Dimensionality Reduction Techniques for Bouquet Based
Approaches

A PROJECT REPORT
SUBMITTED IN PARTIAL FULFILMENT OF THE
REQUIREMENTS FOR THE DEGREE OF
MNiaster of Technology
IN
Computer Science and Engineeving

BY

Sanket Purandare

Computer Science and Automation
Indian Institute of Science
Bangalore — 560 012 (INDIA)

July, 2018

Declaration of Originality

I, Sanket Purandare, with SR No. 04-04-00-10-42-16-1-13489 hereby declare that the

material presented in the thesis titled
Dimensionality Reduction Techniques for Bouquet Based Approaches

represents original work carried out by me in the Department of Computer Science and
Automation at Indian Institute of Science during the years 2016-2018.
With my signature, I certify that:

e [have not manipulated any of the data or results.

e [have not committed any plagiarism of intellectual property. I have clearly indicated and

referenced the contributions of others.
e [have explicitly acknowledged all collaborative research and discussions.
e [have understood that any false claim will result in severe disciplinary action.

e [have understood that the work may be screened for any form of academic misconduct.

Date: Student Signature

In my capacity as supervisor of the above-mentioned work, I certify that the above statements
are true to the best of my knowledge, and I have carried out due diligence to ensure the

originality of the report.

Advisor Name: Prof. Jayant R. Haritsa Advisor Signature

(© Sanket Purandare
July, 2018
All rights reserved

DEDICATED TO

My Family and Advisor

Acknowledgements

I would like to express my sincere gratitude to my advisor Prof. Jayant Haritsa for providing
me an opportunity to work with him. Meticulousness in every action or thought and being
completely honest with oneself are some of the most critical teachings he has imparted to me.
Zeal for research and hunger to succeed is what I take along with me in future.

I would also like to thank CSA department and Indian Institute of Science for providing me
an excellent platform and research facilities. Overall it has been a wonderful learning experience
for me.

I would also like to thank Srinivas Karthik for guiding me in my research journey. Finally
I would like to thank my family for their unilateral support, my lab mates for their valuable

inputs and constructive criticism and my friends for supporting me during critical times.

Abstract

To address the classical selectivity estimation problem in database systems, a radically differ-
ent query processing technique called SpillBound (SB) was proposed in [1]. In this approach,
the selectivity estimation process is completely abandoned and replaced instead with a cali-
brated selectivity discovery mechanism. The beneficial outcome is that provable guarantees are
obtained on worst-case execution performance, thereby facilitating robust query processing.

Specifically, Spil1Bound delivers a worst-case multiplicative performance bound of D?+3D,
where D is simply the number of error-prone predicates in the user query. But its guarantees
are predicated on expending enormous pre-processing efforts during query compilation which
are exponential in D. With the performance bound and compile time effort being quadratic
and exponential functions in D respectively and the conservative assumption of SB that all the
predicates in the query are error prone, it falls prey to the curse of dimensionality.

There are queries wherein all the dimensions may not be error-prone or may not equally
impact the query processing cost. When a dimension is removed, we lose information regarding
its selectivity that may lead to sub-optimal plan choices and subsequently an inflation to the
worst-case performance guarantees. In this work we present a two step process, we first present
techniques for removal of carefully chosen dimensions resulting in tremendous reduction in
compile-time efforts without worsening the initial performance guarantees. We then present
another algorithm which improves the worst-case execution performance bound of the query
after dimensionality reduction by making it a function of impactful dimensions only.

We have evaluated our techniques on the TPC-DS decision support benchmark and were
able to successfully able to bring down the dimensionality of most of the queries from as
high as twelve to less than six. Also we were able to improve their performance guarantees

substantially.

1

Contents

Acknowledgements
Abstract

Contents

List of Figures
List of Tables

1 Introduction
1.1 SpillBound Algorithm

1.2 Dimensionality Reduction Techniques .

2 Problem Framework
2.1 Error-prone Selectivity Space (ESS) . .
2.2 Search Space and Cost
2.3 Maximum Sub-Optimality (MSO) . . .
24 Assumptions L.
2.5 Problem Definition

3 Overheads Reduction
3.1 Schematic Removal of Dimensions . . .
3.2 Dimension Removal via Projection . .
3.2.1 2-D Projection Algorithm . . .
3.2.2 Extending to higher Dimensions

3.2.3 MaxInflationFactor Perimeter

1l

ii

iii

vi

CONTENTS

3.2.4 MaxInflationFactor Perimeter Extension to Axis Parallel Piecewise Lin-

ear Functions

3.2.5 Using Selectivity Estimate bounds to minimize MaxInflationFactor

4 Performance Improvement

4.1 Contour Plan Replacement

4.1.1 Contour Plan Replacement along single dimension

4.1.1.1 2-D Scenario . .
4.1.1.2 3-D Scenario . .

5 Results and Observations
5.1 Database and System Framework
5.2 Schematic and Projection Removal

5.3 Contour Plan Replacement Results
6 Conclusions and Future Work

Bibliography

Results

v

24

26
26
27
27
29

34
34
35
36

38

39

List of Figures

1.1
1.2
1.3
1.4

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2
4.3
4.4

5.1

5.2

Example TPC-H Query 2
SpillBound Execution on 2D ESS 2
Outline of Techniques 5
TPC-DS Query 27 5
Example 2D ESS 12
3D ESS - MaxInflationFactor 14
MSO graph for Multiple Dimension Removal 15
3D ESS - MaxInflationFactor Perimeter 16
Behavior of m,(z) function 17
Original PIC and PIC fitted with piecewise functions as Equation 3.9 21
K-Subspace Clustering of 1D PICs with linear clusters 23
Contour Plan Replacement 2D Scenario. 27
Choice of a Plan for a point q L 29
Choosing the PY - and P; plans 30
Sets Spy s Sgz s Séi)’mz.y and Sé?nmz 31
Comparison of All Dimensions vs Dimensions post Schematic and Projection

Removal 35
Results for Contour Plan Replacement 36

List of Tables

1.1 Summary of Dimensionality Analysis and Removal Techniques 6
2.1 Notations e 9
3.1 Perimeter MaxInflationFactor Conditions 20
3.2 MaxInflationFactor Calculation using BruteForce, Vertices and Perimeter . . . 24

vi

Chapter 1
Introduction

Cost-based database query optimizers estimate a host of selectivities while identifying the ideal
execution plan for declarative OLAP queries. For example, consider the simple SPJ query shown
in Figure 1.1, here the optimizer estimates the selectivities of a filter predicate (p_retailprice)
and two join predicates (part < lineitem, lineitem p< orders). Predicate selectivity estimates
for optimizing OLAP queries often differ from those actually encountered during query exe-
cution, leading to poor plan choices and thereby inflated query response times. To address
this selectivity estimation problem, a radically different approach called SpillBound(SB) was
recently proposed in [1], wherein the estimation process is completely abandoned and replaced
with a calibrated discovery mechanism. The SB approach proves that its construction results in
bounded overheads for the selectivity discovery process and consequently, guaranteed worst-case
performance.

They use the notion of Mazimum Sub-Optimality (MSO), introduced in [2], as a measure
of the robustness provided by a query processing technique to errors in predicate selectivity
estimation. Specifically, given a query, the MSO of the query processing algorithm is the worst-
case ratio, over the entire selectivity space, of its execution cost with respect to the optimal
cost incurred by an oracular system that magically knows the correct selectivities. To make

the report self-contained we now describe the SB Algorithm in brief.

1.1 SpillBound Algorithm

In the SB technique, a multi-dimensional Error-prone Selectivity Space (ESS) is constructed
at query compile-time, with each dimension corresponding to one of the error-prone predicate
selectivities in the query, and ranging over (0,1]. A sample 2D ESS is shown in Figure 1.2 for

the example TPC-H [8] query of Figure 1.1, where the two join predicates are viewed to be the

problematic error-prone selectivities.

SELECT distinct o orderdate FROM lineitem, orders, part WHERE p_partkey =
|_partkey and o_orderkey = |_orderkey and p_retailprice < 1000

Figure 1.1: Example TPC-H Query

IC5]16C (1 1y

01

= |_orderkey)

SEL(o_orderkey

1¢,|C

1,0
(0,0) SEL(p_partkey = I_partkey) .0

Figure 1.2: SpillBound Execution on 2D ESS

On this ESS space, a series of isocost contours, J€; through JC,,, are drawn — each isocost
contour JC; has an associated optimizer estimated cost CC;, and represents the connected se-
lectivity curve along which the cost of the optimal plan is equal to CC;. Further, the contours
are selected such that the cost of the first contour JC; corresponds to the minimum query cost
C at the origin of the space, and the cost of each of the following contours is double that of the
previous contour.

Therefore, in Figure 1.2, there are five hyperbolic contours, J€; through JCs5, with their
costs ranging from CC; = C' to CCs = 16C.

The union of the plans appearing on all the contours constitutes the “plan bouquet” for the
query — accordingly, plans P, through P4 form the bouquet in Figure 1.2. Given this set, the
SpillBound algorithm operates as follows: Starting with the cheapest contour JCy, a carefully
chosen subset of plans on each contour are sequentially executed with a cost budget equal to the
contour’s cost. Each plan is executed in “spill-mode” during the discovery process with focus on
maximally learning the selectivity of a specific error-prone predicate within its allocated time

budget. This process of contour-wise plan execution ends when all the selectivities in the ESS

have been fully discovered. Armed with this complete knowledge, the genuine optimal plan is
now identified and used to finally execute the query to completion.

