BODHI: A Database Engine for
Biological Applications

A Thesis
Submitted for the Degree of

Doctor of ‘Philosophy
in the Faculty of Engineering

By
Srikanta B. J.

b

'E

E§§
13-

[
géég

>
¢
N

i
N
AN

Supercomputer Education and Research Centre
INDIAN INSTITUTE OF SCIENCE
BANGALORE - 560 012, INDIA

April 2006



“In fond memory of my Mother — my first
teacher”



Abstract

Biodiversity research generates and uses a variety of data spanning across diverse do-
mains, including taxonomy, geo-spatial and genetic domains, which vary greatly in their
structural features and complexities, query processing costs and storage volumes. In this
thesis, we present BODHI, a database engine that seamlessly integrates these diverse types
of data, spanning the range from molecular to organism-level information. BODHI is a
native object-oriented database system built around a publically available micro-kernel
and extensible query processor, and offers a functionally comprehensive query interface.
The server is partitioned into three service modules: object, spatial and sequence, each
handling the associated data domain and providing appropriate storage, modeling inter-
faces, and evaluation algorithms for predicates over the corresponding data types. To
accelerate query response times, a variety of specialized access structures are included for
each domain. Our experiments with complex cross-domain queries over a representative
biodiversity dataset indicate efficient evaluation even on off-the-shelf standard hardware.

BODHI features suffix-tree indexes for expeditious processing of sequence similar-
ity predicates. These indexes are well-known to be not easily amenable to persistent
implementation and usage, since their traversal patterns induce severe disk thrashing.
To minimize the impact of this problem, we present a suite of optimizations, includ-
ing: TOP-Q, a novel low-overhead buffer management policy that takes into account
the probabilistic behavior of traversals during suffix-tree construction; and STELLAR, a
layout-reorganization algorithm that minimizes the cost of suffix-link traversals. Through
experimentation on a variety of real genomic and proteomic sequences, we show that the
combined effect of these optimizations results in substantially improved index construction
and search times.

In summary, this thesis presents the architecture and implementation of a holistic and
efficient database engine targeted towards helping biodiversity scientists swiftly advance

the state-of-the-art in their research.



Publications

1. “Design and Implementation of a Biodiversity Information Management System”
Srikanta Bedathur and Jayant Haritsa
Proc. of 10th Intl. Conf. on Management of Data (COMAD)
Pune, India, December 2000, pgs. 121-134.
(Received the Best Paper award)
2. “The Building of BODHI, a Biodiversity Database System”
Srikanta Bedathur, Jayant Haritsa and Uday Sen
Information Systems, Elsevier Science Publishers,
vol. 28, no. 4, June 2003, pgs. 347-367.
(Special issue on Bioinformatics and Biological Data Management, Editors: M. Zaki
and J. Wang)
3. “Engineering a Fast Online Persistent Suffix Tree Construction”
Srikanta Bedathur and Jayant Haritsa
Proc. of 20th IEEE Intl. Conf. on Data Engineering (ICDE),
Boston, USA, March 2004, pgs. 720-731.
4. “BODHI: A Database Habitat for Bio-diversity Information”
Srikanta Bedathur, Abhijit Kadlag and Jayant Haritsa
Proc. of ACM SIGMOD Intl. Conf. on Management of Data,
Paris, France, June 2004, pgs. 953-954.
5. “Search Optimized Persistent Suffix-tree Storage”
Srikanta Bedathur and Jayant Haritsa
Proc. of 12th IEEFE Intl. Conf. on High Performance Computing (HiPC),
Goa, India, December 2005.
published as
High Performance Computing - HiPC 2005, Springer, Lecture Notes in Computer
Science (LNCS) 3769,
eds. D. Bader, M. Parashar, V. Sridhar and V. Prasanna, pgs. 29-39.

il



Acknowledgements

In the long journey that led to the creation of the work presented in this thesis, I have
been guided, helped and supported by many. This is my opportunity to thank them for
everything they have done for me.

First of all, I am deeply indebted to my advisor Prof. Jayant Haritsa, for teaching
me the principles of good research. His dedication and enthusiasm towards research have
been tremendously inspiring (and in some cases very daunting!!).

Special thanks are due to Prof. Ramesh Hariharan, who helped me in the initial stages
of my research with immense patience and provided valuable insights which have helped
me throughout. I will be forever grateful for his help.

I would like to thank Prof. N. Balakrishnan, Prof. S.K. Nandy, Prof. R. Govindarajan
and Prof. Matthew Jacob of SERC for their timely advice and kind help in many occa-
sions. I am also grateful to all the administrative staff of SERC — Shekhar, Sashi, Sarala,
Govindaswamy, Triveni, Gopakumar, Mallika, Shivanna and Manjari. I am indebted to
CMC staff led by Raju and Ananth who were always there to help me deal with hardware
and software administration issues, and enabled me to do my work in time.

In addition to my research, one thing that I really enjoyed in the lab was the company
of my lab-mates — Vikram, Kumaran, Suresha, and, of course, the “BODHI gang” of
Rajarao, Satheesh, Madhav, Uday and Abhijit. Together, we managed to turn the lab
into a “home”!

During my stay at Indian Institute of Science, I have made a number of friends who

have made my life at IISc extremely enjoyable as well as intellectually stimulating. I thank

Pramod, KVS, GVSK, KVM, MBK, Anurag, Manjusha, Prithu, Siddhartha, Aditya and

il



ACKNOWLEDGEMENTS iv

Ravindra for their company at the “famous” Coffee Board & Tea Kiosks of IISc, IISc
Gymkhana’s Hockey field and Badminton court, and long walks into the Jubilee Park to
watch snakes, ants and for just lazing about!

There is one special person I met at [ISc who deserves special thanks for being a
dependable friend, an enjoyable companion, a fierce critique, and my life partner, Maya.
Without her I am not sure I would have come out of my PhD with as much happiness as
I have now. She celebrated my successes with more thrill than me, encouraged me not to
buckle down when I thought the whole world was against me, and helped me refine many
of my ideas, despite having her own research work to deal with!

I thank my Father-in-law who provided guidance in many times of need, and mother-
in-law for wonderful food she used to send us!! And ofcourse, Madhava who sometimes
psyched us with his love of computers!!

I cannot put into words the gratitude I owe my parents and my loving brother. Without
them I wouldn’t have been here writing my PhD thesis! They encouraged me to excel in
whatever I do and always had unwavering faith in me. They supported my decision to
quit my job and take up my PhD, despite having a number of difficulties, and never made
me regret my decision. I don’t think I could have asked for better Mom, Dad and Brother
than the ones I have. It is very unfortunate that my Mom is not here to watch me write
this thesis — I can only imagine how proud she would have felt to have me here. I miss
you Amma. I also thank my sister-in-law, Gayathri, for taking over the responsibilities
at the home front without any complaints! Arrival of Vishnu, the cute-little-boy :-) was

one of the best parts of our life! T had never seen a more smiley baby than him!



Contents

Abstract

Acknowledgements

List of Figures

List of Tables

1 Introduction

2

1.1
1.2
1.3
1.4
1.5

1.6
1.7

Motivation . . . . . . . ..
Current Solutions/ . . . . . . . . . ...
Holistic Databases for Biodiversity Research . . . . . . ... ... ... ..
Design of BODHI . . . . . ... ... .
Biological Sequence Indexing in BODHI . . ... ... ... ... ... .
1.5.1  Efficient Construction of Persistent Suffix-Tree Indexes . . . . . . .
1.5.2  Storage Management of Suffix-Tree Indexes . . . . . . .. .. ...
Thesis Contributions . . . . . . . . . . . ...

Organization . . . . . . . . . . .

Related Work

2.1

Biodiversity Information Management . . . . . . . . .. ... .. ... ...
2.1.1 Taxonomy Data Management| . . . . . . .. ... ... ... ....
2.1.2  Spatial Data Management . . . . . . . ... ... ... ... .. ..
2.1.3 Molecular Data Management, . . . . . . .. ... ... ... ....

iii

xii

10
12
12



CONTENTS vi

2.2

2.3

2.4

2.5

3 The
3.1

3.2

3.3

3.4

Large-scale Biological Information Systems . . . . . . . . ... ... .... 20
2.2.1 Navigational Integration . . . . . . . ... ... ... ... ... .. 21
2.2.2  Mediator or Wrapper-based Integration . . . . . . . ... ... ... 22
2.2.3  Warehouse Integration| . . . . . . . . ... . 0L 22
2.2.4  Design Approach of BODHI . . . . ... ... ... ... .. .... 23
Indexing of Biological Sequences . . . . . . . .. .. ... . 0L 24
2.3.1 Word-based Indexes . . . . . ... ... Lo 25
2.3.2 Sequence Index Structures . . . . . . .. ... ... L. 29
Persistent Suffix-Tree Construction’ . . . . . . .. . .. .. ... ... ... 30
2.4.1  Construction of Suffix-tree without Suffix-links . . . . . . . ... .. 32
Storage of Persistent Suffix-Trees . . . . . . . ... ... ... ... .... 33
BODHI System 35
Introductionl . . . . . ... 35
3.1.1 Organization . . . . .. .. . .. ... 37
Design Goals . . . . . . .. 37
3.2.1 Handling of Complex Data Types . . . . . . .. .. ... ... ... 37
3.2.2  Bio-molecular Sequence Similarity Search . . . . . . ... ... ... 39
3.2.3 Usage Interface . . . . . . . .. ... 39
Architecture of the System . . . . . . . ... ... ... L. 40
3.3.1 Object Services . . . . . . . . . ... 41
3.3.2  Spatial Services . . . . . ... 45
3.3.3  Sequence Services . . . . . ..o i e 48
3.3.4  Query Processor . . . . . ... 49
3.3.0  Client Interface Framework and User Interface . . . . . . .. .. .. 51
Implementation . . . . . . . ... 54
3.4.1 Object Services . . . . . . . . . .. 55
3.4.2 Spatial Services . . . . . . . ... 58
3.4.3  SeqUEeNnce SErviCes . . . . . v oo e e 59

3.4.4 Query Processing . . . . . .. ... 60



CONTENTS vii
3.5 Conclusions . . . . . . . .. 61
Background on Suffix-Trees 63
4.1 Introduction . . . . . . . .. L 63
4.2 Suffix-Tree . . . . . . . o 64

421 Suthx-Links . . . .. ... oo 66
4.3 Notationl . . . . . . . . . 67
4.4 Linear Time Construction of Suffix-Trees . . . . . . . . .. ... .. .. .. 67
4.5 Searching over the Suffix-Tree . . . . . . .. .. .. ... 000 70
4.5.1 Locating Maximal Common Sub-strings . . . . . .. .. ... ... 71
4.6 Implementation of Suffix-Trees . . . . . . . . . . ... ... ... ... ... 73
High-performance Persistent Suffix-Tree Construction 75
o.1 Introduction/ . . . . . . ..o 75
5.1.1 Organization . . . . . . . . ... 7
5.2 Persistent Suffix-Tree Construction . . . . . . . ... ... ... ... ... 78
5.3 Locating Preferred Nodes . . . . . . . .. .. ... ... ... 78
5.3.1 Estimating the Depth of Internal Nodes . . . . . .. .. ... ... 80
5.3.2 Impact of Asymmetric Distribution . . . . . . .. .. .. ... ... 80
5.4 Design of TOP-Q . . . . . . . . .. o 83
5.4.1 Accommodating Correlated Accesses . . . . . . .. .. .. ... .. 84
5.5 Suffix-Tree Representation . . . . . . . . .. .. ... ... .. .. ..... 86
5.6 Evaluation Framework . . . . . .. ... ... o000 88
5.6.1 Implementation Details/. . . . . . . .. ... ... ... ... ... 88
5.6.2 Buffer Management Policies . . . . . . ... ... ... ... ... 89
5.6.3  Buffer Pool Allocation . . . . ... ... ... ... ... .. ... 90
5.7 Experimental Results . . . . . . .. .. ... 91
5.7.1  Construction with Fixed-size Bufter . . . . . . ... .. .. ... .. 91
5.7.2  Construction with Proportional Buffering . . . . . ... .. ... .. 96
5.7.3  On-disk Construction . . . . . . . . . . ... ... ... 98



CONTENTS viil

5.8 Implementing TOP-Q Policy in BODHI . . . ... ... ... .. ..... 98
5.8.1 Storage Structures for Suffix-Tree Index . . . . . . . .. ... ... 100
5.8.2 TOP-Q with CLOCK. . . . . ... ... . ... 100

5.9 Conclusions . . . . . . . . 101

6 Search Optimized Suffix-Tree Storage 102

6.1 Introduction . . . . . . . . .. 102

6.2 Persistent Suffix-Tree Layout . . . . . . . .. .. .. ... ... ... ... 104
6.2.1 Issues in Persistent Suffix-Tree Layout| . . . . . . .. ... ... .. 105
6.2.2 Search Utilization of Links and Edges . . . . . . ... ... ... .. 106
6.2.3 Comparing the Quality of Layouts. . . . . . . . .. ... ... ... 107

6.3 Design of Stellar, . . . . . . ... o 110
6.3.1 Stellar Algorithm| . . . . . . .. ... ..o 111
6.3.2 Level-wise Locality Variation . . . . ... ... ... .. ... ... 116
6.3.3 Impact of Pagesize Variation . . . . . .. .. .. ... .. ... ... 116

6.4 Evaluation Frameworkl . . . . . . ... ... 0oL 119
6.4.1 Query Collections . . . . . . . . . . ... 119

6.5 Experimental Results . . . . . . . . ... ... 121
6.5.1 Utility of Disk Layout| . . . . . . ... ... .. .. .. ... .... 121
6.5.2  Performance of Stellar over SBFS . . . . . . .. ... ... 122
6.5.3 Cardinality Evaluations . . . . . ... ... ... ... ....... 122
6.5.4  On-disk Search Performance . . . . . .. .. .. ... ... ... .. 124

6.6 Search Performance over USTs . . . . . .. . ... ... ... ... ... 124
6.6.1 Impact of Layout on UST Search Performance . . . . .. ... ... 126
6.6.2 Search Utility of Suffix-Links . . . . ... ... .. ... ...... 127

6.7 Conclusions . . . . . . . . . L 129

7 Persistent Suffix-Trees for Proteins 131

7.1 Introduction/ . . . . . . .. .. 131

7.1.1 Organization . . . . . . . . . . . .. 134



CONTENTS ix
7.2 Suthix-Tree Construction over Protein Data . . . . . . . . ... ... .. .. 134
7.3 Storage Organizations over Protein Data, . . . . . . .. ... ... ..... 136

7.3.1 Protein Substring Searches . . . . . . . ... ... 136
7.3.2 Utility of Suffix-Links/. . . . . . .. .. ..o 141
7.4 Conclusions . . . . . . . .. 142

8 Performance Evaluation of BODHI 144
8.1 Description of Datasets . . . . . . . . . . .. ... ... .. 145
8.2 Biodiversity Queries . . . . .. ... 148

8.2.1 Single-domain Queries . . . . . . . . ... 148
8.2.2 Multi-domain Queries . . . . . . .. ... 150
8.3 Evaluating Spatial Data Handling . . . . . .. ... ... ... ... .... 151
8.4 Conclusions . . . . . . . . .. 155

9 Conclusions and Future Research 157

9.1 Summary of Contributions . . . . . . . . ... ... ... ... ... 157
9.1.1 Designof BODHI . . . . .. .. ... .. ... ... ... ... 157

9.1.2  Efficient Construction of Persistent Suffix-tree Indexes . . . . . .. 159

9.1.3 Storage Organization of Suffix-tree Indexes . . . . . . . . ... ... 159

9.2 Future Research . . . . . . . . . .. 160
References 161



List of Figures

1.1
1.2

2.1

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

4.1
4.2

0.1
0.2
9.9
5.4
9.9

Expressing Multi-domain Query in BODHIL . . . . ... ... ... .. ... 7
BODHI Architecture . . . . . . . . . . .. 8
Aggregation Graph and its S-Expression . . . . .. .. ... ... ... .. 17
BODHI: Schematic of Architecture . . . . . . ... ... ... ... ... 41
A Sample Plant Biodiversity Object Model . . . . . . . . .. ... ... .. 42
Spatial Data model in BODHI} . . . . .. ... ... ... ... ....... 45
Spatial Relationships in BODHI . . . . .. .. ... ... ... ... .... 47
Snapshot of the Query Intertace . . . . . .. .. ... ... ... ... ... 52
A Sample XML Output from BODHI . . . . ... ... ... ... ..... 53
BODHI: Implementation Schematic . . . . . . ... ... ... ....... 54
Representing N:M relationships . . . . . .. ... . ... ... ... .... 56
Representing N:M Relationships in presence of Bags . . . . . . . .. . ... 58
Schema Definition and Query Flow in BODHI . . . ... ... ... .... 60
Suffix-tree over a DNA fragment GTTAATTACTGAATS . . . . . . . . . .. .. 65
Linked suffix-tree (LST) over a DNA fragment GTTAATTACTGAAT$ . . . . . 66
Node Access Frequency . . . . . . . . . ... 79
Relative Impact of Errors in Depth Estimation . . . . . . . ... ... ... 82
Correlated Accesses in TOP! . . . . .. . ..o o oL 85
Structure of Suffix-tree Nodes . . . . . .. .. .. ... 0oL 87
Hit-rates for Construction with Array-based Nodes . . . . . .. .. .. .. 93



LisT OF FIGURES pal

2.6
2.7
9.8
2.9
.10

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14

7.1
7.2
7.3
7.4
7.0
7.6
7.7
7.8

Hit-rates for Construction with Linked-list Representation . . . . . . . .. 95
Disk-accesses during Construction . . . . . . . .. . .. ... ... ... 96
Behavior with Proportional Buffers . . . . .. .. .. ... ... ... ... 97
Persistent Construction Times . . . . . . . . .. .. .. ... ... ... .. 99
Storage Structure of Suffix-tree Index in BODHI . . . . .. ... ... ... 100
Relative Edge Utilization . . . . . . . . . .. ... ... ... ... ... 107
Intra-page Connectivity under Stellar . . . . . . . .. ... ... ... ... 113
Intra-page Connectivity under SBFS . . . . .. .. .. ... ... 114
Intra-page Connectivity under CO|. . . . . . .. .. .. ... ... ... .. 115
Locality with varying Depth . . . . . . ... ... ... ... L. 117
Locality with varying Pagesize . . . . . . . . . .. .. ... ... 118
Stellar Vs. COl . . . o 0 o 0 121
Stellar Vs. SBES . . . . . . 0o 123
Stellar Cardinality Evaluation Performance . . . . . . . .. ... ... ... 123
Search Time Profile . . . . . . . . . .. .o 125
Gains due to SBFS Layout over UST) . . . . . . ... ... ... ... ... 126
UST Vs. LST . . . . 127
UST Vs. LST - Drosophila Melanogaster Genome . . . . . . .. .. .. .. 128
UST Vs. LST - over C.elegans Chromosome II' . . . . . . . . ... ... .. 129
SPROT: Distribution of Symbols . . . . . .. .. ... .. ... ... ... 133
SPROT: Hitrates during Construction . . . . . .. ... ... ... .... 135
SPROT: Locality with varying Pagesize . . . . . . . . .. . ... ... ... 137
SPROT: Locality with varying Depth . . . . . .. ... ... ... .. ... 138
SPROT: Relative Edge Utilization/. . . . . . . . . ... .. .. ... .... 139
SPROT: Performance of Stellar over COl . . . . . . . .. ... .. ... .. 140
SPROT: Performance of Stellar over SBFS . . . . . . .. ... ... .. .. 141

SPROT: UST Vs. LST . . . . . ..o o oo 142



List of Tables

1.1

4.1

0.1
0.2

6.1

7.1

8.1
8.2
8.3
8.4
8.5
3.6

Status of Biodiversity Conservation . . . . . . . . . ... ... ... .... 1
Notationl . . . . . . . . . 68
Characteristics of the Datasets . . . . . . . . . ... ... ... ... .... 88
Default Experimental Parameters . . . . . . . ... ... ... ... .... 91
Static Edge and Link Localities| . . . . . . .. ... ... ... ... .... 109
SPROT: Static Edge and Link Locality . . . . . . ... .. ... ... ... 136
Details of Endemic Plant-species . . . . . . . ... ... ... ... .... 146
Statistics of the Synthetic Dataset|. . . . . . . . . .. ... .. ... ... 147
Performance Numbers for Single-domain queries . . . . . . . .. . ... .. 148
Performance Numbers for Multi-domain Queries . . . . . . . . . ... ... 148
SEQUOIA Benchmark numbers (in seconds) . . . . . ... ... ... ... 152
Performance over Paradise Queries| . . . . . . ... ... ... ....... 154

x1i



Chapter 1

Introduction

1.1 Motivation

Biology can be studied at a variety of scales, ranging from molecular structures in indi-
vidual cells to the macro-level interactions at the ecological level. The humongous variety
of the natural patterns thus formed, and the variety of life constitutes the Biodiversity of
the Earth [109]. This diversity is often understood in terms of the wide variety of plants,
animals and microorganisms that occur in nature, and in terms of the associated phy-
logenetic and ecological relationships between them. Biodiversity is the inherent wealth
of a region, as most economies are directly or indirectly dependent on the products of
biodiversity, and more importantly, on the life supporting conditions that it provides.
Thus, understanding of biodiversity is vital from scientific, educational, commercial and
medicinal viewpoints.

Table 1.1 summarizes the estimates on the conservation status of global biodiversity

Estimated number of species 3 — 100 million
Number of species identified 1.75 million

Rate of loss of biodiversity ~ 10* species per year
Rate of discovery of new species | ~ 10* species per year

Table 1.1: Status of Biodiversity Conservation



CHAPTER 1. INTRODUCTION 2

from World Conservation Monitoring Center (WCMC) [133] — one of the leading global
organizations building infrastructure for world-wide free exchange of biodiversity data.
These figures indicate that the rate of loss of this precious biodiversity wealth is, at best,
on par with our ability to just discover new species, let alone the ability to effectively
collect, curate and disseminate their information. Hence it is extremely important to
develop effective conservation policies and speed up the species discovery process through
an extensive use of computerization and other advances in technology. There are a number
of national-level and international efforts underway to tackle this challenge.

An urgent need in this regard is to design and deploy information systems that help
the management of a wide range of data associated with biodiversity studies [109]. A
biodiversity information management system has to enable effective and efficient ways
to model, store and manage the taxonomic information of species, their phenetic charac-
teristics, the phylogenetic and other environmental relationships with other organisms in
the biota (the flora and fauna of a region), and the geographical information about the
endemic habitats of species.

With recent advances in rapid genome sequencing of organisms, there is an added
dimension to the study of biodiversity — at the level of micro-level genome relationships.
One can try to infer associations between macro-level characteristics of species based on
their genome-level information and vice versa. For example, if research is being under-
taken into the DNA sequence of an organism to identify genes responsible for a specific
characteristic, then one can utilize the information available for related organisms, which
can be located through the associated taxonomic information. Similarly, accurate phy-
logenetic tree construction and verification — an important task in the understanding
of biodiversity — benefits immensely from the interaction of taxonomic information and
genetic data analysis.

Keeping these developments in view, the study of biodiversity has recently been re-
defined by WCMC to be an integrated study of species diversity, habitat diversity and
genetic diversity. This integrated view has lead to extensions in biodiversity studies, which

traditionally had focused on taxonomic and habitat information, to include genome level



CHAPTER 1. INTRODUCTION 3

information. In the process, new branches of biological science such as Molecular Bio-
diversity [84] and Ecological Genomics [124] have been formed. This integrated study
requires combined analyses of large collections of data from disparate domains, and man-
aging such a wide variety of data to enable efficient discovery of inter-relationships is a

serious challenge towards achieving swift advancements in biodiversity research.

1.2 Current Solutions

Storing and managing the enormous amounts of data generated from the biodiversity
research efforts, and analyzing this data to extract nuggets of information, requires the
extensive use of computers. There are tools for individually managing data from each
of the domains involved in biodiversity studies — for instance [87], at our institution,
species data is currently maintained in MS-Excel worksheets on individual computers,
the ecosystem information is managed through the use of spatial data management tools
such as ArcView [43], and the web-based services from global organizations such as NCBI
(National Center for Biotechnology Information) and EMBL (European Molecular Biology
Laboratory) are relied on for querying genetic data.

However, the presence of such a bag of independent tools is no longer adequate, from
both functionality and efficiency perspectives, in the new age biodiversity research which
places increasing emphasis on simultaneously studying the micro-level and macro-level
relationships between biological entities. To illustrate this point, consider the following
example query, which is of interest to modern evolutionary biologists — similar research

questions are to be found in the ecological literature, e.g., in [82]:

Query 1 Retrieve the names of all plant species that have common inflorescence char-
acteristics, share a part of their habitats, and have a high chromosomal DNA sequence

similarity with Michelia-champa®.

Answering the above query requires the ability to perform integrated searches over

taxonomy hierarchies ( “common inflorescence characteristics”), recorded spatial distri-

LA fragrant medicinal plant endemic to India and Nepal, also called Michelia champaka.



CHAPTER 1. INTRODUCTION 4

bution of species ( “share a part of their habitat”), and the genome sequence databases
( “high chromosomal DNA sequence similarity”). Unfortunately, however, due to the lack
of holistic database systems, biologists are usually forced to split the query into component
queries, each of which can be processed separately using independent tools and services.
Further, the results from these individual tools have to be combined either manually or
through the use of a customized tool.

For example, a typical “experience story” for answering the above query, as gathered

from domain experts at our institution [87], would be:

1. Locate all plant species that have inflorescence characteristic common with that of
Michelia-champa, by performing a join over the taxonomy database, stored in a

PC-based relational database.

2. Access the habitat data, stored in AreView [43], a popular spatial database product,
to find the species that have shared habitat with Michelia-champa, by performing a
spatial join. Then, compute the intersection between the set of species obtained in
the earlier step, and the newly-derived set of species, in order to prune species that

do not share common habitat with Michelia-champa.

