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Abstract

Sampling is an efficient alternative to mine top-K fre-
quent itemsets on massive datasets. Recent research
[13] has presented probabilistic bound on number of
random samples required to get approximate solu-
tions. The bound is linearly dependent on number
of items present in dataset to be mined. Although
bound is independent of dataset row-cardinality, it is
dependent on maximum length of itemsets (let it be
w) of interest. Users may find it difficult to come up
with right w.

Our experimental results show that we can get ap-
proximate solutions with smaller number of samples
(atleast an order of magnitude smaller) than the value
given by the bound. We derived an alternative bound
that uses the upper bound on number of “negative
border” itemsets and made it independent of maxi-
mum length of itemsets w. Our new bound is log-
arithmic in number of items present in dataset. As
the bound still remained loose, we explored the pos-
sibility of obtaining better bounds by assuming the
knowledge of dataset statistics. Specifically, we made
strong assumption of having count of “maximal fre-
quent” itemsets, but the advantage is marginal.

This suggests our limitations of using theoretical
tools in deriving better bounds, which motivated us
to develop a voting based iterative sampling algorithm
ItopK. Our experimental results show that it produces
a relative approximate solution with number of sam-
ples close to optimal, in most of the cases it is within
twice of optimal.

1 Introduction

Many chain stores collect data out of their customer
transactions, so that they can process it and extract
useful information which is crucial in making business
decisions like design of promotional pricing, product
placement, etc. One such analysis is association rule
mining [3] for finding correlations between existence of

different items in a transaction. It has applications in
web usage mining, intrusion detection, and bioinfor-
matics. The aim of association rule mining is to find
rules like “whenever a customer buys jam and butter,
it is likely that he is going to buy bread”. The first
step of association rule mining is extracting all fre-
quent itemsets followed by rule generation. Though
rule generation is trivial, first step of mining frequent
itemsets should be done efficiently, because extracting
all frequent itemsets in a dataset involves searching all
possible itemsets (combination of items, which is ex-
ponential in size). Apriori, the classical data mining
algorithm for mining frequent itemsets was presented
in [1], which exploits the properties like “All subsets
of a frequent itemset are frequent” and “All supersets
of infrequent itemsets are infrequent” to reduce search
space. Eventually, a lot of research has happened on
this problem, an extensive overview of it is presented
in [6]. We are concerned with the problem of mining
top-K frequent itemsets which is variant of mining
frequent itemsets.

1.1 Top-K frequent itemsets Mining

For a given dataset D of transactions over set of items
I, an itemset (non-empty subset of I) is considered
to be frequent if it appears in atleast fixed fraction of
transactions. We call this fraction threshold as sup-
port threshold (min support). In classical data mining
problem user specifies min support, which determines
the output size i.e., cardinality of set of all frequent
itemsets. But to choose an appropriate min support
users should have knowledge about mining query and
nature of dataset. Setting min support is subtle: a
small min support might generate thousands of item-
sets while a large one may not generate itemsets at
all. Small min support for one dataset might be a
bigger one for other dataset. Coming up with right
min support is not an easy task, which is also empha-
sized in [14, 18]. To have better control on output size
users tend to ask for top-K itemsets rather than spec-



ifying min support. So we deal the problem of min-
ing top-K frequent itemsets i.e., the itemsets whose
frequency is atleast as much as K-th most frequent
itemset.

1.2 Sampling for Top-K frequent item-
sets mining

With technology advancements dataset sizes are in-
creasing enormously in terms of number of transac-
tions. For example, if we consider the Walmart retail
chain their total sales per week across all stores are
in order of 200 million [17]. Mining top-K frequent
itemsets from these huge datasets is computationally
intensive and time consuming, because existing algo-
rithms to extract top-K frequent itemsets have to scan
entire dataset more than once. Most of times entire
dataset may not fit in main memory which increases
disk accesses and becomes computationally infeasible.
So we use sampling to approximate top-K frequent
itemsets within the desired levels of confidence (which
determines size of random sample required). In this
report, whenever we refer to sample, we mean to refer
a random sample with replacement, unless we mention
it explicitly.

Sampling has other benefits: Firstly when data is
owned by different entities, the financial cost of data
acquisition depends on size of sample needed. Size of
the sample determines the network delay when data
is present at remote location, which affects the perfor-
mance of data mining task. It has very important
application in the field of privacy-preserving data
mining [2], in which only small portion of perturbed
data is given to third party data miner, to prevent
privacy breaches of owned data.

Probabilistic bound on number of random samples
required to get an absolute approximation (see Section
2.2 for formal definition) is given in [13]. Henceforth,
we refer to this bound as the PRUV (abbreviated from
name of authors) bound. Although PRUV bound is
independent of dataset row-cardinality, it depends on
user specified threshold w. Users may find it difficult
to come up with right w, especially when they use
top-K itemsets to generate association rules having
longer consequents. We did experiments on large in-
stances of real world datasets and found that it is loose
by atleast an order of magnitude when compared to
optimal sample size (which we computed by checking
ε-closeness of samples of all possible sizes). These ex-
periments motivated us to look into new techniques to
reduce the bound on sample size and bring it close to
optimal.

1.3 Our Contributions

• We derived an alternative bound that uses the
upper bound (function of K and number of items
present in dataset) on number of negative border
(defined in Section 4.2) itemsets and made it in-
dependent of w, a restriction imposed in original
bound.

• We derived a bound that assumes prior knowledge
about the result i.e., count of maximal frequent
itemsets (defined in Section 4.2), which helps to
get a tighter upper bound (function of number of
maximal frequent itemsets and number of items
present in dataset) on number of negative border
itemsets. Our experimental results show that this
bound is several times more than optimal sample
size. This shows the limitations of using theoret-
ical tools in deriving better bounds.

• Absolute approximation is not good for sparse
datasets i.e., users have to specify an appropri-
ate ε (error threshold) depending upon nature of
dataset. So, we also derived a bound for relative
approximation (see Section 2.3 for formal defini-
tion) and encountered the same limitations on de-
riving better bounds.

• With this motivation, we developed an iterative
sampling algorithm that produces relative ap-
proximation with close-to-ideal sample size.

