
Unmasque2: Performance Optimization and Scope

Enhancement in Unmasque

A PROJECT THESIS

SUBMITTED IN PARTIAL FULFILMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

Master of Technology

IN

Faculty of Engineering

BY

Sneha Wadekar

Computer Science and Automation

Indian Institute of Science

Bangalore – 560 012 (INDIA)

July, 2023

Declaration of Originality

I, Sneha Wadekar, with SR No. 04-04-00-10-51-21-1-19437 hereby declare that the ma-

terial presented in the thesis titled

Unmasque2: Performance Optimization and Scope Enhancement in Unmasque

represents original work carried out by me in the Department of Computer Science and

Automation at Indian Institute of Science during the years 2021-2023.

With my signature, I certify that:

• I have not manipulated any of the data or results.

• I have not committed any plagiarism of intellectual property. I have clearly indicated and

referenced the contributions of others.

• I have explicitly acknowledged all collaborative research and discussions.

• I have understood that any false claim will result in severe disciplinary action.

• I have understood that the work may be screened for any form of academic misconduct.

Date: July, 2023 Student Signature

In my capacity as supervisor of the above-mentioned work, I certify that the above statements

are true to the best of my knowledge, and I have carried out due diligence to ensure the

originality of the report.

Advisor Name: Prof. Jayant R. Haritsa Advisor Signature

1

© Sneha Wadekar

July, 2023

All rights reserved

DEDICATED TO

My Family

for their love and support

Acknowledgements

I would like to express gratitude to Prof. Jayant R. Haritsa, My Project Advisor and Mentor.

I am thankful to him for his invaluable guidance and support throughout my thesis. I am truly

grateful for the opportunity to work under his mentor ship. His expertise and encouragement

have been instrumental in shaping my academic journey.

I am thankful to Anupam Sanghi and Manish Kesarwani for their valuable input. I am also

thankful to Mukul, Aman, and Abhinav for mentoring and assisting me on numerous occasions.

I would also like to thank all my lab mates for their constant support.

Finally, I would like to express my heartfelt gratitude to my parents and brother for their

unwavering support throughout my life. Their constant presence and encouragement have been

invaluable to me, and I am truly grateful.

i

Abstract

Unmasque (in this thesis called Unmasque 1) is a platform-independent hidden query extractor

designed to solve the HQE problem. In this paper, we introduce Unmasque 1.5, an improved

version of Unmasque 1 with enhanced performance. Unmasque 1.5 utilizes correlated sampling

and view-based halving techniques to replace the old copy-based recursive halving minimizer.

It also introduces an efficient hash-based comparator for result comparison. The results section

provides a detailed evaluation of the extraction times for both Unmasque 1 and Unmasque 1.5.

Furthermore, we introduce Unmasque 2, a scope-enhanced version of Unmasque 1.5. Un-

masque 2 incorporates the performance enhancements and expands the extractable scope to

include algebraic predicates, disjunction predicates, outer joins, and not-equal predicates. These

additions were previously beyond the extractable domain. We delve into a thorough discus-

sion of these features and present a study on the extraction time of queries involving these

predicates.

ii

Contents

Acknowledgements i

Abstract ii

Contents iii

List of Figures v

List of Tables vi

1 Introduction 1

1.1 Motivation . 2

1.1.1 Performance Optimizations. 2

1.1.2 Scope Enhancements. 2

1.2 Technical Challenges . 3

1.3 Our Contribution . 4

1.4 Performance Evaluation . 4

1.5 Organization . 4

2 Unmasque 1: Background 5

3 Unmasque 1.5:

Performance Optimization. 7

3.1 Correlated Sampling. 7

3.2 View Based Minimizer. 11

3.3 Hash-Based Result Comparator. 12

4 UNMASQUE 2 :

U1.5 + Scope Enhancements 14

iii

CONTENTS

4.1 Updated Extractable Query Class . 15

4.2 Extend Database Minimizer: . 16

4.3 Algebraic Predicate Extractor. 17

4.3.1 Active Predicate Extraction. 18

4.3.2 Dormant Predicate Extraction. 18

4.4 Disjunction Extractor. 19

5 Outer Join Extractor. 21

5.1 Outer Join Existence Checker. 22

5.2 Assumptions. 23

5.3 Create Inner Join Graph. 23

5.4 Refinement of join type on Single Edge Join Graph. 24

5.5 Refinement of Join Type on Multi Edge Join Graph. 26

5.6 Formulate all possible Nesting Sequence of Joins. 28

5.7 Assignment of filter predicates to ON/WHERE clause. 29

5.8 Formulate queries and Eliminate semantically non-equivalent queries (to QH): . 32

5.9 Algorithm. 32

6 Not Equal Predicates and Correctness 35

6.1 Not Equal Predicates. 35

6.2 Correctness. 35

7 Experiments 39

7.1 U1 v/s U1.5 Performance Enhancement Results 39

7.2 Unmasque 2 . 40

8 Related Work 41

9 Conclusion and Future Work 42

Bibliography 43

Appendix 44

iv

List of Figures

1.1 Unmasque 2 Exemplar Query . 3

2.1 Unmasque 1: Extraction Pipeline . 5

2.2 List of symbols in the pipeline. 6

4.1 Unmasque 2: Extraction Pipeline . 14

5.1 Outer Join + NEP existence checker. 22

5.2 Outer Join + NEP existence checker. 22

5.3 Outer Join Table. 25

5.4 Outer join Graphs . 26

5.5 Outer join Graph of U2 Exemplar query. 27

5.6 Example . 28

5.7 Multi Edge Join graph . 29

5.8 . 31

7.1 Extraction time Unmasque 1 v/s Unmasque 1.5 39

7.2 Result comparator time . 40

7.3 Unmasque 2: Extraction time. 40

v

List of Tables

vi

Chapter 1

Introduction

Hidden-Query Extraction(HQE) problem aims to identify the Hidden Query while having access

to the hidden executable. Formally defined, Hidden-Query Extraction(HQE) is: ”Given a black-

box application A, containing a Hidden query QH (in either SQL format or its imperative

equivalent), and a database instance DI on which QH produces a populated result RI , unmask

QH to reveal the original query (in SQL format)”[1].

As a ground-truth query is additionally available, but in a hidden form that is not easily

accessible. For example, the original query may be explicitly hidden in a black-box application

executable. Moreover, encryption or obfuscation may have been incorporated to further protect

the application logic. Such “hidden executable” situations could also arise in the context of

legacy code, where the original source has been lost or misplaced over time, or when third-party

proprietary tools are part of the workflow.

Another possible scenario is that the application itself is visible, but its inner workings are

still difficult to understand. This can happen in two ways. The first scenario involves the appli-

cation’s construction using intricate SQL queries, which can pose difficulties in understanding.

These queries might be automatically generated through machine-generated object-relational

mappings, further complicating interpretation for human developers. Second, the application

may consist of poorly documented imperative code that is not easily decipherable. This sit-

uation can arise when software is inherited from external developers who did not adequately

document their code, making it challenging for subsequent developers to understand and modify

the application.

The objective of HQE is to uncover the hidden query QH and reveal its original form in SQL

format. In HQE, the goal is to precisely identify QH such that for every instance i, applying

QH to the database Di will yield the exact result Ri. In other words, The goal of Hidden Query

Extraction is to find the precise QH such that ∀iQH(Di) = Ri.

1

HQE has a variety of use cases such as Imperative Code to SQL Translation, Debugging

Applications with stored SQL procedures, Recovering lost source code, etc.

UNMASQUE (Unified Non-invasive MAchine for Sql QUery Extraction) is the first step

towards addressing the HQE problem. It is a platform-independent hidden query extractor

introduced in [1]. We call it Unmasque 1 or U1 in this thesis. It extracts the hidden query

QH through “active learning”. U1 utilizes the outputs of hidden query executions on carefully

crafted database instances to expose the hidden query QH . It achieves this through a com-

bination of database mutation and synthetic database generation, without requiring invasive

modifications to the application software or underlying database engine.