To make the SB methodology concrete, consider the case where the query happens to be
actually located at ¢*, in the intermediate region between contours JC3 and JC4, as shown in
Figure 1.2. Assume that the optimal plan for this location, P,., would cost 7C' to process
the query. In contrast, SB, which is unaware of the true location, would invoke the following
budgeted execution sequence:

Py|C, P,|2C, P5|2C, P5|AC, Ps|AC, P13|8C, P, |7C

where the initial executions help to determine the location of ¢*, and the final P« is the ideal
plan used to execute the query to completion. (For ease of visualization, the chosen subset of
plans in each contour are annotated using the ~ symbol in Figure 1.2).

In the above scenario, the cumulative execution cost incurred by SpillBound is (C' + 2C +
2C+4C+4C+8C+7C) = 28C, whereas the oracular optimizer, which magically knows the ¢*
location, completes in 7C. This results in a sub-optimality ratio for SpillBound of 28C'/7C = 4
for the ¢* location.

The additional execution costs entailed by SB‘s “trial-and-error” selectivity discovery exer-
cise can be bounded relative to the optimal, irrespective of the query location in the space. The

MSO of SB is bounded by

MSOgsp < D*+ 3D (1.1)

where D is the dimensionality of the ESS, i.e. the expected number of error-prone predicates

in the input query.

Limitations of SpillBound Notwithstanding SpillBound’s unique benefits with regard to
robust query processing, a major limitation is that its MSO guarantees are predicated on ex-
pending enormous pre-processing overheads during query compilation. Specifically, identifying
the isocost contours in the ESS, entails in principle, ©(r?) calls to the query optimizer, where
r is the resolution (i.e. discretization granularity) along each dimension of the ESS. Also the
MSO grows quadratically with D. So, for instance, if » = 100, corresponding to selectivity
characterization at 1% intervals, and D is 10, 100 quintillion optimizer invocations have to be
carried out to identify the contours before SB can begin executing the query and the worst-case

performance bound is as high as 150.

1.2 Dimensionality Reduction Techniques

Currently, the SpillBound approach does not provide any systematic way of choosing the
error-prone predicates in the query. It conservatively assumes that all the predicates in the
query are error-prone. This could be a costly assumption to make given that the compile-time
complexity of the algorithm is a function exponential in D and the worst-case performance
bound is a quadratic function in D. There are queries wherein all the dimensions may not
equally contribute to the query processing cost and thereby unnecessarily contributing to the
increase in the dimensionality of the ESS leading to higher compile time efforts and inflated
worst-case performance guarantees.

In this work we present algorithms which provide a way to analyze the impact of a dimension
and deterministically calculate the worst-case penalty incurred by the removal of that dimension
from the ESS. After this analysis, a careful choice of the dimensions to be removed is made such
that their removal does not worsen the initial MSO guarantee. It is important to note here that
removal of a dimension from the ESS causes loss of information related to its selectivity and
thereby sub-optimal plan choices. But, if this increase in sub-optimality is low and bounded,
such that the resulting MSO after the removal of dimension is less than the initial MSO then
the dimension can be removed safely. Random removal of certain dimensions may even cause
the MSO to worsen since loss of their selectivity information from ESS may lead to highly
sub-optimal plan choices thereby defeating the purpose of their removal, such dimensions are
to be retained. Hence the choice of the dimensions to be removed is particularly important.

Evaluation of our techniques on TPC-DS benchmark shows that we are able to remove
significant number of dimensions from most of the queries, specifically we are able to bring
down the dimensionality of most queries from as high as 12 to less than or equal to 5 as
presented in Section 5. This results in exponential savings in the compile time effort. These
techniques require minimal computational efforts in comparison to the savings they do as we will
see later. After the dimensionality reduction phase we then apply our algorithm for improving
MSO guarantees to make them tighter.

The outline of our techniques is shown in Figure 1.3. The first two techniques attempt to
reduce the ESS dimensionality without worsening the initial MSO guarantees while the latter
tries to improve the MSO guarantees once the dimensionality reduction is done. Let us look at
each of the techniques briefly with the help of an example. Consider the TPC-DS [9] Query 27

shown in Figure 1.4.

Removal by = ESS ' Contour Plan
Projection : Construction Replacement

(2) (3)

Figure 1.3: Outline of Techniques

SELECT i.item_id, s_state, ss_quantity, ss_list_price, ss_coupon_amt,
ss_sales_price FROM store sales, date.dim , item , store, cus-
tomer_demographics WHERE

ss_item_sk = i_item_sk and ss_store sk = s_store sk and

ss_.cdemo_sk = cd_demo_sk and ss_sold_date_sk = d_date_sk and

dgonder = ¥ ond comarital tatus = '’ and
e educaton status = ‘Advanced Degree e

d_year = 2000 and s_state in (“TN’) and i_current_price < 100

Figure 1.4: TPC-DS Query 27

Schematic Dimension Removal : In the Schematic Dimension Removal Scheme we try
to make use of the metadata statistics and physical schema to conclude if we can estimate the
selectivities of some predicates with high accuracy. For instance, the column ‘cd_gender’ which
has only two possible values, exact frequency counts for the data are usually maintained and
hence its selectivity can be estimated accurately.

For the predicates, for whom the exact frequency counts are hard to maintain due to large
domains, we can access the index on those columns (if it exists) to make accurate selectivity

estimates for them.

Dimension Removal via Projection : The Projection technique calculates the maximum
penalty (called as InflationFactor) that can be incurred to MSO if we project the dimension
to be removed to its maximum possible selectivity value. The predicates, which in spite of this
InflationFactor, do not degrade the original MSO can be removed before the construction of
ESS and their selectivities can be safely (MSO is safe from being deteriorated) assumed to be
1 for ESS construction. We call this maximum relative increase as MaxInflationFactor and
show how it can be calculated deterministically and time-efficiently in Section 3.2.

To summarize, in the above query we are able to remove 3 predicates using Schematic re-

moval (coloured blue), 3 predicates using Projection (coloured green) resulting in the removal
of 6 out of 10 predicates at compile time with a MaxInflationFactor (MIF) of 1.17. The direct
consequence of this is, the compile time effort reduces from (res)!® — (res)?. If resolution (res)

is 100 then we are 1 trillion times faster in generating the reduced ESS.

Contour Plan Replacement : After removal of predicates by projection and schematic
techniques, we are left with the predicates that have significant impact on MSO if we allow the
optimizer to make selectivity estimates for them. In this technique with the help of the MIFs
calculated earlier, we try to piggyback the execution of “weak” predicates (dimensions) along
with the “strong” dimensions. The idea is to make the worst-case performance guarantees only
a function of strong dimensions modulo the inflation (\) incurred for piggybacked executions.

The Contour Plan Replacement along 2 dimensions (colored orange) in Figure 1.4 causes
the MSO to drop from 130 for 10 epps to 17.03 with only 2 impactful dimensions (colored red)
remaining in effect.

Table 1.1 summarizes the performance bounds and compile-time efforts achieved by the
above techniques when £ dimensions are removed using the Schematic and Projection Removal

techniques and Contour Plan Replacement is done along m dimensions.

No. of C ile Ti
Technique o © MSO omprie Lime
Dimensions. Effort

SpillBound D D? +3D res?
Schemati d

chethatic an D—k MIF « (D — k)2 +3(D — k)) res(D=k)

Projection Removal

Contour Plan Dek—m MIF x A % ros(D—H)
Replacement (D—k—m)*+3(D—k—m))

Table 1.1: Summary of Dimensionality Analysis and Removal Techniques

We hasten to add that the MSO after schematic and projection removal of dimensions should
be less than the initial MSO for the dimension removal to be safe with respect to MSO. The

same applies to MSO after contour plan replacement as well.

Chapter 2
Problem Framework

The problem framework is adopted from [1] since it is identical for the problem being addressed

and to make the document self-contained.

2.1 Error-prone Selectivity Space (ESS)

For a query having D error-prone predicates (epps), let the set of error-prone predicates be
denoted by EPP := {ey,...,ep}, where e; denotes the j™ epp. The selectivities of the D
epps are mapped to a D-dimensional space with the selectivity of e; corresponding to the ;%
dimension of the space. Now, the selectivity of each epp ranges over (0, 1], the result of which
is a D-dimensional hypercube [0, 1]P. This is referred to as the Error-prone Selectivity Space
(ESS). In practice, an appropriately discretized grid version of [0, 1]? is considered as the ESS.
Note that each location ¢ € [0,1]” in the ESS represents a specific query instance where the
epps of the user query happen to have selectivities corresponding to the location coordinates of
q. Accordingly, the selectivity value on the j** dimension is denoted by g¢.j.

The notion of a location ¢; dominating a location ¢, in the ESS plays a central role in our
framework. Formally, given two distinct locations ¢;,q2 € ESS, ¢; dominates ¢, denoted by
g1 = qo, if q1.7 > qo.7 for all j € 1,....,D. In an analogous fashion, other relations, such as ,

4, and < can be defined to capture relative positions of pairs of locations.