Organization In Section 2 we formally define top-
K frequent itemsets and definition of an absolute ap-
proximation of it. In Section 3 we describe the experi-
mental setup which includes the procedure of generat-
ing large datasets and method of computing optimal
sample size, using which the tightness of every bound
is evaluated. Section 4 deals with absolute approxima-
tion, at first we present the existing upper bound on
sample size required to get an approximation and its
tightness evaluation followed by another bound assum-
ing count of maximal frequent itemsets and its tight-
ness evaluation. Section 5 highlights the importance
of relative approximation and repeats similar analy-
sis of Section 4 for it. In Section 6 iterative sampling
algorithm is described, which produces approximate
solution with close-to-ideal sample size. Section 7 de-
scribes related work. Finally we conclude the report in
Section 8 and present some directions for future work.
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Dataset Parameters Notation
Input Dataset D
Set of items present in dataset D I
Cardinality of set of items n
Set of possible itemsets of I P (I)
Mining Parameters Notation
Number of top frequent itemsets

desired by user
K

Tolerance threshold specified by user ε
Probability of success specified by

user
1 - δ

Restriction on max. length of
itemsets of result

w

Terms used in the analysis Notation
Frequency of itemset x with respect

to dataset D
fD(x)

Frequency of K-th most frequent
itemset of P (I) in dataset D

f
(K)
D

Set of top-Kfrequent itemsets
of P (I) in dataset D

FKD

Set of maximal frequent itemsets
among FKD

MK
D

Set of negative border itemsets
of FKD

NBKD

Subset of itemsets of P (I) having
max. length w

U(I, w)

Cardinality of set U(I, w) m
Frequency of K-th most frequent
itemset of U(I, w) in dataset D

f
(Kw)
D

Set of top-K frequent itemsets
of U(I, w) in dataset D

FKwD

Generic random sample of
transactions

S

Frequency of itemset x with respect
to sample S

fS(x)

Frequency of K-th most frequent
itemset of P (I) in sample S

f
(K)
S

Set of top-Kfrequent itemsets
of P (I) in sample S

FKS

Set of maximal frequent itemsets
among FKS

MK
S

Set of negative border itemsets
of FKS

NBKS

Frequency of K-th most frequent
itemset of U(I, w) in sample S

f
(Kw)
S

Set of top-K frequent itemsets
of U(I, w) in sample S

FKwS

Table 1: Summary of Notations

2 Problem Formulation

In this section, we formally define top-K frequent
itemsets and approximations of it. We also define a
variant of it and its absolute ε-approximation that de-
pends on w.

Notations used in upcoming sections of this report
are summarized in table 1.

2.1 Top-K Frequent Itemsets

Consider a dataset D of transactions, where each
transaction τ is an element of P (I), where P (I) is
powerset over all items I. P (I) is usually represented
as lattice structure (see fig. 3 for P (I) of 4 items).
For any non-empty itemset x ∈ P (I), we denote its
frequency with respect to dataset D with fD(x) i.e.,
fraction of transactions containing x. Let us assume
that the itemsets of P (I) are arranged in increasing
order of their dataset frequencies (ranging from 0
to 1). Set of top-K frequent itemsets can be defined as

TOPK(D,I,K) =
{

(x, fD(x)) : x ∈ P (I)\{Ø},

fD(x) ≥ f (K)
D

}
where f

(K)
D is frequency of K-th most frequent

itemset in dataset D. Let FKD denotes TOPK(D,I,K).
FKD can have K or more ordered pairs because there
can be multiple itemsets with same frequency as that
of K-th most frequent itemset.

Let U(I, w) denote set of all itemsets having length
at most w. Set of top-K frequent itemsets of length
at most w can be defined as

TOPK(D,I,K,w) =
{

(x, fD(x)) : x ∈ U(I, w),

fD(x) ≥ f (Kw)
D

}
where f

(Kw)
D is frequency of K-th most frequent

itemset of U(I, w) with respect to dataset D. Let
FKwD denotes TOPK(D,I,K,w).

Subsequently whenever we say frequent item-
sets, we are referring to top-K frequent itemsets
unless we mention explicitly.

2.2 Absolute ε-approximation to Top-
K frequent itemsets

Consider a sample S (⊆ D) of transactions from
dataset D. Let FKS denote set of top-K frequent item-
sets TOPK(S,I,K) from S. For any itemset x, we de-
note its support with respect to sample S with fS(x)
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i.e., fraction of S’s transactions containing x and f
(K)
S

denotes frequency of K-th most frequent itemset in
sample S.

An absolute ε-approximation to top-K frequent
itemsets was defined in [13] (Definition 2).

Definition 1. Let ε ∈ (0,1) be a real valued
parameter. The set FKS containing ordered pairs
(x,fS(x)) is defined as absolute ε-approximation
to TOPK(D,I,K), if the following conditions are
satisfied

C1: for each (x, fS(x)) ∈ FKS , fD(x) ≥ f (K)
D − ε;

C2: for each (x, fS(x)) /∈ FKS , fD(x) < f
(K)
D + ε;

C3: for each (x, fS(x)) ∈ FKS , |fD(x)− fS(x)| ≤ ε.

where x ∈ P (I)\{Ø}.

Condition C1 (horizontal lined region of fig. 1)
implies that FKS should exclude all itemsets whose

dataset frequency fD(x) is less than f
(K)
D − ε, condi-

tion C2 (vertical lined region of fig. 1) implies that FKS
should include all itemsets whose dataset frequency is

atleast f
(K)
D + ε, and condition C3 implies that the

sample frequency fS(x) of every itemset x in the ap-
proximation FKS must be in ε-range of its dataset fre-
quency fD(x).

Figure 1: Absolute ε-approximation

Similarly we can define an absolute ε-
approximation to TOPK(D,I,K,w). Let FKwS denotes
set of top-K frequent itemsets TOPK(S,I,K,w) and

f
(Kw)
S denotes frequency of K-th most frequent

itemset of U(I, w) with respect to sample S.