1.1 Motivation

There are several key motivations that have driven this work. These include:

1.1.1 Performance Optimizations.

Performance Optimization of Unmasque is crucial for achieving faster extraction, efficient re-

source utilization, cost saving, etc. By optimizing algorithms in Unmasque, we can reduce the

extraction time significantly. Correlated Sampling and View-based Minimization techniques

can be employed to achieve significant performance optimization at the database minimizer

stage.

By employing Correlated Sampling, a subset of tuples of the tables can be selected in

a way that maintains the join relationship between the tuples, enabling higher chances of a

non-empty result when QH is run on the sampled database. View-based Minimization

leverages the creation of logical views instead of actual copies of the minimized database.

To optimize the comparison of results, we employ a Hash-Based Result Comparator

instead of relying on a comparison-based result comparator.

1.1.2 Scope Enhancements.

Unmasque1 cannot handle algebraic predicates, disjunction predicates, outer joins(referred to as

OJ), and not equal predicates(referred to as NEP), we are motivated to develop and implement

new extraction components to address some of these shortcomings. Additionally, we also aimed

to integrate existing components with the newly designed ones to create an enhanced version

of Unmasque, with a wider scope, known as Unmasque 2.

The Exemplar Query can be seen in Figure 1.1. It is extractable by Unmasque 2. It includes

algebraic predicates, Disjunction Clauses, Outer joins, and Not equal predicates (NEP).

2

Figure 1.1: Unmasque 2 Exemplar Query

1.2 Technical Challenges

Debugging and modifying the implementation of the algebraic predicate extractor was necessary

to replace the filter predicate extractor module. This change involved ensuring that the algebraic

predicate extractor could effectively perform the required extraction tasks.

Additionally, an implementation for the dormant predicates extractor was needed since it

was missing from the existing implementation. This involved developing and integrating the

functionality to identify and extract dormant predicates that were not previously handled by

the implementation.

Both the disjunction and NEP extractor modules demanded meticulous debugging, testing,

and modifications to the implementation. These modules were crucial for extracting and pro-

cessing disjunctions (logical OR conditions) and NEPs within the application. Ensuring their

seamless integration into the application required significant time and effort to guarantee the

accurate extraction and processing of these types of predicates.

Another challenge was to distinguish between the existence of Not equal predicate or outer

joins or both in the hidden query.

Extending the extraction scope to include outer joins presented a challenge for the existing

database minimizer, as it became incapable of correctly reducing the database. Incorporating

outer joins into the extraction scope required modifications to the database minimizer’s algo-

rithms and logic. The inclusion of outer joins in the extraction scope significantly challenged

the existing database minimizer and necessitated substantial adjustments to its functionality

to ensure accurate and effective reduction of the database.

3

1.3 Our Contribution

Our contributions encompass several significant enhancements to the system:

1. Correlated Sampling: correlated sampling technique is aimed at enhancing the efficiency

of database minimization processes. Recognizing the join relationships between tables, we have

implemented a sampling technique that maximizes the probability of hidden queries producing

non-empty results by considering the join relationships in the table.

2. View-Based Minimizer: This technique focuses on minimizing the size of the sampled

database to a single-row database using systems tuple identifiers to create views.

3. Outer Join Extractor: We developed an outer join extractor module that identifies and

extracts outer join operations within the database. This module enables the system to extract

outer joins accurately.

4. Integration of Predicate Extractors: We successfully integrated various predicate extrac-

tors into the system, including algebraic predicate extractors, disjunction extractors, and Not

Equal Predicate (NEP) extractors. These modules enable the system to extract and process

complex predicates, enhancing the system’s querying capabilities and supporting advanced data

analysis tasks.

Overall, our contributions encompass correlated sampling techniques, a view-based mini-

mizer implementation, an outer join extractor, and the integration of various predicate extrac-

tors, enhancing extraction scope.

1.4 Performance Evaluation

We have evaluated Unmasque 2 extraction behavior on complex SQL queries containing alge-

braic predicates disjunctions, outer joins, and not equal predicates arising in a synthetic TPC-H

environment. These complex queries are derived from the popular TPC-H benchmark. Our

experiments indicate that the hidden queries are precisely identified.

1.5 Organization

The organization of the following chapters is as follows. Chapter 2 gives a very brief description

of Unmasque. Chapter 3 discusses the performance optimizations and their algorithms. Starting

from Chapter 4 we go through each scope enhancement. Chapter 5 discusses the extraction

process of outer join and its algorithm. Chapter 6 discusses the Not equal predicate extractor.

Chapter 7 goes through the experimental evaluation. Chapter 8 discusses the related work.

chapter 9 concludes the thesis and discusses some possible upcoming works in unmasque. The

appendix contains some experimental test queries.

4

Chapter 2

Unmasque 1: Background

Unmasque 1 is capable of extracting a basic set of warehouse queries that include the core

SPJGAOL clauses, which refer to single-block equijoin queries with conjunctive predicates.

The class of queries that UNMASQUE can handle is defined in [1] as Extractable Query

Class (EQC). Unmasque includes higher-order logic constructs such as comparators and multi-

linear scalar functions. To achieve this broader coverage, certain assumptions are made in [1].

The supported queries in this framework are referred to as Extractable Query Class (EQC).

Figure 2.1: Unmasque 1: Extraction Pipeline

The Unmasque 1 pipeline consists of several steps that contribute to the process of hidden

query extraction. Here is a description of the Unmasque 1 pipeline:

1. The from clause extractor retrieves tables in the hidden query.

2. The database minimizer uses a copy-based recursive halver to reduce the initial input

database to a minimized database with a single row database called D1.

5

3. The join predicate extractor extracts inner joins.

4. The filter predicate extractor is mainly able to extract arithmetic predicates. These

predicates are on only non-key columns and are of the type column op value. Further,

for numeric columns, op ∈ {=, <,<=, >,>=, between}. Whereas for textual columns,

op ∈ {=, like}.

5. The Project, Group By, Aggregate, Order By, and Limit are extracted as discussed in [2].

6. The query assembler formulates the query and the result comparator/ checker is a comparison-

based technique to check the results of the hidden query and extracted query on the initial

database.

Figure 2.2: List of symbols in the pipeline.

6

Chapter 3

Unmasque 1.5:

Performance Optimization.

Unmasque 1.5 (also addressed as U1.5) is the performance-optimized version of U1. The

sampling technique described in section 3.1 is employed to create an initial database sam-

ple. Subsequently, the sampled database undergoes a recursive minimization process, utilizing

the view-based recursive halving technique outlined in section 3.2. This process culminates in

the generation of a single-row database, denoted as D1.

3.1 Correlated Sampling.

Correlated sampling (CS2) is developed by storing correlated sample tuples to preserve the

joined relationships. That is, tuples of a relation are included in the sample of a relation if they

join with already drawn sample tuples of other relations[7]. Using the already sampled tuples

and indexes, we can draw new tuples which are included in the sample of the next table.

First, we perform a reduction of the schematic join graph. Here’s how the reduction process

works:

1. The input is the complete join graph, including all tables and their relationships. And

QH ’s From clause which specifies the tables of focus.

2. Selecting Relevant Tables: From the complete join graph, only the tables mentioned in

the From clause are selected. Other tables are excluded from further consideration.

3. Eliminating Irrelevant Edges: The edges in the join graph that connect the irrelevant

tables (not present in the FROM clause) are eliminated.

7

The result is a simplified join graph that contains only the relevant tables and their

join relationships as specified in the From clause. This reduced graph provides a focused

representation of the tables and their connections that are necessary to perform minimization.

The next procedure is as shown in Algorithm 1. The seed sample rate refers to the per-

centage of tuples that will be included in the sample. To update the seed sample rate, we

follow a geometric progression. global join graph is the simplified join graph we discussed.

global core sizes is a dictionary storing tables in From clause and their sizes. CheckNonEmpty()

Returns True if the QH(Dsampled) has non empty results, Else returns False.