2.2 Search Space and Cost

We assume that the query optimizer can identify the optimal query execution plan if the
selectivities of all the epps are correctly known. Therefore, given an input query and its epps,
the optimal plans for all locations in the ESS grid can be identified through repeated invocations

of the optimizer with different epp selectivity values. The optimal plan for a generic selectivity

location ¢ € E/SS is denoted by F,, and the set of such optimal plans over the complete ESS
constitutes the Parametric Optimal Set of Plans (POSP) [3]. We denote the cost of executing an
arbitrary plan P at a selectivity location ¢ € ESS by Cost(P,q). Thus, Cost(P,, q) represents
the optimal execution cost for the selectivity instance located at q. Throughout the report, we
adopt the convention of using ¢, to denote the actual selectivities of the epps in the user query
note that this location is unknown at compile-time. Also we denote the deterministic sequence

pursued for a query instance corresponding to g, by Seqq,.

2.3 Maximum Sub-Optimality (MSO)

We now present the performance metrics to quantify the robustness of query processing. A
traditional query optimizer will first estimate g., and then use P, to execute a query which
may actually be located at ¢,. The sub-optimality of this plan choice, relative to an oracle that
magically knows the correct location, and therefore uses the ideal plan F,, , is defined as:
Cost(P,,,q,)
SubOpt(qe, qa) = ———22 222 2.1
P 0e) = Gost Py 0 2
The quantity SubOpt(qe, q,) ranges over [1,00). With this characterization of a specific (g, ¢,)
combination, the maximum sub-optimality that can potentially arise over the entire ESS is
given by

MSO = SubOpt(qe, ¢
(qe,f]?)aééss(ubOpt(qe, qa))

The above definition for a traditional optimizer can be generalized to selectivity discovery
algorithms like SpillBound. Specifically, suppose the discovery algorithm is currently exploring
a location g € Seq,, it will choose P, as the plan and Cost(P,,q) as the associated budget.

Extending this to the whole sequence, the analogue of Equation 2.1 is defined as follows:

>, Cost(P,,q)

q€Seqq,

COSt (PQa) qa)

SubOpt(Seqq,,) =

leading to
MSO = max SubOpt(Seqy,,q.)

2.4 Assumptions

The primary assumptions made in this report that allow for systematic construction and ex-

ploration of the ESS are those of plan cost monotonicity (PCM) and predicate selectivity

independence (SI). PCM may be stated as: For any two locations ¢,,q. € ESS, and for any
plan P,
Q@ = qc = Cost(P, q,) > Cost(P, q.)

That is, it encodes the intuitive notion that when more data is processed by a query, signified
by the larger selectivities for the predicates, the cost of the query processing also increases.

On the other hand, SI assumes that the selectivities of the epps are all independent while
this is a common assumption in much of the query optimization literature, it often does not
hold in practice

While arbitrary selectivity estimation errors are permitted in our study, we have assumed
the optimizer’s cost model to be perfect that is, only optimizer costs are used in the evaluations,
and not actual run times. While this assumption is certainly not valid in practice, improving the

model quality is, in principle, an orthogonal problem to that of cardinality estimation accuracy.

2.5 Problem Definition

We denote the set of all the join and base filter predicates in the query as its raw error-prone
predicate set. With the above framework, the problem of MSO-safe dimensionality reduction
of the ESS is defined as follows:

For a given input query @) with its raw EPP set, develop a time-efficient pre-processing al-
gorithm that identifies and removes mazximum number dimensions (epps) from the ESS without

worsening the original MSO guarantees.

Notation | Meaning

epp (EPP) | Error-prone predicate

ESS Error-prone Selectivity Space
D Dimensionality of the ESS

€1, .., €D The D epps in the query
q €1[0,1]” | A location in the ESS space

selectivity of g in the j** dimension

q.j

of ESS
P, Optimal Plan at g € ESS
Qa Actual selectivity

Cost(P,q) | Cost of Plan P at location ¢

Table 2.1: Notations

Chapter 3

Overheads Reduction

3.1 Schematic Removal of Dimensions

Modern database systems maintain statistical information about the data stored in various
relations in the form of various types of histograms for maintaining the number of unique values,
the counts most frequently occurring elements among others. These histograms capture the
data distribution and other characteristics of data which are useful in estimating the selectivity
of a predicate with minimal effort. The selectivity estimates made using these meta data
statistics may or may not be accurate and may lead to selectivity estimation errors and bad
plan choices. But we can make use of this meta data and certain physical schema structures to
deterministically guarantee the accuracy of estimates for certain epps.

We now present an approach for schematic removal of dimensions, this approach is particu-
larly applicable for base predicates. It is based on the notion that if we know the selectivity of
any predicate with a very high certainty then that dimension can safely be removed from the

set of error prone predicates without incurring degradation in the query processing quality.

1. Using Meta Data Statistics

As stated above various meta data structures like histograms maintain statistical information
about the data. Usually the exact frequency counts for most commonly occurring values in
the column are stored explicitly in almost all databases. If the predicate queries the column
on such a value whose exact frequency count exists apriori then the selectivity estimate for it
can be made accurately. We have done explicit verification of these facts on the open source
PostgreSQL [7] and the commercial SQL Server [6] engine.

In case of range predicates we can predict its selectivity accurately only if the bucket boundaries

of the histogram exactly coincide with the range specified in the query.

10

Nevertheless in case of equality predicate if the frequency of the queried value is not maintained
explicitly then we can assume its lower bound selectivity to be 0 and the upper-bound selectivity

to be the size of the bucket in which its value happens to fall.

Similar argument applies to the range predicates whose range does not coincide with the bucket
boundaries exactly. The lower-bound selectivity is then the summation of the bucket frequencies
which entirely fall within the given range and the upper-bound is the lower-bound selectivity
plus the bucket frequencies of the buckets which partially fall in the specified range. These
bounds are deterministic although may be crude, but are of great value as we will see in
Section 3.2.5.

For using meta data statistics for Schematic removal of dimensions it is important that the

statistics must be up-to-date.

2. Using Physical Schema

Let us consider the example base predicate cd_education_status=‘Unknown’ from TPC-DS
Query 27. If an index already exists on the column cd_education_status then accessing the
index structure provides accurate selectivity estimate which aids in making the optimal plan

choice. Such dimensions can be readily removed from the set of epps.

Accessing indexes for accurately estimating selectivity can be costly but may be worth de-
pending on the database execution setting. For instance, in OLAP settings with rich physical
schema environments where heavy weight queries (typically takes hours to run) are expected
to be executed, using the index structures for not only accessing the relations but for making

accurate selectivity estimations can reap huge benefits.

Further equality predicates on large domain columns queried for an uncommon value can be
hard to estimate using typical meta data structures, using indexes provides a safety net from
making heavy errors in selectivity estimates. Also, unlike the meta-data structures, indexes are

always up-to-date.

3.2 Dimension Removal via Projection

Once the schematic removal of dimensions is done, we know that for the remaining dimensions
optimizer has no way to estimate their selectivities with high accuracy. In the Projection
technique we project the candidate dimension(s) to be removed to its (their) maximum possible
selectivity value (or its upper-bound as calculated in Section 3.1). Hence by the virtue of PCM
we always have sufficient cost budget to process the query irrespective of the actual selectivity

values of the projected dimensions. But forcing a dimension to its maximum value may cause

11

sub-optimal plan choices since the actual value could be different from the projected value.
To measure the impact of this sub-optimality we calculate the factor by which the MSO gets
inflated due to these sub-optimal plan choices, hereafter called as the InflationFactor. We

now describe the technique in detail.

3.2.1 2-D Projection Algorithm

Figure 3.1 shows an example ESS with two dimensions X and Y respectively. We will describe
the algorithm by removing dimension X from the example ESS. The algorithm constructs a
1D ESS which is essentially the projection of the 2D ESS on sel(X) =1 line i.e. for dimension
X we simply assume the highest selectivity which is 1. In the subsequent phase, we deploy
SpillBound algorithm over the projected 1D ESS.

Before we start the analysis of the impact of the above proposed algorithm on MSO, first
let us calculate the sub-optimality for an arbitrary location ¢,(x,y) € 2D ESS. Further, let
g = (1,q,.y) and ¢™" = (0, q,.y) represent the projections of the location ¢, € 2D ESS on
sel(X) = 1 and sel(X) = 0 line, respectively. For instance, the above mentioned projections

for location ¢, can be seen in the Figure 3.1.

(0.1) (1.1)

Sel-Y

g = (0,q5-y) 92 = @aXGay) o =|(1,q,.5)
@

00) //5' - (1.0

Any pointon the line y = q,.y is
projected on q*** = (1,q,.7)

Projected 1D ESS

Figure 3.1: Example 2D ESS

Lemma 3.1 The sub-optimality for any location q, € 2D ESS is at most 4 x % after

removing dimension X .

Proof: Let the total cost incurred by the SpillBound algorithm for executing ¢/*** be denoted

12

max

by CostspiiiBound(*, ¢)"**). Then the sub-optimality for ¢, is

o COStSpillBound(*7 q;nax)

Cost(q,)

_ COStSpillBound(*7 qzlaJ:) COSt<qZLnax)

Cost(gmar) Cost(q,)

Cost(qy*")
* -
- Cost(q,)

(MSO for 1D SpillBound [1] is 4.)