Definition 2. The set FKwS containing ordered
pairs (x,fS(x)) is defined as absolute ε-approximation
to TOPK(D,I,K,w), if the following conditions are
satisfied

C1: for each (x, fS(x)) ∈ FKwS , fD(x) ≥ f (Kw)
D − ε;

C2: for each (x, fS(x)) /∈ FKwS , fD(x) < f
(Kw)
D + ε;

C3: for each (x, fS(x)) ∈ FKwS , |fD(x)− fS(x)| ≤ ε.

where x ∈ U(I, w).

2.3 Relative ε-approximation to Top-K
frequent itemsets

Consider a sample S (⊆ D) of transactions from
dataset D. A relative ε-approximation to top-K fre-
quent itemsets can be defined as

Definition 3. Let ε ∈ (0,1) be a real valued param-
eter. The set FKS containing ordered pairs (x,fS(x)) is
defined as relative ε-approximation to TOPK(D,I,K),
if the following conditions are satisfied

C1: for each (x, fS(x))∈ FKS , fD(x) ≥ f (K)
D (1− ε);

C2: for each (x, fS(x))/∈ FKS , fD(x) < f
(K)
D (1 + ε);

C3: for each (x, fS(x))∈ FKS ,
|fD(x)− fS(x)| ≤ ε ∗ fD(x).

where x ∈ P (I)\{Ø}.

Condition C1 (horizontal lined region of fig. 2)
implies that FKS should exclude all itemsets whose

dataset frequency fD(x) is less than f
(K)
D (1−ε), condi-

tion C2 (vertical lined region of fig. 2) implies that FKS
should include all itemsets whose dataset frequency is

atleast f
(K)
D (1 + ε), and condition C3 implies that the

sample frequency fS(x) of every itemset x in the ap-
proximation FKS must be in ε ∗ fD(x) - range of its
dataset frequency fD(x).

Figure 2: Relative ε-approximation

3 Experimental Setup

In upcoming sections we present different bounds, and
evaluate their tightness by comparing them with opti-
mal sample size. So, in this section we discuss about
the datasets used in experiments followed by proce-
dure to identify optimal sample size.

3.1 Datasets used in Experiments

We have used real-life datasets from FIMI repository
[9]. The real power of sampling is realized only in case
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of large datasets having millions of transactions. As
original sizes of FIMI datasets are quite small, we gen-
erated scaled versions by keeping their statistical char-
acteristics intact. We selected four datasets from FIMI
repository with diverse characteristics. They are (a)
RETAIL, a sparse dataset (b) MUSHROOM, in which
all transactions have same length (c) PUMSB STAR
(d) KOSARAK, a sparse dataset. We scaled up
all datasets to 100 million transactions. Details of
datasets used in experiments are provided in table 2.

3.2 Generation of Large Datasets

Large datasets are generated using the procedure
given in [11]. We generated them using random in-
stances of original datasets, without affecting their
distribution statistics (i.e., frequencies of every item-
set should be same for original and larger instances).
We did this efficiently by dividing original dataset into
C partitions each containing X transactions (we set X
to 10). Let GS be the number of transactions we want
in large dataset. We generated GS/X array of ran-
dom integers in the range [1, C], such that all values
from 1 to C are uniformly distributed (balancing par-
tition counts). Let π(i) denote the ith value of above
array. Starting from i = 1 to GS/X we read partition
Pπ(i) from original dataset and write it to file of large
dataset.

Dataset #Items

Avg.
Trans.
Length

#Trans.

Retail 16,470 10 100,063,870
Pumsb star 2,088 50 100,004,794

Kosarak 41,270 8 100,980,204
Mushroom 119 23 100,006,440

Table 2: Details of FIMI datasets

3.3 Computing Optimal Sample Size

PRUV bound on size of one-shot sample required to
produce absolute ε-close solution was recent and there
is no comprehensive study on its tightness. Empiri-
cally we compared its gap with the optimal one-shot
sample Sopt. We ran fpgrowth algorithm [5] on en-
tire dataset to obtain exact top-K frequent itemsets,
which is used to verify whether a sample produces ε-
close approximation or not.

Procedure to identify optimal sample size is given
in [11]. Optimal sample size is found by evaluating all
possible sample sizes and selecting the minimum sam-
ple size which produces ε-close solution. They did this

by taking sequence of samples S, S/2, S/22, S/23, ...,
with S being set to bound’s value, and Si+1 = Si/2
until we hit a sample S/2k which doesn’t produce an
ε-close solution. Then they do a binary search between
S/2k and S/2k−1 until they end up with an optimal
sample Sopt. Let us call this algorithm as halving al-
gorithm.

We have used a different approach that improves
the efficiency of finding optimal sample size without
affecting the end result. In our approach we start with
a sample size of S/2p, where p is maximum value for
which S/2p < 50, and double it in successive iterations
(i.e., we considered sample sequence S/2p, S/2p−1,
S/2p−2, S/2p−3, ...) until we hit a sample S/2k−1

which produces ε-close solution. Then we do a binary
search between last two sample sizes S/2k and S/2k−1

to determine optimal sample size. Let us call this a
doubling algorithm.

Both algorithms will converge to same k value, and
the sample sizes of last two iterations considered for
binary search will be same.

Optimal sample size is chosen in such a way that
it produces approximation with 100% success proba-
bility. It is computed according to specific bound’s
definition (absolute or relative ε-approximation) and
restriction (maximum length of itemsets w).