3. From the output of Step 2, identify the names of the plant species of interest, and
then perform repeated BLAST [I] searches over (a subset of) NCBI GenBank [41]
DNA sequence database to identify the sequences (and, thereby the species), that
have an MSP (Maximal Segment Pair) score more than a cutoff value. Note that

this final score-based pruning has to be performed externally by the researcher.

Long procedures, such as the above, for answering standard queries are not only cum-
bersome but can also lead to delays in understanding various micro-level and macro-level
biodiversity patterns. Worse, the patterns may not be found at all due to limited hu-
man capabilities — an example of this problem was reported in the molecular biology
study [112], where comparison of sequences “by hand” missed out some of the significant
alignments thereby leading to erroneous conclusions about the functional similarity of the

proteins examined in the study.



CHAPTER 1. INTRODUCTION 5

Furthermore, the discovery of a new species involves considerable time to be spent by
the biodiversity researcher on field, collecting characteristics and other important traits of
the species under study. During such field-trips it is of immense help to be able to access
a remote database, to query across multiple domains and pull out data about related
species, possibly through a hand-held device. With the bag-of-tools as described above,

it is extremely frustrating to perform such tasks.

1.3 Holistic Databases for Biodiversity Research

Based on the above discussion, there appears to be a clear need for building an integrated
database system that can be productively used by the biodiversity community. However,
building such a system is highly challenging because the data associated with each of
the subdomains of biodiversity studies — namely, tazonomy, spatial and sequence — vary

greatly in the following characteristics:
1. Structural complexity,
2. Query processing cost, and
3. Storage volume.

For example, while the taxonomy information of species has complex hierarchical struc-
ture, spatial data associated with ecosystems are inherently voluminous and the spatial
operators are computationally expensive. On the other hand, genomic sequence process-
ing is based on specialized pattern recognition and similarity identification algorithms
over DNA or Protein sequences of the species.

As a result of the limited support offered for the resulting complex data processing
requirements in biology, current database systems have been relegated to play the role of
backup stores, with much of the processing being done outside the DBMS by Unix-based
tools. This is primarily due to the lack of holistic database systems that provide a wide

range of functionalities as well as the performance demanded by these applications.



CHAPTER 1. INTRODUCTION 6

Thus, in order to cater to the new but critical breed of modern biodiversity research,
data management systems have to address a host of novel design and implementation
challenges which were addressed in isolation in the past. The database community has
also realized the exciting opportunities for novel data management techniques in this
domain — in fact, biodiversity was featured as the theme topic at the 26 International

Conference on Very Large Data Bases (VLDB), 2000 [73].

1.4 Design of BODHI

Biodiversity databases are typically very large, comprising objects of different types and
inter-relationships to form deeply nested hierarchies. Queries that span these hierarchies
need to perform multiple joins and, in many cases, these involve spatial joins or sequence
similarity predicates, that are computationally more expensive to evaluate.

Motivated by the lacuna of a holistic database solution catering to the needs of biodi-
versity researchers, in this thesis we propose the design of BODHI (Biodiversity Object
Database arcHItecture),? a native object-oriented database system that seamlessly inte-
grates multiple types of data occurring in biodiversity studies. It is built around a pub-
lically available storage manager kernel, and offers a functionally comprehensive query
language. The BODHI system expresses the sample query presented earlier in Query (1}
which spans multiple data domains of biodiversity research, using an extended OQL syn-
tax as shown in Figure [1.1. To the best of our knowledge, BODHI is the first system to
provide such an integrated view of diverse biological domains ranging from molecular to
organism-level information.

A modular schematic of BODHI is shown in Figure 1.2. The SHORE storage man-
ager [19] at the base provides the fundamental needs of a database server such as device
and storage management, transaction processing, logging and recovery management. The
functional core of the system is built over this storage manager, and consists of three

application specific modules, which supply the object, spatial and genomic services. The

2Gautama Buddha gained enlightenment under the Bodhi tree.



CHAPTER 1. INTRODUCTION 7

SELECT species2.name FROM

speciesl IN PlantSpecies, species2 IN PlantSpecies,

dnal IN speciesl.DNAEntries, dna2 IN species2. DNAEntries
WHERE

speciesl.name = “Michelia-champa” AND
speciesl.flowerchar.inflochar = species2.flowerchar.inflochar AND
speciesl.georegion OVERLAPS species?.georegion AND

dnal BLAST dna2 WITHIN 70;

Figure 1.1: Expressing Multi-domain Query in BODHI

query processor and optimizer of BODHI, which is based on the A\-DB rule-based ob-
ject query processor [38], interfaces with these functional modules and performs query
processing and produces efficient execution plans using the metadata exported by the
modules. The base functionality provided by A-DB has been significantly enhanced to
take into account the availability of new data modeling and query language features, and
a variety of access-structures in the system. BODHI supports full OQL/ODL query and
data modeling interface for creation of new database schemas, data manipulation and
querying. Finally, the client interface framework and XML publishing engine form the
external interface to BODHI, enabling biologists to construct complex queries through a
form-based interface as well as to graphically visualize the results.

Each of the service modules in BODHI provide appropriate storage, a modeling inter-

face, and evaluation algorithms for predicates over the corresponding data types.

Object Services. In querying over biodiversity data, it is common to specify predicates
over long relationship paths, or over an inheritance hierarchy rooted at a chosen
base type. To efficiently handle these predicates, access methods for both inheritance
(Multi-key Type Index [83]) and aggregation hierarchies (Path-dictionary index [74])

are included in this module.

Spatial Services. This module provides a spatial type system for modeling of spatial

data associated with biological information. Various geometric operators such as



CHAPTER 1. INTRODUCTION 8

Client Interface Framework and XML Publishing Engine

Query Processor (A- DB)

1 [ ! 1 N
1

1 i i ! I i ! 1
|| Seatia Geometric || 'nzzg::g;ﬁ::d 1@ | Similarity Sequence |

1| Indexes Methods ! 1 o
2, 8, Indexes = Search Indexes :

L 0| R*-Tree Overlaps, |[! .21 (G| :
’ ’ | BLAST Suffix-Tree !
uE) : Hilbert Intersects, : E: Path l\gl't_lndex nd : @ : I
_ ath-Dictionary Index ®

0 | R-Tree etc. 'z Y 3. !
T ! le [ \
= I o1 S |
g 1 L g !
0 i Ol o \
1| Spatial Data Model I 1 | Taxonomy Data Model| ! 1| Sequence DataModel ||

1 ! 1 ! 1
1 [ ! 1 :

| ! | ' \

Storage Manager (SHORE)

Figure 1.2: BODHI Architecture

overlap, adjacent, area, etc., are implemented over this type system. The module
incorporates R*-Tree [7] and Hilbert R-Tree [67] indexing to speed up these other-

wise expensive operators.

Sequence Services. This module provides efficient storage of sequence data associated
with species and a suite of operations over it. It implements popular alignment-
based sequence similarity algorithms of BLAST [1] and Smith-Waterman dynamic
programming [113]. To alleviate the response time bottleneck due to brute force
scan adopted by these algorithms, this module of BODHI provides persistent version
of suffiz-trees [§], the ubiquitous main-memory sequence indexing structure. The
persistent suffix-tree index provides an accurate indexing solution for a number of
biological sequence querying applications. We are not aware of any other database
system that incorporates persistent suffix-trees as a first class sequence indexing

strategy.

The BODHI system is fully operational and the source code is available under GNU
Public License for further customization and enhancements. The system has been demon-

strated at the ACM SIGMOD International Conference on Management of Data, Paris,



CHAPTER 1. INTRODUCTION 9

France, 2004, and in a number of national-level ecological workshops in India, and has

been uploaded by the San Diego Supercomputer Center (SDSC), USA.

1.5 Biological Sequence Indexing in BODHI

A major research challenge that we have tackled in the BODHI system is the issue of
providing high-performance sequence similarity searching. Despite the extensive utility of
sequence similarity searching, there has been very little direct database support for such
operations. In his keynote address at SIGMOD’2001, Gene Myers pointed out that this has
resulted in a missed opportunity in tighter integration of databases in the bioinformatics
research.

By incorporating persistent suffix-trees in BODHI, we reduce the overheads incurred
due to the brute-force scanning of sequence databases, adopted by BLAST and other
popular biological sequence similarity search algorithms. The integration of suffix-trees
involved addressing of two issues associated with persistent suffix-trees: (i) efficient con-
struction of persistent suffix-trees, and (ii) their storage management to improve query

throughput.

1.5.1 Efficient Construction of Persistent Suffix-Tree Indexes

The suffix-tree of a sequence is the defacto index structure used in numerous biological
applications for accelerating queries over sequences [29, 53, 81]. The main attraction of
suffix-trees lies in their linear time and space construction complexity, and in their use
in a number of sequence querying situations, with almost any of the similarity metrics
employed by biologists to compare DNA or Protein sequences.

Although the utility of suffix-trees is well known, their viability is limited to small-size
datasets due to their large space requirements — the best implementation of suffix-trees
imposes more than 12 bytes overhead for every symbol indexed. This is in marked con-
trast to traditional database index structures, which are typically a fraction of the overall

database size. The obvious solution of extending the suffix-trees onto disk is seriously ham-



CHAPTER 1. INTRODUCTION 10

pered by the disk-unfriendly nature of suffix-tree construction algorithms [80, 126, 130].
Hence, the popular belief that suffix-tree indexing is not practical over large datasets [89].

In this thesis, we present techniques to significantly improve the performance of tra-
ditional suffix-tree construction algorithms such as [80} [126], in the context of persistent
suffix-trees. Specifically, we consider the impact of the buffering policy employed during
construction and the physical representation of suffix-tree nodes and make the following
contributions:

First, we present a novel buffering policy called TOP-Q, that takes into account the
probabilistic behavior of traversals during suffix-tree construction. This strategy uses
only the path length invariant (formally defined in Chapter 4) of suffix-tree nodes, and
results in a computationally low-overhead policy that outperforms other popular database
buffering policies.

Second, we show that the much preferred physical representation for suffix-trees that
stores sibling nodes in the tree as a linked-list, is extremely expensive in terms of disk I/O
costs. As an alternative, we propose the use of a simple array of pointers at every internal
node, which we show to be more I/0O efficient despite the increased space overhead.

A significant advantage of our proposal is that all the existing suffix-tree based bioin-
formatics tools can be migrated to persistent store without having to reinvent or reimple-
ment the algorithms. This is due to the fact that unlike alternate proposals for suffix-tree
building [61, 123], we completely retain all the structural elements of suffix-trees. In
particular, the suffiz-links between internal nodes, which play an important role in linear

time construction and subsequent querying over suffix-trees are retained in our technique.

1.5.2 Storage Management of Suffix-Tree Indexes

In most applications of sequence indexing, the construction is over a relatively static data —
for e.g., NCBI GenBank is released only every two months, while the curated SwissPROT
database is released even more infrequently. During this period, there could be millions
of queries on these databases. Enabling practical construction of persistent suffix-trees

is only the first step in their wide-spread acceptance as sequence index structures within



CHAPTER 1. INTRODUCTION 11

database systems. In addition to providing efficient means of constructing persistent
suffix-trees, it is also important to devise techniques to ramp up their search performance.

The performance of persistent index structures is measured in terms of the amount
of I/O incurred during searches over them. Popular database index structures such as
B-Trees and R-Trees are designed specifically for use in secondary memory, and such trees
are characterized by their structural balance as well as the sizing and the branch factor
of their nodes designed to exploit the disk pagesize. Unlike such indexes, the structural
properties of suffix-trees are the outcome of the properties of the indexed sequence. They
are typically “tall and skinny” with small-sized nodes and small fanout at every node —
limited by the size of the alphabet of the sequence.

In this thesis, we investigate whether it is possible to optimize the layout of the suffix-
tree with regard to the assignment of tree nodes to disk pages, such that the search
performance over the resulting layout is improved. While layout has been well-studied in
the database literature for access structures such as kdb-trees [103], Quad-trees [107] etc.,
we are not aware of any similar work for suffix-trees.

In the above context, this thesis makes the following contributions:

First, we show through extensive experimental results that standard layouts of per-
sistent suffix-trees optimize the locality of only either the tree-edges or the suffix-links,
resulting in slow performance of suffix-tree search algorithms that utilize both forms of
inter-node connections.

Second, we present a linear-time, top-down layout algorithm called Stellar (Suffix-
Tree Edge and Link Locality AmplifieR) that attempts to achieve the goal of optimizing
the locality of both tree-edges as well as suffix-links. Through empirical evidence we show
the superiority of searching over resulting layout of the persistent suffix-tree.

Finally, we present experimental results to show that searching of suffix-trees without
suffix-links incur more than 2 to 3 times the 1/O required when these same searches
are carried out over a linked suffix-tree. These results clearly bring out the need for

maintaining suffix-links in persistent suffix-trees.



CHAPTER 1. INTRODUCTION 12

1.6 Thesis Contributions

The main contributions of this dissertation are fourfold:

e First, we present the design and implementation of BODHI, a holistic database
system that seamlessly integrates the spectrum of data types involved in modern
day biodiversity research. In addition to a comprehensive functionality, BODHI is
also equipped with a variety of index structures to enhance the query performance

significantly.

e Second, we present techniques for efficient construction of persistent suffix-trees,
the biological sequence indexes integrated within BODHI. Specifically, we show that
traditional linear-time algorithms for suffix-tree construction can be transparently
scaled to work efficiently for persistent suffix-trees as well, through the use of a
novel suffix-tree-aware buffering policy, TOP-Q, and a careful choice of physical

representation.

e Third, we show how to organize the persistent suffix-tree nodes on disk such that
the overall I/O incurred during search tasks is minimized. We present a technique
called STELLAR that provides improved spatial locality for both suffix-link and

tree-edge traversals, speeding up biological sequence search tasks.

e Finally, we present a detailed experimental evaluation of the performance of various

features of BODHI.

1.7 Organization

The remainder of this dissertation is organized as follows: In Chapter 2, we review pub-
lished related work. Next, in Chapter 3, we describe, in detail, the design and implemen-
tation of the BODHI system. Some relevant background material regarding the suffix-tree
indexing for biological sequences is presented in Chapter 4. Our TOP-Q buffering strategy

for high-performance persistent suffix-tree construction is presented along with a detailed



CHAPTER 1. INTRODUCTION 13

performance evaluation over a variety of genomic sequences, in Chapter 5. Moving on to
the search aspect, in Chapter 6, we describe STELLAR, a search optimized storage orga-
nization strategy for persistent suffix-trees. We explore applicability of our techniques for
high-performance persistent suffix-tree indexes over protein sequences, in Chapter 7. A
detailed performance evaluation of the full BODHI system, highlighting the utility of var-
ious indexing schemes available, is presented in Chapter 8. Finally, Chapter 9 summarizes

the contributions of this thesis, and outlines future research directions.



Chapter 2

Related Work

In this chapter, we review the research literature related to the main contributions in
this dissertation — namely, biodiversity information management, efficient construction of
persistent suffix-tree indexes, and storage techniques for high-performance searching over

persistent suffix-trees.

2.1 Biodiversity Information Management

Biodiversity data consists of both macro-level and micro-level information ranging from
ecological information to genetic makeup of organisms and plants. Apart from our work,
we are not aware of any other effort that attempts to combine the complete spectrum
of information, though the need for it is highlighted in a proposal for GBIF (Global
Biodiversity Information Facility) by OECD (Organization for Economic Co-operation
and Development) [104]. This proposal identifies the domain level challenges in building
a global, interconnected data repository of biodiversity information systems and notes
that the urgent requirement in biodiversity studies is a suitable information management
architecture for handling vast amounts of diverse data.

Recently, a group of computer scientists, biologists and natural resource managers
met to discuss the computer science and information technology needs in biodiversity and

ecosystem informatics (BDEI), and the report of the workshop [92,[109] discusses at length

14



CHAPTER 2. RELATED WORK 15

the technological and deployment challenges in this area. Omne of the key information
management challenges they highlight is the need to efficiently handle the complexity
and variety of biodiversity data.

For a biological data management system to be effective, it is critical that it be able
to manage data at multiple levels of complexity, granularity, consistency and scale. In
response to the wide variety of data management requirements, researchers in each indi-
vidual domain have built their own tools that have vastly varying capabilities in handling
of available data. In the rest of the section, we review data management solutions pro-

posed for each of the individual domains.

2.1.1 Taxonomy Data Management

In the area of macro-level biodiversity information management, there have been many
governmental efforts such as ERIN [13], INBio [88] and some global initiatives such as
Species 2000 [114], the Tree of Life [TT], etc. However, the focus of most of these projects
is on the collection, curation and dissemination of taxonomy data. They do not specifically
address the issues of data management, efficient storage and querying, and do not provide
sophisticated query interfaces to perform data analysis.

The Prometheus project [98] addresses the topic of extensible modeling of taxonomic
classification data. Due to the lack of a standardized classification model, taxonomists
arrange organisms into classification hierarchies according to various criteria (for e.g., mor-
phological similarity, or more recently, DNA relationships). Although newer classification
systems appear, it is also important to preserve the earlier classification hierarchies for a
variety of reasons. In order to support this requirement, Prometheus proposes a extended
object-oriented model with built-in graph functionality [99, 100]. Although the goals of
our BODHI system differ from those of Prometheus, modeling extensions proposed in
Prometheus can be easily incorporated into the BODHI object model.

Recently, in [86], authors have proposed an architecture for the analytical needs biolo-
gists in the area of cladistics —i.e., the science of developing and studying the phylogenetic

models of evolution. Their present a normalized data model where phylogenies (or tax-



CHAPTER 2. RELATED WORK 16

onomies) are stored as lists of edges, and use formulations involving transitive traversals
to answer a variety of queries occuring the domain. While we aim at providing a seamless
data integration, it is conceivable to enhance the feature-set of BODHI by incorporating
ideas proposed in their paper.

In [105], authors have noted the applicability of OODBMS (object-oriented database
management systems) for naturally modeling the inherent hierarchical structure of tax-
onomic information. Extensive literature is available on the design and implementation
issues in OODBMS [134], too vast to be summarized here. We provide a brief overview of
two specific indexing issues in this domain, namely, the indexing of inheritance hierarchies

and the indexing of aggregation paths, highlighting on the techniques chosen in BODHI.

Indexing Inheritance Hierarchies. A direct implication of the concept of class hier-
archy or inheritance hierarchy in object-oriented (OO) data modeling, is that on query
evaluation it is necessary to consider the class scope of the query. In other words, the
query could be evaluated on the extent of only one class in the inheritance hierarchy, or
on the extents of all the classes in the hierarchy. There are a number of class hierarchy
index techniques that have been proposed to address this issue, such as CH-Trees [71],
H-Trees [76], Class-division indexing [102], hcC-Tree [115], etc. However, these techniques
typically accelerate only one form of class scoping, i.e., only a single class or all the classes
in the hierarchy. The Multi-key Type Index (MT-Index) [83], chosen as the inheritance hi-
erarchy index in BODHI, provides an elegant approach, based on optimal linearization of
inheritance hierarchies, to efficiently evaluate both forms of object retrievals. In addition,
it can be implemented with relative ease, using a multi-dimensional indexing structure

such as an R-Tree [56], or its variants.

Aggregation Path Indexing. The classes in a OO data model are related to each
other through aggregation relationships, forming a directed graph called aggregation hi-
erarchy representing the nested structure of classes. These class-level relationships result
in complex inter-relationships amongst data objects (instances of these classes). OODBs

typically support queries involving these nested objects, with predicates on either up-



CHAPTER 2. RELATED WORK 17

Cl 1C2( Bl (Al) )
Figure 2.1: Aggregation Graph and its S-Expression

stream or downstream objects of a relationship path. A number of aggregation path
index structures are available, such as Multiple-index [78], Join indices [129], Nested and
Path Indexes [10], etc. However, many of these indexes efficiently only support either
the upstream or the downstream predicates, and in some cases (such as in the case of
Multiple-index), the inequality predicates cannot be evaluated.

The aggregation path index used in BODHI is based on the Path-dictionary Index
(PDI) [74], which supports efficient computation of all aggregation path queries. The

PDI access structure consists of two parts:

1. Path Dictionary: It is the central data structure which abstracts out the connec-
tions between the objects in the form of a s-expression. The s-expression recursively
encodes all paths terminating at the same object in a leaf class. Given a path
C1C5 ... C, the s-expression is defined as follows:

S1 = 61, where 6; is the OID of an object in the class C} or null.
S; = 0;(Si_1], Si—1]) 1 < i < n, where 6; is the OID of an object in class C; or

null, and S;_; is an s-expression for the path C7Cy...C;_1.

Thus, S; is a s-expression of 7 levels, in which the list associated with #; contains
recursively the OIDs of all the ancestor objects of ;. In other words, it is an
encoding of all paths terminating at the object 8; which is type C; in the aggregation
path above. Figure 2.1 illustrates a toy aggregation graph between objects of three

classes — A, B, and C, and also the corresponding s-expression.

2. Identity and Attribute Index: These indexes are built on top the path dictio-

nary, to quickly locate the s-expression records of interest in the path dictionary.



CHAPTER 2. RELATED WORK 18

The identity index locate the s-expression(s) in the path dictionary that contains
a given OID. The attribute index is an optional auxiliary index built on attributes
of a given class such that path traversals conditioned on attribute values can be

performed on the path dictionary without accessing the involved object.

PDI reduces the cost of query processing by speeding up both associative search and

object traversals.

2.1.2 Spatial Data Management

A large portion of the data involved in ecological studies comprises of spatial data and
the queries over this data are expensive both in terms of I/O complexity as well as com-
putational requirements. Due to the growth and popularity of Geographical Information
Systems (GIS), database researchers have studied a variety of data management issues
in this area. These include the design of a number of indexing structures for spatial
queries, benchmarks designed to measure the performance of spatial data handling and

the architecture of large-scale spatial database systems — each of which is reviewed below.

Multi-dimensional Indexing. A number of multi-dimensional structures for indexing
spatial data have been proposed, for instance, k-d-b-trees [103], Quad-trees [107], Grid
Files [91], R-Trees [56], and so on (a survey of related structures is available in [40]). In
recent times, R-Trees and R*-Trees [7] are considered defacto spatial indexes due to their
attractive disk-friendly properties. Most of the modern commercial database systems such
as Oracle and DB2 provide an R-Tree based indexing structure as part of their spatial
extensions. One issue that critically affects the performance of an R-Tree is the technique
used in splitting and merging of nodes and their Maximal Bounding Rectangles (MBRs).
R*-Trees were proposed to improve the packing of standard R-Trees, through their forced
re-insert strategy — analogous to the deferred splitting in B*-Trees. In [67], a novel
variant of R-Tree called Hilbert R-Tree, was introduced. It uses the ordering of spatial
objects imposed by a space-filling curve, in order to minimize the area and perimeter

of the resulting MBRs, thus improving the quality of packing. Through experiments on



CHAPTER 2. RELATED WORK 19

a number of real-world datasets, it is shown that Hilbert R-Trees provide significantly

better packing than R*-Trees, leading to improved query performance.

Benchmarking. In order to compare the performance and functionality profile of
spatial databases, a well designed benchmark suite is essential. In this regard, the
SEQUOIA-2000 [118] benchmark proposal has become extremely popular. SEQUOIA-
2000 takes into consideration the massive size of spatial data, complex data types such
as geometries of spatial objects, and the presence of sophisticated search requirements to
propose a suite of 11 queries and benchmark dataset available at three scales — regional,
national and world level. We use a large subset of these queries in our performance study
of BODHI.

Finally, the design and architectural issues in building a scaleable spatial database
system has been explored in detail as part of the Paradise project [30, 95, 96]. They
propose a variety of performance tuning techniques and functionality enhancements to be

used in spatial databases, and provide a detailed analysis of the system.

2.1.3 Molecular Data Management

The micro-level biodiversity data, or genetic information of various species, has been
growing steadily due to the multitude of genome sequencing initiatives. The specific
data management issues in handling such data have been addressed in quite a few pro-
posals [50, 51]. In all of these proposals, the database management architecture has
been tailored for the specific purposes of the project. Consider the ACeDB (A C.elegans
Database) [32] system, originally proposed for the C. elegans genome sequencing project.
ACeDB is an object oriented data management tool that has many features, including
the handling of missing data and schema evolution, that makes it an extremely popular
software in many sequencing projects. However, despite its popularity in the genome
sequencing community, it cannot be considered for the larger requirements of biodiversity
data handling due to the following reasons: (1) Lack of support for geo-spatial data; (2)

Weak support for database updates; and (3) Lack of recovery mechanisms necessary in



CHAPTER 2. RELATED WORK 20

large data repositories.

In BODHI, we have provided the key strengths of ACeDB (its sequence processing
algorithms and object-oriented basis), and augmented it with the strong database func-
tionalities and related features that are necessary for a complete biodiversity information
repository.

With the publishing of the draft sequence of the complete Human genome [62], as well
as the availability of the complete genomes of many other organisms, the data analysis
requirements have increased both in complexity and scale. As a result, there have been
efforts to integrate the sequence analysis functionality within the database systems to
improve efficiency and to reduce the data movement. The approach taken by IBM’s DB2
is to provide a high-performance implementation of BLAST as a user defined function
(UDF) that can be called from within SQL queries [10§]. Similarly, in Oracle 10g, BLAST
and regular expression search features are built into the database system and can be used
as part of SQL queries [116]. Both these approaches result in query language extensions
similar to those proposed in our BODHI system. However, in BODHI we provide, for the

first time, a detailed performance evaluation of biological sequence similarity queries.

2.2 Large-scale Biological Information Systems

The coming together of diverse branches of biology has necessitated the design of informa-
tion systems that present a single common platform for the combined needs of biologists.
Although there have been many proposals for the design of such a system, a majority
of them have focused mainly on the requirements in molecular biology domain. Drawing
on the experience of building, deploying and using such systems, there are a small but
growing number of similar efforts aimed at biodiversity informatics.

Existing biological information integration systems can be classified into the follow-
ing three categories: (i) Navigational integration, (ii) Mediator-based integration, and
(iii) Warehouse integration. In the rest of this section, we provide a brief overview of
each of these approaches and highlight their applicability in the context of biodiversity

information management. We conclude the section by positioning our proposed BODHI



CHAPTER 2. RELATED WORK 21

framework with respect to these approaches.

