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Abstract

Fingerprints are the most widely used biometric feature for identification and authentica-
tion. Fingerprint analysis algorithms are usually trained and tested with relatively small
fingerprint database. Because of public security issues large fingerprint databases are
not available. So synthetic fingerprints can be used as substitute to the real fingerprints.
Implementation of SFinGe algorithm for generating synthetic fingerprints is described
in [1]. In this implementation, I added some more features like generating fingerprints
having distortion and scratches, utilizing all the cores of system using multiple threads
and graphical and command line interface.

Matching a fingerprint with millions of fingerprints is expensive. To reduce candi-
date fingerprints for matching, [11] implemented two classification techniques, Directional
Field and FingerCode. Directional Field and FingerCode give feature vectors of sizes
127 and 192 respectively. Sequential scan over data of 192 dimension, to find candidate
fingerprints for matching, is expensive. Hence to reduce time to search candidate fin-
gerprints for matching, [1] made changes in Locality-Sensitive Hashing (LSH) algorithm.
Pyramid Indexing Technique [3] can also be used for biometric databases and is shown
in [10]. My contribution is to implement Pyramid Indexing Technique in database to
index FingerCode features of fingerprints and compare its performance with LSH imple-
mentation [1].

Another method to reduce candidate fingerprints for matching is indexing fingerprints
using features extracted from minutiae triplets [4] [9]. My contribution is to implement

this method and compare with Directional Field and FingerCode.
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Chapter 1

Introduction

Biometric features are popular to identify and authenticate a person. Among all the bio-
metrics, fingerprints are the most widely used due to their uniqueness and immutability.
Many fingerprint recognition algorithms are trained and tested with relatively small fin-
gerprint database. For the projects like UID where database size is an order of billion
fingerprints, it is crucial to test the implementation against such large scale database.
But because of the public security issues large fingerprint databases are not available.
So the synthetic fingerprints can be used as an alternative to the real fingerprints.

SFinGe is a method for generating synthetic fingerprints on the basis of mathematical
models. Implementation and validation of SFinGe algorithm is given in [1]. In this im-
plementation, I added some more features like generating fingerprints having distortion
and scratches, utilizing all the cores of system using multiple threads. From this im-
plementation I developed a software, Anguli, with user friendly graphical and command
line interface. Details are in Chapter 2.

A naive identification system would just match the query fingerprint with all fin-
gerprints in database. Minutiae matching algorithm implemented in [11], to match a
pair of fingerprints takes 20 milliseconds. Hence for the large scale fingerprint databases
like UID, response time of such systems will be very poor. To reduce the number of

fingerprints for matching, they are classified using some features extracted from them.
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Two continuous classification techniques, Directional Field and FingerCode, are imple-
mented in [11]. These methods return feature vectors of length 127 and 192 respectively.
For these methods, matching score is calculated as Euclidean distance between corre-
sponding feature vectors. To find the fingerprints which are within the hypersphere of
radius R need a scan on the database and simple sequential scan on large database
is expensive. To reduce time to search candidate fingerprints for matching, [1] made
changes in Locality-Sensitive Hashing (LSH) algorithm. This modified LSH takes more
time and returns large number of candidate fingerprints if the query fingerprint is very
noisy. Pyramid Indexing Technique [3] can be efficiently used for biometric databases
and is shown in [10]. Adding an indexing technique in a database system needs changes
in system code base. However GiST [6] gave a novel approach to tackle this problem.
GiST feature is available in PostgreSQL. I implemented Pyramid indexing technique
using GiST in PostgreSQL.

Another promising approach to reduce the number of candidate fingerprints for
matching is given in [4] [9]. In this approach, for each triangle formed by three non
collinear minutiae of fingerprint, some features are extracted and these features are used
to index fingerprints. There will be O(n®) triangles where n is the number of minu-
tiae. Instead of exhausting all triplets of the minutiae set, [9] used low order Delaunay
triangles. This saves computation cost and reduces the possibility of mismatch. My
contribution is to implement this method and compare with Directional Field and Fin-

gerCode.



Chapter 2

Generating Large Scale Fingerprints

Algorithms for fingerprint recognition are trained and tested with relatively small fin-
gerprint database and might not be scalable. Because of the public security issues large
digital fingerprint databases are not available. So the synthetic fingerprints can be used
as an alternative to the real fingerprints. SFinGe is a method for the generation of syn-
thetic fingerprints on the basis of mathematical models. Implementation and validation
of SFinGe method are described in [1]. In this section we will use the terms Fingerprint
and Impressions and are shown in Figure 2.1. Impression is generated from a fingerprint
by masking and adding noise, scratches and distortion to a masked fingerprint. Multiple
impressions can be generated from a fingerprint by adding random noise, scratches and

distortion.

2.1 Synthetic Fingerprint Generator: Anguli

From [1] implementation, I developed a software Anguli that is easy to use. Code is
written in C++ using Qt, a cross-platform application framework, and used OpenCV
library, an Open Source Computer Vision Library. Followings are the changes done in

[1] implementation:

1. Algorithmic changes

(a) Distorted impressions
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Figure 2.1: (a) Fingerprint generated by Anguli. (b) Masked impression of fingerprint
(a) with noise, scratches and distortion.

(b) Scratches in impressions
2. Performance changes

(a) Removed memory leaks
(b) Multi-threaded application to utilize the CPU cores of the machine

(c) Generating multiple impressions in single run
3. Interface changes

(a) Graphical User Interface

(b) Command Line Interface
4. Maintenance changes

(a) Modularized the code
(b) Documented the code

(c) Website

5. Porting
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(a) Linux 32-Bit
(b) Linux 64-Bit

(¢) Windows 32-Bit

Usage of Anguli is described in the following subsections.