Performance analysis Total number of transac-
tions taken in all samples during halving algorithm’s
execution is

S + S
2 + S

22 + ...+ S
2k−2 + S

2k−1 + S
2k

=
S
2k

(
2k + 2k−1 + 2k−2 + ...+ 4 + 2 + 1

)
= S

2k

(
2k+1− 1

)
Total number of transactions taken in all samples of
our doubling algorithm’s execution is

1 + 2 + 4 + ...+ S
2k+1 + S

2k
+ S

2k−1 =
S

2k−1

(
2k−1

S + 2k

S + 2k+1

S + ...+ 1
4 + 1

2 + 1
)

= S
2k−2

The above sum is overestimated as we included sam-
ple sizes upto 1. The fraction of transactions drawn
in doubling approach when compared to halving ap-
proach is

S

2k−2

S

2k

(
2k+1−1

) = 4
2k+1−1

Assuming that specific bound always gives ε-close so-
lution, so k ≥ 1. In worst case of doubling algorithm,
where it takes samples up to bound’s size (never hap-
pened in our experiments) then k = 1 and the fraction
is 1.33 i.e., doubling algorithm takes 33% more sam-
ples than halving algorithm. Considering the loose-
ness of PRUV bound, which is atleast an order of
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magnitude larger than optimal sample size (see Sec-
tion 4.1.2), k value will be atleast 3 and the fraction
is less than or equal to 0.25 (i.e., doubling algorithm
takes one fourth number of samples taken by halving
algorithm), as we overestimated number of transac-
tions taken in doubling algorithm. Although identifi-
cation of optimal sample size is only for the purpose of
comparison, it hugely affects our current experiments,
because for a selected dataset we need to repeat this
process for different combinations of K and w. We
sampled multiple times, each time with different seed
of pseudo random number generator to ensure accu-
rate results.

3.4 Performance Metric

We use ratio of sample size given by specific bound to
optimal sample size as performance metric.

Competitive-factor = S<bound−name> / Sopt

where S<bound−name> represents upper bound on sam-
ple size computed for specific bound <bound-name>
and Sopt denote optimal sample size required to get
an ε-approximation.

4 Absolute ε-approximation

This section deals with bounds related to absolute ε-
approximation. Firstly, we present an already exist-
ing bound and show that it is experimentally loose.
Then we discuss about alternate bound (independent
of maximum length of itemsets w) that uses the upper
bound on number of negative border itemsets. Later
we derive a bound which makes strong assumption
of prior knowledge about count of maximal frequent
itemsets and emphasize the limitations of theoretical
tools on deriving better bounds.

4.1 PRUV bound

4.1.1 Upper bound on the sample size

Consider a sample S drawn at random from dataset D
with replacement. An upper bound on sample size re-
quired to generate an absolute ε-approximation (Def-
inition 2) to TOPK(D,I,K,w) is given by [13].

|SPRUV | = 2
ε2 ln 2m+K(m−K)

δ

where m = |U(I, w)| =
∑w
i=1

(
n
i

)
is cardinal-

ity of set of possible itemsets of length at most w,
n = |I|. If we draw a sample of size |SPRUV |,

then TOPK(SPRUV ,I,K,w) will be an absolute ε-
approximation to TOPK(D,I,K,w) with probability
atleast 1 - δ.

4.1.2 Tightness evaluation

We evaluated empirical tightness of PRUV bound on
four real-life diverse datasets from FIMI repository.
For different values of K and corresponding values
of w, we computed optimal sample sizes for all four
datasets. In all cases we observed that optimal sample
size is atleast an order of magnitude less than PRUV
bound.

We did experiments with ε set to 0.02 and δ set
to 0.01. Tables 3 to 6 shows the experimental re-
sults for different datasets. Each cell in a table shows
competitive-factor of PRUV bound for corresponding
K (column) and w (row) values.

For higher values of w and smaller values of K,
competitive-factor is close to two orders of magnitude,
which shows the negative impact of w on the bound.
Even at higher values of K and smaller values of w, it
is atleast an order of magnitude.

K 1 5 10 50

w = 2 40 28 23 33
w = 3 46 43 41 41
w = 5 76 55 49 58
w = 10 145 111 98 102

Table 3: Retail Dataset Results

K 1 5 10 50 100

w = 2 36 24 15 16 14
w = 3 51 33 34 32 25
w = 5 99 41 32 39 44
w = 10 169 83 66 67 57

Table 4: Pumsb star Dataset Results

K 1 5 10 50

w = 2 32 27 29 27
w = 3 44 45 33 45
w = 5 83 53 68 58
w = 10 132 94 107 111

Table 5: Kosarak Dataset Results

6



K 1 5 10 50 100

w = 2 378 150 39 11 12
w = 3 550 186 63 14 14
w = 5 774 322 76 17 23
w = 10 1154 608 127 33 36

Table 6: Mushroom Dataset Results

Overall, competitive-factor (see Section 3.4) for dif-
ferent datasets is atleast an order of magnitude rang-
ing from 11 to 1154, which proves that PRUV bound is
much larger than optimal sample size. This motivated
us to work on lines of deriving better bounds.

4.2 Bound based on Negative Border

This section derives a new bound that uses the up-
per bound on number of negative border [16] itemsets,
which in turn makes it independent of w, a parameter
which has to be specified by user. It is not easy for
user to come up with right w.

In this subsection, at first we define maximal fre-
quent itemsets and negative border itemsets which are
used in improving the bound.

Maximal frequent itemsets An itemset is said
to be maximal frequent if no proper superset of it is
frequent.

e.g. Consider a query of mining top-4 itemsets
from dataset having four items (Milk, Bread, Butter
and Eggs). These top-4 itemsets are Milk, Bread,
Butter and Milk-Bread (see fig. 3). Butter and
Milk-Bread (grid shaded region of fig. 3) are maximal
frequent because none of their proper supersets are
frequent.

Let M(D,I,K) be set of maximal frequent item-
sets among top-K frequent itemsets with respect to
D, such that no proper superset of it belongs to
TOPK(D,I,K). Let MK

D denotes M(D,I,K). Clearly
MK
D ⊆TOPK(D,I,K). So,

|MK
D | ≤ |FKD | = K

Every itemset belonging to FKD , either belongs to
MK
D or a proper subset of atleast one itemset belong-

ing to MK
D . Hence,

∀
x∈FKD

fD(x) ≥ min
p∈MK

D

fD(p)

and

∀
x∈FKS

fS(x) ≥ min
p∈MK

S

fS(p)

Figure 3: Maximal Frequent and Negative Border
Itemsets

Negative border itemsets These are just in-
frequent itemsets i.e., minimal non-top-K itemsets.
These are the itemsets which are minimal proper
supersets of itemsets belonging to M(D,I,K), and
they also include 1-items that does not belong to
TOPK(D,I,K).

e.g. Dotted region of Figure 3 shows negative
border itemsets for top-4 frequent itemsets.

