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Chapter 1

Abstract

We present SPINE, an index structure for genomic databases. SPINE features horizontal
compaction of tries resulting in a backbone formed by a linear chain of nodes representing
the underlying genome sequence. The nodes are connected by a rich set of edges for facil-
itating fast forward and backward traversals over the backbone during index construction
and query search.

In this paper, we describe algorithms for SPINE index construction and for searching
this index to find the occurrences of query patterns. Our experimental results on a variety
of real and synthetic genomic sequences show that apart from being space-efficient, SPINE
takes lesser time for both construction and search as compared to the classical suffix tree
based indexes, both in-memory and on-disk. We also demonstrate how SPINE’s search
performance is orders of magnitude faster than BLASTN, the popular sequence alignment

tool.



Chapter 2

Introduction

Biological sequence data, including DNA and protein sequences, is being produced at
a rapid rate and quantity by geneticists and medical researchers. These sequences are
stored in large libraries such as NCBI Genbank [14], EMBL [15], Swissprot [17], etc. An
extremely common operation on these libraries is to search over them looking for various
kinds of biologically useful information, such as motifs, local and global alignments, phys-
ical and genetic maps, etc. For example, a biologist might wish to compare the rat genes
involved in hypertension against the human and mouse genomes in order to establish the
correspondence between their genetic sequences.

Effective searching is hampered by the size and number of genome sequences — for
example, it is estimated that the volume of data at NCBI Genbank, the world’s largest
repository of sequences, doubles every year. This is not surprising when we consider that
mammalian genomes such as the human genome are typically around 3 billion base-pairs
in length [10]. Further, the number of queries on these databases has also seen an explosive
growth. Therefore, there is a clear need for developing mechanisms that can significantly

speed up search-based operations on large sequence databases.
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State-of-the-Art

The sequence search tools that are currently used by biologists can be broadly classified
under two heads [13]: Seed-based, exemplified by BLAST, the classical sequence alignment
package [7], and SuffizTree-based, exemplified by MUMmer [6], the recently-developed
alignment software from Celera Genomics and TIGR (The Institute for Genomics Re-
search) .

In the seed-based approach, the data sequence is first searched for exact-matches of
short seed sequences ' from the query sequence. These seed sequences are stored in a
keyword tree that is usually implemented as a hash table. The successful exact matches
then form the candidates that are extended into better alignments [7].

In the SuffixTree-based approach, on the other hand, an explicit index called the
suffix tree [1] is created for the entire data sequence — this index stores all suffixes of the
data sequence in a vertically-compacted trie structure. The popularity of suffix trees can
be ascribed to their having linear (in the size of the data) construction time and space
complexity as well as linear (in the size of the query) searching times.

While almost all the current tools fall under one of the above approaches, recently
a two-level search technique called MAP was proposed in [12], wherein a preprocessing
phase using an approximate index is used to first filter out those regions of the data
sequence that potentially contain matching entries, and then a seed-based approach is

used on the filtered regions.

The SPINE Index

We present in this paper a new index structure, called SPINE (Sequence Processing IN-
dexing Engine), which has a variety of advantages with regard to the previous approaches

in terms of its search performance. The quantitative improvements are demonstrated

Tt has been empirically determined that a seed length of 11 yields good results for DNA sequences.
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by comparing SPINE against both BLAST and MUMmer for a variety of real and syn-
thetic genomic sequences. Specifically, our experimental results indicate that for memory-
resident indexes, SPINE is about thirty percent faster with regard to MUMmer, while for
disk-based implementations, the gap is substantially more. With respect to BLAST, we
find that SPINE provides search times that are about three to four orders of magnitude
faster (in [11], MAP was reported to be between one to two orders of magnitude faster
than BLAST).

A sample picture of a SPINE index is shown in Figure 2.1 for the data sequence
aaccacaaca. At its core, the SPINE index consists of a backbone formed by a linear
chain of nodes connected by vertebra edges, representing the underlying genome sequence.
The nodes are additionally connected by forward ribs and extension ribs, and backward
links for facilitating fast traversals over the backbone during the index construction and
query search processes. All the edges have associated labels that are assigned during the
construction process and are used to determine which paths are valid for traversal in the
SPINE structure.

From an abstract viewpoint, SPINE can be viewed as a horizontal compaction
of the trie of the data sequence, in marked contrast to suffix trees which represent, as
mentioned earlier, a wvertical trie compaction. The motivation behind this horizontal
compaction is to avoid the duplication of common segments among the various paths in
the trie, thus reducing the number of nodes and thereby the space required to index a
sequence. In fact, it carries this to the logical extreme of representing each character of
the original data sequence only once in the index structure. This is in contrast to the
suffix trees, where the number of nodes may go upto double the number of characters in
the sequence.

Further, the improvement is not restricted to just the number of nodes, but the size
of SPINE nodes is also smaller than their suffix-tree counterparts. The average index
overhead per sequence character never exceeded 12 bytes in all our experiments with
SPINE, whereas MUMmer requires 17.4 bytes per character indexed. We hasten to add

here that there is a rich body of literature that has attempted to reduce the index overhead
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Figure 2.1: Example SPINE Index (for aaccacaaca)

of suffix trees — for example, Lazy Suffix Trees [4] and Kurtz Suffix Trees [3] require only
8.5 bytes and 12.5 bytes per indexed character — however, as described in detail later in
Chapter 3, such optimizations typically adversely impact either the performance or the
supported functionality, and are therefore not viable from a general usage perspective.
The horizontal compaction strategy results in SPINE being able to handle larger se-
quences than suffix trees for a given memory budget. And when it comes to disk-resident
indexes, SPINE exhibits significantly higher node locality and much fewer edge traversals,
making it attractive for disk-based implementations. Further, due to the simplicity of its
structure, it appears easier to develop good buffering policies for SPINE, as compared to

suffix tree based indexes.



Chapter 3

Related Work

A rich body of literature exists with regard to optimizing the space occupied by suffix-trees
— however, these optimizations typically adversely impact either the performance or the
functionality. For example, Kurtz [3] proposed an implementation that requires 12.5 bytes
per character indexed for DNA sequences. However, although the space required is less,
suffix trees built using this technique take more time for construction and searching times
are not good as well due to comparatively larger number of edge traversals. An even more
space-efficient implementation, called Lazy Suffix Trees [4], was recently proposed, taking
only 8.5 bytes per character indexed. However, it has constraints on its functionality,
including not being online, and not being able to perform approximate and subsequence
matching efficiently due to the absence of suffix links. Finally, suffix arrays[9] reduce the
space requirement to just 6 bytes per indexed character but increase the time complexity
from linear to O(d log d), where d is the sequence length.

A related class of indexes is DAWGS - Direct Acyclic Graphs [8], but these indexes lack
position information of the matching pattern in the data sequence. Also, it is not possible
to do approximate matching and finding multiple occurences of a pattern efficiently.

In order to make suffix-tree construction on disk efficient, a partition-based technique
was recently proposed in [10]. For this algorithm to work, it requires dispensing com-
pletely with the suffix links that are essential for retaining the linear time complexity —

as a result, the algorithm in [10] has quadratic complexity. Further, the removal of the
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links makes approximate matching and subsequence matching rather inefficient. Finally,

this is not an online algorithm — that is, if a new character is added to the sequence, the

entire index has to be rebuilt.



Chapter 4

Contributions

In this report, we describe the complete SPINE index structure. We also present al-
gorithms for SPINE index construction and for searching this index to find the first
occurrence as well as all occurrences of a query pattern. Further, the methodology to find
all matching subsequences between two given sequences is described. The performance of
SPINE is compared against MUMmer and BLASTN over a variety of real and synthetic

genomic sequences, for both memory-resident and disk-resident scenarios.



