120

 160

 200

 240

 280

 320

 360

 400

 440

 500 1500 2500 3500 4500 5500 6500 7500 8500 9500

T
im

e
 T

a
k
e
n
 (

in
 S

e
c
)

Number of Characters in Search Sequence

Layouts :

Trellis-ECC

 40

 80

 120

 160

 200

 240

 280

 320

 360

 400

 440

 500 1500 2500 3500 4500 5500 6500 7500 8500 9500

T
im

e
 T

a
k
e
n
 (

in
 S

e
c
)

Number of Characters in Search Sequence

Layouts :

bfs-hybrid-IBO-ECC

Figure 5.10: Node Structure Improvement: Search-time for search strings with 50% sim-
ilarity with the human genome sequence

Chapter 5. Experimental Evaluation 83

 40

 80

 120

 160

 200

 240

 280

 320

 360

 400

 440

 480

 520

 560

 600

 500 1500 2500 3500 4500 5500 6500 7500 8500 9500

T
im

e
 T

a
k
e

n
 (

in
 S

e
c
)

Number of Characters in Search Sequence

Layouts :

Trellis

 40

 80

 120

 160

 200

 240

 280

 320

 360

 400

 440

 480

 520

 560

 600

 500 1500 2500 3500 4500 5500 6500 7500 8500 9500

T
im

e
 T

a
k
e

n
 (

in
 S

e
c
)

Number of Characters in Search Sequence

Layouts :

bfs-hybrid-IBO

 40

 80

 120

 160

 200

 240

 280

 320

 360

 400

 440

 480

 520

 560

 600

 500 1500 2500 3500 4500 5500 6500 7500 8500 9500

T
im

e
 T

a
k
e

n
 (

in
 S

e
c
)

Number of Characters in Search Sequence

Layouts :

Trellis-EL

 40

 80

 120

 160

 200

 240

 280

 320

 360

 400

 440

 480

 520

 560

 600

 500 1500 2500 3500 4500 5500 6500 7500 8500 9500

T
im

e
 T

a
k
e

n
 (

in
 S

e
c
)

Number of Characters in Search Sequence

Layouts :

bfs-hybrid-IBO-EL

 40

 80

 120

 160

 200

 240

 280

 320

 360

 400

 440

 480

 520

 560

 600

 500 1500 2500 3500 4500 5500 6500 7500 8500 9500

T
im

e
 T

a
k
e

n
 (

in
 S

e
c
)

Number of Characters in Search Sequence

Layouts :

Trellis-ECC

 40

 80

 120

 160

 200

 240

 280

 320

 360

 400

 440

 480

 520

 560

 600

 500 1500 2500 3500 4500 5500 6500 7500 8500 9500

T
im

e
 T

a
k
e

n
 (

in
 S

e
c
)

Number of Characters in Search Sequence

Layouts :

bfs-hybrid-IBO-ECC

Figure 5.11: Node Structure Improvement: Search-time for search strings with 75% sim-
ilarity with the human genome sequence

 40

 80

 120

 160

 200

 240

 280

 320

 360

 400

 440

 480

 520

 560

 600

 640

 500 1500 2500 3500 4500 5500 6500 7500 8500 9500

T
im

e
 T

a
k
e
n
 (

in
 S

e
c
)

Number of Characters in Search Sequence

Layouts :

Trellis

 40

 80

 120

 160

 200

 240

 280

 320

 360

 400

 440

 480

 520

 560

 600

 640

 500 1500 2500 3500 4500 5500 6500 7500 8500 9500

T
im

e
 T

a
k
e
n
 (

in
 S

e
c
)

Number of Characters in Search Sequence

Layouts :

bfs-hybrid-IBO

 40

 80

 120

 160

 200

 240

 280

 320

 360

 400

 440

 480

 520

 560

 600

 640

 500 1500 2500 3500 4500 5500 6500 7500 8500 9500

T
im

e
 T

a
k
e
n
 (

in
 S

e
c
)

Number of Characters in Search Sequence

Layouts :

