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Abstract

Data mining techniques are usually applied over entire datasets. But the localized behav-

ior of subset of data can be very different from that of aggregate behavior of dataset. Our

goal is to mine patterns in these localized subsets of data. We looked at the problem

of mining association rules in this framework. In this project, we deal with multidi-

mensional market basket data i.e. in addition to set of customer purchase items, each

transaction also has dimension attributes associated with it. Based on these dimension

attributes, transactions can be visualized as distributed over cells of an n-dimensional

cube. Our goal is to mine targeted association rules in this cube space. A targeted

association rule is of the form {X → Y }R, where R is a region in cube and X → Y is

traditional association rule in region R.

Firstly we explain two basic algorithms: RelaxedSup and TOARM developed on the

lines of previous works. Then, we discuss the idea of bottom-up aggregation and cub-

ing which are used to design CellUnion Algorithm. Then, the ideas of interleaving and

credit based pruning are discussed. These ideas are incorporated to design efficient algo-

rithm called IceCube Algorithm. We evaluated the performance of algorithms on both

synthetic and real datasets. Experiments on these datasets show that the RelaxedSup

and TOARM algorithms are the worst. CellUnion Algorithm is better than these two.

IceCube Algorithm always provides best performance and the performance improvement

is even more for large datasets and complex cubes.
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Chapter 1

Introduction

Data mining techniques involve analyzing data to extract interesting patterns (cluster-

ing, frequent pattern mining) or to build models representative of data (classification,

regression). But most of the times the aggregate behavior may not faithfully represent

the behavior of subspaces of data i.e. behavior of data in localized subspaces can be very

different from that of aggregate behavior. For example, a company may spend different

amount of money for advertisement campaigns on different mediums (television, inter-

net, newspaper etc) based on their effectiveness. But the best advertisement medium

depends on product category, geography, target consumer etc. Internet might be best

medium in USA but not in India. Similarly, it may be best to promote beauty products

on television but internet might be the best medium for promoting smartphones. We

will look at the problem of association rule mining / frequent pattern mining in this

framework.

The problem of mining association rules over market basket data was introduced

in [2]. Market basket data contains a set of transactions, where each transaction is a

set of items. Association rule mining is used to find a set of association rules of form

X → Y , where X and Y are disjoint set of items. For example, customers who buy

shoes also buy socks: shoes → socks. Support and confidence are used to determine

the importance of rules. Support of a rule is defined as p(X ∪ Y ). While confidence

of a rule X → Y is defined as p(Y/X). Goal of association rule mining is to find

1



Chapter 1. Introduction 2

all rules that satisfy user-given minimum support and minimum confidence threshold.

Applications of association rule mining include customer behavior analysis, intrusion

detection, bioinformatics, association classification etc.

Several algorithms have been proposed in literature for mining association rules [2]

[3] [8] [14]. But all of these algorithms mine association rules over aggregate data. If

association rule mining is done over all transactions, many rules that apply only to a

subset of transactions may be missed out. Some rules that are valid only for a particular

customer segment may not show up because they might not satisfy the support criteria

at aggregate level (i.e. wrt to all transactions). For example, sale of winter apparels may

be very high in cold regions like Jammu and Kashmir, but this pattern may be missed

if mining is done over India. We want to extend traditional association rule mining to

capture such targeted rules that apply to a specific customer segment. [1] [13] defines

localized association rules as rules that apply to a subset of transactions. We want to

adopt this notion of localized support.

1.1 Organization of Thesis

First step of association rule mining is to find frequent patterns of form {I}, where I is

a set of items which satisfies support criteria. Generating rules from frequent pattern

which satisfies confidence criteria, is straightforward as explained in [2]. So, we will just

concentrate on mining frequent patterns. The report is organized as follows: Chapter 2

formally defines the problem. In Chapter 3, we explain basic algorithms: RelaxedSup

and TOARM, followed by our new algorithms CellUnion and IceCube. All algorithms

are experimentally evaluated in Chapter 4. Chapter 5 gives related work in this area,

followed by conclusions in Chapter 6.

1.2 Contributions

In summary, our contributions are as follows:
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• Defining the problem of mining targeted rules in data cubes.

• Designing a set of algorithms to compute targeted rules.

• Experimental evaluation of proposed algorithms on real and synthetic datasets

showing that IceCube algorithm is the best practical algorithm among all.



Chapter 2

Problem Definition

Traditional frequent pattern mining ignores the additional information about transac-

tions like at what time or location transaction was recorded, or information about cus-

tomer who purchased the items in transactions. We call these additional attributes

in a transaction as dimensions. For example, time and location are dimensions. As-

sume that our data has n dimensions. Then, each transaction is of the form T =

{i1, . . . , ik; d1, . . . , dn}, where i1, . . . , ik are the items present in transaction and d1, . . . , dn

are values of n dimensions. For example, {pen, ink, pencil; Q3, Mysore} is a transaction

with 3 items: pen, ink and pencil, whereas Q3 and Mysore are values of Time and Lo-

cation dimension. Parent child hierarchies are defined on each dimension. Hierarchy in

each dimension is modeled as a tree. Sample hierarchies on Location and Time dimen-

sion are shown in Figures 2.1 and 2.2. Hierarchy on Location dimension implies that

Bangalore and Mysore comes under Karnataka, while Karnataka and M.P. comes under

India. In the hierarchy shown in Figure 2.1, all nodes have same fanout. But we do not

require this condition. Our approaches will work even for hierarchies having different

fanout for different nodes. Only assumption is that all leaf nodes should be at same

level.

Transactions with dimension information can be visualized as distributed over cells

of an n-dimensional cube. Transactions will fall in different cells of cube based on their

dimension values as shown in Figure 2.3.

