
Dimensionality Reduction Techniques for Bouquet Based

Approaches

A PROJECT REPORT

SUBMITTED IN PARTIAL FULFILMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

Master of Technology

IN

Computer Science and Engineering

BY

Sanket Purandare

Computer Science and Automation

Indian Institute of Science

Bangalore – 560 012 (INDIA)

July, 2018

Declaration of Originality

I, Sanket Purandare, with SR No. 04-04-00-10-42-16-1-13489 hereby declare that the

material presented in the thesis titled

Dimensionality Reduction Techniques for Bouquet Based Approaches

represents original work carried out by me in the Department of Computer Science and

Automation at Indian Institute of Science during the years 2016-2018.

With my signature, I certify that:

• I have not manipulated any of the data or results.

• I have not committed any plagiarism of intellectual property. I have clearly indicated and

referenced the contributions of others.

• I have explicitly acknowledged all collaborative research and discussions.

• I have understood that any false claim will result in severe disciplinary action.

• I have understood that the work may be screened for any form of academic misconduct.

Date: Student Signature

In my capacity as supervisor of the above-mentioned work, I certify that the above statements

are true to the best of my knowledge, and I have carried out due diligence to ensure the

originality of the report.

Advisor Name: Prof. Jayant R. Haritsa Advisor Signature

1

c© Sanket Purandare

July, 2018

All rights reserved

DEDICATED TO

My Family and Advisor

Acknowledgements

I would like to express my sincere gratitude to my advisor Prof. Jayant Haritsa for providing

me an opportunity to work with him. Meticulousness in every action or thought and being

completely honest with oneself are some of the most critical teachings he has imparted to me.

Zeal for research and hunger to succeed is what I take along with me in future.

I would also like to thank CSA department and Indian Institute of Science for providing me

an excellent platform and research facilities. Overall it has been a wonderful learning experience

for me.

I would also like to thank Srinivas Karthik for guiding me in my research journey. Finally

I would like to thank my family for their unilateral support, my lab mates for their valuable

inputs and constructive criticism and my friends for supporting me during critical times.

i

Abstract

To address the classical selectivity estimation problem in database systems, a radically differ-

ent query processing technique called SpillBound (SB) was proposed in [1]. In this approach,

the selectivity estimation process is completely abandoned and replaced instead with a cali-

brated selectivity discovery mechanism. The beneficial outcome is that provable guarantees are

obtained on worst-case execution performance, thereby facilitating robust query processing.

Specifically, SpillBound delivers a worst-case multiplicative performance bound of D2+3D,

where D is simply the number of error-prone predicates in the user query. But its guarantees

are predicated on expending enormous pre-processing efforts during query compilation which

are exponential in D. With the performance bound and compile time effort being quadratic

and exponential functions in D respectively and the conservative assumption of SB that all the

predicates in the query are error prone, it falls prey to the curse of dimensionality.

There are queries wherein all the dimensions may not be error-prone or may not equally

impact the query processing cost. When a dimension is removed, we lose information regarding

its selectivity that may lead to sub-optimal plan choices and subsequently an inflation to the

worst-case performance guarantees. In this work we present a two step process, we first present

techniques for removal of carefully chosen dimensions resulting in tremendous reduction in

compile-time efforts without worsening the initial performance guarantees. We then present

another algorithm which improves the worst-case execution performance bound of the query

after dimensionality reduction by making it a function of impactful dimensions only.

We have evaluated our techniques on the TPC-DS decision support benchmark and were

able to successfully able to bring down the dimensionality of most of the queries from as

high as twelve to less than six. Also we were able to improve their performance guarantees

substantially.

ii

Contents

Acknowledgements i

Abstract ii

Contents iii

List of Figures v

List of Tables vi

1 Introduction 1

1.1 SpillBound Algorithm . 1

1.2 Dimensionality Reduction Techniques . 4

2 Problem Framework 7

2.1 Error-prone Selectivity Space (ESS) . 7

2.2 Search Space and Cost . 7

2.3 Maximum Sub-Optimality (MSO) . 8

2.4 Assumptions . 8

2.5 Problem Definition . 9

3 Overheads Reduction 10

3.1 Schematic Removal of Dimensions . 10

3.2 Dimension Removal via Projection . 11

3.2.1 2-D Projection Algorithm . 12

3.2.2 Extending to higher Dimensions . 13

3.2.3 MaxInflationFactor Perimeter . 15

iii

CONTENTS

3.2.4 MaxInflationFactor Perimeter Extension to Axis Parallel Piecewise Lin-

ear Functions . 20

3.2.5 Using Selectivity Estimate bounds to minimize MaxInflationFactor . . 24

4 Performance Improvement 26

4.1 Contour Plan Replacement . 26

4.1.1 Contour Plan Replacement along single dimension 27

4.1.1.1 2-D Scenario . 27

4.1.1.2 3-D Scenario . 29

5 Results and Observations 34

5.1 Database and System Framework . 34

5.2 Schematic and Projection Removal Results . 35

5.3 Contour Plan Replacement Results . 36

6 Conclusions and Future Work 38

Bibliography 39

iv

List of Figures

1.1 Example TPC-H Query . 2

1.2 SpillBound Execution on 2D ESS . 2

1.3 Outline of Techniques . 5

1.4 TPC-DS Query 27 . 5

3.1 Example 2D ESS . 12

3.2 3D ESS - MaxInflationFactor . 14

3.3 MSO graph for Multiple Dimension Removal 15

3.4 3D ESS - MaxInflationFactor Perimeter . 16

3.5 Behavior of mz(x) function . 17

3.6 Original PIC and PIC fitted with piecewise functions as Equation 3.9 21

3.7 K-Subspace Clustering of 1D PICs with linear clusters 23

4.1 Contour Plan Replacement 2D Scenario . 27

4.2 Choice of a Plan for a point q . 29

4.3 Choosing the P y
max and P z

max plans . 30

4.4 Sets Sqymax.y, Sqzmax.z, S
D
qymax.y

and SD
qzmax.z

. 31

5.1 Comparison of All Dimensions vs Dimensions post Schematic and Projection

Removal . 35

5.2 Results for Contour Plan Replacement . 36

v

List of Tables

1.1 Summary of Dimensionality Analysis and Removal Techniques 6

2.1 Notations . 9

3.1 Perimeter MaxInflationFactor Conditions . 20

3.2 MaxInflationFactor Calculation using BruteForce, Vertices and Perimeter . . . 24

vi

Chapter 1

Introduction

Cost-based database query optimizers estimate a host of selectivities while identifying the ideal

execution plan for declarative OLAP queries. For example, consider the simple SPJ query shown

in Figure 1.1, here the optimizer estimates the selectivities of a filter predicate (p retailprice)

and two join predicates (part ./ lineitem, lineitem ./ orders). Predicate selectivity estimates

for optimizing OLAP queries often differ from those actually encountered during query exe-

cution, leading to poor plan choices and thereby inflated query response times. To address

this selectivity estimation problem, a radically different approach called SpillBound(SB) was

recently proposed in [1], wherein the estimation process is completely abandoned and replaced

with a calibrated discovery mechanism. The SB approach proves that its construction results in

bounded overheads for the selectivity discovery process and consequently, guaranteed worst-case

performance.

They use the notion of Maximum Sub-Optimality (MSO), introduced in [2], as a measure

of the robustness provided by a query processing technique to errors in predicate selectivity

estimation. Specifically, given a query, the MSO of the query processing algorithm is the worst-

case ratio, over the entire selectivity space, of its execution cost with respect to the optimal

cost incurred by an oracular system that magically knows the correct selectivities. To make

the report self-contained we now describe the SB Algorithm in brief.

1.1 SpillBound Algorithm

In the SB technique, a multi-dimensional Error-prone Selectivity Space (ESS) is constructed

at query compile-time, with each dimension corresponding to one of the error-prone predicate

selectivities in the query, and ranging over (0, 1]. A sample 2D ESS is shown in Figure 1.2 for

the example TPC-H [8] query of Figure 1.1, where the two join predicates are viewed to be the

1

problematic error-prone selectivities.

SELECT distinct o orderdate FROM lineitem, orders, part WHERE p partkey =

l partkey and o orderkey = l orderkey and p retailprice < 1000

Figure 1.1: Example TPC-H Query

Figure 1.2: SpillBound Execution on 2D ESS

On this ESS space, a series of isocost contours, IC1 through ICm, are drawn – each isocost

contour ICi has an associated optimizer estimated cost CCi, and represents the connected se-

lectivity curve along which the cost of the optimal plan is equal to CCi. Further, the contours

are selected such that the cost of the first contour IC1 corresponds to the minimum query cost

C at the origin of the space, and the cost of each of the following contours is double that of the

previous contour.

Therefore, in Figure 1.2, there are five hyperbolic contours, IC1 through IC5, with their

costs ranging from CC1 = C to CC5 = 16C.

