
Generating Plan Diagrams For High Dimensions and

Higher Resolution

A PROJECT REPORT

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

Master of Engineering

IN

Computer Science & Engineering

BY

Sai Sandeep Balbari

Computer Science and Automation

Indian Institute of Science

Bangalore – 560 012 (INDIA)

June, 2017

Declaration of Originality

I, Sai Sandeep Balbari, with SR No. 04-04-00-10-41-15-1-12297 hereby declare that the

material presented in the thesis titled

Generating Plan Diagrams For High Dimensions and Higher Resolution

represents original work carried out by me in the Department of Computer Science and

Automation at Indian Institute of Science during the years 2015-2017.

With my signature, I certify that:

• I have not manipulated any of the data or results.

• I have not committed any plagiarism of intellectual property. I have clearly indicated and

referenced the contributions of others.

• I have explicitly acknowledged all collaborative research and discussions.

• I have understood that any false claim will result in severe disciplinary action.

• I have understood that the work may be screened for any form of academic misconduct.

Date: Student Signature

In my capacity as supervisor of the above-mentioned work, I certify that the above statements

are true to the best of my knowledge, and I have carried out due diligence to ensure the

originality of the report.

Advisor Name: Prof. Jayant R. Haritsa Advisor Signature

1

c© Sai Sandeep Balbari

June, 2017

All rights reserved

DEDICATED TO

My Family, Teachers and Friends

for their love and support

Acknowledgements

I wish to express my gratitude to my advisor, Professor Jayant R. Haritsa for his generous

advice, inspiring guidance and encouragement throughout my research for this work. This

thesis could not have been completed without his professional guidance. I have been extremely

lucky to work with him.

I am thankful to Srinivas Karthik for his assistance and guidance. It has been a great

experience to work with him. I thank my fellow labmates in Database Systems Lab: Davinder

Singh, Priyanka Sharma, Raghav Sood, Vinay Rijhwani, for the stimulating discussions, for the

sleepless nights we were working together before deadlines, and for all the fun we have had in

the last two years.

I would like to thank the Department of Computer Science & Automation for providing a

wonderful learning experience and excellent study environment. Also I thank the IISc staff and

friends for making my stay at IISc a great learning experience. I am also thankful to my best

friends Rahul Raj Kumar and Vikas Naik for all the memorable moments at IISc.

Finally, I express my wholehearted gratitude to my parents for their financial aid and lasting

support without question.

i

Abstract

Modern database systems use a query optimizer to identify the most efficient strategy called

“plan”, to execute declarative SQL queries. Optimization is a mandatory because the difference

between the cost of the best plan and a random choice could be in orders of magnitude. For a

query, on a given database and system configuration, the optimizer’s plan choice is primarily

a function of the selectivities of base predicates and join predicates of the relations present in

the query. A pictorial enumeration of the execution plan choices of a database query optimizer

over the relational selectivity space is called a “plan diagram”. “Picasso” [6] tool is a database

query optimizer visualizer that enables us to investigate plan diagrams.

The plan choices made by the optimizer are called parametric optimal set of plans (POSP).

The bouquet identification phase in “Plan Bouquet” [3] and the plan diagram generation in

“Picasso” [6] can be done only after the complete POSP is identified over the entire error-

prone selectivity space (ESS). The time required to produce the POSP for the ESS increases

exponentially with the dimensionality of the space by increasing the number of error-prone

predicates for a given query. In “Robust Query Processing” [5], the POSP identification phase

for queries having error-prone base predicates was improved by massive parallelization.

Once the POSP result is generated after parallelization, verification is done to check if it

is correct or not using “Picasso”. In this work, we have generated the “Picasso Packets”

from the raw results obtained after parallelization for queries having high dimensional error-

prone base predicates (4) for higher resolution (100). Experiments were carried out with a suite

of multi-dimensional TPC-H query templates on the PostgreSQL optimizer. The verification

demonstrates that the results obtained by parallelization are correct and thus we have developed

a parallelized version of “Picasso” to generate complex plan diagrams in significantly less

time. For a query having 4 dimensions and 100 resolution, we were able to reduce time taken

to generate plan diagrams from 166 hours to 3 hour 20 minutes. Further, changes were made to

“Parallelized Picasso” to reduce the “Picasso Packet” size without affecting its behaviour.