Cost(q"*)

a

<4x ——""—"
=" Cost(qpm)

% which denotes the sub-optimality is called the InflationFactor.
qgm)

To analyze the impact of removal of X on MSO, we define the quantity MaxInflationFactor

O The quantity

as
C t max
MaxInflationFactor(X) = max M
a.yelo,1] Cost(gmm)
Corollary 3.1 The MSO by removing a single dimension X (without loss of generality) from
a 2D-ESS is at most (4 x MaxInflationFactor(X)).

Now if (4 * MaxInflationFactor) < 10 (MSO SpillBound for 2D queries) then we can
remove the dimension from the ESS, by assuming its selectivity to be 1, without any degradation
in the MSO given by SpillBound.

Let us now analyze the computational effort required in calculating the MaxInflationFactor
for the 2D scenario. The MIF for removing a dimension, say X, can be calculated without having
to construct the complete 2D ESS, we just need to make optimizer calls for the two projected
1D segments where X = 1 and X = 0. Hence this requires just 2 * resolution optimization

calls per candidate dimension removal.

3.2.2 Extending to higher Dimensions

In this sub-section, we show how to calculate the MIF for removing k£ dimensions from a D

dimensional ESS where D > 2 using the Projection algorithm.

13

q7%*(0,1.,0) q5***(1,1,0)

g7e*(0,1,1) / e (1,1,1) /
N

q3"(0,0.0) 95" (1.0,0)
% X /
q7""(0.0.1) . g (1,0,1)

Figure 3.2: 3D ESS - MaxInflationFactor

The above 2-D algorithm can be extended to a multi-dimensional algorithm as follows.
For a D-dimensional query to remove k dimensions, say ey, .., e, we first construct two (D-
k)-dimensional ESS sub-spaces by setting the selectivity of the dimensions ey, ..,e; to 0 and
1 respectively. We then compute the InflationFactor for every selectivity combination of
the retained dimensions exy1,..,ep. This is shown in Figure 3.2, where dimension Y is to be
removed. The red colored 2-D slices correspond to the ESS subspaces where the selectivity of
dimension Y = 1 and Y = 0. The ratio of the costs of each of the corresponding points in these
slices are the InflationFactors. We now define,

Cost(q™*)

MaxInflationFactori(ey,..,ex) = max _— 3.1
k(15+ k) (@bt 1s090)E[0,1]P—F COSt(qmm) ()

where ¢™% corresponds to the location where ¢.i = 1 and ¢™" corresponds to the location
where ¢.i = 0 where i € {1, .., k}.

Removal of dimensions using the above mentioned algorithm has advantage if
MaxInflationFactory(ey,..,ex) * MSOgp(D — k) < MSOgp(D)

Order of Dimension Removal : Choice and number of the dimensions to be removed plays
an important role in deciding the degree to which the dimensionality of the query can be
reduced by minimally affecting the MSO guarantees. We first calculate the MIF for each of the
dimensions individually, then the sequence for removing multiple dimensions is decided greedily

in the increasing order of the MIFs corresponding to the individual dimensions. We have verified

14

extensively enumerating all the possible orders for removal that this greedy order of removal

often results in the optimal order and in the other cases it is near optimal.

430

38042
400

350 3 2.62/

300
250

MSO

200
150
100

50

0

RAWDIO D9 D7 D6 D5 D8 D3 D4 D1 D2

Sequence of Dimension Removal

Figure 3.3: MSO graph for Multiple Dimension Removal

Figure 3.3 shows the MSO for sequential sequential removal of dimensions for the TPC-DS
query 27. RAW denotes the MSO corresponding to the initial ten dimensions, then we remove
dimensions in a sequential fashion and calculate the MSO after each removal. The MSO graph
is similar to a cup shape where MSO initially declines as we remove the dimensions and after
a certain point (the base of the cup), it begins to increase. In Figure 3.3 the minimum MSO
of 32.76 is attained when dimensions {D10,D9,D7,D6,D5,D8} are removed with an MIF of 1.17
as presented earlier. We make the choice to stop the dimension removal at D8 since removing
any dimension after it worsens the previous MSO.

Computational Effort : The computation efforts, in terms of optimization calls, needed for cal-
culating the MIF grows exponentially with increasing number of dimensions. In the above case
for constructing 2D number of (D-1) dimensional ESS sub-spaces for calculating the individual
MIFs (projections of the dimensions to be removed) we require precisely (D *res”~!) optimiza-

ka)

tion calls. Then for removing k& dimensions sequentially we require 0(2 * res optimization

calls per iteration where k = 1 — (D — 1) which is O(res”~1) calls which is very expensive.

We will now see how to mitigate this problem in the next subsection.

3.2.3 MaxInflationFactor Perimeter

To obtain a reduction in the computational efforts for removing the dimensions we need to devise

a strategy to calculate the MIF deterministically in a computationally cost effective manner.

15

We now present a computationally cheap algorithm MaxInflationFactor perimeter which
computes the MIF by just making optimization calls along the perimeter of the ESS (1-D
simplexes of the ESS) under certain conditions.

The number of optimization calls for calculating MIF at perimeter of the ESS is of the order
6(2P~! x D x resolution). The lemmas for perimeter MIF are based on the replacement safety

conditions in [4].

g% (1,1,0)

qz“*(0,1,0)
q1"**(0,1,1) / qi**(1,1.1) /
Y
q5""(0,0,0) q¥"™(1,0,0)
/ X /
qinin (0,0,]) ‘ qinin(] 0,1)

Figure 3.4: 3D ESS - MaxInflationFactor Perimeter

Let us consider the 3-D ESS as shown in Figure 3.4 where we want to calculate the
MaxInflationFactor for removing dimension Y. The thick-red lines denote the perimeter
for the slice where sel(Y) = 1 and for the slice where sel(Y) = 0. We now investigate
if making optimization calls only at the perimeter are sufficient to correctly calculate the

MaxInflationFactor. Let m denote InflationFactor function.

_ Cost(q.xz,qy =1,q.2)

m(@,2) = Cost(q.x,q.y = 0,q.2)

The optimal cost surface over the ESS is called the Plan Infimum Cost Curve(PIC). Here
we make an empirically verified assumption that the PIC is an axis parallel monotonically
increasing piecewise linear function in X, Y and Z. Let f denote the axis parallel linear PIC
function (this is a stronger assumption but we show later how we can relax it for piecewise axis
parallel linear functions as well). Let us call this function as 3D APL function and let it have

the form

f(z,y, z) = ki + koy + ksz + kyxz + ksyz + kevz + krxyz + kg (3.2)

16

When dimension Y = 1 we can substitute its value and the PIC can be represented as
fly=1=a1x + asz + asrz + ay, (3.3)
analogously when Y = 0 the PIC is
fly=o0 = b1x + boz + bgxz + by (3.4)
The InflationFactor function m is now a division of two 2D ALP functions f|y—; and f|y—o
i.e.

_ fly=1 | ar +agz +azrz +ay
fly=o bix + bz + byxz + by

m(zx, z) (3.5)

The function m,(z) denotes the sub-optimality ratios by keeping Z constant and varying along
dimension X (and the vice-versa for m,(z)). The various possible behaviors of m,_(x) are shown
in Figure 3.5 as Curves (a) through (d). This behavior can be attributed to the division of two
2D APL functions in Equation 3.5.

Now the reduced ESS after removing Y has two dimensions X and Z. Let the reduced ESS be
denoted by ESSg := {(z1,21), (21, 22), (22, 21), (x2, 22) }, where 1 = 0,21 = 0,29 = 1 and 2y =
1. The maximum InflationFactor value in any subspace of the ESSg is called the local

MaxInflationFactor.

()

m (x)

(b)

X X
1 Sel-x 2

Figure 3.5: Behavior of m,(z) function

17

Lemma 3.2 Given a fized Z = z, and the pair of points (x1, z,) and (xa, z,), the local MaxInflationFact

occurs at one of these points if the slope m’, (x) is either

1. monotonically non-decreasing, OR

2. monotonically decreasing with m/, (x1) <0 or m/, (x3) >0
A similar result holds when x is fized.

Proof: ~ When the slope of m/ (x) is monotonically non-decreasing (i.e. Condition (1) is
satisfied), the InflationFactor function curve that connects the two points is guaranteed to
lie below the straight line joining the two points Curve (a) in Figure 3.5 shows an example of
this situation. This ensures that the InflationFactor along the given line segment is always
less than or equal to the InflationFactor at one of the end-points of the segment.

If, on the other hand, m/ () is monotonically decreasing, then the possible behaviors of
the InflationFactor function m, (x)) are shown in curves (b) through (d) in Figure 3.5.
Curves (b) and (c) denote the behavior of the InflationFactor function when Condition (2) is
satisfied, and clearly the value of the InflationFactor function is below at least one end-point
in the given range. Curve (d) however represents scenario where the local MaxInflationFactor
does not occur at one of the end-points and hence does not satisfy either conditions of the lemma.

O

Lemma 3.3 If the slope of the InflationFactor function m.(z), is non-decreasing (resp. de-
creasing) along the line-segments z = z; and z = 2o, then it is non-decreasing (resp.decreasing)

for all line segments in the interval (21, z3). A similar result holds for m! (z).