Trellis-EL

 40

 80

 120

 160

 200

 240

 280

 320

 360

 400

 440

 480

 520

 560

 600

 640

 500 1500 2500 3500 4500 5500 6500 7500 8500 9500

T
im

e
 T

a
k
e
n
 (

in
 S

e
c
)

Number of Characters in Search Sequence

Layouts :

bfs-hybrid-IBO-EL

 40

 80

 120

 160

 200

 240

 280

 320

 360

 400

 440

 480

 520

 560

 600

 640

 500 1500 2500 3500 4500 5500 6500 7500 8500 9500

T
im

e
 T

a
k
e
n
 (

in
 S

e
c
)

Number of Characters in Search Sequence

Layouts :

Trellis-ECC

 40

 80

 120

 160

 200

 240

 280

 320

 360

 400

 440

 480

 520

 560

 600

 640

 500 1500 2500 3500 4500 5500 6500 7500 8500 9500

T
im

e
 T

a
k
e
n
 (

in
 S

e
c
)

Number of Characters in Search Sequence

Layouts :

bfs-hybrid-IBO-ECC

Figure 5.12: Node Structure Improvement: Search-time for search strings fully drawn
from human genome

Chapter 5. Experimental Evaluation 84

range of 35% to 70%. But, the interesting performance gain comes to our notice when

performance of bfs-hybrid-IBO-EL is compared with the construction layout of the Trellis.

In this case the improvement in the search-time is in the range of 50% to 90% – an order

of magnitude improvement.

We now analyze the huge improvement in search-time obtained by the single improve-

ment of embedding of leaf nodes. In this improvement, as the leaf nodes are totally

contained within the parent internal node, the disk accesses as well as main-memory

accesses are saved when the search traversal has to visit a leaf node.

random 25% 50% 75% 100%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Accessed leaf nodes

Accessed internal nodes

Percentage of similarity with the indexed sequence

P
e

rc
e

n
ta

g
e

 a
c
c
e

s
s

 o
f
s

u
ff
ix

−t
re

e
 n

o
d

e
s

Figure 5.13: Percentage of Suffix-Tree Node Access : Internal node vs. Leaf node

As shown in Figure 5.13, the percentage of leaf node accesses varies between 16% to

29%. So, by embedding leaf into its parent internal node, we not only saved the disk

accesses, but also achieved decrease in randomness that could have been introduced by

leaf node access. For example, if internal node file and leaf node file is stored on the same

disk then in order to get a leaf node (after an internal node fetching is done), the disk

head has to move to an altogether different physical location on the disk. This operation

involves a mechanical action (which is more time consuming). But with this improvement,

we have tried to reduce it.

As the number of leaf nodes accessed increases with the increase in similarity of search

strings with the indexed sequence (Figure 5.13), the difference in the search-time perfor-

mance also increases. For example, performance improvement by bfs-hybrid-IBO-EL over

Chapter 5. Experimental Evaluation 85

Trellis in case of random search strings is around 50%. But, for the same two layouts,

the performance improvement in the case of search strings fully drawn from the indexed

sequence is around 90%.

The effect of IDI situation is either very low or absent in this improvement, when we

compare it to the effect of IDI situation of its parent layout. This is visible for the search

string having 9000 characters in it and with 75% similarity with the indexed sequence

(Figure 5.11). This is because, the leaf nodes are now embedded within the parent internal

node.

The comparison of performance of bfs-hybrid-IBO-EL with the existing layouts is de-

scribed in Table 5.3. Along with improvement in search-time performance, this embedding

of leaf nodes also results in a 25% reduction in the suffix-tree space occupancy.