The parallelization phase of POSP generation is now extended from queries having error-prone

base predicates to queries having error-prone join predicates.

ii

Contents

Acknowledgements i

Abstract ii

Contents iii

List of Figures v

List of Tables vi

1 Introduction 1

1.1 Motivation . 1

1.2 Contribution . 2

1.2.1 Parallelization Modifications . 2

1.2.2 Parallelized Picasso . 2

1.2.3 PICASSO Modifications . 2

1.3 Organization . 2

2 POSP Generation 3

2.1 Serial processing for POSP generation . 3

2.2 Parallelization of POSP generation . 3

2.2.1 Parallelization Limitations and Modifications 3

2.3 Applications . 5

3 Picasso Database Query Optimizer Visualizer 6

3.1 Existing Architecture . 6

4 Parallelized PICASSO 8

4.1 Collection of Raw Results . 8

iii

CONTENTS

4.2 Creation of Picasso Packet . 8

4.2.1 Implementation Details . 8

4.3 Picasso Modifications . 10

4.4 Architecture of Parallelized Picasso . 10

5 Empirical Analysis 12

5.1 Impact of Parallel Algorithm . 12

5.2 Verification through Picasso Diagrams . 12

5.3 Results . 13

5.3.1 Parallelization for Join Predicates . 13

5.3.2 Verification by Picasso Diagrams . 17

6 Conclusion and Future Work 28

Bibliography 29

iv

List of Figures

3.1 Picasso Architecture . 7

4.1 Picasso Packet Structure . 9

4.2 Parallelized Picasso Architecture . 11

5.1 POSP Performance I . 14

5.2 POSP Performance II . 15

5.3 POSP Performance III . 16

5.4 POSP Performance IV . 17

5.5 TPC-H Query Q8 . 18

5.6 Plan Diagram for o 25&l 35 . 19

5.7 Plan Diagram for o 75&l 85 . 20

5.8 Plan Diagram for o t35&l e54 . 21

5.9 Compilation Cardinality Diagram for o t35&l e54 22

5.10 Compilation Cost Diagram for o t35&l e54 23

5.11 Plan Diagram for l e37.5&c a78.5 . 24

5.12 Compilation Cardinality Diagram for l e37.5&c a78.5 25

5.13 Compilation Cost Diagram for l e37.5&c a78.5 26

5.14 Plan Diagram for p 75&l 35&o 55 . 27

v

List of Tables

2.1 Previous implementation v/s Current implementation for POSP generation . . . 5

vi

Chapter 1

Introduction

In database systems, whenever a query is fired, generating query result involves finding a query

plan during compile-time and executing the same query plan during run-time. Query plan is

an ordered sequence of steps to fetch the results of an SQL query. For a particular query, all

the query plans generated by the optimizer give the same query result. But, the cost of all

query plans may not be the same. The query plan with least cost is chosen as the best query

plan. When a query is executed, the best plan is passed to the executor module to generate

the results which are shown as output.

The behaviour of modern query optimizers is seen from a fresh perspective by the introduc-

tion and development of “Plan Diagram” concept. A plan diagram is a visual representation

of the plan choices made by the optimizer over a space of input parameters, such as relational

selectivities. In short, plan diagrams pictorially capture the geometries of the optimality regions

of the parametric optimal set of plans (POSP).

1.1 Motivation

QUEST [4] (QUery Execution without Selectivity estimation) is a Java based prototype imple-

mentation of “Plan Bouquet” [3] technique. It visually shows bouquet execution process and

provides interactivity during execution. QUEST includes database system with incorporated

features required for plan bouquet. Currently, PostgreSQL is the database system used with

QUEST wherein all required features are implemented.

In “Robust Query Processing” [5], join-selectivity injection feature was implemented in a

database to evaluate a query with error-prone join predicates. By doing this, we can get the

optimizer’s optimal plan for a given join selectivity. POSP identification was done for queries

where base predicates are error-prone. This is now extended to queries having multi-dimensional

1

error-prone join predicates and also error-prone base predicates.