2.2 Graphical User Interface

Figure 2.2 shows the main window of Anguli. From this window user can generate a new

fingerprint database or impressions from the previously generated fingerprint database.

2.2.1 Generating Fingerprint Database

On clicking “Generate Fingerprints” button of main window, in Figure 2.2, window

shown in Figure 2.3 opens.

* Anguli: Synthetic Fingerprint Generator
=
=2 Anguli

_A Synthetic Fingerprint Generator _.

Generate Fingerprints - About
Generate Impressions . Exit

Copyright © Indian Institute of Science, Bangalore, India

Figure 2.2: Main window of Anguli

In the Basic Settings, user can specify the number of fingerprints and number of
different distorted impressions per fingerprint to be generated. Fingerprints are generated
according to the Henry Classification. User can select the distribution of the fingerprint
classes. As Anguli uses the pseudo random number generator, it allows user to give

custom seed, an integer. So that user can ensure distinct fingerprint images on each
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© @ Anguli: Synthetic Fingerprint Generator

Basic Settings
Number of Fingerprints i * Class Distribution |Natural -

Impressions Per Fingerprint | 1 - Custom Seed 1

Output Settings

Output Directory JFingerprints Browse
Start From Fingerprint |1 =| Fingerprints per Directory | 1000

Image Type jPg z

Advanced

Number of Threads [3 = ¥ Save Meta Information

Noise Level AN Translation 73%
Number of Scratches . “me——— "' Roatation + g0
Save Configuration | Load Configuration | Load Defaults Generate

Copyright i€ Indian Institute of Science, Bangalore, India

Figure 2.3: Window for generating fingerprints

run of fingerprint generation. By default Anguli takes the system date, time as seed for
pseudo random number generator.

In the Output Settings, user can specify the directory in which fingerprints are to
be stored, number from which naming to fingerprint images should start, number of
fingerprints per directory and format in which the fingerprint images are to be stored.
Some file system have restrictions on the number of files per directory, so the user has to
give appropriate number for the number of fingerprints per directory. Anguli can save
fingerprint images in jpeg, jpg, png, bmp, tif, tiff format.

In the Advanced Settings, user can specify the number of threads to be created
to generate fingerprints. One fingerprint will be generated by only one thread. As
the generation is CPU intensive operation, user should be careful about specifying the
number of threads. It depends on the number of CPUs and their speed. In default
settings it is one less than the number of CPU cores in the system. Anguli also saves

the information about the generated fingerprints (meta information). This information
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includes the class of fingerprint according to the Henry Classification, location of the
core and delta points in the generated fingerprint. User can specify the ranges for noise
level, number of scratches to be added to impressions and rotation and displacement of
finger to produce distorted impressions.

Generation process will start on clicking “Generate” button. Anguli also provides the
options to save the current settings and load previous settings. It also saves the settings
in output directory before generation actually starts. When generation actually begins,
it shows the progress bar with number of fingerprints generated out of total number of

fingerprints and time to generate remaining fingerprints.

2.2.2 Generating Only Impressions From Previous Fingerprint

Database
© @ Anguli: Synthetic Fingerprint Generator
Fingerprint Directory | /home/sachin/Project/Anguli/ Browse
Output Directory Jimpressions Browse
Impressions Per Fingerprint | 2 “| Number of Threads | 4
Noise Level AN Translation 54%
Number of Scratches etV N Roatation + 140
Save Configuration | Load Configuration | Load Defaults Generate
Copyright © Indian Institute of Science, Bangalore, India

Figure 2.4: Window for generating impressions

On clicking “Generate Impressions” button of main window, in Figure 2.2, window
shown in Figure 2.4 opens. It allows user to generate the impressions of fingerprints
that has been generated previously. Input directory should contain either the fingerprint
images or subdirectories containing the fingerprint images. Generated impressions will be
stored in directory specified in output directory option. User can specify the number of
distorted impressions to be produced per fingerprint and number of threads to be created

to generate the impressions. Setting for noise levels, number of scratches, rotation and
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displacement is same as of generating fingerprint database. Clicking generate button will

start generating impressions.

2.2.3 Command Line Interface

Anguli can also be executed from remote console using the command line. Command
“Anguli -h” displays all the options available with Anguli. Options are described in

Appendix A. Anguli in command line mode is used as follows:

1. For generating new fingerprints:

./Anguli -num number [Options]

2. For generating impressions:

./Anguli -impr -indir <path> -ni number [Options]

2.3 Generation Speed

Anguli generates 1 Million fingerprints in about 4 days with 7 threads, on a system with
8 cores of 2 GHz and 16 GB RAM. Anguli took only 200 MB of memory for 7 threads.
Required memory will increase if the number of threads are increased. With 1000 cores

and 1000 threads, Anguli can generate 1 Billion fingerprints in 4 days.



Chapter 3

Pyramid Indexing for Directional

Field and FingerCode

A naive fingerprint identification system would just match the query fingerprint with all
fingerprints in database. But the response time of such system is large, as the fingerprint
database contains more than several million fingerprints, which is unacceptable. To re-
duce such problem, fingerprints are assigned to classes in consistent and reliable way. In
continuous classification, fingerprint is classified uniquely and independently summariz-
ing its main features. Implementation of two classification techniques, Directional Field
and FingerCode are described in [11].

