Generating Plan Diagrams For High Dimensions and
Higher Resolution

A PROJECT REPORT
SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF
MNMaster of Engineering
IN
Computer Science & Engineering

BY

Sai Sandeep Balbari

Computer Science and Automation
Indian Institute of Science
Bangalore — 560 012 (INDIA)

June, 2017

Declaration of Originality

I, Sai Sandeep Balbari, with SR No. 04-04-00-10-41-15-1-12297 hereby declare that the

material presented in the thesis titled
Generating Plan Diagrams For High Dimensions and Higher Resolution

represents original work carried out by me in the Department of Computer Science and
Automation at Indian Institute of Science during the years 2015-2017.
With my signature, I certify that:

e [have not manipulated any of the data or results.

e [have not committed any plagiarism of intellectual property. I have clearly indicated and

referenced the contributions of others.
e [have explicitly acknowledged all collaborative research and discussions.
e [have understood that any false claim will result in severe disciplinary action.

e [have understood that the work may be screened for any form of academic misconduct.

Date: Student Signature

In my capacity as supervisor of the above-mentioned work, I certify that the above statements
are true to the best of my knowledge, and I have carried out due diligence to ensure the

originality of the report.

Advisor Name: Prof. Jayant R. Haritsa Advisor Signature

(© Sai Sandeep Balbari
June, 2017
All rights reserved

DEDICATED TO

My Family, Teachers and Friends

for thewr love and support

Acknowledgements

I wish to express my gratitude to my advisor, Professor Jayant R. Haritsa for his generous
advice, inspiring guidance and encouragement throughout my research for this work. This
thesis could not have been completed without his professional guidance. I have been extremely
lucky to work with him.

I am thankful to Srinivas Karthik for his assistance and guidance. It has been a great
experience to work with him. I thank my fellow labmates in Database Systems Lab: Davinder
Singh, Priyanka Sharma, Raghav Sood, Vinay Rijhwani, for the stimulating discussions, for the
sleepless nights we were working together before deadlines, and for all the fun we have had in
the last two years.

I would like to thank the Department of Computer Science & Automation for providing a
wonderful learning experience and excellent study environment. Also I thank the IISc staff and
friends for making my stay at IISc a great learning experience. I am also thankful to my best
friends Rahul Raj Kumar and Vikas Naik for all the memorable moments at IISc.

Finally, I express my wholehearted gratitude to my parents for their financial aid and lasting

support without question.

Abstract

Modern database systems use a query optimizer to identify the most efficient strategy called
“plan” | to execute declarative SQL queries. Optimization is a mandatory because the difference
between the cost of the best plan and a random choice could be in orders of magnitude. For a
query, on a given database and system configuration, the optimizer’s plan choice is primarily
a function of the selectivities of base predicates and join predicates of the relations present in
the query. A pictorial enumeration of the execution plan choices of a database query optimizer
over the relational selectivity space is called a “plan diagram”. “Picasso” [6] tool is a database
query optimizer visualizer that enables us to investigate plan diagrams.

The plan choices made by the optimizer are called parametric optimal set of plans (POSP).
The bouquet identification phase in “Plan Bouquet” [3] and the plan diagram generation in
“Picasso” [6] can be done only after the complete POSP is identified over the entire error-
prone selectivity space (ESS). The time required to produce the POSP for the ESS increases
exponentially with the dimensionality of the space by increasing the number of error-prone
predicates for a given query. In “Robust Query Processing” [5], the POSP identification phase
for queries having error-prone base predicates was improved by massive parallelization.

Once the POSP result is generated after parallelization, verification is done to check if it
is correct or not using “Picasso”. In this work, we have generated the “Picasso Packets”
from the raw results obtained after parallelization for queries having high dimensional error-
prone base predicates (4) for higher resolution (100). Experiments were carried out with a suite
of multi-dimensional TPC-H query templates on the PostgreSQL optimizer. The verification
demonstrates that the results obtained by parallelization are correct and thus we have developed
a parallelized version of “Picasso” to generate complex plan diagrams in significantly less
time. For a query having 4 dimensions and 100 resolution, we were able to reduce time taken
to generate plan diagrams from 166 hours to 3 hour 20 minutes. Further, changes were made to
“Parallelized Picasso” to reduce the “Picasso Packet” size without affecting its behaviour.
The parallelization phase of POSP generation is now extended from queries having error-prone

base predicates to queries having error-prone join predicates.

1

Contents

Acknowledgements
Abstract

Contents

List of Figures
List of Tables

1 Introduction
1.1 Motivation
1.2 Contribution

1.2.1 Parallelization Modifications

1.2.2 Parallelized Picasso

1.2.3 PICASSO Modifications

1.3 Organization

2 POSP Generation

2.1 Serial processing for POSP generation

2.2 Parallelization of POSP generation

2.2.1 Parallelization Limitations and Modifications

2.3 Applications

3 Picasso Database Query Optimizer Visualizer

3.1 Existing Architecture . . .

4 Parallelized PICASSO
4.1 Collection of Raw Results

1l

ii

iii

vi

4.2 Creation of Picasso Packet

4.2.1

5 Empirical Analysis
5.1 Impact of Parallel Algorithm

Implementation Details
4.3 Picasso Modifications

4.4 Architecture of Parallelized Picasso

5.2 Verification through Picasso Diagrams

5.3 Results
5.3.1

5.3.2 Verification by Picasso Diagrams

6 Conclusion and Future Work

Bibliography

Parallelization for Join Predicates

v

CONTENTS

List of Figures

3.1 Picasso Architecture.o 7
4.1 Picasso Packet Structure 9
4.2 Parallelized Picasso Architecture, 11
5.1 POSP Performance I 14
5.2 POSP Performance IT. 15
5.3 POSP Performance ITT 16
54 POSP Performance IV 17
55 TPC-H Query Q8 18
5.6 Plan Diagram for 0. 25&1.35 19
5.7 Plan Diagram for o 75&185 20
5.8 Plan Diagram for o t35&l eb54 21
5.9 Compilation Cardinality Diagram for o t35&1e54 22
5.10 Compilation Cost Diagram for o_t35&l.e54 23
5.11 Plan Diagram for 1 €e37.5&c_a78.5, 24
5.12 Compilation Cardinality Diagram for 1.e37.5&c_a78.5 25
5.13 Compilation Cost Diagram for 1 e37.5&c_a78.5 26
5.14 Plan Diagram for p_75&135&0. 55 27

List of Tables

2.1 Previous implementation v/s Current implementation for POSP generation . . .

vi

Chapter 1
Introduction

In database systems, whenever a query is fired, generating query result involves finding a query
plan during compile-time and executing the same query plan during run-time. Query plan is
an ordered sequence of steps to fetch the results of an SQL query. For a particular query, all
the query plans generated by the optimizer give the same query result. But, the cost of all
query plans may not be the same. The query plan with least cost is chosen as the best query
plan. When a query is executed, the best plan is passed to the executor module to generate
the results which are shown as output.