Let NB(D,I,K) or NBKD denote set of negative
border itemsets (NBI) of TOPK(D,I,K). Every
infrequent itemset that does not belong to FKD , either
belongs to NBKD or a proper superset of atleast one
itemset belonging to NBKD . Therefore,

∀
y 6∈FKD

fD(y) ≤ max
q∈NBKD

fD(q)

and

∀
y 6∈FKS

fS(y) ≤ max
q∈NBKS

fS(q)

Size of negative border set depends on identities
of maximal frequent itemsets. But every itemset of
maximal frequent itemsets can have at most nminimal
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proper supersets and there can be at most n 1-items
which are infrequent. So, size of negative border can
be upper bounded by n|MK

D |+ n.

|NBKD | ≤ n(|MK
D |+ 1)

4.2.1 Absolute bound NBIa

Derivation of PRUV bound (Section 3, Theorem 1 of
[13]) uses the following facts.

Fact 1. Consider a sample S of transactions drawn
at random with replacement from dataset D. For any
fixed ε ∈ (0, 1) and any non-empty itemsets x, y ∈
P (I) such that fD(x) ≥ fD(y) + ε we have:

Pr(fS(y) > fS(x)) ≤ e−ε2
2 |S| and

Pr(|fS(x)− fD(x)| ≥ ε) ≤ 2e
−ε2
2 |S|

Let x be any frequent itemset (∈TOPK(D,I,K))
and y be any infrequent itemset ( 6∈TOPK(D,I,K)).
PRUV bound’s derivation is on the lines that if sample
frequency of any y is greater than sample frequency of
any x, then it is a failure. Number of such possible
failures are K(m−K) = K(2n − 1−K) (if we set w
as n). Probability of each such failure can be upper
bounded using the first inequality of above fact and
probability that any such failure occurs can be upper
bounded using union bound on K(m−K) events.

From the definitions of maximal frequent itemsets
and negative border itemsets, if sample frequency of
every negative border itemset of D is less than sample
frequency of every maximal frequent itemset of D,
then sample frequency of every non frequent itemset
of D is less than sample frequency of every frequent
itemset of D. Formally,

if ∀
q∈NBKD

fS(q) < ∀
p∈MK

D

fS(p)

then ∀
y 6∈FKD

fS(y) < ∀
x∈FKD

fS(x)

Figure 4: Maximal Frequent and Negative Border
Itemset pairs

Above claim reduces the number of failure pairs
from K(2n − 1 − K) to |MK

D | ∗ |NBKD | (see fig. 4).

Using the upper bounds of |MK
D |, |NBKD | from Section

4.2, number of failure pairs can be at most nK(K+1).
So, the term K(m −K) of PRUV bound will get re-
placed by nK(K+ 1). With high probability, we need
to ensure that the event of Fact 1’s second inequality
doesn’t happen for top-K itemsets. Therefore, the
term 2m of PRUV bound will be replaced by 2K.
Hence the bound (lets call it NBIa bound) becomes

|SNBIa| = 2
ε2 ln 2K+nK(K+1)

δ

If we draw |SNBIa | number of samples, then
TOPK(SNBIa ,I,K) will be an absolute ε-appro-
ximation (Definition 1) to TOPK(D,I,K) with prob-
ability atleast 1 - δ. Clearly NBIa bound is indepen-
dent of w. Users may find it difficult to come up with
right w, especially when they use top-K itemsets to
generate association rules having longer consequents.
Therefore, it is not a good idea restrict maximum
length of itemsets of top-K.

4.2.2 Tightness evaluation

We used same experimental parameters (of Section
4.1.2) throughout the report. Tables 7 to 10 show
competitive-factor of NBIa bound for different values
of K.

K 1 5 10 50

SNBIa/Sopt 21 25 24 24

Table 7: Retail Dataset Results

K 1 5 10 50 100

SNBIa/Sopt 29 17 21 20 17

Table 8: Pumsb star Dataset Results

K 1 5 10 50

SNBIa/Sopt 23 20 24 26

Table 9: Kosarak Dataset Results

K 1 5 10 50 100

SNBIa/Sopt 261 148 62 15 13

Table 10: Mushroom Dataset Results

We can observe significant improvement in
competitive-factor values when compared to original
PRUV bound. Over all datasets competitive-factor is
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atleast an order of magnitude ranging from 13 to 261.
Worst case competitive-factor of PRUV bound is three
orders of magnitude (1154), while it is two orders of
magnitude (261) for NBIa bound.

4.3 Bound assuming Maximal Fre-
quent Itemsets

Even after incorporating the upper bound on num-
ber of negative border itemsets, the bound is loose by
atleast an order of magnitude. So we worked on deriv-
ing better bounds assuming strong statistical knowl-
edge of having count of Maximal Frequent Itemsets
(MFI) of result, as did in [11].

4.3.1 MFIa bound

As mentioned in Section 4.2.1, instead of applying
union bound on K(2n − 1 −K) failure pairs, we can
apply it for only |MK

D |∗|NBKD | pairs. Using the upper
bound of |NBKD | from Section 4.2, number of pairs can
be at most n|MK

D |(|MK
D | + 1). Therefore the bound

(call it MFIa) becomes

|SMFIa| = 2
ε2 ln

2K+n|MK
D |(|MK

D |+1)
δ

Here we used tighter upper bound on number of
negative border itemsets, which assumes the count of
maximal frequent itemsets.

4.3.2 Tightness evaluation

Tables 11 to 14 show competitive-factor of MFIa

bound for different values of K.

K 1 5 10 50

SMFIa/Sopt 21 23 22 22

Table 11: Retail Dataset Results

K 1 5 10 50 100

SMFIa/Sopt 29 16 19 17 13

Table 12: Pumsb star Dataset Results

K 1 5 10 50

SMFIa/Sopt 23 18 22 23

Table 13: Kosarak Dataset Results

K 1 5 10 50 100

SMFIa/Sopt 261 129 49 11 10

Table 14: Mushroom Dataset Results

On the whole, competitive-factor for different
datasets is atleast an order of magnitude ranging from
10 to 261. MFIa bound performed marginally better
than NBIa bound in case of higher values of K. Re-
sults of MFIa shows our limitations in using Cher-
noff’s bounds in deriving better bounds even with
knowledge of |MK

D | (which cannot be computed unless
we mine entire dataset D). In next section, we show
that same claim holds for relative ε-approximation
also.