Directional Field describes the coarse structure, or the basic shape of a fingerprint.
It is a orientation of the ridge and valley structures which describes the shape of a fin-
gerprint.

In FingerCode technique a circular area around core point is divided into several
tracks and tracks are divided into several sectors. Circular area is filtered with eight
different Gabor filters and standard deviation of gray values in all sectors are computed.
Final feature vector consist of standard deviation in all sectors of filtered image.

For Directional Field and FingerCode, matching score is calculated as Euclidean dis-
tance between the feature vectors of two impressions. Implementations of FingerCode

returns 192 dimensional feature vector and implementation of Directional Field returns
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127 dimensional feature vector [11]. Normal sequential scan on a large database of 192 or
127 dimensional feature vector is expensive. Pyramid Indexing Technique [3] is efficient
for biometric database and is shown in [10]. Adding an indexing technique in a database
system needs changes in system code base. However GiST [6] gave a novel approach to
tackle this problem. Details of Pyramid Indexing Technique and GiST are given in the
Appendices B and C.

3.1 Implementation of Pyramid Technique in Post-
greSQL Using GiST

I implemented the Pyramid Indexing Technique [3] in PostgreSQL using GiST [6]. To
store a tree node, created a new variable length data type. For each internal node we
store the minimum and maximum pyramid value of the pyramid values of all nodes
contained in its sub-tree. Leaf node has minimum and maximum values and both are
equal to pyramid value of data pointed by it. Along with minimum and maximum values
store the original data point, which will be needed to compare with query points, in leaf
node.

Pyramid Indexing Technique returns all the points which are inside the hypercube
formed by range given by user. As the dimension of feature vector is high, small increase
in the range will increase the number of valid data points by large number. Suppose
P = [p1,p2, ..., p1092) and @ = [q1, @2, -, q192] be two feature vectors of two impressions of
same finger. Let © = max(abs(p; — ¢;))i = 1,...,192 and d = FuclideanDistance(P, Q).
We need to create a hypercube of length 2 x x with () at center, so that P will be
returned by query. If we return all the points in hypercube, then it will also return some
data points having distance = x v/192. If d < z x v/192 then there will be many false
positives. To remove such false positives calculate distance of each data point, inside the
hypercube, from the query point and return data point if calculated distance is less than
d. So the data points are firstly filtered by hypercube and then by distance.

Let feature vector be (x1, s, ..., 24) and E be a tree node. If E is a leaf node then E
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= (min,max,xy, - ,xq) else E = (min, max). Implementations of GiST key methods

for Pyramid Indexing Technique are described below:

1. Compress(zy, xg,...,x4): Calculate the pyramid value of (z1,xs,...,24). Create a
leaf node, copy data point (x1, s, ..., z4) in leaf node and set min and max value

to the calculated pyramid value. Return leaf node.

2. Penalty(E(miny, maxy), F(ming, mazs,...)): F is a new node which is to be in-

serted. Return maz(mazxy — maxy,0) + mazx(min; — ming, 0)

3. Picksplit(P): P is a set of nodes F;. Sort all entries in node P according to min
values of E;. First L@J entries will go into left child node and (@1 will go into

right child. Create two child nodes and their parent node, and return them.

4. Union (Ey, Es, ..., E,): E; = (min;, maz;, ...) Return a new node F with minimum

value equal to min(miny, mina, ..., min,) and maximum value equal to max(max;, maz,, ..., ma
5. Decompress (E): No need to change E, return E.

6. Consistent(E(min, max,...), Q(range,radius,xy,xs,..,x4)): For range queries
two functions are called, one for “<” operator and one for “>" operator. To

7

reduce the function call overhead implemented only “=" operator with user feed
range and radius of hypersphere. Consistent function handles leaf and non-leaf

node differently as follows:

e Non-leaf node E(min,maz): Initialize A = (x; — range,...,xq — range) ,
B = (x1 + range, ...,xq + range). Return true if Intersect(F, A, B) returns

true. Intersect() is given in Algorithm 1.

e Leaf node E(min,maz,py,...,pq): Let X = (21, ...,24) and P = (p1,...,pq). If
abs(p; — x;) < range for 1 <1i < d and dist(P, X) < radius then return true

else return false.
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Algorithm 1 Intersect (E, A, B)

E(min, max, ...) is a node of the tree

A(aq, ag, ..., aq) is @ minimum value of the interval
B(by, ba, ..., bg) is a maximum value of the interval

1 fori= |min| to |max] do

2 P=A

3 Q=B

4 if > d then

5 pP=[,1,..,1-B

6 Q=[11,..,1]—- A

7  end if

8 if Query rectangle represented by P and Q intersect pyramid i then
9 Calculate interval (hjow, hnign) of intersection

10 if intervals (i + hjow, @ + Rnign) and (min, max) intersect then
11 return true

12 end if

13 end if

14 end for

15 return false

3.2 Experimental Evaluation

Experiments were run on a system with 4 cores of 3 GHz and 8 GB RAM. Used dataset
containing 192 dimensional feature vector of 1 Million fingerprints extracted using Fin-
gerCode method. Values in the feature vectors are floating points and are in the interval
(0, 100). Built pyramid index on this dataset in PostgreSQL. Values of translation and
rotation limits for all noise levels used in experiments are shown in Table 3.1.