PICASSO [6] is also a Java based implementation that gives a visual representation of the

plan choices made by the optimizer over an input parameter space, whose dimensions may

include database, query and system-related features.

In order to make both QUEST and PICASSO practically useful for queries having multi-

dimensional error-prone predicates, we need to reduce the POSP generation time. For a query,

the time required to produce the POSP for the entire ESS increases exponentially with the

dimensionality of the ESS. If the resolution of a d-dimensional ESS is r, then the number of

optimization calls made for producing the POSP is rd, which is computationally expensive. In

[5], a parallel algorithm was proposed to find the POSP for queries having multi-dimensional

error-prone base predicates.

1.2 Contribution

In this work, we have created a Picasso Packet from the POSP generated after parallelization.

We have also optimized, automated and extended the parallelized POSP generation phase on

delta-cluster having 64 cores. We have also modified PICASSO so that the resulting “Picasso

packets” occupy less storage space. Our contribution can be divided into three categories.

1.2.1 Parallelization Modifications

Here we explain the modifications done to the parallelization code for multi-core clusters which

use PostgreSQL 9.4 database engine which has selectivity injection feature.

1.2.2 Parallelized Picasso

Here, we show how the raw results obtained from parallelization are used to create a picasso

packet which can be loaded to show the plan diagrams. We will also show in the experiments

how the plan diagrams generated from these picasso packets look like.

1.2.3 PICASSO Modifications

Here, we explain the modifications done to PICASSO so that the picasso packets that were

created from raw results of parallelization can be saved in less storage space.

1.3 Organization

Section 2 provides an overview of POSP generation. Section 3 shows the existing PICASSO ar-

chitecture. Parallelized PICASSO is explained in Section 4. In Section 5 we show the empirical

analysis of our approach. Section 6 gives the conclusion and discusses future work.

2

Chapter 2

POSP Generation

In this chapter, we present necessary details about POSP generation and its applications.

2.1 Serial processing for POSP generation

For a given query, if we increase the error-prone dimensions, the time required to generate

the POSP for the entire ESS will increase exponentially. If the resolution of a d-dimensional

ESS is r, then the number of optimization calls made for producing the POSP is rd, which is

computationally expensive. Serial processing to generate this POSP takes a lot of time.

For a query with 4 error-prone base predicates with 100 resolution, the total number of

optimization calls made for producing POSP will be 108.

2.2 Parallelization of POSP generation

In “Robust Query Processing” [5], a parallel algorithm was proposed that reduced the POSP

generation time for error-prone base predicates. In this implementation, we need to supply the

constant values of error-prone base predicates of the query.

Collection of constant values for a specified “error-prone base predicate” for a given “query”,

“selectivity distribution”, “resolution” is done as follows: Collect the constants corresponding to

all the error-prone base predicates of the query by repeating the above process for the respective

error-prone base predicates.

These constants are supplied during the parallelization phase of POSP generation

2.2.1 Parallelization Limitations and Modifications

In “Robust Query Processing” [5], the constant values for error-prone base predicates are sup-

plied manually. These values vary depending on the query, error-prone predicates, selectivity

distribution, resolution. Hence it is very difficult to collect the constants by running the “Pi-

3

casso” tool manually each time when there is a change in either “selectivity distribution” or

“resolution” or “query” or “error-prone predicate”.

This problem is solved by using PostgreSQL 9.4 database engine with selectivity injection

feature where we can inject the selectivities corresponding to error-prone predicates in the query

while making optimization calls to the database. These selectivities for a given “selectivity

distribution”, “resolution” are calculated once and can be used for all the queries for all the

error-prone predicates (base as well as join).

SELECT *

FROM lineitem, orders, part

WHERE p partkey = l partkey

and l orderkey = o orderkey

and p retailprice < 1000;

Example SQL Query (EQ)

This implementation of POSP generation in “Robust Query Processing” [5] is also extended

from error-prone base predicates (like p retailprice < 1000 in EQ) to error-prone join predi-

cates(like l orderkey = o orderkey in EQ). Changes were made to this implementation to use

selectivity injection feature that was added in PostgreSQL 9.4.