Chapter 5

Organization

The remainder of this paper is organized as follows: In Chapter 6, the SPINE structure
is presented in detail. The SPINE construction algorithm is described in Chapter 7
with a correctness proof in Chapter 8, and the searching algorithms are described in
Chapter 9. The specifics of our prototype implementation are outlined in Chapter 10.
Experimental results on the performance of this prototype are highlighted in Chapter 11
and 12 for memory-resident and disk-resident indexes, respectively. Finally, in Chapter

13, we summarize the conclusions of our study and outline future avenues to explore.



Chapter 6

The SPINE Index Structure

The central component of SPINE is the “backbone” (Figure 2.1). The backbone comprises
of a chain of vertebras. Each vertebra on the backbone corresponds to a character in the
input data sequence, and this character is used to provide a character label (CL) for the
vertebra. The vertebras appear in the same order as the associated characters in the input
sequence, and their edge direction is always downstream.

While the backbone forms one source of connectivity between the nodes, there are
additional directed edges that connect nodes across the backbone. There are two varieties
of forward or downstream edges, called “ribs” (full lines in Figure 2.1) and “extension ribs”
(dotted lines in Figure 2.1), respectively. These forward edges represent (in conjunction
with the backbone) all possible suffixes of the data sequence, and are used during the
query search process. Each rib is also labeled with a character label, corresponding to the
character that it represents in the associated suffix.

The backward or upstream edges, called “links” (dashed lines in Figure 2.1) are created
and used during the construction process of SPINE. Also, they aid in performing some of
the search operations more efficiently.

The SPINE index in Figure 2.1 represents the horizontal compaction of all the suffixes
in the corresponding Trie shown in Figure 6.1. In this compaction that SPINE brings to
bear, all matching paths in the trie are merged into a single path. For instance, ccacaaca

appears thrice in the trie but only once in SPINE. This means that all paths that were

10
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Figure 6.1: TRIE (for aaccacaaca)

there in the original Trie continue to be represented in SPINE, and therefore there is
no possibility of false negatives. However, false positives, that is, invalid sequences, may
arise. For instance, in Figure 2.1, a path for aacaac appears to exist in the SPINE index
even though it is not a subsequence of the given data sequence.

To avoid such false positives, we take recourse to a novel labeling strategy for the ribs,
extension ribs, and links. Specifically, each rib, extension rib and link has a numeric label
(Link Label(LL) with the links and Validity Label(VL) with the ribs and extension ribs)
attached to it. These labels are assigned during the construction process and are used
while traversing the index during the search process to avoid false positives. For example,
in Figure 2.1, the rib leading out of the topmost node has the label c(0), with the number
in brackets (in this case, 0) representing the validity length. Similarly, the link from the
node 3 to the top node has a validity length of 0.

In the remainder of this section, we describe the components of SPINE in detail and
the associated terminology. Our discussion assumes that the data sequence is composed

of n characters.
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6.1 Vertebra Backbone

The backbone is initially created with a single node, called the root node, and for each
character in the data sequence, a new node is added at the bottom of the backbone using
a vertebra edge labeled with the corresponding character. The node that is currently
at the bottom of the chain is referred to as the tail node, N;,;. Each node has an
integer identifier, with the identifier indicating the position of the node with respect to
the sequence. That is, a node’s identifier is equal to the length of the sequence above
the node. This identifier is not stored in the node, but is used merely for representation.
With this naming convention, the root node has identifier 0, and the tail node of the
entire sequence has identifier n. From now onwards, we will refer to a node i as V;.

We now define some terminology that we will use to describe the remaining components
of the data structure: S; denotes the string formed by the concatenation of the characters
on the backbone from the root node to N;. AllSuf; denotes the set of all suffixes of
Si, that is, AllSuf; = {si, Si2, Si3, Sia, - - ., Sii} Where s;; is a suffix of S; of length j,
and so s;; is a suffix of s;5, and so on. With this definition, the set of all suffixes for
the complete sequence (of length n) is denoted by AllSuf, = {sn1, Sn2, Sn3s Sndy - -« ; Snn }-
Finally, EndSuf; denotes the set of suffixes of S; ending at V; (i.e. paths exist for them
from the root node to N;), while EndSuf;(k) denotes the set of suffixes in EndSuf; that

are of length £ or less.

6.2 Links

Consider the following situation: Let s be a common suffix of S, and S,,, where S,,
is a prefix of S,, that is, s € AllSuf, A s € AllSuf, (m < n). Then s will not
terminate at N,, which means that s € EndSuf,. Now assume that s,; is the longest
suffix of S, which does not end at N,. In other words, s, is the longest suffix which
had been previously created and now also features in the suffixes of S,,. This implies that
Ipllp < n) A (sur € EndSuf,), i-e. there exists some upstream node N, where s,

terminates.
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Whenever the above situation occurs, a link is constructed from N, to NN, with a

LL =k.

c(0)

Figure 6.2: Links (for sequence aca)

An example of link construction is shown in Figure 6.2 for the sequence aca. Here,

starting from the root, all the suffixes of aca, except a, end at Nj, i.e.

AllSufs ={_a ,ca,aca}
N~ ———
EndSufs = {ca,aca} and a € EndSuf,

Therefore, the link at N3 points to the node which indexes a, i.e. N;. The details of how
the labels are assigned to links are discussed later in Chapter 7.

Figure 4 gives an algorithm ALLSUFGEN to show how AllSuf;, the set of all suffixes
of the sequence ending at N;, can be recovered by traversing the link chain starting at
N;_1. In this algorithm, LinkLabel(j) is a function that returns the LL associated with
the link emanating from N;, while LinkDest(j) is a function that returns the identifier
of the node pointed to by the link emanating from N;. LinkDest(j) returns NULL for
a node from which there is no link, i.e. the root node. This means that the algorithm

terminates when the root node is reached.
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ALLSUFGEN(i)

1. AllSuf; = EndSuf;

2. | = LinkLabel(i — 1);
3. j = LinkDest(i — 1);
4. while (j # NULL)

5. {

7. AllSuf; = AllSuf; U
EndSuf;(l);

8. | = LinkLabel(j);
9. j = LinkDest(j);
0. }

11. return AllSuf;

Figure 6.3: ALLSUFGEN

6.2.1 Important observation regarding LLs

As described, the link label 1 for a link from node a to node b represents the maximum
length of the suffix s which is indexed by node b instead of node a. But s would again be
a suffix of the all suffixes ending at node a. This implies that s would exist above both
nodes a and b. So, this can be stated as, ”A sequence of length 1 would be same above
node a and node b, if there exists a link with LL equal to | from node a to node b”. For
instance, in Figure 2.1, there is a link with LL=3 from node 9 to node 3. And we can
observe that a pattern of length 3 aac is present above both node 3 and node 9.

Looking at the LL values and the maximum LL value for the sequence, one can infer
the degree of repitition of patterns in the sequence. And this could be a very useful
information for the biologists who just want to study particular sequences.

The above mentioned observation would be used to find the multiple occurences of a

pattern in a given sequence. The methodology will be described in Chapter 9.
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6.3 Ribs

Suppose SPINE is built for S; i.e. the first j characters of the sequence. Now to construct
SPINE for S;;; from S; (to append the (j + 1) character), we need to extend all the

suffixes of S; by this (j + 1"

character. The newly added character, ¢y, on the
backbone automatically extends the suffixes that feature in EndSuf;. For the remaining
suffixes in AllSuf;, however, the appropriate upstream nodes are reached by traversing
the link chain. If a rib/vertebra does not already exist for ¢, at any node in the link

chain, a new rib is created from that node to the newly-created node, N;;;.