First calculated values for range and radius empirically. For this experiment used
above dataset and took random 5000 fingerprints. Added noise of level 1 to these 5000
fingerprints. Let P = [p1, pa, ..., P192] be feature vector of a fingerprint of noise level 1
and Q = [q1, @2, -, q192] be feature vector of corresponding fingerprint in database. Com-
puted mazimum(z) where x = max(abs(p; — q;)) wherei = 1,...,192; average(d) and
maximum(d) where d = EuclideanDistance(P, Q). This is repeated for noise levels 2 to
10. maximum(x) is used as range for queries and radius for queries are changed based

on average(d) and maximum(d) in following experiments. Graph in Figure 3.1 shows
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Translation Limits | Rotation Limits
Noise Level in Pixels in Degrees
Min Max Min Max
1 -2 1 -2 1
2 -3 3 -3 3
3 - 4 -5 4
4 -6 6 -6 6
5 -8 7 -8 7
6 -9 9 -9 9
7 -11 10 -11 10
8 -12 12 -12 12
9 -14 13 -14 13
10 -15 15 -15 15

Table 3.1: Parameter values for different noise levels

the mazimum(z) and graph in Figure 3.2 shows average(d) and mazimum(d) for noise

levels 1 to 10.

40
35 4

30 /‘/

0 2 4 6 8 10 12
Noise Level

Figure 3.1: Range Vs. Noise Level

To evaluate the performance of Pyramid Indexing Technique implementation, chose
random 1000 query fingerprints. Added noise of levels 2, 4, 8 and 10 to create 4 sets N2,
N4, N8 and N10, each containing 1000 fingerprints. Noise levels and query fingerprints

are same as of experiments in [1]. Features are extracted from query fingerprints using
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Noise Level
Figure 3.2: Radius (Distance) Vs. Noise Level

FingerCode method. For queries fixed the size of hypercube to mazimum(x) of respec-
tive noise level as per graph in Figure 3.1, and varied the radius of hypersphere from
average(d) to mazximum(d) of respective noise level as per graph in Figure 3.2.

Following parameters are used to evaluate the performance of Pyramid Indexing
Technique implementation:

Number of data points returned by success ful query x 100
Number of data points in database

Penetration =

Number of queries returning required data point x 100
Total number of queries

Accuracy =

Graphs in Figure 3.3 shows the penetration rate for different noise levels. For noise
level 2 and 4 penetration is just 0.0001% for 100% accuracy. Considering 8 as maximum
acceptable noise we need to match 0.06% of fingerprints for 100% accuracy. Even for
noise level 10, penetration rate is just 0.6% for 100% accuracy which is much less than
1.93% of LSH scheme [1] for noise level 8. One advantage with Pyramid is that we can
compute Euclidean distance between two feature vectors during scan of index tree. With
LSH, we cannot compute the actual Euclidean distance from the hash values.

Graph in Figure 3.4 shows the time taken by a single query when the accuracy is 100%
for respective noise level. For noise level 8 running time of single query is 5.2 seconds

which is less than 10.7 seconds when LSH scheme is used for noise level 8, because with
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1.2
// ~LSH

-=-Pyramid

AN

o o
o e}

Penetration

N
AN

o
<} N
|

Noise Level
Figure 3.3: Penetration Vs. Noise level

LSH [1] we have to do sequential scan over the columns having hash values. For noise level
8 LSH implementation [1] had 144 columns. For noise level 2 and 4 LSH implementation
[1] had 34 and 55 columns respectively, hence search time is less compared to search
using Pyramid Tree on 192 columns. Query time for Pyramid Technique increases by
small value with increase in noise level, but for LSH it increases by relatively large value.
So even if the input fingerprints are worse than noise level 10, time taken by Pyramid
Indexing will not increase by large value.

Graph in Figure 3.5 shows the effect of radius of hypersphere on penetration rate for
noise level 8. For noise level 8, accuracy is 100% when 85 is used for radius. In the graph
penetration increases by large value after 85.

If we know range and radius, computed empirically, then Pyramid Indexing Technique

can be used efficiently for reducing penetration and running time.



Chapter 3. Pyramid Indexing for Directional Field and FingerCode

16

Time per query (Seconds)

// —+LSH

/ -=-Pyramid

Noise Level

Figure 3.4: Retrieval Time Vs. Noise level
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Figure 3.5: Penetration Vs. Radius
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Chapter 4

Minutiae Triplets

Another promising approach to reduce the number of candidate fingerprints for matching
is given in [4] [9]. In this approach, for each triangle formed by three non collinear
minutiae of fingerprint, some features are extracted and these features are used to index
fingerprints. There are various types of minutiae, among these ridge ending and ridge

bifurcation are the most commonly used.

4.1 Minutiae Extraction

Procedure to extract minutia from Fingerprint has following steps and is depicted in

Figure 4.1.

1. Image Enhancement: Success of minutiae detection algorithm depends on the
quality of input fingerprint image. To minimize the number of false minutia, finger-
print image needs to be enhanced to suppress the noise and enhance the ridge-valley

structure. I implemented the enhancement technique using Gabor filter [7].

2. Binarization: Gray-scale image is converted into binary image. Image is binarized
by thresholding method. I have implemented local adaptive thresholding method
where image is divided into blocks of size 16 x 16 and mean intensity value is

computed for the block and this value is used as a threshold for that block.

17



Chapter 4. Minutiae Triplets 18

Raw Fingerprint Image

+

Image Enhancement

Mormalization

[ ]

Local Orientation Estimation
[

Local Frequency Estimation
[

Region Mask Estimation

[ ]

Filtering using Gabor Filter

!