Proof: The InflationFactor function given in Equation 3.5 for fixed z is

m (1:) _az + co
N N dlx + d2
where
c1 = (a1 + asz), 3 = (a2z + aq), di = (by + b3z) and dy = (baz + by) (3.6)

Consider the slope of this InflationFactor function

Cldg — Cle
m.(r) = ———— 3.7
()= G (37)
For x € (0, 1], this slope is monotonic and its behavior depends on the sign of the numerator
N := c1dy — cody. From Equations 3.3, 3.4 and 3.6 we know that the numerator of the slope N

can be written as the following function of z

18

N(z) = (a1 + azz)(bez + by) — (a2z + a4) (b1 + b32)

= (agbg — a2b3)z2 + (a1b2 + Cl3b4 - b1a2 — (Z4b3)Z + a1b4 - b1a4

= l122 + ZQZ -+ 13 (38)

where ly,l and 3 are constants. Now since N(z) is a quadratic function of z, if N(z;) >
0 and N(z3) > 0 then N(z) > 0 ,Vz € (z1, 22) which implies that slope m’(z) is decreasing

Vz € (21, 29). Hence the Lemma immediately follows. 0

Theorem 3.1 (Perimeter MaxInflationFactor). For the reduced selectivity space ESSg with
corners [(x1, 21), (21, 22), (%2, 21), (T2, 22)], calculating the InflationFactor along the perimeter
1s sufficient for finding the MaxInflationFactor if any one of the conditions C1 through C6,
giwen in Table 3.1 is satisfied.

Proof:

Consider the C1 condition in Table 3.1: Since m//(x) > 0 (i.e slope m/(z) is non-decreasing)
at the T-B boundaries, then from Lemma 3.3, we know that the slope m/,(x) is non-decreasing
throughout the range (z1, 29).

Moving on to the C2 and C3 conditions: Since m”(x) < 0 (i.e slope m/(z) is decreasing)
at the T-B boundaries, then from Lemma 3.3, we know that the slope m/(z) is decreasing
throughout the range (zi,29). Further, we know that for a given z = z, € (z1, 22), either
m’, (z1) <0 (C2) or m/, (z2) >0 (C3).

Thus, when C1, C2 or C3 is satisfied, then for all lines between points (z1, z) and (z2, 2),
z € (21, 22), the local MaxInflationFactor occurs at one of the end-points of these lines as a
result of the slope conditions given in Lemma 3.2 are satisfied. Since the union of all such line-
segments is the given region, MaxInflationFactor occurs at the perimeter. Similar arguments
can be used to show that the perimeter is sufficient for finding the MaxInflationFactor when
conditions C4, C5 or C6 are satisfied.

19

Table 3.1: Perimeter MaxInflationFactor Conditions

Left Boundary | Right Boundary | Top Boundary | Bottom Boundary
C1 - - m?,(x) >0 m? (x) >0
C2 m’,(z1) <0 - ml,(z) <0 m! (z) <0
C3 - m’(x2) >0 m?, (x) <0 ml (z) <0
C4 my (z) >0 mp,(z) >0 - -
C5 ml (z) <0 mj,(z) <0 ml(z2) >0 -
(of3} mj (z) <0 mj,(z) <0 - ml(z1) <0

O
For extension to higher dimensions we need to consider the 2-D simplexes (2D-faces) of the
higher dimensional ESS. If all the 2D-simplexes of the higher dimensional ESS satisfy any of the
conditions from C1 to C6 in Table 3.1 then the interior becomes safe and MaxInflationFactor

occurs at the perimeter by Theorem 3.1.

3.2.4 MaxInflationFactor Perimeter Extension to Axis Parallel Piece-
wise Linear Functions

In the real-world scenario the PIC is usually not the APL function described in Equation
3.2, but by observing the PIC curve we have empirical evidence that the PIC curves exhibit
axis-parallel piece-wise linearity [3].

The idea now is to divide the domain of the PIC into non-overlapping regions such that in
each region the PIC is an APL function. Now if the perimeter of each of these regions satisfy
any of the conditions from C1 to C6 of Table 3.1 then by Theorem 3.1 the MaxInflationFactor
occurs on the perimeter.

To identify these regions we explicitly fit the PIC on the perimeter with piecewise linear
functions. The breakpoints of these linear pieces on the perimeter are then used to divide the
domain of the PIC into non-overlapping regions. The perimeter test can then be used on these
regions in isolation.

Now the question remains whether this type of fit is good enough, our experiments show
that this methodology gives us good fits with low RMSE values. The important point to note
here is that we do not require an exact fit with accurate co-efficients but we need to capture
the slope behavior of the PIC.

Let us consider an example PIC of the TPC-DS query 26, generated using repeated invoca-
tions of the PostgreSQL optimizer. This is shown in Figure 3.6a. The 2D input domain of the
PIC, which is the 2D selectivity region spanned by dimensions 1 and 2 is divided into 9 regions.

20

Each region is then fitted with the 2D APL function of the form,
flz,y) = ax + by + cxy +d (3.9)

We use non-linear least squares regression to fit the function and we are able to do so with
normalized RMSE = 9 %. The projection of the boundaries of these regions on the input
domain is shown in Figure 3.6c. The computational complexity of the MIF perimeter algorithm

for k regions is O(2P~1 % D * res x k).

Cost Diagram PIC

L. .oelL . Fitting the PIC with piecewise functions of the form 'ax+by+cxy+d'
108 T L A Using K-Subspace Clustering for Plane Shaped Clusters

%108 8

Cost (PIC}
Cost (PIC)
IS

0.2 1

Selectivity Dim 1 Selectivity Dim2 0 o Selectivity Dim 1

(a) PIC (b) PIC fitted with piecewise functions

Division of Input domain into Regions

-

o
Y
i

9

o
=)

8

e
o

e
=3

Selectivity Dim 2
o o
I

2

4] 0.2 0.4 0.6 0.8 1
Selectivity Dim 1

(c) Dividing Input Domain by projecting the Clus-
ters

Figure 3.6: Original PIC and PIC fitted with piecewise functions as Equation 3.9

21

The problem now is identification of these regions where the Function 3.9 fits nicely. This
is done using the K-subspace clustering methods for 2D and higher dimensional planes as
described in [5] shown in Figure 3.6b. But using k-subspace clustering methods for identifying
and fitting the planes we need to provide the PIC values as an input to the algorithm. This
implies explicitly discovering the ESS which is a very expensive approach.

Hence we try to identify these regions using only PIC at perimeter. The perimeter consti-
tutes of 1D simplexes, the PIC at each of the 1D simplexes is a piecewise linear 1D function.
For each of these 1D PICs we do the following, we first fit the 1D PIC with a piecewise linear
function. This operation is done by using the K-subspace clustering [5] method for line shaped

clusters shown in Figures 3.7a and 3.7b. The basic idea is as follows,

1. They represent a line by a point in space and unit direction. If the point is ¢; and
the direction is a, then a data point x can be decomposed into a parallel component

2l = ap[al (v — ¢;)] and a perpendicular component z+ = (x — ¢;,) — zl.

2. The distance between the point x and cluster C}, is defined as the perpendicular distance

between the point and the line :
Dist(x,Cy) =|| © — e — aay, ||?

where a = (z — c;) T ay.

3. The objective function is to minimize the total distance (dispersion) of the cluster, which
is min } ;. Dist(x;, C).

Ck,0f

4. They then give a Theorem that using the model parameters ¢ = z*) where z(*) =
|C_1k| Zieck x; is the centroid of the cluster and a = wu; where u; is the first principal
direction obtained by the principal component analysis(PCA) of the cluster points, we

obtain the optimal solution of the objective function stated previously.

We then identify the breakpoints of these linear pieces. We then use the combination of
the breakpoints from the different 1D simplexes to form 2D regions in the input domain. This
is shown in Figure 3.7c which is almost identical to the domain decomposition in Figure 3.6¢
which was obtained using the PIC values for the entire region.

We then experimentally verify if the Function 3.9 fits well to the PIC restricted to the
regions obtained from the combinations of the breakpoints of the piecewise linear functions at
perimeter. The fit is done for PICs of 8 TPCDS queries with an average normalized RMSE of
12%.

22

If the InflationFactor function (m) satisfies anyone the conditions in Table 3.1 then
the MaxInflationFactor occurs at the perimeter of one of these regions, since they together

constitute the entire input domain.

K-Subspace Clustering of Linear Clusters with k=3 K-Subspace Clustering of Linear Clusters with k=3
8 21106 . Z,106
——tssssea b b ,1 .
7t vet®
. 5 —
6l
- 5 _.
Usr o
o &
3 FOT
Sak 8
3 (o
3 M
2
2r 1
1) 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Selectivity Dim 1 Selectivity Dim 2
(a) 1D PIC at perimeter Side 1 (b) 1D PIC at perimeter Side 2

Division of Input domain into Regions Using Perimeter PIC
1a N .