The union of the plans appearing on all the contours constitutes the “plan bouquet” for the

query – accordingly, plans P1 through P14 form the bouquet in Figure 1.2. Given this set, the

SpillBound algorithm operates as follows: Starting with the cheapest contour IC1, a carefully

chosen subset of plans on each contour are sequentially executed with a cost budget equal to the

contour’s cost. Each plan is executed in “spill-mode” during the discovery process with focus on

maximally learning the selectivity of a specific error-prone predicate within its allocated time

budget. This process of contour-wise plan execution ends when all the selectivities in the ESS

2

have been fully discovered. Armed with this complete knowledge, the genuine optimal plan is

now identified and used to finally execute the query to completion.

To make the SB methodology concrete, consider the case where the query happens to be

actually located at q∗, in the intermediate region between contours IC3 and IC4, as shown in

Figure 1.2. Assume that the optimal plan for this location, Pq∗ , would cost 7C to process

the query. In contrast, SB, which is unaware of the true location, would invoke the following

budgeted execution sequence:

P1|C,P2|2C,P3|2C,P6|4C,P8|4C,P12|8C,Pq∗ |7C

where the initial executions help to determine the location of q∗, and the final Pq∗ is the ideal

plan used to execute the query to completion. (For ease of visualization, the chosen subset of

plans in each contour are annotated using the ˜ symbol in Figure 1.2).

In the above scenario, the cumulative execution cost incurred by SpillBound is (C + 2C +

2C+4C+4C+8C+7C) = 28C, whereas the oracular optimizer, which magically knows the q∗

location, completes in 7C. This results in a sub-optimality ratio for SpillBound of 28C/7C = 4

for the q∗ location.

The additional execution costs entailed by SB‘s “trial-and-error” selectivity discovery exer-

cise can be bounded relative to the optimal, irrespective of the query location in the space. The

MSO of SB is bounded by

MSOSB ≤ D2 + 3D (1.1)

where D is the dimensionality of the ESS, i.e. the expected number of error-prone predicates

in the input query.

Limitations of SpillBound Notwithstanding SpillBound’s unique benefits with regard to

robust query processing, a major limitation is that its MSO guarantees are predicated on ex-

pending enormous pre-processing overheads during query compilation. Specifically, identifying

the isocost contours in the ESS, entails in principle, Θ(rD) calls to the query optimizer, where

r is the resolution (i.e. discretization granularity) along each dimension of the ESS. Also the

MSO grows quadratically with D. So, for instance, if r = 100, corresponding to selectivity

characterization at 1% intervals, and D is 10, 100 quintillion optimizer invocations have to be

carried out to identify the contours before SB can begin executing the query and the worst-case

performance bound is as high as 130.

3

1.2 Dimensionality Reduction Techniques

Currently, the SpillBound approach does not provide any systematic way of choosing the

error-prone predicates in the query. It conservatively assumes that all the predicates in the

query are error-prone. This could be a costly assumption to make given that the compile-time

complexity of the algorithm is a function exponential in D and the worst-case performance

bound is a quadratic function in D. There are queries wherein all the dimensions may not

equally contribute to the query processing cost and thereby unnecessarily contributing to the

increase in the dimensionality of the ESS leading to higher compile time efforts and inflated

worst-case performance guarantees.

In this work we present algorithms which provide a way to analyze the impact of a dimension

and deterministically calculate the worst-case penalty incurred by the removal of that dimension

from the ESS. After this analysis, a careful choice of the dimensions to be removed is made such

that their removal does not worsen the initial MSO guarantee. It is important to note here that

removal of a dimension from the ESS causes loss of information related to its selectivity and

thereby sub-optimal plan choices. But, if this increase in sub-optimality is low and bounded,

such that the resulting MSO after the removal of dimension is less than the initial MSO then

the dimension can be removed safely. Random removal of certain dimensions may even cause

the MSO to worsen since loss of their selectivity information from ESS may lead to highly

sub-optimal plan choices thereby defeating the purpose of their removal, such dimensions are

to be retained. Hence the choice of the dimensions to be removed is particularly important.

Evaluation of our techniques on TPC-DS benchmark shows that we are able to remove

significant number of dimensions from most of the queries, specifically we are able to bring

down the dimensionality of most queries from as high as 12 to less than or equal to 5 as

presented in Section 5. This results in exponential savings in the compile time effort. These

techniques require minimal computational efforts in comparison to the savings they do as we will

see later. After the dimensionality reduction phase we then apply our algorithm for improving

MSO guarantees to make them tighter.

The outline of our techniques is shown in Figure 1.3. The first two techniques attempt to

reduce the ESS dimensionality without worsening the initial MSO guarantees while the latter

tries to improve the MSO guarantees once the dimensionality reduction is done. Let us look at

each of the techniques briefly with the help of an example. Consider the TPC-DS [9] Query 27

shown in Figure 1.4.

4

Figure 1.3: Outline of Techniques

SELECT i item id, s state, ss quantity, ss list price, ss coupon amt,

ss sales price FROM store sales, date dim , item , store, cus-

tomer demographics WHERE

ss item sk = i item sk and ss store sk = s store sk and

ss cdemo sk = cd demo sk and ss sold date sk = d date sk and

cd gender = ‘F’ and cd marital status = ‘D’ and

cd education status = ‘Advanced Degree’ and

d year = 2000 and s state in (‘TN’) and i current price ≤ 100

Figure 1.4: TPC-DS Query 27

Schematic Dimension Removal : In the Schematic Dimension Removal Scheme we try

to make use of the metadata statistics and physical schema to conclude if we can estimate the

selectivities of some predicates with high accuracy. For instance, the column ‘cd gender ’ which

has only two possible values, exact frequency counts for the data are usually maintained and

hence its selectivity can be estimated accurately.

For the predicates, for whom the exact frequency counts are hard to maintain due to large

domains, we can access the index on those columns (if it exists) to make accurate selectivity

estimates for them.

Dimension Removal via Projection : The Projection technique calculates the maximum

penalty (called as InflationFactor) that can be incurred to MSO if we project the dimension

to be removed to its maximum possible selectivity value. The predicates, which in spite of this

InflationFactor, do not degrade the original MSO can be removed before the construction of

ESS and their selectivities can be safely (MSO is safe from being deteriorated) assumed to be

1 for ESS construction. We call this maximum relative increase as MaxInflationFactor and

show how it can be calculated deterministically and time-efficiently in Section 3.2.

To summarize, in the above query we are able to remove 3 predicates using Schematic re-

5

moval (coloured blue), 3 predicates using Projection (coloured green) resulting in the removal

of 6 out of 10 predicates at compile time with a MaxInflationFactor (MIF) of 1.17. The direct

consequence of this is, the compile time effort reduces from (res)10 → (res)4. If resolution (res)

is 100 then we are 1 trillion times faster in generating the reduced ESS.

Contour Plan Replacement : After removal of predicates by projection and schematic

techniques, we are left with the predicates that have significant impact on MSO if we allow the

optimizer to make selectivity estimates for them. In this technique with the help of the MIFs

calculated earlier, we try to piggyback the execution of “weak” predicates (dimensions) along

with the “strong” dimensions. The idea is to make the worst-case performance guarantees only

a function of strong dimensions modulo the inflation (λ) incurred for piggybacked executions.

The Contour Plan Replacement along 2 dimensions (colored orange) in Figure 1.4 causes

the MSO to drop from 130 for 10 epps to 17.03 with only 2 impactful dimensions (colored red)

remaining in effect.

Table 1.1 summarizes the performance bounds and compile-time efforts achieved by the

above techniques when k dimensions are removed using the Schematic and Projection Removal

techniques and Contour Plan Replacement is done along m dimensions.

Technique
No. of

Dimensions.
MSO

Compile Time

Effort

SpillBound D D2 + 3D resD

Schematic and

Projection Removal
D − k MIF ∗ ((D − k)2 +3(D − k)) res(D−k)

Contour Plan

Replacement
D − k −m

MIF ∗ λ ∗
((D − k −m)2 + 3(D − k −m))

res(D−k)

Table 1.1: Summary of Dimensionality Analysis and Removal Techniques

We hasten to add that the MSO after schematic and projection removal of dimensions should

be less than the initial MSO for the dimension removal to be safe with respect to MSO. The

same applies to MSO after contour plan replacement as well.

6

Chapter 2

Problem Framework

The problem framework is adopted from [1] since it is identical for the problem being addressed

and to make the document self-contained.

2.1 Error-prone Selectivity Space (ESS)

For a query having D error-prone predicates (epps), let the set of error-prone predicates be

denoted by EPP := {e1, ..., eD}, where ej denotes the jth epp. The selectivities of the D

epps are mapped to a D-dimensional space with the selectivity of ej corresponding to the jth

dimension of the space. Now, the selectivity of each epp ranges over (0, 1], the result of which

is a D-dimensional hypercube [0, 1]D. This is referred to as the Error-prone Selectivity Space

(ESS). In practice, an appropriately discretized grid version of [0, 1]D is considered as the ESS.