The Algorithm 1 is a procedure that performs sampling on a global join graph based on a

given seed sample rate. Here’s a breakdown of the steps in the algorithm:

1. Initialize variables:

(a) iterations: the number of iterations (n)

(b) seed sample rate: the initial seed sample rate (rate)

(c) scaling factor: a constant factor for updating the seed sample rate.

(d) CS2 flag: a flag indicating whether CS2 sampling has passed.

(e) sampleStatus: a data structure to track the sampling status of tables.(boolean value)

2. While there are iterations remaining:

(a) If CS2 flag is False:

i. Update the seed sample rate by multiplying it with the scaling factor. Decrease

the number of iterations by 1.

ii. For each table in the vertices of the global join graph with sampleStatus =

False. Find the table with the maximum global core size (max cs) and sampleStatus ==

False. Set the base table to the table with the maximum core size. Sample the

base table using the seed sample rate. Update the sampleStatus of the base table

to True. Sample the remaining tables connected to the base table (table name)

using the sampled base table. Update their sampleStatus to True.

iii. Check if the result of QH on sampled database is non-empty by invoking the

CheckNonEmpty() function. If the result of QH on sampled database is empty

: Revert the sampling and restore the original database and Set the CS2 flag to

False. If the result of QH on sampled database is non-empty : Set the CS2 flag

to True (sampling has passed)

8

iv. If CS2 flag is True: Save the sampled database. Return from the procedure

(sampling is successful).

v. If CS2 flag is False continue the while loop.

(b) If CS2 flag is still False after exiting the while loop: CS2 sampling failed for all

iterations. Return from the procedure.

The algorithm terminates either when sampling is successful or when it fails for all iterations.

9

Algorithm 1 Correlated Sampling
iterations← n
seed sample rate← rate
scaling factor ← x
CS2 flag ← False
sampleStatus← {}
while iterations > 0 do

if CS2 flag == False then
seed sample rate∗ = scaling factor
iterations = iterations− 1
for table name in vertices of (global join graph with sampleStatue == False) do

max cs← 0
for i in vertices of (global join graph with sampleStatue == False) do

if max cs < global core sizes[i] then
base table = i
max cs = global core sizes[i]

end

end
Sample the base table using seed sample rate
sampleStatus[base table] = True
Sample remaining tables connected to base table table name using the sampled base
table and global join graph. And update their sampleStatus to True.

end
if CheckNonEmpty() == False then

revert the sampling, restore the database CS2 flag = False
else

end
CS2 flag = True

else
CS2 sampling PASSED.
Save the Sampled database.
return

end

end
CS2 failed for all iterations
return

10

3.2 View Based Minimizer.

Once Correlated Sampling is completed, the sampled tables undergo a minimization stage

known as View-Based (recursive halving) minimization shown in Algorithm 2. This technique

focuses on minimizing the size of the sampled database to a single-row database using systems

tuple identifiers to create views.

A tuple identifier represents a physical location of a row. It is the fastest way of locating a

row. A ctid of a row is represented as a pair (block number, tuple number within block). The

number of tuples present in a block is table-width dependent. Based on the number of tuples

per block, we can estimate the ctid of the middle row of the table. Using ctid’s, we can quickly

locate the required chunk of large Tables.

We create a view, having the upper half of the table. We query the view by hidden query

QH . If the results of QH on the minimized database are non-empty, we proceed with the upper

half. Then recursively consider the upper and lower half of this half. If the results of QH on the

minimized database are empty, we proceed with the lower half of the database and recursively

consider its upper and lower half. The process of recursive halving using views is then followed

until we reach a single row database called D1. View creation is a constant-time operation. The

extra time and space of materializing the table is avoided. Algorithm 2 shows the algorithm

for view-based minimizer.

11

Algorithm 2 View-Based Minimizer

max no of rows = 1

for table name in (global core relations) do
Retrieve the start ctid values of the first tuple of the table.

Initialize start page with the page numbers.

while global core sizes[table name] > max no of rows do
Calculate the mid page using start page and the number of tuples fitting in a single

page.

Create view using start ctid & mid ctid.

if the result of QH on the minimized database is non-empty by executing

CheckNonEmpty() then
Consider tuples from start ctid to mid ctid for further minimization

else
Consider tuples from mid ctid for further minimization

end

end

end

3.3 Hash-Based Result Comparator.

A hash-based result comparator is a technique used to compare and match the results of two

or more queries based on the hash values of the results. The Row Hash Method is a technique

used to calculate a hash value for a table by applying a hash function to each individual row or

tuple in the table and aggregating the results. The query we use is: Select sum(hashtext) from

(select hashtext(re::TEXT) FROM re) as T. The provided SQL query performs a calculation

using the Row Hash Method. Let’s break it down step by step:

1. (select hashtext(re :: TEXT) FROM re) is an inner query that selects the hashtext

value of each tuple in the re table. The re :: TEXT part converts the tuple into a string

representation to generate a hash.

2. as T assigns the result of the inner query to the alias T, creating a temporary table.

3. Finally, the outer query select sum(hashtext) from T calculates the sum of the hashtext

values from the temporary table T. This aggregation represents the checksum value of

the re table.

The purpose of this query is to compute the checksum value of the re table using the Row

Hash Method. By summing the individual hash values, you obtain a single value that serves

12

as a unique identifier for the table’s contents. This checksum value can be used for comparison

with other tables or as a measure to detect changes or equivalence between different instances

of the re table.

13

Chapter 4

UNMASQUE 2 :

U1.5 + Scope Enhancements

The new extraction pipeline of Unmasque 2 is shown in Figure 4.1. It includes the performance

optimizations discussed in Chapter 3. In addition to that, it also consists of the additional

extraction components that contribute to scope enhancements. It is capable of extracting

correctly the exemplar query of Unmasque2(figure 1.1).

Figure 4.1: Unmasque 2: Extraction Pipeline

The walk-through of the Unmasque 2 extraction pipeline is as follows:

1. Identify the tables involved in the query, which are referred to as ”core relations”.

14

2. The database minimizer, consists of two stages. Correlated sampling is used to reduce

the cardinality of the database by employing a sampling technique. The resulting smaller

database is then recursively minimized using the View-based minimizer. The final out-

come is a single-row minimized database, denoted as D1.

3. Algebraic predicate extraction is performed on D1.

4. The Disjunction predicate extractor identifies any disjunctions in the query.

5. The pipeline proceeds with the extraction of Projection, Group By, Aggregate, Order By,

and Limit operations[1].

6. After the limit extractor, the pipeline checks for the presence of Outer Joins and Not

Equal Predicate (NEP) in the QH .

7. If an outer join is detected, extraction enters the Outer Join extractor module.

8. Following the outer join extraction, if NEP is present, the pipeline proceeds to the NEP

extractor loop.

9. The pipeline concludes with the query assembler combining the extracted components to

form the final query, which is then compared using a hash-based result comparator.

Hidden queries need to fulfill certain criteria. Many predicates do satisfy these assumptions

inherently.

In the upcoming sections, we discuss some changes done in some modules along with the

significant advancements and enhancements in scope that have been achieved in Unmasque 2.

4.1 Updated Extractable Query Class

The limitation in [1], which says that, Filter predicates feature only non-key columns and are

of the type column op value. Further, for numeric columns, op ∈ {=, <=, <,>,>=, between},
whereas for textual columns, op ∈ {=, like}, has been eliminated. Unmasque 2 can extract

filter predicates if they are of the type 〈Column op X〉 where X can be a column or value and

op ∈ {=, <=, <,>,>=, between}, whereas for textual columns, op ∈ {=, like}. In addition

to the previously mentioned operators, it is worth noting that the Not Equal operator (<>)

and disjunction predicates were not extractable in the earlier domain. However, they have now

been made extractable.

1. Filter predicates are of the type 〈Column op X〉 where X can be a column or value and

op ∈ {=, <=, <,>,>=, between}, whereas for textual columns, op ∈ =, like.

15

2. The Not Equal Predicate present in the filter is only on the non-key columns and is of

the type column op value where op ∈ {<>, notlike}.