The traversal of the link chain terminates if any one of the following conditions occur

e the root node is reached
e a node having an outgoing vertebra labeled with c,;; is reached

e a node having an outgoing rib labeled with ¢ is reached

The first stopping condition is obvious since no further traversal is possible, while the
other two conditions reflect the fact that the suffix in question has already been extended.

When a new rib is created originating from a node, its CL is set to ¢y and its VL
is set to the length of the longest suffix of S;,; 1 ending at that node, which is given by
the LL of the last traversed suffix link. A rib is valid to traverse from all the suffixes with
length < VL of the rib. Intuitively, the rib VL represents the length of the longest prefix
that can be traversed from the root before the rib is traversed. This means that while
traversing SPINE, a rib can be traversed only if the length traversed from the root to the

node from which the rib emanates is < VL of the rib.

6.4 Extension Ribs

As discussed above, ribs are used to extend the suffixes ending at any node to obtain

newly created suffixes due to addition of a new node at the tail. And the suffixes which
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are extended are indicated by the VLs of the ribs. Now if while extending the suffixes,
we find that there already exists a rib with the same CL but whose VL is less than the
length of the longest suffix which needs to be extended, then an extension rib is used to
further extend the rib. For ease of presentation, we will hereafter refer to the extension
ribs as extribs.

Each extrib has an associated VL, which is the length of the longest suffix it is extend-
ing, as well as a “parent rib label” (PRL), which is the VL of the rib that it is extending.
This means that at any node there can be extribs with as many different PRLs as the
number of ribs ending at that node. And for each PRL there can be many different extribs
corresponding to different lengths of suffixes they extend. And so, for a node the number
of extribs will not be fixed which will result in a non-uniform node size.

We solve the above problem by maintaining the extribs in a chained fashion. That
is, the first extrib in the chain is located at the destination node of the rib which failed
the validity test, and the second extrib is located at the destination node of the first
extrib, and so on. This ensures that at any node there is at most only one extrib. So,
whenever we need to create an extrib, instead of creating it from the destination of the
rib corresponding to its PRL, we traverse to the node at the end of the extrib chain, and

then create a new extrib from this node to the tail node.

Creation of ExtRib

Whenever the Rib Validity Test fails, the extrib chain is first checked to see whether there
exists an extrib with PRL same as the VL of the rib which failed the test, and a VL that
is > length of longest suffix that needs to be extended. If such an extrib is found then a
new extrib need not be created because the suffix in question has already been extended.
Otherwise, a new extrib is created at the end of the chain with the appropriate VL. and
PRL.

To help make the above discussion clear, we present a sample construction of extribs

in Figure 6.4. The notation for the labels of extribs used in the figure is: PRL(VL).

Appending Ny (Figure 6.4(a)) When extending the suffixes of string above N; by ’a’,
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@ () ©

Figure 6.4: Extension Ribs

we need to extend all the suffixes retrieved by the ALLSUFGEN algorithm. In this
process, after traversing the link at N7, we see that the rib from Nj to Ng, say R1,
fails the validity test (VL of R1 = 3 < LinkLabel(N;) = 5). Hence an extrib is
created at Ng with VL equal to 5 and PRL = 3 (VL of R1) (See Figure 6.4(b)).

Appending N; (Figure 6.4(b)) In this case, we need to extend a suffix of length 7
(LinkLabel(N;_1)). So, R1 again fails the VL test (3 < 7). Hence the extrib chain
from Nj is traversed to find an extrib with VL > 7 and PRL = 3. Though the extrib
from Ng has the same PRL, it doesn’t have the required VL. Hence, an extrib is
created at the end of chain, i.e., at N; with its destination as N;, VL as 7 and PRL

as 3. Figure 6.4(c) shows the index that results after appending N;.
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Structural Invariants

Based on the above discussion on vertebras, ribs, extribs, links and their labels, we can

state the following invariants of the SPINE data structure:

e Excepting the root, every node has exactly one link that points to an upstream
node. Every node, except the tail node, has one vertebra pointing to the next
node downstream. Given a character set with alphabet size K, the number of
ribs emanating from a node can range between 0 and K — 1. These ribs point to
downstream nodes. In the case of DNA sequences, K = 4, and therefore the number

of ribs is in the range [0, 3]. The tail node will always have zero ribs.

e A path from the root to a node represents the first occurrence of the sequence

represented by this path, in the complete data sequence.

e A link from a N; points to the N; that indexes the longest suffix of S; which is not
indexed by N;. The LL of the link represents the length of this longest suffix.

e All the suffixes till any node n are represented by the valid paths from the root to
that node and to the nodes which can be reached using the link chain starting at

node NN,.

e The ribs terminating at node 7 represent extensions to the suffixes of S;_; to obtain

the suffixes of S;.

e The CL of a newly created rib is set to ¢y and its VL is set to the length of the

longest suffix of the Sju 1.

e The extribs are used to extend the suffixes ending at some node where there already
exists a rib with the CL same as the new character being appended but a VL less

than the required VL.

e There can exist only one extrib at any node, as any other extrib required at that

node becomes a part of the extrib chain below that node.
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Given this structure, we can show that the valid paths in the SPINE correspond exactly
to the set of subsequences that occur in the data sequence — the detailed proof is given

in Chapter 8.



Chapter 7

SPINE Construction Algorithm

In the last chapter, we presented an overview of the SPINE index structure. We now
move on to presenting an online algorithm for constructing this structure. The entire
pseudo code for the algorithm is given in Figure 7.1.

We start off with the SPINE initially consisting of just the root node and then, for
each new character in the sequence, a node is appended to the tail of the SPINE. The
vertebra connecting to the newly-added node is labeled with the new character, and the

associated links and ribs are created as required.

7.1 Link/Rib/ExtRib Construction

As mentioned earlier, every node, excepting the root, has a link associated with it. When
the first character is appended, a link with LL equal to 0 is created from the new node
to the root node. For all subsequent nodes, the following process is followed: Link of
the parent of Ny is traversed upstream. Let the destination node of the current link be
Neyrr- At Neypr it is checked whether a vertebra/rib already exists for ¢y. If it is not
present, a new rib is constructed from N, to Ny . Then, the link at N, is traversed
upwards and the same process is repeated with the new N,,;...

The above process stops with the creation of a new link, which happens when one of

the following cases occur during the upward traversal of the link chain:

20
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e A vertebra is found with CL = c,;. In this case, a link is created from Ny,

to the destination node of the vertebra.

e A rib is found with CL = c;a5. In this case, if the Rib Test does not fail, then
a link is created from N,; to the destination node of the rib. Otherwise, the extrib
chain is traversed to find an extrib with VL. > LL of the link and belonging to the
rib which failed the test. If found, then a link is created from N;,; to the destination
of that extrib. Otherwise, a new extrib is created from the end of the extrib chain
to the N;,; with appropriate PRL and a new link is also created from N to the

destination node of the last traversed extrib.

e A rib is created from the root node. Here, a link is created from N to the

root node.

Whenever a new rib/extrib/link is created, it is immediately assigned a VL (and also

PRL for extribs). The method of assigning these labels is explained next.

7.2 Assigning Validity Labels

Ribs and Extension Ribs

A newly created rib or extrib is always given a VL equal to the LL of the last link traversed
prior to its creation. An extrib is assigned a PRL equal to the VL of the rib which fails
the validity test. To make the presentation uniform between ribs and extribs, we assume

that a rib has an implicit PRL field which is always equal to its VL.

Links

Two cases exist while assigning a LL to a newly constructed link.

e When a rib or extrib is found with VL equal to or greater than the LL of the last

link traversed, the new link is given a LL which is one greater than the LL of the last
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link. An exception to this rule is that all links that point to the root are assigned a

LL of 0.

e If a new link is constructed just after creating a new extrib, then it is assigned a LL
which is one more than the VL of the last rib/extrib traversed whose PRL is same

as the PRL of the newly created extrib.