2.2.1 Navigational Integration

The navigational information integration refers to the creation of authoritative portals
on the World Wide Web (WWW) so that the users can navigate across data sources,
starting their exploration at the portal. Within this there are two distinct approaches:
(i) Link-based integration, and (ii) Collaborative portals.

The link-based integration of data sources closely resembles the users’ mode of access-
ing information on the WWW through the use of search engines. Typically, there is a
centralized portal for starting the search for specific information. Users can express their
search intent through the use of simple keywords through a form based interface, and pos-
sibly restrict their searches to a subset of data sources linked to the portal. The portal also
maintains an index generated by pre-processing the data in the repositories participating
in the integration. The keyword queries are used to lookup this index and generate hy-
pertext links that point to a web-page containing the results at the data repository. Note
that neither the actual data is stored locally nor are the queries evaluated dynamically
at the sources. Some of the initial data integration systems in molecular biology, such as
SRS [35], and in biodiversity information systems such as Species 2000 [114], ENVIS [34]
etc., belong to this category of integration systems.

In contrast, the collaborative portals are centralized data repositories. The data is
maintained and curated through collaborative efforts of number of users around the world
each responsible for a portion of the repository. For simplifying the process of depositing
the data, these systems typically use simple navigational structures and use hyperlinks to
connect different parts of the information hierarchy. The Tree of Life project [77] is based
on this form of information integration.

The main attraction of navigational information integration is the technical simplicity
of its deployment and ease of use. While these have proven to be an initial boon to
biologists, they do not scale with increasing volume of data involved as well as the need for

increased sophistication in query capabilities. It has been pointed out that the “point and



CHAPTER 2. RELATED WORK 22

navigate” paradigm employed for data access in these systems imposes severe functionality

restrictions that limit their effectiveness [26].

2.2.2 Mediator or Wrapper-based Integration

A myriad of data sources serving data in different formats, catering to different aspects of
genomics, biodiversity and GIS information have been already set up. The proliferation
of such specialized data repositories, coupled with continued expansion of existing reposi-
tories, requires techniques to integrate these diverse federated data sources with minimal
intervention.

The wrapper-based integration, also called query shipping approach of data integra-
tion, tries to address this issue by providing a middleware mediator layer that encloses
many data sources. This middleware provides a generalized user interface, thus shielding
the users from having to learn the interfaces and nuances of specific data repositories. For
each data source that participates in this integration, a new wrapper is available which
is responsible for transforming the user queries into the query format of the data source,
and to transform the query results into the generic representation format used within the
middleware.

Due to the lack of integrated database solutions unifying different facets of biologi-
cal information, wrapper-based integration has become extremely popular in molecular-
biology domain. For example, K2/Kleisli [14], DiscoveryLink [57], and TAMBIS [6] use
source-specific wrappers for extracting data from both static sources as well as application
programs such as the BLAST family of similarity search programs. Inspired by this, the
biodiversity community has also started considering similar integration efforts. For ex-
ample, the GBIF (Global Biodiversity Information Facility) [104] effort proposes to use a

world wide net of independent data sources, accessible through a wrapper mediator layer.

2.2.3 Warehouse Integration

As opposed to the query shipping approach of mediator systems, the warehouse integration

uses the data shipping approach. In other words, integration of biological information is



CHAPTER 2. RELATED WORK 23

achieved by extracting, cleaning and curating data from a multitude of sources, made
available through a single repository. Thus, warehousing requires that all the data loaded
from the sources be converted through some data mapping to a standard format before
it is physically stored in the local warehouse.

The main advantage of the warehouse approach is that the system performance tends
to be much better since the query optimization can be performed locally and commu-
nication latency to access various data sources is eliminated. System reliability is also
better since there are fewer dependencies on network connectivity or on the availability of
underlying data sources — data sources may go down, or become overloaded and temporar-
ily unable to answer queries. It is also easier to enforce any inter-database constraints.
Another advantage of warehousing is that while the underlying data sources may contain
errors, often the only feasible way for the integrated view to have correct data is to keep
a separate cleansed copy in the warehouse. Furthermore, the researcher may have addi-
tional information or annotations to add to the integrated view, which is either entered
manually or with the help of a software package guided by a human. The added-value of
corrected and annotated data stored in the data warehouse is significant.

As observed in [58], with pervasive data inconsistency amongst independent data
sources, the ultimate solution is to install a well curated repository of biological infor-
mation. They also propose a Genomics Algebra that integrates the genomics data man-
agement requirements, including the analytics components, in the kernel of the database
system. Apart from this recent effort, the only other warehouse driven approach that we

are aware of is GUS (Genomics Unified Schema) [27].

2.2.4 Design Approach of BODHI

The above mentioned data integration efforts cater mainly to the analytical needs of biolo-
gists. However, there are many situations where simply providing a functional integration
is not sufficient. For example, a group of researchers from multiple biological domains
investigating endemic medicinal plants might not only require functional integration, but

also require (i) efficient storage and query processing, (ii) the ability to create novel infor-



CHAPTER 2. RELATED WORK 24

mation, and (iii) the ability to easily disseminate the data among group members. Thus,
the information management system should not only address the integrated view of di-
verse data as an aid for analytical studies, but also provide effective methods to generate
and curate new information locally.

In order to address these extended requirements, BODHI is designed to provide a
database architecture that can seamlessly and efficiently integrate diverse data types that
are common in biological studies. In addition, BODHI system utilizes XML (along with
domain-specific XML DTDs) to publish data and a standardized query language (OQL)
interface, making it useful in the development of both warehouse and wrapper-based

information integration systems.

2.3 Indexing of Biological Sequences

With the introduction of high-throughput genome sequencing techniques almost two
decades ago, the volume of genomic sequence information is growing at an exponen-
tial rate. Besides the human genome with about 3 billion basepairs ¥, complete genome
sequences of many other species have been already sequenced and are available in public
repositories such as GenBank. The number of daily query loads over these data reposito-
ries are comparable to those of widely used search engines, which motivates the need for
developing efficient techniques for the purpose.

Currently popular techniques for sequence-similarity searching over genomic reposito-
ries include: dynamic programming-based Smith-Waterman algorithm [113], FASTA [75]
and BLAST [1]. Of these, the Smith-Waterman method is an accurate search method,
while FASTA and BLAST techniques are based on heuristics that trade precision of results
for speed. The dynamic programming method has a O(|D| * |q|) cost, where |D]| is the
number of symbols in the database sequence and |q| is the length of the query sequence.
Although FASTA also has the quadratic worst-case complexity as that of dynamic pro-

gramming, the associated constant factors are much smaller. On the other hand, BLAST

'In genetics, two nucleotides on opposite complementary DNA or RNA strands that are connected
via hydrogen bonds are called a basepair (often abbreviated bp).



CHAPTER 2. RELATED WORK 25

has a time complexity linear in the size of the database, and is currently the most popu-
lar tool for searching genomic repositories. With the rapid growth of repositories, faster
techniques than the currently used tools like BLAST are required for sequence-similarity
searching.

Naturally, there is a growing interest in developing techniques to build indexes for the
sequence repositories, which can be productively used for high-speed searching. Extant
genomic indexing techniques can be classified into the following two broad categories: (i)
Word-based index structures, and (ii) Sequence index structures. In the remainder of this
section, we provide an overview of some of the key secondary-memory indexing techniques

in each of these categories.

2.3.1 Word-based Indexes

In word-based indexing techniques, the sequence is seen to be a collection of (possibly
overlapping) substrings called g-grams. This view is similar to the highly successful bag-

of-words approach for representing text in information retrieval domain [5].

1. CAFE: This technique employs a two-stage process for searching for all similar
sequences in genomic databases [131], [132]. An initial coarse-grained search is done
through the use of a compressed inverted-index built using overlapping substrings
of a fixed length. In the second stage, a computationally expensive fine-searching is
performed on the candidates selected in the first phase to generate a ranked list of
similar sequences. Through an empirical study, it is shown that the CAFE approach

is significantly faster than the popular BLAST [I] and FASTA [75] search tools.

2. ED-Tree: In [122], a novel index structure called ED-Tree was proposed for sup-
porting probe-based homology search algorithms like BLAST. Given a genomic se-
quence, S, a predefined word-length, w, and a segmentation scheme for each word,
they construct a digital search tree based on the segments of the word such that
every root to leaf path corresponds to a word of length w. The leaf nodes con-

tain pointers into the indexed sequence where the w-length word matches exactly.



CHAPTER 2. RELATED WORK 26

In order to reduce the size of leaf nodes, they apply a frame-of-reference compres-
sion scheme after sorting the offset values stored at each leaf node. Experimentally
they show that a homology search algorithm using the ED-Tree can be orders of

magnitude more efficient than BLAST, and is more sensitive.

3. Piers: An indexing application of ¢-gram based filtering was proposed in [15], where
a subset of g-grams (or piers) are used to filter out the regions of low similarity with
the query sequence, while minimizing the likelihood of false dismissals. For each
sequence s in the data collection, a set of g-grams of length [, are chosen such that
at least k of them are contained in a region of length no less than [,,; — a given
threshold on the length of regions of similarity. These g-grams are then indexed
using a compact hash-based structure, and cross-pier similarities are precomputed
and stored in a fast lookup table. Each query sequence is then decomposed into
all its l,-length g-grams, and presented to the pier hash structure, which is used
to determine the piers that are within a short edit-distance from the given g-gram,
and then are further expanded to include piers with larger edit-distance through the
use of precomputed cross-pier similarity table. Due to their two-stage refinement
process that allows for inexact matches of piers, it is possible to eliminate larger
regions of dissimilarity quickly. Through experimental evaluation, they show that

their technique is 2-15 times faster than BLAST.

4. qClusters and c-signatures: In [16], a two-level indexing technique based pri-
marily on the g-gram filtering was proposed. They consider all possible ¢-length
subsequences on DNA alphabet, and define ¢Clusters to be a partition of these -
grams into clusters of equal size. At the first level, DNA segments are hashed, based
on the presence or absence of a representative from each qCluster into a compact
in-memory hash table. Next, each DNA sequence is represented using 49-length
bitmap, where each bit position corresponds to one of all possible g-grams. These
g-signatures are then compacted into c-signatures by replacing c bit positions by the
count of bits set to 1. These c-signatures are organized into a digital search tree,

called c-tree, which forms the second level indexing structure. Their experimental



CHAPTER 2. RELATED WORK 27

evaluation of search algorithm based on this two-level structure demonstrates 2-3

times performance improvement over BLAST.

5. DSIM: One of the obstacles in speeding up DNA sequence search time is the massive
size of DNA data collections. In [17], improvements to substring matching perfor-
mance through a sequence compression technique called DSIM was proposed. They
borrow the ideas from video compression techniques, to compress the sequence data
collection based on the substring edit-distance from a few reference-words. These
reference words are chosen initially as the most frequently occuring substrings, and
are then incrementally updated based on the statistics gathered from query work-
loads, as well as based on the updates to the data collection. Through empirical
analysis, they show that their techniques outperform BLAST in speed, and are

highly competitive in precision.

6. SST: The Sequence Search Tree (SST) proposed in [49], considered a heuristics-
based solution which runs in O(logn) expected time. This technique splits the data
strings into overlapping windows of length W for some pre-specified overlap amount
of A. For each such window, they count the number of repetitions of all possible -
tuples, and store these values in a o* dimensional vector, where o is the alphabet size.
These vectors are indexed using a hierarchical binary tree constructed by repeatedly
applying a K-means clustering algorithm. The similarity between the query string
and a substring is approximated by using the Manhattan distance between these

vectors. Experimental results show that this technique runs more than 25 times

faster than BLAST.

7. String Join using Precedence Count Matrix: Searching a sequence data col-
lection can be also viewed as an approximate string join problem and [18] proposes
a filter-and-refine algorithm for the purpose. The novelty of their work lies in the
use of a Precedence Count Matriz (or PCM) to efficiently estimate a lower bound
for the edit distance between two sequences. A PCM of a sequence of symbols from

alphabet ¥, is a [3| x |X| matrix where an entry (a,b) represents the number of



CHAPTER 2. RELATED WORK 28

unique occurances of symbol a preceding b (not necessarily consecutive) in the se-
quence. These PCMs can be computed efficiently, and incur very little overhead due
to the small alphabet-size of DNA. Using the PCM-set for all the suffixes/prefixes
of each sequence, they show that the performance is highly competitive with that

of MRS-indexing (see below).

8. MRS-indexing: This technique, proposed by Kahveci and Singh [66], uses an el-
egant two-level search process based on wavelet transformations. In the first step,
each subsequence of the database is mapped into a 20 dimensional vector space of
wavelet coefficients. These 20 dimensional space of points is indexed with stan-
dard multi-dimensional index structures such as R-Trees [56]. Range queries and
nearest-neighbour queries can be efficiently performed using this indexing strategy.
The technique also guarantees that there will be no false-dismissals with the stan-
dard edit-distance metric. Recently, MRS-indexing has been extended for indexing
protein sequences and score matrices [65]. They use the index to prune away un-
promising portions of the data-sequence, thus enabling tools like BLAST to perform

focused computations.

Almost all of the techniques presented above suffer from a serious drawback — they
are directly applicable only when the similarity search is based on the standard edit-
distance or Levenshtein-distance metric. However, more often than not, biologists use
domain-specific specialized alphabet-scoring schemes while performing similarity searches
over the database. For example, in the case of phylogenetic tree construction techniques,
biologists weigh the intra-purine/intra-pyramidine (A = G, C = T) transformations
lower than the transformations across these groups (e.g., A = C/T etc.) [53]. This is
done in order to account for the estimated evolutionary DNA mutation rate, where intra-
purine/intra-pyramidine substitutions are expected to be more likely to occur by chance,
and may not be indicative of the true phylogenetic divergence. As a result, it is necessary
for a database sequence index to be applicable under different symbol-wise edit metrics

as well.



CHAPTER 2. RELATED WORK 29

Furthermore, these techniques are aimed at improving the performance of probe-based
sequence similarity techniques like BLAST, which may not detect all the homologous
regions. In other words, the sensitivity of these algorithms is typically lower than the

Smith-Waterman algorithm.

2.3.2 Sequence Index Structures

In contrast to word-based indexes outlined above, sequence index structures preserve the
sequential nature of strings while indexing. Suffix-tree is a key index structure in this class
of data structures. A rich body of research exists on utilizing the suffix-tree of a sequence
in performing many sequence processing tasks [4, 53, 54]. In fact, suffix-trees, discussed in
the next section, have been considered as the de-facto indexing strategy in bioinformatics

domain. In this sub-section, we present some of the related data structures.

1. Suffix-Array: Manber and Myers [79] proposed the Suffix-array data-structure
that is very space efficient and can be used to perform exact string matching or
substring matching. Conceptually, the suffix-array of a string is an array holding
the indexes of all the suffixes of the string sorted in lexicographic order. Since the
suffix-array holds only the index values of the string, it requires only |D| integers.
When coupled with an additional array holding longest common prefizes of adjacent
elements, the suffix-array can be used to find all occurrences of the query ¢ in
O(|¢| +log,|D|) time. This is in contrast to suffix-tree, which can perform the same

query in O(]g|) time.

2. String B-Tree: Motivated by the lack of external memory index structures that
can efficiently handle long text strings, Ferragina and Grossi proposed the String
B-Tree structure [39]. String B-Tree is a novel combination of B-Tree structure
and Patricia Tries for internal-node indices that is made more effective by adding
extra pointers to speed up search and update operations. However, in the biological
sequence indexing, String B-Trees are of limited use since the sequences such as

DNA or Proteins do not possess clearly demarcated word-structures, which are a



CHAPTER 2. RELATED WORK 30

prerequisite for String B-Trees.

3. SPINE: In [90], Neelapala, Mittal and Haritsa presented a novel index structure
called SPINE (Sequence Processing Indexing Engine), which, like suffix-trees, is
based on trie-structures. Conceptually, SPINE can be viewed as a horizontal com-
paction of a trie on the data sequence, in contrast to suffix-trees which vertically
compact the trie to remove all the non-branching nodes. The advantage of SPINE
over suffix-tree is that it avoids the duplication of paths in the tree, thereby reducing

the number of nodes.

It should be noted here that, although in our work we have addressed the issue of
making suffix-trees — a fundamental sequence index structure — practical in a database
setting, it is imperative to consider the application at hand in order to choose the index
structure. For example, there are some applications, where it is sufficient to obtain most of
the alignments under standardized parameter values. In such cases, it might be worthwhile
to consider more space-efficient index structures such as MRS-index or ED-Tree, albeit

their limited ability to support more flexible similarity searches.

2.4 Persistent Suffix-Tree Construction

Since the time Weiner [130] introduced the suffix-tree data structure and a linear time
algorithm for its construction, there has been growing interest in more space- and time-
efficient algorithms for construction of suffix-trees. Conceptually different and space ef-
ficient algorithms to build suffix-trees in linear time have been given by McCreight [80],
and later, by Ukkonen [126]. Further, McCreight also suggested the use of linked-list
implementation of nodes for reducing the space overhead of the suffix-trees. All these al-
gorithms make use of suffix-links to achieve linear-time construction and are implemented
for various constant-sized alphabet datasets.

Suffix-trees provide an accurate indexing solution for searching over large corpora of
DNA or Protein sequences. Initial use of suffix-trees in genomic indexing was restricted

to small length DNA sequences [11], where the suffix-tree could fit completely into main



CHAPTER 2. RELATED WORK 31

memory. In [36, 37], Farach et al. provided the initial theoretical breakthrough in per-
sistent suffix-tree construction. They introduced a novel way to construct the suffix-tree
over a large sequence by following a divide-and-conquer approach (as opposed to the
traditional suffix-at-a-time approach), and used that to show that persistent suffix-trees
could be built with the same I/O complexity as that of external sorting. However, due to
huge constants associated with their results, these results are of only theoretical interest.
They also pointed out that “traditional” algorithms (such as those of Weiner, Ukkonen,
and McCreight etc.), which follow incremental extension of suffix-trees, will be forced to
make random I/Os resulting in bad performance. Their observations on traditional algo-
rithms were made without considering the effects of paging/caching policies that could
be employed during the construction process. In fact, they state at the end of their pa-
per [36], that it would be worthwhile considering the behavior of construction algorithms
in presence of paging, which is a topic addressed in this thesis.

However, until recently, suffix-trees were not considered for persistent construction
and maintenance as linear-time suffix-tree construction algorithms show very poor per-
formance. The main bottleneck in the direct application of these algorithms for persistent
suffix-trees is considered to be the random seeks induced during construction [36]. It has
also been noted in [61] that suffix-links utilized by all these algorithms traverse the suffix-
tree “horizontally”, while edges span the tree “vertically”. Thus, atleast one of them is
expected to result in random access of memory. This is true only if the tree is stored on
disk using depth-wise traversal of either edges of the tree or links of the tree. But this
storage pattern is not feasible during the on-line construction of persistent suffix-trees.
Therefore, in practice, both edges and suffix-links show non-local access patterns. In fact,
even in a recent work [89], it was reported that whenever the dataset is large enough
suffix-trees are not a viable option of indexing, since the memory is too small to hold the

index completely.



CHAPTER 2. RELATED WORK 32

2.4.1 Construction of Suffix-tree without Suffix-links

In [61], a phased construction approach to building suffix-trees was proposed, wherein
they use an asymptotically quadratic algorithm for construction of suffix-trees without
suffix-links. Their technique is based on a mapping of all suffixes of a given database
sequence D to disjoint set of partitions, p,, € P, such that suffixes with equal prefix w are
mapped to the same partition p,, = {wz|wxr = s and s is a suffix of D}. The prefix length,
w, is chosen such that the size of each suffix-tree partition does not exceed the available
main memory size. Otherwise the algorithm fails. Since their phased approach involves
constructing parts of the suffix-tree within memory and writing it to the disk completely,
their empiricaly evaluation showed its superiority over traditional linear-time suffix-tree
construction algorithms. But, their results on the performance of traditional construction
algorithms do not consider the effects of paging policies and the storage management
issues. In fact, in [63], it has been reported that a possible bottleneck could be the choice
of checkpointing scheme of PJama, the underlying persistent mechanism used in [61].

One of the drawbacks of the above approach is that it is not sensitive to the skew
in the distribution of symbols of the sequence. Due to this, the size of the partitions of
the tree that are built within memory could vary resulting in a non-optimal utilization
of available memory. In order to overcome this, an extended partition generation scheme
was proposed in [110]. An initial pass over the complete sequence is made in order to
estimate the cardinality of each partition. Based on these estimates, the prefix-length
used to prepare the partitions is tuned to improve the main memory utilization.

Recently, in [123], a sophisticated partition based technique called Top Down Disk-
based (TDD) was introduced, that takes into account the effects of buffering policies
during the suffix-tree construction. The TDD technique is a well-tuned combination of
the partitioning approach introduced in [61] and an earlier main-memory algorithm called
wotd (write-only top-down) [47] that was shown to incur fewer cache-misses on modern
Processors.

All of the above persistent suffix-tree construction algorithms suffer from a major

drawback — the suffix-tree built using these algorithms is completely devoid of suffix-



CHAPTER 2. RELATED WORK 33

links. Although a large number of algorithms over suffix-trees do not exploit the presence
of suffix-links, some of the critical applications of suffix-trees in bioinformatics such as
MUMmer [29] depend on the availability of suffix-links. Therefore it is important to
explore ways to speed up the suffix-tree construction without affecting their structure in
any way — a focus of the research presented in this thesis.

A novel construction of suffix-trees was proposed by Clifford and Sergot [24], wherein
they combine the advantages of partition-based approach with the utility of suffix-link
based construction. It uses an extended definition of a suffix-link, such that the suffix-
links between nodes in the same partition are retained and can be used to speed up the

construction of the suffix-tree partition.

2.5 Storage of Persistent Suffix-Trees

In this section, we briefly summarize the earlier work in the area of disk layout schemes
for skewed search trees. The earliest work that explored in detail, the issue of disk-layout
for improving the search performance of arbitrary search trees is that of Diwan et al. [31].
They provide algorithms for minimization of external path length (defined as the number
of edges to be traversed in a root to leaf path) in digital tree structures such as trie,
k-d-b-trees etc., given a uniform access probability over leaf nodes of the tree. The worst-
case external path length minimization is achieved through a O(N) algorithm that does
a bottom-up packing of nodes into pages. However, for average path-length minimization
problem — which is more relevant here, with a large number of queries being posed over
the search tree — they have a much more complex, dynamic programming based algorithm
that has O(kN?) time complexity, where k is the page capacity and N is the number of
nodes in the tree. Both these algorithms are shown to be optimal. However, empirical
results in [31] indicate that a simpler top-down technique, called SBFS, yields the same
average path-lengths in most of the cases.

Our work differs from these earlier results due to the following reasons:

e The tree traversals considered in [31] are root-to-leaf traversals commonly found



CHAPTER 2. RELATED WORK 34

in the space-partitioned trees such as k-d-b-trees, Quad-trees etc. However, the
common substring searches over suffix-trees entail a more complicated pattern of

traversals — involving both tree-edges and suffix-links.

e Suffix-tree is, surprisingly, a cyclic structure, with two tree structures — one induced
by the tree-edges and the other by suffix-links — overlapping each other. Thus
the optimality results provided in [31], which are applicable only for trees, are not

applicable in the search procedures considered in this thesis.

Another work that is related to the suffix-tree storage organization issue, addressed
in this thesis, is by Gil and Itai [48]. They consider the issue of packing trees efficiently
given the “access weights” associated with each node in the tree and provide an optimal
dynamic-programming-based packing algorithm. However, the time complexity of their
algorithm is O(BN?), where B is the page size (in terms of number of nodes), and N is the
number of nodes in the tree. Although their technique is applicable for suffix-tree packing
as well, the quadratic costs associated with their algorithm makes it seem impractical
in the case of suffix-trees. Additionally, the algorithms of [31] and [48] do not provide
good page utilization (both guarantee only 50% utilization). In the case of persistent
suffix-trees, already burdened with significant space overheads, it is impractical to resort
to techniques that place additional demands on space. Therefore, we focus on achieving

better disk layout schemes that guarantee 100% space utilization.



Chapter 3

The BODHI System

3.1 Introduction

Over the last decade, there has been a revolutionary change in the way biology has come
to be studied. Computer assisted experimentation and data management have become
commonplace in the biological sciences and the branch of Bio-Informatics is drawing the
attention of more and more researchers from a variety of disciplines. A key area of interest
here is the study of the biodiversity of our planet. The database research community has
also realized the exciting opportunities for novel data management techniques in this
domain [73].

The study of biodiversity, as outlined by the WCMC (World Conservation Monitoring
Center) [133], is an integrated study of Species, Ecosystem and Genetic diversity. The
data associated with these domains vary greatly in the scale of their structural complex-
ity, their query processing costs, and also their storage volume. Thus, supporting such
diverse domains under a single integrated platform is a challenge to the data management
tools currently used by the biologists. More often than not, these scientists make use of
different tools for managing and querying over each of the domains, leading to difficulties
in performing cross-domain queries.

In order to address this lacuna, we present BODHI, a prototype system that addresses

many of the issues arising in the biodiversity information management, and in addition,

35



CHAPTER 3. THE BODHI SYSTEM 36

provides a platform to implement many computational and analytical solutions required
by the biologists. The BODHI system has been designed and developed in collaboration
with domain scientists from the Center for Ecological Sciences and the Department of
Molecular Reproduction, Development and Genetics, at our institution.

BODHI is a native object-oriented system that naturally models the complex objects
ranging from hierarchies to geometries to sequences that are intrinsic to the biodiversity
domain. In particular, it seamlessly integrates taxonomic characteristics, spatial distri-
butions, and genomic sequences, thereby spanning the range from molecular to organism-
level information. To the best of our knowledge, BODHI is the first system to provide
such an integrated view.

BODHI is fully built around publicly available database components and system soft-
ware, and is therefore completely free. In particular, the Shore micro-kernel [19] from the
University of Wisconsin (Madison) forms the back-end of our software, while the \-DB
extensible rule-based query optimizer [38] from the University of Texas (Arlington) is
utilized for production of efficient execution plans. The system is currently operational
on a Pentium PC hosting the Linux operating system.