The behaviour of modern query optimizers is seen from a fresh perspective by the introduc-
tion and development of “Plan Diagram” concept. A plan diagram is a visual representation
of the plan choices made by the optimizer over a space of input parameters, such as relational
selectivities. In short, plan diagrams pictorially capture the geometries of the optimality regions

of the parametric optimal set of plans (POSP).

1.1 Motivation

QUEST [4] (QUery Execution without Selectivity estimation) is a Java based prototype imple-
mentation of “Plan Bouquet” [3] technique. It visually shows bouquet execution process and
provides interactivity during execution. QUEST includes database system with incorporated
features required for plan bouquet. Currently, PostgreSQL is the database system used with
QUEST wherein all required features are implemented.

In “Robust Query Processing” [5], join-selectivity injection feature was implemented in a
database to evaluate a query with error-prone join predicates. By doing this, we can get the
optimizer’s optimal plan for a given join selectivity. POSP identification was done for queries

where base predicates are error-prone. This is now extended to queries having multi-dimensional

error-prone join predicates and also error-prone base predicates.

PICASSO [6] is also a Java based implementation that gives a visual representation of the
plan choices made by the optimizer over an input parameter space, whose dimensions may
include database, query and system-related features.

In order to make both QUEST and PICASSO practically useful for queries having multi-
dimensional error-prone predicates, we need to reduce the POSP generation time. For a query,
the time required to produce the POSP for the entire ESS increases exponentially with the
dimensionality of the ESS. If the resolution of a d-dimensional ESS is r, then the number of
optimization calls made for producing the POSP is 7¢, which is computationally expensive. In
[5], a parallel algorithm was proposed to find the POSP for queries having multi-dimensional

error-prone base predicates.

1.2 Contribution

In this work, we have created a Picasso Packet from the POSP generated after parallelization.
We have also optimized, automated and extended the parallelized POSP generation phase on
delta-cluster having 64 cores. We have also modified PICASSO so that the resulting “Picasso

packets” occupy less storage space. Our contribution can be divided into three categories.

1.2.1 Parallelization Modifications

Here we explain the modifications done to the parallelization code for multi-core clusters which

use PostgreSQL 9.4 database engine which has selectivity injection feature.

1.2.2 Parallelized Picasso

Here, we show how the raw results obtained from parallelization are used to create a picasso
packet which can be loaded to show the plan diagrams. We will also show in the experiments

how the plan diagrams generated from these picasso packets look like.

1.2.3 PICASSO Modifications

Here, we explain the modifications done to PICASSO so that the picasso packets that were

created from raw results of parallelization can be saved in less storage space.

1.3 Organization

Section 2 provides an overview of POSP generation. Section 3 shows the existing PICASSO ar-
chitecture. Parallelized PICASSO is explained in Section 4. In Section 5 we show the empirical

analysis of our approach. Section 6 gives the conclusion and discusses future work.

Chapter 2

POSP Generation

In this chapter, we present necessary details about POSP generation and its applications.

2.1 Serial processing for POSP generation

For a given query, if we increase the error-prone dimensions, the time required to generate
the POSP for the entire ESS will increase exponentially. If the resolution of a d-dimensional
ESS is r, then the number of optimization calls made for producing the POSP is ¢, which is
computationally expensive. Serial processing to generate this POSP takes a lot of time.

For a query with 4 error-prone base predicates with 100 resolution, the total number of

optimization calls made for producing POSP will be 108.

2.2 Parallelization of POSP generation
In “Robust Query Processing” [5], a parallel algorithm was proposed that reduced the POSP

generation time for error-prone base predicates. In this implementation, we need to supply the
constant values of error-prone base predicates of the query.

Collection of constant values for a specified “error-prone base predicate” for a given “query”,
“selectivity distribution”, “resolution” is done as follows: Collect the constants corresponding to
all the error-prone base predicates of the query by repeating the above process for the respective
error-prone base predicates.

These constants are supplied during the parallelization phase of POSP generation

2.2.1 Parallelization Limitations and Modifications

In “Robust Query Processing” [5], the constant values for error-prone base predicates are sup-
plied manually. These values vary depending on the query, error-prone predicates, selectivity

distribution, resolution. Hence it is very difficult to collect the constants by running the “Pi-

3

casso” tool manually each time when there is a change in either “selectivity distribution” or

)

“resolution” or “query” or “error-prone predicate”.

This problem is solved by using PostgreSQL 9.4 database engine with selectivity injection
feature where we can inject the selectivities corresponding to error-prone predicates in the query
while making optimization calls to the database. These selectivities for a given “selectivity
distribution”, “resolution” are calculated once and can be used for all the queries for all the

error-prone predicates (base as well as join).

SELECT *
FROM lineitem, orders, part
WHERE p_partkey = [_partkey

and l_orderkey = o_orderkey

and p_retailprice < 1000;

Example SQL Query (EQ)

This implementation of POSP generation in “Robust Query Processing” [5] is also extended
from error-prone base predicates (like p_retailprice < 1000 in EQ) to error-prone join predi-
cates(like l_orderkey = o_orderkey in EQ). Changes were made to this implementation to use

selectivity injection feature that was added in PostgreSQL 9.4.

SELECTIVITY (p_retailprice < 1000
and l_orderkey = o_orderkey)
(0.3, 0.7)

SELECT *

FROM lineitem, orders, part

WHERE p_partkey = [_partkey

and [_orderkey = o_orderkey

and p_retailprice < 1000;

Example Query with Selectivity Injection (EQ2)

In EQ2, p_retailprice < 1000 and l_orderkey = o_orderkey are the error-prone predicates with
0.3, 0.7 as their corresponding injected selectivities. Therefore, the entire process of generating
the POSP results is automated in the new implementation.

The advantages of using Selectivity Injection are described in the form of a table by com-

paring it with the existing approach to generate POSP

4

Parallelization Code for Base
Predicates

Parallelization Code with Selectivity
Injection

works only if base predicates
are error-prone

works for both, base and join
error-prone predicates

Counstants values need to be
supplied with the Query

Selectivity values need to be
supplied with the Query

Picasso tool has to run
to get the constants

No need to run Picasso tool
to get the selectivities

Constants change by changing
“Selectivity distribution”, “Resolution”

Selectivities change by changing
“Selectivity distribution”, “Resolution”

Constants change by changing
“Query”, “Error-Prone Predicates”

Selectivities do not change by changing
“Query”, “Error-Prone Predicates”

This code is partially automated

This code is completely automated

Table 2.1: Previous implementation v/s Current implementation for POSP generation

The output results were storing Plan Number, Cost, Cardinality at each selectivity location
in text format needing large storage space to save them. For a query having 4 dimensions and
100 resolution, the output results needed 2.5GB of storage space. As we increase the dimension

to 5 by adding one more error-prone base predicate, the storage space needed to save the results

will go up to 250GB. It becomes very difficult to handle such large files.