5 Relative ε-approximation

In case of sparse datasets, absolute ε-approximation
doesn’t work. For instance, consider a query of min-
ing top-100 itemsets from Retail dataset with ε = 0.02.
Frequency of 100-th most frequent itemset is 0.0135.
C2 of Definition 1 says that all itemsets whose fre-

quency greater than or equal to f
(100)
D + ε = 0.0335

should not be missed. Number of itemsets with fre-
quency atleast 0.0335 are 24. So, absolute ε-close so-
lution can only guarantee that 24 are true top-100

itemsets. This is because of low f
(100)
D value of Re-

tail dataset. This motivated us to work with relative
ε-approximation also.

In this section, at first we show that sample size
given by absolute bound cannot be used to generate
relative ε-approximation. Then, we repeat the similar
analysis of Section 4 for relative approximation.

5.1 Absolute bound for relative ε-appr-
oximation

For fixed ε, effective error (ε) allowed in absolute ap-

proximation is more than effective error (ε ∗ f (K)
D )

allowed in relative approximation. As the absolute
bound is loose, it may indeed generate relative ap-
proximation. Experimentally we show that it cannot
generate relative approximation in all the cases.

Tables 15 to 18 show the success probability of ab-
solute bound in generating relative approximation for
different datasets. Absolute bound values are com-
puted for success probability of 99% (δ = 0.01). Be-
cause of looseness, absolute bound is able to produce
relative approximation at lower values of K. But for
sparse datasets, at higher values ofK, its success prob-
ability in producing relative approximation is very
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low. This highlights the need of deriving bound for
relative approximation.

K 1 5 10 50

Success Prob.(%) 100 100 93 0

Table 15: Retail Dataset Results

K 1 5 10 50 100

Success Prob.(%) 100 100 100 100 100

Table 16: Pumsb star Dataset Results

K 1 5 10 50

Success Prob.(%) 100 100 94 11

Table 17: Kosarak Dataset Results

K 1 5 10 50 100

Success Prob.(%) 100 100 100 100 100

Table 18: Mushroom Dataset Results

5.2 Bound for relative ε-approximation

We start this subsection stating multiplicative Cher-
noff’s bounds [4] used in deriving bounds for relative
ε-approximation.

Multiplicative Chernoff’s bounds Let Y1,...,Yr
be i.i.d random variables. Define Y to be the sum of
these r random variables. For any 0 < α < 1,

Pr(Y ≤ E[Y ](1− α)) ≤ e−α
2

2 E[Y ] and

Pr(Y ≥ E[Y ](1 + α)) ≤ e−α
2

3 E[Y ]

The following fact is used in analysis of upcoming sub-
section.

Fact 2. Consider a sample S of transactions drawn
at random with replacement from dataset D. For any
fixed ε ∈ (0, 1) and any non-empty itemsets x, y ∈
P (I) such that fD(x) ≥ fD(y) + ε ∗ f (K)

D we have:

Pr(fS(y) > fS(x)) ≤ e−
ε2∗f(K)

D

2

2 |S| and

Pr(|fS(x)− fD(x)| ≥ ε ∗ fD(x)) ≤ 2e−
ε2

3 fD(x)|S|

First inequality is obtained by substituting ε ∗ f (K)
D

for ε in first inequality of Fact 1. Second inequality
is obtained by taking CS(x) for Y in multiplicative
Chernoff’s bounds.

5.2.1 Relative bound NBIr

Using the above two inequalities we can get an upper
bound (call it NBIr) on sample size required to get a
relative ε-approximation to TOPK(D,I,K) as

|SNBIr | =

Max

{
2

ε2∗f (K)
D

2 ln
(

2nK(K+1)
δ

)
, 3

ε2∗f (K)
D

ln
(
4K
δ

)}
First term is obtained by applying union bound on

nK(K + 1) failure pairs of first inequality and upper
bounding the probability by δ/2. Second term is ob-
tained by applying union bound on K itemsets for
second inequality and upper bounding the probability
by δ/2. Net failure probability is δ/2 + δ/2 = δ.

If we draw |SNBIr | number of random sam-
ples, then TOPK(SNBIr ,I,K) will be a relative ε-
approximation to TOPK(D,I,K) with probability
atleast 1 - δ.

NBIr bound depends on f
(K)
D , which depends on

dataset D. We use NBIa bound to estimate this.

5.2.2 Two Phase Sampling

In phase-I f
(K)
D is estimated, and in phase-II relative

bound NBIr is computed using this estimate.

Phase-I: Let ε, δ, n and K be input parameters
to compute NBIr bound. Let Sa be square root of
NBIa bound with ε2, δ, n and K as input parameters.
We draw |Sa| number of random samples from D and

compute f
(K)
Sa

, which is used as estimate of f
(K)
D in the

next phase.

Phase-II: NBIr is computed using f
(K)
Sa

of phase I as

f
(K)
D . |SNBIr | number of samples are required, so that

TOPK(SNBIr ,I,K) will be a relative ε-approximation
to TOPK(D,I,K) with success probability of 1− δ.

5.2.3 Tightness evaluation

Tables 19 to 22 show competitive-factor of NBIr

bound for different values of K. Two phase sampling
is used to compute NBIr bound.

K 1 5 10 50

SNBIr/Sopt 20 25 80 258

Table 19: Retail Dataset Results
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K 1 5 10 50 100

SNBIr/Sopt 30 27 21 25 27

Table 20: Pumsb star Dataset Results

K 1 5 10 50

SNBIr/Sopt 24 38 95 155

Table 21: Kosarak Dataset Results

K 1 5 10 50 100

SNBIr/Sopt 385 212 66 20 14

Table 22: Mushroom Dataset Results

Overall, competitive-factor for different datasets is
atleast an order of magnitude ranging from 14 to 385.
NBIr bound performed much worse than NBIa, this is

because the effective error (ε∗f (K)
D ) allowed in relative

approximation is less than effective error (ε) allowed
in absolute approximation. In case of Retail dataset,
at K = 50, NBIr crossed dataset size (100M). This
is because of low value of dataset frequency of 50-th
most frequent itemset.