SELECTIVITY (p retailprice < 1000

and l orderkey = o orderkey)

(0.3, 0.7)

SELECT *

FROM lineitem, orders, part

WHERE p partkey = l partkey

and l orderkey = o orderkey

and p retailprice < 1000;

Example Query with Selectivity Injection (EQ2)

In EQ2, p retailprice < 1000 and l orderkey = o orderkey are the error-prone predicates with

0.3, 0.7 as their corresponding injected selectivities. Therefore, the entire process of generating

the POSP results is automated in the new implementation.

The advantages of using Selectivity Injection are described in the form of a table by com-

paring it with the existing approach to generate POSP

4

Parallelization Code for Base Parallelization Code with Selectivity
Predicates Injection

works only if base predicates works for both, base and join
are error-prone error-prone predicates

Constants values need to be Selectivity values need to be
supplied with the Query supplied with the Query

Picasso tool has to run No need to run Picasso tool
to get the constants to get the selectivities

Constants change by changing Selectivities change by changing
“Selectivity distribution”, “Resolution” “Selectivity distribution”, “Resolution”

Constants change by changing Selectivities do not change by changing
“Query”, “Error-Prone Predicates” “Query”, “Error-Prone Predicates”

This code is partially automated This code is completely automated

Table 2.1: Previous implementation v/s Current implementation for POSP generation

The output results were storing Plan Number, Cost, Cardinality at each selectivity location

in text format needing large storage space to save them. For a query having 4 dimensions and

100 resolution, the output results needed 2.5GB of storage space. As we increase the dimension

to 5 by adding one more error-prone base predicate, the storage space needed to save the results

will go up to 250GB. It becomes very difficult to handle such large files.

So, the output results are now stored in the binary format instead of text format there by

reducing the storage space needed to save them. By doing this, we are able to storage the

POSP results of parallelization in 40% of the space that was used before.

2.3 Applications

The POSP generated for high dimensions and higher resolution can be used for pre-processing

phase of “Plan Bouquet” approach for robust query processing and to visualize complex plan

diagrams in “Picasso” Database Query Optimizer Visualizer [6].

5

Chapter 3

Picasso Database Query Optimizer

Visualizer

“Picasso” [6], is a tool that gives a pictorial enumeration of the execution plan choices of a

database query optimizer over the relational selectivity space. It is completely written in Java

and, in principle, operates in a platform independent manner.

3.1 Existing Architecture

There are three processes involved in a Picasso setup in addition to a database as shown in

Figure 1.

1. Picasso Client: Users enter query templates and visualize the associated diagrams

through this.

2. Picasso Server: Converts the query templates into the equivalent set of query instances

to submit to the database engines and gathers the associated execution plans

3. Database Engine: Connects to the database and produces the execution plans for the

queries.

4. Database: The entire data is stored here. Also, the new tables created by picasso are

also stored here.

6

Figure 3.1: Picasso Architecture

The three processes, Picasso Client, Picasso Server, Database Engine can all execute on

the same machine or on different machines. Further, multiple Picasso clients can connect to a

single Picasso server, which in turn can connect to multiple database engines.

7

Chapter 4

Parallelized PICASSO

In this section, we elaborate the procedure to generate “Picasso Packets” using parallelization

which can be loaded to visualize the plan diagrams.

4.1 Collection of Raw Results

For a given multi-dimensional query template, selectivity space resolution, distribution, using

parallelization [5] code written in MPI and C++, we generate POSP in the form of raw results.

These results contain Plan Number, Cost, Cardinality stored for each combination of selectiv-

ities of error prone base predicates. The plan trees and query template are separately stored

in text format. The information regarding the number of error-prone predicates, resolution of

selectivity space, maximum and minimum values of cost and cardinality and total number of

plans are collected separately.

4.2 Creation of Picasso Packet

From these raw results, a packet is created which will be similar to the picasso packet that

would be generated without parallelization if the same multi-dimensional query template with

same selectivity space resolution and distribution were given to the existing PICASSO tool.