7.3 Construction Example

To help clarify the above discussion, we now describe how the SPINE index is created for
the same input sequence used in Figure 2.1, i.e. aaccacaaca. For better readability, the
SPINE index is reproduced in Figure 7.2.

In the beginning, a root node is created with identifier 0. Subsequently, whenever a
new node is added to the backbone, we start traversing the link chain beginning from
the parent node of the newly added node. During this traversal, the various CASES

highlighted in Figure 7.1 may arise, and we discuss each of them below:

CASE 1: Vertebra Exists
This case occurs when a vertebra for c¢;,;; exists at Ng,,. For example, consider
appending N,. Here, we traverse the link of N; to reach N, and find a vertebra for

a’. Hence we create a link from N, to N; and assign it a LL of 1 (= LL of last

traversed link + 1)

CASE 2: Rib With Required VL Exists
Consider appending ;. In this case, we find that a rib for ’¢’ with required VL
exists at V. Hence a link is created from N, to Nj (the destination of the rib) with
a LL of 1 (= LL of last link traversed + 1).

CASE 3: Rib Creation
This case occurs when there exists no rib/vertebra for the character being appended.

Consider appending N3. Traverse the link of Ny to reach NV;. Since there exists no
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rib/vertebra for 'c’, make a rib from N; to N3 and assign it a VL of 1. Now traverse
the link of V; to reach Ny. And again since there exists no rib or vertebra for ’c’,
a rib is created for character 'c’ from Ny to N3 with VL 0. Since the root node has

no link, we end the process by creating a link from N3 to Ny with LL 0.

CASE 4: ExtRib Creation This case occurs when there exists a rib with VL less than
the required VL. Consider appending N;. Traverse the link of Ng to reach Nj3. At
N3, there exists a rib for character ’a’ (the character being appended) but with VL
less than the LL of the link last traversed (1 < 2). And we see that there is no
extrib from Nj (the destination node of the rib). So, an extrib is created from Nj
to N7 and its VL and PRL are set to 2 (LL of the last traversed link) and 1 (VL
of the rib), respectively. Then, a link is created from N; to N5 (the last traversed
rib/extrib with the same PRL as the newly created extrib) with a LL of 2 (= LL of
the last traversed rib/extrib belonging to the same PRL + 1).

7.4 Implicit and True SPINE

A suffix tree can have two versions: implicit and true [1]. In the implicit tree it is possible
that there are suffixes that do not terminate at a leaf node — this happens when a suffix
is a prefix of another suffix in the sequence. This feature is eliminated in the true suffix
tree by the simple expedient of adding a special character ‘$’ to the end of every path in
the tree, thereby ensuring that all suffixes terminate in leaf nodes.

Similar to the above, we can also have Implicit SPINE and True SPINE. The SPINE
indexes discussed so far have been implicit SPINE, where all suffixes do not have to
terminate at the tail node. But, just like suffix trees, by using ‘$’ to terminate the
sequence, we can generate a true SPINE that will have all suffixes terminating at the tail

node.
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APPEND (n + 1) character

01. ¢t = (n+ 1)th character

02. Append N,,;; to the SPINE using a vertebra
03. Niait = Np1

04. Neyrr = Link(n) pest

05. found = FALSE

06. WHILE (NOT found)

07. IF (Newrr # NULL )

08. s = Most recently traversed link

09. Check for a ¢y, vertebra/rib at Ny,

10. IF (no edge found) /* CASE 3 */
11. Create a rib r from Ny t0 Nygir;

12. TCoL = Ctails

13. Tve = SLL;

14. ELSE IF (a vertebra is found) /* CASE 1 */
15. newlinkpest = Newrra1;

16. newlinkr, = sy + 1;

17. found = TRUE;

18. ELSE IF (a rib ris found)

19. IF (SLL > TVL) /* CASE 4 */

20. Search for an extrib e with ey, >= s;1, & eprr. = rvi
21. IF (there exists such e)

22. newLinkpest = €pest;

23. newLinkry = spr + 1;

24. ELSE

25. Create an extrib e from the extrib chain end to Nyg;.
26. evL = SLL;

27. €pPRL = TVL;

28. Let lrib = last rib/extrib traversed with PRL = epgr.
29. newlinkpess = ribpest;

30. newlLinkyy, = lriby + 1;

31. ELSE /* CASE 2 */
32. newlinkpest = Tpest;

33. newlinkry = spp + 1;

34. found = TRUE;

35. END-IF;

36. IF (found) //Construction process ends

37. Create newLink from Nyy;

38. ELSE // Still more suffixes to be updated

39. Newrr = link(ncurr)Dest;

40. END-IF;

41. ELSE // link chain ends

42. newlLinkpes = 0;

43. newlLinkry, = 0;

44. Create link new Link;

45. found = TRUE;

46.  END-IF;
47. END-WHILE;

T* M 4 O TTOYTNTTY 7 a1 AT
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Extenson Rib
PVLL(VLL)

Vertebra
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Figure 7.2: Example SPINE Construction (for aaccacaaca)
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Chapter 8

Proof of Correctness

Notation

N; - i*" node on the backbone

S; - string on the backbone till NV;

ALLSUF; - set of all suffixes of S;

ALLSUF;(l) - set of suffixes of S; of length less than or equal to !
END,; - set of suffixes of S; ending at V;

END;(l) - set of suffixes in END; of length less than or equal to [
si; - suffix of S; of length j

LL; - LL of the link of N;

DESTLINK; - destination node number of the link of N;
DESTRIB; - destination node number of the rib at N; for character ¢
VL - VL of the rib at NN; for character ¢

26
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Lemma 1:

A walid path from root to any node, say N;, indicates that the string corresponding to the

path is a suffiz of S;.

Proof:

We can reach a node through a vertebra or a rib/extension rib.

First consider the case of a vertebra. A vertebra into some node N; always extends
some suffixes of S;_; to get the suffixes of S;. Hence any path to a node N;, which

ends in a vertebra represents some suffix of S;.

Second, let us consider when a rib is created. When appending any node N;, we
extend the suffixes of S; ; to get the suffixes of S;. Some of these suffixes, as
explained in last chapters, are extended by using ribs/extension ribs during the
construction process. And according to the construction algorithm, we create a rib
from some node N;(j < %) if we have to extend some suffix s;,(which is same as
5(i—1)k) to obtain s(1) and the destination of all the ribs created during appending
of N; is N;. In other words, ribs are created to accomodate the suffixes that are
newly created by the addition of new character at the end of the sequence. For
example, s;_1); is a suffix of both S; and S;_1 but s;41)(si—1)r concatenated by
the newly appended character) occurs only in S;. So, ribs coming into any node N;,
are created only when that node is being appended to the vertebra and no other
time and each one of these ribs correspond to different suffixes of S;. So a path at
any node N; which ends in a rib always represents a suffix of the S;. The above
explanation is true for extension ribs as well because the destination of an extension

rib is always the node that is being appended.

Hence, any valid path from the root node to any node NV; always represents a suffix

of the string .S;.
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Theorem:

The addition of ribs and extension ribs do not create false positives in SPINE

Proof: Consider that we have no false positives in SPINE for S; and we are extend-
ing it by some character c¢. Appending a character to the Spine is nothing but extending
the previously existent suffixes by the newly added character and these suffixes are re-
trieved by traversing up the link chain. This is equivalent to extending all the suffixes of

Si by C.

Now we have to prove that no additional paths other than those corresponding to the

new suffixes of S;;; are created on SPINE when N,,; is appended to the backbone.

When N;,; is appended at the end of backbone, all the suffixes of S; in END; are
automatically extended by the new vertebra at the end. According to Lemma 1, we have
that all the paths to any node V; represent suffixes of S; and therefore we are extending
only the valid suffixes and none other.Hence the addition of vertebra does not create any

false positives.