Note that each location q ∈ [0, 1]D in the ESS represents a specific query instance where the

epps of the user query happen to have selectivities corresponding to the location coordinates of

q. Accordingly, the selectivity value on the jth dimension is denoted by q.j.

The notion of a location q1 dominating a location q2 in the ESS plays a central role in our

framework. Formally, given two distinct locations q1, q2 ∈ ESS, q1 dominates q2, denoted by

q1 � q2, if q1.j ≥ q2.j for all j ∈ 1, ..., D. In an analogous fashion, other relations, such as �,

⊀, and � can be defined to capture relative positions of pairs of locations.

2.2 Search Space and Cost

We assume that the query optimizer can identify the optimal query execution plan if the

selectivities of all the epps are correctly known. Therefore, given an input query and its epps,

the optimal plans for all locations in the ESS grid can be identified through repeated invocations

of the optimizer with different epp selectivity values. The optimal plan for a generic selectivity

7

location q ∈ ESS is denoted by Pq, and the set of such optimal plans over the complete ESS

constitutes the Parametric Optimal Set of Plans (POSP) [3]. We denote the cost of executing an

arbitrary plan P at a selectivity location q ∈ ESS by Cost(P, q). Thus, Cost(Pq, q) represents

the optimal execution cost for the selectivity instance located at q. Throughout the report, we

adopt the convention of using qa to denote the actual selectivities of the epps in the user query

note that this location is unknown at compile-time. Also we denote the deterministic sequence

pursued for a query instance corresponding to qa by Seqqa .

2.3 Maximum Sub-Optimality (MSO)

We now present the performance metrics to quantify the robustness of query processing. A

traditional query optimizer will first estimate qe, and then use Pqe to execute a query which

may actually be located at qa. The sub-optimality of this plan choice, relative to an oracle that

magically knows the correct location, and therefore uses the ideal plan Pqa , is defined as:

SubOpt(qe, qa) =
Cost(Pqe , qa)

Cost(Pqa , qa)
(2.1)

The quantity SubOpt(qe, qa) ranges over [1,∞). With this characterization of a specific (qe, qa)

combination, the maximum sub-optimality that can potentially arise over the entire ESS is

given by

MSO = max
(qe,qa)∈ESS

(SubOpt(qe, qa))

The above definition for a traditional optimizer can be generalized to selectivity discovery

algorithms like SpillBound. Specifically, suppose the discovery algorithm is currently exploring

a location q ∈ Seqqa it will choose Pq as the plan and Cost(Pq, q) as the associated budget.

Extending this to the whole sequence, the analogue of Equation 2.1 is defined as follows:

SubOpt(Seqqa , qa) =

∑
q∈Seqqa

Cost(Pq, q)

Cost(Pqa , qa)

leading to

MSO = max
qa∈ESS

SubOpt(Seqqa , qa)

2.4 Assumptions

The primary assumptions made in this report that allow for systematic construction and ex-

ploration of the ESS are those of plan cost monotonicity (PCM) and predicate selectivity

8

independence (SI). PCM may be stated as: For any two locations qb, qc ∈ ESS, and for any

plan P ,

qb � qc⇒ Cost(P, qb) > Cost(P, qc)

That is, it encodes the intuitive notion that when more data is processed by a query, signified

by the larger selectivities for the predicates, the cost of the query processing also increases.

On the other hand, SI assumes that the selectivities of the epps are all independent while

this is a common assumption in much of the query optimization literature, it often does not

hold in practice

While arbitrary selectivity estimation errors are permitted in our study, we have assumed

the optimizer’s cost model to be perfect that is, only optimizer costs are used in the evaluations,

and not actual run times. While this assumption is certainly not valid in practice, improving the

model quality is, in principle, an orthogonal problem to that of cardinality estimation accuracy.

2.5 Problem Definition

We denote the set of all the join and base filter predicates in the query as its raw error-prone

predicate set. With the above framework, the problem of MSO-safe dimensionality reduction

of the ESS is defined as follows:

For a given input query Q with its raw EPP set, develop a time-efficient pre-processing al-

gorithm that identifies and removes maximum number dimensions (epps) from the ESS without

worsening the original MSO guarantees.

Notation Meaning

epp (EPP) Error-prone predicate

ESS Error-prone Selectivity Space

D Dimensionality of the ESS

e1, ..., eD The D epps in the query

q ∈ [0, 1]D A location in the ESS space

q.j
selectivity of q in the jth dimension

of ESS

Pq Optimal Plan at q ∈ ESS
qa Actual selectivity

Cost(P, q) Cost of Plan P at location q

Table 2.1: Notations

9

Chapter 3

Overheads Reduction

3.1 Schematic Removal of Dimensions

Modern database systems maintain statistical information about the data stored in various

relations in the form of various types of histograms for maintaining the number of unique values,

the counts most frequently occurring elements among others. These histograms capture the

data distribution and other characteristics of data which are useful in estimating the selectivity

of a predicate with minimal effort. The selectivity estimates made using these meta data

statistics may or may not be accurate and may lead to selectivity estimation errors and bad

plan choices. But we can make use of this meta data and certain physical schema structures to

deterministically guarantee the accuracy of estimates for certain epps.

We now present an approach for schematic removal of dimensions, this approach is particu-

larly applicable for base predicates. It is based on the notion that if we know the selectivity of

any predicate with a very high certainty then that dimension can safely be removed from the

set of error prone predicates without incurring degradation in the query processing quality.

1. Using Meta Data Statistics

As stated above various meta data structures like histograms maintain statistical information

about the data. Usually the exact frequency counts for most commonly occurring values in

the column are stored explicitly in almost all databases. If the predicate queries the column

on such a value whose exact frequency count exists apriori then the selectivity estimate for it

can be made accurately. We have done explicit verification of these facts on the open source

PostgreSQL [7] and the commercial SQL Server [6] engine.

In case of range predicates we can predict its selectivity accurately only if the bucket boundaries

of the histogram exactly coincide with the range specified in the query.

10

Nevertheless in case of equality predicate if the frequency of the queried value is not maintained

explicitly then we can assume its lower bound selectivity to be 0 and the upper-bound selectivity

to be the size of the bucket in which its value happens to fall.

Similar argument applies to the range predicates whose range does not coincide with the bucket

boundaries exactly. The lower-bound selectivity is then the summation of the bucket frequencies

which entirely fall within the given range and the upper-bound is the lower-bound selectivity

plus the bucket frequencies of the buckets which partially fall in the specified range. These

bounds are deterministic although may be crude, but are of great value as we will see in

Section 3.2.5.

For using meta data statistics for Schematic removal of dimensions it is important that the

statistics must be up-to-date.

2. Using Physical Schema

Let us consider the example base predicate cd education status=‘Unknown’ from TPC-DS

Query 27. If an index already exists on the column cd education status then accessing the

index structure provides accurate selectivity estimate which aids in making the optimal plan

choice. Such dimensions can be readily removed from the set of epps.

Accessing indexes for accurately estimating selectivity can be costly but may be worth de-

pending on the database execution setting. For instance, in OLAP settings with rich physical

schema environments where heavy weight queries (typically takes hours to run) are expected

to be executed, using the index structures for not only accessing the relations but for making

accurate selectivity estimations can reap huge benefits.

Further equality predicates on large domain columns queried for an uncommon value can be

hard to estimate using typical meta data structures, using indexes provides a safety net from

making heavy errors in selectivity estimates. Also, unlike the meta-data structures, indexes are

always up-to-date.

3.2 Dimension Removal via Projection

Once the schematic removal of dimensions is done, we know that for the remaining dimensions

optimizer has no way to estimate their selectivities with high accuracy. In the Projection

technique we project the candidate dimension(s) to be removed to its (their) maximum possible

selectivity value (or its upper-bound as calculated in Section 3.1). Hence by the virtue of PCM

we always have sufficient cost budget to process the query irrespective of the actual selectivity

values of the projected dimensions. But forcing a dimension to its maximum value may cause

11

sub-optimal plan choices since the actual value could be different from the projected value.

To measure the impact of this sub-optimality we calculate the factor by which the MSO gets

inflated due to these sub-optimal plan choices, hereafter called as the InflationFactor. We

now describe the technique in detail.

3.2.1 2-D Projection Algorithm

Figure 3.1 shows an example ESS with two dimensions X and Y respectively. We will describe

the algorithm by removing dimension X from the example ESS. The algorithm constructs a

1D ESS which is essentially the projection of the 2D ESS on sel(X) = 1 line i.e. for dimension

X we simply assume the highest selectivity which is 1. In the subsequent phase, we deploy

SpillBound algorithm over the projected 1D ESS.

Before we start the analysis of the impact of the above proposed algorithm on MSO, first

let us calculate the sub-optimality for an arbitrary location qa(x, y) ∈ 2D ESS. Further, let

qmax
a = (1, qa.y) and qmin

a = (0, qa.y) represent the projections of the location qa ∈ 2D ESS on

sel(X) = 1 and sel(X) = 0 line, respectively. For instance, the above mentioned projections

for location qa can be seen in the Figure 3.1.