4
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Figure 2.1: Hierarchy on Location dimension
Figure 2.2: Hierarchy on Time di-
mension

Let D1, . . . , Dn be domain of n dimensions. All nodes of a tree hierarchy form the

domain of that dimension. For example, in above hierarchy, domain of Location =

{India, Karnataka, M.P., Bangalore, Mysore, Bhopal, Indore}. Let D be the cartesian

product of domains of all dimensions i.e. D = D1 × D2 × · · · × Dn. Then, any C =

(c1, c2, . . . , cn) ∈ D defines a cell in the cube, if ∀i, ci is a leaf in ith dimension’s hierarchy.

And, any R = (r1, r2, . . . , rn) ∈ D defines a region in the cube, if ∃i s.t. ri is not a leaf in

ith dimension’s hierarchy. For example, R1 = (Q2, Karnataka) defines a region having

two cells: (Q2, Bangalore) and (Q2,Mysore). All such regions will be convex. But all

convex shapes in cube are not regions. For example, a convex shape having two cells

(Q1,Mysore) and (Q1, Bhopal) is not a region according to our definition.

Let minsup be user-specified minimum support threshold as percentage. Our goal is

to find out all the targeted frequent patterns which are of the form: {I}R where, R is a

region in cube and I is a traditional frequent pattern in the subset of transactions that

fall in region defined by R. Pattern I should satisfy minsup threshold with respect to

subset to transactions falling in region defined by R. For example, if 10000 transactions

fall in region defined by R and support is 10%, then an itemset will be frequent in R

if it appears in atleast 1000 transactions out of 10000 transactions. Suppose there are

20000 transactions in region (Q3,M.P.), support is 10% and items raincoat and umbrella

occurs together in 2340 transactions. Then, an example of targeted frequent itemset is:

{raincoat, umbrella}R, where R = {Time: Q3, Location: M.P.}
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Figure 2.3: Cube

2.1 Notations

Table 2.1 gives the notations which will be used in later chapters for presenting the ideas

and algorithms. Some of these notations will become clear in following chapters.
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minsup user specified minimum support
n number of dimensions
D1, . . . , Dn domain of n dimensions
D Cartesian product of domains

D = D1×D2× · · · ×Dn
C = (c1, . . . , cn) defines a cell in cube, if ∀i, ci is a leaf in ith dimension’s

hierarchy.
R = (r1, . . . , rn) defines a region in cube, if ∃i s.t. ri is not a leaf in ith

dimension’s hierarchy.
count(I, R) number of transactions in region R that contains itemset

I
nodesi number of nodes in hierarchy tree of dimension i
leavesi number of leaves in hierarchy tree of dimension i
levelsi number of levels in hierarchy tree of dimension i
N No. of cells in cube

N = leaves1 ∗ · · · ∗ leavesn
C1, . . . , CN cells in cube
ntrans(R) No. of transactions in region R
total trans Total no. of transactions in cube
Lk(Ci) Local frequent itemsets of size k in cell Ci

Sk(Ci) Survivor set of size k in cell Ci

Fk(Ci) Foreign set of size k in cell Ci

Table 2.1: Notations



Chapter 3

Approaches

Firstly, we will explain the RelaxedSup Approach which flattens the dimension hierar-

chy and then, try to use the traditional association mining algorithm but with relaxed

support. Next, we will explain TOARM algorithm which is an extension of algorithm

proposed in [16] for our problem. Then, we will explain the CellUnion Algorithm based

on ideas of bottom-up aggregation and cubing. Then, ideas of interleaving and credit

based pruning will be explained which are incorporated to design the efficient IceCube

Algorithm. All these approaches assume input and output formats as explained below:

Input:

- set of transactions of form

T = {i1, . . . , ik; d1, . . . , dn}.

- hierarchy trees for all dimensions.

- user specified minimum support as percentage (minsup).

- local frequent itemsets in all cells {L(C1), . . . , L(CN)}, where L(Ci) is set of frequent

itemsets in cell Ci.

Output:

- set of frequent itemsets of form {I}R, where R defines a region in cube and I is a

frequent itemset

8
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3.1 RelaxedSup Algorithm

We have already discussed that when mining is done over entire data, itemsets which

are frequent at some cell/region level are missed out because they do not satisfy support

criteria over entire data. One intuitive way to solve this problem is to use relaxed support

w.r.t. the region having minimum number of transactions. Let Rmin be the region having

minimum number of transactions and total trans be the total number of transactions in

cube. Then, percentage relaxed support is defined as:

relaxed support =
ntrans(Rmin) ∗minsup

total trans
(3.1)

Running mining algorithm with this relaxed support will ensure that itemsets which are

frequent in any region will show up in output. But there are two problem with this:

• For any itemset in output, we will not be able to tell the region(s) where it is

frequent.

• Since number of transactions in different regions are widely different and we set

relaxed support w.r.t. the smallest region. So, many spurious itemsets will get

generated in bigger regions. These itemsets are frequent w.r.t. relaxed support

but are not frequent w.r.t. minsup and hence are not useful.

To solve these two problems, we extend each transaction by adding dimension attributes

to it as items. Then, we apply mining on these extended transactions with relaxed

support. Then, filtering is applied on output itemsets to remove spurious itemsets and

to figure out region(s) where an itemset is frequent. Firstly, for any itemset in output, we

figure out the region using dimension attributes which were added as items. Then, count

of itemset is checked against the minimum support for that region to decide whether

itemset is frequent in that region or not. Pseudocode of the algorithm is given in Figure

3.1.
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RelaxedSup Algorithm :

1. Extend transactions: For each transaction T

• Extend the transaction by adding dimension information to transaction

• i.e. if T is in cell C = (c1, c2, . . . , cn),

• then for i = 1 to n,

– add ci and all ancestors of ci to T

2. Compute relaxed support: Find the relaxed support w.r.t. to smallest region

• Rmin = Region having minimum no. of transactions

• total trans = total no. of transactions in cube

• relaxed support = (ntrans(Rmin)×minsup)
total trans

3. Do mining: Run association mining algorithm on extended transaction file with
relaxed support.

• Let Fext be frequent itemsets generated

4. Filter and generate output: For each itemset I ∈ Fext

• Separate out basket items and dimension items from I.