3. Filter is a conjunction of disjunctions. filter predicates present in disjunction are of

type column op value. Further, for numeric columns, op ∈ {=, <=, <,>,>=, between},
whereas for textual columns, op ∈ =, like.

4. Every true assignment of filter, such that only one predicate is satisfied from each clause,

contributes at least one unique row to the output.

5. Algebraic predicates and NEP predicate must not be a part of disjunction predicates. NEP

must not be present in disjunction with another filter predicate. Let s1 = {set of attributes
participating in Algebraic predicates}. s2 ={attributes in disjunction predicates}. s3= {
attributed having Not Equal predicate }. Then s1 intersection s2 intersection s3 must be

empty.

6. To extract Outer Joins, the next three prerequisites are required to be followed. These

are generally followed by benchmark databases and queries : Complete non-null database:

The initial database (DI) must be a fully populated database without any NULL values.

7. At least one Non-aggregated attribute in projection: The projection clause of the query

should include at least one non-aggregated attribute from each of the tables involved in

the join operation.

8. Tuple with all Non-null values in result of QH(DI): The outcome of the hidden query (QH)

on the initial input database (DI) must have at least one tuple where all the projected

attributes have non-null values.

We share the same basic structural restrictions. However, our extraction scope is signifi-

cantly enlarged to include additional predicates and functionalities. . We hereafter refer to this

class of supported queries as Extractable Query Class - Unmasque 2 EQCU2).

4.2 Extend Database Minimizer:

The database minimizer module in U1 checked if the result of the hidden query on the minimized

database gives a non-empty result or not. But to extract Outer Joins, the database minimizer

needs to make sure of two conditions: First, the results of hidden-query on minimized tables

is not empty. Second, out of the tuples which are part of the non-empty results, at least one

tuple must be such that all projected attributes have a non-null value. If we make sure that

16

the tables are minimized making sure of these two conditions, the outcome of the database

minimizer module is a D1 such that in the results of QH(D1), none of the projected attributes

have a null value. This indirectly ensures that if QH has outer joins, D1 will be a single-row

database where all join conditions are satisfied.

We update the Correlated Sampling and View minimizer for the above logical change. We

need to replace CheckNonEmpty with CheckNullFree. The CheckNullFree function will

return True if the results of QH on the sampled or minimized database have at least one row

with all non-null values. We call such a row a Non-null row. Otherwise, it returns False.

4.3 Algebraic Predicate Extractor.

We will explore the extraction process for hidden queries that involve Algebraic Predicates.

These predicates consist of comparisons between columns, such as column op column, where

op ∈ {=, <,<=, >,>=} for numeric columns, and op ∈ {=, like} for textual columns. Ad-

ditionally, we will also consider Arithmetic Predicates, which involve comparisons between a

column and a value, such as a column op value, where op ∈ {=, <,<=, >,>=, between} for

numeric columns and op ∈ {=, like} for textual columns.

Algebraic Predicates present in QH are classified into two types:

1. Dormant Predicates: If there is a predicate col <= col′ with col having an upper bound

predicate col <= val and col′ having a lower bound because of predicate col′ >= val′,

where the value of col in D1 is less than val′ and the value of col′ in D1 is greater than

val. Then the predicate col <= col′ is inherently satisfied and will have no effect on the

result and bounds when a single mutation is performed. Dormant predicates are inactive

because they are overshadowed by other predicates and the overlapping bounds between

the columns. These predicates do not contribute to the query result because they are

already satisfied indirectly.

2. Active Predicates: All remaining predicates that are not classified as Dormant Predicates

are considered Active Predicates.

Dynamic nature of predicates: It’s important to note that the classification of predicates

is based on minimized database D1. For different D1, some active predicates may become dor-

mant, and some dormant predicates may become active. However, the classification definition

remains consistent in terms of D1.

17

4.3.1 Active Predicate Extraction.

We will discuss for the active predicates of type column op X where op ∈ {=, <=, <,>=, >}
and X can be a column or value. The filter predicate extractor is used to get the bounds on

the columns. We will first validate whether the bound is concrete or variable. The Validator

does it by manipulating the values (within the bounds) one by one of all such columns whose

value in D1 is equal to the bound. If the bounds turn out to be variable (due to column col),

we will iteratively find the new bounds by assigning the col as min or max depending upon the

nature of the bound otherwise, we will conclude that the bound is concrete.

4.3.2 Dormant Predicate Extraction.

Dormant Predicates can arise due to the overlapping bounds of two columns present in different

components. One column decides a variable bound on the other column but has a value greater

than the concrete upper bound of the other column and vice-versa.

l extendedprice <= o totalprice and

l extendedprice <= 70000 and

o totalprice >= 60000

Let’s consider the above example to further discuss this.

Detection of Dormant Predicates

To check the existence of dormant predicates, we will perform the following steps:

1. Choose a predicate and select one of its columns to assign a minimum value.

2. Keep all other columns at their maximum possible s-value.

3. If the hidden query, based on the mutated D1, yields empty results, it indicates the

presence of a dormant predicate.

For instance, let’s consider a case where we choose the predicate involving o totalprice.

Assigning o totalprice its minimum value of 60000 and l extendedprice its maximum value i.e.

70000. This leads to an empty result because the predicate l extendedprice <= o totalprice

won’t be satisfied. And we can conclude that a dormant predicate exists in QH .

Extraction of Dormant Predicates

To extract the Dormant predicate we convert it to active predicate. To convert the dormant

predicate into an active predicate, we follow these steps:

18

1. Choose a pair of predicates, such as Predicate 1: l extendedprice <= 70000 and Predicate

2: o totalprice >= 60000.

2. Assign the maximum possible value for all columns, except for the columns in one of the

predicates. Say we assign o totalprice its maximum value and the remaining columns

their minimum value.

3. During the evaluation of the lower bound of o totalprice, it turns out to be the same as the

value of l extendedprice. To validate this, we manipulate the value of l extendedprice.

By converting the dormant predicate into an active one, we can properly incorporate its

influence on the query evaluation and bounds determination process.

The dormant predicate extractor implementation was not complete previously but has been

done now. The algorithm described in [5] was implemented to extract the Dormant predicates.

This implementation focuses on identifying dormant predicates in a given QH . For details on

the Algebraic predicates refer [5]. Once the algebraic predicates have been extracted, the next

step is to identify and extract disjunction predicates.

4.4 Disjunction Extractor.

In order to extract any predicate in disjunction, we must have such a minimization in which

that particular predicate is the only one from its clause being satisfied. Hence we want the

filter to be a conjunction of disjunctions. And every true assignment of filter, such that only

one predicate is satisfied from each clause, contributes at least one unique row to the output.

The Disjunction extractor is called after the algebraic predicate extractor module and thus

receives algebraic predicate and arithmetic predicates as input, which necessarily contains ex-

actly one predicate from each clause according to [6].

From the exemplar query of Unmasque2, the disjunction clause is: (p size > 49OR ps availqty >

9998) and l shipmode IN (′MAIL′,′ SHIP ′,′ TRUCK ′). We are going to consider this as our

running example to discuss the extraction of disjunction predicates.

Say FE = (p size > 49 and l shipmode =′ MAIL′) are the filter clause detected initially.

The algorithm makes multiple calls to the database minimizer and Filter Extraction modules,

but as shown in the pipeline the calls are both subroutine calls and they transfer the control

back to the algorithm.

Let’s see the steps in detecting the disjunction clause in the exemplar query:

1. Delete the rows from database having p size > 49 and keep only the rows having

l shipmode =′ MAIL′

19

2. Minimize this database and call the filter extractor module.

3. Filter Clause Extractor returns (ps availqty > 9998 and l shipmode =′ MAIL′) hence n

ps availqty > 9998 is added to the Disjunction list of p size > 49.

4. Delete the rows from database having ps availqty > 9998 or having p size > 49 and keep

only the rows having l shipmode =′ MAIL′.

5. Executable output will be empty here and hence this clause is concluded.

6. In a similar fashion, the second clause will be extracted completely.

Integration of the disjunction extractor was done by me. For any details about the disjunc-

tion extractor refer to [6].