4.2.1 Implementation Details

In this section, we explain the implementation details of creating picasso packets

8

Figure 4.1: Picasso Packet Structure

“Picasso Packet” is a “Server Packet” which is given by the “Picasso Server”. It contains

“Diagram Packet”, “Query Packet” “Plan Trees” and some additional information regarding

clientId, Port Number, Connection information.

The structure of Picasso Packet looks as shown in Figure 2 where we explain three important

fields:

1. Data Values in “Diagram Packet” which stores Plan Number, Cost, Cardinality and

isRepresentative for each selectivity combination.

2. Query Template in “Query Packet” which contains the multi-dimensional query tem-

plate

3. Plan Trees in “Server Packet” where all the plan trees are stored

Using the dimension and resolution information from the raw results, we first create an

empty picasso packet using a new module called “Picasso Packet Creator”. This packet will

have the same structure as that of the original picasso packet that would have been created when

9

picasso tool was run on single-core system for the same query template with same dimension

and resolution.

Now, we copy the plan number, cost, cardinality and isRepresentative at each selectivity

location into the corresponding position in the empty packet. The field “isRepresentative” is

set to “false” for all the points initially. The plan trees, query template, total number of plans,

maximum and minimum values of cost and cardinality are also copied. Finally, it is stored on to

the disk in the form of picasso packet which can be loaded using “load packet” feature present

in PICASSO to visualize the plan diagrams.

4.3 Picasso Modifications

The “Data Values” structure present in “Diagram Packet” structure of “Picasso Packet” has

two more additional fields “FPCdone”, “succProb” which are used to do interpolation when

Foreign Plan Cost (FPC) is used. In our experiments, we have not used FPC because of which,

the values of these fields are same for all the points in the selectivity space. So, instead of storing

the same information for all the points, we are storing them only once in the picasso packet.

By doing this, we are able to save 5 Bytes of storage space for every selectivity combination

of error prone predicates. Hence, we are able to generate the picasso packets occupying lesser

storage space without losing any information.

4.4 Architecture of Parallelized Picasso

The latest architecture of Parallelized Picasso is shown in Figure 3 which operates in three

phases:

1. generation of POSP in raw form using parallelization on multi-core clusters (Implemented

in MPI and C++).

2. Creating a “Picasso Packet” from the POSP generated in raw form (Implemented in

JAVA).

3. This “Picasso Packet” can be loaded to visualize the plan diagrams.

The GUI is modified and a query with 5 dimensional error-prone base predicates is run for

10 resolution for the first time.

10

Figure 4.2: Parallelized Picasso Architecture

11

Chapter 5

Empirical Analysis

We used PostgreSQL 9.4 which has selectivity injection feature added in it. Our experiments

were carried out on Delta Cluster composed of 4 nodes [1]. Each having 16 cores, 128GB

RAM and they are connected using Infiniband Card for MPI communication and Dual-port

Gigabit Ethernet Connectivity for enabling log-ins. The operating system used is CentOS 6.2

which is built on Linux x86 64 Platform. For our parallel algorithm implementation, we used

GNU compiler collection with MVAPICH2 Message Passing Interface and for Picasso Packet

Creation, we have used Java. We have performed all the experiments on TPC-H 5GB database

[2].

5.1 Impact of Parallel Algorithm

We have used 4 nodes and 12 cores in each node for our experimental purpose. We got a

speed-up of 48 times to generate the POSP in the form of raw results.

For the query having 4 dimensions and 100 resolution, we were able to generate the raw

results in 2 hour 50 minutes. Next, the picasso packets were created in 30 minutes. Therefore,

we were able to create the “Picasso Packet” in 3 hour 20 minutes. The existing PICASSO tool

which runs on single-core systems takes 166 hours to generate the same picasso packets.

5.2 Verification through Picasso Diagrams

Here, we see that, when picasso packets generated from parallelization and the picasso packets

generated by existing PICASSO for same query and same distribution and same resolution are

loaded, the PICASSO diagrams are found to be

1. Exactly Same for low resolution from parallelization and for packets of low resolution

generated from existing PICASSO.