– Let Ib be part of I having basket items and Id be part of I having
dimension items.

• If there is exactly one dimension item in Id from each dimension, then

– Find out region R from these dimension items.

– if I is frequent in R wrt original support i.e. count(I, R) ≥ ntrans(R) ∗
minsup , then output the targeted frequent itemset {Ib}R

• Otherwise,

– Drop I

Figure 3.1: RelaxedSup Algorithm
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Analysis: Suppose a frequent itemset I = {i1, . . . , ik, Karnataka, Mysore, Q3} is pro-

duced in output, then this itemset I will simply be ignored in post-processing step because

it contains 2 items from Location dimension. Itemset I is ignored to avoid same targeted

frequent itemset being reported multiple times. Since I is frequent, its subsets {i1, . . . , ik,

Karnataka, Q3} and {i1, . . . , ik, Mysore, Q3} will also be frequent and will produce the

appropriate targeted frequent itemset, if any.

For association mining, we used the implementation of Apriori algorithm by Bart

Goethals [12] which has been shown to be efficient. Then, we further improved the

RelaxedSup Algorithm by changing the basic Apriori code. We applied following opti-

mizations:

• An itemset in output having 2 or more dimension items from same dimension

does not generate any targeted frequent itemset (It is simply discarded during

filter step). So, we try to remove such itemsets as early as possible during mining

process. During candidate generation step in Pass 2 of Apriori algorithm, we do not

generate those candidates which have two dimension items from same dimension.

So, no 2-itemset will show up in output having two dimension items from same

dimension. Actually, it also ensures that no k-itemset (k > 2) will show up in

output having two dimension items from same dimension because its 2-subset with

those two same dimension items is not frequent.

• We do not need actual counts of itemsets having only dimension items. But we

can’t remove them because they will combine with other itemsets during next

passes and generate frequent itemsets. So, during counting step in every pass, we

do not explicitly count candidates having all dimension items. Instead we simply

assume their counts to be 100%.

Even after these optimizations, this approach is highly inefficient due to following

reasons:

• Relaxed support is usually very low and hence number of itemsets produced in



Chapter 3. Approaches 12

TOARM Algorithm:
For each region R in cube

• Let C1, C2, . . . , Cm be cells contained in region R

• Compute union: Compute union of local frequent itemsets from all cells contained in
R.

– UR = L(C1) ∪ · · · ∪ L(Cm)

• Count: Count all the itemsets of UR over region R i.e. ∀I ∈ UR, compute count(I,R).

• ∀I ∈ UR,

– if count(I,R) ≥ ntrans(R) ∗minsup, output targeted frequent itemset {I}R

Figure 3.2: TOARM Algorithm

output is very large. So, mining algorithm takes lot of time. Though many of

these itemsets will be discarded during filtering step.

• Extending transactions by adding dimension attributes increases the length of

transactions which increases the time taken for counting candidate itemsets.

3.2 TOARM Algorithm

We can easily observe that an itemset can’t be frequent in a region if it is not frequent

in any of the cells contained in that region. TOARM approach [16] used this property

for online association rule mining in data cubes. TOARM initially computes the local

frequent itemsets in all cells. Then, given a region R, it computes the union, UR, of

frequent itemsets of cells contained in region R. Then, it counts itemsets in UR in region

R. Frequent itemsets in region R are then generated by checking the counts against the

support threshold in region R.

This algorithm can be extended for our problem. Our goal is to find frequent itemsets

in all regions in cube. So, we will repeatedly call the TOARM algorithm for each region

R in cube. The pseudocode of this approach is given in Figure 3.2.
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CellUnion Algorithm :

1. Compute union: Compute union of local frequent itemsets from all cells.

• L = L(C1) ∪ · · · ∪ L(CN)

2. Count: Count all the itemsets in L in each cell i.e. compute count(I, Ci), ∀I ∈ L,
∀ cells C1, . . . , CN .

3. Cube: For all itemsets in L, recursively aggregate cell level counts to get region
level counts.

• This will give count(I,R), ∀I ∈ L and ∀ regions R.

4. Filter and generate output: ∀I ∈ L, ∀regions R

• if count(I, R) ≥ ntrans(R) ∗minsup

– output targeted frequent itemset {I}R

Figure 3.3: CellUnion Algorithm

3.3 CellUnion Algorithm

An itemset I can’t be frequent in a region R, if it is not frequent in any of the cells

contained in region R. In other words, an itemset can be frequent in a region only if it is

frequent in atleast one of the cells in that region. So, if we take union of local frequent

itemsets from all cells (let’s call this union L). Then, any itemset which is not element of

this union L, can’t be frequent in any region. And set of frequent itemsets in any region

R will be a subset of this union L. So, for any region R, we need counts of all itemsets in

union L to find out the itemsets which are frequent in region R. But it will be inefficient

to do counting separately for each region. So, we will count itemsets in union L in all

cells. Then, counts in any region can be computed by aggregating the counts from cells

contained in region. Algorithm designed based on this idea is given in Figure 3.3.

Analysis: Counting of itemsets i.e. Step 2 is done efficiently using a Trie. Also,

Step 3 is done efficiently using a dense cubing algorithm. Further details of Steps 2 and

3 are given in Sections 3.5.1 and 3.5.3. Only Step 2 is dependent on both number of

transactions in dataset and number of frequent itemsets in each cell. All other steps are
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only dependent on number of frequent itemsets in each cell. But with this approach,

union size can become really big and hence counting time can get large. So, our next

approach will focus on decreasing the number of itemsets to be counted in each cell.