5.3 Bound assuming maximal frequent
itemsets

5.3.1 MFIr bound

Using similar analysis of Section 4.3, we can derive
maximal frequent itemsets bound (call it MFIr) for
relative ε-approximation as

|SMFIr | =

Max

{
2

ε2∗f(K)
D

2 ln
(

2n|MK
D |(|M

K
D |+1)

δ

)
, 3

ε2∗f(K)
D

ln
(
4K
δ

)}
5.3.2 Tightness evaluation

Tables 23 to 26 show competitive-factor of MFIr

bound for different values of K.

K 1 5 10 50

SMFIr/Sopt 20 24 75 237

Table 23: Retail Dataset Results

K 1 5 10 50 100

SMFIr/Sopt 30 26 20 21 21

Table 24: Pumsb star Dataset Results

K 1 5 10 50

SMFIr/Sopt 24 35 85 138

Table 25: Kosarak Dataset Results

K 1 5 10 50 100

SMFIr/Sopt 358 190 54 15 10

Table 26: Mushroom Dataset Results

On the whole, competitive-factor for different
datasets is atleast an order of magnitude ranging from
10 to 358. At higher values of K, MFIr bound per-
formed marginally better than NBIr bound. Results
of MFIr shows our limitations in using Chernoff’s
bounds in deriving better bounds even with knowl-
edge of |MK

D | (which cannot be computed unless we
mine entire dataset D). This motivated us to look for
algorithmically obtaining a relative ε-close solution,
which is discussed in next section.

6 The ItopK Algorithm

In this section, we present an iterative sampling algo-
rithm which empirically approaches to a right sample
size that produces a relative ε-approximation to top-K
itemsets. This algorithm is a variant of VISTA [11],
which produces a relative ε-approximation to Frequent
Itemsets Mining (min support) problem.

6.1 Overview

It is an iterative sampling algorithm. In every iter-
ation a batch of samples, Ssmall (called as samplet),
are obtained. Every samplet of an iteration is mined
for top-K frequent itemsets, based on which two sets
L and F are updated. L contains set of candidate
frequent itemsets i.e., itemsets that are frequent in at
least one iteration. F contains set of clearly evident
frequent itemsets i.e., top-K voted itemsets of L. The
algorithm has two phases Initialization phase and Sta-
bilization phase. It terminates when F stabilizes.

Initialization phase runs for INIT (parameter)
number of iterations. In every iteration L is updated.
Whenever an itemset appears in an iteration, we check
whether it is present in L or not. If it is present, its
vote is incremented, otherwise it is added to L and its
vote is initialized to 1. After initialization phase F is
initialized to top-K voted itemsets of L. Before stabi-
lization phase begins F is copied into Fcur. Stabiliza-
tion phase runs until Fcur stabilizes. L and F are up-
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dated in every iteration of stabilization phase. When-
ever Fcur changes new stabilization sequence starts, it
serves as representative set to measure the degree of
change in F . It is updated only when there are signif-
icant changes to F (determined by parameter t). Fcur
is the F of previous stabilization sequence. Stabiliza-
tion phase terminates when Fcur doesn’t change for
fixed number of consecutive iterations (determined by
parameter l0). Samplet size Ssmall is determined by
taking two times square root of NBIr bound for given
input parameters using two phase sampling. Pseudo-
code of complete algorithm is shown in Algorithm 1.

Algorithm Parameters Apart from input param-
eters (D, I, K, ε, δ), algorithm has three design pa-
rameters INIT , l0 and t. INIT determines the num-
ber of iterations for which L has to be warmed up.
Stabilization phase ends when stabilization sequence
length reaches l0. In every iteration of stabilization
phase difference between F (current set of clearly evi-
dent frequent itemsets) and Fcur is computed. Fcur is
updated (new stabilization sequence starts) when the
difference is more than fraction t of Fcur size.

6.2 Experimental evaluation of ItopK
Algorithm

Tables 27 to 30 shows number of samples (added over
all iterations) taken by ItopK algorithm and its per-
formance when compared to Sopt.

K 1 5 10 50

Sopt 12, 614 131, 074 144, 384 1, 047, 424
SItopK 18, 810 79, 156 122, 854 833, 404

SItopK/Sopt 1.49 0.6 0.85 0.8

Table 27: Retail Dataset Results

K 1 5 10 50 100

Sopt 4, 082 5, 995 8, 318 10, 247 11, 389
SItopK 13, 262 15, 276 15, 960 19, 038 20, 596

SItopK/Sopt 3.25 2.55 1.92 1.86 1.8

Table 28: Pumsb star Dataset Results

K 1 5 10 50

Sopt 9, 859 38, 027 130, 469 633, 024
SItopK 18, 696 43, 852 127, 984 393, 110

SItopK/Sopt 1.95 1.15 1.04 0.62

Table 29: Kosarak Dataset Results

Algorithm 1: ItopK Algorithm

Data: Dataset D, I, ε, K, INIT , δ, stabilization
length l0 and tolerance t

Result: Relative ε-approximation to Top-K
Frequent Itemsets

Extract a sample Sa of size
√
NBIa(ε2, |I|,K, δ);

Compute f
(K)
Sa

from Sa;

Let Ssmall = 2 ∗
√
NBIr(ε2, |I|,K, δ, f (K)

Sa
)

where NBIa denotes improved absolute bound

and NBIr denotes relative bound using f
(K)
Sa

as

approximation to f
(K)
D ;

// Initialization Phase

Initialize L as empty set;
for i ← 1 to INIT do

Obtain a samle Si of size Ssmall;
Let Li be top-K frequent itemsets of samplet
Si and update L = Li

⋃
L;

end
Initialize F with set of top-K itemsets from L
(with respect to number of votes);
// Stabilization Phase

Stab = false; curLen = 1; Fcur = F ;
while Stab == false do

Obtain a samplet of size Ssmall and let
Lcurrent be top-K frequent itemsets of it;
Increment the vote of each itemset in L that
appears in Lcurrent;
Add the itemsets in Lcurrent \ L to L and
initialize their vote to 1;
F = Set of itemsets in L whose votes is more
than K-th most voted itemset of L;
Fdiff = F \ Fcur ;
if |Fdiff | > t.|Fcur| then

curLen = 1; // New stabilization

Fcur = F ; // sequence starts

else
curLen += 1;

end
if curLen ≥ l0 then

Stab = true;
end

end
return Fcur;
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K 1 5 10 50 100

Sopt 169 397 1, 596 13, 216 24, 516
SItopK 9, 690 10, 982 12, 312 19, 152 23, 000

SItopK/Sopt 57.34 25.67 7.71 1.45 0.94

Table 30: Mushroom Dataset Results

Experimental Parameters We set INIT = 10,
l0 = 10 and t = 0.01 for ItopK algorithm, while ε and
δ remain intact.