Improvement Average Improvement
over Layout in Percentage

Trellis 77.64%
SBFS 57.85%
Stellar 57.84%

Table 5.3: Performance Improvement by bfs-hybrid-IBO-EL layout over existing Layouts

Now, we look into the performance improvement obtained due to embedding of charac-

ters of the child edges into their parent internal nodes (refer Section 4.2.3 for details). The

two resulting layouts, i.e. Trellis-ECC4 (obtained from the Trellis layout) and bfs-hybrid-

IBO-ECC (obtained from the bfs-hybrid-IBO layout) consistently outperforms their par-

ent layout (except for the randomly generated search strings). The average improvement

of Trellis-ECC over Trellis Layout is around 30%. Whereas the average improvement

of bfs-hybrid-IBO-ECC over bfs-hybrid-IBO is 8%. But, when the performance of bfs-

hybrid-IBO-ECC is compared with the performance of the construction layout of the

Trellis, then the average improvement is 60%.

Now, we analyze the results obtained in this improvement. For the search strings

generated randomly, layouts generated by this improvement have not performed better

than their parent layouts. This is because, in that case the search traversal has not fully

4Where ECC stands for Embedded Child Characters.

Chapter 5. Experimental Evaluation 86

explored the complex structure of the suffix-tree and hence the visit to multi-character

edges is also limited. But, as the similarity portion (in the search strings) increases,

the performance of these layouts improves over the performance of their parent layout.

Because, in such scenarios, the mismatch on the child edge will help these layouts in

reducing the search-time. In the search strings fully drawn from the indexed sequence,

these layouts have slightly performed better than their parent layout. This is because,

the search traversal has avoided access to the indexed sequence in many cases, by getting

required information from the embedded characters of child edges.

The IDI situations in the results of these layouts also try to mimic the IDI situation

of their parent layouts. But a peculiar case arise for Trellis-ECC for search strings with

50% similarity. In this case, the search-time decreases for query strings with length 8000

and more. We have found that the increase in edge traversal for sequence length 8500

to 10000 is mainly attributed to increase in multi-character edge traversal, whereas the

increase in single character edge traversal is comparatively insignificant.

Hence, this physical structure improvement of embedded child edge characters of suffix-

tree internal nodes also helps in reducing the search-time.

Chapter 6

Conclusions

Suffix-trees built over large sequences (such as the human genome sequence) are huge in

size and require secondary storage (such as disk) for their construction and subsequent

usage for varied search applications. There are several efforts which have focused on

practically constructing genome-scale disk-based suffix-trees. On the other hand, scarcity

of efforts for search-optimization of disk-based suffix-trees for search involving complex

traversal patterns, limits the usage of suffix-trees for practical applications.

In this thesis, we have investigated the possibility of optimizing the storage of suffix-

trees from search perspective. In our first step, we have reorganized suffix-tree layouts by

assigning nodes to blocks and resequencing of blocks according to optimized sequence of

blocks. In this reorganization, we have achieved significant reduction in the search-time,

when this search-time is compared with search-time over various other layouts which in-

clude Trellis construction layout as well as state-of-the-art search-optimized layouts. Out

of all the proposed layouts, the layout bfs-hybrid-IBO outperforms the Trellis construction

layout by as much as 75% in the best scenario. The average performance improvement by

the bfs-hybrid-IBO layout over Trellis construction layout is 55%. The same layout also

outperforms the existing state-of-the-art layouts by a margin of 15% on an average. While

the layout reorganization does take considerable time, it is a one-time process whereas

searches will be repeatedly invoked on this index.

In addition to the rearrangement of nodes and blocks, we also investigated the im-

87

Chapter 6. Conclusions 88

provement in the physical structure of the internal nodes. We proposed two improvements

in the structure of internal nodes. In the first improvement, we embedded the leaf nodes

completely within the parent internal nodes without increasing their size. When this im-

provement is applied to the DFS layout of Trellis, it provides search-time improvements

ranging from 25% to 85%, and when used in conjunction with aforementioned bfs-hybrid-

IBO layout, the searches are speeded up by 50% to 90%. Additionally, this optimization

results in a 25% reduction in the suffix-tree space occupancy.

In the second improvement of suffix-tree internal nodes, we have embedded the char-

acters of the child edge into the parent internal node, if that child edge represents more

than one character. When this improvement is applied to the Trellis construction layout,

it provides 30% average search-time improvement. But, when this improvement is used

in conjunction with bfs-hybrid-IBO layout, the average search-time improvement is 60%

when compared with search-time of the construction layout.