20

Chapter 5

Outer Join Extractor.

A SQL Join is used to combine data from multiple tables to generate a single output table,

selecting specific columns from each table. The tables are linked based on one or more common

attributes. The Join condition specifies the criteria which must be satisfied to combine rows.

• The INNER JOIN joins return rows from both tables as long as the join conditions are

met. Only the rows with matching values in both tables are included in the output.

• The LEFT OUTER JOIN returns all rows from the table on the left side of the join and

includes matching rows from the table on the right side. If there are left table rows with

no corresponding matches on the right side, the space for the right side will be filled with

null values.

• The RIGHT OUTER JOIN is akin to the LEFT JOIN but with reversed roles. It returns

all rows from the table on the right side of the join and includes matching rows from the

table on the left side. Any rows without matching values on the right side will be filled

with null values.

• The FULL OUTER JOIN keyword combines the results of both a LEFT JOIN and a

RIGHT JOIN. It creates a result that includes all rows from both tables. If rows don’t

have matches in the other table, null values will be present in the result.

Outer joins are important in relational databases because they allow for the retrieval of data

from two or more tables, even if there is no match between the joined columns. They enable

the inclusion of unmatched rows in the query results, which can be crucial for various data

analysis and reporting scenarios.

21

Benchmark queries often include outer joins to evaluate the performance and efficiency of

database systems. TPC-DS[8] Query 80, Query 78, Query 72, and Query 40 are a few examples

of benchmark queries having outer joins.

Figure 5.1: Outer Join + NEP existence checker.

5.1 Outer Join Existence Checker.

After extracting the limit clause, we proceed to examine the hidden query for the presence of

Outer Joins and NEP (Not Equal Predicate).

• To detect Outer Joins, we compare the results of the Hidden Query i.e. QH(DI) with the

results of the extracted query i.e. QE(DI). If the hidden query(QH) produces rows that

are not present in the extracted query’s(QE) results, and at least one column in those

rows has a NULL value, we identify the presence of outer join predicates.

• To identify the presence of NEP predicates, we compare the results of the extracted query

with the results of the hidden query. If the extracted query yields rows that are not found

in the hidden query’s results, we conclude that NEP predicates exist.

Figure 5.2: Outer Join + NEP existence checker.

22

At this stage, we are concerned about the presence of Outer Joins, which is detected as

shown: If QH(DI) minus QE(DI) = non-empty then, Outer Join Flag = True. Else, Outer Join

Flag = False.

5.2 Assumptions.

To extract Outer Joins, the following prerequisites are required to be followed. These are

generally followed by benchmark databases and queries.

1. Complete non-null database: The initial database (DI) must be a fully populated database

without any NULL values.

2. At least one Non-aggregated attribute in projection: The projection clause of the query

should include at least one non-aggregated attribute from each of the tables involved in

the join operation.

3. Tuple with all Non-null values in result of QH(DI): The outcome of the hidden query (QH)

on the initial input database (DI) must have at least one tuple where all the projected

attributes have non-null values.

These prerequisites ensure that the resulting minimized database (D1) obtained by the

database minimizer will have non-null values for all the projected attributes, enabling the

extraction of Outer Joins accurately.

5.3 Create Inner Join Graph.

All Outer Joins in the Hidden Query (QH) will be identified as Inner Joins by the previous

extracting components in the extraction Pipeline.

Lemma 5.1 If the QH has Outer Joins, then Algebraic Predicate Extractor will detect those

Outer Joins as Inner Joins.

Proof: For ease of explanation, let’s assume the hidden query QH contains an outer join between

two tables partsupp and lineitem, represented as partsupp (left)outer join lineitem ON ps suppkey =

l suppkey. This same explanation can be generalized for any type of outer join, and any ta-

bles/keys combination. It will still hold true.

During the execution of the Algebraic Predicate Extractor, the outer join predicates in QH

will be identified as equivalent inner join predicates. This is achieved through the following

steps:

23

1. Assumption 3 in section 5.2 states that when executing a hidden query (QH) on the

initial input database (DI), the resulting output must contain at least one tuple where

all the projected attributes have non-null values. This assumption is important because

it ensures that the Database Minimizer will guarantee the satisfaction of the outer join

conditions in D1, where ps suppkey = l suppkey. We minimize the database to such a

D1.

2. The next stage is getting the filters/bounds on each of the columns using D1. We get

(lineitem, l suppkey, 1, 1)(partsupp, ps suppkey, 1, 1). [syntax being followed is :(table

name, attribute name, lower bound, upper bound)]

3. For each of the filters extracted, we check in D1 for the existence of any other column

having the same value as the bounds in the filter predicate we are considering. So, we will

check in D1 for attributes having same values as that of bounds on lineitem.l suppkey,

i.e. upper bound = lower bound = 1. We detect that partsupp.ps suppkey has same

value i.e. 1.

4. We validate for the possibility of the existence of predicate: ps suppkey = l suppkey.

We perform mutations on D1 to create D1mut by assigning l suppkey = ps suppkey = x,

where x != 1(old value), and x belongs to a feasible range of both attributes. If QH(D1mut)

gives results with at least one non-null row, we extract the filter predicates which will

now reflect the mutations. (lineitem, l suppkey, x, x)(partsupp, ps suppkey, x, x). Hence,

we can conclude ps suppkey = l suppkey exists.

5. The from and where clause of the query will look like this: From lineitem, partsupp where

ps suppkey = l suppkey. Which is an equivalent representation of inner join.

Since the Algebraic Predicate Extractor identifies the outer join predicate as an inner join,

it follows that all outer join predicates in QH have been extracted as inner join predicates in

QE before we enter the Outer join existence checker module.

Therefore, we can conclude that if QH has outer joins, the Algebraic Predicate Extractor

will detect those outer joins as inner joins in the extracted query QE.

5.4 Refinement of join type on Single Edge Join Graph.

Consider our QH has a single join. So the join graph will have a single edge. We require

at least one non-aggregated attribute from each table participating in join to be present in

24

the projection clause. We will observe these attributes, i.e. observe if their values are null or

non-null.

Steps to determine the type of join on this edge:

1. Perform mutation on D1 to generate mutated D1 represented as D1mut. Break the join

condition by negating one of the keys in the condition i.e. perform mutations on D1 to

make the join condition False.

2. Run the QH on D1mut.

3. Determine the type of join using the table in Figure 5.3

In the table of Figure 5.3 if the entry is Non-Null, it means that for the projected attribute

of that table, at least one tuple has a Non-Null value. If the entry is Null, it means that for

the projected attribute of that table, all tuples have a Null value.

Figure 5.3: Outer Join Table.

Single-edge join graphs will look as shown in Figure 5.4. Sub-figure (a) represents a single

edge join graph where join is inner join, notice that the edge is non-directed. Sub-figure (b)

represents a single-edge join graph where the left outer join exists. Sub-figure (c) represents

a single edge join graph where a full outer join is present. We have not considered the Right

outer joins in the above discussion because, they are exactly similar to the left outer joins, but

the sequence of tables is reversed. If the hidden query happens to have a ”t1 right outer join

t2” or ”t2 left outer join t1”, both are semantically equivalent, and we can identify both cases

as ”t2 left outer join t1”.

25

Figure 5.4: Outer join Graphs

5.5 Refinement of Join Type on Multi Edge Join Graph.

When we have a join graph with multiple edges, it means that there are multiple join operations

involved in the query. Each edge in the join graph represents a specific join between two tables

or relations. The type of join associated with each edge in the join graph can be determined

independently of the joins on the other edges.

The arrows at each edge represent the importance of the table at that end of the edge.

Lemma 5.2 If multiple edges exist in the join graph, then the type of joins corresponding to

each edge can be determined independently of the joins on the remaining edges.

Proof: Proof by Induction. Let n be the number of edges in the join graph.

Base case: n=2. It is simple to verify the base case to be true, following the explanation in

section 5.4 for each of edge.

Assuming n=k is true.