Observations Overall, competitive-factor of ItopK
algorithm ranges between 0.6 to 57.34, which shows
that our algorithm outperformed the theoretical
bound. It is always within twice of optimal, except
in the cases where Sopt is very small. In cases where
it is greater than two, absolute number of samples
drawn by our algorithm is less than 10K number of
samples (0.01% of dataset size). In some cases our
algorithm performed better than optimal sample size,
because our algorithm draws samples in batches while
Sopt draws samples in one-shot and checks whether it
produces an ε-close solution or not.

7 Related Work

In this section, whenever we mention frequent item-
sets mining, we are referring to problem which takes
min support as input.

Rich body of literature exists on importance of sam-
pling for extracting frequent itemsets. Sampling for
frequent itemsets mining was first introduced in [10].
Along with sampling they dealt with many issues,
their experimental investigation points out sampling
as efficient technique, they did not emphasize on ef-
fectiveness of sampling for association rule mining.

Toivonen [16] is the first person to study sampling
exclusively in the context of frequent itemsets mining.
He gave a bound on sample size required to ensure
that the frequency of itemset in sample is approxi-
mately equal to its true dataset frequency. Through
empirical evaluation on synthetic dataset of size 100K
transactions he showed that sample of size ranging
from 20k to 80k produces accurate results.

An experimental evaluation of sampling for fre-
quent itemsets was carried out in [19]. They argued
that sample sizes computed using Chernoff bounds
were loose. They showed that in some cases Chernoff
bounds exceed dataset size, by considering an example
dataset of 400K transactions with reasonable accuracy
guarantee. With rigorous experimentation they gave a
rule of thumb that “samples of sizes ranging from 10%

to 20% of dataset are enough to give a reasonable ap-
proximation to frequent itemsets”. But sampling 10%
of dataset is expensive for massive datasets like that of
Walmart chain store. In [7] authors claimed that sam-
ple of size 10% is larger (for massive datasets) when
compared to Chernoff bounds.

A sampling based frequent itemsets mining algo-
rithm, called FAST was presented in [8]. Given a
sample size S, they concentrated on obtaining a rep-
resentative sample over which frequent itemsets min-
ing yields better results when compared to random
sample of same size. Sub-sampling based heuristics
were developed and used, in which a sub-sample of
size S is extracted from a random sample of larger
size, and then frequent itemsets mining is performed
on extracted sub-sample. Through detailed experi-
mentation, they evaluated accuracy of their heuristics,
but they haven’t came up with any theoretical upper
bound on sample size or accuracy guarantees on out-
put.

A progressive sampling algorithm in which samples
were drawn with number of samples increasing geo-
metrically over consecutive iterations was presented
in [12]. In each iteration a representative set was se-
lected from the most frequent 1-itemsets of the sample
taken in current iteration. Algorithm’s termination
was based on similarity between representative sets
obtained in last two iterations. Their empirical evalu-
ation did not assess the accuracy of the final output.

In [11], the authors empirically showed that exist-
ing theoretical bounds on sample size required to mine
frequent itemsets are loose (close to 2 orders of mag-
nitude). Assuming prior knowledge of maximal fre-
quent itemsets (frequent itemsets for which no super-
set is frequent), they derived new bound on sample
size required to obtain relative ε-close solution (as de-
fined in [7]) for frequent itemsets mining. They showed
that even with such high detailed information of maxi-
mal frequent itemsets the sample size required is much
larger when compared to optimal sample size (by fac-
tor of 5). They came up with an iterative sampling
algorithm, called VISTA, on lines of progressive sam-
pling algorithm, in which size of sample drawn at each
iteration is same, with global convergence criterion,
based on voting scheme and notion of stable sequence
of iterations. Empirically they showed that sample
size required by VISTA is always within the twice of
optimal.

In the context of top-K frequent itemsets mining,
attempts were made in designing algorithms to mine
exact top-K frequent itemsets from entire dataset, re-
stricting output to closed frequent itemsets (no proper
superset of it will have same support as itself)[14, 18].
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In [13], authors of [14] claimed that these algorithms
have limited scalability and are not capable of han-
dling massive datasets.

In [13] authors developed a progressive sampling
algorithm, in which number of samples drawn in con-
secutive iterations increases. Their termination con-
dition is dependent on the sample frequencies of the
itemsets obtained from the sample of current iteration.
This algorithm performs better than their bound only
at higher values of w (restriction on maximum length
of interested itemsets) and smaller values of K.

8 Conclusions

In this report, at first we emphasized on advantages of
sampling for extracting top-K frequent itemsets, then
we empirically evaluated the tightness of theoretical
bounds and showed that the bounds are loose (atleast
an order of magnitude) when compared to optimal.

We derived a bound that uses upper bound on num-
ber of negative border itemsets. We showed the lim-
itations of using Chernoff’s bounds in deriving bet-
ter bounds by making stronger assumption of know-
ing count of maximal frequent itemsets apriori. In
the end, we described an iterative sampling algo-
rithm which produces ε-close solution with close-to-
ideal sample sizes, specifically in most of the cases it
is within twice of optimal.

In future, we shall try to give accuracy and con-
fidence guarantees on output of ItopK algorithm.
We shall compare our approaches against the bounds
given in recent work [15]. Future research could target
sampling approaches for problems like classification,
clustering etc.
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