Our experiments are conducted on complete human genome sequences that have in ex-

cess of three billion characters, with complex and computationally expensive user queries

that involve finding the maximal common substring matches of the query strings on the

genome database. The experimental framework is instrumented to provide a variety of

supporting statistics, such as intra-block localities, to help explain the observed behaviors

of the various suffix-tree construction and search algorithms.

In summary, our study and experimental results indicate that through careful choice of

node implementations and layouts, the disk access locality of suffix-trees can be improved

to the extent that upto an order-of-magnitude improvements in search-times may result

relative to the classical implementations.

6.1 Future Work

Going ahead in the future, the work mentioned in this thesis can be extended in the

following directions:

1. Online Generation of Search-Optimized Layouts: Currently, we are using

Chapter 6. Conclusions 89

already constructed suffix-tree (in their construction layout form) and process them

to one of the search-optimized layouts. These two steps can be merged into one,

so that the search-optimized suffix-tree can be directly generated from the genome

sequence.

2. Cache-Consciousness: In our work, we have not consciously tried to make the

suffix-tree storage more cache-conscious. However, in the future, the gap between

main-memory accesses and secondary storage accesses may decrease. For example,

in the solid-state disks, the seek-time is very negligible. So, more focus on cache-

consciousness will require in future, in order to reduce the search-time.

3. Parallelization: Although, the process of layout optimization seems to be follow-

ing serial pattern, certain properties can be extracted from the suffix-tree, which

can divide the huge computational task of layout reorganization among different

processing elements, which will lead to reduced reorganization time for various lay-

outs.

4. Search Optimization for Suffix-Trees built on Protein Sequence: In the

current thesis, our focus is totally on the suffix-trees built on the DNA sequences,

which can be extended to protein sequences as well. But, it will require careful

choice of suffix-tree properties which are important from the search perspective.

Because, the alphabet size in case of protein sequence is larger than the alphabet

size for the DNA sequence. For example, protein data comprises of an alphabet

made of 20 amino-acid symbols.

5. Optimal Layout for a Search Data-Set: For a particular search data-set, the

sequence of accessed nodes should be noted. Then the existing layout should be

modified to a new layout according to this sequence of accessed nodes such that

the accesses required for the disk should remain at minimum level. This optimal

layout for a search data-set can be used to further analyze the scope in search-time

reduction.

References

[1] R. Baeza-Yates and G. Navarro, “A Hybrid Indexing Method for Approximate String

Matching”, Journal of Discrete Algorithms, 2000.

[2] M. Barsky, U. Stege, A. Thomo and C. Upton, “A New Method for Indexing Genomes

Using On-Disk Suffix Trees”, In Proceedings of the 17th ACM Conference on Information

and Knowledge Management, 2008.

[3] M. Barsky, U. Stege, A. Thomo and C. Upton, “Suffix trees for very large genomic se-

quences”, In Proceedings of the 18th ACM Conference on Information and Knowledge

Management, 2009.

[4] S. Bedathur and J. Haritsa, “Engineering a Fast Online Persistent Suffix Tree Construc-

tion”, In Proceedings of the IEEE International Conference on Data Engineering, 2004.

[5] S. Bedathur and J. Haritsa, “Search-Optimized Suffix-Tree Storage for Biological Applica-

tions”, In Proceedings of the IEEE International Conference on High Performance Com-

puting, 2005.

[6] W. I. Chang and E. L. Lawler, “Approximate String Matching in Sublinear Expected

Time”, Inn Proceedings of the IEEE Annual Symposium on Foundations of Computer Sci-

ence, 1990.

[7] A. L. Delcher, S. Kasif, R. D. Fleischmann, J. Peterson, O. White and S. L. Salzberg,

“Alignment of Whole Genomes”, Nucleic Acids Research, 27(11), 1999.