Efficient query evaluation is one of the important goals of the BODHI system. To
achieve this goal, a variety of sophisticated access structures, some drawing on the recent
research literature, have been implemented to provide efficient access to various data types.
For example, the Path-Dictionary [74] and Multi-key Type indexes [83] accelerate access
to inheritance and aggregation hierarchies, while the R*-tree [7] and Hilbert R-tree [67]
are used for negotiating spatial queries. To improve the performance of a wide class of
biological sequence similarity searches, BODHI features persistent suffiz-tree indexes. In
order to support their efficient construction and querying, a specialized buffer management
policy and an optimized storage technique are built within the sequence processing engine
of BODHI.

The BODHI server is compliant with the ODMG standard [21], supporting an
OQL/ODL query and data modeling interface. To enable easy interfacing with the sys-

tem a web-based graphical query form is provided. Through this graphical interface,



CHAPTER 3. THE BODHI SYSTEM 37

biologists can construct complex OQL queries involving taxonomy, spatial and genome-
sequence predicates. Further, the server is capable of outputting the result objects in XML
format, enabling client-applications to format the results in their favorite metaphor.

In this chapter, we present the design and implementation of BODHI, a database
system tuned specifically for the needs of the biodiversity research community. To the
best of our knowledge, this is the first such system supporting diverse data domains
ranging from genomic sequences to geographical features, and supporting queries that
span across these domains. We demonstrate the utility of the BODHI system over a plant
biodiversity database, although similar databases over other biodiversity entities such as

animals, fish etc. can be designed as well.

3.1.1 Organization

This chapter is organized as follows: In Section 3.2, we highlight the design goals for a
biodiversity information system. Then, in Section 3.3| we provide a detailed description
of the architecture of BODHI. The salient implementation features of BODHI, including
the flow of query and metadata within the system are presented in Section 3.4. Finally,

we conclude in Section [3.5.

3.2 Design Goals

In this section, we highlight the main features that would be desirable in a biodiversity
information system. These include efficient handling of complex data types, facilities for
bio-molecular sequence similarity, and user-friendly interfaces, described in more detail

below.

3.2.1 Handling of Complex Data Types
Biodiversity data can be broadly classified into the following three categories:

1. Taxonomy Data: Taxonomy is the science of systematic classification of organ-

isms. The taxonomy data typically involves deeply nested hierarchies depicting



CHAPTER 3. THE BODHI SYSTEM 38

the relationships between various species based on their observable characteristics.
These relationships include Phenetic relationships — that are founded on physical
or directly observable characteristics of the species, and Phylogenetic relationships
— derived from evolutionary theory [94]. Modeling of these relationships could in-
volve the extensive use of aggregate types such as Sets, Bags and Sequences. The
various characteristics on which these relationships depend may vary in time, due
to the discovery of a new class of characteristics, corrections to previously recorded

characteristics, etc.

2. Geo-spatial Data: The study of ecology of species involves recording the geo-
graphical and geological features of their habitats, water-bodies, and ecologically
relevant artificial structures such as highways which might affect the ecology, etc.
As with any spatial information, the volume of the associated data is huge and the
queries involve predicates over geometric relationships that are computationally ex-
pensive to evaluate. In addition, there is a need for the spatial data to be available
under multiple categories (such as administrative-regions, bio-geographic provinces,

forests etc.) at the same time.

3. Bio-molecular Data: The genetic makeup of species is becoming increasingly
important with the completion of a large number of organism and plant genome
sequencing projects. For example, “bio-prospectors” look for indigenous sources
of medicines, pesticides and other useful extracts, which can be discovered from
the biomolecular and genetic composition of species. In addition, the queries over
this form of data are typically complex similarity queries — for e.g., one would like
to retrieve all the DNA sequences in the database that have regions of significant
similarity with a query sequence. Thus, it is important to support modeling and

efficient querying of this type of data.

The above data-types have complex and deeply-nested relationships within and be-
tween themselves. Further, they may involve complex aggregate structures such as se-

quences and sets in their relationship paths.



CHAPTER 3. THE BODHI SYSTEM 39

3.2.2 Bio-molecular Sequence Similarity Search

The molecules that are of primary interest in biodiversity are DNA and Proteins. DNA
is represented as a long sequence based on a four nucleotide alphabet. There are regions
in the DNA sequence, called ezons, which contain the genetic code for the synthesis of
Proteins. The proteins are long chains of 20 amino acids. Each protein is characterized
by its amino acid patterns, and is responsible for various functionalities in a cell which,
in turn, determine the characteristics of the organism or plant.

The similarity between two genetic sequences is a measure of their functional similarity.
Analysis of DNA and Protein sequences from different sources gives important clues about
the structure and function of proteins, evolutionary relationships between organisms, and
helps in discovering drug targets.

As we mentioned earlier, there are a number of popular algorithms, such as Smith-
Waterman, BLAST [I], FASTA [75] etc., for performing similarity searches over genetic
sequences. Researchers and bio-prospectors frequently search the database using these
algorithms to locate gene sequences of interest. However, the implementation of these
algorithms is typically external to the database, making them relatively slow. It there-
fore appears attractive to consider the possibility of integrating these algorithms in the
database engine. In fact, two of the leading commercial database vendors, IBM and
Oracle, have recently enhanced their database products by providing BLAST homology

search extensions to their query repertoire [108, 116].

3.2.3 Usage Interface

As with all other scientific communities, the biodiversity community relies on timely
knowledge dissemination. Therefore, supporting access through the Internet is vital for
maximizing the utility of the information stored in the database.

Typically, biodiversity data is autonomously collected and managed by individual
research institutions and commercial enterprises. In order to improve data availability, it is
necessary that such localized and autonomous data repositories be able to exchange data.

The current state of information exchange amongst various biodiversity data repositories



CHAPTER 3. THE BODHI SYSTEM 40

is not very satisfactory [104]. However, with the advent of XML, many research groups
are proposing DTDs in individual fields of ecology and genetics [3, [12]. A biodiversity
information system should support these DTDs for handling data over heterogenous set
of repositories.

It is also imperative to have a good visualization interface for the results produced
by the system since (a) the end-users are biologists, not computer scientists, and (b) the
results could range from simple text to multidimensional spatial objects.

Finally, most of the research in biodiversity is done by small teams of researchers
who work with low budgets and are unable to afford high-cost data repository systems.
Therefore, solutions that are completely or largely based on public-domain freeware which

can be hosted on commodity hardware are essential for these groups.

3.3 Architecture of the System

As mentioned earlier, biodiversity data is inherently hierarchical and has complex rela-
tionships. In order to enable natural modeling of these entities and their relationships,
BODHTI is designed as an object oriented database server, with OQL/ODL query and data
modeling interfaces.

The overall architecture of BODHI is shown in Figure 3.1. The Shore [19] storage
manager at the base provides the fundamental needs of a database server such as de-
vice and storage management, transaction processing, logging and recovery management.
The application specific modules, which supply the object, spatial and genomic services,
are built over this storage manager and form the functional core of the system. The
query processor, based on the\-DB extensible rule-based query processor and optimizer,
interfaces with these functional modules and performs query processing to produce effi-
cient execution plans using the metadata exported by the modules. BODHI supports full
OQL/ODL query and data modeling interface for creation of new database schemas, data
manipulation and querying. Finally, the client interface framework and XML publishing
engine form the external interface to BODHI.

The BODHI server is partitioned into three service modules: Object, Spatial, and



CHAPTER 3. THE BODHI SYSTEM 41

Client Interface Framework and XML Publishing Engine

Query Processor (\- DB)

\
| | | | |
|
| . . | | . | | . )
| Spatial Geometric |, | Inzerltan;e_and R Similarity Sequence :
1| Indexes Methods |! .1 ggregation IO
3 i I D Indexes . S ,| Search Indexes :
21| R*Tree Overlaps, |! .21 D i
' ’ _ BLAST Suffix-Tree (1
GE) 'l Hilbert Intersects, || %' MT-Index : @ |
%) : R-Tree etc. | U): Path-Dictionary Index L9 : |
T ! [y LS :
= I Q1 IS
S | Y | g | :
(2 . IOl I »n |
1| Spatial Data Model I 1| Taxonomy DataModel| ! 1| Sequence DataModel ||
| | | | |
! I I I | :
§ | 1 | \

Storage Manager (SHORE)

Figure 3.1: BODHI: Schematic of Architecture

Sequence, each handling the associated data domain. The service modules provide ap-
propriate storage, a modeling interface, and evaluation algorithms for predicates over
the corresponding data types. In the remainder of this section, we describe these core
database components as well as the query system and the user interface modules in more

detail.

3.3.1 Object Services

While the Shore storage manager handles basic object management, it is necessary to
extend the basic data type system to model spatial and genome sequence data primitives.
The type-libraries necessary for these extensions are bundled into the object services
component of the server.

The data modeling language of BODHI extends the standard ODL [21] by introduc-



42

CHAPTER 3. THE BODHI SYSTEM

18pI0

v

199lqoaouanbag

U . TBUD0uUl sulellgasessiq
"0 c..i:o -0 0 Jafeq
- g seYONNIS
Aurey | teyredeg —=< o YHomiaN
¢ T Jeydlamol4 Sjue|d|euldipaiy
BIOUID) / o
) < L L
AV 1 I uobAjod aur o4 uonog|joneneds
sopedgiueld |} uo|Bay0d! _
|oA8uep| UL uL| onsuslosesreydusp| . Fm” Id 1VeH0eD 4
4 u 109[qojeneds
Bups - ouENAS saouanbes Anu31gn3
|oAa1Awouoxe |
()eousnbagaiols, (Jeousnbagaiols,
VNa ujajoid

t Model

ty Objec

1versi

iod

A Sample Plant Bi

Figure 3.2



CHAPTER 3. THE BODHI SYSTEM 43

ing new primitives for modeling spatial and sequence data. These primitives can be
used in conjunction with standard data types provided by ODL and various relationships
between objects can be easily modeled. The schema definition enables objects to be inter-
related through inheritance hierarchies and object-relationship paths. The queries over
the database consist of both value-based queries and also on the context of the object in

the relationship graph and the position of its type in the associated class hierarchy.

Indexing the Relationship Paths

Referring to the UML-diagram [127] of a sample plant biodiversity schema given in Fig-
ure 3.2, we see that the relationship hierarchy between objects in biodiversity database
schema can be arbitrarily deep. Further, it is possible to have recursive relationships, for
example, the Predator-Prey relationship among Species. Queries over such relationship
graphs can have either the ancestor class or the nested class, as the predicate class. To

illustrate, consider the following pair of queries:
Query 2 Identify the PlantSpecies based on one or more of its IdentCharacteristics.
Query 3 Retrieve all IdentCharacteristics of a given PlantSpecies.

In Query 2, we need to scan for object relationship path(s) culminating at the specified
characteristic, and then locate the species that form the root(s) of that(those) path(s).
Such queries are called TP (Target-Predicate) queries, following the terminology of [74].

On the other hand, in Query 3, the predicate classes are ancestor classes ( PlantSpecies)
and the target classes are nested classes (IdentCharacteristics). These types of queries
are called PT (Predicate-Target) queries in [74].

To efficiently handle both PT and TP queries, BODHI implements the Path Dictionary
Indez (PD-Index) [74] approach. The PD-Index consists of two parts: the path dictionary
which supports the efficient traversal of the path, and the identity indexr and attribute
index which support associative search. The identity index and attribute index are built

on top of the path dictionary.



CHAPTER 3. THE BODHI SYSTEM 44

Conceptually, the path dictionary extracts the compound objects, without their prim-
itive attributes, to represent the connections between these objects. Since primitive at-
tribute values are not stored in the path dictionary, it is much faster to traverse the nodes.
In order to support associative search based on attribute values, PD-Index provides at-
tribute indexes which are built for frequently queried attributes. When the identifier of
an object is given, the path information is obtained using the identity index built over
the path dictionary.

The PD-index supports both forward and backward traversals of the hierarchy with
equal ease; further, its performance evaluation in [74] indicated significantly improved
access times. A limitation, however, is that it only handles 1:1 and 1:N relationships.
Since typical schemas of biodiversity database include aggregations of N:M cardinality,
and structures such as sets, bags and sequences in the aggregation path, BODHI provides

an extended implementation of the PD-index to handle these constructs.

Indexing the Inheritance Hierarchies

Based on the context, the scope of queries over inheritance hierarchies in the biodiversity
domain can be either limited to the immediate objects of the predicate class (i.e. single-
class query) or can be extended to include all objects of the sub-hierarchy rooted at the
predicate class (i.e. class-hierarchy query). Referring again to the schema of Figure 3.2,

consider the following query:
Query 4 List the names of all PlantSpecies associated with a GeoRegion.

We have two possible semantics for this query: (i) search in the complete inheri-
tance hierarchy rooted at PlantSpecies and return objects of type PlantSpecies as well
as MedicinalPlants associated with the given GeoRegion, or (ii) search objects of only
PlantSpecies type associated with given GeoRegion, without searching amongst objects
of type MedicinalPlants.

To efficiently support both forms of the query, the Multikey Type Index (MT-
index) [83] approach is used in BODHI. The basic idea behind MT-index is a mapping



CHAPTER 3. THE BODHI SYSTEM 45

SpatialObject

B

Polygon Point Line SpatialCollection
1+ 1.* 4&

0.1

Network Layer

V0.1

Figure 3.3: Spatial Data model in BODHI

algorithm, called Linearization Algorithm, which maps type hierarchies to linearly ordered
attribute domains in such a way that each sub-hierarchy is represented by an interval of
this domain. Using this algorithm, MT-index incorporates the type hierarchy structure
into a standard multi-attribute search structure, with the hierarchy mapped onto one of
the attribute domains (type domain). This scheme supports queries over a single extent
as well as over extents of all the classes under the inheritance subtree. Further, by extend-
ing the number of dimensions in the index, multi-attribute queries can also be supported
easily.

Apart from its elegant transformation of the type-hierarchy tree into a linear path, a
major attraction of the MT-index is that it can be implemented using any of the multi-
dimensional indexing schemes. In particular, BODHI implements them using the R*-Trees

supported natively within Shore.

3.3.2 Spatial Services

Moving on to the next data domain, Spatial (or geographic) data, in both vector and

raster formats, constitutes the bulk of the biodiversity information. Due to the inherent



CHAPTER 3. THE BODHI SYSTEM 46

complexity of spatial operations (such as owerlap, closest, etc.), combined with large
volumes of data, spatial query processing is considered by ecologists [87], to be a major
bottleneck in the expeditious processing of biodiversity queries. The Spatial Services
module provides operations over an underlying Spatial Data Type (SDT) library, as well

as efficient spatial indexing and join algorithms.

Spatial Data Types

BODHI provides a set of spatial data primitives to represent single spatial entities such
as country, state, forest, river, etc., as well as to represent interrelated collection of spatial
objects such as “Political map of India”, which can be modeled as a topologically related
collection of polygons, each representing a state. The standard primitive type library of
ODL is extended with these data types to enable users to include spatial data definitions
in their schema descriptions.

The spatial model of BODHI is based on the ROSE Algebra [55], and provides two
categories of primitives: Simple Primitives and Compound Primitives. The simple prim-
itives enable modeling of single objects in space, and includes types for Point, Polyline
and Polygon. The compound primitives, on the other hand, are used to model spatially
related collections of objects. There are two compound primitives: Layer and Network,
for modeling collections of Polygon and Polyline, respectively. Figure 3.3 gives the class

diagram of the spatial data model of BODHI.

Operations on Spatial Data

Spatial queries consist of selecting objects which satisfy some spatial relationship(s).

There are three classes of such spatial relationships,

e Topological relationships, such as adjacent, inside etc. which are invariant under

geometrical transformations like translation, scaling and rotation.
e Direction relationships, such as above, north-of etc.

e Metric relationships, that are based on the distance measure between spatial objects.



CHAPTER 3. THE BODHI SYSTEM 47

DISJIOINT ADJACENT OVERLAP

COVERS INSIDE EQUAL

Figure 3.4: Spatial Relationships in BODHI

Of all the relationships in these three categories, [55] observes that only six relation-
ships: disjoint, in, touch, equal, cover and overlap, are the most important relationships
in geo-spatial applications. These relationships are illustrated in Figure 3.4. Even though
the figure shows these relationships between only polygonal objects, they are well-defined
over the complete spectrum of SDTs, as well as between different types (for e.g., between
line and polygon). Accordingly, the Geometric Algorithms part of the Spatial Services
module provides these six relationships. These algorithms form the core of behavioral

abstraction of the spatial primitives described above.

Spatial Indexing

For spatial data, Shore natively supports the R*-Tree [7], which is the most popular
spatial access method since it achieves better packing of nodes and requires fewer disk
accesses than most of the alternatives. However, a problem with the R*-Tree is that
even though it has tight packing to begin with, its structure may subsequently degrade
in the presence of dynamic data. To tackle this, we implemented the Hilbert R-Tree [67],
which is designed for handling dynamic spatial data while maintaining good packing of
the index structure. It makes use of a Hilbert space-filling curve over the data-space to

linearize (i.e. obtain a total ordering of) the objects in the multi-dimensional domain



CHAPTER 3. THE BODHI SYSTEM 48

space. A performance evaluation in [67] shows this structure to provide better packing in

the presence of dynamic spatial data and, as a consequence, better query performance.

3.3.3 Sequence Services

In modern biodiversity studies, analysis of genetic data in conjunction with the macro-level
information plays an important role [82, [124]. The Sequence Services module interfaces
with the storage manager to provide efficient storage of genomic sequences and sequence

similarity search algorithms over them.

Biological Sequence Primitives

The Sequence Services module supports two primitive types: DNA and Protein to rep-
resent the sequence information of associated molecules. In order to provide a compact
physical representation, the DNA alphabet of 4 nucleotides is encoded using two bits, and
the Protein sequence alphabet of 20 is encoded in five bits. The behavioral part of this
data model, provides functions for translation of DNA sequence into a Protein sequence
and vice-versa, the generation of complementary DNA | and extracting substrings from

DNA or Protein sequences.

Similarity Search

Comparison of sequences in order to locate similar subsequences is an important operation
in computational biology, and it forms the basis for many other complex operations such
as phylogenetic tree construction and multiple sequence alignment.

BODHI provides two algorithms for sequence similarity searching — the BLAST al-
gorithm, and the Smith-Waterman dynamic programming algorithm, both of which are
usable as part of an OQL query. The similarity score is computed using a set of default
cost metrics, (i) PAM-120 [28] metric for proteins, and (ii) the weighted edit distance

metric used in [1] for DNA sequences (45 for matches, -4 for mismatches).



CHAPTER 3. THE BODHI SYSTEM 49

Biological Sequence Indexing in BODHI

Sequence similarity search algorithms, such as BLAST and Smith-Waterman, typically
require a full scan of the sequence database for each query context. Not long ago, even
spatial data processing required such brute-force scanning and evaluation of topological
predicates on all spatial objects in the database. However, with the evolution of efficient
spatial index structures such as R*-trees and Hilbert R-Trees etc., spatial data processing
has become extremely efficient. Similarly, in the domain of biological sequence processing,
the suffiz-tree datastructure is considered a defacto sequence index forming the backbone
of a number of sequence algorithms.

The Sequence services module in BODHI supports these powerful sequence index
structures, in a scaleable form, as Persistent Suffix Trees which can be used to accelerate
a large class of sequence processing queries and sequence similarity searching [53]. As
part of this functionality, this module integrates a novel specialized buffer management
policy for persistent suffix-trees, called TOP-Q (topic of Chapter 15), and an optimized
storage scheme called STELLAR (focus of Chapter 6).

3.3.4 Query Processor

The core of the query processor is A-DB, a freely available query processor and optimizer
for ODL/OQL [38]. A\-DB uses monoid comprehension calculus, which is a generalization
of list comprehension in functional languages, to represent queries in an intermediate form.
The monoid algebra, similar to the nested-relational algebra, serves to translate between
comprehensions and physical plans and the algebraic operators. The translations from
the calculus form to the physical plan is done through a combination of cost-based as well
as rule-based optimization phases, which involve query rewriting, operator reordering and
physical operator selection, similar to relational query processing engines.

The query language for BODHI is based on the OQL recommendation from the ODMG
standard [21], which has declarative query syntax closely resembling the standard SQL.
However, the basic OQL standard does not provide integrated support for primitives and

operators from spatial and sequence domains. The OQL syntax in BODHI is enhanced



CHAPTER 3. THE BODHI SYSTEM 50

with addition of new operators such as OVERLAPS, ADJACENT, BLAST, etc. With the help
of these extensions, we can express the multi-domain query, Query 1, described in the
Introduction chapter, as follows:
SELECT species2.name FROM

speciesl IN PlantSpecies, species2 IN PlantSpecies,

dnal IN speciesl.DNAEntries, dna2 IN species2. DNAEntries

WHERE
speciesl.name = “Michelia-champa” AND

speciesl.flowerchar.inflochar = species2.flowerchar.inflochar AND
speciesl.georegion OVERLAPS species2.georegion AND
dnal BLAST dna2 < 70;

The above query illustrates the use of object relationship path-based joins
(species.flowerchar.inflochar), geometric predicates on spatial objects (OVERLAPS), as
well as sequence similarity search functionality (in the form of BLAST). The BLAST
algorithm provides two parameters on which the output can be filtered — the alignment
score, which is illustrated in the above query, and the p-value, the estimated statistical
significance of the alignment. It should also be noted that the sequences that are involved
in the BLAST similarity search computation can be filtered by providing additional pred-
icates on the sequence attributes. It is worth noting that, our query syntax of BLAST
homology searching closely resembles the proposed SQL extensions by Oracle-10g [116].

Along with the extensions to the query language, the query optimizer is also signifi-
cantly extended to generate efficient plans for predicates involving these special operators.
The query processor contains, in addition to the techniques available in generic database

systems, specialized optimization schemes for:
e Spatial operators, when spatial indexes are available on predicate attributes.
e Relationship path traversals.
e Queries over a type hierarchy of the data model.

In addition, the presence of user defined methods in the synthesized object types (such

as, the Area function of a Polygon object), forms an obstacle in optimal plan generation,



CHAPTER 3. THE BODHI SYSTEM 51

since their costs are not directly available to the query optimizer. A variety of strategies
for handling this situation have been proposed in the literature [52, 69]. In BODHI, we
have extended the ODL to allow optional definition of cost functions, and functionally
equivalent methods. These extensions enable the cost-based optimizer to compute the
costs associated with each of the equivalent methods, before choosing the best execution
strategy. In addition, the ability to define index on derived values, or return values of

class methods, is also provided to further improve the query evaluations.

3.3.5 Client Interface Framework and User Interface

Although BODHI provides a powerful querying language, it is cumbersome for the in-
tended end-users of the system, namely, the biodiversity researchers, to interact through
the OQL syntax. Typically these domain-scientists do not have any experience of using
such languages and are reluctant to learn them. Therefore, it is essential to provide a
user interface that not only renders the results of the query graphically, but also allows
construction of complex OQL queries through a simple form-based interface.

We have developed a simple framework, using a host of technologies including HTML
Forms, CGI scripting, JavaScript and Java, that addresses this need. The query interface
is provided as a form that the users can fill to build OQL queries visually. Currently, it is
capable of building complex OQL statements which involve multiple levels of joins, spatial
join predicates like OVERLAPS, CONTAINS and INTERSECTS, and sequence similarity
through BLAST. Figure 3.5 provides a snapshot of the query interface of the BODHI
system.

In addition to the input interface, the results of the query are transformed into an
XML tagged format, which can be rendered using the visualization metaphor of choice.

Figure 3.6 provides a sample XML tagged output generated by BODHI.



52

s = “papeoj eafiew | [

- - eure| oy =) ds _ apalayige pds _ [ends=jpe=pds _ F]
s TR B|aWiE = s SN EIpTHE= 1 s

*mmm EM | S0dPUElD I_ adhl —|uswsbuely -

=

OpURA Edapann | a5
MOpUK supapUoD |5

MOPU BpISU L5
s sdapang a5

_ lewmwas e [ e S—

SUDMAUDD

m_-__umn_n_—n_m
T LY1=1ds

mmuI._.n__.n_m
ALVLLOws=|ds

J3xdISd00=44s
d3KuIswg=1ds

| #2uarsiyag

LZ_JENMu—nm
Ho3dns=1ds

ECLE

n_un_Z_u_Dmu_.n_m
Onld3dwl=|ds

| MonEsS

._{U_mn_z_._}nu"_.n_m
41113700 0=1d=

_ | vom=End

n«.:ouxm"_&
THMHONTH =) ds

'} sy

mempulxmu—n_n
M OHI TH =L

| oA

mm_-_n_lx._.m_mu—n_m
27197 ¥1dg=4ds

MRS

n_u:mnn_"_&_

13343=4ds

| Anojog
doL

431905431 =4ds
L'77d =1 a8

| aineel

430mM315=1d¢
1NoLs=1as

_| suImnG sk

41137 0I0n071=1d2
I50907971=1ds

| ssawIULs

Twr 3 L= 0
gds=)ds

| BnENsky

| ed ajyad

|_ uoedon

S e

Adoues obelo] eBwWBNS 2AlS

& ymaep |

[elad

Edss WiEg
AI3ND Jugns

jean

By ABAg Louelg
THIH @ THX &

:Se S)nsay moyg

o1y

—

-

Snapshot of the Query Interface

5

3

igure

F

CHAPTER 3. THE BODHI SYSTEM

aausnbas fano _ _ zsapady 4 _ Lsaiaadg
] |_ Zriausn | |_ Blalat

_ | zdnues | _

J=_ wen un [g78 uny ] _ 2eplo | _ J8pIn
i| |

-—i i e

Al 4

-




33

THE BODHI SYSTEM

CHAPTER 3.