Assuming, if there are k edges in the join-graph we can determine the type of join for any edge

say e, independent of the type of other k − 1 edges

Showing n=k+1 is true, using this assumption

i.e. If there are k + 1 edges/joins in join-graph we can determine the type of join for edge ek+1

i.e. for the join OJk+1, independent of other k edges. Suppose QH has a join condition of type:

T1 OJ1 T2...Ti OJi Ti+1....Tk OJk Tk+1

In the join graph, we call the edge corresponding to OJi as edge ei. In D1 all join conditions

will be satisfied. To determine the type of join at edge ek+1. We break the join condition

corresponding to OJk+1 to create a mutation of D1 called D1mut. Then, Run QH on D1mut.

Consider the graph before edge ek+1. As the join condition corresponding to all other edges

will be satisfied in D1mut, the graph except edge ek+1 and table Tk+1 can be replaced by a single

26

partial-outcome table i.e. Tpartial. In an environment where the database tables have a single

tuple, and the join condition is satisfied by these tuples, the outer joins get reduced to the

inner join. Hence in the partial-outcome table (Tpartial) none of the projected attributes will be

NULL. We can represent the join as:

Tpartial XJk Tk+1

Using the method described in section 5.4 join at edge ek+1 can be determined. Hence the

lemma is True.

2

Another way to look at Lemma 5.2 is that, if there are k + 1 edges in join-graph we can

determine the type of join for the edge ei, independent of the remaining k edges. suppose

hidden-query has a join condition of type as shown in lemma 5.1.

To determine the type of join at edge ei. Break the join condition corresponding to the XJi

by negating any one of the keys in the join condition. this will make the join condition false in

D1mut

Run QH on mutated D1mut. As the join condition corresponding to all other edges will

remain satisfied, the graph before edge ei can be reduced to a partial outcome table- Tpartial1.

Similarly, the graph after edge ei can be reduced to a partial outcome table- Tpartial2.these

partial outcome tables will not have any NULL values, because all other join conditions are

still being satisfied by D1mut. The partial outcome join looks like this:

Tpartial1 XJi Tpartial2

Tpartial1 and Tpartial2 will not have NULL values. So by following section 5.4 join at edge ei can

be determined.

Figure 5.5: Outer join Graph of U2 Exemplar query.

27

5.6 Formulate all possible Nesting Sequence of Joins.

There is a logical nesting in the query itself. Outer Joins are not commutative like Inner Joins.

So the possible Nesting Sequence on the joins must be determined.

Figure 11(a) shows the three tables T1, T2, and T3. Figure 11(b) shows the results of

”T1 LEFT JOIN T2 ON K1=K2 INNER JOIN T3 ON K3= K4” when the left outer join is

performed first and inner join is performed second. Figure 11(c) shows results when the inner

join is performed first and the left outer join is performed second. The results of the two nesting

sequences can be observed to be different:

Figure 5.6: Example

Since these two nesting sequences give different results. We need to determine the nesting

sequence in QH .

All possible permutations can always be an option to check, but we can highly optimize

the way we determine the sequence of nesting of joins (or joins) in a join graph. By doing a

Combinatorial enumeration of all feasible joins. This is in principle exponential but we have

tried to minimize the impact by doing some localized optimizations. By following the method

described.

28

Figure 5.7: Multi Edge Join graph

Figure 5.7 is a join graph representing it as non-directed for ease of understanding. Consider

each edge as the root of the tree. We formulate a possible nesting sequence by ensuring two

conditions:

1. The edges(joins) between nodes of level i and level i+1 must be present before the edges

(or joins) between nodes of level i+ 1 and level i+2, and so on.

2. The edges (joins) between nodes of level i and level i+ 1 can be present in any order.

(JC1, JC2, JC3, JC4, JC5) and (JC3, JC2, JC1, JC5, JC4) are possible join nesting

sequences.

5.7 Assignment of filter predicates to ON/WHERE clause.

Inner Join Predicates:

In the case of an inner join, all predicates pertaining to a table can be considered as part of

the join conditions. For example, if I have a filtering rule that only applies to one table then

these are all equivalent:

1. SELECT * from part INNER JOIN partsupp ON p partkey = ps partkey WHERE

ps availqty > 9998;

2. SELECT * from part INNER JOIN partsupp ON p partkey = ps partkey AND ps availqty >

9998;

3. SELECT * from part, partsupp WHERE p partkey = ps partkey AND ps availqty >

9998;

29

So, the optimizer will filter results having ‘ps availqty > 9998’ in partsupp first, then join

that subset to the part rows based on their mutual partkey column. It would be functionally

equivalent to join all of part and partsupp based on partkey first, and then filter that combined

result set to only return those that have ps availqty > 9998. Either way, the set of returned

results will always be the same.

Outer Join Predicates:

With outer joins we need to be more careful where we put our conditions. Let’s compare

the first two queries above if they are LEFT OUTER JOINs instead of INNER JOINs.

1. Query 1: SELECT *

FROM part LEFT OUTER JOIN partsupp

ON p partkey = ps partkey

WHERE ps availqty >9998 ;

2. Query 2: SELECT *

FROM part LEFT OUTER JOIN partsupp

ON p partkey = ps partkey AND ps availqty > 9998;

Let’s discuss these two queries in detail.

• The first query will do the join of all part and partsupp tuples before evaluating the

ps availqty > 9998 condition. But, if a row in part does not have a corresponding

row in partsupp, that row will still have a corresponding row in the results – until the

ps availqty > 9998 condition is applied. At that time, the join result for that row will be

excluded because all partsupp values will be NULL due to the outer join. So ps availqty >

9998 will not be true for any Outer joined rows. In this case, the results would be

equivalent to those of an INNER JOIN except with the extra resource consumption of

performing the OUTER JOIN operation.

• The second query pushes the ps availqty > 9998 condition into the join itself. Thus

the only partsupp records that will be evaluated as part of the join will be those where

psavailqty > 9998. Then, any part rows left unpaired will be represented in the join

results with NULLs for any partsupp values.

30

Figure 5.8:

In Figure 5.8, t1 represents the results of partial query, ”SELECT * FROM part LEFT

OUTER JOIN partsupp ON p partkey = ps partkey”.

How to assign filter predicates to ON / WHERE clause

The key observation from the previous discussion is that the filter predicates on columns

of tables having low priority in the outer joins must be placed in the ON condition. Also, the

filter predicates present in where clause won’t allow the column value to be NULL, but if the

predicate is present in the ON condition, it will allow NULL values. We use this observation to

determine the placement of filter predicates. The procedure followed in Algorithm 3 (algorithm

to assign filter predicates to ON / WHERE clause):

1. For each filter predicate, set its attribute value to NULL.

2. Run QH in the mutated D1mut.

3. If the result is empty, the filter predicates in QH won’t allow the attribute value to be

null. Hence it must be placed in the where clause. Else place in ON clause.

The outer join extraction process is shown in Algorithm 4. We can see the refinement of

the join type for each edge is done. The FormulateQueries Algorithm is more of syntactic

manipulation rather than some logical implementation, so it is not being described in much

detail.

31

5.8 Formulate queries and Eliminate semantically non-

equivalent queries (to QH):

Syntactic assembly of the query using(Formulate Queries function):

1. Type of joins on each edge.

2. Nesting sequence of joins.

3. Position of filter predicate in ON/ WHERE condition.

To Eliminate queries that are semantically non-equivalent to QH . We break the join con-

dition for each edge in the outer join graph in D1 to produce D1mut. Then, Run all queries

formulated above on this mutated D1 one at a time and store in result R1 Run QH on D1mut,

store in result R2. Eliminate the queries for whom R1 != R2.

The extracted query QE from previous pipeline components including extracted outer joins

is given as input to the NEP extraction module. When our running example query is given

as input, all the query components will get successfully extracted except <> and Not Like

operators when we enter the NEP extractor.

5.9 Algorithm.

The provided Algorithm 4 outlines the process for extracting outer joins. Here is a step-by-step

explanation:

1. The algorithm starts by initializing the necessary variables, including the global join graph

and an empty importance dictionary.