Binarization
*
Thinning using Hit or
Miss Transform

3

Minutiae Extraction

¥

Remove False Minutiae

Figure 4.1: Minutiae extraction procedure

3. Thinning: This operation reduces the width of each ridge to a single pixel. I
implemented Hit or Miss transform [8]. Hit or Miss transform uses prespecified
templates of size 3 x 3 pixels and removes pixel at the center of 3 x 3 block if

matched with any of the templates giving thinned ridges.

4. Minutiae Detection: For each black pixel count the number of black pixels in it’s
3 x 3 neighborhood and also the number of black to white transitions in clock-wise
direction. Pixel is ridge end if both counts are 1. Pixel is ridge bifurcation if both

counts are 3.

5. Removing Spurious Minutiae: Even after enhancement some spurious minutiae
exist. Common spurious minutiae are shown in Figure 4.2. Following rules are

applied to remove such false minutiae:

e If distance between two minutiae is less than a threshold and difference be-

tween ridge orientations at these points is less then both minutiae are false.
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Threshold for distance is the average inter-ridge width. This will remove

minutiae produced due to ridge breaks, multiple ridge breaks, merge, bridge.

e For end point follow the thinned ridge and check if 8t point is present or not.
If not then mark it as false. Remove pixels which are visited during traversal.
Also if pixels visited during traversal has more than two black pixel in its
3 x 3 neighborhood then mark this minutia as false minutia. This will remove

minutiae produced because of spur, island.

e For bifurcation point follow each of the 3 thinned ridges and check if they have
8 point. Remove pixels which are visited during traversal. If one of them
does not have 8" point then mark this minutia as false minutia. Also if pixels
visited during traversal has more than two black pixel in its 3 x 3 neighborhood
then mark this minutia as false minutia. This will remove minutiae produced

because of ladder, lake.

7S
éeak Spur Merge
FAviWi
Multi;é breaks | Bridge | Break & merge
/|7
Lake Island Ladder

Figure 4.2: Examples of spurious minutiae (black dots)
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4.2 Indexing Elements for Minutiae Triplets

Following features are computed from the triangle formed by each non-collinear triplets

of minutiae to form index. Features and their definitions are same as [4] and [9].

1. M; is minutiae detail for a vertex P; of triangle. If vertex is bifurcation then,
depending on the quadrants of two new ridges with respective to bifurcated ridge,
minutia detail is identified as per Table 4.1. In Figure 4.3, r is the ridge before
bifurcation and r; and ro are two ridges after bifurcation. From angles between
the lines joining p and 8 points along these ridges(ap, bip, bap), we can determine
which is r, r; and ry. Table 4.1 and Figure 4.3 are taken from [9)].

For ridge end point, quadrant of line joining end point and 8 point with respect

to line joining end point and centroid of the triangle is used as minutia detail.

b: Sur

SLr

1

x

Figure 4.3: Minutia detail of bifurcation at p

2. Qpin and Qeq are the minimum and medium angles in the triangle. According to
the magnitude of angles, the vertices of angles a4z, Qmeq and @y, are labeled as

P, P, and Pj5 respectively.

3. H is the triangle Handedness. Let Z; = x; +y; be a complex number corresponding
to location (z;,y;) of point P,. Define Zyy = Zy — Zy, Zsy = Z3 — Zy and Zy3 =

71— Z3. Triangle Handedness is H = sign(Za; X Zs3), where X is the cross product.

4. Lpax is the length of longest edge of the triangle.
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| Case | by € | bo € | Condition |

1 Srr | Sir
2@ | Scr | Sur | z[b1] < x[b2]
2 (b) SrL SurL x[bl] > m[bQ]

3 Sy | Sur
4 St | SLr
5 Sur | Sut

6@ | Sur | Sur | ylb1] < ylb2]
6 | St | Sur | y[bi] > y[b2]

7 SvurL | SLR

8 SUR | SUR -
9@ | Sur | SLr | z|b1] < z[b2]
9 (b) SURr SLR x|b1 >:I:’_bz_

10 SLr | SLRr

Table 4.1: Different cases for bifurcation detail
5. ¢ is the difference between angles of two edges of P; and orientation field at P;.
6. v is triangle type where v = v, + 2 + 73 and ; is type of P;. If P; is an end-point

then v; =1 else 7; = 0.

Conditions for Triangle Match

Following conditions are used to find the matching triangles among the triangles in

database:

M.
H
g

<

M;
Hl
’-)//

| QVnin — a;nin’ < Ty
|amed - a;ned| < TCV

/
|L77la93 _L'ma:L' | < TL

max

b — ¢ < Ty

where T,,, T}, and T} are the thresholds and ¢ = 1,2, 3.
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4.3 Low Order Delaunay Triangle

There will be O(n?) triangles if we take all possible triplets of minutiae set of size n.
This will increase the computation and storage costs. Instead of exhausting all triplets
of the minutiae set, [9] [2] used Delaunay triangulation. For a set 'P’ of points in
a plane, Delaunay triangulation is a triangulation such that no point in 'P’ is inside
the circumcircle of any triangle in triangulation set DT(P). Delaunay triangulations
maximize the minimum angle of all the angles of the triangles in the triangulation. As
per [9], I used Low Order Delaunay Triangles which is a union of Delaunay triangles and
order 1 Delaunay triangles. For each possible convex quadrilateral formed by a pair of
Delaunay triangles, order 1 Delaunay triangles are obtained by edge flipping of shared
edge of two Delaunay triangles and making sure that both new triangles have only one
point inside their circumcircle.