0.9

e
o

Selectivity Dim 2
e o
=

e
w

0.2}

0 0.2 0.4 0.6 0.8 1

(c) Dividing Input Domain using PICs at perimeter

Figure 3.7: K-Subspace Clustering of 1D PICs with linear clusters

The calculation of MIF on perimeter using the above algorithm is shown in Table 3.2. It also
compares the MIF values obtained using perimeter with brute force calculation of MIF done by
generating the entire ESS. The perimeter MIF technique does exceptionally well as it is able to
calculate the exact value of MIF using only the perimeter of the ESS for all the queries except

Q-84. On investigation it is observed that the PIC for Q-84 violates even basic assumptions
like PCM let alone APL.

23

Table 3.2: MaxInflationFactor Calculation using BruteForce, Vertices and Perimeter

QT Technique Dim 1 Dim 2 Dim 3 Dim 4 Dim 5 Dim 6
DSQT264D | MIF-BruteForce 3.843 135.539 10.350 192.936
MIF-Vertices 3.843 135.539 10.350 192.936
MIF-Perimeter 3.843 135.539 10.350 192.936
DSQT74D MIF-BruteForce 2.969 10.152 15.729 228.866
MIF-Vertices 2.969 10.152 15.729 228.866
MIF-Perimeter 2.969 10.152 15.729 228.866
DSQT153D | MIF-BruteForce | 49.274 57.083 353.012
MIF-Vertices 7.226 56.546 346.205
MIF-Perimeter 49.274 57.083 353.012
DSQT195D | MIF-BruteForce 9.853 133.528 70.551 100.555 90.239
MIF-Vertices 9.853 115.082 57.477 100.555 90.239
MIF-Perimeter 9.853 133.528 57.477 100.555 90.239
DSQT274D | MIF-BruteForce 10.220 15.883 159.238 2.978
MIF-Vertices 10.220 15.883 159.238 2.978
MIF-Perimeter 10.220 15.883 159.238 2.978

DSQT295D | MIF-BruteForce 14.210 165.084 166.317 227.236 21.813
MIF-Vertices 13.775 165.084 166.317 227.236 21.079
MIF-Perimeter 14.210 165.084 166.317 227.236 21.813
DSQT845D | MIF-BruteForce 99.159 98.239 2467.991 9180.578 53.630
MIF-Vertices 37.240 37.112 76.369 1679.043 39.360
MIF-Perimeter 96.422 95.552 1895.860 3404.853 53.630
DSQT912D | MIF-BruteForce 30.412 1.920

MIF-Vertices 30.412 1.920
MIF-Perimeter 30.412 1.920
DSQT913D | MIF-BruteForce | 492.859 5.313 69.838
MIF-Vertices 492.859 5.313 69.838
MIF-Perimeter 492.859 5.313 69.838
DSQT914D | MIF-BruteForce | 273.807 13.581 11.146 169.250
MIF-Vertices 273.807 13.581 11.146 169.250
MIF-Perimeter 273.807 13.581 11.146 169.250
DSQT915D | MIF-BruteForce | 273.203 3.156 13.542 11.115 168.830
MIF-Vertices 273.203 2.233 13.542 11.115 168.830
MIF-Perimeter 273.203 3.156 13.542 11.115 168.830

DSQT963D | MIF-BruteForce | 952.858 | 189.084 891.017
MIF-Vertices 952.858 | 189.084 891.017
MIF-Perimeter 952.858 | 189.084 891.017

DSQT186D | MIF-BruteForce 83.037 9.167 3.054 81.633 67.287 95.696
MIF-Vertices 64.609 9.167 3.054 35.160 39.336 58.962

MIF-Perimeter 83.037 9.167 3.054 81.633 67.287 95.696

DSQT916D | MIF-BruteForce | 471.437 | 272.993 3.155 13.517 11.094 168.523
MIF-Vertices 471.437 | 272.993 2.229 13.517 11.094 168.523

MIF-Perimeter 471.437 | 272.993 2.229 13.517 11.094 168.523

3.2.5 Using Selectivity Estimate bounds to minimize MaxInflationFactor

For some dimensions we can obtain deterministic lower and upper bounds on the selectivity us-

ing the approaches presented in Section 3.1. The ESS for such dimensions can be shrunk leading

24

to smaller values of the MaxInflationFactor. The perimeter MIF algorithm described above is
directly applicable to this ESS with shrunken dimensions. In general the MaxInflationFactor

for removing k£ dimensions is given by Equation 3.1.

min

Now let us define ¢3** where q.i = ub(sel;) and gj;"™ where g.i = lb(sel;) where i € DimRem.
Also let (¢j,, .-, qjp_,) € (Ib(selj,), ub(sel;,)) x ... x (Ib(sel;,_,), ub(sel;

ip_.)). Now since ¢"** >
q" and g™ = ¢™", therefore by PCM for any ¢

JD—k

Cost(qg™*) - Cost(gh™)
Cost(qgm™) — Cost(gmim)

Hence using Selectivity Estimate Bounds helps to lower the MaxInflationFactor. The effect

is significant as these bounds get narrower and tighter.

25

Chapter 4

Performance Improvement

4.1 Contour Plan Replacement

After the removal of k£ dimensions using Projection and Schematic techniques, we construct

D=Fky opti-

the ESS from the remaining dimensions incurring a computational effort of (res
mization calls. Once the ESS is constructed and we have discovered the iso-cost contours we
exploit the weakness of a dimension by using contour plan replacement technique. The order
of the dimensions chosen, against which plan replacement is to be done, is decided by their
MaxInflationFactors, which in essence quantifies the weakness of a dimension based on the
impact of its selectivity to the optimal cost surface.

The MSO of the SpillBound algorithm is the result of at most D fresh executions per
contour and at most % repeat executions overall as stated in [1]. To reduce the MSO for
a query we explore the possibility of guaranteeing less number of fresh executions per contour
and lower number of repeat executions overall.

Now the question is how do we reduce the number of executions per contour, the idea is
piggybacking the execution of “weak” dimensions along the execution of “strong” dimensions.
By execution of a dimension, we mean execution of the corresponding predicate. This piggy-
backing of executions now inflates the budget required for the execution of strong dimensions.
The objective is to make the MSO a function of the strong dimensions modulo the inflation of
cost budgets for the piggybacked execution of weak dimensions along them. These inflations in
budgets are expected to be low for dimensions having low MIF values because variation in the
selectivities of these weak dimensions have less impact on the cost of the overall query.

In the following sub-sections we show how to achieve the piggybacked executions and how

to deterministically calculate the inflation in budgets.

26

4.1.1 Contour Plan Replacement along single dimension

We will first describe our algorithm for plan replacement along a single dimension say ep. For a
D dimensional query the goal is to bound the maximum number of fresh executions per contour
to (D — 1) and maximum repeat executions to w so as to achieve the MSO of a (D —1)
dimensional query by incurring a small penalty A\°? such that A°? x M.SOp_1 < MSO(D). The

extension for contour plan replacement along multiple dimensions is straightforward.
4.1.1.1 2-D Scenario

Consider the 2-D ESS as shown in Figure 4.1a,which depicts the iso-cost contour /C; annotated
with the optimal plans P, P, and P3 covering it. We now describe the 2-D algorithm for plan
replacement along dimension X.

For the contour IC; we find the best one-plan replacement (from the contour POSP set)
which can cover the entire contour i.e replace all the plans across it with minimum sub-
optimality (\X). For instance as shown in the Figure 4.1b, plan P, replaces all other plans
on the contour IC; with sub-optimality (AX).

In the scenario that X-dimension needs to be removed, all plans that are X-spilling are

considered to be Y-spilling by ignoring the error-prone X-predicate in the pipeline order.

(0,1) (1.1) (0,1) (1,1)

Sel-Y Sel-Y
Py
r. Py
P, Py
(0.,0) — (1.0) (0,0) (1,0)
Sel-X IC; Sel-X IC;
(a) Contour on a 2-D ESS (b) Best 1-plan replacement along the contour

Figure 4.1: Contour Plan Replacement 2D Scenario

Lemma 4.1 Consider the contour plan P, which replaces all the plans on contour IC; with sub-
optimality \X. Let epp Y be selected by the spill node identification mechanism (after ignoring
the epp X). When P, is executed with budget CC;(1 + \X) and spilling on Y, then we either
learn (a) the exact selectivity of Y, or (b) that q, lies beyond the contour.

Proof: [IC; represents the set of points in the ESS having their optimal cost equal to C'C;.

27

Let qgups Ting> @%p and q s denote the points having maximum and minimum X-selectivity and
Y-selectivity on the contour respectively. The cost of all points g € IC; is at most CCj(1+ AX)
when costed using P.. Now when the plan P, is executed in the spill-mode with cost budget
CCy(1 + X\%) it may or may not complete.

For an internal node N of a plan tree, we use N.cost to refer to the execution cost of the node.
Let Ny denote the internal node corresponding to Y in plan P,. Partition the internal nodes
of P, into the following: Upstream(Ny), { Ny}, and Residual(Ny), where Upstream(Ny) de-
notes the set of internal nodes of P, that appear before node Ny in the execution order, while
Residual (Ny) contains all the nodes in the plan tree excluding Upstream(Ny) and {Ny }.
Therefore, Cost(P,,q) = > N.cost + Ny .cost + > N.cost

NeUpstream(Ny) Né€Residual(Ny)

Case-1 : The value of the first term in the summation Upstream(Ny) is known with
certainty if it does not contain Nx. Further, the quantity Ny.cost is computed assuming that
the selectivity of Ny is q.y for any point ¢ € IC;. Since the output of Ny is discarded and
not passed to downstream nodes, the nodes in Residual(Ny) incur zero cost. Thus, when P,
is executed in spill-mode, the budget is sufficiently large to either learn the exact selectivity of
Y (if the spill-mode execution goes to completion) or to conclude that g,.y is greater than q.y,
Vq € IC; since P, is costed for all g € IC;.