Figure 3.1: Example 2D ESS

Lemma 3.1 The sub-optimality for any location qa ∈ 2D ESS is at most 4 ∗ Cost(qmax
a)

Cost(qmin
a)

after

removing dimension X.

Proof: Let the total cost incurred by the SpillBound algorithm for executing qmax
a be denoted

12

by CostSpillBound(∗, qmax
a). Then the sub-optimality for qa is

=
CostSpillBound(∗, qmax

a)

Cost(qa)

=
CostSpillBound(∗, qmax

a)

Cost(qmax
a)

∗ Cost(q
max
a)

Cost(qa)

≤ 4 ∗ Cost(q
max
a)

Cost(qa)

(MSO for 1D SpillBound [1] is 4.)

≤ 4 ∗ Cost(q
max
a)

Cost(qmin
a)

2 The quantity Cost(qmax
a)

Cost(qmin
a)

which denotes the sub-optimality is called the InflationFactor.

To analyze the impact of removal of X on MSO, we define the quantity MaxInflationFactor

as

MaxInflationFactor(X) = max
q.y∈[0,1]

Cost(qmax)

Cost(qmin)

Corollary 3.1 The MSO by removing a single dimension X (without loss of generality) from

a 2D-ESS is at most (4 ∗ MaxInflationFactor(X)).

Now if (4 ∗ MaxInflationFactor) < 10 (MSO SpillBound for 2D queries) then we can

remove the dimension from the ESS, by assuming its selectivity to be 1, without any degradation

in the MSO given by SpillBound.

Let us now analyze the computational effort required in calculating the MaxInflationFactor

for the 2D scenario. The MIF for removing a dimension, say X, can be calculated without having

to construct the complete 2D ESS, we just need to make optimizer calls for the two projected

1D segments where X = 1 and X = 0. Hence this requires just 2 ∗ resolution optimization

calls per candidate dimension removal.

3.2.2 Extending to higher Dimensions

In this sub-section, we show how to calculate the MIF for removing k dimensions from a D

dimensional ESS where D > 2 using the Projection algorithm.

13

Figure 3.2: 3D ESS - MaxInflationFactor

The above 2-D algorithm can be extended to a multi-dimensional algorithm as follows.

For a D-dimensional query to remove k dimensions, say e1, .., ek, we first construct two (D-

k)-dimensional ESS sub-spaces by setting the selectivity of the dimensions e1, .., ek to 0 and

1 respectively. We then compute the InflationFactor for every selectivity combination of

the retained dimensions ek+1, .., eD. This is shown in Figure 3.2, where dimension Y is to be

removed. The red colored 2-D slices correspond to the ESS subspaces where the selectivity of

dimension Y = 1 and Y = 0. The ratio of the costs of each of the corresponding points in these

slices are the InflationFactors. We now define,

MaxInflationFactork(e1, .., ek) = max
∀(q.jk+1,..,q.jD)∈[0,1]D−k

Cost(qmax)

Cost(qmin)
(3.1)

where qmax corresponds to the location where q.i = 1 and qmin corresponds to the location

where q.i = 0 where i ∈ {1, .., k}.
Removal of dimensions using the above mentioned algorithm has advantage if

MaxInflationFactork(e1, .., ek) ∗MSOSB(D − k) < MSOSB(D)

Order of Dimension Removal : Choice and number of the dimensions to be removed plays

an important role in deciding the degree to which the dimensionality of the query can be

reduced by minimally affecting the MSO guarantees. We first calculate the MIF for each of the

dimensions individually, then the sequence for removing multiple dimensions is decided greedily

in the increasing order of the MIFs corresponding to the individual dimensions. We have verified

14

extensively enumerating all the possible orders for removal that this greedy order of removal

often results in the optimal order and in the other cases it is near optimal.

Figure 3.3: MSO graph for Multiple Dimension Removal

Figure 3.3 shows the MSO for sequential sequential removal of dimensions for the TPC-DS

query 27. RAW denotes the MSO corresponding to the initial ten dimensions, then we remove

dimensions in a sequential fashion and calculate the MSO after each removal. The MSO graph

is similar to a cup shape where MSO initially declines as we remove the dimensions and after

a certain point (the base of the cup), it begins to increase. In Figure 3.3 the minimum MSO

of 32.76 is attained when dimensions {D10,D9,D7,D6,D5,D8} are removed with an MIF of 1.17

as presented earlier. We make the choice to stop the dimension removal at D8 since removing

any dimension after it worsens the previous MSO.

Computational Effort : The computation efforts, in terms of optimization calls, needed for cal-

culating the MIF grows exponentially with increasing number of dimensions. In the above case

for constructing 2D number of (D-1) dimensional ESS sub-spaces for calculating the individual

MIFs (projections of the dimensions to be removed) we require precisely θ(D∗resD−1) optimiza-

tion calls. Then for removing k dimensions sequentially we require θ(2 ∗ resD−k) optimization

calls per iteration where k = 1 → (D − 1) which is O(resD−1) calls which is very expensive.

We will now see how to mitigate this problem in the next subsection.

3.2.3 MaxInflationFactor Perimeter

To obtain a reduction in the computational efforts for removing the dimensions we need to devise

a strategy to calculate the MIF deterministically in a computationally cost effective manner.

15

We now present a computationally cheap algorithm MaxInflationFactor perimeter which

computes the MIF by just making optimization calls along the perimeter of the ESS (1-D

simplexes of the ESS) under certain conditions.

The number of optimization calls for calculating MIF at perimeter of the ESS is of the order

θ(2D−1 ∗D ∗ resolution). The lemmas for perimeter MIF are based on the replacement safety

conditions in [4].

Figure 3.4: 3D ESS - MaxInflationFactor Perimeter

Let us consider the 3-D ESS as shown in Figure 3.4 where we want to calculate the

MaxInflationFactor for removing dimension Y. The thick-red lines denote the perimeter

for the slice where sel(Y) = 1 and for the slice where sel(Y) = 0. We now investigate

if making optimization calls only at the perimeter are sufficient to correctly calculate the

MaxInflationFactor. Let m denote InflationFactor function.

m(x, z) =
Cost(q.x, q.y = 1, q.z)

Cost(q.x, q.y = 0, q.z)

The optimal cost surface over the ESS is called the Plan Infimum Cost Curve(PIC). Here

we make an empirically verified assumption that the PIC is an axis parallel monotonically

increasing piecewise linear function in X, Y and Z. Let f denote the axis parallel linear PIC

function (this is a stronger assumption but we show later how we can relax it for piecewise axis

parallel linear functions as well). Let us call this function as 3D APL function and let it have

the form

f(x, y, z) = k1x+ k2y + k3z + k4xz + k5yz + k6xz + k7xyz + k8 (3.2)

16

When dimension Y = 1 we can substitute its value and the PIC can be represented as

f |Y=1 = a1x+ a2z + a3xz + a4, (3.3)

analogously when Y = 0 the PIC is

f |Y=0 = b1x+ b2z + b3xz + b4 (3.4)

The InflationFactor function m is now a division of two 2D ALP functions f |Y=1 and f |Y=0

i.e.

m(x, z) =
f |Y=1

f |Y=0

=
a1x+ a2z + a3xz + a4
b1x+ b2z + b3xz + b4

(3.5)

The function mz(x) denotes the sub-optimality ratios by keeping Z constant and varying along

dimension X (and the vice-versa for mx(z)). The various possible behaviors of mzo(x) are shown

in Figure 3.5 as Curves (a) through (d). This behavior can be attributed to the division of two

2D APL functions in Equation 3.5.

Now the reduced ESS after removing Y has two dimensions X and Z. Let the reduced ESS be

denoted by ESSR := {(x1, z1), (x1, z2), (x2, z1), (x2, z2)}, where x1 = 0, z1 = 0, x2 = 1 and z2 =

1. The maximum InflationFactor value in any subspace of the ESSR is called the local

MaxInflationFactor.

Figure 3.5: Behavior of mz(x) function

17

Lemma 3.2 Given a fixed Z = zo and the pair of points (x1, zo) and (x2, zo), the local MaxInflationFactor

occurs at one of these points if the slope m′zo(x) is either

1. monotonically non-decreasing, OR

2. monotonically decreasing with m′zo(x1) ≤ 0 or m′zo(x2) ≥ 0

A similar result holds when x is fixed.

Proof: When the slope of m′zo(x) is monotonically non-decreasing (i.e. Condition (1) is

satisfied), the InflationFactor function curve that connects the two points is guaranteed to

lie below the straight line joining the two points Curve (a) in Figure 3.5 shows an example of

this situation. This ensures that the InflationFactor along the given line segment is always

less than or equal to the InflationFactor at one of the end-points of the segment.

If, on the other hand, m′zo(x) is monotonically decreasing, then the possible behaviors of

the InflationFactor function mzo(x)) are shown in curves (b) through (d) in Figure 3.5.