Complexity of the implemented algorithm to construct Delaunay triangulation is
O(nlogn) where n is the number of minutiae and 1 order Delaunay triangles are computed
in linear time. Low Order Delaunay triangulation has advantages: 1) Effect of insertion

or deletion of a point is local. 2) Creates only O(n) triangles instead of O(n?).

4.4 Indexing Score

Suppose F'is a query fingerprint image and F; are fingerprints in database, i = 1,2, ....D
where D is the number of fingerprint images in database. Let M and M; be set of
minutiae in F' and F; respectively. Suppose there are n potential corresponding minutia
m; in a pair of fingerprints ' and F;, m; € M (\M; and j = 1,2,..n. Let r; be the
number of matched triangles which includes m;. Indexing score for Fj is calculated as

S = Z?:o rj. The indexing algorithm is as Algorithm 2.
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Algorithm 2 Minutiae Triplet Indexing
Input: Minutiae set M of input fingerprint F'
Output: Top N possible matching fingerprints

1 Compute set of Low Order Delaunay Triangles DT'(M) from M

2 for all triangle T in DT (M) do

3 Extract features (Mj, H, Cmin, Qmed, Limaz, ¢i,7y) of triangle T

4 Get the matching triangles from the database using conditions in Section 4.2
5 for all fingerprints F; having matching triangle do

6 if I} is in candidate fingerprint set U then

7 Increment counter C'Tj of F)

8

9

else
Add Fj into U
10 end if
11 end for
12 end for

13 for all F; in U do
14 if CT;<Tcr then

15 Remove F} from U, where Tt is a threshold.
16 end if
17 end for

18 if candidate fingerprint list is empty

19 Reject the input fingerprint

20 end if

21

22  Compute indexing score S; based on M; for all F; in U
23 Sort Sy, ...., .S, in descending order

24 return Top N matching fingerprints

4.5 Experimental Evaluation

Average number of triplets per fingerprint is 112. Hence used 0.1 Million fingerprints from
Pyramid Indexing Experiments. Extracted features from all triplets of fingerprints. Fea-
tures of one triplet are stored as one tuple (id, H,~y, My, My, M3, 1, 2, 3, Cmins Cmeds Limaz)
in database where id is an identification number of the fingerprint. So resulting database
has 11.2 Million tuples. Used 4 sets of query fingerprints of noise levels 2, 4, 8 and 10.
Each set contains 500 fingerprints of respective noise level.

I implemented a simple B+-tree indexing technique using GiST in PostgreSQL. This
B+-tree is same as multi-column B+-tree index of PostgreSQL except leaf node contains

all the feature values so that we can verify whether it is within the thresholds of queried
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Algorithm 3 Query on GiST B+-Tree

Input:

Q(07 0, 0, 0, 0, T¢7 Ty, beﬂ To, T, TL7Hi77iaMli7M§’M?Z;7 i?qbév é’a:nin7a2ned7 Linax)
1 =1,...,n where n is the number of low order Delaunay triangles of query fingerprint.

min  ~,min min min min 4min Amin  Amin
N(H 7’7 7M1 7M2 7M3 7¢1 7¢2 7¢3 )
mar A,max mazx mazxr mar Amar smar Asmax
H 77 7M1 7M2 7M3 7¢1 » Y2 7¢3 )
[H7 e M17 M27 M37 ¢17 ¢27 ¢37 Amins Omed, Lmam])

1 if N is Non—Leaf then

2 for all A(H,v,M;,¢;)in Q j=1,2,3do

3 if A is inside N then

4 return true

5 end if

6 end for

7 return false

8 end if

9 if N is Leaf then

10 for all A(H,~,Mj, i, min, Qmeds Lmaz) in Q; j =1,2,3 do
11 B(H,’y, Mja¢j7amin7amed7Lmax) of N

12 C(0,0,0,0,0, Ty, Ty, Ty, Te, Ta, T1) of Q
13 if abs(A — B) < C then

14 return true

15 end if

16 end for

17 return false

18 end if

feature values. Also we can do bulk matching for all the triplet features from query
fingerprint. Created a B+-tree index on (H,~y, My, My, M3, ¢y, ¢, ¢3). Thresholds for
H,~, My, My and Mj are 0. So filtering with these features will reduce the number of
nodes to be traversed by large extent. As database size is large, even with initial filter-
ing there will be large number of nodes. These nodes are again filtered using ¢, ¢, @3
with threshold Ty. ¢1, @2, @3 have values between -360 to +360. In the query user gives
thresholds for each feature followed by list of feature values from all triplets of minutiae
of query fingerprint. Algorithm 3 describes handling of query at each node N of B+-tree.

Table 4.2 compares FingerCode and Minutiae Triplets with respect to storage space

usage.
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FingerCode | Minutiae Triplets
Number of Tuples | 0.1 million 11.2 million
Table Size(MB) 156 1177
Index Size(MB) 269 2472

Table 4.2: Storage space usage of FingerCode and Minutiae Triplets

Distance is invariant under translation and rotation. However minutiae locations are
uncertain as they depend on enhancement and thinning algorithms. Hence the location
of each vertex of triplet changes independently in small local area in random manner.
Angle is ratio of distances, so angles Qyneq, Qmin and ¢; change by very small value.
Thresholds used for experiments: T, = 5°, 11, = 10% pixels and Ty = 5°.

The output of the indexing algorithm is a set of top N fingerprints. If the fingerprint
corresponding to the query fingerprint is in the list of top N fingerprints, then it consid-
ered as correct result.