So, the output results are now stored in the binary format instead of text format there by

reducing the storage space needed to save them. By doing this, we are able to storage the

POSP results of parallelization in 40% of the space that was used before.

2.3 Applications

The POSP generated for high dimensions and higher resolution can be used for pre-processing

phase of “Plan Bouquet” approach for robust query processing and to visualize complex plan

diagrams in “Picasso” Database Query Optimizer Visualizer [6].

Chapter 3

Picasso Database Query Optimizer

Visualizer

“Picasso” [6], is a tool that gives a pictorial enumeration of the execution plan choices of a
database query optimizer over the relational selectivity space. It is completely written in Java

and, in principle, operates in a platform independent manner.

3.1 Existing Architecture

There are three processes involved in a Picasso setup in addition to a database as shown in

Figure 1.

1. Picasso Client: Users enter query templates and visualize the associated diagrams

through this.

2. Picasso Server: Converts the query templates into the equivalent set of query instances

to submit to the database engines and gathers the associated execution plans

3. Database Engine: Connects to the database and produces the execution plans for the

queries.

4. Database: The entire data is stored here. Also, the new tables created by picasso are

also stored here.

End User

Database

Figure 3.1: Picasso Architecture

The three processes, Picasso Client, Picasso Server, Database Engine can all execute on
the same machine or on different machines. Further, multiple Picasso clients can connect to a

single Picasso server, which in turn can connect to multiple database engines.

Chapter 4

Parallelized PICASSO

In this section, we elaborate the procedure to generate “Picasso Packets” using parallelization

which can be loaded to visualize the plan diagrams.

4.1 Collection of Raw Results

For a given multi-dimensional query template, selectivity space resolution, distribution, using
parallelization [5] code written in MPI and C++, we generate POSP in the form of raw results.
These results contain Plan Number, Cost, Cardinality stored for each combination of selectiv-
ities of error prone base predicates. The plan trees and query template are separately stored
in text format. The information regarding the number of error-prone predicates, resolution of
selectivity space, maximum and minimum values of cost and cardinality and total number of

plans are collected separately.

4.2 Creation of Picasso Packet

From these raw results, a packet is created which will be similar to the picasso packet that
would be generated without parallelization if the same multi-dimensional query template with

same selectivity space resolution and distribution were given to the existing PICASSO tool.

4.2.1 Implementation Details

In this section, we explain the implementation details of creating picasso packets

Diagram Packet

Query Packet

Plan Trees

Other Information

Server Packet

Figure 4.1: Picasso Packet Structure

“Picasso Packet” is a “Server Packet” which is given by the “Picasso Server”. It contains
“Diagram Packet”, “Query Packet” “Plan Trees” and some additional information regarding
clientld, Port Number, Connection information.

The structure of Picasso Packet looks as shown in Figure 2 where we explain three important
fields:

1. Data Values in “Diagram Packet” which stores Plan Number, Cost, Cardinality and

isRepresentative for each selectivity combination.

2. Query Template in “Query Packet” which contains the multi-dimensional query tem-

plate
3. Plan Trees in “Server Packet” where all the plan trees are stored

Using the dimension and resolution information from the raw results, we first create an
empty picasso packet using a new module called “Picasso Packet Creator”. This packet will

have the same structure as that of the original picasso packet that would have been created when

9

picasso tool was run on single-core system for the same query template with same dimension
and resolution.

Now, we copy the plan number, cost, cardinality and isRepresentative at each selectivity
location into the corresponding position in the empty packet. The field “isRepresentative” is
set to “false” for all the points initially. The plan trees, query template, total number of plans,
maximum and minimum values of cost and cardinality are also copied. Finally, it is stored on to
the disk in the form of picasso packet which can be loaded using “load packet” feature present

in PICASSO to visualize the plan diagrams.

4.3 Picasso Modifications

The “Data Values” structure present in “Diagram Packet” structure of “Picasso Packet” has
two more additional fields “FPCdone”, “succProb” which are used to do interpolation when
Foreign Plan Cost (FPC) is used. In our experiments, we have not used FPC because of which,
the values of these fields are same for all the points in the selectivity space. So, instead of storing
the same information for all the points, we are storing them only once in the picasso packet.
By doing this, we are able to save 5 Bytes of storage space for every selectivity combination
of error prone predicates. Hence, we are able to generate the picasso packets occupying lesser

storage space without losing any information.

4.4 Architecture of Parallelized Picasso

The latest architecture of Parallelized Picasso is shown in Figure 3 which operates in three

phases:

1. generation of POSP in raw form using parallelization on multi-core clusters (Implemented
in MPI and C++).

2. Creating a “Picasso Packet” from the POSP generated in raw form (Implemented in
JAVA).

3. This “Picasso Packet” can be loaded to visualize the plan diagrams.

The GUI is modified and a query with 5 dimensional error-prone base predicates is run for

10 resolution for the first time.

10

User on 2. Run MPI

1. login : opskll
Multi-core . = Multi-core parallelization
cluster [— UG cluster code to
: It generate POSP
4. Transfer resulls
Raw results
5. Raw
User on & results Picasso g{.;‘;’;{:"w‘q
Local '~ U amd Packe! i
System 7. Save Creator Creation code
Picasso
Packet (F)
User on 8. Load (P) (S 9. Displays
Local . L — Picasso Picasso
System A Client Diagrams

Figure 4.2: Parallelized Picasso Architecture

11

Chapter 5
Empirical Analysis

We used PostgreSQL 9.4 which has selectivity injection feature added in it. Our experiments
were carried out on Delta Cluster composed of 4 nodes [1]. Each having 16 cores, 128GB
RAM and they are connected using Infiniband Card for MPI communication and Dual-port
Gigabit Ethernet Connectivity for enabling log-ins. The operating system used is CentOS 6.2
which is built on Linux x86_64 Platform. For our parallel algorithm implementation, we used
GNU compiler collection with MVAPICH2 Message Passing Interface and for Picasso Packet

Creation, we have used Java. We have performed all the experiments on TPC-H 5GB database

2].
5.1 Impact of Parallel Algorithm

We have used 4 nodes and 12 cores in each node for our experimental purpose. We got a
speed-up of 48 times to generate the POSP in the form of raw results.

For the query having 4 dimensions and 100 resolution, we were able to generate the raw
results in 2 hour 50 minutes. Next, the picasso packets were created in 30 minutes. Therefore,
we were able to create the “Picasso Packet” in 3 hour 20 minutes. The existing PICASSO tool

which runs on single-core systems takes 166 hours to generate the same picasso packets.