2. It iterates over each edge in the global join graph. For each edge, it extracts the relevant

information such as keys and table names.

3. It mutates the join keys of table 1 by negating them. The algorithm then runs the QH

on the mutated database and stores the result in the resultHQ variable.

4. It analyzes the resultHQ. Based on the analysis, the algorithm assigns ’l’ or ’h’ (low or

high) values to temp1 and temp2 variables, indicating the importance of each table in the

join.

5. It updates the importance dictionary with the assigned values for Table 1 and Table 2 for

the current edge. The new join graph is updated, and the direction of the current edge is

set according to the detected join.

32

6. After iterating through all edges, the algorithm generates a possible edge sequence (possible edge seq)

based on the new join graph and the importance dictionary. It determines the filter pred-

icate placement (placement FP) using the PlaceFilterPredicate function in Algorithm

3.

7. The algorithm formulates possible queries (set possible queries) based on the possible

edge sequence, importance dictionary, and filter predicate placement.

8. It then proceeds to eliminate possible queries that do not produce the same results when

comparing the HQ join (result HQ) with the actual query execution (result PQ) for

each edge and query combination.

Finally, the algorithm returns the first query from the set possible queries, which is ex-

pected to be the desired outer join query.

Algorithm 3 Filter predicate placement in Outer Joins

filter pred on← []

filter pred where← []

for fp in global filter predicates do
D1mut ←Set attributes part of fp to Null in D1 new result← QH(D1mut)

if len(new result) == 0 then
filter pred where.append(fp)

else

end

filter pred on.append(fp)

Restore the values of the attributes
end

return filter pred on, filter pred where

33

Algorithm 4 Extraction of Outer Join

Global Variables: global join graphs

new join graph← global join graph

importance dict← {}, i← 0

for edge in range global join graphs do
key1← edge[0][0]

table1← edge[0][1]

key2← edge[1][0]

table2← edge[1][1]

table1.key1← −(table1.key1)
result HQ← Run HQ(D1)

p atttable11 , p atttable2 ← Analyze result(result HQ)

importance dict[edge] = {}
if len(results HQ) == 0 then

temp1←′ l′ and temp2←′ l′

else if p atttable11 == Null and p atttable2 !=Null then
temp1←′ l′ and temp2←′ h′

else if p atttable11 !=Null and p atttable2 ==Null then
temp1←′ h′ and temp2←′ l′

else if p atttable11 !=Null and p atttable2 !=Null then
temp1←′ h′ and temp2←′ h′

importance dict[edge][table1]← temp1

importance dict[edge][table2]← temp2

update the new join graph, give direction to edge according to join detected.

end

possible edge seq ← EdgeSequence(new join graph, importance dict)

placement FP ← PlaceF ilterPredicate(global filter predicates)

set possible queries← FormulateQueries(possible edge seq,importance dict,placement FP)

for edge in range new join graph do

for query in range set possible queries do
table1 = edge[0][0]

key1 = edge[0][1]

table1.key1← −(table1.key1)
result HQ← Run HQ(D1)

result PQ← Run query(D1)

if result HQ !=result PQ then
Eliminate query from set possible queries

end

end

end

return set possible queries[0]

34

Chapter 6

Not Equal Predicates and Correctness

6.1 Not Equal Predicates.

The Not Equal Predicate Extractor has two major components: the NEP database minimizes

and the NEP predicate extractor module. The hidden query QH , extracted query QE, and

initial database DI are given as the input to the NEP Database Minimizer module. This

module will find a reduced database D1 from DI such that QE gives a populated result and

QH gives an empty result on DI .

One limitation in [4] which states that ” There can be at most one NEP present per attribute.

Extraction of the NOT IN operator is out of our extractable domain”, was eliminated. The

extension of NEP to extract NOT IN operator was performed. Unmasque2 can correctly extract

”NOT IN” if present in the hidden query.The reduced database instance D1 is given as input

to the NEP Extractor module. The NEP Extractor module will extract one NEP at a time

using database mutation techniques[4].

Using this updated extracted query QE again, the presence of some other NEP is checked.

This cycle will repeat until all the NEP gets extracted from QH .

6.2 Correctness.

Lemma 6.1 For a hidden query QH in EQCU2 algebraic predicates will be extracted correctly

even if QH has disjunction predicates and Not equal predicates.

Proof: algebraic predicates and disjunction pred/NEP predicates won’t have attributes in com-

mon according to our extractable query class.

1. Let’s say disjunction predicates will affect the extraction of algebraic predicates. In other

35

words, any filter predicate present in disjunction will lead to the extraction of false alge-

braic predicates.

2. Filter is a conjunction of disjunctions. filter predicates present in disjunction are of

type column op value. Further, for numeric columns, op ∈ {=, <=, <,>,>=, between},
whereas for textual columns, op ∈ {=, like}.

3. According to extraction process on algebraic predicates in section 4.3.1 The filter predicate

extractor is used to get the bounds on the columns. We will first validate whether the

bound is concrete or variable. At this stage itself, the bounds will be determined to be

variable. Hence the disjunction filter predicate won’t be considered ahead in the algebraic

predicate extraction. Thus the statement is true that disjunction predicates won’t falsely

contribute towards the extraction of false/ non-existant algebraic predicates.

4. For NEP predicates, lets assume, The NEP predicate will falsely result into an algebraic

predicate

5. NEP predicates are of type column op val. The algebraic predicate extractor in section

4.3.1 will eliminate the attributes present in NEP predicates after the first mutation

of the database. It wont further consider those attributes for extraction of algebraic

predicates.This assumption is also false.

Therefore, the proof by contradiction establishes that for a hidden queryQH in EQCU2 algebraic

predicates will be extracted correctly even if QH has disjunction predicates and Not equal

predicates.

Lemma 6.2 For a hidden query QH in EQCU2 disjunction predicates will be extracted correctly

even if QH has algebraic predicates and Not equal predicates.

Proof: The correctness of the above statement can be established using proof by contradic-

tion

1. Assume that if QH has algebraic predicates and NEP predicates, the extraction of dis-

junction predicates will be affected.

2. In the case of algebraic predicates, all attributes participating in algebraic predicates will

be eliminated from the check for disjunction predicates. This means that the disjunction

extraction process will not consider these attributes. However, this assumption contradicts

the fact that the extraction of disjunction predicates will be affected. Therefore, this

assumption is false.

36

3. In the case of NEP predicates, the disjunction will contain filter predicates of the form

”column op value,”. for numeric columns, op ∈ {=, <=, <,>,>=, between}, whereas for
textual columns, op ∈ {=, like}. According to [Mukul’s thesis], filter predicates of this

type will be extracted correctly despite the existence of NEP predicates. The disjunction

extraction process performs multiple cycles of database mutation, minimization, and fil-

ter predicate extraction, ensuring the correct extraction of filter predicates. Therefore,

disjunctions will be extracted correctly in spite of NEP predicates.

4. Since both the assumptions regarding algebraic predicates and NEP predicates have been

proven false, the original assumption that the extraction of disjunction predicates will be

affected is false as well.

Thus, Lemma 6.2 holds true. For a hidden query QH in EQCU 2, disjunction predicates

will be extracted correctly even if QH has algebraic predicates and NEP predicates.

Lemma 6.3 For a hidden query QH in EQCU2 Not Equal predicates will be extracted correctly

even if QH has algebraic predicates and disjunction predicates.

1. Assume that if QH has algebraic predicates and disjunction predicates, the extraction of

NE predicates will be affected.

2. In the case of algebraic predicates, all attributes participating in algebraic predicates

will be eliminated from the check for NE predicates. This means that the NE predicate

extraction process will not consider these attributes. However, this assumption contradicts

the fact that the extraction of NE predicates will be affected. Therefore, this assumption

is false.

3. In the case of disjunction predicates, the attributes are disjoint to that of NE predicates.

The extraction algorithm can correctly identify and extract these NE predicates even if

they coexist with disjunction predicates. The presence of disjunction predicates does not

hinder the accurate extraction of NE predicates.