<jundss
TASFBTCA
THSEQLHE
<junds -
<jundss
SASF0ZCAE
THSEEEHE
<junds -
upeiyes
<JENGEH= -
<|enedss -
<gauanbas/>
'eepjpjeapaleebeeeeapehyoepyjbeabepyeinbbeeyninbboeeeyyiieeoe))yeinjeorabieebpeeeee)jaeaaieebiebbypo<bunyss

<adlanbass -

Ll = Wla P
<UOIIEIOIUL/ >0 Wla] <UaIjEI0jul>

CIBYI® -
<Zs810ads/>RIojlyouns<zsai0adss
<sa10ads/>araulnogq<sal0edss

<ynsals -

<ynsalfs

<|elpeds> +
<gauanbas/>

'eepjpjeapaleebeeeeapehyoepyjbeabepyeinbbeeyninbboeeeyyiieeoe))yeinjeorabieebpeeeee)jaeaaieebiebbypo<bunyss

<aduanbas: -
Ll = Wla P
<UDIJEI0IUL/ >30T Wda<UdIjEI0uLs
CIEYI: -
<zZsalnads/>apauanog<zsanads:
<sa10ads/>araulnogq<sal0edss
<ynsads -
CEYNSEL> -
< ,1-6588-051,=bupooua 0T, =uoIsiaa uss

A Sample XML Output from BODHI

Figure 3.6



CHAPTER 3. THE BODHI SYSTEM 54

RUNTIME ENVIRONMENT
Taxonom

/ Model \

Genome Spatial

aggregation paths
GeneStore raw EE 2] itﬁl?srmatiom PD Index
Value Added | sequenceqYPe EE= Value Added
Server ST System Server
Type System Laye|
_____ SHORETypeLayer | |
B+-Tree R*-Tree il
Index Index Rilinee
Index
SHORE Storage Manager
LI N U X

Figure 3.7: BODHI: Implementation Schematic
3.4 Implementation

In any large system such as BODHI, performance gains are obtained not only by the
choice of supported access structures themselves, but also by their careful placement in
the implementation. One option is to achieve performance improvements by supporting
every feature of the system at the lowest level — for example, by implementing at the
Shore storage manager level. However, this becomes a huge effort to extend and improve
the system by addition of new basic types, new access structures, etc. At the same
time, if we provide all the additional features at layers external to the storage manager
then the overall performance could suffer. Therefore, we considered these two competing

requirements of the system carefully while placing the implementation of the services,



CHAPTER 3. THE BODHI SYSTEM 55

and aimed to optimize extensibility while minimizing the performance overhead on the
system.

One of the strong features of the Shore storage manager is the presence of a framework
to extend the functionality of the server, called Value Added Server (VAS) framework.
This feature has been utilized in BODHI to provide additional database server-side fea-
tures including path-dictionary index, and genome sequence storage and retrieval algo-
rithms.

The schematic in Figure 3.7 shows the placement of various components of BODHI in
the overall system implementation. The gray filled boxes in the figure indicate the signif-
icant enhancements and additional features added to the components used in BODHI. In
the rest of this section, we describe the implementation rationale in the context of each

service module.

3.4.1 Object Services

As mentioned previously, this module bundles the Path-Dictionary and Multi-key Type
indexes over object aggregation and type hierarchies, respectively. The Path-Dictionary
structure is implemented as a VAS, which maintains the path-dictionary on a data repos-
itory — with its own recovery and logging facilities — independent from the main database.
This gives the query processor an opportunity to scan the path-dictionary repository un
parallel to the other data scans active at the same time. Further, the locking overheads
are distributed over different storage management threads. The Multi-key Type index,
on the other hand, is instantiated as an R*-Tree, which is available for spatial indexing,
with linearized type system as a dimension and each object treated as a “point” in the

spatial sense.

Path-dictionary Implementation

While implementing the Path-Dictionary-based indexing (introduced in Section 2.1.1) for
aggregation path queries, we found that the index structure as presented in [74] cannot

be used in a stream based query processor such as A-DB, without breaking the pipeline



CHAPTER 3. THE BODHI SYSTEM 56

(a) N:M relationship

A C1 B1
1 By ~ Al. e C1
C2
€] Indirect Reference
TR 2%y
A .

Al ( Bl Cl, C2
AL (BL (CLC2)) al Blg € €4 C2) )
A24 ( B1;) d - direct ref
A2 (B1 (Cl1C2)) i — indirect ref
(b) Equivalent 1:N relationships (c) Equivalent 1:N relationships with indirect ref-
with replicated paths erences

Figure 3.8: Representing N:M relationships

structure and materializing the query results at that join node. We addressed this prob-
lem by inverting the storage of paths to proceed from the top of the aggregation graph
instead of the suggested bottom-up approach. Thus, the s-expression definition for a path
C1Cy ... C,, is modified to
S; = 0;(Sis1], Sip1]) for 1 <@ < n.

Note that the above representation is inverse of the original definition of s-expression
scheme presented in Section 2.1.1. While this inversion may partially reduce the effec-
tiveness of the path-dictionary, the major benefit of avoiding the huge cost of joins over
object extents is retained.

We have extended the implementation given in [74] to support the additional require-
ments of allowing N:M relationships, as well as bags and sequences in the aggregation
path. The main idea behind our extensions for the of N:M relationships is to break them

into multiple 1:N relationships. But a straightforward application of this idea introduces



CHAPTER 3. THE BODHI SYSTEM 57

complications in maintenance of s-expressions used for compactly representing the object

relationships.

Supporting N:M relationships: Consider a N:M relationship between classes A and
B, with C representing the remaining downstream objects (successor objects), as
shown in Figure 3.8(a). In other words, the figure represents the aggregation path
AB(C1C,...), where N:M relationship is between A and B, and C' represents the
path within the angular brackets, without loss of generality. If we break this into
multiple 1:N relationships, the graphs and the corresponding s-expressions look as
in Figure 3.8(b). Note the redundancy in the corresponding s-expressions: The
children of B; are replicated in the s-expressions of both A; and A,. This problem
can be solved by using a flag in the entries of the s-expression. This flag denotes
whether the entry is a direct reference or an indirect reference. All the descendant
entries of an OID will be stored only in the entry which contains direct reference to
that OID. This modification is shown in the form of a graph in Figure 3.8(c) with
corresponding s-expressions. Note that the suffix for each entry denotes whether it
is a direct reference or an indirect reference. Though this modification duplicates
(with different flag values) the B entry, we avoid duplicating the children of B,

thus saving space.

Extensions to support Bags and Sequences: The previous modification works fine
for storing ordinary references and sets. But in the presence of bags, further redun-
dancy is possible. The example for this is shown in Figure 3.9(a) — where classes
A and B are related through a N:M multi-relationship and C' represents the down-
stream objects from B. The number on the edge from a node, a, to another node,
b, denotes the number of times b appeared as a reference in the bag of a. The cor-
responding s-expressions for this graph using the above implementation are given
in Figure 3.9(b). Note that the entry of B; is repeated n times in each expres-
sion, where n denotes the number of times B; is referenced in the parent object.
This replication can be eliminated by introducing one more field in the entry of

s-expression which stores this replication count. This reduces the storage overhead



CHAPTER 3. THE BODHI SYSTEM 58

2 By 1
AL @ ® Cy
2 1
Ay C,
(a) N:M relationship with Bags
Al ( BL, ( C C2, ) Bl )
d d :(Ii d I Al'dl B1<d2> ( C1<d1> Cz<dl> )
A2 Bl Bl A2 Bl
d ( | [ ) <d 1£ <i2>)
(b) Equivalent 1:N relationships with indi- (c) Equivalent 1:N relationships with indi-
rect references rect references and reference counts

Figure 3.9: Representing N:M Relationships in presence of Bags

for storing bags since OIDs are not duplicated. The s-expressions with this modifi-
cation are shown in Figure 3.9(c). The implementation also supports sequences by

maintaining the order of the children of a given parent in the s-expressions.

3.4.2 Spatial Services

In addition to the R*-Tree provided by the Shore storage manager, the spatial services
module provides the Hilbert R-Tree which is intended for use with highly dynamic spatial
workloads. This index could be implemented as a VAS external to the database, utilizing
the Shore SM interface which allows introducing new logical index structures. With this
approach, however, no page-level storage control is provided, thereby making it infeasible
to implement index structures such as the Hilbert R-Tree that rely on physical packing
of data for performance benefits. We were thus forced to implement the Hilbert R-Tree
by refactoring the existing R*-Tree implementation.

We had the option of implementing the spatial type system, illustrated in Figure 3.3,
either as part of the basic type system (similar to the support of types like integers,
strings, references, etc.) or at the same level as a user defined type system. In the former
approach, we do gain the storage efficiency and low object creation overhead, but we lack

the extensibility and ease of implementation available in the latter approach. The final



CHAPTER 3. THE BODHI SYSTEM 59

choice was to go for an extensible type system, that is, to provide the spatial type system
(along with sequence type system — discussed below), as a user level library which can
be modified and extended by the database administrator without having to work on the

storage manager layers.

3.4.3 Sequence Services

The type system of the Sequence Services, consisting of DNA and Protein types, are
provided in the same way as the spatial types, which we have described above. In addition,
the DNA sequence type has extra requirements for its storage. The DNA sequences are
usually very long — few thousands to millions of basepairs, and consist of only 4 symbols.
Instead of storing them as character strings, we store them in a compressed form and
perform queries over the compressed records rather than on the character strings. The
efficient storage of the raw sequences is implemented as a separate VAS which provides

advantages similar to those mentioned in the Path-Dictionary implementation.

Implementation of BLAST

The BLAST algorithm, first described in [1], has evolved over years into a powerful suite
of tools for biological sequence analysis. Further, the BLAST software is not typically
designed to work with a fixed memory budget — it utilizes the full virtual memory space
available in the system. In BODHI, we implemented the BLAST algorithm in its original
form (i.e., BLAST version 1.0), without associated components such as filters for repeat
and low complexity regions, and to work within the buffer space limitation specified for
the database instance.

In the first phase of the algorithm, we build an inverted index over |Q| — W + 1
substrings of length W over the query string ). Using this inverted index, we locate all
the initial “hits” — W-length exact matches — over the database sequence. These hits are
extended in both directions (without introducing gaps) until the weight of the alignment
stays within half the maximum weight found so far. Unlike typical implementations of

BLAST algorithm, the whole data sequence is not brought into the memory. Only those



CHAPTER 3. THE BODHI SYSTEM

60

pages of the data sequence that are accessed during the extension phase are read into

the buffer space, and are managed through a global buffer manager using the CLOCK

replacement policy [101].

3.4.4 Query Processing

ODL Class
declarations
Query in OQL/C++ A—-DB
ODL Compile OQL Parser
Schema — oQL
Manager ] Optimizer and
Plan Generator
SDL declarations
Metadata
C++ Code
— Generator
C++ code
Database SHORE
p— _ BODHI
Metadata SDL Compiler Libraries
(S'|ORE b C++ header file
Metadata C++ Compiler
User Data j
— SHORE
Libraries——
Executable -
Results in Interchange Format

Figure 3.10: Schema Definition and Query Flow in BODHI

The query processor of BODHI integrates the features provided by the service mod-

ules through extended ODL/OQL for modeling and querying the database. In addition,

it optimizes the queries using the metadata and index information. A-DB performs all

optimizations on the query at compile-time, producing a corresponding executable, re-



CHAPTER 3. THE BODHI SYSTEM 61

sulting in extremely fast query executions. The schematic representing the flow of schema

definitions and queries over the database, is illustrated in Figure 3.10.

Schema Definition

The schema is defined, as already mentioned, using ODL — with extensions necessary for
BODHI. The schema declarations are first converted into SDL, before getting compiled
into an C++ header file. During this phase, the Schema Manager of the query processor
obtains the metadata needed for typechecking and optimization of queries and maintains
it in the database. The implementation part of the schema declaration is abstracted into

a C++ code and is available for compilation into a linkable library.

Query Flow

The query strings obtained are type checked, parsed and compiled into C++ code with
execution plans generated after incorporating the rules specified in the query optimizer.
The type library of spatial and sequence data primitives and the implementations of
various operations defined over them, which are precompiled into linkable libraries and
header files, are linked to generate the executable of the query.

This executable contains implementations for interacting with the Shore storage man-
ager, Value Added Servers of Object and Sequence Services, and the implementation

needed for transforming query results into interchangeable format.

3.5 Conclusions

In this chapter, we presented the design and implementation details of the BODHI
database system that addresses a number of datatype integration and performance issues
arising in the biodiversity information management. To the best of our knowledge, BODHI
is the first system to provide an integrated view from the molecular to the organism-level
information, including taxonomic data, spatial layouts and genomic sequences.

BODHI is operational, completely free and is built around publicly available software



CHAPTER 3. THE BODHI SYSTEM 62

components and commodity hardware. In order to provide efficient access to different
data types, BODHI incorporates a variety of indexing strategies taken from the recent
research literature. Further, BODHI is equipped with a specialized sequence indexing
solution in the form of a persistent suffiz-tree, that helps to perform many biological

sequence processing tasks efficiently.



Chapter 4

Background on Suffix-Trees

NOTE: In this chapter, for the purpose of completeness, we briefly present
background material on suffix-tree structures. An excellent survey of suffix-
trees and their biological applications is available in the textbook written by
D. Gusfield [53]. Readers familiar with suffix-trees can skip this chapter, and
directly move on to Chapter 5.

4.1 Introduction

With the advent of high throughput genome sequencing techniques, biological sequence
data is being generated at speeds exceeding the growth of modern day computational
speeds. As per the latest statistics published from GenBank [42] — the global annotated
collection of all publicly available DNA sequences — 37,893,844,733 (37 billion) basepairs
in 32,549,400 sequence records are deposited in the databank. This is expected to grow
exponentially with ever expanding applications of genome sequence analysis. One of the
most important computational tasks on this voluminous amount of sequence data is that
of efficiently locating all the matches in the database to a given pattern sequence. In a
recent survey of bioinformatics practitioners [117], it was reported that more than 50%
of their tasks involved sequence similarity search, pattern search and sequence retrieval

from sequence databanks such as the GenBank.

63



CHAPTER 4. BACKGROUND ON SUFFIX-TREES 64

In these tasks, the matching criteria could be either exact or inexact based on a
similarity metric. The similarity metric associated with inexact matching, or similarity
matching, is typically based on special cost measures such as BLOSUM [59] or PAM [2§]
family of costs for proteins and weighted edit-distance costing for DNA. Clearly, the
choice of metric to use will be highly specific to the biological task at hand. Due to these
non-traditional search requirements over unprecedented scale of sequence data, handling
biological sequences efficiently has become an important challenge for database research.

The area of bioinformatics, which has developed almost independently of database
research, has considered the suffiz-tree data structure (along with its variants such as
suffiz-array, DAWG, etc.) as the defacto preprocessing of the genomic sequence. This is
mainly due to the adaptability of suffix-tree to solve many sequence processing problems
that are otherwise computationally extremely hard to solve (see [53] for a collection of
such problems). In addition, suffix-trees have linear time and space complexity, which
make them attractive for use with large scale sequence processing tasks.

A suffix-tree is a data structure that exposes the internal structure of a sequence in
a deeper way than any other datastructure such as inverted index. In this chapter, we
provide a brief introduction to the suffix-tree structure, their construction, and search

algorithms over them.

4.2 Suffix-Tree

Let S = s185...5, be a sequence of length n with each s; drawn from an alphabet ». A
substring of the string S is a string Si...j] = s;841...5; for some 0 < i < j < n. A
suffiz of the string S is a substring such that j = n — i.e., it is a part of the string starting
at any location, ¢, in the string continuing upto the end of the string. We represent a
suffix starting at position ¢ as S;. Thus, there are exactly n suffixes from a string of length

n, one for each position in the string.

Definition 1 A suffiz-tree Ts for a n-character string S is a rooted directed tree with

exactly n leaves numbered 1 to n. Fach internal node, other than the root, has at least



CHAPTER 4. BACKGROUND ON SUFFIX-TREES 65

TACTGAATS

Figure 4.1: Suffix-tree over a DNA fragment GTTAATTACTGAATS

two children and each edge is labeled with a nonempty substring of S. No two edges out
of a node can have edge-labels beginning with the same character. The key feature of the
suffix-tree is that for any leaf numbered i, the concatenation of the edge-labels on the path
from the root to that leaf exactly spells out the suffiz of S that starts at position i. That

18, 1t spells out S;. a

Note that the above definition does not guarantee that a suffix-tree exists for every string
S. If there is a suffix S; that ezactly matches another substring, S[j...k| for j # i, then
S; ends at a non-leaf. In order to overcome this, a delimiter symbol, denoted by $, is
concatenated with the string. It is assumed that $ does not appear anywhere else in the
string, and $ ¢ 3. With this assumption, it is guaranteed that there is a unique suffix-tree
for every string S$. The leaf node corresponding to the i-th suffix, S;, is represented as [;.
An internal node, v, has an associated length L(v), which is the sum of edge lengths on
the path from root to v. We represent by o(v), the string at v, to represent the substring
Sli..t + L(v)], where [; is any leaf under v.

The suffix-tree for a DNA fragment GTTAATTACTGAAT$ is shown in Figure 4.1. The
dark nodes are the internal nodes and the lightly shaded nodes are the leaf nodes. Each
edge has an associated label, which is a substring of the string S$, and entry under each

leaf node is the index ¢ associated with the suffix corresponding to the leaf node.



CHAPTER 4. BACKGROUND ON SUFFIX-TREES 66

TACTGAATS

5

Figure 4.2: Linked suffix-tree (LST) over a DNA fragment GTTAATTACTGAAT$

4.2.1 Suffix-Links

Although the definition given above is the commonly used one for suffix-trees, it does
not incorporate one significant structural augmentation to the suffix-tree — namely, the
notion of suffiz-links. In practice, the suffix-trees are augmented with additional edges
called suffiz-links that are necessary to achieve their linear time construction and also to
significantly enhance the subsequent string searches. Suffix-links are edges (or pointers)
that span across the suffix-tree, between two internal nodes which may not be related

through a parent-sibling relationship.

Definition 2 Let xa denote an arbitrary string, where x denotes a single character and
a denotes a possibly empty substring. For an internal node v with path-label x«, if there is
another node s, with path-label o, then a pointer/edge from v to s, is called a suffix-link.

O

The suffix-link of the root of a suffix-tree is defined to be pointing to itself. Other than
this, the suffix-links are well defined for all the internal nodes [53]. And, sl(.) — the entire
set of suffix-links, forms a tree rooted at the root of T, with the depth of any node v in
this sl(.) tree being L(v). Figure [4.2] illustrates the suffix-tree with suffix-links, built over
a genome fragment GTTAATTACTGAAT$. The dotted lines between internal nodes of the

tree are the suffix-links, with the direction of the arrow indicating the pointer direction.



CHAPTER 4. BACKGROUND ON SUFFIX-TREES 67

The suffix-links, in the present form, were first introduced by McCreight [80] and since
then they are implicitly assumed to be present in the suffix-tree. In addition to the linear
time construction, the presence of these links enable a much richer set of traversals over
the suffix-tree resulting in many high-speed search algorithms [22) 125]. On the other
hand, suffix-links are also considered a source of additional space overhead, and more
significantly, a reason for poor locality properties of suffix-tree construction and search
algorithms. Therefore, there are some proposals [47, 61, [123] which resort to quadratic
time construction of suffix-trees by completely dispensing with the suffix-links.

In this thesis, we distinguish between these two structural variants of suffix-trees based

on the presence of suffix-links as follows:

Un-linked Suffix-Tree (UST). This is the suffix-tree that strictly adheres to Defini-
tion [1. The suffix-links in the UST have been either dropped post-construction, or the

tree has been constructed using algorithms that do not need suffix-links.

Linked Suffix-Tree (LST). In contrast to USTs, the LSTs retain the suffix-links in
the tree providing much richer traversals across the suffix-tree. We focus mainly on
the construction and search performance of persistent version of LSTs. Hence, unless

mentioned explicitly, we use the terms LSTs and suffix-trees interchangeably.

4.3 Notation

For ease of reference, Table 4.1/ summarizes the terminology associated with suffix-trees,

used in this thesis.

4.4 Linear Time Construction of Suffix-Trees

As mentioned previously, suffix-trees can be constructed in time linear in the size of
the input string for a fixed alphabet. Many algorithms for constructing the suffix-tree
in these time bounds have been proposed [80), 126} 130] — all of them depending on the



CHAPTER 4. BACKGROUND ON SUFFIX-TREES 68

S Sequence of length n

)y Finite alphabet of symbols

$ Delimiter symbol such that $¢ %

Si Symbol at position ¢ in S, drawn from X

Sli...j] | Substring of S starting at position ¢ and length (j — ¢+ 1)

S; Suffix of the sequence S starting at position ¢

Ts Suffix-tree built for the sequence S$

l; Leaf in the suffix-tree Ts corresponding to the suffix S;

L(v) Path length of a node v, the sum of edge lengths on the path from root to v
o(v) Substring S[i...i 4+ L(v)| associated with node v in the suffix-tree
sl(v) Suffix-link starting from the internal node v

Table 4.1: Notation

availability of suffix-links. In this thesis, we consider the online construction algorithm
due to Ukkonen [126] — which we call as OnlineSuffixTree algorithm.

A high level description of OnlineSuffixTree is given in Algorithm [1. The algorithm
reads the sequence from left to right, one character at a time, incrementally building the
suffix-tree for the string seen so far. During the execution of the algorithm, the labels
of leaf-edges extend, while some edges are split and new leaf nodes are introduced to
accommodate the new character read from the string. It should be noted that due to
the lack of the delimiter symbol $ in the middle of the sequence, the intermediate suffix-
trees are no longer guaranteed to have a one-to-one mapping with each suffix of the string
read so far. Hence, these intermediate suffix-trees are called implicit suffiz-trees. Once the
delimiter symbol is read at the end of the sequence, the algorithm automatically generates
the final explicit suffix-tree, as required.

The OnlineSuffixTree can be viewed to consist of two phases in each iteration — a Locate
phase and an Insert phase. If implemented naively, the locate phase would have linear
time complexity, resulting in an overall O(n?®) time complexity. Reducing this to a O(n)
algorithm is based on speeding up the locate phase (line 6 of Algorithm [1) through the

use of the following:

Suffix-links: After the first extension (with 7 = 0) for each value of i, it is possible



CHAPTER 4. BACKGROUND ON SUFFIX-TREES 69

OnlineSuffixTree (S[0...n])

Input

S[0...n]$ : The string to be indexed
Output

Ts : The suffix-tree over the string S$
Complexity

O(n), where n is the size of the input string.

1: Ty <« Implicit suffix-tree for S[0...0]
2: for : =0 ton do

33 7«0

4:  while j <i+1do

5: {LOCATE PHASE}

6: Locate = S[j...i] in T;

7 {INSERT PHASE}

8 if 3 ends at a leaf [, then

9: Extend [ by adding s,

10: else {3 ends at an internal node, or the middle of the edge}
11: if from the end of § there is no path labeled s;;; then
12: T;11 < split edge in T; and add a new leaf

13: else

14: Tiv1 < T; {Bsit1 already exists in T;}

15: end if

16: end if

17 end while

18: end for

Algorithm 1: Online Algorithm of Ukkonen

to quickly locate the node in the suffix-tree where the next extension has to be

performed through the use of suffix-links. The steps required are:
1. Locate a node v above the end of S[j...i] that has a suffix-link, and let
denote the string between v and the end of S[j...1].
2. Traverse the sl(v) to s,, and walk down the tree-edges for string .
3. Using the extension rules, ensure that the string S[j...7 + 1] is in the tree.
4. If a new internal node is created, then it is the suffix-link target of a previously

created internal node. Create the suffix-link.

Skip-count Technique: In the step 2 above, it is possible to avoid individual character




CHAPTER 4. BACKGROUND ON SUFFIX-TREES 70

comparisons for the string -y, through the observation that v must already exist (from
a previous step of the algorithm). It is only needed to locate the position where
ends. As a result, this step can be reduced to simply locating the appropriate branch
from each internal node encountered, reaching to the end of the edge and skipping
appropriate number of symbols in v, until the number of symbols remaining in + is
less than the length of the current edge — this is the edge that needs to be split so
as to insert S[j...i+ 1].

Early Stop: Finally, if at any stage, the condition in step-14 is reached then we can
break out of the while-loop (step 4 through 17), guaranteed that the rest of S[j

...1+1] entries already present in the tree.

With these three algorithmic optimizations, the locate-phase of the algorithm can
be accomplished in an amortized constant time. This immediately gives us an O(n)
construction algorithm.

It is also important to note here that although the mechanics of OnlineSuffixTree seem-
ingly differ from an earlier suffix-tree construction algorithm due to McCreight [80], it has
been shown [46] that these two algorithms are closely related to each other. In fact, they
provide a transformation of OnlineSuffixTree into McCreight’s algorithm by modifying the
control structures of the algorithm, but leaving the sequence of tree constructing opera-
tions invariant. Hence, the results presented in this thesis are equally applicable in the

case of linear time construction of suffix-tree using McCreight’s algorithm as well.

4.5 Searching over the Suffix-Tree

Suffix-trees provide most efficient solutions to a myriad of string processing problems [4].
The fundamental query of whether a given pattern sequence () occurs in a sequence S can
be answered in O(|Q]) steps — independent of the length of S, once S has been preprocessed
into a suffix-tree Ts. A long list of string processing problems that are especially relevant

for biological sequence processing is available in [53].



CHAPTER 4. BACKGROUND ON SUFFIX-TREES 71

As discussed earlier in Section 4.1, the most important sequence processing task over
biological sequence databanks is that of approximate pattern location or similarity search-
ing. The dynamic programming approach [I11] provides the general solution to this
problem, but is computationally expensive, taking O(|Q| * |S|). This is clearly highly
impractical for genome scale databases. A class of algorithms, called Filtering algorithms,
are designed based on the observation that the dynamic programming methods spend
much more time verifying the non-existence of approximate matches in the database than
on computing the matches. Some of the efficient algorithms in this class [22] 25, [125]
exploit the power of LSTs in a critical way to achieve linear and sub-linear time com-
plexities, under both simple edit-distance model as well as under general scoring models.
There are many bioinformatics tools, prominent among them being MUMmer [29], that

use suffix-trees for similar purposes.