5.2 Verification through Picasso Diagrams

Here, we see that, when picasso packets generated from parallelization and the picasso packets

generated by existing PICASSO for same query and same distribution and same resolution are

loaded, the PICASSO diagrams are found to be

1. Exactly Same for low resolution from parallelization and for packets of low resolution
generated from existing PICASSO.

12

2. Similar for packets of high resolution generated from parallelization and for packets of

low resolution generated on existing PICASSO.

In all the experiments, the PostgreSQL configuration file retained the same.

5.3 Results

Here we see the impact of parallelization over queries having error-prone join predicates and
the verification of POSP results from the picasso diagrams generated for the error-prone base

predicates.

5.3.1 Parallelization for Join Predicates

For Queries where join-predicates are error-prone, experiments are performed on Query 5 of
TPC-H 5GB database.
In all the queries shown below, the error prone join predicates are shown in bold and their

corresponding selectivity values will vary from 0 to 1.

selectivity (c_custkey = o_custkey, o_orderkey = l orderkey) (varies, varies) se-
lect n_name, l_extendedprice, I_discount as revenue from customer, orders, lineitem, supplier,
nation, region where c_custkey = o_custkey and l_orderkey = o_orderkey and [_suppkey =
s_suppkey and s_nationkey = n_nationkey and n_regionkey = r_regionkey and o_totalprice <=
5000 and s_acctbal <= 10000;

Query 5 with 2 error-prone join predicates

13

uniform distribution

2 dimensional 1000 resolution

90

80

70

60

50

40

30

20

1 r

0 s

1 2 4 8 14 30

Number of Processes

Time in Minutes

Figure 5.1: POSP Performance |

In Figure 4, we reduced the identification of POSP from 82 minutes to 3 minutes using 30
cores. Number of Plans in POSP = 6.

14

Exponential distribution
2 dimensional 1000 resolution
90
80
70
60

50

40
30
20
10 I
0 H =
1 2 4 8 14 30

Number of Processes

Time in Minutes

Figure 5.2: POSP Performance 11

In Figure 5, we reduced the identification of POSP from 78 minutes to 3 minutes using 30
cores. Number of Plans in POSP = 8.

selectivity (c_custkey = o_custkey, o_orderkey = I orderkey, s_suppkey =
l_suppkey) (varies, varies, varies) select n_name, l_extendedprice, I_discount as revenue
from customer, orders, lineitem, supplier, nation, region where c_custkey = o_custkey and
lLorderkey = o_orderkey and [_suppkey = s_suppkey and s_nationkey = n_nationkey and
n_regionkey = r_regionkey and o_totalprice <= 5000 and s_acctbal <= 10000;

Query 5 with 3 error-prone join predicates

15

uniform distribution

3 dimensional 100 resolution

70
60
50
]
£ 4
=
2
£ 30
]
E
}:
20
) I
0 . .
1 2 4 8 14 30

Number of processes

Figure 5.3: POSP Performance 111

In Figure 6, we reduced the identification of POSP from 62 minutes to 2 minutes using 30
cores. Number of Plans in POSP = 13

16

Exponential distribution

3 dimensions 100 resolution

IIII-_
r 2z 4 8 14

30

100

90

80

70

60

50
40

Time in Minutes

Number of Processes

Figure 5.4: POSP Performance IV

In Figure 7, we reduced the identification of POSP from 92 minutes to 3 minutes using 30
cores. Number of Plans in POSP = 15.

For a query with 3 dimensions and 1000 resolution, the POSP can be generated in 16 hours
for exponential distribution and in 17 hours for uniform distribution using 48 cores, which is
very less when compared to POSP identification with the conventional single core approach
which takes 30 days approximately. It also reduces the compile-time overhead for plan bouquet
to a great extent.

These POSP plans along with their costs and selectivity values can be used to run “Plan
Bouquet” [3] and ”Spill Bound” [7] on high dimensions and higher resolution on “Quest”

[4]. “Quest” is a prototype system that showcases the concept of plan bouquet in existence.

5.3.2 Verification by Picasso Diagrams

In all the pictures shown, one half of the figure shows the PICASSO frame using PICASSO
generated packet and the other half shows the PICASSO frame using packet generated from

17

parallelized results.
We see that both the frames are showing same plan diagrams for low resolution.

The following figure shows that we are using same query template in both the frames

© B) 928AM %

File PicassoServer PicassoClient DBConnection QueryTemplate Help File PicassoServer PicassoClient DBConnection QueryTemplate Help
Picasso Database Query Optimizer Visualizer 2.1 Picasso Database Query Optimizer Visualizer 2.1

oy
Cocy"ght € Inciar Instituze of Sciznce, Bzngaore India 2 & = Cooyight € Incian Instituze of Sciznce, Bangaore Inda il
Plct Ranze: -100) _ - | Settings Plot Rance 0-100
= Quenyemate Descrpicr P PotResouticn: | DBCcnestion Descptar: = Queryemaate Descrpicr P PotResou
Opimizztion Levek [Guery Distribution: 2lot selectiiy: P optimizztion Level: D) f: Guery Distribtion:] Plot Selectivy;

QueryTemplate | plan Diag Reduced Plan Diag | Comp Cost Diag| Comp Card Diag Exec Cost Diag Exec Card Diag Sel Log ‘ QueryTemplate | plan Diag Reduced Plan Diag Comp Cost Diag| Comp Card Diag Exec Cost Diag Exec Card Diag | Sel Log H

Queerteplate Darizeer: [unik OT8 4N 10R P.nkt Load QueryTemplate Clear QueryTemplate Queytemplate Dasripter: [niF OTR 4D 100R P.nkt Load QueryTemplate Clear QueryTemplate
sum(case 2 select
when nation = 'BRAZIL' then volume o_year,
else 0 sum(case
end) / sum(volume) as mkt_share when nation = 'BRAZIL' then volume
from else 0
(end) /sum(volume) as mkt_share
select from
DATE_PART(YEAR' o_orderdate) as o_year, (
|_extendedprice * (1 - |_discount) as volume, select
n2.n_name as nation DATE_PART(YEAR' 0_orderdate) as o_year,
from |_extendedprice * (1 - |_discount) as volume,
part, System Monitor n2.n_name as nation
supplier, Processes Resources File Systems
lineitem, — part,
orders, A java a supplier,
ﬁ:i::‘:{ , Process Name + User % CPU D Memory Priority :::e\::m,
nation n2, @eclipse dsladmin 0 2525 3.1 MiB Normal customer,
region Sjava dsladmin 0 2530 1.1 GiB Normal nation n1,
where @java dsladmin 0 5178 32.7 MiB Normal nation n2,
p_partkey =|_partkey java dsladmin 0 5215 8.2 GiB Normal region
and s suppkey = suppkey java dsladmin 0 5210 2509 MiB Normal
and _orderkey = o_orderkey p_partkey = |_partkey
and o_custkey = ¢_custkey and s_suppkey = |_suppkey
and ¢_nationkey = n1.n_nationkey and |_orderkey = o_orderkey
and n1.n_regionkey = r_regionkey and o_custkey = c_custkey
and r_name = 'AMERICA' and c_nationkey = n1.n_nationkey
and s_nationkay = n2.n_nationkay and n1.n_regionkey = r_regionkey
and o_orderdate between '1995-01-01' and r_name = 'AMERICA'
and p_type = 'ECONOMY ANODIZED ST and s_nationkey = n2.n_nationkey
and c_acctbal varies and o_orderdate between '1995-01-01' and '1996-12-31'
and s_acctbal waries and p_type = 'ECONOMY ANODIZED STEEL'
and o_totalprice varies and c_acctbal varies
and |_extendedprice varies and s_acctbal varies
Jasall_nations ™ w\ and o_totalprice varies
group by and |_extendedprice :varies
o_year) as all_nations
order by | groupby
o_year; Er——D 0_year —"
0% order by v 0%
STATUS: Setting Set STATUS: Setting Set