Curves (b) and (c) denote the behavior of the InflationFactor function when Condition (2) is

satisfied, and clearly the value of the InflationFactor function is below at least one end-point

in the given range. Curve (d) however represents scenario where the local MaxInflationFactor

does not occur at one of the end-points and hence does not satisfy either conditions of the lemma.

2

Lemma 3.3 If the slope of the InflationFactor function m′z(x), is non-decreasing (resp. de-

creasing) along the line-segments z = z1 and z = z2, then it is non-decreasing (resp.decreasing)

for all line segments in the interval (z1, z2). A similar result holds for m′x(z).

Proof: The InflationFactor function given in Equation 3.5 for fixed z is

mz(x) =
c1x+ c2
d1x+ d2

where

c1 = (a1 + a3z), c2 = (a2z + a4), d1 = (b1 + b3z) and d2 = (b2z + b4) (3.6)

Consider the slope of this InflationFactor function

m′z(x) =
c1d2 − c2d1
(d1x+ d2)2

(3.7)

For x ∈ (0, 1], this slope is monotonic and its behavior depends on the sign of the numerator

N := c1d2− c2d1. From Equations 3.3, 3.4 and 3.6 we know that the numerator of the slope N

can be written as the following function of z

18

N(z) = (a1 + a3z)(b2z + b4)− (a2z + a4)(b1 + b3z)

= (a3b2 − a2b3)z2 + (a1b2 + a3b4 − b1a2 − a4b3)z + a1b4 − b1a4

= l1z
2 + l2z + l3 (3.8)

where l1,l2 and l3 are constants. Now since N(z) is a quadratic function of z, if N(z1) ≥
0 and N(z2) ≥ 0 then N(z) ≥ 0 ,∀z ∈ (z1, z2) which implies that slope m′z(x) is decreasing

∀z ∈ (z1, z2). Hence the Lemma immediately follows. 2

Theorem 3.1 (Perimeter MaxInflationFactor). For the reduced selectivity space ESSR with

corners [(x1, z1), (x1, z2), (x2, z1), (x2, z2)], calculating the InflationFactor along the perimeter

is sufficient for finding the MaxInflationFactor if any one of the conditions C1 through C6,

given in Table 3.1 is satisfied.

Proof:

Consider the C1 condition in Table 3.1: Since m′′z(x) ≥ 0 (i.e slope m′z(x) is non-decreasing)

at the T-B boundaries, then from Lemma 3.3, we know that the slope m′z(x) is non-decreasing

throughout the range (z1, z2).

Moving on to the C2 and C3 conditions: Since m′′z(x) < 0 (i.e slope m′z(x) is decreasing)

at the T-B boundaries, then from Lemma 3.3, we know that the slope m′z(x) is decreasing

throughout the range (z1, z2). Further, we know that for a given z = zo ∈ (z1, z2), either

m′zo(x1) ≤ 0 (C2) or m′zo(x2) ≥ 0 (C3).

Thus, when C1, C2 or C3 is satisfied, then for all lines between points (x1, z) and (x2, z),

z ∈ (z1, z2), the local MaxInflationFactor occurs at one of the end-points of these lines as a

result of the slope conditions given in Lemma 3.2 are satisfied. Since the union of all such line-

segments is the given region, MaxInflationFactor occurs at the perimeter. Similar arguments

can be used to show that the perimeter is sufficient for finding the MaxInflationFactor when

conditions C4, C5 or C6 are satisfied.

19

Table 3.1: Perimeter MaxInflationFactor Conditions

Left Boundary Right Boundary Top Boundary Bottom Boundary

C1 - - m′′z2(x) ≥ 0 m′′z1(x) ≥ 0

C2 m′z(x1) ≤ 0 - m′′z2(x) < 0 m′′z1(x) < 0

C3 - m′z(x2) ≥ 0 m′′z2(x) < 0 m′′z1(x) < 0

C4 m′′x1
(z) ≥ 0 m′′x2

(z) ≥ 0 - -

C5 m′′x1
(z) < 0 m′′x2

(z) < 0 m′x(z2) ≥ 0 -

C6 m′′x1
(z) < 0 m′′x2

(z) < 0 - m′x(z1) ≤ 0

2

For extension to higher dimensions we need to consider the 2-D simplexes (2D-faces) of the

higher dimensional ESS. If all the 2D-simplexes of the higher dimensional ESS satisfy any of the

conditions from C1 to C6 in Table 3.1 then the interior becomes safe and MaxInflationFactor

occurs at the perimeter by Theorem 3.1.

3.2.4 MaxInflationFactor Perimeter Extension to Axis Parallel Piece-

wise Linear Functions

In the real-world scenario the PIC is usually not the APL function described in Equation

3.2, but by observing the PIC curve we have empirical evidence that the PIC curves exhibit

axis-parallel piece-wise linearity [3].

The idea now is to divide the domain of the PIC into non-overlapping regions such that in

each region the PIC is an APL function. Now if the perimeter of each of these regions satisfy

any of the conditions from C1 to C6 of Table 3.1 then by Theorem 3.1 the MaxInflationFactor

occurs on the perimeter.

To identify these regions we explicitly fit the PIC on the perimeter with piecewise linear

functions. The breakpoints of these linear pieces on the perimeter are then used to divide the

domain of the PIC into non-overlapping regions. The perimeter test can then be used on these

regions in isolation.

Now the question remains whether this type of fit is good enough, our experiments show

that this methodology gives us good fits with low RMSE values. The important point to note

here is that we do not require an exact fit with accurate co-efficients but we need to capture

the slope behavior of the PIC.

Let us consider an example PIC of the TPC-DS query 26, generated using repeated invoca-

tions of the PostgreSQL optimizer. This is shown in Figure 3.6a. The 2D input domain of the

PIC, which is the 2D selectivity region spanned by dimensions 1 and 2 is divided into 9 regions.

20

Each region is then fitted with the 2D APL function of the form,

f(x, y) = ax+ by + cxy + d (3.9)

We use non-linear least squares regression to fit the function and we are able to do so with

normalized RMSE = 9 %. The projection of the boundaries of these regions on the input

domain is shown in Figure 3.6c. The computational complexity of the MIF perimeter algorithm

for k regions is O(2D−1 ∗D ∗ res ∗ k).

(a) PIC (b) PIC fitted with piecewise functions

(c) Dividing Input Domain by projecting the Clus-
ters

Figure 3.6: Original PIC and PIC fitted with piecewise functions as Equation 3.9

21

The problem now is identification of these regions where the Function 3.9 fits nicely. This

is done using the K-subspace clustering methods for 2D and higher dimensional planes as

described in [5] shown in Figure 3.6b. But using k-subspace clustering methods for identifying

and fitting the planes we need to provide the PIC values as an input to the algorithm. This

implies explicitly discovering the ESS which is a very expensive approach.

Hence we try to identify these regions using only PIC at perimeter. The perimeter consti-

tutes of 1D simplexes, the PIC at each of the 1D simplexes is a piecewise linear 1D function.

For each of these 1D PICs we do the following, we first fit the 1D PIC with a piecewise linear

function. This operation is done by using the K-subspace clustering [5] method for line shaped

clusters shown in Figures 3.7a and 3.7b. The basic idea is as follows,

1. They represent a line by a point in space and unit direction. If the point is ck and

the direction is ak then a data point x can be decomposed into a parallel component

x‖ = ak[aTk (x− ck)] and a perpendicular component x⊥ = (x− ck)− x‖.

2. The distance between the point x and cluster Ck is defined as the perpendicular distance

between the point and the line :

Dist(x,Ck) =‖ x− ck − αak ‖2

where α = (x− ck)Tak.

3. The objective function is to minimize the total distance (dispersion) of the cluster, which

is min
ck,ak

∑
i∈Ck

Dist(xi, Ck).

4. They then give a Theorem that using the model parameters c = x̄(k) where x̄(k) =
1
|Ck|
∑

i∈Ck
xi is the centroid of the cluster and a = u1 where u1 is the first principal

direction obtained by the principal component analysis(PCA) of the cluster points, we

obtain the optimal solution of the objective function stated previously.

We then identify the breakpoints of these linear pieces. We then use the combination of

the breakpoints from the different 1D simplexes to form 2D regions in the input domain. This

is shown in Figure 3.7c which is almost identical to the domain decomposition in Figure 3.6c

which was obtained using the PIC values for the entire region.

We then experimentally verify if the Function 3.9 fits well to the PIC restricted to the

regions obtained from the combinations of the breakpoints of the piecewise linear functions at

perimeter. The fit is done for PICs of 8 TPCDS queries with an average normalized RMSE of

12%.

22

If the InflationFactor function (m) satisfies anyone the conditions in Table 3.1 then

the MaxInflationFactor occurs at the perimeter of one of these regions, since they together

constitute the entire input domain.