Next we consider the additional paths created by addition of ribs/extension ribs. Now
for extending the other suffixes of S; which do not belong to EN D;, we traverse the link
chain starting from N; as explained in section 2.1. Suppose from N;, we traverse the
link and reach N;(j = DESTLINK;), and the LL; is I. By definition of a link we have,
ALLSUF;(l) = ALLSUF;(l). Now at Nj,

Case 1: No Rib/Vertebra exists
By definition of link, we have s;, ending at N;. But since there exists no rib/vertebra

for c at N;, none of the suffixes in END; has been extended by c.

In particular, END,(l) represents the suffixes in ALLSUF;(l) ending at N; and
only these suffixes and not all the suffixes in END;, need to be extended by c.



CHAPTER 8. PROOF OF CORRECTNESS 29

Acoording to the construction algorithm, a new rib is created at IV; for ¢ and given

a VL of [.

This VL indicates that the rib is valid only for suffixes in END,(l) i.e only the

suffixes of length less than or equal to / ending at N; are extended.

Since we have no false positives in SPINE for S;, we have no false positives for
SPINE forS; (j < 7). Now again using Lemma 1, all the paths that end at N; are
suffixes of S; and this set is nothing but END;. And using the VL of the rib, we
ensure that only the required suffixes are extended. Hence, the addition of a rib

causes no false positives when appeding N, .

Now we have END;(l) C ALLSUF;(l) and by creating rib at N, we extended
only the suffixes in END;(l). So, we have to check the other suffixes in the set
ALLSUF;(l) — END;(l)

But we have (ALLSUF;(l) = ALLSUF}(l)) and the suffixes in the set ALLSUF;(l)—
ENDj(l) can be retrieved by traversing the link chain at NV;. Therefore we traverse

the link at /V; and repeat the same process.

Case 2: Extension Rib creation

Let dest = DESTRIBJC- and vl = VL;

This case occurs when (vl < [). This indicates that this rib is valid for END;(vl)
but not s;. Hence we create a extension rib from Nges to N;y1 and its given a VL

of I. This VL ensures only the required suffixes are extended as explained in Case

1.

Now there can be multiple ribs ending at Ng.s; and and we need to identify to which

one of them the newly created extension rib corresponds to.

We add additional information parent rib label(PRL), to the extension which is
nothing but the VL of the rib which failed the test. This works because all the
ribs ending at a node have different VLs because all of them are extending different

suffixes of the same string. Thus the extension ribs do not create any false positives.
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So, we have seen that given a SPINE for S;, addition of ribs/extension ribs to it to obtain

SPINE for S;.; doesn’t create any false positives.



Chapter 9

Searching Using SPINE

We now move on to describing how SPINE can be used for the various search operations
that are commonly used by biologists. We first discuss how to find an exact match of a
given query pattern in a data sequence. Then we extend this algorithm to find all the
exactly matching subsequences between two given data sequences. Finally, we discuss
how to obtain all the occurrences of a query pattern, and then describe how approximate

matching can be done on SPINE.

9.1 Longest Prefix Match

Here our goal is to find the first occurrence of the longest prefix of the query pattern that
is present in the data sequence. The procedure for achieving this goal on SPINE is shown
as Algorithm MAX_MATCH in Figure 9.1.

In this algorithm, we start from the root node and traverse all the forward edges
(vertebras, ribs and extribs) in accordance with the query pattern. A vertebra edge can
be traversed at any time. Before traversing a rib, however, a check is made as to whether
the length traversed thus far is leq VL of the rib. If this test fails, then the extrib chain
is followed until we find an extrib belonging to the group of the rib which failed the test
(with PRL equal to the VL of the rib) and VL > length traversed till now.

The intuition behind our searching scheme is simple: Each valid path starting from the
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root to a node corresponds to some suffix of the SPINE till that node. And as mentioned
earlier, each such suffix would be of a different length. So, if it is valid to traverse a rib
after a pattern p of length k, then it has to be valid after a pattern ¢ whose length is less

than k, because ¢ would be a suffix of p.

9.2 Subsequence Matching

One of the most common operations in genome processing is alignment. To align two given
sequences, we first need to find all the subsequence exact matches ! in the two sequences.
For example, in the two strings S1 and S2 shown below, the matching subsequences are

shown in boldface.

S1 acaccgacgatacgagattacgagacgagaatacaacag

S2 catagagagacgattacgagaaaacgggaaagacgatcc

A brute-force approach to perform this alignment is to enumerate all the subsequences
of the shorter sequence and match it with all the corresponding subsequences of the longer
sequence. The complexity of this brute-force approach is O(nm?) subsequence matchings,
where m and n are the lengths of the two data sequences, with m < n.

Using SPINE, this time complexity is reduced to just O(m?). The methodology used
is as follows: A SPINE index is built for the longer of the two sequences. Then, the other
sequence is searched for in this index. As soon as the first mismatch is found, the length
matched till now is reported. Now, we check if the mismatched character follows any of
the shorter suffixes of the second sequence traversed till now, and the process is repeated
again. The shorter suffixes are reached by traversing the link chain upwards. So, only
one check is made for each EndSuf;, reducing the computational cost to O(m?).

The algorithm describing the subsequence matching is outlined in Figure 9.

Tt is actually substring exact matches. In this report however, we have used the terminology ’subse-
quence’ for ’substring’.
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Comparison with Suffix Trees

Similar to SPINE’s use of links, suffix trees use suffix links to assist in finding all the ex-
actly matching subsequences in two given sequences. But, the number of suffixes checked
by suffix tree indexes is far more than the ones checked by SPINE. The reason for this is
as follows: In suffix trees, a suffix link points from a node indexing string aw to the node
indexing w, where ’a’ is a character and w is a string [1]. In the case of a mismatch, after
checking for aw, we retrieve the node indexing the suffix w and check if the mismatched
character follows w. This process iterates till complete match is found or there are no
more suffixes remaining to be checked.

In contrast, as mentioned earlier, in SPINE each node V; in a link chain represents a
set of suffixes EndSuf;. Therefore, only one check is sufficient for all the suffixes in that
set. Therefore, lesser number of suffixes are checked, thereby reducing the computational
effort.

This would be clear from the Figure 9.3 Suppose in a suffix tree, a mismatch is found
below node 2, then the next suffix to be checked will be below node 4 (node pointed to
by the suffix link), which will give a suffix of length one lesser. On the other hand, in
SPINE, the link points to node 1 which actually represents the suffixes of length 1 and
less i.e 3 lesser than the suffixes at node 4. And therefore, for large sequnces, a very small

number of suffixes are actually checked if SPINE index is used.

9.3 Multiple Occurences of a Pattern

Here our goal is to find all occurrences of the query string in the data sequence. This
is achieved using a simple technique with the help of links. The property of the links
exploited here is that a link with LL v from node N, to node N, indicates that a sequence
of length v above N, is same as the sequence of length v above N,.

We start off with finding the first occurrence of the given pattern, as per the algorithm
given in the last section. The node indexing the first occurrence is stored in a target node

buffer. Then all the nodes downstream are scanned successively to check if their links
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point to the node in the target node buffer, i.e. the node indexing the first occurrence. If
so, then that node is also stored in the target node buffer. Again, downstream scanning
is started from this node and the process is repeated until the end of the backbone is
reached.

For a sequence of length n and search pattern of length m, if the number of occurrences
of pattern in the sequence is p, then the size of the target node buffer will be p integers.
And at each node, the target node buffer will be searched in binary fashion. So, the time
required to locate all the occurrences is O(n log p).