12

2. Similar for packets of high resolution generated from parallelization and for packets of

low resolution generated on existing PICASSO.

In all the experiments, the PostgreSQL configuration file retained the same.

5.3 Results

Here we see the impact of parallelization over queries having error-prone join predicates and

the verification of POSP results from the picasso diagrams generated for the error-prone base

predicates.

5.3.1 Parallelization for Join Predicates

For Queries where join-predicates are error-prone, experiments are performed on Query 5 of

TPC-H 5GB database.

In all the queries shown below, the error prone join predicates are shown in bold and their

corresponding selectivity values will vary from 0 to 1.

selectivity (c custkey = o custkey, o orderkey = l orderkey) (varies, varies) se-

lect n name, l extendedprice, l discount as revenue from customer, orders, lineitem, supplier,

nation, region where c custkey = o custkey and l orderkey = o orderkey and l suppkey =

s suppkey and s nationkey = n nationkey and n regionkey = r regionkey and o totalprice <=

5000 and s acctbal <= 10000;

Query 5 with 2 error-prone join predicates

13

Figure 5.1: POSP Performance I

In Figure 4, we reduced the identification of POSP from 82 minutes to 3 minutes using 30

cores. Number of Plans in POSP = 6.

14

Figure 5.2: POSP Performance II

In Figure 5, we reduced the identification of POSP from 78 minutes to 3 minutes using 30

cores. Number of Plans in POSP = 8.

selectivity (c custkey = o custkey, o orderkey = l orderkey, s suppkey =

l suppkey) (varies, varies, varies) select n name, l extendedprice, l discount as revenue

from customer, orders, lineitem, supplier, nation, region where c custkey = o custkey and

l orderkey = o orderkey and l suppkey = s suppkey and s nationkey = n nationkey and

n regionkey = r regionkey and o totalprice <= 5000 and s acctbal <= 10000;

Query 5 with 3 error-prone join predicates

15

Figure 5.3: POSP Performance III

In Figure 6, we reduced the identification of POSP from 62 minutes to 2 minutes using 30

cores. Number of Plans in POSP = 13

16

Figure 5.4: POSP Performance IV

In Figure 7, we reduced the identification of POSP from 92 minutes to 3 minutes using 30

cores. Number of Plans in POSP = 15.

For a query with 3 dimensions and 1000 resolution, the POSP can be generated in 16 hours

for exponential distribution and in 17 hours for uniform distribution using 48 cores, which is

very less when compared to POSP identification with the conventional single core approach

which takes 30 days approximately. It also reduces the compile-time overhead for plan bouquet

to a great extent.

These POSP plans along with their costs and selectivity values can be used to run “Plan

Bouquet” [3] and ”Spill Bound” [7] on high dimensions and higher resolution on “Quest”

[4]. “Quest” is a prototype system that showcases the concept of plan bouquet in existence.

5.3.2 Verification by Picasso Diagrams

In all the pictures shown, one half of the figure shows the PICASSO frame using PICASSO

generated packet and the other half shows the PICASSO frame using packet generated from

17

parallelized results.

We see that both the frames are showing same plan diagrams for low resolution.

The following figure shows that we are using same query template in both the frames

Figure 5.5: TPC-H Query Q8

18

The following figure shows that the plan diagrams are exactly same for the slices taken when

the selectivities of o totalprice is 25% and l extendedprice is 35%.

Figure 5.6: Plan Diagram for o 25&l 35

19

The following figure shows that the plan diagrams are exactly same for the slices taken when

the selectivities of o totalprice is 75% and l extendedprice is 85%.