(a) 1D PIC at perimeter Side 1 (b) 1D PIC at perimeter Side 2

(c) Dividing Input Domain using PICs at perimeter

Figure 3.7: K-Subspace Clustering of 1D PICs with linear clusters

The calculation of MIF on perimeter using the above algorithm is shown in Table 3.2. It also

compares the MIF values obtained using perimeter with brute force calculation of MIF done by

generating the entire ESS. The perimeter MIF technique does exceptionally well as it is able to

calculate the exact value of MIF using only the perimeter of the ESS for all the queries except

Q-84. On investigation it is observed that the PIC for Q-84 violates even basic assumptions

like PCM let alone APL.

23

Table 3.2: MaxInflationFactor Calculation using BruteForce, Vertices and Perimeter

QT Technique Dim 1 Dim 2 Dim 3 Dim 4 Dim 5 Dim 6

DSQT264D MIF-BruteForce 3.843 135.539 10.350 192.936

MIF-Vertices 3.843 135.539 10.350 192.936

MIF-Perimeter 3.843 135.539 10.350 192.936

DSQT74D MIF-BruteForce 2.969 10.152 15.729 228.866

MIF-Vertices 2.969 10.152 15.729 228.866

MIF-Perimeter 2.969 10.152 15.729 228.866

DSQT153D MIF-BruteForce 49.274 57.083 353.012

MIF-Vertices 7.226 56.546 346.205

MIF-Perimeter 49.274 57.083 353.012

DSQT195D MIF-BruteForce 9.853 133.528 70.551 100.555 90.239

MIF-Vertices 9.853 115.082 57.477 100.555 90.239

MIF-Perimeter 9.853 133.528 57.477 100.555 90.239

DSQT274D MIF-BruteForce 10.220 15.883 159.238 2.978

MIF-Vertices 10.220 15.883 159.238 2.978

MIF-Perimeter 10.220 15.883 159.238 2.978

DSQT295D MIF-BruteForce 14.210 165.084 166.317 227.236 21.813

MIF-Vertices 13.775 165.084 166.317 227.236 21.079

MIF-Perimeter 14.210 165.084 166.317 227.236 21.813

DSQT845D MIF-BruteForce 99.159 98.239 2467.991 9180.578 53.630

MIF-Vertices 37.240 37.112 76.369 1679.043 39.360

MIF-Perimeter 96.422 95.552 1895.860 3404.853 53.630

DSQT912D MIF-BruteForce 30.412 1.920

MIF-Vertices 30.412 1.920

MIF-Perimeter 30.412 1.920

DSQT913D MIF-BruteForce 492.859 5.313 69.838

MIF-Vertices 492.859 5.313 69.838

MIF-Perimeter 492.859 5.313 69.838

DSQT914D MIF-BruteForce 273.807 13.581 11.146 169.250

MIF-Vertices 273.807 13.581 11.146 169.250

MIF-Perimeter 273.807 13.581 11.146 169.250

DSQT915D MIF-BruteForce 273.203 3.156 13.542 11.115 168.830

MIF-Vertices 273.203 2.233 13.542 11.115 168.830

MIF-Perimeter 273.203 3.156 13.542 11.115 168.830

DSQT963D MIF-BruteForce 952.858 189.084 891.017

MIF-Vertices 952.858 189.084 891.017

MIF-Perimeter 952.858 189.084 891.017

DSQT186D MIF-BruteForce 83.037 9.167 3.054 81.633 67.287 95.696

MIF-Vertices 64.609 9.167 3.054 35.160 39.336 58.962

MIF-Perimeter 83.037 9.167 3.054 81.633 67.287 95.696

DSQT916D MIF-BruteForce 471.437 272.993 3.155 13.517 11.094 168.523

MIF-Vertices 471.437 272.993 2.229 13.517 11.094 168.523

MIF-Perimeter 471.437 272.993 2.229 13.517 11.094 168.523

3.2.5 Using Selectivity Estimate bounds to minimize MaxInflationFactor

For some dimensions we can obtain deterministic lower and upper bounds on the selectivity us-

ing the approaches presented in Section 3.1. The ESS for such dimensions can be shrunk leading

24

to smaller values of the MaxInflationFactor. The perimeter MIF algorithm described above is

directly applicable to this ESS with shrunken dimensions. In general the MaxInflationFactor

for removing k dimensions is given by Equation 3.1.

Now let us define qmax
ub where q.i = ub(seli) and qmin

lb where q.i = lb(seli) where i ∈ DimRem.

Also let (qj1 , ..., qjD−k
) ∈ (lb(selj1), ub(selj1))× ...× (lb(seljD−k

), ub(seljD−k
)). Now since qmax �

qmax
ub and qmin

lb � qmin, therefore by PCM for any q

Cost(qmax)

Cost(qmin)
≥ Cost(qmax

ub)

Cost(qmin
lb)

Hence using Selectivity Estimate Bounds helps to lower the MaxInflationFactor. The effect

is significant as these bounds get narrower and tighter.

25

Chapter 4

Performance Improvement

4.1 Contour Plan Replacement

After the removal of k dimensions using Projection and Schematic techniques, we construct

the ESS from the remaining dimensions incurring a computational effort of (resD−k) opti-

mization calls. Once the ESS is constructed and we have discovered the iso-cost contours we

exploit the weakness of a dimension by using contour plan replacement technique. The order

of the dimensions chosen, against which plan replacement is to be done, is decided by their

MaxInflationFactors, which in essence quantifies the weakness of a dimension based on the

impact of its selectivity to the optimal cost surface.

The MSO of the SpillBound algorithm is the result of at most D fresh executions per

contour and at most D(D−1)
2

repeat executions overall as stated in [1]. To reduce the MSO for

a query we explore the possibility of guaranteeing less number of fresh executions per contour

and lower number of repeat executions overall.

Now the question is how do we reduce the number of executions per contour, the idea is

piggybacking the execution of “weak” dimensions along the execution of “strong” dimensions.

By execution of a dimension, we mean execution of the corresponding predicate. This piggy-

backing of executions now inflates the budget required for the execution of strong dimensions.

The objective is to make the MSO a function of the strong dimensions modulo the inflation of

cost budgets for the piggybacked execution of weak dimensions along them. These inflations in

budgets are expected to be low for dimensions having low MIF values because variation in the

selectivities of these weak dimensions have less impact on the cost of the overall query.

In the following sub-sections we show how to achieve the piggybacked executions and how

to deterministically calculate the inflation in budgets.

26

4.1.1 Contour Plan Replacement along single dimension

We will first describe our algorithm for plan replacement along a single dimension say eD. For a

D dimensional query the goal is to bound the maximum number of fresh executions per contour

to (D−1) and maximum repeat executions to (D−1)(D−2)
2

so as to achieve the MSO of a (D−1)

dimensional query by incurring a small penalty λeD such that λeD ∗MSOD−1 < MSO(D). The

extension for contour plan replacement along multiple dimensions is straightforward.

4.1.1.1 2-D Scenario

Consider the 2-D ESS as shown in Figure 4.1a,which depicts the iso-cost contour ICi annotated

with the optimal plans P1, P2 and P3 covering it. We now describe the 2-D algorithm for plan

replacement along dimension X.

For the contour ICi we find the best one-plan replacement (from the contour POSP set)

which can cover the entire contour i.e replace all the plans across it with minimum sub-

optimality (λXi). For instance as shown in the Figure 4.1b, plan P1 replaces all other plans

on the contour ICi with sub-optimality (λXi).

In the scenario that X-dimension needs to be removed, all plans that are X-spilling are

considered to be Y -spilling by ignoring the error-prone X-predicate in the pipeline order.

(a) Contour on a 2-D ESS (b) Best 1-plan replacement along the contour

Figure 4.1: Contour Plan Replacement 2D Scenario

Lemma 4.1 Consider the contour plan Pr which replaces all the plans on contour ICi with sub-

optimality λXi . Let epp Y be selected by the spill node identification mechanism (after ignoring

the epp X). When Pr is executed with budget CCi(1 + λXi) and spilling on Y , then we either

learn (a) the exact selectivity of Y , or (b) that qa lies beyond the contour.

Proof: ICi represents the set of points in the ESS having their optimal cost equal to CCi.

27

Let qxsup, q
x
inf , qysup and qyinf denote the points having maximum and minimum X-selectivity and

Y-selectivity on the contour respectively. The cost of all points q ∈ ICi is at most CCi(1 +λXi)

when costed using Pr. Now when the plan Pr is executed in the spill-mode with cost budget

CCi(1 + λXi) it may or may not complete.

For an internal node N of a plan tree, we use N.cost to refer to the execution cost of the node.