4.5.1 Locating Maximal Common Sub-strings

One of the most popular approximate search algorithms that exploit suffix-trees was
proposed by Chang and Lawler [22]. Their algorithm utilizes the suffix-tree to quickly
identify all the mazimally matching substrings between the query pattern, (), and the
database sequence, S, and then use this information to filter out large sections of wasteful
comparisons that dominate the computational cost. The user given parameter to this pro-
cess is the lower-bound on the length of the match, A, to reduce the number of verification

steps that need to be performed.

Definition 3 (Maximal Common-substring Search) Given a database sequence S,
and a query sequence @, locate, for each position i of QQ, the longest matching substring
Qli...i+ j], that appears somewhere in S. In practice, it is desired that only matches
that satisfy a user-defined minimum threshold length, X, are reported.

In other words, for each i, 1 < i < |Q|, locate all (i, 7, k) triples where j = max j’ such
that Qi ...i+ 71 =Sk...k+j] and Qli + j' + 1] # S[K' + ' + 1] and j' > \.



CHAPTER 4. BACKGROUND ON SUFFIX-TREES 72

MaximalSubstringSearch (S, 7, @, \)

Input

S : Database sequence

7T : Suffix-tree over the database sequence S

@ : Query string

A : Minimum match-length to be reported

Output

L=A{(lqd |Qlq...q+1]=S[d...d+1], Qg+1+1] #S[d+1+1], I >\ and lis
maximal given ¢}

Complexity

O(|Q| + loc), where loc is the number of locations of match.

LLv«—rootof 7; 7« 0;k—0;, L=2¢
2: for i =0 to || do
3:  (v,7) <« StepDown(v, Q[i...]) {v"is the node at which matching
has stopped, and j is the length of the match}
if 7 > )\ then
L =L U TraverseSubtree(v')
end if
if IsLeaf (v') = true then
k = v .edgelen — j
v’ = v .parent
10:  end if
11: v =7.suf fixlink
12: v = SkipDown(v, k, Q[i ...]) {Use the skip-count trick [53] to tra-
verse without comparisons}
13: end for

Algorithm 2: Maximal Common Substring Search

To further illustrate this, consider the database sequence — GTTAATTACTGAATS which
has been preprocessed into a suffix-tree shown in Figure 4.2. Now, given a query sequence
CTAATGACT, with threshold A set to 3, the desired common maximal substrings between
the database sequence and the query sequence are: {TAAT,AAT,TGA,ACT}. Note that
although CT is a common substring, it is not reported since it does not satisfy the match
length restriction.

The basic idea of the LST based algorithm to locate maximally matching substrings,
which we call MaximalSubstringSearch, is to locate the first longest match between @ and

S by walking down the suffix-tree Ts using symbols of ) — matching them “letter-at-




CHAPTER 4. BACKGROUND ON SUFFIX-TREES 73

a-time”. Subsequent longest matches are found by following the suffix-links and going
down the tree at the target of the traversed suffix-link. Note that this algorithm depends
heavily on the availability of suffix-links. A brief pseudo-code of the algorithm is provided
in Algorithm 2.

Locating Maximal Common Substrings over UST

In order to locate all the maximal common substrings between S and ) when S has
been processed into an UST (Unlinked Suffix-Tree) T¢, we use the observation that every
common substring must result in a prefix match between corresponding suffixes in .S and
. This leads us to the following algorithm — use each suffix of () to walk down the
suffix-tree T¢ from the root node, until either the suffix is completely located or there is
a mismatch. If the length matched is greater than the value of A\, then add to the output
set, L, all the leaf nodes under the current location. Follow this process for all the suffixes
at positions from 0 to |@Q| — A 4+ 1. We refer to this algorithm as MSSyst in the rest of
the thesis.

4.6 Implementation of Suffix-Trees

Until recently, suffix-tree indexes were considered as main-memory index structures. As
a result, the main concern in suffix-tree implementation has been that of reducing the
associated space overheads in order to be able to index larger sequences within a fixed
memory budget.

The design issue associated with the implementation of suffix-trees is the choice of
representation for the outgoing branches of internal nodes in the tree. The simplest
technique is to use an array of size |X| at each internal node. This array is indexed
by individual characters of the the alphabet, and contains the pointer to the child node
with its edge label beginning with the character indexed at that position. This array
allows constant-time access of child-nodes and updates. We term this representation as

array representation in the rest of the thesis. Although simple to implement, the array



CHAPTER 4. BACKGROUND ON SUFFIX-TREES 74

representation has not been favored since it could result in a lot of wasted space, with
many entries in the array being null.

As suggested by McCreight [80)], a space efficient alternative is to use a linked list of
child pointers at an internal node with the internal node storing a single pointer to the
head of the linked list. When a new edge from the internal node is added, a pointer to the
child node is inserted into the list, and tree edge traversals are implemented by sequentially
scanning the linked list to locate the required character. However, this additional factor
of traversing a ©(|X|) size linked list can result in adding the || factor to the time bounds
of the suffix-tree operations. This representation is termed as linked-list representation.

Although other alternatives such as using balanced binary search trees and perfect hash
tables for storing these child pointers at every internal node have been proposed [53],
the best in-memory implementation reported in [72] has used a variation on the linked
list approach — resulting in suffix-tree size upto 12.69 times the length of the sequence.
Hence, most suffix-tree implementations have preferred the linked list approach for their

representation.



Chapter 5

High-performance Persistent

Suffix-Tree Construction

5.1 Introduction

A unique aspect of suffix-trees is that, unlike traditional database indexes which are
typically a fraction of the database contents, their size is larger than the underlying
sequence data. In fact, standard implementations of suffix-trees require in excess of an
order of magnitude more space than the indexed data! As a case in point, the entire 3
Gbp of Human Genome is fully representable in about 1 GB (with each DNA symbol
represented with 2-bits), whereas the corresponding most space-economical suffix-tree
occupies close to 38 GB (= 3 Gbp x 12.69 bytes)." That is, it is straightforward to host
the sequence data in main memory, but the suffix-tree itself needs to be disk-resident!
Thus, it becomes untenable to consider a suffix-tree residing fully in memory, indexing
an ever growing sequence corpus such as the GenBank maintained by NCBI. An obvious
solution to handle this space problem is to maintain the suffix-tree index on disk. Un-
fortunately, due to seemingly random traversals induced by the linear-time construction

algorithms, resulting in unacceptably high I/O costs, the folk wisdom is that disk based

! Although in the case of USTs further space optimizations are possible [110], resulting suffix-tree is
still almost an order of magnitude larger — =~ 25 GB index-size for the Human Genome.

75



CHAPTER 5. HIGH-PERFORMANCE PERSISTENT SUFFIX-TREE CONSTRUCTION 76

implementations of suffix-trees are unviable [89].
In order to overcome this infamous “memory bottleneck” [36] of persistent suffix-tree

construction, there are two possible approaches:

1. The suffix-tree construction algorithm and its structure could be modified to make

it more suitable for on-disk implementation.

2. Tune the parameters of the environment in which suffix-tree is implemented, without

modifying either the structure or the construction algorithm.

The former approach primarily consists of completely abandoning the use of suffiz-
links that are crucial in obtaining linear-time construction of suffix-trees. This enables
efficient batch-wise construction techniques, although with theoretically quadratic worst
case time complexity. The works of Hunt et al. [61] and Tata et al. [123] take this approach.
However, due to the resulting structure without suffix-links, some of the fast approximate
string processing algorithms that make use of suffix-links, such as computing matching
statistics [22], are rendered unusable.

In the work presented in this chapter, we take the second approach, and identify the
parameters that affect online persistent suffix-tree construction and quantify their impact.
Specifically, we make the following contributions:

First, we propose a novel buffer management strategy called TOP-Q, that takes into
account the behavior of traversals induced by the suffix-tree construction. This strategy
exploits the path length invariant (defined in Chapter 4) of suffix-tree nodes and hence
has almost no computational overhead for suffix-tree node access. The datastructures
associated with TOP-Q are extremely simple and are easy to maintain.

Second, we study the choice of suffix-tree implementation on the performance of its
construction. The previous work on suffix-tree representations [80), [72] had noted the
superiority of linked-list representation of suffix-tree nodes — due to its space optimality
over a variety of datasets. We show that this approach of suffix-tree implementation is ex-
tremely expensive in terms of disk I/O (hence in terms of construction time). Instead, we
show that a simpler and often neglected array representation of suffix-tree edges provides

far superior performance.



CHAPTER 5. HIGH-PERFORMANCE PERSISTENT SUFFIX-TREE CONSTRUCTION 77

Third, we present an empirical study of a variety of buffer management policies in
the context of suffix-tree construction in terms of their buffer space utilization. We show
through the results of this empirical analysis that TOP-Q outperforms popular buffer
management strategies such as LRU, and the highly sophisticated LRU(2) [93], imple-
mented using the high performance equivalent 2(Q) algorithm [64].

Finally, we describe an implementation of the TOP-Q policy on top of the CLOCK re-
placement policy, typically used for buffer management in database systems [101]. Specif-
ically, we present our implementation of TOP-Q based suffix-tree indexing within the
BODHI system.

In our experiments, we use the OnlineSuffixTree algorithm, described in Chapter 4.
However, we also show that the results remain the same even in the context of the
construction using McCreight’s algorithm. This is not very surprising, since, in their
classical paper [46], Giegerich and Kurtz have shown that these two algorithms have highly
similar structural properties. Our evaluation testbed consists of a variety of real DNA

sequences, and a synthetic symmetric Bernoulli sequence over a 4 character alphabet.

5.1.1 Organization

The remainder of the chapter is organized as follows: A study of node access patterns
observed during suffix-tree construction is described in Section 5.2. Then, in Section 5.3,
we present observations that help to identify the frequently accessed nodes during con-
struction, which form the basis for the design of TOP-Q. The TOP-Q buffer management
policy is described in Section 5.4. In Section 5.5, we describe the two suffix-tree implemen-
tation choices (linkedlist and array-based), before describing the evaluation framework in
Section 5.6. The experimental results are presented and analysed in Section 5.7. Imple-
mentation details of TOP-(Q within the BODHI framework are presented in Section 5.8,

before concluding in Section 5.9.



CHAPTER 5. HIGH-PERFORMANCE PERSISTENT SUFFIX-TREE CONSTRUCTION 78

5.2 Persistent Suffix-Tree Construction

As described in Section 4.4, the suffix-tree over a string S can be built in a time propor-
tional to the length of the string, and the number of nodes in the resulting suffix-tree is
upper bounded by 2n. However, when we move the suffix-tree construction from mem-
ory to disk, these linear bounds no longer reflect reality, since they were obtained with
a RAM machine model, where every memory access has the same cost, irrespective of
its address. On the other hand, access-costs in secondary memory are dependent on the
address to which the previous access was made. For example, a long chain of accesses
to spatially contiguous addresses (block accesses) could cost much less than fewer but
random accesses.

During the construction of a suffix-tree, accesses to nodes are spatially non-contiguous.
Specifically, in the locate-phase, already constructed parts of the tree are re-accessed
many times via suffix-links. These traversals are not necessarily spatially local, leading
to seemingly random traversals over the tree. The following words of Giegerich and

Kurtz [45], typifies the behavior of these algorithms:

“The active suffix creeps through the text like a caterpillar. At the same time,

the corresponding active node swings through the tree like a butterfly”.

Thus, it is strongly believed that the accesses are random in nature — with no obvious

useful patterns discernible from the access traces.

5.3 Locating Preferred Nodes

In this section, we closely analyse the traces of accesses to nodes during online suffix-
tree construction, show that some of the nodes are indeed accessed far more frequently
than others, and provide a simple observation that helps to identify such nodes during
construction of the tree.

Before we proceed to analyse the traces, we note that the nature of accesses that are

expected during the construction of the suffix-tree is intricately linked to the stochastic



CHAPTER 5. HIGH-PERFORMANCE PERSISTENT SUFFIX-TREE CONSTRUCTION 79

Dataset S - 5Mbp Dataset C - 5Mbp
10000000 10000000

1000000 1000000
2 :

o 100000 g 100000
[ (]
8 o

& 10000 < 100007
“— o
o g

S 1000 2 10007
< .
= (=2

4 = 1001

>

Z 100 <

SHUHUHD

IIIIIIIIIIIIIIIIIIIII 14

1+ ‘2‘3‘4‘5‘6‘7 ““““““““ 01234567 8910111213141516171819202122

Eventual Depth Eventual Depth

Figure 5.1: Node Access Frequency

properties of the specific sequence at hand. There have been many efforts to classify the
sequences based on their stochastic properties [121]. One of the simplest sequence models
proposed as an approximation to genome sequences is that of Bernoulli generators. In this
model, symbols of the alphabet are drawn independently of one another; thus a string can
be described as the outcome of a sequence of Bernoulli trials. In addition, if all symbols
are drawn with equal probability, then the sequence is called symmetric, otherwise, it is
asymmetric.

Now, consider the internal node access statistics during suffix-tree construction for
a symmetric Bernoulli sequence (dataset S) derived from the access traces, shown in
Figure 5.1. These provide the correlation between the average number of accesses made
to a node and the eventual depth of the node in the tree, illustrating that, during the
suffix-tree construction, nodes higher up in the tree are accessed more number of times
than nodes lower in the tree. This correlation is also evident for suffix-tree construction
over real chromosomal sequences (dataset C) as shown in Figure [5.1.

Thus, it seems reasonable to cache the nodes that end up higher in the tree, in order
to serve these accesses faster. However, due to the nature of the edge splits during
construction, the depth of a node cannot be maintained without propagating the update

throughout the subtree under the node.



CHAPTER 5. HIGH-PERFORMANCE PERSISTENT SUFFIX-TREE CONSTRUCTION 80

5.3.1 Estimating the Depth of Internal Nodes

Although the depth of internal nodes cannot be maintained accurately, a simple obser-
vation on the structure of the resulting suffix-tree provides us with a means to estimate
this value efficiently. Considering sequences drawn from a symmetric Bernoulli stochastic

model, it is straightforward to see that:

1. Substrings of equal length are equally likely, and every substring forms the prefix of

some suffix of S.

2. If S, is the set of all the suffixes of S which share a common prefix «, then the
probability of finding atleast one pair a;,a; € S,, such that they differ in atleast

one position within the next s symbols is directly proportional to the value s.

Applying these to the behavior of the suffix-tree during its construction, we get:

Observation 1 The longer the edge in the suffiz-tree of a symmetric Bernoulli sequence,

more the likelithood of its being split as the length of the indexed sequence increases.

And obviously, no edge can be split once it has reached the limiting minimum length
of 1. From the above observation, we can infer that a node, in the extreme case, can
move further down in the suffix-tree until its incoming edge has only one symbol as its
label. Thus L(.) of any internal node forms an upper bound on its eventual depth. In
addition, this measure of path length is an invariant for the node, which results in easy
maintenance of this information during the construction of the suffix-tree. Hence, for
suffix-tree nodes over large sequences, we can approrimate their eventual depth in the tree

by their path length.

5.3.2 Impact of Asymmetric Distribution

In deriving the above approximation to the eventual depth of a node, we made the as-
sumption that the sequence is drawn from a symmetric Bernoulli model. However, it is
unlikely that any real-world DNA sequence would conform to this restrictive model. The

asymmetry of real-life distribution results in substrings containing a larger proportion of



CHAPTER 5. HIGH-PERFORMANCE PERSISTENT SUFFIX-TREE CONSTRUCTION 81

frequent symbols, having higher probability of occurrence than other substrings of the
same length. This implies that if a node v has its label o(v) containing smaller num-
ber of frequent symbols, it has lower probability of being split — resulting in a possible
over-estimation of its eventual depth by its path length L(v).

The graphs in Figure 5.2/ show, for the four DNA datasets used in our experiments, the
error in estimation of eventual depth of a node vis-a-vis the actual depth of the node, as
well as the corresponding number of nodes at each depth of the tree. These graphs were
obtained after processing 5Mbp of each of the datasets. The figure shows the statistics for
nodes only upto a depth of 20, since the number of the internal nodes at depths greater
than 20 is too small to make any impact although the error in estimation of eventual
depth is quite large for such nodes.

The average error at each depth was computed as the arithmetic mean of (L(.) —
Depth(.)) for all nodes at that depth. Note that since L(.) forms an upperbound on the
depth of the node, this value is always positive. The following points have to be noted

with respect to these graphs:

1. For all the datasets, path length corresponds ezactly to the depth of the node up to
a certain value of actual depth, which is dependent on the length of the sequence
processed. As shown in the graphs, this value is 10, after processing 5Mbp of each
of the datasets.

2. The number of nodes peaks at a depth of 11, at which point the error in the esti-

mation of depth is small for all the datasets.

3. For the dataset S, estimates are accurate throughout providing empirical evidence

for the soundness of Observation (1l

4. The worst estimation errors are with dataset C, which has a highly skewed distri-
bution of basepairs. However, a majority of nodes in the tree occur within depth

14, where errors are not too large.

5. The depth of a node approaches its path length with the increase in length of



CHAPTER 5. HIGH-PERFORMANCE PERSISTENT SUFFIX-TREE CONSTRUCTION 82

Error in Estimation of Depth
Dataset Size = 5Mbp

100

80

D
o

Estimation
iy
o

Average Error in

20

Actual Depth
(Number of Edges from the Root)

(a) Error in Depth Estimation

140 ]
120 [H = | :

100 | , 1

Number of Internal Nodes
(x 10,000)

Actual Depth
(Number of Edges from the Root)

(b) Distribution of Nodes

Figure 5.2: Relative Impact of Errors in Depth Estimation



CHAPTER 5. HIGH-PERFORMANCE PERSISTENT SUFFIX-TREE CONSTRUCTION 83

the sequence indexed. Therefore, the estimation errors continue to decrease as we

process sequences of greater length.

In summary, these graphs clearly demonstrate that even for datasets that deviate from
the symmetric Bernoulli model, the impact of errors incurred by the proposed approxima-
tion to eventual depth is not very significant, and the quality of approximation improves

with the increase in the length of the sequence.

5.4 Design of TOP-Q

Before describing the TOP-Q buffering strategy, we present the design of TOP, a simpler
version of TOP-Q, which exploits the observation that higher number of accesses are to
the nodes that are eventually higher in the tree, as well as the approximation to the
eventual depth presented above.

We consider the situation where each disk-page contains a collection of nodes of the
suffix-tree — either internal or leaf, but not a mix of both. In order to minimize the storage
cost of maintaining the path length, each disk page contains an associated path length,
which is the average of the path lengths of all nodes packed in it. Each disk-page is
completely packed with nodes as they created, and since the path length for each node is
an invariant, the path length of the page can also be computed at the time it is committed

to the disk.

Definition 4 (TOP Ranking) Let d; be the average of path lengths of all nodes in a

disk-page b;. Then, we define a ranking function R, over disk-pages as follows:
R(b;) > R(by) ifd; < d;
We call the ranking generated as the TOP Ranking.

Definition 5 (TOP Buffering Algorithm) The TOP algorithm specifies a page re-
placement policy when a buffer is needed for a new page to be read from the disk: the page

b to be dropped (i.e., one chosen as the replacement victim) is the one whose TOP rank



CHAPTER 5. HIGH-PERFORMANCE PERSISTENT SUFFIX-TREE CONSTRUCTION 84

1s the smallest. Only time this choice is ambiguous is when more than one page has same
R value. In this case, we can resolve the tie using a subsidiary policy. We follow a simple
policy of choosing the page whose creation time is oldest among the tied candidates for

eviction.

We call this buffering policy as TOP, to indicate that it tries to retain those pages of
the suffix-tree that are estimated to be top pages i.e., pages containing the top nodes of

the tree.

5.4.1 Accommodating Correlated Accesses

Although the TOP buffering policy exploits the preferential access to the nodes with lower
path lengths, it ignores the presence of correlated access patterns exhibited by the suffix-
tree construction. We provide below an example situation in the construction process,
where this makes a impact on the performance of TOP.

The construction proceeds by splitting an edge, introducing a new branching node
and a leaf node at that location, and filling in suffix-link pointers if needed. Every node
stores the details of its incoming edge, i.e., (start, end) indexes into the sequence and the
length and label of the edge. When an edge p(v) — v, is about to be split, the following

actions are performed:
1. create a new branching node, v/, and a leaf node [,
2. set the incoming edge details for both v and [,

3. update the incoming edge details for v (the edge length is shortened, and the start

value and corresponding edge label are changed), and finally,
4. v is set as the child of p(v) in place of v, and v is now located under v'.

In addition, by the nature of the algorithm, only v has an active reference to it, and
p(v) is to be accessed through the parent pointer available with v. Therefore, p(v) is not

guaranteed to be pinned in memory during this process.



CHAPTER 5. HIGH-PERFORMANCE PERSISTENT SUFFIX-TREE CONSTRUCTION 85

Eviction Effectiveness of TOP

1000000

100000

10000

1000

Number of faults

100+

10+
01234546 78 910111213141516 17181920

Suffixes added since last eviction

Figure 5.3: Correlated Accesses in TOP

As the construction progresses, the internal nodes have ever-increasing path lengths
associated with them. Therefore, the TOP policy evicts the pages as soon as they are
filled and are not pinned through any active reference, since the internal pages also have
larger path length values as the construction proceeds. Therefore, there is a possibility
that p(v), more precisely, the page containing p(v), is not retained in the buffer for long.

We evaluated the impact of such correlated accesses to nodes, by measuring the the
number of characters processed by the algorithm between the instant a page is evicted
and the instant it is next requested, generating a fault on the buffer pool. The initial
interesting portion of the results is shown in Figure 5.3, which plots the number of faulted
pages on a logscale and the number of characters processed since they were last evicted
from the buffer pool. As shown in these graphs, the number of evictions that have pages
with immediate reference — i.e., before the complete addition of the next character into
the suffix-tree — is orders of magnitude larger than the evictions of pages that are accessed
after many more characters are added.

The TOP-(Q strategy compensates for this un-responsiveness of TOP to such accesses,
by splitting the buffer pool into a collection of pages maintained in the order of their

path lengths — implemented as a Heap structure, and a short fixed-length queue of pages



CHAPTER 5. HIGH-PERFORMANCE PERSISTENT SUFFIX-TREE CONSTRUCTION 86

to hold the pages evicted from the heap. The buffered pages in the heap are chosen for
eviction just like in the TOP policy. However, unlike TOP, these pages are moved to
the short, fixed-length queue part of the buffer pool managed in a FIFO fashion. The
presence of the queue of pages effectively introduces a delay in the eviction of pages,
satisfying almost all the immediate references to the page. We have used a queue of 10
pages with buffer-pool sizes ranging from thousands to hundreds of thousands of pages in

our experiments and found it to perform well in practice.

5.5 Suffix-Tree Representation

We now turn our focus to the physical representation of the nodes of the suffix-tree. Much
attention has been paid to reducing the size of these nodes [72], the goal being to maintain
the tree entirely in memory, so that non-local accesses over the tree induced by linear-time
construction algorithms are not affected by the virtual memory paging [53]. However, it
is not known which of these node representations is more appropriate when the suffix-tree
has to be constructed and maintained completely on disk.

The simplest but most space consuming strategy is to use an array of size |%| (where X
is the size of the alphabet) at each internal node of the tree. Each array entry corresponds
to an edge, whose edge-label begins with the character associated with the array entry.
These edges are implemented as pointers to corresponding child nodes in the suffix-tree.
We term this representation as array implementation of suffix-tree nodes. This represen-
tation, although simple to program, is not preferred in most practical implementations
since this results in a lot of wasted space, with many pointers containing null values.
This overhead is especially severe in nodes lower in the tree since the tree edges become
sparser at lower portions of the tree.

As suggested by McCreight [80], a space efficient alternative to the array is to use
a linked list of siblings, and at every internal node maintain a single pointer to the
head of the linked list containing its child nodes. Traversals from the internal node are
implemented by sequentially searching this list for the appropriate child node. By storing

the linked list in a sorted order, it is possible to halve the traversal overhead. We refer to



CHAPTER 5. HIGH-PERFORMANCE PERSISTENT SUFFIX-TREE CONSTRUCTION 87

Leaf Node

Char. | gegin Offset
Label

(1 byte) (4 bytes)

Internal Node

Begin Offset | Suffix Link | child Pbinters

Char. | Length of
Label | Incoming Edge
(1 byte) (4 bytes) (4 bytes) (4 bytes) 1(4 X 4 ‘bytes):

(a) Array Representation

Leaf Node

Char. | gegin Offset | Next Pointer
Label

(1 byte) (4 bytes) (4 bytes)

Internal Node

Char. | Length of Begin Offset | Next Pointer | Child Pointer | Suffix Link
Label | Incoming Edge
(1 byte) (4 bytes) (4 bytes) (4 bytes) (4 bytes) (4 bytes)

(b) Linked-list Representation

Figure 5.4: Structure of Suffix-tree Nodes

the resulting representation as the linked-list representation of the suffix-tree node. This
structure is a popular choice, due to its simplicity in implementation as well as superior
space economy.

The structure of internal nodes and leaf nodes, for the array and linked-list imple-
mentation is given in Figure 5.4. It is clear that the linked-list representation achieves its
superior space economy by significantly reducing the size of every internal node — in our
implementation, from 29 bytes per internal node in array representation to 21 bytes per

internal node.



CHAPTER 5. HIGH-PERFORMANCE PERSISTENT SUFFIX-TREE CONSTRUCTION 88

%-age Distribution

Name| Description Length of nucleotides
(inMbp)| A | T | C G
S Symmetric Bernoulli 25 25 | 25 | 25 | 25
D Drosophila Melanogaster genome 25 29 129 | 21 | 21
H Human Chromosome II 25 30 | 30 | 20 | 20
C C.elegans Chromosome I 15 32 | 32 | 18 | 18

Table 5.1: Characteristics of the Datasets

5.6 Evaluation Framework

In this section, we describe the framework used for evaluation of various buffering strate-
gies, and node implementation choices, during the online construction of persistent suffix-
trees.