3.4 IceCube Algorithm

The IceCube algorithm (Interleaved Credit Elimination Cube Mining Algorithm) is based

on two ideas: credit based pruning and interleaving of counting and cubing. These ideas

are explained below:

3.4.1 Credit Based Pruning

We will use the concept of credit as defined in [7]. For each cell, we have set of frequent

itemsets and their counts. Let sup(C) be absolute support threshold for cell C i.e. sup(C)

= minsup * ntrans(C). If an itemset I is not frequent in cell C, then count(I, C) ≤

sup(C)− 1. We define credit of an itemset I in cell C as:

credit(I, C) =

count(I, C)− sup(C), if I is frequent in cell C

−1, otherwise

(3.2)

Thus, credit of an itemset in a cell C gives the extra count of itemset above the minimum

support threshold in that cell. Hence, credit will be zero or positive for frequent itemsets

in that cell and negative for non-frequent itemsets. Since we don’t know the actual counts

of non-frequent itemsets, we assume the maximum possible count which is (sup(C)− 1).

Hence, the credit for non-frequent itemsets is taken as -1. Credit of an itemset I in region

R is sum of credit of I in all cells C contained in region R.

credit(I, R) =
∑
C∈R

credit(I, C) (3.3)
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Similar to that for cell, credit of an itemset I in a region R will be non-negative, only

if I is frequent in R. So, any itemset I can’t be frequent in a region R, if credit(I,R) is

negative. This insight can be used to avoid counting itemset I in some cells. We need

to count itemset I in a cell C, only if there exists a region R enclosing C in which I can

possibly be frequent. So, we don’t need to count itemset I in cell C, if credit(I,R) is

negative for all regions R containing C. Set of itemsets to be counted in each cell can be

generated as follows:

1. Compute union: Compute union of local frequent itemsets from all cells.

• L = L(C1) ∪ · · · ∪ L(CN)

2. Compute cell level credits: Compute credit for all the itemsets in L in each cell i.e.

compute credit(I, Ci), ∀I ∈ L, ∀ cells C1, . . . , CN .

3. Cube to get region level credits: Recursively aggregate cell level credits to get region

level credits.

• This will give credit(I,R), ∀I ∈ L and ∀ regions R.

4. Generate survivor sets: ∀I ∈ L and ∀ regions R, if credit(I, R) ≥ 0, then

• Add I to S(C), ∀ cells C contained in region R, where S(C) is survivor set for

cell C.

So, instead of counting the whole union L in each cell, we just need to count their cor-

responding survivor sets in each cell. All survivor sets will always be subset of complete

union L. So, by using credit based pruning we can reduce the number of candidates to

be counted in each cell.

3.4.2 Interleaving Idea

CellUnion algorithm firstly calculated union of local frequent itemsets of all lengths. This

union was the set of candidate itemsets which needs to be counted in each cell. Then,
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we counted this whole set of candidates in one shot and then performed cubing for all of

these itemsets.

IceCube algorithm interleaves the counting and cubing of candidate itemsets of differ-

ent sizes. We will follow the pass by pass approach i.e. we will first generate candidates

1-items which needs to be counted. Then, we will count these candidate 1-items and

cube the counts to generate frequent 1-items in all regions. Then, we will generate can-

didate 2-itemsets, count them and cube them to get frequent 2-itemsets in all regions.

And so on. So, instead of doing counting and cubing at one shot, we have interleaved

the counting and cubing steps. While generating candidate set to be counted, CellUnion

algorithm only had the information about local frequent itemsets. So, size of candidate

set generated by baseline approach is huge. But with pass by pass method of inter-

leaving approach, in addition to local frequent itemsets, we also have information about

k-frequent itemsets in all regions, before generating candidates of size (k+1). So, the

number of candidates generated is less as compared to CellUnion algorithm.

Now will define the notion of foreign set of a cell. Foreign k-set of cell Ci, denoted

by Fk(Ci), includes k-itemsets which are frequent in some region enclosing cell Ci.

Lemma 1. An itemset I of size k needs to be counted in cell C, only if

1. I ∈ Sk(C) i.e. I is element of survivor set of cell C, and

2. all (k-1)-subsets of I are elements of Fk−1(C)

Proof. Itemset I needs to be counted in cell C, if it can possibly be frequent in a region

R which contains cell C. Condition 1 is straightforward. As shown in Section 3.4.1, if

I /∈ Sk(Ci), then it can’t be frequent in any region R containing cell C. So, we don’t need

to count I in cell C.

We will prove the converse of condition 2. Assume Z is a (k-1)-subset of I and

Z /∈ Fk−1(C). Then, by definition of foreign set, Z is not frequent in any region R

containing cell C. So, for any region R containing C, I can’t be frequent in R because one

of its subset Z is not frequent in R. So, we don’t need to count I in cell C. Conversely, I

needs to be counted in cell C, if all (k-1)-subsets of I are elements of Fk−1(C).
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IceCube Algorithm :

1. Generate survivor sets {S1(C1), . . . S1(CN), S2(C1), . . . S2(CN), . . . . . . } for each
cell using credit based pruning (as explained in Section 3.4.1).

2. Pass k is as follows:

• For each cell Ci

– If (k == 1), then
candk(Ci) = Sk(Ci)

else
candk(Ci) = gen-cand(Fk−1(Ci), Sk(Ci))

– Count all itemsets in candk(Ci) in cell Ci

• Cube: Recursively aggregate cell level counts of itemsets to get counts at
various regions.

• if count(I, R) ≥ ntrans(R) ∗minsup, then

– Output targeted frequent itemset {I}R
– Add I to foreign sets, Fk(C) of all cells C contained in region R.

Figure 3.4: IceCube Algorithm

Pseudocode of IceCube algorithm is given in Figure 3.4. In each pass k, for each cell

C, we use gen-cand function to generate candidates of size k to be counted in that cell C.