Case-2 : Now if N is contained in Upstream(Ny) then its cost is not known with certainty,
however since P, is costed for all ¢ € IC;, all the selectivity combinations of (¢.x, q.y), Vq € IC;

get considered. Hence, for all these combinations the sum of the quantity > N.cost+
NeUpstream(Ny)

Ny.cost < CCi(1 + X*). Similar to Case-1, the output of Ny is discarded and not passed to
downstream nodes, hence the nodes in Residual(Ny) incur zero cost. Thus, when P, is executed
in spill-mode, the budget is sufficiently large to either learn the exact selectivity of ¥ and X
(if the spill-mode execution goes to completion) or to conclude that ¢, > ¢ (strictly dominates)
for some ¢ € IC; which implies that cost(F,,,q,) > CC; i.e it lies beyond the contour by PCM.

min

O Let there be m = log, <g'”a) number of contours, let P; be the best 1-plan replacement

with sub-optimality A;' for each contour IC; from i =1 — m. Let A** = max AL
i=1—m

Lemma 4.2 The MSO for the 2D scenario when contour plan replacement is done along a

single dimension ey is 4(1 + \°').

Proof:

The query processing algorithm executes the best 1-plan replacement, P;, for each contour
1C;, starting from the least cost contour. Each execution of P; is performed with an increased
budget of CC;(1 + A°'). Since each contour now has only 1 plan with fixed inflated budget,

28

using the PlanBouquet algorithm it is easy to show that the M SO for the 2D scenario is equal
to 4(1 4+ A°1).
([
It is important to note that A°* - which denotes the worst case sub-optimality incurred for

making plan replacements along the dimension e; is a function of the dimension e; itself.
4.1.1.2 3-D Scenario

In this sub-section we see how the Contour Plan Replacement technique can be extended to
the 3-D scenario, consisting of dimensions X, Y and Z. Let us, without loss of generality say
that plan replacement along dimension X is to be done. As in the 2D scenario, all the plans
on the contour become either Y-spilling or Z-spilling by considering ignoring the epp X. Let
the set of plans which were originally X-spilling plans, but now considered as either Y-spilling
or Z-spilling, be denoted by PT.

BGup
Y
PY plan
4 = (Gnp-%,4-,9-2)
P, plan q., X
L
qszup

Figure 4.2: Choice of a Plan for a point q

Contour Plan Replacement Strategy : The main idea of the algorithm as stated earlier
is to execute two plans (one for each strong dimension) and piggy back the required execution
of the weak dimension along with these strong ones. As can be seen in the 2D scenario, the
execution of the replaced X dimension is piggy backed with the strong Y dimension. Similarly
in the 3D scenario, the X dimension is piggy backed with both the remaining strong dimensions.
Now let us now see how to achieve this through contour replacement technique.

Let us first characterize the contours based on the minimum and maximum selectivities of
the replaced dimension X, captured by X = ¢, .z and X = ¢g,,,.x respectively. There are three
possible combinations: a) a 2D contour line on X = ¢j, ,.w slice and a point on X = ¢g,,,.x slice;

b) a 2D contour line on X = ¢g,,,.x slice and a point on X = ¢f, ;. slice; ¢) a 2D contour line

29

on both X = ¢f .z and X = ¢g,,.x slices. The figures in this section correspond to case a) but
all the Lemmas and Theorems are generalizable for all the cases mentioned above.

We will first show that how X’s execution can be piggy backed with Y. Consider a point ¢’
on the X = ¢j, ;.v slice, let its coordinates be such that ¢’ = (¢}, ;.,¢".y, ¢'.z). First we consider
the set Sy, = {q|q € IC; and q.y < ¢'.y} and show that all the (x,y) selectivity combinations
such that y < ¢'.y gets covered by a single plan execution. For this single execution, consider

the minimal (z,y)-dominating set points of Sy, denoted by S(?.y. Formally,

S(?'y =Vq e Sy, 3G € S(?'y such that (§.x,q.y) = (q.z,q.y) (4.1)

We do a single plan replacement for the set Sq[,)_y, then by PCM all the (z,y) selectivity
combinations of the set Sy, get covered. Similarly, we can try to piggy back the X’s execution
with Sy ..

Now let us see how to do two executions for each of the strong dimensions i.e. Y and Z.

For every distinct Y and Z values on the contour, we compute the penalty of the sets SyD
and SP

z)

and assign the minimum of them to each combination (y, z) (shown in Figure 4.2).
In essence, every contour point gets a Y -spilling plan or a Z-spilling plan assigned. We then
choose the Y-spilling plan and Z-spilling with their respective maximum learning potential as
defined in [1]. Let these two maximum respective selectivities be ¢¥,,,.v and ¢Z,,,.z, with the

corresponding plans be PY —ad P?

max mazx’

This is shown in Figure 4.3. Then the following lemmas

show that the execution of these two max. plans are sufficient to cross the contour.

y
Asup
Py Dl
max p an
y
q?nﬂ X
qﬁl((ﬁ'
X X
PZ.. plan 5y
Zz
Qsup

Figure 4.3: Choosing the PY . and P? . plans

Lemma 4.3 Let the following sets be defined as Sy ., = {qlq € IC; and q.y < ¢%,4,-y} and

T

30

2 ={qlq € IC; and q.z < q,q,-2}. Then every point g € IC; belongs to either Sy ., or

Y

z
qmaa:‘

z .
9maz-?

Proof: Let us prove by contradiction. We know that ¢},,, is the point on X = ¢j, .« slice

which is covered by PY,,, let its coordinates be ¢J,,, = (qf, -, @%.-Y; 2). Analogously let
Gz = (Qinp-T5 Y Gnge-2). 1t is evident that g2 < G502, al80 Gy < Ghgpy. Hence

the point G := (¢j, 1%, Gaz-Ys Gnaz-2) 18 such that ¢ = ¢}, and ¢ = g}, which implies that
cost(q) > CC;. Now if there exists a point ¢ such that ¢ € IC; but ¢ & S, and ¢ & Sz
This implies that ¢ > ¢ which further implies cost(§) > cost(¢) > CC;. Hence ¢ ¢ 1C;. Hence
the proof. a

Hence (S ., USg . .) covers all the points of the contour IC;. This is depicted in Figure

4.4.

2z

y Sy
QSup qr}vmx'y

Y —_ 55

fh}nﬂx-y

S,z
q‘lmax-z

D

v
Pma;\' pjarl S
Tfnax-Z

4= (.qflp-lf'x: Qi\illax-y' Ghax-Z)

su
Prax plan
Q'szu.p
: : D D
Figure 4.4: Sets Sgy ., Sz -, qumz.y and Sg:

Lemma 4.4 If PY . plan is costed on the set Sé?, ’ with)\;(as mazimum sub-optimality and

max-

if PY is executed in spill-mode with budget (1 +)\§<)CC’Z- and does not complete then q, ¢ Sy

mazx-Y

Proof: Since PY . plan is costed on the set S(?J , With A, as maximum sub-optimality, and

by definition of the set Sﬁn ..., the plan Py essentially covers all the combinations of X and

Y selectivity pairs for all the points ¢ belonging to contour IC; such that ¢.y < ¢¥,,..y. This
is precisely the set Sz .. Hence if the point g, € Sy _, then the spill-mode execution with
plan PY completes (from Lemma 4.1) and thereby the lemma follows. a

max

Similarly we can prove the following Lemma,

31

Lemma 4.5 If P? . plan is costed on the set S(%a with \X as mazimum sub-optimality and

22

if P* is executed in spill-mode with budget (1+ A\X)CC; and does not complete then q, & S

max-?

Lemma 4.6 If the spill-mode executions of both the plans, PY . with budget (1 +)\f)CCZ- and

maxr

Pz with budget (1 + XX)CC;, do not complete then q, lies beyond the contour 1C;.

max

Proof: From Lemmas 4.4 and 4.5 we can infer that ¢, ¢ Sp» , and g, & S,z ... This implies
da & (Sgv.,.y YU S, .-) and from Lemma 4.3 we can conclude that g, lies beyond the contour.
O

Consider the situation where ¢, is located in the region between IC) and [Cj.q, or is
directly on ICyy1. Then, the SpillBound algorithm explores the contours from 1 to k + 1

before discovering ¢q,. In this process,

Lemma 4.7 In 3D-scenario the Contour Replacement Strategy ensures that at most two plans
are executed from each of the contours I1CY, ..., ICyi1, except for one contour in which at most

three plans are executed.