Figure 5.7: Plan Diagram for o 75&l 85

20

The following 3 figures show that the plan diagram, cardinality diagram and cost diagram

are similar for the slices taken when the selectivities of o totalprice is 35.5% and l extendedprice

is 54.5%

Figure 5.8: Plan Diagram for o t35&l e54

21

Figure 5.9: Compilation Cardinality Diagram for o t35&l e54

22

Figure 5.10: Compilation Cost Diagram for o t35&l e54

23

The following 3 figures show that the plan diagram, cardinality diagram and cost diagram

are similar for the slices taken when the selectivities of c acctbal is 78.5% and l extendedprice

is 37.5%

Figure 5.11: Plan Diagram for l e37.5&c a78.5

24

Figure 5.12: Compilation Cardinality Diagram for l e37.5&c a78.5

25

Figure 5.13: Compilation Cost Diagram for l e37.5&c a78.5

26

The following figure shows a slice of a plan diagram for 5 dimensions where p retailprice is

75% and l extendedprice is 35% and o totalprice is 55% on adding p retailprice as 5th error-prone

predicate in the TPC-H Q8 query.

Figure 5.14: Plan Diagram for p 75&l 35&o 55

Hence, we have verified that the parallelization of POSP is giving the correct results and we

were able to develop Parallelized PICASSO by creating picasso packets from these parallelized

results.

27

Chapter 6

Conclusion and Future Work

In the initial work, we have automated the parallelization process to generate POSP on multi-

core clusters and extended it to queries having error-prone join predicates and saved the results

in binary format so that they occupy less storage space. In our second contribution, we have

developed Parallelized PICASSO which operates in two phases. First being “Robust Query

Processing” [5] which does generation of POSP on multi-core clusters by doing parallelization

using MPI and C++. Second being the generation of Picasso Packet from these results imple-

mented in JAVA. In our third contribution, we have modified the existing PICASSO to store

the picasso packets in lesser storage space without loosing any information.

In our future work, we use Foreign Plan Cost (FPC) feature which tells us the behaviour

of a particular plan over the entire selectivity space. In “Plan Bouquet” [3] and “Platform-

independent Robust Query Processing” [7], experiments were carried out for queries having

high dimensions (6) but low resolution (10). We will carry out the same experiments for high

dimensions (4 and 5) and higher resolution (100) to verify the Maximum Sub-Optimality (MSO)

guarantees given by them.

28

Bibliography

[1] http://www.serc.iisc.in/facilities/delta-cluster/. 12

[2] http://www.tpc.org/tpch/. 12

[3] Anshuman Dutt and Jayant R Haritsa. Plan Bouquets: Query Processing without Selectivity

Estimation. In SIGMOD, 2014. ii, 1, 17, 28

[4] Anshuman Dutt, Sumit Neelam, and Jayant R Haritsa. Quest: An Exploratory Approach

to Robust Query Processing. In PVLDB, 2014. 1, 17

[5] Kuntal Ghosh. Robust Query Processing. Master’s thesis, Dept. of Computer Science and

Automation, IISc, Bangalore, 2016. ii, 1, 2, 3, 4, 8, 28

[6] Jayant R Haritsa. The Picasso Database Query Optimizer Visualizer. In VLDB, 2010. ii,

2, 5, 6

[7] Srinivas Karthik, Jayant R Haritsa, Sreyash Kenkre, and Vinayaka Pandit. Platform-

independent robust query processing. In ICDE, 2016. 17, 28

29

http://www.serc.iisc.in/facilities/delta-cluster/
http://www.tpc.org/tpch/

	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Contribution
	1.2.1 Parallelization Modifications
	1.2.2 Parallelized Picasso
	1.2.3 PICASSO Modifications

	1.3 Organization

	2 POSP Generation
	2.1 Serial processing for POSP generation
	2.2 Parallelization of POSP generation
	2.2.1 Parallelization Limitations and Modifications

	2.3 Applications

	3 Picasso Database Query Optimizer Visualizer
	3.1 Existing Architecture

	4 Parallelized PICASSO
	4.1 Collection of Raw Results
	4.2 Creation of Picasso Packet
	4.2.1 Implementation Details

	4.3 Picasso Modifications
	4.4 Architecture of Parallelized Picasso

	5 Empirical Analysis
	5.1 Impact of Parallel Algorithm
	5.2 Verification through Picasso Diagrams
	5.3 Results
	5.3.1 Parallelization for Join Predicates
	5.3.2 Verification by Picasso Diagrams

	6 Conclusion and Future Work
	Bibliography