To clarify the above, consider Figure 7.2 with a query sequence ac. Here, after locating
the first occurrence, the target node buffer will contain N3. Moving downstream, at Ng
we find a link with LL = 2 (length of string ac) pointing to N3. And so, Ng is also added
to the target node buffer. On moving further downstream, at Ny, a link with appropriate
LL is found pointing to a node in the target node buffer (N3), and therefore it is also
added to the buffer. In this manner, the target node buffer finally gives the end nodes of
all occurrences of the pattern in the sequence. As a last step, their starting positions can
be trivially determined by merely subtracting the query pattern length from each of the
node identifiers in the target node buffer.

In case of finding all the subsequence matches, the above technique amortizes the cost.
This is due to the fact that to find all the occurrences of all the subsequences, only a
single final sequential scan of the complete backbone is required, which incurs a negligible

cost as compared to the total cost of finding the first occurrences of the matches.

9.4 Multiple Base Sequences

Sometimes, the pattern is required to be searched for in more than one sequences. Instead
of building a separate SPINE for each sequence and doing the search, a single index
structure can be made for all of them. A pattern being searched for cannot occur across
the strings, i.e. a part of it in one string and remaining in another. But the same pattern
may occur completely in more than one string. To report all the occurrences in all the

strings, a small enhancement in the methodology discussed in the last section could be
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done. A delimiter is used after every sequence, say '’Q’. So between any two contiguous

Y

sequences, there will be a '@’. So, search for any pattern, not including ’@’; cannot
result into partial occurrences of the pattern in any string. And using the links with the

methodology to find the multiple occurences, all the occurrences can be reported.

9.5 Approximate Matching

The goal in approrimate sequence matching is to find patterns in the data sequence that
are within an edit-distance threshold of the query pattern (edit-distance is the minimum
number of insertions or deletions that have to be made to transform one sequence into
another). Typically, dynamic programming is used for efficient implementation of this
operation [1]. To find the best approximate matches, the edit distance is calculated for all
the suffixes with the query pattern sequence. Suffix trees aid in this method by providing
all the possible suffixes, reducing the redundant computations [1].

The above method can be employed equally well over SPINE, since it also provides
all the valid suffixes by traversing the ribs, extribs and vertebras in a depth-first manner.
So, the edit distances could be calculated easily by traversing each path, one at a time,
and finding the edit distance with respect to the query sequence. And according to the
obtained edit distances, queries could be answered.

It has been shown that suffiz links in a suffix tree can be used to optimize the above
techniques [1]. These optimizations can all be applied as such in the case of SPINE also

by using its link edges.
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01.
02.
03.
04.

05.
06.
07.
08.
09.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.

MAX_MATCH

travLen = 0; // Length traversed till now
curr = 0; // Current Node Number
mismatchFound = FALSE;
WHILE ((NOT end of query) and
(NOT mismatchFound))
ch = queryseq.nextchar();
IF ch is seqchar of Ny,
travLen + +;
curr + +;
ELSEIF there exists a rib R for ch at N .,
IF R.VL >= travLen
travLen + +;
curr = R.Dest;
ELSE
PRL = R.VL;
temp = R.Dest;
extribFound = FALSE;
WHILE ((NOT extribFound) and (extrib exists at Nyepmp))
IF extrib.PRL = PRL

IF extrib.VL >= travlLen
extribFound = TRUE;
travLen + +;
curr = extrib.Dest;

ELSE
temp = extrib.Dest;

END-IF

END-IF
END-WHILE
IF ( NOT extribFound )
mismatchFound = TRUE;
END-IF
END-IF
ELSEIF
mismatchFound = TRUE;
END-IF
END-WHILE

matchStartPosition = curr — travLen + 1;
//matchStartPosition gives the starting position of the longest matching prefix

Figure 9.1: Longest Prefix Match
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SUBSEQUENCE _ MATCH
// m is the length of s, the shorter sequence
01. curr =0;
02. pos = 0;
03. WHILE ( NOT ENDOF(s) )
04. Start MAX_ MATCH from N, for s[pos..m)]
05. Report the maximum match
06. pos = position of mismatched character in the query;
07. curr = link(curr).DEST;
08. END-WHILE

Figure 9.2: Subsequence Matching

Mismatch

Figure 9.3: Subsequence Matching (SPINE v/s Suffix Tree)
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Chapter 10

Implementation Details

We have developed a prototype version of SPINE, and in this chapter, we discuss its
implementation details.

All the nodes, one per character in the sequence, are stored sequentially and therefore,
the edge between adjacent nodes is implicit. Apart from the CL of the vertebra, Table 10.1
gives all the information fields required at each node and also the space requirements

associated with them.

Field Space Count Total
Name (Bytes) (Bytes)
Link Dest 4 1 4
Link LL 4 1 4
Rib Dest 4 3 12
Rib VL 4 3 12
ExtRib Dest 4 1 4
ExtRib VL 4 1 4
ExtRib PRL 4 1 4

Table 10.1: Node Space Requirement (44 bytes)

10.1 Node Size Optimizations

As can be seen from Table 10.1, the space required by each SPINE node is huge (44

bytes) with a straightforward implementation. However, SPINE exhibits certain intrinsic

38



CHAPTER 10. IMPLEMENTATION DETAILS 39

features using which the actual space required can be reduced to a great extent. A variety

of space-reducing optimizations based on these features are outlined below:

10.1.1 Optimization 1: Small Label Values

Table 10.2 gives the maximum label value observed for a variety of real and synthetic
genome sequences — as can be observed here, the label values never exceed 25000 even
for very large sequences. Therefore, only two bytes need to be allocated for the length

fields.

Genome Sequence MaxLabel
E.Coli (3.5Mbp) 1785
C.Elegans (15.5 Mbp) 8187
HG chr21 (28.5 Mbp) 21844
Synthetic DNA (40 Mbp) 33
HG chrl9 (57.5 Mbp) 12371
Synthetic Protein (1 Mbp) 23
Synthetic Protein (10 Mbp) 28

Table 10.2: Maximum Labels Observed

For synthetic generated pseudorandom sequences, the above empirical observation can
also be justified as follows: A rib with a VL of 26 is created only when an entire sequence
of 216 characters repeat. Given a sequence of length 2%, the probability that we have the
same sequence again is 1/(A%°), which is extremely low. Here A represents the alphabet
size (4 for DNA sequences and 20 for protein sequences).

However, to ensure that the index works in all cases, we have a mechanism in place
to handle even those rare cases where the label value goes beyond 25000. We allocate
separate entries for these cases in an overflow table. The node space for the label is used
to index into the overflow table, and a one bit flag is used to indicate whether it is a valid
label or an index into the overflow table. If that bit is set, then the label field indicates

the pointer in the overflow table.
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Maximum Label Values are independent of Sequence Length

From Figure 10.1, it can be observed that the maximum label values obtained are a prop-
erty of the patterns in the sequence and not its length. For instance, after constructing
the same length for both C Elegans and 19th choromose of HG, the maximum label values

are found different.
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Figure 10.1: Growth in Maximum Label Value

10.1.2 Optimization 2: Sparse Rib Distribution

While all nodes have upstream edges (links), the same is not true with respect to down-
stream edges (ribs and extribs i.e. extension ribs). In fact, we have found that only around
30 to 35 percent of the nodes actually have any downstream edges emanating from them
— Table 10.3 shows the distribution of their number across the nodes for the various DNA
sequences, while Figure 10.2 shows the same for protein sequences. The reason for this
behavior is that after some length of the sequence, the remaining part merely contains
repetitions of previously occurred patterns, and therefore not many downstream edges

are created.
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Sequence [ 1 [2[3 ] 4] Total |
E Coli 1579614 33
CElegans | 15 |8 | 6 | 4 33
HG chr21 |14 |8 | 6 | 4 32
Synthetic |15 |9 | 6 | 4 34
Gchrl9 |13 |7 ]5]3 28