Let NY denote the internal node corresponding to Y in plan Pr. Partition the internal nodes

of Pr into the following: Upstream(NY), {NY }, and Residual(NY), where Upstream(NY) de-

notes the set of internal nodes of Pr that appear before node NY in the execution order, while

Residual (NY) contains all the nodes in the plan tree excluding Upstream(NY) and {NY }.
Therefore, Cost(Pr, q) =

∑
N∈Upstream(NY)

N.cost+NY .cost+
∑

N∈Residual(NY)

N.cost

Case-1 : The value of the first term in the summation Upstream(NY) is known with

certainty if it does not contain NX . Further, the quantity NY .cost is computed assuming that

the selectivity of NY is q.y for any point q ∈ ICi. Since the output of NY is discarded and

not passed to downstream nodes, the nodes in Residual(NY) incur zero cost. Thus, when Pr

is executed in spill-mode, the budget is sufficiently large to either learn the exact selectivity of

Y (if the spill-mode execution goes to completion) or to conclude that qa.y is greater than q.y,

∀q ∈ ICi since Pr is costed for all q ∈ ICi.

Case-2 : Now if NX is contained in Upstream(NY) then its cost is not known with certainty,

however since Pr is costed for all q ∈ ICi, all the selectivity combinations of (q.x, q.y), ∀q ∈ ICi

get considered. Hence, for all these combinations the sum of the quantity
∑

N∈Upstream(NY)

N.cost+

NY .cost ≤ CCi(1 + λXi). Similar to Case-1, the output of NY is discarded and not passed to

downstream nodes, hence the nodes in Residual(NY) incur zero cost. Thus, when Pr is executed

in spill-mode, the budget is sufficiently large to either learn the exact selectivity of Y and X

(if the spill-mode execution goes to completion) or to conclude that qa � q (strictly dominates)

for some q ∈ ICi which implies that cost(Pqa , qa) > CCi i.e it lies beyond the contour by PCM.

2 Let there be m = log2

(
Cmax

Cmin

)
number of contours, let Pi be the best 1-plan replacement

with sub-optimality λe1i for each contour ICi from i = 1→ m. Let λe1 = max
i=1→m

λe1i .

Lemma 4.2 The MSO for the 2D scenario when contour plan replacement is done along a

single dimension e1 is 4(1 + λe1).

Proof:

The query processing algorithm executes the best 1-plan replacement, Pi, for each contour

ICi, starting from the least cost contour. Each execution of Pi is performed with an increased

budget of CCi(1 + λe1). Since each contour now has only 1 plan with fixed inflated budget,

28

using the PlanBouquet algorithm it is easy to show that the MSO for the 2D scenario is equal

to 4(1 + λe1).

2

It is important to note that λe1 - which denotes the worst case sub-optimality incurred for

making plan replacements along the dimension e1 is a function of the dimension e1 itself.

4.1.1.2 3-D Scenario

In this sub-section we see how the Contour Plan Replacement technique can be extended to

the 3-D scenario, consisting of dimensions X, Y and Z. Let us, without loss of generality say

that plan replacement along dimension X is to be done. As in the 2D scenario, all the plans

on the contour become either Y -spilling or Z-spilling by considering ignoring the epp X. Let

the set of plans which were originally X-spilling plans, but now considered as either Y -spilling

or Z-spilling, be denoted by P T .

Figure 4.2: Choice of a Plan for a point q

Contour Plan Replacement Strategy : The main idea of the algorithm as stated earlier

is to execute two plans (one for each strong dimension) and piggy back the required execution

of the weak dimension along with these strong ones. As can be seen in the 2D scenario, the

execution of the replaced X dimension is piggy backed with the strong Y dimension. Similarly

in the 3D scenario, the X dimension is piggy backed with both the remaining strong dimensions.

Now let us now see how to achieve this through contour replacement technique.

Let us first characterize the contours based on the minimum and maximum selectivities of

the replaced dimension X, captured by X = qxinf .x and X = qxsup.x respectively. There are three

possible combinations: a) a 2D contour line on X = qxinf .x slice and a point on X = qxsup.x slice;

b) a 2D contour line on X = qxsup.x slice and a point on X = qxinf .x slice; c) a 2D contour line

29

on both X = qxinf .x and X = qxsup.x slices. The figures in this section correspond to case a) but

all the Lemmas and Theorems are generalizable for all the cases mentioned above.

We will first show that how X’s execution can be piggy backed with Y . Consider a point q′

on the X = qxinf .x slice, let its coordinates be such that q′ = (qxinf .x, q
′.y, q′.z). First we consider

the set Sq′.y := {q|q ∈ ICi and q.y ≤ q′.y} and show that all the (x, y) selectivity combinations

such that y ≤ q′.y gets covered by a single plan execution. For this single execution, consider

the minimal (x, y)-dominating set points of Sq′.y denoted by SD
q′.y. Formally,

SD
q′.y := ∀q ∈ Sq′.y,∃q̂ ∈ SD

q′.y such that (q̂.x, q̂.y) � (q.x, q.y) (4.1)

We do a single plan replacement for the set SD
q′.y, then by PCM all the (x, y) selectivity

combinations of the set Sq′.y get covered. Similarly, we can try to piggy back the X’s execution

with Sq′.z.

Now let us see how to do two executions for each of the strong dimensions i.e. Y and Z.

For every distinct Y and Z values on the contour, we compute the penalty of the sets SD
y

and SD
z , and assign the minimum of them to each combination (y, z) (shown in Figure 4.2).

In essence, every contour point gets a Y -spilling plan or a Z-spilling plan assigned. We then

choose the Y -spilling plan and Z-spilling with their respective maximum learning potential as

defined in [1]. Let these two maximum respective selectivities be qymax.y and qzmax.z, with the

corresponding plans be P y
max ad P z

max. This is shown in Figure 4.3. Then the following lemmas

show that the execution of these two max. plans are sufficient to cross the contour.

Figure 4.3: Choosing the P y
max and P z

max plans

Lemma 4.3 Let the following sets be defined as Sqymax.y := {q|q ∈ ICi and q.y ≤ qymax.y} and

30

Sqzmax.z := {q|q ∈ ICi and q.z ≤ qzmax.z}. Then every point q ∈ ICi belongs to either Sqymax.y or

Sqzmax.z.

Proof: Let us prove by contradiction. We know that qymax is the point on X = qxinf .x slice

which is covered by P y
max, let its coordinates be qymax := (qxinf .x, q

y
max.y, z). Analogously let

qzmax := (qxinf .x, y, q
z
max.z). It is evident that qymax.z ≤ qzmax.z, also qzmax.y ≤ qymax.y. Hence

the point q̄ := (qxinf .x, q
y
max.y, q

z
max.z) is such that q̄ � qymax and q̄ � qzmax which implies that

cost(q̄) ≥ CCi. Now if there exists a point q̃ such that q̃ ∈ ICi but q̃ /∈ Sqymax.y and q̃ /∈ Sqzmax.z.

This implies that q̃ � q̄ which further implies cost(q̃) > cost(q̂) ≥ CCi. Hence q̃ /∈ ICi. Hence

the proof. 2

Hence (Sqymax.y ∪ Sqzmax.z) covers all the points of the contour ICi. This is depicted in Figure

4.4.

Figure 4.4: Sets Sqymax.y, Sqzmax.z, S
D
qymax.y

and SD
qzmax.z

Lemma 4.4 If P y
max plan is costed on the set SD

qymax.y
with λXy as maximum sub-optimality and

if P y is executed in spill-mode with budget (1+λXy)CCi and does not complete then qa /∈ Sqymax.y

.

Proof: Since P y
max plan is costed on the set SD

qymax.y
with λy as maximum sub-optimality, and

by definition of the set SD
qymax.y

, the plan P y
max essentially covers all the combinations of X and

Y selectivity pairs for all the points q belonging to contour ICi such that q.y ≤ qymax.y. This

is precisely the set Sqymax.y. Hence if the point qa ∈ Sqymax.y then the spill-mode execution with

plan P y
max completes (from Lemma 4.1) and thereby the lemma follows. 2

Similarly we can prove the following Lemma,

31

Lemma 4.5 If P z
max plan is costed on the set SD

qzmax.z
with λXz as maximum sub-optimality and

if P z is executed in spill-mode with budget (1 +λXz)CCi and does not complete then qa /∈ Sqzmax.z

.

Lemma 4.6 If the spill-mode executions of both the plans, P y
max with budget (1 + λXy)CCi and

P z
max with budget (1 + λXz)CCi, do not complete then qa lies beyond the contour ICi.

Proof: From Lemmas 4.4 and 4.5 we can infer that qa /∈ Sqymax.y and qa /∈ Sqzmax.z. This implies

qa /∈ (Sqymax.y ∪ Sqzmax.z) and from Lemma 4.3 we can conclude that qa lies beyond the contour.

2

Consider the situation where qa is located in the region between ICk and ICk+1, or is

directly on ICk+1. Then, the SpillBound algorithm explores the contours from 1 to k + 1

before discovering qa. In this process,

Lemma 4.7 In 3D-scenario the Contour Replacement Strategy ensures that at most two plans

are executed from each of the contours IC1, ..., ICk+1, except for one contour in which at most

three plans are executed.