4. Since both the assumptions regarding algebraic predicates and disjunction predicates have

been proven false, the original assumption that the extraction of NE predicates will be

affected is false as well.

5. Thus, Not Equal (NE) predicates will be extracted correctly for a hidden query QH in

EQCU2, even if QH has algebraic predicates and disjunction predicates.

37

Therefore, the proof by contradiction establishes that NE predicates will be extracted correctly

in the presence of algebraic predicates and disjunction predicates for a hidden query QH in

EQCU2.

38

Chapter 7

Experiments

7.1 U1 v/s U1.5 Performance Enhancement Results

Correlated sampling increases the probability of having a successful sample. On the sampled

database, a view-based recursive halving algorithm works faster than the copy-based halver.

Thus we can see the significant extraction time reduction in Unmasque 1.5 when compared to

Unmasque 1 in Figure 7.1. Figure 7.1 does not include the result comparison time. The queries

in Figures are TPC-H [9] benchmark Queries.

Figure 7.1: Extraction time Unmasque 1 v/s Unmasque 1.5

Figure 7.2 presents the extraction time and hash-based result comparison time for TPCH

queries conducted on a 100 GB database.

39

Figure 7.2: Result comparator time

7.2 Unmasque 2

The extraction time of Queries in Unmasque 2 is shown in Figure 7.3. First query in the graph

is Unmasque 2’s exemplar query.

Figure 7.3: Unmasque 2: Extraction time.

40

Chapter 8

Related Work

Over the past decades, a variety of novel approaches have been proposed for the query reverse

engineering (QRE) problem. The general QRE problem statement is: Given a database in-

stance DI and a populated result RI , identify a candidate SQL query QC such that QC(DI)=

RI . This problem has a wide variety of use cases. There has been a lot of work done in this

area, with the development of elegant tools such as TALOS [10], REGAL [11], and SCYTHE

[12]. The ground-truth query is not available in QRE, due to which the output query QC is

organically dependent on the specific (DI , RI) instance provided by the user. A variant of

the QRE problem was recently introduced in [1], where a ground-truth query is additionally

available in hidden form. This problem is termed Hidden Query Extraction (HQE). HQE

problem is described in the introduction section. The output query now becomes independent

of the initial (DI , RI) instance. Unmasque is a tool to address the HQE problem.

Our work is enhancing the extraction scope of Unmasque and implementing performance

optimization techniques.

41

Chapter 9

Conclusion and Future Work

We have implemented several performance enhancements in Unmasque, such as correlated

sampling, a view minimizer, and a hash-based result comparator. Following that, we expanded

the extraction capabilities of Unmasque by incorporating algebraic predicates, disjunctions,

outer joins, and not-equal predicate extractors. While some of these features were built from

scratch, others were updated and integrated into Unmasque 2.

While Unmasque has undergone significant expansion in scope, it still lacks the capability

to handle nested queries. The development and incorporation of set operators, in Unmasque 2.

One potential area for future development would be to focus on addressing these areas.

42

Bibliography

[1] K. Khurana and J. Haritsa. Shedding Light on Opaque Application Queries. Proc. of ACM

SIGMOD Intl. Conf. on Management of Data, Xi’an, China, June 2021.

[2] K. Khurana and J. Haritsa. 2021. Opaque Query Extraction. Technical Report. Indian

Institute of Science. https://dsl.cds.iisc.ac.in/publications/report/TR/ TR-2021-02.pdf 2

[3] Generating Test Data for Killing SQL Mutants: A Constraint-based Approach.

http://www.cse.iitb.ac.in/infolab/xdata/

[4] Mukul Sharma: Efficient Extraction of Hidden Negation Predicates

https://dsl.cds.iisc.ac.in/publications/thesis/mukul.pdf

[5] Aman Sachan: Extracting Hidden Algebraic Predi-

cateshttps://dsl.cds.iisc.ac.in/publications/thesis/aman.pdf

[6] Sumang Garg: Incorporating Disjunction and Union in Hidden Query Extraction

https://dsl.cds.iisc.ac.in/publications/thesis/sumang.pdf

[7] Achyuta Krishna : Non-invasive Extraction of Hidden Queries

[8] TPC-DS. http://www.tpc.org/tpcds/

[9] TPC-H. http://www.tpc.org/tpch/

[10] Q. Tran, C. Chan, and S. Parthasarathy. 2014. Query Reverse Engineering. The VLDB

Journal 23, 5 (2014).

[11] W. Tan, M. Zhang, H. Elmeleegy, and D. Srivastava. 2018. REGAL+: Reverse Engineering

SPJA Queries. PVLDB 11, 12 (2018).

[12] C. Wang, A.Cheung, and R. Bodik. 2017. Synthesizing Highly Expressive SQL Queries

from Input-Output Examples. In Proc. of PLDI Conf. 2

43

Appendix

Q1*:

SELECT l suppkey, l returnflag, p partkey, l quantity, ps availqty, sum(p size)

FROM lineitem

INNER JOIN partsupp ON l suppkey = ps suppkey

LEFT OUTER JOIN part ON p partkey = ps partkey and (p size > 49 OR ps availqty >

9900)

WHERE l shipmode IN (′MAIL′,′ SHIP ′,′ TRUCK ′) AND l quantity <> 36 AND (l quantity >=

30) AND l commitdate <= l receiptdate AND l returnflag NOT IN (’N’)

GROUP BY l suppkey, l returnflag, p partkey, l quantity, ps availqty

ORDER BY ps availqty

LIMIT 100;

Q2*:

SELECT *

FROM supplier

LEFT OUTER JOIN nation ON s nationkey = n nationkey AND (s acctbal <= 2000 OR

n regionkey = 3) AND n name <>′ RUSSIA′ AND s suppkey > 25;

Q3*:

SELECT p partkey, s acctbal, ps suppkey

FROM part INNER JOIN partsupp ON p partkey = ps partkey AND p size > 7

LEFT OUTER JOIN supplier ON ps suppkey = s suppkey AND s acctbal < 2000

Q4*:

SELECT l orderkey, l linenumber

FROM lineitem, partsupp WHERE ps partkey = l partkey AND ps suppkey = l suppkey

AND l linenumber <> 1;

Q5*:

SELECT c acctbal, o orderkey, c name,

o shippriority, c nationkey, o orderstatus

44

FROM orders

RIGHT OUTER JOIN customer ON c custkey = o custkey AND o orderstatus <>′ O′

WHERE c acctbal < 1000 AND c nationkey < 10 ;

45

	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.1.1 Performance Optimizations.
	1.1.2 Scope Enhancements.

	1.2 Technical Challenges
	1.3 Our Contribution
	1.4 Performance Evaluation
	1.5 Organization

	2 Unmasque 1: Background
	3 Unmasque 1.5: Performance Optimization.
	3.1 Correlated Sampling.
	3.2 View Based Minimizer.
	3.3 Hash-Based Result Comparator.

	4 UNMASQUE 2 : U1.5 + Scope Enhancements
	4.1 Updated Extractable Query Class
	4.2 Extend Database Minimizer:
	4.3 Algebraic Predicate Extractor.
	4.3.1 Active Predicate Extraction.
	4.3.2 Dormant Predicate Extraction.

	4.4 Disjunction Extractor.

	5 Outer Join Extractor.
	5.1 Outer Join Existence Checker.
	5.2 Assumptions.
	5.3 Create Inner Join Graph.
	5.4 Refinement of join type on Single Edge Join Graph.
	5.5 Refinement of Join Type on Multi Edge Join Graph.
	5.6 Formulate all possible Nesting Sequence of Joins.
	5.7 Assignment of filter predicates to ON/WHERE clause.
	5.8 Formulate queries and Eliminate semantically non-equivalent queries (to QH):
	5.9 Algorithm.

	6 Not Equal Predicates and Correctness
	6.1 Not Equal Predicates.
	6.2 Correctness.

	7 Experiments
	7.1 U1 v/s U1.5 Performance Enhancement Results
	7.2 Unmasque 2

	8 Related Work
	9 Conclusion and Future Work
	Bibliography
	Appendix