Figure 5.5: TPC-H Query Q8

18

The following figure shows that the plan diagrams are exactly same for the slices taken when

the selectivities of o_totalprice is 25% and [_extendedprice is 35%.

) Mar2115:33 [F

Picasso Database Query Optimizer Visualizer 2.1
er PicassoClient DBConnectic Template Help

g:“’-:b'::ﬂ Picasso Database Query Optimizer Visualizer 2.1 “" X Picasso Database Query Optimizer Visualizer 2.1
Lboral 5
Copyright @ Indian Insttut of Seience, Bangalors, India = | @ Copyright @ Indian Insttut of Seience, Bangalors, India

Settings PlotRangs: Default (0-100) | « | Settings PlotRange: Default (0-100)

DBCannzction Descriptor QuenTemplate Deseriptor. POSTCRES De PlotResolution: 10 - DBCannzction Descriptor QuenTemplate Deseriptor. POST CLUSTE PlotResolution: 10

Optimization Level: Default Query Distrbution: |1\ OR Plot Selectiity. Picass < Optimization Level: Default Query Distrbution: |1\ OR Plot Selectiity. Picass

QueryTemplate | Plan Diag |Reduced Plan Diag | Comp Cost Diag | Comp Card Diag | Exec Cost Diag | Exec Card Diag | Sel Log G(%) L(%) | aueryTemplate| PlanDiag |Reduced Plan Diag | Comp Cost Diag | Comp Card Diag | Exec Cost Diag | Exec Card Diag | Sel Log G(%) L(%) A
Plan Diagran TD: POSTGRES Default_U_ slice # of Plans: o | Gini Coeff:0.79 [067) || rlan Diagran QTD: POST_CLUSTER_U_QT8_4_2_P.pkt slice ¢ of Plans: 6| Gini Coeff:0.79 [0.67] [‘

Total # of Plans: 7 .P1 Total # of Plans: 7 .P1

30.89 [49.00] 30.89 [49.00]

.PZ 2501 - .PZ 2501 -

. P3 1547 [26.00] . P3 1547 [26.00]
P4 1155 [5.00] P4 1155 [5.00]
. P5 838 [13.00] . P5 838 [13.00]
s 504 500y [lrs 504 500y
Wer osson e ossron

Total Min Est Cost: 6.07E3
Total Max Est Cost: 4.89E4
Total Hin Est Card: 1.00E0
Total Hax Est Card: 4.00E2

Total Min Est Cost: 7.96E3
Total Hax Est Cost: 4.91E4
Total Hin Est Card: 1.00E0
Total Hax Est Card: 4.44E2

R
st ket | 55,830 10

Parameter - Operator Diff Parameter - Operator Diff
Regenerate Diagram Regenerate Diagram
Reset View Reset View
Display... |customer.c_ac... | v | |suppliers_acct.. | v | |S.. | Selll extendedpricel=35.65ello_total. .. 7 'TH setrelation_1.c_acc... | v | |setrelation 2.5 acc.. | v | Selll extendedprice:varies]=25.05e1(o_total... ‘7‘ >
b b
STATUS: DONE STATUS: DONE

#90

Figure 5.6: Plan Diagram for o_25&1 35

19

The following figure shows that the plan diagrams are exactly same for the slices taken when
the selectivities of o_totalprice is 75% and [_extendedprice is 85%.

o) Mar2115:34 [

Picasso Database Query Optimizer Visualizer 2.1

Client DBConnectic Template Help

g:“'-:b'::ﬂ Picasso Database Query Optimizer Visualizer 2.1 Picasso Database Query Optimizer Visualizer 2.1 q
Lboral 5
& Copyright @ Indian Insttut of Seience, Bangalors, India Copyright @ Indian Insttut of Seience, Bangalors, India 4
Settings PlotRange| Defaul: (0-1 Iettings PlotRange! Defaul: (0-1
DBCannzction Descriptor QuenTemplate Deseriptor. POSTCRES De PlotResalufion: | DBCannaction Descriptor QuenTemplate Deseriptor. POST CLUSTE PlotResalufion: |
Optimization Level: Default Query Distrbution: L1IFOR Plot Selectiity. e Optimization Level: Default Query Distrbution: L1IFOR Plot Selectiity. e
QueryTemplate | Plan Diag |Reduced Plan Diag | Comp Cost Diag | Comp Card Diag | Exec Cost Diag | Exec Card Diag | Sel Log G(%) L(%) A {QueryTemplate | Plan Diag |Reduced Plan Diag | Comp Cost Diag | Comp Card Diag | Exec Cost Diag | Exec CardDiag | Sel Log G(%) L(%)
Plan Diagran TD: POSTGRES Default_U_ slice # of Plans: 6 | Gini Coeff:0.79 [0.57] Plan Diagran QTD: POST_CLUSTER_U_QT8_4_2_P.pkt slice ¢ of Plans: 6| Gini Coeff:0.79 [0.57] ‘ ‘
Total # of Plans: 7 Total # of Plans: 7
.P1 30.89 [5.00] .P1 30.89 [5.00]
.Pz 25,01 [62.00] .Pz 25,01 [62.00]
.Pa 15.47 [9.00] .Pa 15.47 [9.00]
P4 1155 [18.00] P4 1155 [18.00]
.P5 838 [5.00] .P5 838 [5.00]
.PS 8.04 .PS 8.04
.P7 0.66 [1.00] .P7 0.66 [1.00]
Total Min Est Cost: 6.07E3 Total Min Est Cost: 7.96E3
Total Hax Est Cost: 4.89E4 Total Hax Est Cost: 4.91E4
Total Min Est Card: 1,00E0 Total Min Est Card: 1,00E0
Total Max Est Card: 4.00E2 Total Wax Est Card: 4,442
2 b 6 e o®
ot st 1551000
Parameter - Operator Diff Parameter - Operator Diff
Regenerate Diagram Regenerate Diagram
Reset View Reset View
Di... |customer..| v | |suppliers.. | v | Sel[lextendedpricel=74,993930909899995e1 [o_totalprice]=8. .. “7 > Eetretanon v | |setrelation 2... | v | Selll_extendedprice:varies]=74, lo_totalprice:va| ** 7 >
b b
STATUS: DONE