Proof: Let the exact selectivity of one of the epps(Y or Z) be learnt in contour ICh, where

1 ≤ h ≤ k + 1. We know that at most two plans are required to be executed in each of the

contours IC1, . . . , ICh (from Lemma 4.6). Subsequently, once the selectivity of one of the epps

is learnt it boils down to 2-D scenario of Contour Plan Replacement which begins operating

from contour ICh, resulting in three plans being executed in ICh, and one plan each in contours

ICh+1 through ICk+1. 2

Let λXICi
= max(λXy , λ

X
z) for each of the contours from i = 1 → m. Also let λX =

max
{i=1→m}

λXICi
.

We now analyze the worst-case cost incurred by SpillBound after the Contour Plan Replace-

ment strategy. For this, we assume that the contour with three plan executions is the costliest

contour ICk+1. Since the ratio of costs between two consecutive contours is 2, the total cost

incurred by SpillBound is bounded as follows: TotalCost ≤ 2 ∗ CC1(1 + λX) + ...+ 2 ∗ CCk(1 +

λX) + 3 ∗ CCk+1(1 + λX)

= (1 + λX)(2 ∗ CC1 + ..+ 2 ∗ 2k−1CC1 + 3 ∗ 2kCC1)

= (1 + λX)(2 ∗ CC1(1 + 2 + ...2k) + 2k ∗ CC1)

= (1 + λX)(2 ∗ CC1(2
k+1 − 1) + 2k ∗ CC1)

≤ (1 + λX)(2k+2 ∗ CC1 + 2k ∗ CC1)

32

= (1 + λX) ∗ 5 ∗ 2k ∗ CC1

From the PCM assumption, we know that the cost for an oracle algorithm (that a priori knows

the location of qa) is lower bounded by CCk. By definition, CCk = 2k−1 ∗ CC1. Hence,

MSO ≤ 5 ∗ 2k ∗ CC1 ∗ (1 + λX)

2k−1 ∗ CC1

= 10(1 + λX)

leading to the theorem:

Theorem 4.1 With the Contour Plan Replacement done along dimension X, the MSO for the

3-D Scenario is 10(1 + λX) = MSOSB(2) ∗ (1 + λX).

For the CPR technique to be able to improve on the MSO, we require that MSOSB(2) ∗
(1 + λX) < MSOSB(3). This is usually the case when X is a weak dimension.

33

Chapter 5

Results and Observations

In this section, we present the results and observations of the performance, effectiveness and

overheads of the techniques discussed in the previous sections. The experimental framework,

which is similar to that used in [1], is described first, followed by analysis of the results.

5.1 Database and System Framework

Our experiments are carried out on a representative set of complex OLAP queries, it is com-

prised of 21 SPJ queries from the TPC-DS benchmark, operating at the base size of 100 GB.

The number of relations in these queries range from 4 to 10, and a spectrum of join-graph

geometries are modeled, including chain, star, branch, etc.

In order to conduct the assessment on challenging multi-dimensional ESS spaces, we ensure

that: (a) All the join predicates and base filter predicates form the set of raw dimensions for

the query, (b) The physical schema features indexes on all the attribute columns appearing in

the query, maximizing the range of cost values, and hence the number of contours, in the ESS.

The database engine used in our experiments is a modified version of the PostgreSQL 9.4

[7] engine, with the primary additions being:

1. Selectivity Injection, required to generate the ESS,

2. Abstract Plan Costing, used by the optimizer to cost a particular plan at a particular query

location,

3. Abstract Plan Execution, required to instruct the execution engine to execute a particular

plan and

4. Time-limited execution, required to implement the calibrated sequence of plan executions

with associated time budgets.

34

All the experiments are done on a 16-core HP Z440 workstation with 15 MB L3 cache, 32

GB RAM and 512 GB SSD.

5.2 Schematic and Projection Removal Results

Using the Schematic and Projection Removal Techniques presented in Sections 3.1 and 3.2 we

were able to remove essentially all the base predicates from the 21 TPC-DS queries on which

we conducted our experiments. The reduction of the dimensions is depicted in Figure 5.1.

The graph also shows an interesting fact, that for all queries the reduced dimensionality of the

queries is less than or equal to 5.

It is important to note that the computational effort reduces exponentially with the removal

every dimension since compile-time effort is a exponential function in D. Using the Perimeter

MaxInflationFactor algorithm the effort to identify, calculate the MIF and remove these di-

mensions reduces from O(rD)→ O(2(D−k) ∗ (D − k) ∗ r) when k dimensions are removed from

the ESS.

Figure 5.1: Comparison of All Dimensions vs Dimensions post Schematic and Projection Re-
moval

35

5.3 Contour Plan Replacement Results

(a) Comparison of All Dimensions vs Dimensions post Schematic and Projection Removal vs Dimen-
sions post Contour Plan Replacement

(b) Comparison of MSO SpillBound All Dimensions vs MSO SpillBound Join-Dimensions vs MSO
post Dimensionality Reduction

Figure 5.2: Results for Contour Plan Replacement

Figure 5.2a shows the dimensionality reduction in phases for the queries considered in SpillBound[1].

36

The dimensions along which Contour plan replacement is done are virtually removed, this

helps in bettering the MSO guarantees only.

For the SpillBound queries, we were able to do contour plan replacement along a number

of dimensions lowering the MSOs of many queries by making them a function of only the strong

dimensions as shown in Figure 5.2b.

Contour Plan Replacement is successful for all the queries except Q-29 and Q-96. This is

because the MaxInflationFactor for all the dimensions of these queries is very high and hence

change in their selectivity causes significant changes in the cost which makes plan replacement

with low sub-optimalities difficult along them.

37

Chapter 6

Conclusions and Future Work

Overall we present a set of techniques for dimensionality reduction of the ESS such that the

MSO guarantees are preserved or bettered and the compile-time computational overheads are

significantly reduced.

The take-away from this work is that the importance of a dimension is in essence the de-

gree to which it impacts the cost of processing the query, relative to other dimensions, as

its selectivity is varied. Our techniques exploit exactly this fact, for instance intuitively the

MaxInflationFactor for a dimension is low if the PIC exhibits a flat behavior when its selec-

tivity is varied.

If the optimal cost surface does change noticeably when the selectivity of a candidate di-

mension is varied then removing it using projection may worsen the MSO. But if this change

in cost is small relative to other dimensions then it is very likely that the plan structure and

join order remains the same (or minor changes) irrespective of the variation in the dimension’s

selectivity. This is exactly what Contour Plan Replacement leverages when it makes plan re-

placement along weak dimensions to piggyback the execution of weak dimensions along the

strong dimensions. This now makes the MSO of SpillBound algorithm a function of only the

strong dimensions modulo the penalty incurred for plan replacement.

Our future work would be to make contour plan replacement feasible without the compu-

tational effort invested in ESS discovery for weak dimensions.

38

Bibliography

[1] S.Karthik, J.Haritsa, S.Kenkre and V.Pandit. Platform-independent robust query process-

ing. In IEEE ICDE Conf., 2016. ii, 1, 7, 13, 26, 30, 34, 36

[2] A.Dutt and J.Haritsa. Plan bouquets: Query processing without selectivity estimation. In

ACM SIGMOD Conf., 2014. 1

[3] A. Hulgeri and S. Sudarshan. Parametric query optimization for linear and piecewise linear

cost functions. In VLDB, 2002. 8, 20

[4] D. Harish, P. Darera, and J. Haritsa. Identifying robust plans through plan diagram reduc-

tion. In PVLDB, 2008. 16

[5] Wang D., Ding C. and Li T. K-Subspace Clustering. In ECML-PKDD, 2009. 22

[6] Microsoft SQL Server. https://www.microsoft.com/en-in/sql-server/sql-server-2017 10

[7] PostgreSQL. https://www.postgresql.org/docs/ 10, 34

[8] TPC-H. http://www.tpc.org/tpch/. 1

[9] TPC-DS. http://www.tpc.org/tpcds/. 4

39

	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 SpillBound Algorithm
	1.2 Dimensionality Reduction Techniques

	2 Problem Framework
	2.1 Error-prone Selectivity Space (ESS)
	2.2 Search Space and Cost
	2.3 Maximum Sub-Optimality (MSO)
	2.4 Assumptions
	2.5 Problem Definition

	3 Overheads Reduction
	3.1 Schematic Removal of Dimensions
	3.2 Dimension Removal via Projection
	3.2.1 2-D Projection Algorithm
	3.2.2 Extending to higher Dimensions
	3.2.3 MaxInflationFactor Perimeter
	3.2.4 MaxInflationFactor Perimeter Extension to Axis Parallel Piecewise Linear Functions
	3.2.5 Using Selectivity Estimate bounds to minimize MaxInflationFactor

	4 Performance Improvement
	4.1 Contour Plan Replacement
	4.1.1 Contour Plan Replacement along single dimension
	4.1.1.1 2-D Scenario
	4.1.1.2 3-D Scenario

	5 Results and Observations
	5.1 Database and System Framework
	5.2 Schematic and Projection Removal Results
	5.3 Contour Plan Replacement Results

	6 Conclusions and Future Work
	Bibliography