Gen-cand function uses Lemma 1 and Apriori property [3] used in Apriori-gen function

in Apriori algorithm. Pseudocode of gencand function is given in Figure 3.5.

3.4.3 IceCube Algorithm: Example

Assume a simple cube having 4 cells as shown in Figure 3.6. It has 5 regions: R1

containing C1, C2, R2 containing C3, C4, R3 containing C1, C3, R4 containing C2, C4, R5

containing C1, C2, C3, C4, Let each cell has 100 transactions and support is 4%.

Local frequent 2-itemsets with their counts are given in Figure 3.6(a). Credits for

these itemsets will be credit(I1I2, C1) = 4, credit(I1I3, C2) = 3 and credit(I2I3, C3) = 0.

All other cell level credits are −1. Aggregating them will give following non-negative

region level credits: credit(I1I2, R1) = 3, credit(I1I2, R3) = 3, credit(I1I2, R5) = 1,

credit(I1I3, R1) = 2, credit(I1I3, R4) = 2, credit(I1I3, R5) = 0. All other region level
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GenCand(Fk−1(C), Sk(C)) :

1. JOIN: This step will generate candidates of size k by joining Fk−1(C) with itself.
Also, the generated candidate should be element of Sk(C).

insert into candk(C)
( select p.items1, . . . , p.itemk−1, q.itemk−1

from Fk−1(C) p,Fk−1(C) q
where p.items1 = q.item1

. . . . . .
and p.itemk−2 = q.itemk−2
and p.itemk−1 < q.itemk−1

intersect
select * from Sk(C) )

2. PRUNE: This step will remove those candidates for which some of its (k-1)-
subsets are not elements of Fk−1(C)

forall itemsets I ∈ candk(C) do
forall (k-1)-subsets s of I do
if (s /∈ Fk−1(C)) then
delete I from candk(C)

Figure 3.5: GenCand
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Figure 3.6: Survivor Sets

Figure 3.7: IceCube Example

credits are -1. Mapping them back to cells generate survivor sets as shown in Fig-

ure 3.6(b).

Cell level counts of 1-items are given in Figure 3.7(a). Aggregating them will generate

following region level frequent 1-items: R1 = {I1(15), I2(8), I3(8)}, R2 = {}, R3 =

{I1(8), I2(12)}, R4 = {I3(8)}, R5 = {}. Mapping these frequent 1-items to cells generates

region 1-sets as shown on Figure 3.7(b). 2-candidates that gets generated are shown in

Figure 3.7(c). Intersecting these candidates with survivor sets gives final set of candidates

counted by IceCube Algorithm, as shown in Figure 3.7(d). Overall, CellUnion would

count a total of 3*4=12 itemsets whereas IceCube Algorithm counts only 5 itemsets.
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3.5 Implementation Details

3.5.1 Mechanism for Counting Candidates at Cell level

We use trie which is a main memory data structure used for counting candidates and

has been shown to have better performance as compared to other traditional structures

used for counting in association rule mining algorithms [5] [4]. Trie is a rooted directed

tree. Root is at depth 0 and each node at depth d point to zero or more children nodes

at depth (d+1). Each edge in the trie represents an item. Children of a node are kept in

lexicographical order of items they represent. Each node N of trie represent an itemset

which is the concatenation of items in the path from root to node N. A counter is kept

at each leaf node which stores the count of itemset represented by the leaf.

Initially we are given a set of candidates to be counted. Firstly, each candidate in

the set is sorted in lexicographical order of items. Then, a trie is created from the set

of candidates to be counted. An example trie for set of candidates ACD, ACF, ADF,

AFG, CFG is shown in Figure 3.8. In this trie, node 7 represents the itemset ACD, node

8 represents itemset ACF and so on.

Figure 3.8: Trie

For counting candidates of size k, we will first create a trie with counters at leaf nodes.

Then, we will take transactions one by one. For each transaction, we will traverse the trie
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searching for each ordered k-subset of transaction. For every match, we will increment

the counter at corresponding leaf node.

In case of CellUnion algorithm, where candidates of all sizes are counted in one shot,

we will keep a counter at each node of trie. Then, while traversing trie we will increment

counters for each node that is visited during traversal.

3.5.2 Generating Candidates: gen-cand(Fk−1(C), Sk(C))

Use of trie, simplifies the process of generating candidates in IceCube algorithm. For

join step of gen-cand function, firstly we will construct a trie using itemsets in foreign

set Fk−1(C). Then, for each leaf node N in trie, we will take all its right sibling edges

and add them as children of N. Then, we will remove those candidates from trie which

are not present in SK(C). This completes the join step of candidate generation. Assume

for some cell C in pass k=3, foreign set F2(C) = {AC,AD,AF,CD,CF} and survivor

set S3(C) = {ACD,ADF}. Then, join step is shown in Figure 3.9. Firstly, trie is

constructed having itemsets from F2(C). Then, candidates are generated. For example,

nodes 4 and 5 (which represent items D and F) are right siblings of node 3. So, two new

nodes are added as children of node 3 which represent items D and F. Similarly, children

for other nodes are created. Then, node 9 and 11 are deleted because they represent

itemsets ACF and CDF, which are not elements of survivor set S3(C).

In prune step, for each k-candidate in trie, we will remove those candidates for which

some of its (k-1)-subsets are not present in trie. Then, we will recursively remove those

leaf nodes which are at depth less than k. Prune step is shown in Figure 3.10. Node 10

(which represent itemset ADF) is deleted because one of its subset DF is not present in

trie. Then, other leaf nodes are deleted recursively which are at depth less than 3.

3.5.3 Cubing Algorithm

Given cell level counts of itemsets, cubing algorithm efficiently computes region level

counts. One simple approach is that for each region, aggregate counts from its constituent
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Figure 3.9: Gen-cand: Join

cells. But this approach is inefficient because it does not utilize the fact that counts for

bigger regions can be computed from its constituent smaller regions instead of always

computing from cell level.