In our evaluation, we use a total of four DNA datasets, three of which are drawn from
C.elegans Chromosome I (dataset C), Human Chromosome II (dataset H) and complete
genome of Drosophila Melanogaster (dataset D). The remaining dataset is a synthetic sym-
metric Bernoulli sequence over DNA alphabet (dataset S). The details of these datasets
are summarized in Table 5.1l From these statistics we see that these datasets comprise of
sequences ranging from symmetric distribution of alphabets (dataset S) to highly skewed

distribution (dataset C).

5.6.1 Implementation Details

As already mentioned in Section 5.4, suffix-tree nodes are packed into fixed size pages
before they are committed to the disk. The pages on disk are either internal pages or
leaf pages, depending on whether they store internal nodes or leaf nodes of the tree. The
variation in the internal and leaf node sizes leads to the packing density (i.e., the number
of nodes in a disk page) of leaf pages being greater than that of internal pages.

The storage of both internal nodes and leaf nodes is in their order of creation. Each
page is committed immediately to the disk, as soon as all the space in the page is utilized.

Note that, at the time of committing to the disk, all the entries in nodes of the page may



CHAPTER 5. HIGH-PERFORMANCE PERSISTENT SUFFIX-TREE CONSTRUCTION 89

not be filled — some of them may be defined and updated at later times in the construction
process. Also, a page is pinned in memory if there are any active references pointing to
nodes in the page.

The internal and leaf pages are distinguished also in terms of their buffer pools. This
is due to the distinctly different access patterns made during the construction of the tree.
Internal nodes of the tree are used repeatedly (with or without suffix-links) for reaching
the location of the next suffix. On the other hand, leaf nodes are re-visited only when
the suffix being located ends in a leaf node. In fact, our buffer management system is

designed such that separate policies can be applied to internal and leaf page buffer pools.

5.6.2 Buffer Management Policies

The design of buffer management policies has been an active area of research for many
years, and a host of policies that show improved hitrates over various database workloads
have been proposed [23] 33, 93, 106].

We compare the static policy of TOP-Q against the following popular policies that

are based on page access statistics, commonly used in database management systems:

LRU (Least Recently Used) In case of a page fault, it replaces the least recently
used page from the buffer pool to accommodate the new page. It incurs a constant
time computational overhead for every access, in order to manipulate the list of

pageframes maintained in the order of recency of access.

2Q The 2Q algorithm [64] is a constant time overhead approximation of LRU-2 [93] that
is found to perform as well as LRU-2 for a variety of reference patterns. The 2Q
algorithm covers the most important drawback of LRU-2, by reducing the computa-

tional overhead from log(N) for every access in LRU-2 to a constant time overhead.

The metric of comparison between these popular buffering policies and our TOP-Q
strategy are the overall buffer hit-rates observed during the construction of the suffix-tree,

with increasing length of sequence indexed, and for a fixed amount of buffer space.



CHAPTER 5. HIGH-PERFORMANCE PERSISTENT SUFFIX-TREE CONSTRUCTION 90

5.6.3 Buffer Pool Allocation

In our evaluation of buffering policies, we maintain separate buffer pools for leaf and
internal pages, with the buffering policy applied within each of the buffer pools. With a
fixed amount of memory space at our disposal as the buffer space, it is interesting to see
if there is an effective way to partition this space between the two classes of pages of the
suffix-tree.

The simplest partitioning is to distribute the available buffer pages equally between
both leaf and internal nodes. It results in more number of leaf nodes being buffered than
the internal nodes due to the better packing density of the leaf pages. Therefore, the
effectiveness of the buffer pool can be improved by partitioning it to hold equal number
of internal nodes and leaf nodes. Although the number of internal nodes is 0.6 - 0.8 times
the number of leaf nodes (for typical DNA sequences), the level of activity over internal
nodes, in terms of their accesses and updates, is much higher than over leaf nodes. Hence,
partitioning schemes that are skewed to hold more number of internal pages than leaf
pages can be expected to perform better in practice.

Additionally, it should be noted that, as the construction of the suffix-tree progresses,
the overall size of the tree increases, leading to traversals over the tree covering a larger
number of pages. In fact, a point may arrive when the available fixed size buffer may
not be sufficient to efficiently handle the requests over an extremely large suffix-tree. In
order to compensate for this growing size of the data-structure and provide a normalized
performance measure for all the policies, we consider the steady hitrates obtained, when
a fraction of the suffix-tree size is provided for buffering. In other words, as the suffix-
tree construction progresses, more pages are introduced into the buffer pool such that
the ratio of buffer pool size to the total size of the suffix-tree (measured in number of
pages) is held constant. The distribution of steady hitrates obtained under various values
of buffer fraction — starting from 100% buffering to a small fraction of the tree — will
reveal the performance of each of the buffering policies, independent of the size of the
tree. Furthermore, the performance of a buffering policy at a value f on this distribution,

will also be its best performance with a fixed-size buffer when the ratio of buffer-pool size



CHAPTER 5. HIGH-PERFORMANCE PERSISTENT SUFFIX-TREE CONSTRUCTION 91

] \ Array Representation \ Linked-list Representation ‘

Internal Node 29 bytes 21 bytes
Leaf Node 5 bytes 9 bytes
’ Page Size | 4096 bytes ‘

Table 5.2: Default Experimental Parameters

to the current tree size equals f. In practice, the instantaneous performance could only
be smaller due to the possible “memory effects” — i.e., retention of pages which may not

be useful in the future.

5.7 Experimental Results

In this section, we present the results of our empirical evaluation of the buffering poli-
cies and the node implementation choices outlined in previous sections. The parameters

applicable for all our experiments are summarized in Table |5.2.

5.7.1 Construction with Fixed-size Buffer

The fixed buffer size experiments were conducted with total memory space allocated for
the buffer pool restricted to just 32MB, a total of 8000 pages. This enabled us to work
with smaller length sequences, and perform experiments for collecting buffer pool statistics
using a simulated memory hierarchy. However, in practice, much larger datasets will be
indexed and therefore proportionately larger buffer pool sizes should be used.

As described earlier in Section 5.6.3, the available buffer space can be partitioned
between internal and leaf buffer pools, ranging from equal partitioning to skewed parti-
tioning in favor of the internal buffer pool. We experimented with many buffer partitioning
schemes, and found that the overall hitrate is dominated completely by the internal node
accesses alone. Thus, the performance improves with increased skew in the partitioning,
with more space allotted for buffering the internal pages. This observation holds for both

the array as well as linked-list representations of the suffix-tree. In this thesis, we present



CHAPTER 5. HIGH-PERFORMANCE PERSISTENT SUFFIX-TREE CONSTRUCTION 92

results for equi-partitioning of the buffer pool with 4000 pages each for managing internal
and leaf pages and a highly skewed partitioning with 7950 pages to internal buffer pool

and remaining 50 pages as leaf buffers.

Array-based Suffix-Tree Construction

The buffer hitrate obtained for page accesses, of both internal and leaf pages, using array

representation of nodes is shown in Figure 5.5. The graphs also show the hitrate for

simple TOP, in order to provide a measure of gains obtained by the TOP-Q extension.
Figure 5.5/ shows that TOP-(Q provides consistently higher hitrates than LRU and 2Q).

In addition, the following observations can be made about these results:

e The hitrates with skewed partitioning of buffer pool are higher than with equi-
partitioning. This clearly shows that the overall performance is dominated by the

effectiveness of the buffering over internal pages.

e TOP-Q), as expected, performs better than the plain TOP strategy and provides
hitrates that degrade slower with increasing suffix-tree size, as compared to the

other policies.

e LRU exhibits the lowest hitrate, and, in fact, was found to have performance no dif-
ferent to the policy of evicting a randomly selected page —i.e., Random Replacement

strategy!

e The performance of TOP is better than LRU in the initial stages of the construc-
tion, and with increased skew in the buffer allocation, TOP improves to match the

performance of 2Q).

e The ideal sequence for TOP is the dataset S, which is a symmetric Bernoulli se-
quence. With this dataset, it provides improved hitrates over even the highly so-

phisticated 2Q algorithm.

2Random Replacement strategy is considered to provide a practical lower-bound on the hit-rates of
any buffering strategy, as it does not use any knowledge of past reference behavior [33].



CHAPTER 5. HIGH-PERFORMANCE PERSISTENT SUFFIX-TREE CONSTRUCTION 93

Hit Rate

Hit Rate

Hit Rate

Hit Rate

Equal Partition (4000/4000)

0.95
0.9
0.85
0.8
0.75
0.7
0.65
0.6
0.55

Sequence Length (in Mbp)

Equal Partition (4000/4000)

0.95
0.9
0.85
0.8
0.75
0.7
0.65

0.6

0.95
0.9
0.85
0.8
0.75
0.7
0.65
0.6
0.55

0.65

Sequence Length (in Mbp)

Equal Partition (4000/4000)

5 10 15 20 25 30
Sequence Length (in Mbp)

Equal Partition (4000/4000)

2 4 6 8 10 12 14 16
Sequence Length (in Mbp)

Figure 5.5: Hit-rates for

Dataset S
Skewed Partition (7200/800)
1
0.95
0.9
0.85
[}
g 0.8
o4
I 0.75
0.7
0.65
0.6
0.55 1 1 1 1 1
0 5 10 15 20 25 30
Sequence Length (in Mbp)
Dataset H
Skewed Partition (7200/800)
[}
g
o4
T
Sequence Length (in Mbp)
Dataset D
Skewed Partition (7200/800)
1 T T T T T
TOP-Q ——
0.95 [\ LRU ------ —
0.9 [y
@ 08B e R
S
95 0.8 [ SN
Tooamboo NN
0.7
(0
0.6
Sequence Length (in Mbp)
Dataset C
Skewed Partition (7200/800)
[}
g
o4
T
0.65 1 1 1 1 1 1 1

0 2 4 6 8 10 12 14 16
Sequence Length (in Mbp)

Construction with Array-based Nodes



CHAPTER 5. HIGH-PERFORMANCE PERSISTENT SUFFIX-TREE CONSTRUCTION 94

In summary, TOP-Q emerges as the best buffer management policy with any buffer
partitioning strategy over all the datasets. Moreover, it should be noted that TOP-Q has
an extremely low computational overhead as compared to LRU and 2Q), since its control

data-structures are not updated at every access to a page.

Linked-list based Suffix-Tree Construction

The behavior of all the buffering policies for linked-list representation of nodes is shown
in Figure 5.6, First of all, it is worth noting that all the algorithms provide better hitrates
than in the case of array representation, with the sole exception of TOP. This is due to
greater presence of correlated accesses, similar to those discussed in Section 5.4.1, arising
out of traversals over the linked list of siblings. But the TOP-Q algorithm still maintains
an edge over the LRU and 2Q) algorithms, although the improvements are not as significant
as in the case of the array representation. Another interesting point is that both LRU
and 2Q show almost the same hitrates, with both equal and skewed partitioning of the

buffer pool.

Choice of Implementation

The comparison of graphs in Figure 5.5 and Figure 5.6/ indicates that the linked-list
representation provides better hitrates than array representation. This is partly due to the
fact that for the same amount of buffer space at our disposal, the linked-list representation
buffers more number of internal nodes due to its improved space economy. This seems to
suggest that the linked-list representation is better suited for persistent construction with
buffering.

However, this conclusion is misleading since the sequences of page references in both
cases are very different and the hitrates are normalized within each reference sequence.
The absolute number of disk accesses made during the construction provides a metric that
is independent of the reference sequence. Figure 5.7 shows the absolute number of read
and write disk accesses, using the TOP-Q buffering policy, for the dataset H. As these

numbers indicate, the linked list representation has a significantly higher 1/O overhead



CHAPTER 5. HIGH-PERFORMANCE PERSISTENT SUFFIX-TREE CONSTRUCTION 95

Hit Rate

Hit Rate

Hit Rate

Hit Rate

Dataset S
Equal Partition (4000/4000) Skewed Partition (7200/800)
1 T T T T
TOP-Q ——
0.95
0.9
0.85 °
ISl
0.8 95
075 .
0.7
0.65
06 1 1 1 1 1
0 5 10 15 20 25 30
Sequence Length (in Mbp) Sequence Length (in Mbp)
Dataset H
Equal Partition (4000/4000) Skewed Partition (7200/800)
[}
g
4
T
0.65 1 1 1 1 1
0 5 10 15 20 25 30
Sequence Length (in Mbp) Sequence Length (in Mbp)
Dataset D
Equal Partition (4000/4000) Skewed Partition (7200/800)
1 T T T T T
TOP-Q ——
0.95 oo LRU ----- —
0.9 [
0.85 [ N °
o
0.8 e RN e o
075 *
0.7
0.65
06 1 1 1 1 1
0 5 10 15 20 25 30
Sequence Length (in Mbp) Sequence Length (in Mbp)
Dataset C
Equal Partition (4000/4000) Skewed Partition (7200/800)
1 T T T T
0.95 [ R oS T
0.9 [ -
[}
g
0.85 [-oemereeeee e BRI - @
T
[
0.75 frmeremmememe e -
07 1 1 1 1 1 1 L 0.7 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
Sequence Length (in Mbp) Sequence Length (in Mbp)

Figure 5.6: Hit-rates for Construction with Linked-list Representation



CHAPTER 5. HIGH-PERFORMANCE PERSISTENT SUFFIX-TREE CONSTRUCTION 96

Dataset H

1.2e+08

Array —— ' '
- Linkedlist -------

K
-

1e+08

v
-
7
K
%
7
%
%
-
-
-

6e+07

4e+07

Number of Disk-accesses

2e+07

O - "// 1 1 1 1 1
0 5 10 15 20 25 30

Sequence Length (in Mbp)

Figure 5.7: Disk-accesses during Construction

than the array representation. This overhead is primarily due to traversals over siblings in
the linked-list to locate the appropriate child to follow. Each of these siblings could have
been created at different points during the construction, resulting in their non-contiguous

storage on disk.

5.7.2 Construction with Proportional Buffering

We now move on to proportional buffering, discussed in Section 5.6.3. The resulting
steady hitrate values are plotted in Figure 5.8.

As shown in these graphs, the performance of LRU improves almost linearly with the
buffered fraction of the datastructure and 2Q) is only marginally better than LRU. On the
other hand, TOP-Q provides super-linear improvements with diminishing returns, with
increasing fraction of buffering. The performance of TOP-Q peaks for about 25% of the
tree in the buffer providing close to 72.5% hitrate for construction over real-life DNA
sequences. When more than 60% of the suffix-tree is buffered, then all the three buffering

strategies perform equally well with upto 85% steady hitrate.



CHAPTER 5. HIGH-PERFORMANCE PERSISTENT SUFFIX-TREE CONSTRUCTION

97

Steady Hitrate

Steady Hitrate

Steady Hitrate

Steady Hitrate

0.9
0.8
0.7
0.6
0.5

0.9
0.8
0.7
0.6
0.5

0.9
0.8
0.7
0.6
0.5

0.9
0.8
0.7
0.6
0.5

0.1 02 0.3 04 05 0.6 0.7 0.8 0.9
Buffered Fraction

0.1 02 0.3 04 05 0.6 0.7 0.8 0.9
Buffered Fraction

Steady Hitrate

Steady Hitrate

0.9
0.8
0.7
0.6
05

1
0.9
0.8
0.7
0.6
05

0 010203040506 070809
Buffered Fraction

0 010203040506 070809
Buffered Fraction

(a) Array Representation

0.1 02 0.3 04 05 0.6 0.7 0.8 0.9
Buffered Fraction

TOP-Q —+—
LRU ---x---
2Q ook

0.1 02 0.3 04 05 0.6 0.7 0.8 0.9
Buffered Fraction

Steady Hitrate

Steady Hitrate

0.9
0.8
0.7
0.6
05

0.9
0.8
0.7
0.6

0 010203040506 070809
Buffered Fraction

Dataset D
TOP-Q ——
o LRU ---x--- -
2Q ---¥---

5
0 010203040506070809

Buffered Fraction

(b) Linked-list Representation

Figure 5.8: Behavior with Proportional Buffers



CHAPTER 5. HIGH-PERFORMANCE PERSISTENT SUFFIX-TREE CONSTRUCTION 98

5.7.3 On-disk Construction

In order to consider the practical impact of the improved performance statistics for TOP-
Q buffering and array representation of nodes, we built persistent suffix-trees for large
DNA sequences on two different classes of machines. One was a PC class machine running
Linux Redhat 8.0 and having an 18 GB 10,000-RPM SCSI hard disk (IBM DDYS-T18350M
model). The other machine represents the server class hardware used in current day large
bioinformatics projects — a HP-Compaq ES45 server running Tru64 Unix 5.1 and 432GB
(6*72GB) storage with single channel RAID controller at RAID-0 configuration. We refer
to these two platforms as PC' and ES, respectively, in the rest of this discussion.

We compared the total execution time for constructing a persistent suffix-tree using
1GB of buffer space, split in 2 : 1 ratio, in favour of internal pages. Figure [5.9 provides
the performance of various strategies on both the platforms. These results show that
TOP-Q with array representation provides 50% to 80% improved construction time over
both platforms considered. Further, we constructed a persistent suffix-tree over 250 Mbp
sequence from the Oryzasativa (Rice) genome. Using TOP-Q strategy with array-based

representation, the index could be constructed within 70 hours, on the ES45 server.

5.8 Implementing TOP-Q Policy in BODHI

The underlying Shore storage manager (SM) for BODHI, has a global buffer-manager
for each server-instance, that uses CLOCK replacement policy for managing a shared
buffer pool. However, it has no direct support for changing the buffering policy based
on the page-type and workload characteristics. Instead, SM provides an API for setting
a “hate-hint” value for a record (and thus the page containing it), which is used by the
buffer manager to determine how long to retain a pageframe in the buffer pool after it
has been unpinned. By setting this value to 0, it is possible to schedule the page for
eviction immediately, larger values retain the page for longer duration. In addition, SM
also provides standard interfaces for pinning and unpinning of records in memory, ensuring

that they are not evicted from the buffer-pool while they are pinned. We utilized these



CHAPTER 5. HIGH-PERFORMANCE PERSISTENT SUFFIX-TREE CONSTRUCTION 99

Human Chr. 2 (7OMbp)

2.75
2.5
2.25

N

1.75

.
v

M Array
[ Linked-list

(in Hours)

1.251

Construction Time

0.751
0.51
0.251

TOP-Q LRU 2Q
Buffer Management Policies

(a) Platform: ES

Human Chr. 2 (70Mbp)

27.50
25.00
22.50
20.00
17.50
15.00
12.50
10.00

M Array
[ Linked-list

(in Hours)

Construction Time

TOP-Q LRU 2Q
Buffer Management Policies

(b) Platform: PC

Figure 5.9: Persistent Construction Times



CHAPTER 5. HIGH-PERFORMANCE PERSISTENT SUFFIX-TREE CONSTRUCTION 100

Page-level Record a7 Slots
Information Ta W

(64 Bytes) (12 B?/tes) // %/ (8 Bytes)

< 8192 Bytes =

Figure 5.10: Storage Structure of Suffix-tree Index in BODHI

features to develop a VAS-layer implementation of TOP-Q buffering policy for persistent

suffix-tree management in BODHI.

5.8.1 Storage Structures for Suffix-Tree Index

The default page-size used by the Shore SM is 8192 bytes, out of which 72 bytes are used
for maintaining page-specific book-keeping information, including two 4-byte slot-entries,
starting at the end of the page. A record consists of a header part, and the data part
— header typically holds record details such as type information of the object, etc. For
each record, Shore also adds a 12-byte tag with record specific information such as its
serial number, record type, header length, and record length. Additionally, for each record
beyond the first two records in the page, Shore also maintains a 4-byte slot-entry in the
data space of page.

If one were to naively implement each suffix-tree node (internal or leaf) node as a
record, we would spend more than 2-times the data-size just on the SM specific overheads
— leaf nodes with 5-byte size will now be 17-bytes long! In order to minimize this overhead,
we designed a single record that spans the entire data portion of the page, holding a
number of suffix-tree nodes. Figure 5.10 illustrates the implementation of these records.

The path length of the record is maintained as a 4-byte header information.

5.8.2 TOP-Q with CLOCK

The sequence services component of BODHI which is responsible for genome sequence
storage, also maintains the suffix-tree index over the sequence collection. The records

that are to be buffered by the TOP-Q policy — those in the TOP heap structure and in



CHAPTER 5. HIGH-PERFORMANCE PERSISTENT SUFFIX-TREE CONSTRUCTION 101

the eviction queue — are kept pinned in the buffer. As soon as a page is evicted by the
TOP-Q policy, it is unpinned, and the hate-hint is set to 0 in order to schedule for eviction
from the SM buffer pool as well. Note that a page will be retained in the buffer-pool,
although it is scheduled for eviction, until the clock hand (of CLOCK replacement policy)
passes over the corresponding pageframe. This can be viewed to be similar to increasing

the length of the eviction queue in the TOP-Q policy.

5.9 Conclusions

In this chapter, we have evaluated the impact of buffering and internal node implementa-
tion choices on the construction of a suffix-tree in secondary memory. We also proposed a
novel low overhead buffer management policy called TOP-Q, which exploits the pattern
of accesses over the suffix-tree during its construction. Through an extensive empirical
study involving both DNA and Protein sequences, we showed that TOP-Q performs bet-
ter than other popular buffer algorithms such as LRU and LRU-2. The TOP-Q algorithm
saves more than 75% of disk I/O by buffering merely 25% of the tree.

In addition, it was shown that that the commonly used, space-economical linked-
list representation of the suffix-tree is extremely expensive for construction on secondary
memory. Instead, a simple implementation using arrays at each internal node is shown
to be far better suited for persistent suffix-tree representation.

A performance evaluation of TOP-Q with array representation of nodes against a
popularly reported linked-list representation with LRU buffering policy showed that sig-
nificant speedups to the tune of 50% to 70% were obtained, over different platforms.



Chapter 6

Search Optimized Suffix-Tree

Storage

6.1 Introduction

As we discussed in previous chapters, despite the utility of suffix-trees in accelerating a
number of sequence processing tasks, their practical usage has been limited over small
length sequences due to their space overheads. Further, this piquant situation is rendered
even worse due to suffix-trees not being disk-friendly, as a consequence of the random
traversals across tree nodes induced by the standard construction and search algorithms.
In addition to the techniques proposed in Chapter |5, there has been significant recent
research activity to address this problem and design high-performance persistent suffix-
trees [61) 110], 123].

However, these efforts have mainly focused on the construction aspect, that is, on how
to build the tree efficiently on disk.r In this chapter, we take the next step of considering
the search aspect in detail and investigate the associated efficiency concerns. Specifically,
our focus is on whether it is possible to optimize the layout of the suffix-tree with regard

to the assignment of tree nodes to disk pages, such that search is optimized. While layout

LAlthough in [60) 110], authors have reported the search performance on the resulting persistent
suffix-trees, they have not explored the issue in detail.

102



CHAPTER 6. SEARCH OPTIMIZED SUFFIX-TREE STORAGE 103

has been well-studied in the database literature for access structures such as kdb-trees,
Quad-trees etc., we are not aware of any similar work on suffix-trees. Further, carrying

out this study for suffix-trees poses new problems arising out of the following:

e The patterns of search traversals over suffix-trees are much more complex than
those found in traditional index structures, since both tree-edges and suffix-links

are involved.
e Presence of suffix-links turn the suffix-tree into a cyclic structure.

e Suffix-trees are not inherently balanced data structures, unlike typical secondary

memory index structures.

Our experiments with a variety of real genomic sequences against representative query
workloads demonstrate that the currently available layout choices are extreme — they ei-
ther optimize “vertical” traversal through the tree-edges, or optimize “horizontal” traver-
sal through the suffix-links. But, sequence search algorithms typically need to traverse
both edges and links — for example, to find all maximal matching substrings between the
database sequence and a query, tree-edges are used to walk down the tree matching the
query sequence along the way, and the subsequent matches are found by following the
suffix-links [22]. Many popular genomics software such as MUMmer [29], and BLAST [I]
achieve speedups through the resulting high-speed maximal substring location technique.

Given the above motivation for designing a holistic algorithm that optimizes the layout
for both kinds of traversals, we present in this chapter Stellar (Suffix-Tree Edge and Link
Locality AmplifieR), an algorithm that attempts to achieve this goal. Stellar is a linear-
time, top-down strategy that utilizes the structural relationship between the suffix-links
and the tree-edges under associated subtrees, to achieve high locality of both suffix-links
and tree-edges. We quantify its effectiveness with a detailed performance study.

In summary, the contributions of this chapter are as follows:

Firstly, we demonstrate that the standard layouts of suffix-trees optimize only either

edge traversals or link traversals, resulting in slow searches of genomic sequences.



CHAPTER 6. SEARCH OPTIMIZED SUFFIX-TREE STORAGE 104

Next, we present Stellar, a suffix-tree layout that optimizes both kinds of traversals,
thereby providing significantly improved search performance.

Finally, through detailed empirical evaluation, we show that sequence searching over
a LST is superior, in terms of disk 1/O, than the same task performed over an UST,
using MSSyst algorithm. These results quantify the search utility of suffix-links, thereby
highlighting the need to retain them in persistent suffix-trees despite the associated space

overhead.

Organization

The remainder of this chapter is organized as follows: Section 6.2 presents the index
layout strategies currently available, and their ineffectiveness in the context of persistent
suffix-trees. The design of our new Stellar layout algorithm is given in Section 6.3. The
experimental setup is described in Section 6.4/ before highlighting the results of our exper-
imental analysis in Section 6.5. In Section 6.6, we present results to quantify the utility
of suffix-links in search tasks despite the additional space overheads they impose. Finally,

we summarize our results in Section 6.7.

6.2 Persistent Suffix-Tree Layout

Suffix-trees, unlike popular persistent index structures such as B*-Trees and R*-Trees,
are not inherently balanced data structures — their structure depends entirely on the
combinatorial characteristics of the sequence being indexed. In the worst-case, the tree
can degenerate into a linear chain of internal nodes. Considering the example suffix-tree
shown in Figure 4.2, leaf-node 8 is an immediate child of the root, while leaf-node 1 is at
depth 3.