STATUS: DONE

Figure 5.7: Plan Diagram for o_75&1 85

20

The following 3 figures show that the plan diagram, cardinality diagram and cost diagram

are similar for the slices taken when the selectivities of o_totalprice is 35.5% and I_extendedprice
is 54.5%

€ 4 B) 946AM &

Picasso Database Query Optimizer Visualizer 2.1

File PicassoServer PicassoClient DBConnection QueryTemplate Help File PicassoServer PicassoClient DBConnection QueryTemplate Help
poias Picasso Database Query Optimizer Visualizer 2.1 17 posias Picasso Database Query Optimizer Visualizer 2.1
T Conyght € Incian nstture f Scence, Bngaore India i P e Conyight € Incian nstuce of Scence, Banga ore Inda 4
Settings Settings 00
DBCcnnecticn Descrpton Guery"emolate Cascrip:cr: P DBCcnection Descr ptor Guery"emolate Descrip:cr: P
Opiimizetion Levek ; Guey Distribution: (| Optimizetion Level: ; Guery Distrib_tion: (| Plot Selectivy:
QueryTemplate PlanDiag Reduced Plan Diag | Comp Cost Diag| Comp Card DI Gl%) L(%) A queryTemplate PlanDiag Reduced Plan Diag | Comp Cost Diag| Comp Card Diag | Exec Cost Diag| Exec Card Diag| SelLog Gl L(%) [
E s 7 Gl Coeff: 0.79 [0.8114 = it #lica + of Flemes 12 Gini Coeff: 0,81 [0.82]
et 7 Setel # of s
e 080 22 | ey
W 5003 W 2000 02
W 597 | ERmtyet
P4 1155 [16. P4 1031 (134
W s uso W oe7us3
. 23 8,04 [3.00° . 3 753 [1.35/
Wr o oo B 1muy
P8 113 132
PO 0,67 0,69
P10 0,67 [0.63
Wei 065 1069
We2 030 031
P13 027 031
i g o .914 0,07 -
]]
H 3 Wrs o003 -
3 g e Wes oo
g § | [RAYI.
H o
3 H Moz 000
) 3
§ fa P19 000
i W o000 -
Parameter -» Operator Diff v Parameter - Operator Diff W oo
))
Camonan 3ciEal (001000180 Regenerate Diagram Sutomee pecl06100118 10 Regenerate Diagram [llp22 000 -
Reset View Reset View W oo -
P4 000
W oo -
camer | customer._accthal |« [suppliers_acctbal | v | |SetD..| sat oot sk menss om0 vl customer.c acct.. | v | [suppliers_acctbal |« Sek..| salsenpeinins summmns s el =
STATUS: DONE STATUS: DONE

Figure 5.8: Plan Diagram for o_t35&1 e54

21

File PicassoServer PicassoClient DBConnection QueryTemplate Help

Picasso Database Query Optimizer Visualizer 2.1

File PicassoServer PicassoClient DBConnection QueryTemplate Help

© t Bl o) 948AM &

ckbate Picasso Database Query Optimizer Visualizer 2.1 ckbate Picasso Database Query Optimizer Visualizer 2.1 ‘.
oty ooty
U Cocyr ght € Inciar Institue of Science, Bzngaore India = P Conyight € Incian Institue of Science, Bangaore Inda p—4
Settings PlctRengel Default (0-100) | =) Settings Plot Range: [)ef
DBCcnnecticn Descrptor: QueryTemolate Cescrip:c P ot Reso uticn: 'C DBCcnnection Descrptor: QueryTemolate Descr PotResouticn: 7 C:
Optimizetion Level [Guery Distrbtion: ot Selectivky: Optimizztion Levek [f3 [t Guery Distrb_tion Plot Selectiy:
QueryTemplate | Plan Diag Reduced Plan Diag | Comp Cost Diag Comp Card Diag |Exec Cost Diag| Exec Card Diag | Sel Log Gl%) L(%) { queryTemplate | Plan Diag Reduced Plan Diag | Comp Cost Diag Comp Card Diag]| Exec Cost Diag| Exec Card Diag | Sel Log GO LK) [
E 2 oF o 1 Exice s of Hlasa: 7 Gini Coeff 0,79 [0.811|1 n Cardinality T o Slice ¥ < Flass: 15 Gini Coefft 0,81 [0.82]
Total & of Pl Tl B of et 25
. ML 30.89 220 . P 27.38 18
W 501 03 W 2099 02
W 547 0 W 1000 0o
P4 1155 [16. p4 1031 (3¢
Wes essnso W 067 usa
Wes soa 13.00 Mes 753035
W7 oes oo | CEREEYEY
] 113 [1.32
P9 067 [069
P10 067 [063
We 065 060
M2 030 031
P13 027 [031

ey

customer.c_acctbal

supplier.s_acctbal

v | |SetD.

SeL[1_sxtentatzrics

STATUS: DONE

Regenerate Diagram

Reset View

0%

D " Diss1

customer.c_acct..

suppliers_acctbal | +

Set.

fel[_sxterdatpricel =

STATUS: DONE

=ococacocococidset [o_:

Wea 007 -

.915 003

.915 0.01 -

.D17 001 -
.Plﬁ 0,00

P19 000 -

.DZO 0.00 -

.PZl 000 -

Regenerate Diagram [lr22 000 -

Reset View .Dza 0.00
P24 0.00

.DZS 0,00 -~

sicel=st.5 = D

Figure 5.9: Compilation Cardinality Diagram for o_t35&I1 e54

22

e H [9d7AmM &

Picasso Database Query Optimizer Visualizer 2.1

File PicassoServer PicassoClient DBConnection QueryTemplate Help File PicassoServer PicassoClient DBConnection QueryTemplate Help
ot Picasso Database Query Optimizer Visualizer 2,1 ot Picasse Database Query Optimizer Visualizer 2,1 ‘.
et oty
Y= Cozy"ght € nciar Institue of Science, Bengaore India 2 o Conyight € Ingian Institure of Science, Bangaore Inda =
Settings #lct Range: Default (0-100) | Settings ot Range! D Fault (0-100)
DBCznnecticn Descrptor GuenyTemalate Bescripzer:. POST CLUSTE, Plot Resoluticn: 1 () o DBCznnection Desc ptor GuenyTemalate Descr POST CLUSTE, Plot Resoluticn: 1 ()()
Opimizztion Levek. Defaylt Guey Distribution: [JN|FORIV| 2ot Selectivfy: P)casso v Optimizztion Level: [fa (L Guery Distribution: (| FORIV| Plot Selectivity: P|c3sso
QueryTemplate | Plan Diag Reduced Plan Diag Comp Cost Diag | Comp Card Diag | Exec Cost Diag| Exec Card Diag | Sel Log Gl%) L(%) [queryTemplate | Plan Diag Reduced Plan Diag Comp Cost Diag| Comp Card Diag | Exec Cost Diag| Exec Card Diag | SelLog GO LK) [
E= T i - 7 Gini Coeff 0.79 (0,811 = : o OKa_P.pht §1ice 4 of las 2 Gini Coeffi 0,61 [0,82]
4 of Planz: 2
| ERETyY | EEEIE Yt
W 501 03 W 2099 02
W 547 0 W 1000 0o
P4 1155 16 P4 1031 (13
Wes essnso W 067 usa
Wes soa 13.00 Mes 753035
W7 oes oo | CEREEYEY

] 113 132

P 067 [0.69

P10 067 [063
. PIL 065 [0.69
. P12 030 [031

P13 027 [031
.DH 0.07 -
.915 0.03
.:-15 0.01 -
.D17 0.01 -
. P18 000

PO 000 -
.DZO 0.00 -
.le 0,00 -~

Regenerate Diagram .m 0.00

Reset View . P23 000 -
P24 0.00

.DZS 000 -

Regenerate Diagram

Reset View

=ococacocococidset [o_:

doal =525

cept - | customer,c_acctbal |+ |suppliers_acctbal | v | SetD.. seiseisimic : 0% "|°»-=1 customer.c_acct.. - | supplier.s_acctbal | v (Set,.| seb_ssteasirica

STATUS: DONE STATUS: DONE

Figure 5.10: Compilation Cost Diagram for o_t35&1 e54

23

The following 3 figures show that the plan diagram, cardinality diagram and cost diagram

are similar for the slices taken when the selectivities of c_acctbal is 78.5% and I_extendedprice
is 37.5%

B 0) 10:21PM &

File PicassoServer PicassoClient DBConnection QueryTemplate Help
Picasso Database Query Optimizer Visualizer 2.1

Settings
DBConnection Descript _ Lo I3 LN T EY W XSG (Tl POSTGRES_TPCH_CLUST]

Plan Di i i i i i 9 N
ueryTemplate Plan Diag Reduced Plan Diag Comp Cost Diag Comp Card Diag Exec Cost Diag Exec Card Diag Sel Log Gini Coetr: BHL (7Y ‘

lan Diagram QTD: POSTGRES TPCH_CLUSTER_ORIGINAL QT8 P
27.38 [13.95]

24.99 [38.65]
14.99 [15.65]
10.31 [17.48]
9.67 [11.65]

7.53 [1.82]
133 -
1.13 [0.80]
]
S Slice Min Est 57
® Slice Max Est B 0.67 -
° sl%ce Min Est . 0.65 -
o Slice Max Est
=1 0.30 ---
-
5 Total Min Est 1 2. 0.27 -
S Total Max Est 0.07
o Total Min Est .
£ Total Max Est 1 4. 0.03
8
] 0.01 -
S
S 0.01 ---
)
3 0.00
5
3 ! 0.00
) Parameter - Operator Diff 0.00 ---
Regenerate Diagram 0.00 ---
Reset View 0.00 -
T T T T 0.00 ---
20 40 60 80 -
supplier.s_acctbal [0.0,100.0]@ 100 I
0.00 ---
Display Dimensions orders.o_totalprice Set Dim Sel Sel[l_extendedprice 0000000000014Sel[c_acctbal]=78.50000000000004 ‘W 2

Figure 5.11: Plan Diagram for 1 e37.5&c_a78.5

24

B 0) 10:28PM %

4l
Settings Plot Range: [PEENE
pBconnection Descriptor: || NG S T IR eTe e 2 e] POSTGRES_TPCH_CLUSTER_ORIGINAL_QTS_P
QueryTemplate Plan Diag Reduced Plan Diag| Comp Cost Diag Comp Card Diag | Exec Cost Diag Exec Card Diag|Sel Log Ginl Coeff-(b(ag’l HO(%]
Compilation Cardinality Diagram QTD: POSTGRES_TPCH CLUSTER_ORIGINAL_QT8_P '27' 18 [£3 5
24.99 [38.65]
14.99 [15.65]
10.31 [17.48]
9.67 [11.65]
7.53 [1.82]
133 -
1.13 [0.80]
Slice Min Est 0.67 —
Slice Max Est : 2,464/ /P10 0.67 -
Slice Min Est : 1.00EQ .Pll 0.65
Slice Max Est : 1.43E2 .P12 -
Total Min Est : 2. P13 0.27 ---
Total Max Est ¢ 5.2284 b1y 007
- Total Min Est .
3 Total Max Est . 1.somo|llP1s 003
Ed Mris o001 -
g Weriz o001 -
£=4
e Wris 0.0

P19 0.00 -
Wr2o o000

Regenerate Diagram .P21 0.00 -
Reset View .pzz 0.00 -
Wes 000 -

P24 0.00 -

Wr2s 000 -

23
'%,/ﬂ 0 &
"0tt6 19

supplier.s_acctbal totalprice Set Dim Sel Sel[l_extendedprice 0000000000014Sel[o_totalp: 8.50000000000004

—
STATUS: DONE

Figure 5.12: Compilation Cardinality Diagram for 1.e37.5&c_a78.5

25

B 0) 10:28PM %

il
[HRLENTEY Default (0-10f
DBConnection Descriptor: _ LOTTENaT CTI BV LY T LT el POSTGRES_TPCH_CLUSTER_ORIGINAL_QTS_P Plot Resolution:
ation Level: Plot Selecti
QueryTemplate Plan Diag Reduced Plan Diag Comp Cost Diag Comp Card Diag Exec Cost Diag| Exec Card Diag| Sel Log Gini Coefi: 341 Ho(‘%] 0
Compilation Cost Diagram QTD: POSTGRES_TPCH_CLUSTER ORIGINAL QT8 P Slice # of Plans: 7 e) ‘
Total # of Plans: . 27.38 [13.95]
24.99 [38.65]
14.99 [15.65]
10.31 [17.48]
9.67 [11.65]
7.53 [1.82]
133 -
1.13 [0.80]
slice Min Est QY =
Slice Max Est : 2,464/ /P10 0.67 -
Sl%ce Min Est : 1.00E0 .Pll 0.65
Slice Max Est : 1.43E2 .P12 0D
Total Min Est : 2. P13 0.27 -
Total M'?x Est : 5.22E4 .P14 0.07
- Total Min Est
g8 Total Max Est : 4.80E2 .P15 0.03 ---
3 Mris o001 -
g Weriz o001 -
L Wris 0.0