With the above thresholds, accuracies of N2, N4, N8 and N10 are 100% when top 1
fingerprint is considered. As the noise level increases some minutiae will get added or
removed. This affects the triangulation and can be seen from the graph in Figure 4.4. As
the noise level increases the average and minimum percentage of triplets matched between
a query fingerprint impression and corresponding fingerprint impression in database de-
creases because of the affect of change in minutiae set on triangulation. Also less than 8%
triplets are matched between a query fingerprint impression and impression of different
fingerprint in database. So if we use 8% as threshold Tor in indexing Algorithm 2, then
algorithm will return only one fingerprint if query fingerprint corresponds to registered
fingerprint.

Total time comparison of FingerCode and Minutiae Triplet for 0.1 million data fin-
gerprint and single query fingerprint of N8 is given in Table 4.3 (only one CPU core and
one disk is used). Minutiae matching algorithm implemented in [11] takes 0.02 seconds
to match a pair of fingerprints. For FingerCode query time is less and Matching time
is more compared to Minutiae Triplet. Matching Time for FingerCode can be reduced

by increasing the number of CPU cores and doing matching in parallel. As per [5] if
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o
o

——Average

[}
o

-=Minimum

N
o

% of Triplets Matched
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Figure 4.4: Percentage of triplets matched per true pair of fingerprints

we distribute 1O operations over large number of disks so that disks parallelism can be

used, then we could reduce the time for minutiae triplets by large extent.

Method Retrieval Time | Matching Time | Total Time
(Seconds) (Seconds) (Seconds)
FingerCode 0.6 1.4 2
Minutiae Triplet 3.98 0.02 4

Table 4.3: Total time comparison of FingerCode and Minutiae Triplets
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Conclusions

With Anguli we can generate very large number of fingerprints. Anguli takes 400 mil-
liseconds to generate a fingerprint and 300 milliseconds to add noise of level 8. Time to
add noise increases with increase in the noise level.

Pyramid Indexing Technique can be used to index Directional Field or FingerCode
feature vectors of fingerprints to reduce the penetration rate as well as search time. For
noise level 8 penetration is 0.06% and time is 5.2 seconds which are much less than LSH
implementation [1] where penetration was 1.93% and time was 10.7 seconds. For Direc-
tional Field and FingerCode methods matching time is more as the penetration is more.
Matching time can be reduced by increasing the number of CPU cores. Graph in Figure
5.1 shows that time to retrieve candidate fingerprint increases linearly with increase in
the size of database for a query fingerprint of noise level 8. It increases by fraction by
which database size is increased, but penetration is constant.

Minutiae Triplet reduces the number of candidate fingerprint for matching to 1 with
the accuracy of 100%. But query time is more which can be reduced by increasing the
number of disks and distributing the data across these disks such that disk parallelism
can be used. One strategy could be distributing the triplets according to type and hand-
edness. Graph in Figure 5.2 shows that time to retrieve candidate fingerprint increases
linearly with increase in the size of database for a query fingerprint of noise level 8. It

increases by fraction by which database size is increased, but accuracy is 100% when top

27
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1 fingerprint is considered.
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Figure 5.1: Time for one query using pyramid indexing technique on different database
sizes
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Figure 5.2: Time for one query using minutiae triplets on different database sizes
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Appendix A

Anguli Command Line Options

Option

Description

-h

Displays the help.

-num <number>

Number of fingerprints to be generated. Cannot be used with -impr.

-npd <number>

Number of fingerprints per directory. Cannot be used with -impr.

Default value is 1000.

-cdist Fingerprint class Distribution. Class distributions are in Table A.2.
<distribution> Default distribution is natural. Cannot be used with -impr.
-meta Enables saving of meta information, like class of fingerprint, in a

text file of corresponding finger. Default is disabled. Cannot be

used with -impr.

-ni <number>

Number of impressions per fingerprints. Default value is 1.

-outdir <path>

Path of directory in which fingerprints and impressions are to be
stored. Can be used for generating fingerprints and impressions.
Default path is “./Fingerprints” when generating fingerprints and

¢

“./Impressions” when “-impr” is used for generating impressions.

continued on next page
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continued from previous page

Option Description
-numT Number of threads to be created for generating fingerprints and
<number> impressions. Default value is 1.

-seed <number>

Seed value for random number generator. Cannot be used with

-impr.

-impr

Generate impressions only from a fingerprint database generated

previously. Should be used with ’-indir’ option.

-indir <path>

Path of directory with fingerprint images or subdirectories contain-

ing fingerprint images. Default path is “./Fingerprints”.

-scratch Minimum and maximum number of scratches to be added to im-
‘<num><num>’ | pressions. Default value is 0.

-noise Minimum and maximum number of noise levels|0, 8] to be applied
‘<num><num>’ | to impressions. Default value is 0.

-trans <num>

Percentage by which finger are to be translated to generate impres-

sions. Fingerprints are translated in the range of [-num, +num]

-rot <num>

Degree by which fingers are to be rotated to generate impressions.

Fingerprints are rotated in the range of [-num, +num].

Table A.1: Options for Anguli command line

natural | Generate fingerprints according to natural distribution of classes.
arch Generate fingerprints of Arch class only.

tarch Generate fingerprints of Tarch class only.

right Generate fingerprints of Right Loop class only.

left Generate fingerprints of Left Loop class only.

dloop Generate fingerprints of Double loop class only.

whirl Generate fingerprints of Whirl class only.