Efficient cubing algorithms have been proposed in [7] and [15]. We will adapt these

ideas to design an efficient cubing algorithm suited for our purposes. We will firstly define

the notion of view and view lattice as defined in [9]. V = (v1, v2, . . . , vn) defines a view in

cube, where vi represents a level in ith dimension’s hierarchy. Total number of views will

be, Nv = levels1 ∗ levels2 ∗· · ·∗ levelsn, where leveli is number of levels in ith dimension’s

hierarchy. A view V ′ = (v′1, v
′
2, . . . , v

′
n) is called a child of view V = (v1, v2, . . . , vn), if

∃k s.t. vi = v′i,∀i 6= k, and v′k is child of vk in kth dimension’s hierarchy. It implies

that view V ′ can be computed using view V . This parent-child relationship results in

a lattice of views as shown in Figure 3.11. (quarter,city) is the bottom view or root

view or cell level view in this lattice. Some of the views have multiple parents. We will
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Figure 3.10: Gen-cand: Prune

convert this lattice into a tree by ensuring that each view has a single parent view. If

a view has multiple parents, we will compute it from the parent view having minimum

number of regions. All other edges are removed. For example, (year, state) can be

computed from either (quarter, state) which has 8 regions or from (year, city) which has

4 regions. Since (year, city) has lesser number of regions, we will remove other edge

i.e. between (quarter, state) and (year, state). Tree edges are shown bold in Figure

3.11. This pruning ensures that we always calculate a view from a parent which requires

minimum amount of aggregation (additions). So, calculation of any view is optimal in

terms of number of aggregation operations required. This implies that our approach is

optimal in terms of number of aggregation (addition) operations required to compute all

views.

After converting the lattice to a tree, for an itemset we will read the cell level counts in

bottom view. Then, we will traverse the tree in depth first manner (DFS) and calculate

each view from its parent view. Memory allocated to a view can be freed once all its

children views have been computed. That means, atmost we have to keep views in an

entire path from root view view to leaf view in memory. So, if we assume that fanout

of any node in dimension hierarchy is atleast 2, then number of regions in any view is

atmost half of number of regions in its parent view. This ensures that maximum memory

required by our algorithm is twice the size of the bottom view.
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Figure 3.11: Lattice of views

But usually counts of itemset in many cells might be zero. So, we might be unnec-

essarily aggregating the zeros. Also, available memory may be far greater than that

required for cubing a single itemset. So, instead of cubing a single itemset at a time,

we will read the counts of multiple itemsets at a time in bottom view. For each cell, we

will maintain a list of itemsets and their counts, sorted according to itemsets. Itemsets

with zero counts are just ignored and not kept in this list. Now, calculating a view from

parent view requires merging these sorted lists s.t. for same itemsets in 2 list, counts

are aggregated. With this approach, maximum main memory required is 2 * (size of

root view) * (number of distinct itemsets read in root view). Based on available main

memory, we can decide the number of itemsets to be read in bottom view at a time.
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Experimental Evaluation

4.1 Synthetic Data Generator

IBM Quest Market Basket Synthetic Data Generator was developed by Agrawal et al. [3]

for generating synthetic market basket datasets. But it generates transactions without

dimension attributes. So, we used this Quest data generator code [11] as base to develop

a multidimensional market basket synthetic data generator.

4.1.1 IBM Quest Market Basket Synthetic data Generator

IBM Quest data generator takes the parameters as given in Table 4.1. It firstly generates

a set Lq of large (frequent) itemsets having |Lq| itemsets. Average count of itemsets in

Lq is inversely proportional to |Lq|. Size of each itemset in Lq is picked from a Poisson

distribution with mean equal to |Iq|.

Then, transactions are generated using this set Lq. Size of each transaction is picked

|Dq| number of transactions
|Tq| avg. size of transactions
|Iq| avg. size of maximal potentially large itemsets
|Lq| number of maximal potentially large itemsets
Nq number of items

Table 4.1: Parameters to IBM Quest Data Generator

25
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|D| number of transactions
|T | avg. size of transactions
|I| avg. size of maximal potentially large itemsets
|L| number of maximal potentially large itemsets
items cell number of unique items to add to each cell
num reg number of random regions to consider
items reg number of items to add to each random regions
n number of dimensions in cube
l1, . . . , ln number of levels in hierarchy of each dimension
fi,1, . . . fi,li−1 fanout at each level of all dimensions i = 1 . . . n

Table 4.2: Parameters to Multi-dimensional Data Generator

from a Poisson distribution with mean equal to |Tq|. Then, large itemsets from Lq are

added to transaction until its size is exceeded.

4.1.2 Multi-dimensional Market-Basket Synthetic data gener-

ator

We developed Multi-dimensional Market-Basket Data generator. It takes the parameters

as given in Table 4.2. Synthetic data generation has 2 phases:

• Hierarchy Generation:

Hierarchy in each dimension is modeled as a tree. Following algorithm is used to

generate tree hierarchy for dimensions:

Algorithm:

For each dimension i = 1 . . . n

For each level j = 1 . . . (li − 1)

Generate children for each node at level j of ith dim (No. of children of a

node at level j in dimension i is equal to fanout of that level fi,j)

• Data Generation:

To model the real life behavior we need to maintain the uniqueness of each cell.

For example, customer purchasing behavior is different in M.P. and Karnataka or
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in summer and winter. Also, there must be some similarity between related cells.

For example, customer purchasing behavior in Bangalore and Mysore have some

similarities because both of them are in Karnataka. Our synthetic data generator

should take care of these behaviors.

We first generate set of items for each cell. Let B1, . . . , BN be set of basket items

generated for each of N cells. Set of items (Bi) will then be used to generate trans-

actions for cell Ci. To model real life scenario each set Bi should have some unique

items and sets that belong to related cells should have some common items.