Table 10.3: Rib Distribution across Nodes in Nucleotides (in percent)

10

Percentage Number of Total Nodes

"ProteinRibDistribution.dat” —+—

—

10 15 20

Number of Ribs/ExtRibs at a Node

Figure 10.2: Rib Distribution across Nodes in Proteins
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Based on the above observation, we do not allocate space for downstream edges at

every node, since a lot of space would be wasted. Instead, we store information about the

links and the downstream edges separately in a Link Table (LT) and a Downstream Edge

Table (DT), respectively. One entry for each character in the sequence is allocated space

statically in the LT, while space for downstream edges is allocated dynamically in the DT

for only those nodes from which a rib/extrib emanates. Therefore, the total number of

entries in the DT is only around 30 to 35 percent of that in the LT.
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10.1.3 Optimization 3: Limited Rib Fanout

From Table 10.3 it is clear that the number of nodes with a given rib fanout decreases
with the fanout value. For example, only about 4% of the nodes have the full complement
of all four downstream edges (three ribs and one extrib). Therefore, to avoid the space
wasted for the edges which are not present, we use multiple DTs. Specifically, there is
one DT for each possible fanout, resulting in four DTs in total: DT1, DT2, DT3, DT}4.
This optimization results in considerable space savings. At first glance, it might appear
that the construction time performance of SPINE would degrade due to the movement of
nodes across the DTs, which would occur whenever a node acquires an additional down-

stream edge. However, we have experimentally observed that this impact is negligible.

10.1.4 Final Optimized Implementation

Based on the above discussion, the optimized implementation of SPINE consists of a
Link Table (LT) and four Downstream Edge Tables (DTs), whose entries are shown
in Figure 10.3. The LT contains one entry for each node (character) in the sequence. It
stores its LL (the V field) as one of its columns while the other column represents either
the destination node of that link (the LD field) or a pointer to an entry in one of the DTs
(the PTR field). In particular, the LT stores the link destinations only for the nodes that
don’t have any ribs/extrib. For the remaining nodes, they are stored in the DT entries
only.

Typically, a DT entry stores the destination node of the link from that node and also
the destination nodes and VLs of all the ribs/extribs starting from the same node. The
D fields indicate the destination nodes of the downstream edges while the V fields denote
their VLs. And, lastly, the P field denotes the PRL of the extrib.

By implementing all the above optimizations, the net effect is that the average node
size in SPINE is less than 12 bytes for both DNA and protein sequences, that is, the
index takes upto 12 bytes per indexed character, which is about 30 percent lesser than
the space required by MUMmer.

Also, due to the comparatively smaller size of the index, the access times also decrease
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Figure 10.3: Optimized SPINE Implementation

influencing both the construction and searching times.

The only difference which would be reflected as a result of the increased alphabet size
is that we would be able to index a comparitively smaller length sequence. This is due to
the fact that the number of bits required to encode the character labels would increase
with the increase in alphabet size, thereby decreasing the total length of sequence which

could be indexed. But this effect is observed in most of the index structures including the

suffix trees.
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Experimental Analysis

We conducted a detailed evaluation of the performance of the SPINE prototype, and
these results are presented in this chapter. Both real as well as synthetically generated
sequences were used in the experiments. The real DNA sequences used are 3.5Mbp of E.
Coli (EC), 15.5 Mbp of C. Elegans (EL), 28Mbp of Chromosome 21 (H1) and 57 Mbp
of Chromosome 19 (H2) of Human Genome. We also synthetically generated 40Mbp of
pseuodrandom sequence (PR). For proteins, we generated synthetic sequences of length
1Mbp, 2Mbp, 5Mbp, 10Mbp and 15Mbp. The motivation behind experimenting with
protein sequences also was to study the effect of increased alphabet size and also the
nature of sequences themselves on the index structure.

In order to serve as comparative yardsticks, we also evaluated the performance of
MUMmer representing the suffix-tree-based techniques, and BLAST (BLASTN for DNA
sequences and BLASTP for protein sequences) as a representative of the seed-based meth-

L' The core data structure of MUMmer is the suffix tree, and it is implemented very

ods.
efficiently using McCreight’s algorithm [1]. At present, MUMmer has provided support
only for DNA sequences.

BLAST (Basic Local Alignment Search Tool), on the other hand, is a set of similarity

search programs designed to explore all of the available sequence databases. BLAST

uses a heuristic algorithm which seeks local alignments. The alignment process done by

LSpecifically, MUMmer Version 2.1, and BLAST Version 2.0.9 were used

44
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BLAST can be broadly classified into three phases: locating all the matching subsequences,
filtering out some regions using various scoring schemes, and finally doing the alignment.
For our purposes we used only the first phase of the module.

All the experiments were conducted on a Pentium IV 2.4 GHz machine with 1 GB
RAM, 40GB IDE disk and running the Redhat Linux 7.3 operating system. The perfor-
mance metrics in the experiments were the overall time taken to build the complete index
for a sequence in memory and time taken to perform searches for exact matches and all
subsequence matches.

In this chapter, we will consider scenarios wherein both the data and the index struc-
ture are completely memory-resident, while disk-resident indexes are analyzed in the

following chapter.

11.1 Index Construction Time

The performances of MUMmer and SPINE with regard to index construction times for
nucleotides are shown in Figure 11.1. These results show that SPINE takes lesser time
to construct, especially for longer sequences. Further, note that no results have been
mentioned for MUMmer to construct an index for the H2 sequence as it ran out of memory
due to its larger space requirements.

As mentioned earlier, MUMmer does not have support for protein sequences. And
therefore, Table 11.1 gives the index construction times only for SPINE. It can be observed

from the table that the construction times for proteins also scale linearly with the sequence

lengths.
Protein Length | Time (secs)
1 Mbps 1
2 Mbps 3
5 Mbps 7
10 Mbps 14
15 Mbps 20

Table 11.1: SPINE Construction Times for Proteins
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We now move on to comparing SPINE with MUMmer and BLAST on the search perfor-

mance metric.

Longest Prefix Match

We found that the SPINE search times for this match are very small (in order of mil-

liseconds). We could not compare them with MUMmer or BLAST as both of them do

not support this match. And therefore, we compared it with the egrep utility and the

performance comparison has been shown in Table 11.2. The pattern lengths are limited

to 10K only, as egrep does not support patterns with the length of order of 100K and 1M.

Here we can observe that the search time is independent of both base sequence length

and the query sequence length. It basically depends on the length of pattern which is

actually found in the base sequence.
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Seql | Seq2 | egrep | SPINE
EC 1K Is 0.015ms
EC | 10 K 3s 0.013ms
EL 1K 1s 0.014ms
EL | 10K 3s 0.015ms
H1 1K 1s 0.016ms
H1 10 K 4s 0.012ms
H2 1K 1s 0.018ms
H2 10 K 3s 0.019ms

Table 11.2: Longest Prefix Match

Subsequence Match
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Table 11.3 gives the time required to find all the exactly matching subsequences (including

all the multiple occurrences as well) for two given DNA sequences, Seq! and Seq2, for the
SPINE, MUMmer and BLASTN algorithms. As expected, due to their O(m?) complexity,
we find here that SPINE and MUMmer perform far better than BLASTN, especially with

increasing sequence length. Specifically, SPINE is almost 200 times faster than BLASTN

for E.coli, the shortest sequence, and this improvement increases to a factor of around

7000 times for Chromosome 19 of the Human Genome. Further, we also observe that

SPINE takes around 30 percent lesser time than MUMmer due to handling lesser number

of suffixes, as described in Section 3.2.