[8] A. L. Delcher, A. Phillippy, J. Carlton and S. Salzberg, “Fast algorithms for large-scale

genome alignment and comparison”, Nucleic Acids Research, 30(11):24782483, 2002.

90

References 91

[9] A.A. Diwan, S. Rane, S. Seshadri and S. Sudarshan, “Clustering Techniques for Minimizing

External Path Length”, In Proceedings of 22nd International Conference on Very Large

Databases, 1996.

[10] EMBL, http://www.ebi.ac.uk/embl/

[11] GenBank, http://www.ncbi.nlm.nih.gov/Genbank/

[12] A. Ghoting and K. Makarychev, “Serial and Parallel Methods for I/O Efficient Suffix Tree

Construction”, In Proceedings of ACM SIGMOD International Conference on Management

of Data, 2009.

[13] D. Gusfield, “Algorithms on Strings, Trees and Sequences: Computer Science and Compu-

tational Biology”, Cambridge University Press, 1997.

[14] E. Hunt, M. Atkinson and R. Irving, “A Database Index to Large Biological Sequences”,

In Proceedings of 27th International Conference on Very Large Databases, 2001.

[15] J. Karkkainen and S. Srinivasa Rao, “Full-Text Indexes in External Memory”, Algorithms

for Memory Hierarchies, 2003.

[16] P. Ko and S. Aluru, “Obtaining Provably Good Performance from Suffix Trees in Sec-

ondary Storage”, In Proceedings of the 17th Annual Symposium on Combinatorial Pattern

Matching, 2006.

[17] C. R. Lumb, J. Schindler, G. R. Ganger,D. F. Nagle and E. Riedel, “Towards higher disk

head utilization: extracting free bandwidth from busy disk drives”, In Proceedings of the

4th conference on Symposium on Operating System Design & Implementation, 2000.

[18] U. Manber and G. Myers, “Suffix arrays: a new method for on-line string searches”, In

Proceedings of the First Annual ACM-SIAM symposium on Discrete algorithms, 1990.

[19] E. M. McCreight, “A Space-Efficient Suffix Tree Construction Algorithm”, Journal of the

ACM (JACM), 23(2), 1976.

[20] N. Neelapala, R. Mittal and J. Haritsa, “SPINE: Putting Backbone into String Indexing”,

In Proceedings of the IEEE International Conference on Data Engineering, 2004.

http://www.ebi.ac.uk/embl/
http://www.ncbi.nlm.nih.gov/Genbank/

References 92

[21] B. Phoophakdee and M. Zaki, “Genome-scale disk-based suffix tree indexing”, In Proceed-

ings of ACM SIGMOD International Conference on Management of Data, 2007.

[22] B. Phoophakdee and M. Zaki, “TRELLIS+: An effective approach for indexing genome-

scale sequences using suffix trees”, In Proceedings of the Pacific Symposium on Biocomput-

ing, 2008.

[23] R. Sinha, S. Puglisi, A. Moffat and A. Turpin, “Improving Suffix Array Locality for Fast

Pattern Matching on Disk”, In Proceedings of ACM SIGMOD International Conference on

Management of Data, 2008.

[24] Srikanta B. J., “BODHI: A Database Engine for Biological Applications”, Ph.D. The-

sis, Dept. of SERC, Indian Institute of Science, http://dsl.serc.iisc.ernet.in/

publications/thesis/srikanta.pdf, April 2006.

[25] S. Tata, R. Hankins and J. Patel, “Practical suffix tree construction”, In Proceedings of

20th International Conference on Very Large Databases, 2004.

[26] E. Ukkonen, “Online Construction of Suffix-trees”, Algorithmica, 14(3), 1995.

[27] P. Weiner, “Linear Pattern Matching algorithms”, In Proceedings of the IEEE Symposium

on Switching and Automata Theory, 1973.

[28] S. Wong, W. Sung and L. Wong, “CPS-tree: A compact partitioned suffix tree for disk-

based indexing on large genome sequences”, In Proceedings of the IEEE International Con-

ference on Data Engineering, 2007.