Proof: Let the exact selectivity of one of the epps(Y or Z) be learnt in contour IC},, where
1 < h<k+1. We know that at most two plans are required to be executed in each of the
contours ICY, ..., IC}, (from Lemma 4.6). Subsequently, once the selectivity of one of the epps
is learnt it boils down to 2-D scenario of Contour Plan Replacement which begins operating

from contour IC},, resulting in three plans being executed in IC},, and one plan each in contours

1C} 1 through ICy. 1. O

Let Aji, = max(X\\,AY) for each of the contours from i = 1 — m. Also let \X =
A%
(i G

We now analyze the worst-case cost incurred by SpillBound after the Contour Plan Replace-
ment strategy. For this, we assume that the contour with three plan executions is the costliest
contour IC}y1. Since the ratio of costs between two consecutive contours is 2, the total cost
incurred by SpillBound is bounded as follows: TotalCost < 2 CCy(1 4+ AX) + ... +2 % CCi(1 +
M)+ 3% CCL (1 4+ 1Y)

= (1+XA)2%CCy +..+2x2810C, + 3% 2FCCy)

=1+ X52x00(1+2+ .25 28« 00y)
= 1+ 152002 —1) + 2k« CCy)

<1+ M52 00 + 28« COy)

32

= (1+ X x5x28xCCy

From the PCM assumption, we know that the cost for an oracle algorithm (that a priori knows

the location of ¢,) is lower bounded by C'Cy. By definition, CCj, = 2F=1 % C'C,. Hence,

5% 28 % CCp* (1 + M%)
2k—1*OCl

MSO < =10(1+ 1Y)
leading to the theorem:

Theorem 4.1 With the Contour Plan Replacement done along dimension X, the MSO for the
3-D Scenario is 10(1 + A*) = MSOgp(2) = (1 + \¥).

For the CPR technique to be able to improve on the MSO, we require that M SOgp(2) *
(1+ X¥) < MSOgp(3). This is usually the case when X is a weak dimension.

33

Chapter 5
Results and Observations

In this section, we present the results and observations of the performance, effectiveness and
overheads of the techniques discussed in the previous sections. The experimental framework,

which is similar to that used in [1], is described first, followed by analysis of the results.

5.1 Database and System Framework

Our experiments are carried out on a representative set of complex OLAP queries, it is com-
prised of 21 SPJ queries from the TPC-DS benchmark, operating at the base size of 100 GB.
The number of relations in these queries range from 4 to 10, and a spectrum of join-graph
geometries are modeled, including chain, star, branch, etc.

In order to conduct the assessment on challenging multi-dimensional ESS spaces, we ensure
that: (a) All the join predicates and base filter predicates form the set of raw dimensions for
the query, (b) The physical schema features indexes on all the attribute columns appearing in
the query, maximizing the range of cost values, and hence the number of contours, in the ESS.

The database engine used in our experiments is a modified version of the PostgreSQL 9.4

[7] engine, with the primary additions being:

1. Selectivity Injection, required to generate the ESS,

2. Abstract Plan Costing, used by the optimizer to cost a particular plan at a particular query

location,

3. Abstract Plan Execution, required to instruct the execution engine to execute a particular

plan and

4. Time-limited execution, required to implement the calibrated sequence of plan executions

with associated time budgets.

34

All the experiments are done on a 16-core HP 7440 workstation with 15 MB L3 cache, 32
GB RAM and 512 GB SSD.

5.2 Schematic and Projection Removal Results

Using the Schematic and Projection Removal Techniques presented in Sections 3.1 and 3.2 we
were able to remove essentially all the base predicates from the 21 TPC-DS queries on which
we conducted our experiments. The reduction of the dimensions is depicted in Figure 5.1.
The graph also shows an interesting fact, that for all queries the reduced dimensionality of the
queries is less than or equal to 5.

It is important to note that the computational effort reduces exponentially with the removal
every dimension since compile-time effort is a exponential function in D. Using the Perimeter
MaxInflationFactor algorithm the effort to identify, calculate the MIF and remove these di-

mensions reduces from O(r”) — O(2(P~%) % (D — k) * r) when k dimensions are removed from
the ESS.

[—
T)

—_
[=]

Dimension

[T 7 B NS -« - =

—

Q91 Q18 Q27 Q26 Q07 Q19 Q73 Q84 Q21 Q40 Q53 Q63 Q9% Q15 Q37 QB89 Q36 Q62 Q99 Q67 Q22

QNO

@ Raw Dimensions @™ Schematic Removal B Projection Removal

Figure 5.1: Comparison of All Dimensions vs Dimensions post Schematic and Projection Re-
moval

35

5.3 Contour Plan Replacement Results

12

Dimension

& 0{\ C‘_\{j d\Q 0"1//\ NG RN RPN NI I
. S o o) . >
© S & & o ©

Query Template

B Initial Dimensions @ Dimension post Schematic and Projection
@ Dimension post Contour Plan Replacement

(a) Comparison of All Dimensions vs Dimensions post Schematic and Projection Removal vs Dimen-
sions post Contour Plan Replacement

160

140

MSO

o

PR PR PP S

d\ Oﬁ/ . A~ Q . ~ :‘\' :‘\'
4 4 o o

&
o 81

Query Template

B MSO SpillBound All Dimensions [MSO SpillBound Join-Dimensions
W MSO post Dimensionality Reduction

(b) Comparison of MSO SpillBound All Dimensions vs MSO SpillBound Join-Dimensions vs MSO
post Dimensionality Reduction

Figure 5.2: Results for Contour Plan Replacement

Figure 5.2a shows the dimensionality reduction in phases for the queries considered in SpillBound|[l].

36

The dimensions along which Contour plan replacement is done are virtually removed, this
helps in bettering the MSO guarantees only.

For the SpillBound queries, we were able to do contour plan replacement along a number
of dimensions lowering the MSOs of many queries by making them a function of only the strong
dimensions as shown in Figure 5.2b.

Contour Plan Replacement is successful for all the queries except Q-29 and Q-96. This is
because the MaxInflationFactor for all the dimensions of these queries is very high and hence
change in their selectivity causes significant changes in the cost which makes plan replacement

with low sub-optimalities difficult along them.

37

Chapter 6
Conclusions and Future Work

Overall we present a set of techniques for dimensionality reduction of the ESS such that the
MSO guarantees are preserved or bettered and the compile-time computational overheads are
significantly reduced.

The take-away from this work is that the importance of a dimension is in essence the de-
gree to which it impacts the cost of processing the query, relative to other dimensions, as
its selectivity is varied. Our techniques exploit exactly this fact, for instance intuitively the
MaxInflationFactor for a dimension is low if the PIC exhibits a flat behavior when its selec-
tivity is varied.

If the optimal cost surface does change noticeably when the selectivity of a candidate di-
mension is varied then removing it using projection may worsen the MSO. But if this change
in cost is small relative to other dimensions then it is very likely that the plan structure and
join order remains the same (or minor changes) irrespective of the variation in the dimension’s
selectivity. This is exactly what Contour Plan Replacement leverages when it makes plan re-
placement along weak dimensions to piggyback the execution of weak dimensions along the
strong dimensions. This now makes the MSO of SpillBound algorithm a function of only the
strong dimensions modulo the penalty incurred for plan replacement.

Our future work would be to make contour plan replacement feasible without the compu-

tational effort invested in ESS discovery for weak dimensions.

38

Bibliography

[1] S.Karthik, J.Haritsa, S.Kenkre and V.Pandit. Platform-independent robust query process-
ing. In IEEE ICDE Conf., 2016. ii, 1, 7, 13, 26, 30, 34, 36

[2] A.Dutt and J.Haritsa. Plan bouquets: Query processing without selectivity estimation. In
ACM SIGMOD Conf., 2014. 1

[3] A. Hulgeri and S. Sudarshan. Parametric query optimization for linear and piecewise linear
cost functions. In VLDB, 2002. 8, 20

[4] D. Harish, P. Darera, and J. Haritsa. Identifying robust plans through plan diagram reduc-
tion. In PVLDB, 2008. 16

[5] Wang D., Ding C. and Li T. K-Subspace Clustering. In ECML-PKDD, 2009. 22

[6] Microsoft SQL Server. https://www.microsoft.com/en-in/sql-server/sql-server-2017 10
[7] PostgreSQL. https://www.postgresql.org/docs/ 10, 34

[8] TPC-H. http://www.tpc.org/tpch/. 1

[9] TPC-DS. http://www.tpc.org/tpeds/. 4

39

	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 SpillBound Algorithm
	1.2 Dimensionality Reduction Techniques

	2 Problem Framework
	2.1 Error-prone Selectivity Space (ESS)
	2.2 Search Space and Cost
	2.3 Maximum Sub-Optimality (MSO)
	2.4 Assumptions
	2.5 Problem Definition

	3 Overheads Reduction
	3.1 Schematic Removal of Dimensions
	3.2 Dimension Removal via Projection
	3.2.1 2-D Projection Algorithm
	3.2.2 Extending to higher Dimensions
	3.2.3 MaxInflationFactor Perimeter
	3.2.4 MaxInflationFactor Perimeter Extension to Axis Parallel Piecewise Linear Functions
	3.2.5 Using Selectivity Estimate bounds to minimize MaxInflationFactor

	4 Performance Improvement
	4.1 Contour Plan Replacement
	4.1.1 Contour Plan Replacement along single dimension
	4.1.1.1 2-D Scenario
	4.1.1.2 3-D Scenario

	5 Results and Observations
	5.1 Database and System Framework
	5.2 Schematic and Projection Removal Results
	5.3 Contour Plan Replacement Results

	6 Conclusions and Future Work
	Bibliography