P19 0.00 -
Wr2o o000

Regenerate Diagram .P21 0.00 -
Reset View .pzz 0.00 -

Wes 000 -

P24 0.00 -

Wr2s 000 -

supplier.s_acctbal totalprice Set Dim Sel Sel[l_extendedprice 0000000000014Sel[o_totalp: 8.50000000000004

—
STATUS: DONE

Figure 5.13: Compilation Cost Diagram for 1.e37.5&c_a78.5

26

The following figure shows a slice of a plan diagram for 5 dimensions where p_retailprice is
75% and [_eztendedprice is 35% and o_totalprice is 55% on adding p_retailprice as 5" error-prone
predicate in the TPC-H Q8 query.

e B 3M0AM &

File PicassoServer PicassoClient DBConnection QueryTemplate Help

'%"ﬁ:‘w Picasso Datab: Query Optimi i izer 2.1 "" 4‘"
— & = Copyright © Indian Institute of Science, Bangalore, India. ==
Settings Plot Range: Default (0-100)
?) DBConnection Descriptor: QueryTemplate Descriptor: POS ault_U_ (C) Plot Resolution: 10
;_ Optimization Level: Default Query Distribution: UNIFORI Plot Selectivity: Picasso
A QueryTemplate Plan Diag Reduced Plan Diag| Comp Cost Diag Comp Card Diag Exec Cost Diag Exec Card Diag| Sel Log Gini c‘,e",%("é»g HD(%] A
ﬁ Plan Diagram QTD: POSTGRES_Default U_ slice # of Plans: 7 T .
’ Total # of Plans: 34 P1 27.28 [14.00]
= P2 17.84 [24.00]
Wrs 15.00 [35.00]
¢ P4 7.45 [3.00]
— Mes s -
9 o Bee 497 (11001
= 100 Wer 421 19.00]
= ©® P8 3.88 -
R -
- =} 80 Slice Min Est Cost: 7.6983 10 302 -
T o Slice Max Est Cost: 4.42E4 | P10 2.81 [4.00]
& 3 Slice Min Est Card: 1.00E0 llp1y 2.5 -
— ~ Slice Max Est Card: 6.40El
o ez 113 -
o 60 Total Min Est Cost: 6.07E3 P13 0.81 -
(E‘ — Total Max Est Cost: 4.89E4 .P14 073 -
T Total Min Est Card: 1.00E0 .
ot a Total Mex Est cara: 3.6152 MIP1S 0.61 -
= 40 Hris o057 -
&), 9 Briz o057 -
T o Hris 039 -
— v 20 P19 032 -
. _9 Parameter -» Operator Diff .pzo 0.16 ---
- a Regenerate Diagram .p21 014 -
) % 0 Reset View Wr2 o014 -
0 I T T T T | Mes 013 -
0 20 40 60 80 100 .”4 O =
P25 0.07 --
customer.c_acctbal [0.0,100.0]@ 10 2 006 -
P27 0.06 --
Hrs o003 -
P29 0.02 --
-
B Display Dim... |customercacctbal - | [suppliers acctbal |- Set.. Sellp retailprice]=74.99999999999999Sel [1_extendedprice]=35.0Sel[o_totalprice]=54.9999999... -

STATUS: DONE

Figure 5.14: Plan Diagram for p_75&1 35&0_55
Hence, we have verified that the parallelization of POSP is giving the correct results and we

were able to develop Parallelized PICASSO by creating picasso packets from these parallelized

results.

27

Chapter 6

Conclusion and Future Work

In the initial work, we have automated the parallelization process to generate POSP on multi-
core clusters and extended it to queries having error-prone join predicates and saved the results
in binary format so that they occupy less storage space. In our second contribution, we have
developed Parallelized PICASSO which operates in two phases. First being “Robust Query
Processing” [5] which does generation of POSP on multi-core clusters by doing parallelization
using MPI and C++. Second being the generation of Picasso Packet from these results imple-
mented in JAVA. In our third contribution, we have modified the existing PICASSO to store
the picasso packets in lesser storage space without loosing any information.

In our future work, we use Foreign Plan Cost (FPC) feature which tells us the behaviour
of a particular plan over the entire selectivity space. In “Plan Bouquet” [3] and “Platform-
independent Robust Query Processing” [7], experiments were carried out for queries having
high dimensions (6) but low resolution (10). We will carry out the same experiments for high
dimensions (4 and 5) and higher resolution (100) to verify the Maximum Sub-Optimality (MSO)

guarantees given by them.

28

Bibliography

1]
2]
3]

[4]

http://www.serc.iisc.in/facilities/delta-cluster/. 12
http://www.tpc.org/tpch/. 12

Anshuman Dutt and Jayant R Haritsa. Plan Bouquets: Query Processing without Selectivity
Estimation. In SIGMOD, 2014. ii, 1, 17, 28

Anshuman Dutt, Sumit Neelam, and Jayant R Haritsa. Quest: An Exploratory Approach
to Robust Query Processing. In PVLDB, 2014. 1, 17

Kuntal Ghosh. Robust Query Processing. Master’s thesis, Dept. of Computer Science and
Automation, IISc, Bangalore, 2016. ii, 1, 2, 3, 4, 8, 28

Jayant R Haritsa. The Picasso Database Query Optimizer Visualizer. In VLDB, 2010. ii,
2,5,6

Srinivas Karthik, Jayant R Haritsa, Sreyash Kenkre, and Vinayaka Pandit. Platform-
independent robust query processing. In ICDE, 2016. 17, 28

29

http://www.serc.iisc.in/facilities/delta-cluster/
http://www.tpc.org/tpch/

	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Contribution
	1.2.1 Parallelization Modifications
	1.2.2 Parallelized Picasso
	1.2.3 PICASSO Modifications

	1.3 Organization

	2 POSP Generation
	2.1 Serial processing for POSP generation
	2.2 Parallelization of POSP generation
	2.2.1 Parallelization Limitations and Modifications

	2.3 Applications

	3 Picasso Database Query Optimizer Visualizer
	3.1 Existing Architecture

	4 Parallelized PICASSO
	4.1 Collection of Raw Results
	4.2 Creation of Picasso Packet
	4.2.1 Implementation Details

	4.3 Picasso Modifications
	4.4 Architecture of Parallelized Picasso

	5 Empirical Analysis
	5.1 Impact of Parallel Algorithm
	5.2 Verification through Picasso Diagrams
	5.3 Results
	5.3.1 Parallelization for Join Predicates
	5.3.2 Verification by Picasso Diagrams

	6 Conclusion and Future Work
	Bibliography