Algorithm:

For i = 1 . . . N

Add items cell unique items to set Bi

For j = 1 . . . num reg

Generate a set P of items reg unique items

Pick a random region R from cube.

For k = 1 . . . N

If cell Ck comes under region R, then

Bk = Bk ∪ P

For i = 1 . . . N

Call IBM Quest data generator to generate transactions for cell Ci using items

in set Bi with following parameters |Tq| = |T |, |Iq| = |I|, |Lq| = |L|, Nq =

|Bi|, |Dq| = value picked from Poisson distribution with mean |D|/Nb

4.2 Oracle (God’s) Algorithm

V. Pudi et. al. [14] proposed the idea of designing the Oracle Algorithm (God’s Algo-

rithm), as a method to get a lower bound on the performance. We borrowed this idea

and designed an Oracle Algorithm for our problem. We assume that Oracle Algorithm
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Oracle Algorithm:

1. Generate the set of itemsets to be counted in each cell:
{G(C1), G(C2), . . . , G(CNb

)}

• foreach region R
forall frequent itemsets I in R

add I to G(Ci), ∀Ci contained in R

2. Count: For each cell Ci, count the itemsets in set G(Ci) in it.

3. Cube: Recursively aggregate cell level counts to get region level counts.

4. Generate output: For each region R, output frequent itemsets in R and their
counts.

Figure 4.1: Oracle Algorithm

knows the identities of frequent itemsets in all regions. It just need to gather the counts

of these itemsets (which are known to be frequent) at cell level and aggregate cell level

counts to get region level counts. This is an impractical algorithm and it is clear that any

practical algorithm will have to do atleast this much amount of work. So, this gives us

an idea of maximum opportunity available for performance improvement. Pseudocode

of Oracle algorithm is given in Figure 4.1.

4.3 Results: Synthetic Data

We used the multi-dimensional market basket synthetic data generator to generate 5

synthetic datasets with varying number of dimensions, hierarchies and fanouts. Charac-

teristics of these 5 datasets are shown in Figure 4.2. We used support = 0.2 ∗ density

for our experiments. All algorithms were implemented in C++. All experiments were

conducted on a Sun Ultra 24 quad core machine with 8 GB of RAM, running on the

Ubuntu 10 operating system.

Figure 4.3 shows that the time taken by RelaxedSup algorithm for datasets D1 and

D2 is 5-7 times more than TOARM algorithm and an order of magnitude or two more

than other algorithms. Also, RelaxedSup algorithm takes even greater time as number
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Figure 4.2: Synthetic datasets

of regions increases. Hence, we could give execution times of RelaxedSup only for D1

and D2 as it did not complete for other datasets in reasonable time frame. So, we will

not show results for RelaxedSup algorithm in any of the graphs from now on.

Figure 4.3: Execution Time

Figure 4.4 shows the execution time of various algorithms on log-scale for the five

synthetic datasets. We can clearly see that TOARM algorithm is highly inefficient. For

each region in cube, TOARM algorithm separately computes itemsets to be counted and

then counts them. This lead to many itemsets being counted redundantly thus making

it inefficient.

CellUnion algorithm is much better than TOARM algorithm because it removes the

inefficiency due to redundant counting of itemsets. But still it computes union over

whole cube and then count the itemsets in union in all cells. For complex cubes, this

union can become huge. Hence, it takes large time for complex cubes.

IceCube algorithm is always better than TOARM and CellUnion algorithms. The

performance gap increases with increase in cube complexity. Performance of IceCube
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algorithm is an order of magnitude better than CellUnion algorithm for datasets D3, D4

and D5. But there is still a significant gap between IceCube algorithm and Oracle algo-

rithm. So, theoretically there remains scope for improvement over IceCube algorithm.

But Oracle is an impractical algorithm and given the exponential space of data cube,

performance comparable to Oracle algorithm is difficult to achieve.

Figure 4.4: Time taken

Figure 4.5 shows the number of candidates counted by different approaches. We can

see that number of candidates counted by IceCube algorithm is an order of magnitude less

than TOARM algorithm for all datasets and an order of magnitude less than CellUnion

algorithm for complex cubes.

Figure 4.6 gives the maximum main memory utilization of different algorithms for the

synthetic datasets. Peak main memory utilization for TOARM and CellUnion algorithm

is similar and is slightly less for IceCube algorithm.

Figure 4.7 shows the average time taken per region for the synthetic datasets. We

can see that for IceCube algorithm, time taken per region is less than 4 seconds for all

datasets and it is less than 1 second for datasets having larger number of regions in cube.
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Figure 4.5: Number of candidates counted

Figure 4.8 shows the scalability of algorithms. We took dataset D3 and increased the

number of transactions upto 100 million and measured performance of various algorithms.

Graph shows that all algorithms scales linearly with increase in dataset size. But the

slope of graph for IceCube algorithm is very less as compared to that of TOARM and

CellUnion algorithms. Slope of graph for Oracle algorithm even lesser than that of

IceCube algorithm.

We measured the average number of frequent itemsets for regions of different sizes,

where region size is calculated as number of cells in the region. Figure 4.9 shows the

graph for dataset D3. We can see that average number of frequent itemsets is more for

smaller regions. This confirms the presence of many localized frequent patterns. These

localized patterns are discovered by our approach but will be missed by any global mining

algorithm.
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Figure 4.6: Peak Main Memory Utilization

4.4 Results: Real Data

We have taken inproceedings records from DBLP data [10] and created transactions and

dimension hierarchy out of them. Paper title, authors and author affiliation are taken

as basket items to build transaction. Conference and year are used as two dimensions of

cube. Total of 153 computer science conferences are taken and are classified according

to their areas like OS, Database etc. This generated cube having a total of 3366 cells,

1305 regions and 203K transactions. We replicated data in each cell 50 times and thus

generated 10.15M transactions. Support value of 5% is used for mining.