Seql | Seq2 [ BLASTN [ MUMmer | SPINE
Length

EC 1K 217 ms 1.416 ms 1.029 ms
EC 10 K 1863 ms 13.603 ms | 10.99 ms
EC 100K 20.597 s 135.697 ms | 109.74 ms
EC 1M 8m,5H3s 15,359 ms 15,70 ms
EL 1K 991ms 1.65 ms 1.18 ms
EL 10 K 8s,549ms 16.255 ms | 11.24 ms
EL 100 K 1m,30s 161.2ms 112.68 ms
EL 1M 39m,45s 1s,622ms 15,133 ms
H1 1K 1803ms 1.741ms 1.198 ms
H1 10 K 20s,45ms 17.523ms 11.97 ms
H1 100 K 3m,58s 179.12ms 121.8 ms
H1 1M 98m,12s 1s,800ms 1s,207ms
H2 1 K 3s,645ms - 1.314ms
H2 10 K 32s,805ms - 13.26 ms
H2 100 K 6m,20s - 131.12 ms
H2 1M 157m,58s - 15,318 ms

Table 11.3: Subsequence Matching Time (DNAs)
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Table 11.4 gives the time required to find the subsequence matches for protein se-

quences and it can observed that the results are similar to those of DNA sequences. The

comparison of SPINE has been done with BLASTP only, as the MUMmer does not have

routines for proteins.

Seql Seq2 [ BLASTP | SPINE
Length | Length

1M 1K 210s 1ms

1M 100K 22.7s 100.4ms
2 M 1K 1001ms 1.38ms
2 M 100 K 1m,27s 115.9 ms
5M 1K 1783ms 1.8ms

5 M 100 K 4m,19s 125.8 ms
10 M 1K 3s,851ms 1.800ms
10 M 100 K 6m,10s 142.8 ms

Table 11.4: Subsequence Matching Time (Proteins)

SPINE: An alternative to BLAST

We have experimentally observed that it is the first phase of BLAST i.e. finding all the
exactly matching subsequences, which is the main bottleneck, contributing more than 95
percent of the total computation cost.

For two given sequences, Seql and Seq?2, Table 11.5 shows the portions of the total
time consumed in the first phase and the remaining part of BLASTN.

Seql | Seq2 Phase 1 Phase 2-3 together
EC 1K 217 ms 220 ms
EC 1M 8m,52s,844ms 9m,2s,964ms
EL 1K 991ms 1s,18ms
EL 1M 39m,45s,61ms 40m,30s,987ms
H1 1K 1803ms 1841 ms
H1 1M | 98m,12s,126ms 63m,0s,23ms
H2 1K 3.645s 3.800s
H2 1M | 157m,58s,11ms 58m,0s,138 ms
PR 1K 2.512s 2.600 ms
PR 1M | 128m,12s,112ms 49m,0s,2 ms

Table 11.5: BLASTN phases time distribution
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11.3 SPINE against Suffix Trees

From the last sections, we observed that there is no trade off with respect to time or space,
as SPINE performs better than the suffix trees at both ends. So, we can conclude that
suffix trees have some redundant information and hence horizontal compression proves to

more effective than vertical compression to remove the redundancy in the tries.



Chapter 12

SPINE on Disk

We now move on to assessing the performance of a disk-resident SPINE index. While
SPINE’s improved performance over MUMmer in the memory-resident case could be
attributed to its compactness, note that index performance on disk does not depend
solely on size, but also on the locality of the information. To assess this performance,
in Figure 12.1 we show the comparative amount of disk I/O incurred by MUMmer and
SPINE for the various genomic sequences.

From these results, we see that SPINE takes only about 30% of the disk accesses as
compared to MUMmer. Since the smaller node size would have reduced the disk accesses
to only 70% of MUMmer, we can conclude that the additional 40% improvement is due
to the improved access locality exhibited by SPINE.

Link Destination Distribution

An interesting feature that we observed about SPINE indexes is that most of the links
point to the upper nodes in the backbone, and that the number of links pointing to a node
keeps monotonically decreasing as we descend the backbone. This is shown quantitatively
in Figure 12.2, which shows the distribution of the link destinations for different data
sequence lengths. This indicates that while constructing the SPINE, the upstream nodes
would be accessed more than the downstream ones. And so this suggests a very simple

buffering strategy for SPINE: “Retain as much as possible of the top part of the Link Table

20
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Apart from being simple, the other advantage of this buffering strategy is that no dy-
namic movement of information is done between the buffer and disk. So, this corresponds
to a static buffering. In contrast, no effective buffering strategies for suffix trees have been

suggested till now which may improve its performance significantly on disk.

12.1 Experimental Analysis

We performed experiments to find the improvements in the performance of SPINE over
MUMmer when implemented on disk. Again, we used the index construction times and

subsequence matching times as the comparison metrics.
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12.1.1 Index Construction Times

SPINE and MUMmer were both constructed with zero memory using synchronous I/0O
(O_SYNC option). With this option, absolutely no buffering is done by the operating
system, and hence each read/write is done synchronously, allowing us to compare the
locality behavior of the algorithms without modulation by other system factors.

The results of this experiment are shown in Figure 12.3. We see here that PINE takes
almost half the time as required by MUMmer to construct the index on disk. Note that
this is better than the improvement obtained for the in-memory building of the indexes,

and can again be attributed due to the better spatial locality exhibited by SPINE.

12.1.2 Searching

Similar to the construction times, we observed that time required to obtain all the exactly

matching subsequences also improved by a factor of two with SPINE as compared to
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In Table 12.1, we compare the time taken by SPINE and MUMmer for finding all the

exactly matching subsequences for two given sequences. Again, the experimentation was

done using synchronous I/O. We see from the Table that SPINE is faster by almost a

factor of two.

Sequence 1 | Sequence 2 | MUMmer | SPINE
Length Length
1 MB TK 61 33
1 MB 2 K 121 68
1 MB 4 K 242 137
5 MB 1K 59 31
5 MB 2K 120 67
5 MB 4 K 250 134

Table 12.1: Subsequence Matching Times (secs)
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Conclusion

We have proposed the SPINE data structure for biological sequence indexing. SPINE
implements a complete horizontal compaction of the basic trie structure, ensuring that
each character in the data sequence is represented only once in the index, and thereby
reduces the space requirements to a great extent as compared to the traditional suffix
trees. The false positives that resulted from this compaction were removed through a rib
and link labeling strategy that constrains when these graph edges can be traversed. An
online construction algorithm for SPINE has been explained in detail. The viability of a
parallel construction algorithm for SPINE needs to be explored.

While a simplistic implementation of SPINE would have resulted in huge node sizes,
we identified and incorporated a variety of structural optimizations that finally resulted
in SPINE taking less than twelve bytes per character indexed, comparing favorably with
the 18 bytes taken by suffix trees.

Also, it was shown that all types of search operations required by biologists to be
performed on genome sequences can be done using SPINE, making it a versatile index
structure.

A performance evaluation of SPINE against MUMmer and BLAST over various real
DNA sequences showed that significant speedups were obtained for the searching oper-
ations, for both memory-resident and disk-resident scenarios. In fact, SPINE performed

close to four orders of magnitude faster than BLAST. It was also observed that along

o4
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with 30 percent lesser index size, SPINE exhibits much higher node locality than MUM-

mer, resulting in a more efficient disk-based implementation. Table 13.1 summarizes the

normalized comparison results obtained for SPINE against MUMmer.

Criterion MUMmer | SPINE

Space Requirements 1.5 1
Index Construction Times (Memory) More Less

Subsequence Matching Times (Memory) 1.5 1
Total Disk Seek 3 1
Index Construction Times (Disk) 2 1
Subsequence Matching Times (Disk) 2 1

Buffering Strategy Complex Simple

Table 13.1: Index Structures - MUMmer v/s SPINE
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