Table A.2: Fingerprint class distribution
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Pyramid Technique

The pyramid technique [3] was especially designed for building index of data points in
higher-dimensional spaces. Pyramid technique builds a height balanced tree structure
which is dynamic to the frequent insertions and deletions.

Pyramid technique maps a d-dimensional point into a one-dimensional space and
uses a B+4-tree to index the one-dimensional space. It is not possible to get d-dimension
point from one-dimensional key, hence d-dimensional point is also stored in data pages
of B+-tree. Mapping in pyramid technique is based on a special partitioning strategy:.
It partitions the d-dimensional space into 2 * d pyramids having the center point of the
space as their top and a (d-1) dimensional base. These single pyramids are then cut into
slices parallel to the basis of the pyramid forming the data pages. Figure B.1 depicts this
partitioning technique. For 2-dimensional case, we have 2 * 2 = 4 pyramids, as shown
in the Figure B.1, with each of those pyramids (F, ..., P3) having a common tip-point
and a 1-dimensional base. Since we work in 192-dimensional data space, the numbers of
pyramids formed are 2 * 192 = 384. Figures B.1 and B.2 are taken from [3].

The Pyramid technique requires normalizing the data values to lie between 0 and
1. Pyramids are numbered in logical manner as shown in Figure B.2(a). A pyramid is
numbered ¢ if all the points within the pyramid are farthest from the tip-point along

h

dimension ¢ than any other dimension. If the points have their i** coordinate greater

than 0.5, the pyramid is labeled as (i +d). In the Figure B.2, all points within pyramids

33
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(d-1)-dimensional surface .
pyramid

\ partition

center
point

Data space

Figure B.1: Partitioning the data space into pyramids

p1 and p3 are farthest from the tip point along dimension d; than along dimension d
and points in p3 have d; values greater than 0.5.

Given a point, the height of the point within its pyramid is the orthogonal distance
of the point to the center-point of the data space as shown in Figure B.2(b). The height
of a point inside pyramid ¢ is defined as the distance from the tip-point in the (i mod
d) dimension. For example, all points lying within pyramids p; and ps have the height
defined as the distance from the tip-point along dimension d;. In order to map a d-
dimensional point into a one-dimensional value, the number of the pyramid in which the
point is located, and the height of the point within this pyramid are added. This one

dimensional value is used as a key in the B+-tree.

a) numbering of pyramids b) point in pyramid

Figure B.2: Properties of pyramids



Appendix C
GiST

Generalized Search Tree (GiST) [6] is an index structure supporting an extensible set
of queries and data types. The GiST allows new data types to be indexed in a manner
supporting queries natural to the types. In a single data structure, the GiST provides
all the basic search tree logic required by a database system, thereby unifying disparate
structures such as B4-trees and R-trees in a single piece of code, and opening the appli-
cation of search trees to general extensibility.

A GiST is a balanced tree of variable fanout between kM and M, % <k> % with
the exception of the root node, which may have fanout between 2 and M. The constant
k is termed the minimum fill factor of the tree. Leaf nodes contain (p, ptr) pairs, where
ptr is the identifier of some tuple in the database and p is a predicate that is used as
a search key ( p is true when instantiated with the values from the indicated tuple).
Non-leaf nodes contain (p, ptr) pairs, where ptr is a pointer to another tree node and p
is a predicate used as a search key (p is true when instantiated with the values of any
tuple reachable from ptr). Predicates can contain any number of free variables, as long
as any single tuple referenced by the leaves of the tree can instantiate all the variables.

All leaves of the tree appear on the same level.

35
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Key Methods

The keys of a GiST are arbitrary predicates and they come from a user-implemented
objectclass, which provides a particular set of methods required by the GiST. Examples
of key structures include ranges of integers for data from 7 (as in B+-trees). The key
class is open to redefinition by the user, with the following set of six methods required

by the GiST (taken from [6]):

1. Compress (F): given an entry E = (p, ptr) returns an entry (m, ptr) where 7 is a

compressed representation of p.

2. Penalty (E1, Ey): given two entries Ey = (pi1,ptri), Es = (po,ptrs), returns a
domain-specific penalty for inserting Es into the sub-tree rooted at F;. This is
used to aid the Split and Insert algorithms. Typically the penalty metric is some

representation of the increase of size from FEj.p; to Union (£, E»).

3. PickSplit (P): given a set P of M + 1 entries (p, ptr), splits P into two sets of
entries Py, P, each of size at least kM. The choice of the minimum fill factor for
a tree is controlled here. Typically, it is desirable to split in such a way as to
minimize some badness metric akin to a multi-way Penalty, but this is left open

for the user.

4. Union (P): given a set P of entries (py, ptry), ..., (pn, ptry), returns some predicate
r that holds for all tuples stored below ptr; through ptr,. This can be done by
finding an r such that (p; V...V p,) — 7.

5. Decompress (E): given a compressed representation £ = (m,ptr), where 7 =
Compress(p), returns an entry (r,ptr) such that p — r. Note that this is a

potentially “lossy” compression, since we do not require that p < r.

6. Consistent (E,q): given an entry E = (p,ptr), and a query predicate ¢, returns

false if p A ¢ can be guaranteed unsatisfiable, and true otherwise. Note that an
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accurate test for satisfiability is not required here: Consistent may return true
incorrectly without affecting the correctness of the tree algorithms. The penalty
for such errors is in performance, since they may result in exploration of irrelevant

sub-trees during search.

The above are the only methods a GiST user needs to supply.