Figure 4.10 shows the time taken by various algorithms for generated DBLP dataset.

IceCube algorithm performs significantly better than TOARM and CellUnion algorithms.

Also, performance of IceCube algorithm is within 4 times of Oracle algorithm for DBLP

dataset.

Figure 4.11 shows the number of candidates counted by different algorithms for DBLP

dataset. Candidates counted by IceCube algorithm is more than two orders of magnitude

less than both TOARM and CellUnion algorithm.

Figure 4.12 gives the maximum main memory utilization of different approaches for
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Figure 4.7: Feasibility (Average Processing Time per Region)

DBLP dataset. Peak memory utilization of TOARM and CellUnion algorithms are

similar and is slightly lower for IceCube algorithm.

Table 4.3 lists some of the targeted frequent itemsets generated from DBLP dataset.

For example, first rule indicates that NUS (National University of Singapore) had many

papers in SIGMOD conference 2005. While second rule says that NUS had strong pres-

ence in all DASFAA conferences.

Region Targeted Pattern
(2005, sigmod) NUS
(ALL, dasfaa) NUS
(2010, srds) cloud computing
(2009, dasfaa) xml search keyword
(2000,wcre) program tools structured demonstration compre-

hension UnivOfVictoriaCanada margaret-anne-
storey susan-elliott-sim

Table 4.3: Targeted Patterns
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Figure 4.8: Scalability

Figure 4.9: Number of Targeted Itemsets
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Figure 4.10: Execution Time (DBLP)

Figure 4.11: Number of candidates counted (DBLP)
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Figure 4.12: Peak Main Memory Utilization (DBLP)



Chapter 5

Related Work

Association rule mining problem was firstly introduced by Agrawal et al. [2]. They pro-

posed the first algorithm for mining association rules, known as AIS algorithm. Apriori

algorithm proposed in [3] was one of the earliest and popular algorithm for mining as-

sociation rules. Apriori algorithm iteratively generates candidate itemsets and frequent

itemsets from cardinality 1 to k, where k is the largest frequent itemset cardinality. It

uses the property that all subsets of a frequent itemset are also frequent. It uses hash

tree for counting candidate itemsets.

Han et al. [8] proposed frequent pattern tree (FP-tree) and a FP-tree based algorithm

for mining frequent patterns. FP-tree is a compact representation of transaction database

which stores information about frequent patterns. It uses pattern growth approach for

mining frequent itemsets and does not explicitly do candidate set generation which is

costly.

V. Pudi et. al. [14] addressed the issue of space available for improvement for as-

sociation rule mining algorithms. They designed an Oracle algorithm which knows the

identities of frequent itemsets in advance and only required to gather their counts to

complete mining process. Then, they proposed ARMOR algorithm whose performance

is within twice of Oracle algorithm.

But none of the above approaches deal with multidimensional market basket data.

37
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Wang et al. [16] addressed the problem of online mining of association rules in mul-

tidimensional market basket data and proposed an approach called TOARM. It initially

computes and stores cell level frequent itemsets (along with their counts) based on some

minimum support (localized support). At query time, it requires user to specify the

window (region) for which frequent itemsets are desired. Then, it generates candidate

itemsets based on stored itemsets for user given query window. Then, it counts these

candidate itemsets in query window and generates frequent itemsets.

Das et al. [7] also looked at the similar problem as that of [16]. They proposed a

method called RMV to find out the minimal number of itemsets to be counted and stored

for each cell so that original transaction data need not be visited for any multidimensional

query window. For any user given query window (region), they don’t require to do any

counting of itemsets. Instead they just have to aggregate the cell level counts of itemsets

which is already available to them.

But both of these approaches do not scale for our problem, where goal is to find out

frequent itemsets in all regions.

Chen at al. [6] proposed prediction cubes which is used for exploratory data analysis.

Each cell in prediction cubes describes a predictive model trained on data belonging to

that cell. They propose a technique based on model decomposition to efficiently compute

the prediction cube. Our problem formulation is on the lines of prediction cube but for

market basket data.

Concept of localized support, as used by us, has previously been addressed in Aggar-

wal et al. [1] and Nasraoi et al. [13].

Aggarwal et al. [1] uses the concept of localized association rules. They develop a clus-

tering algorithm to segment the transactions into disjoint clusters. Similar transactions

(based on its constituent items) are put into same cluster. Then, association mining is

done locally on each of these clusters. Clustering is done so as to increase the number of

frequent patterns generated. But they don’t take multidimensional data and dimension

attributes into consideration. Clusters generated by their approach may not align with

cell/region boundaries. Also clusters need not be convex regions in cube. That means
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same cluster may contain transactions from different unrelated parts of cube. So, the

association rules generated by their approach do not target a specific customer segment.

Nasraoi et al. [13] maps association mining as a criterion guided optimization problem.

They try to find localized frequent itemsets with error tolerance in support and itemset

matching. They call such itemsets as Localised Error Tolerant Frequent Pattern (LET-

FP). But they also do not take the dimensions and hierarchies into consideration and

hence do not guarantee targeted rules.



Chapter 6

Conclusions

In this project, we extended traditional association rule mining to the framework of

data cubes. We defined the problem of mining targeted association rules using notion

of localized support. An efficient IceCube algorithm was designed which incorporates

ideas of interleaving, credit based pruning and cubing. Experimental evaluation on both

synthetic and real datasets showed that IceCube algorithm gives good performance. The

good performance is achieved due to reduction in redundant counting of candidates.

We also showed that algorithm scales linearly with increase in dataset size and also

performs well for complex cubes. Currently we only studied association rule mining in

the framework of data cubes. Future direction could be to extend other data mining

techniques for data cubes.
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