[29] XFS: A high-performance journaling filesystem, http://oss.sgi.com/projects/xfs/

[30] http://docs.google.com/present/view?id=dczwht9g_3318qqfb6f5

[31] http://www.eurekalert.org/pub_releases/2008-07/wtsi-fhg063008.php

[32] http://www.eurekalert.org/pub_releases/2008-10/gb-cgl100408.php

[33] http://www.nature.com/nature/journal/v421/n6921/full/nature01402.html

[34] http://www.ornl.gov/sci/techresources/Human_Genome/home.shtml

http://dsl.serc.iisc.ernet.in/publications/thesis/srikanta.pdf
http://dsl.serc.iisc.ernet.in/publications/thesis/srikanta.pdf
http://oss.sgi.com/projects/xfs/
http://docs.google.com/present/view?id=dczwht9g_3318qqfb6f5
http://www.eurekalert.org/pub_releases/2008-07/wtsi-fhg063008.php
http://www.eurekalert.org/pub_releases/2008-10/gb-cgl100408.php
http://www.nature.com/nature/journal/v421/n6921/full/nature01402.html
http://www.ornl.gov/sci/techresources/Human_Genome/home.shtml

References 93

[35] http://www.ornl.gov/sci/techresources/Human_Genome/project/benefits.shtml

[36] http://www.reuters.com/article/rbssTechMediaTelecomNews/

idUSN1632106820090816?rpc=60

http://www.ornl.gov/sci/techresources/Human_Genome/project/benefits.shtml
http://www.reuters.com/article/rbssTechMediaTelecomNews/idUSN1632106820090816?rpc=60
http://www.reuters.com/article/rbssTechMediaTelecomNews/idUSN1632106820090816?rpc=60

	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Introduction
	Motivation and Research Challenges
	Motivation
	Research Challenges

	Notations
	Background
	Suffix-Tree
	Suffix-Links

	Construction of Disk-based Suffix-Trees
	Search Algorithm

	Thesis Contributions
	Outline of Search-Optimization Process

	Organization

	Survey of Related Research
	Suffix-Tree Construction
	Suffix-Tree Search-Optimization

	Search-Optimized Suffix-Tree Layouts
	Requirement for Search-Optimization of Suffix-Tree Storage
	Reorganization of the Suffix-Tree Layout
	Node Level Rearrangement: Node-to-Block Assignment
	Block Level Rearrangement: Determining Optimized Block Sequence

	Partition-based Suffix-Tree Layouts
	Search-Optimized Suffix-Tree Layouts
	Understanding Existing Suffix-Tree Layouts
	Trellis Layout
	SBFS Layout
	Stellar Layout

	BFS Layouts: Node-to-Block Assignment
	Common Rearrangement Function
	1Cr4Cd Layout
	bfs-hybrid Layout
	OneLinkIn Layout
	Time-Complexity for Node-to-Block Assignment

	BFS Layouts: Block Sequence Determination
	Time-complexity for Block Sequence Determination

	Implementation Issues

	Physical Structure Improvements of Internal Nodes
	Understanding Physical Structures of Suffix-Tree Nodes
	Structural Improvements of Suffix-Tree Nodes
	Node Pointer Differentiation Bitmap
	$-Leaf Pointer Usage Analysis
	Implementation of Bitmap

	Embedded Leaf Nodes
	Embedded Characters from the Indexed Sequence
	Analysis of NULL Pointers
	Analysis of Substring Length of Incoming Tree-Edge
	Multi-Character Child Edge Traversal Analysis
	Implementation of Embedded Characters of Child Edge

	Experimental Evaluation
	Experimental Setup
	Construction Time of Various Suffix-Tree Layouts
	Search Results
	About Search Experiment Data
	Search Experiment Environment
	Search Results: Layout Reorganization
	Quantification of Layout Goodness
	Static Locality
	Dynamic Locality

	Search Results: Physical Structure Improvement of Internal Nodes

	Conclusions
	Future Work

	References