In addition, the fan-out degree of suffix-tree nodes cannot be varied to suit the disk-
page size, since the fan-out of each internal node of a suffix-tree is upper-bounded by the
size of the alphabet of the indexed sequence. Hence, many nodes of a persistent suffix-

tree will be stored on a page, with nodes interconnected within as well as across pages.



CHAPTER 6. SEARCH OPTIMIZED SUFFIX-TREE STORAGE 105

Therefore it becomes critical to choose the nodes that will be placed in the same disk-page
in order to reduce the overall disk I/O cost of traversing the suffix-tree during search.

Earlier research on disk layout of persistent indexes [31] has shown that a heuristic-
based linear-time algorithm, henceforth called SBFS, that does recursive localized
breadth-first layout of the tree, outperforms other commonly considered tree layout meth-
ods such as Breadth-first and Depth-first strategies. Through empirical studies they also
show that the I/O cost of SBFS-ordered tree is within a small factor of the cost of an
optimal quadratic time layout algorithm.

The basic idea behind the SBFS packing strategy is to recursively perform many local
breadth-first traversals, beginning from the root of the tree, packing nodes in the order
of visiting them into disk pages. Once enough nodes have been visited to fill a page, or
there are no more nodes to be visited, the nodes visited so far are assigned to a page.
Each of the remaining nodes in the BFS queue then becomes the root of a separate SBFS

traversal. The recursion terminates when all nodes have been visited.

6.2.1 Issues in Persistent Suffix-Tree Layout

The storage layout of persistent suffix-tree introduces novel issues due to the inherent
structural complexity of suffix-trees and also the non-traditional search traversals over
the resulting structure. Note that the general problem of persistent graph layout is shown

to be NP-complete [48].

Structural Complexity: In addition to the issue of complex search traversal pat-
terns, suffix-trees exhibit higher inherent structural complexity than typical tree
index structures due to the presence of cyclic substructures. As pointed out in Sec-
tion 4.2.1, the collection of tree-edges as well as the collection of suffix-links in a
suffix-tree form two separate rooted tree structures. Also note that in the tree struc-
ture induced by the collection of suffix-links, the links between nodes are reversed
from the natural “parent-to-leaf” direction. That is, there exists a directed path
starting at any internal node to the root of the suffix-tree (also the root of the tree

induced by suffix-link collection), via a chain of suffix-links. And, from the root



CHAPTER 6. SEARCH OPTIMIZED SUFFIX-TREE STORAGE 106

node, any of the internal nodes are reachable through a chain of tree-edges, thus

completing a cyclic path.

Complex Traversal Patterns: The search algorithms over suffix-trees exhibit com-
plex traversal patterns, significantly different from those commonly found in tra-
ditional indexing structures. In typical index structures the queries are mostly
lookup queries involving root-to-leaf traversals. On the other hand, searching over
suffix-trees involves simultaneous use of tree-edges and suffix-links. Thus, the lay-
out strategy should take into account the two “orthogonal” traversal paths during

suffix-tree based search.

Due to these complexities, none of the previously proposed layout strategies that are
designed to work with either tree structures or DAG (directed acyclic graph) structures are
directly applicable in the context of suffix-trees. Nevertheless, to serve as a comparative
yardstick, we investigate the efficacy of SBFS strategy outlined above for laying out a

persistent suffix-tree on disk, by ignoring the suffix-links during the layout process.

6.2.2 Search Utilization of Links and Edges

We now quantify the relative utilization of suffix-links and tree-edges during searches, in
order to evaluate whether the search tasks indeed require combined locality of both forms
of inter-node connectivities in the suffix-tree.

Figure 6.1/ shows, for different query collections (described in Section 6.4)), relative
utilization of tree-edges over that of suffix-links during maximal substring search as A,
the minimum match-length threshold, is varied in the biologically significant operational
region. Note that we also include the match-location reporting phase, which uses only
tree-edges to traverse the subtree under the match.

These graphs demonstrate that although searches involve more traversals of tree-edges
than suffix-links for lower values of minimum match length, the differential is within a
small constant factor. Further, as the A\ value increases, the utilization of tree-edges

converges to within a factor of 2 of the suffix-links used, i.e., for every 2 edges, 1 suffix-



CHAPTER 6. SEARCH OPTIMIZED SUFFIX-TREE STORAGE 107

20 ! ! ! ! ! ! ! '
hEST50 ——=—

18 - ﬁ R ‘ T hEsT100 K- ]
‘ | hEST200 - O |

14 o

10

Relative Tree Edge Utilization

Figure 6.1: Relative Edge Utilization

link is traversed by the algorithm. Therefore, the number of suffix-links traversed is
comparable to the number of tree-edges used during searches — suggesting that the search
algorithms can significantly benefit by simultaneously improving the number of intra-page

suffix-links as well as tree-edges.

6.2.3 Comparing the Quality of Layouts

Before we can evaluate different layout strategies, it is required to develop a metric that
can effectively capture the structural variations between suffix-trees laid out with alter-
nate layouts. One straightforward way to evaluate the quality of layouts obtained using
different storage strategies is to execute a number of queries over the suffix-trees laid out
using these strategies and measure the disk I/O cost. However, this evaluation depends
heavily on the characteristics of the query workload. It does not immediately reveal to
us the structural properties of the layout that could affect general search workloads.
The overall efficiency of a disk layout depends on the amount of inter-connectivity

of nodes within a disk page. The nodes in the suffix-tree are interconnected through



CHAPTER 6. SEARCH OPTIMIZED SUFFIX-TREE STORAGE 108

either tree-edges or suffix-links (or both). Hence, it is possible to capture the structural
effectiveness of a layout strategy through the numbers of suffix-tree edges and suffix-links
that are entirely within a page, i.e., the source-target pairs are placed in the same diskpage.

Using this metric, we first evaluated the layout obtained at the end of suffix-tree
construction using OnlineSuffixTree algorithm, by ordering the nodes as they are created
during the construction. We call this layout as CO (Creation Order) layout. We found
that CO-layout provides practically no tree-edge locality — 0.2-0.5% of tree-edges were
intra-page, while suffix-link locality was reasonably high — 39-42%.

Next, we used the SBFS strategy to layout the persistent suffix-tree — ignoring the
suffix-links during the layout process. This resulted in the other extreme in locality
characteristic, with 75-80% of tree-edges being intra-page, but virtually no suffiz-link
locality — less than 0.1% of suffix-links were local!

Table 6.1 summarizes the results of this evaluation, providing, in percent, the
amount of intra-page tree-edges and suffix-links when the index is laid out using each
strategy. These values were obtained with suffix-trees built on a 25 million base-
pair (Mbp) length DNA sequence drawn from Human Chromosome 2, 15 Mbp length
of C. elegans Chromosome 2, 25Mbp part of Drosophila Melanogaster genome, and, a
25Mbp symmetric Bernoulli sequence, with disk pagesize set to 4 KB. As these results
indicate, CO and SBFS layouts represent (negative) extremes in persistent suffix-tree
layout.

As a contrast, results for the suffix-trees ordered through our Stellar layout, described
in detail in next section, are also presented in Table 6.1. The suffix-link locality of Stellar
(40.0%) is close to that of CO, and tree-edge locality (62.6%) is comparable to that of
SBFS — clearly optimizing both forms of connections simultaneously.

Before we move on to the description of Stellar, we explore the reasons for this extreme

behavior of CO and SBFS layouts:



CHAPTER 6. SEARCH OPTIMIZED SUFFIX-TREE STORAGE 109

’ Dataset ‘ Storage ‘ Suffix-Links ‘ Tree-Edges ‘
CO 41.8% 0.2%
Human Chromosome 2 SBFS 0.1% 77.5%
Stellar | 40.0% 62.6%
CO 39.7% 0.3%
C. elegans Chromosome 2 | SBFS 0.01% 76.4%
Stellar | 39.6% 61.6%
. CO 33.1% 0.006%
Drosopila Melanogaster SBES 0.0% 6857
genote Stellar | 38.8% 59.2%
CO 27.6% 0.0%
Symmetric Bernoulli SBFS 0.0% 69.8%
Stellar | 38.8% 57.7%

Table 6.1: Static Edge and Link Localities

CO Layout

During the suffix-tree construction, two successive internal nodes v; and vy are created

typically as follows:
1. Traverse the suffix-link of the parent(v;) to reach ancestor(vy), and

2. Walk down the tree from ancestor(vy) using tree-edges, until a mismatch in the

tree-edge results in the creation of wv,.

And, most importantly, the nodes v; and v, are related to each other through a suffix-
link, since they correspond to consecutive suffixes of the sequence processed so far by
the online construction. Due to this sequencing of tree node creation, a large fraction of
suffix-links in the tree tend to be contained within a page.

We performed similar experiments with McCreight’s construction algorithm [80], and

found that the results are exactly identical.

SBF'S Layout

The SBFS ordering, in contrast, is designed to cluster the tree nodes related through

tree-edges into a diskpage. In a suffix-tree, the nodes related through a tree-edge share a



CHAPTER 6. SEARCH OPTIMIZED SUFFIX-TREE STORAGE 110

common prefix — for e.g., in Figure 4.2, the leaf-node labeled 2 and its parent node share
the common prefix TA (also shared by leaf-node 6). Thus, SBFS layout translates into
a preferential clustering of suffix-tree nodes that correspond to substrings with common
prefixes. However, the nodes with a common prefix have very low probability of also being
related through a suffix-link — a situation that could occur only due to consecutive run of
a symbol in the sequence. Even though the alphabet-size of DNA sequences is small, due
to the pseudo-random distribution of symbols, long runs of a symbol are rare. Thus, the

suffix-link locality of SBFS is extremely poor.

6.3 Design of Stellar

The design of Stellar is based upon the relationship between nodes connected through a

suffix-link and the tree-edges under them, as shown through the following theorem:

Theorem 1 If vy = sl(vy), then all the suffiz-links originating from the nodes under vy

point only to nodes under vs.

Proof: Let the path label of v; be defined as o(v;) = xa, where x is a symbol from the
given alphabet ¥, and « is a non-empty substring of the string being indexed. Then,
o(vg) = a, since vy = sl(vy).
Now, consider the subtree under node wv;, and note that the path labels of all
nodes under v; have a common prefix defined by o(vy). Therefore, we have,
Vu € descendent(vy),0(u) = xaf3, where [ is a non-empty substring of the indexed
string. Similarly, Vu' € descendent(vy),o(u') = af. Further, if u € descendent(vy) then,
o(sl(u)) = af. By definition of a suffix tree, there is only one path outgoing from root
whose label is «, and that terminates at v,. Hence the sl(u) has to be under the subtree
rooted at vy. This completes the proof. O
In other words, if two nodes are related through a suffix-link, then all the nodes under
the source of this suffix-link have their suffix-link targets only in the subtree of the target.
This property gives us a way to reconcile between the edge and suffix-link locality in the

suffix-tree.



CHAPTER 6. SEARCH OPTIMIZED SUFFIX-TREE STORAGE 111

6.3.1 Stellar Algorithm

A pseudocode of Stellar algorithm, that utilizes the structural relationship in suffix-tree
described above, is presented in Algorithm 3. The algorithm starts the suffix-tree traversal
at the root of the suffix-tree, and recursively traverses the subtree below. When a node
is visited, the suffix-link target of the node is visited next, if not already visited through
the tree-edges. Thus an internal node and its suffix-link target are treated as a “buddy”
pair, and are scheduled for recursive traversal in sequence. This results in subtree under
a node and the subtree under corresponding suffix-link target to be recursively processed
in succession — resulting in a large fraction of suffix-links that span these two subtrees to
be intra-page, in addition to the tree-edges of each subtree. When enough nodes have
been visited to fill a page, each node in the queue is scheduled for a separate recursive
Stellar traversal, until all the nodes have been processed.

It is easy to observe that Stellar’s complexity is linear in the size of the suffix-tree
being processed — a node is visited only once during the top-down traversal of the tree.
Additionally, it does not impose inordinate space overheads, as the only transient data
structures required during the layout process are a queue of node ids, and a bit flag for
each node of the tree indicating whether it has been visited or not. In our experiments
we found that the queue never needs to hold ids of more than 100 nodes, even over DNA
sequences exceeding 25Mbp.

In order to visually contrast the node clusterings produced by Stellar, SBF'S and CO,
consider the intra-page connectivity diagram of a suffix-tree laid out using each of these
algorithms, presented in Figures 6.2, 6.3 and 6.4. These diagrams map the intra-page
tree-edges as dark solid lines and ntra-page suffiz-links using dark dashed lines. The
inter-page tree-edges and suffix-links are mapped in gray. The nodes of the suffix-tree are
presented in their order of distance from the root. The suffix-tree presented here is built
over a toy 100 basepair DNA sequence, with disk pagesize set to hold 5 nodes.

A visual inspection of these diagrams reveals that Stellar with 14 intra-page tree-edges

and 22 intra-page suffix-links, generates tree layouts that exhibit better overall locality.



CHAPTER 6. SEARCH OPTIMIZED SUFFIX-TREE STORAGE

112

Stellar (r, B)

Input

r : Root of the subtree to be traversed
B : Capacity of the disk-page in terms of no. of nodes

Output

An ordering of the subtree under r

1. queue < r; {push root into the BFS queue}
2: nodecount < 0; {initialize the counter}
3: while queue not () do

4.

10:
11:
12:
13:
14.
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:

© o N9

r’ «— queue; {remove head of the queue}
if ' not visited then
mark r’ as visited and increment nodecount;
end if
for all ¢ such that ¢ is a child of ' do
s «— sl(c);{s is the suffix-link of ¢}
if ¢ not visited AND nodecount < B then
mark ¢ as visited and increment nodecount;
queue «— ¢;
end if
if s not visited AND nodecount < B then
mark s as visited and increment nodecount;
queue <« S;
end if
end for
if nodecount > B then
while queue not () do
m <« queue,
Stellar(m,B);
end while
end if

25: end while

Algorithm 3: Stellar Algorithm




113

CHAPTER 6. SEARCH OPTIMIZED SUFFIX-TREE STORAGE

abpa-aal) abed-la|
Nui-xiyns abed-Jau|
abpa-aa1) abed-enu|

Sul-xiyns abed-enu)

apon O
D hu

9606@@@@!@@0@@@@&@

IO OOOOCIOEDOC

OQ&?Q@@@

Oae=c R

ty under Stellar

ivi

Figure 6.2: Intra-page Connect



CHAPTER 6. SEARCH OPTIMIZED SUFFIX-TREE STORAGE 114

(ot o) o (o) o )

m@mb@@ma@@g@@@aaa@@

—

G () () () (=0 o €D
(s2)
(s2)

Figure 6.3: Intra-page Connectivity under SBFS



115

CHAPTER 6. SEARCH OPTIMIZED SUFFIX-TREE STORAGE

(=

OENG
QO ()
() Gy, @@@@0@

O@QQQO@Q@@@O@@@!&@‘O@@@@O

@0@&@0\@\6@\@9 ©

\v.m

Figure 6.4: Intra-page Connectivity under CO



CHAPTER 6. SEARCH OPTIMIZED SUFFIX-TREE STORAGE 116

6.3.2 Level-wise Locality Variation

In addition to the overall locality of tree-edges and suffix-links obtained by the layout
schemes, it is also critical to consider the distribution of such locality improvements in
the suffix-tree. If most of the locality gains are restricted only to a small portion of the
tree that may not be accessed frequently by the search process then the effectiveness of
locality improvements is significantly reduced.

Figure 6.5 illustrates the distribution of locality of tree-edges and suffix-links for the
suffix-tree over Human Chromosome 2 dataset (25 Million base-pair) under different layout
schemes, including Stellar. These values represent the number of local tree-edges (suffix-
links) at every level in the suffix-tree as a fraction of all the tree-edges (suffix-links)
outgoing from that level. For example, there are a total of 2,417,879 outgoing edges from
level 10, of which approximately 40% are intra-page due to the Stellar layout strategy.

As these graphs indicate, the tree-edge and suffix-link locality of all the three layouts
are comparable at the top portion of the suffix tree. However, as the depth of the suffix-
tree increases, the suffix-link locality of CO layout outperforms SBFS significantly, while
at the same time SBF'S shows significantly better tree-edge locality over CO. On the other
hand, the locality due to Stellar algorithm is comparable to the best in both tree-edge
and suffix-link locality metrics. In the middle portion of the suffix-tree, due to the large
number of tree nodes, the locality fraction (of both suffix-links as well as tree-edge) is

lower than in the top and bottom parts of the tree under all the layout strategies.

6.3.3 Impact of Pagesize Variation

It could be thought, at first glance, that increasing the page-size could significantly impact
the locality property of layout algorithms. With increasing pagesize one can hold more
number of tree nodes within a page, which in turn could potentially result in more number
of tree-edges and suffix-links local to the page.

Therefore, we evaluated the tree-edge and suffix-link localities of all the three layouts,
with varying size of diskpage. The results are shown in Figure 6.6. As these graphs

show, the relative locality characteristic of all the three layout strategies does not vary



CHAPTER 6. SEARCH OPTIMIZED SUFFIX-TREE STORAGE

117

Fraction of Local Edges

Fraction of Local Links

Depth-wise Edge Locality

08 5 -

| X=X

’ ! y Xeu X

*\ / | [ ; /
06 e
0.4 \ ! Vot N /

T UM
NV -

N . ox-SBFS o
0 * ‘;CO* ¥

Depth

(a) Edge Locality

Depth-wise Link Locality

1 -
o
0.8

P A ,
STELLAR —+—

0.2 X
SBFS -~

0 TCO s

0 5 10 15 20
Depth

(b) Link Locality

Figure 6.5: Locality with varying Depth



CHAPTER 6. SEARCH OPTIMIZED SUFFIX-TREE STORAGE

118

% of Intra-page Edges

% of Intra-page Suffix-links

Tree Edge Locality

100

B STELLAR
[l SBFS
[]co
4KB 8KB 16KB
Pagesize
Suffix Link Locality
100

90

80

70

60

3 [l STELLAR

41.8 41.9 42

40120 40.4 40.7 B SEFS
[]co

30

20

10

0! 0.1 0.1 0.1
4KB 8KB 16KB
Pagesize

Figure 6.6:

Locality with varying Pagesize



CHAPTER 6. SEARCH OPTIMIZED SUFFIX-TREE STORAGE 119

significantly, and Stellar continues to be close to the best for suffix-link or tree-edge locality

metric.

6.4 Evaluation Framework

In this section, we present the experimental setup used for evaluation of different suffix-
tree layouts during maximal substring searches between genomic sequences.

In our evaluation, we used a variety of real-world DNA sequences available from Gen-
Bank [9] repository as the datasets to build persistent suffix-trees. We present results for
suffix-trees built over a 25Mbp sequence drawn from Human Chromosome II. The results
over datasets show similar behavior, and have been omitted for purposes of clarity.

The suffix-tree implementation used in our experiments is based on the efficient array-
based tree node representation, which as shown in Chapter 5, has significantly improved
I/O characteristics than the alternative approaches. The indexing overhead in our imple-
mentation is about 22.5 bytes per symbol.

Suffix-tree nodes are densely packed into fixed size pages before they are committed to
the disk. The pages on disk are either internal pages or leaf pages, depending on whether
they store internal nodes or leaf nodes of the tree. During construction, the storage of
both internal nodes and leaf nodes is in their order of creation. Each page is committed
immediately to the disk, as soon as all the space in the page is utilized. Once the suffix-
tree is completely constructed, the resulting suffix-tree is traversed in the required storage
order and the reordered suffix-tree is built during this post-construction process. Unless
mentioned otherwise, all experiments were conducted with disk pagesize set to 4K bytes,

a typical pagesize in today’s systems.

6.4.1 Query Collections

In order to evaluate the performance of the search algorithms and the tree layout strategies
presented so far, we need to pay attention to the following characteristics of the query

sequences that have considerable impact on the search process.



CHAPTER 6. SEARCH OPTIMIZED SUFFIX-TREE STORAGE 120

Query length: The length of the query impacts the overall time for locating all the
matching subsequences, as it directly determines the total number of iterations
(number of suffix-link traversals) during maximal substring location. In addition,
increasing length of the query could also result in larger number of matches, increas-

ing the overhead due to reporting of results.

Value of \: As mentioned earlier, the maximal substring search algorithm takes as input
a user-specified threshold A, that serves as the lower-bound on the length of a match
before all instances of the match are reported. If this value is too small, then
there could be a large number of “noisy” matches that get reported throughout the
database and if the value is too large then it will filter out potentially interesting
similarities. Hence, this value is subject to variations in the domain as well as the
task for which the suffix-tree indices are being utilized. The typical operational
region of this parameter in genomic DNA sequence retrieval software is between 9
(for distantly related genomes) and 50 (in case of whole-genome alignments), which
is used in our experiments to demonstrate the utility of the Stellar algorithm. A
popular genome alignment software, BLAST, uses a default value of 11 to trade

computational ease for some precision.

For DNA sequence searches, we used a collection of sequences from Expressed Se-
quence Tag (EST) database available from GenBank, as the base query collection. The
Human-EST collection consists of 856,008 sequences with average length of each sequence
being about 357.6 basepairs. The ESTs have been found to be extremely useful in high-
throughput location of genes, genome mapping, etc., and form a key data collection in ge-
nomics research. Using this Human-EST collection, we generated length-restricted query
collections of lengths 50, 100, and 200, by randomly sampling fixed-length sequences from
each of these sequences. In order to remove any further bias in ordering of EST fragments

generated, we randomly sampled 10,000 queries in each set to form three query collections,

hEST50, hEST100 and hEST200.



CHAPTER 6. SEARCH OPTIMIZED SUFFIX-TREE STORAGE 121

1.0
0.8
()]
=
= i (
v 04 - [ hEST50
n d B hEST100
[ 1 hEST200
0.2 -
0.0- -

9 11 12 13 14 16 18 20 30 40 50
A

Figure 6.7: Stellar Vs. CO
6.5 Experimental Results

In this section, we present results of our empirical evaluation of various disk layout strate-
gies for persistent suffix-trees during maximal substring search task. A buffer pool of SMB,
which forms approximately 1.5% of the total size of the suffix-tree, was used and managed

using TOP-Q [8], a buffering policy specifically designed for use with suffix-trees.

6.5.1 Utility of Disk Layout

The relative performance of maximal substring search over persistent suffix-tree laid out
using Stellar against the CO layout is shown in Figure 6.7.

As these results indicate, Stellar layout results in a small fraction of the disk I/O
performed during search, when compared to the I/O incurred over suffix-tree in CO

layout. For e.g., at A set to 11, Stellar results in only 30-45% of the disk I/Os incurred



CHAPTER 6. SEARCH OPTIMIZED SUFFIX-TREE STORAGE 122

by the CO layout. Although, with increasing value of A, this performance differential
reduces, Stellar never incurs more than 75% of disk I/O than CO layout.

When X values are in the lower end of operational spectrum, e.g. set to 9, the overall
I/O cost of search is dominated by the overhead due to reporting of all results. As a result
of this, Stellar layout with larger fraction of local tree-edges clearly outperforms the CO

layout which practically provides no tree-edge locality.

6.5.2 Performance of Stellar over SBFS

We now turn our attention towards comparison of disk I/O performance of suffix-tree
layout schemes of Stellar and SBFS. In order to provide a normalized measure of per-
formance for both the disk layout strategies, we measure their relative performance gains
over the base disk I/O cost of searching over the suffix-tree in CO layout.

The relative performance of Stellar and SBFS with increasing values of A is shown in
Figure 6.8. As these graphs demonstrate, Stellar layout provides steadily increasing 1/0
gains with increasing values of \. For example, at A = 11, performance gain of Stellar

over SBFS is close to 20%, which increases to more than 50% at A = 16.

6.5.3 Cardinality Evaluations

In many uses of suffix-trees, it is enough to know the cardinality of matches rather than
the identities of all the matches. For such uses of suffix-trees, it is interesting to see the
behavior of disk-layout strategies when the I/O cost associated with the result reporting
phase is neglected. The important point here is that the performance of maximal substring
search algorithm without the result reporting phase is independent of the value of A — this
lower bound is used only to decide if the subtree below has to be traversed to report all
the matches.

Figure 6.9/ shows the « values for the three EST query collections we have considered.
These results demonstrate that the performance of Stellar is significantly better than
SBFS — with more than 2-folds improvement in I/O gains, when subtree traversals are

not needed to report all the result identities.



CHAPTER 6. SEARCH OPTIMIZED SUFFIX-TREE STORAGE 123

2.6

2.2 T

c

('?S 2 | L

@)

.GEJ 1.8 m Em

s i

o 16 B m B Em

o’ [ hESTS0
1.4 m ( = - - ] B hEST100

[ ThEST200

1.2 | s B B B

0.g MW | N | NN | G | E. ...
9 11 12 13 14 16 18 20 30 40 50
A

Figure 6.8: Stellar Vs. SBFS

2.5

15

Relative Gain

0.5

hEST50 hEST100 hEST200
Query collections

Figure 6.9: Stellar Cardinality Evaluation Performance



CHAPTER 6. SEARCH OPTIMIZED SUFFIX-TREE STORAGE 124

6.5.4 On-disk Search Performance

We now turn our attention to the impact of the suffix-tree layout on the time to execute
a batch of queries on the persistent suffix-tree. Figure 6.10 plots the time taken, in
minutes, for running a batch of 1000 maximal substring queries over a suffix-tree built
on Human Chromosome 2 dataset. Note that the y-axis is plotted in logarithmic scale.
These experiments were run on a HP-Compaq ES45 server running Tru64 Unix 5.1 with
6x72GB storage in RAID-0 configuration. We obtained the runtime profile, with 8MB
buffer managed using the TOP-Q policy, after turning off the buffering induced by the
operating system.

As these results indicate, persistent suffix-tree laid out through our Stellar organization
can perform searches significantly faster than the other strategies.

However, achieving this superior organization of LSTs comes with an associated, al-
though necessary, computational work. We built an persistent LST using techniques
presented in Chapter |5 over a 25Mbp fragment of Human Chromosome II with 32 MB
of buffer. And this LST was reorganized into an Stellar ordered LST, with the same
buffer size. Additionally, we utilized a transient translation table to map addresses of
internal nodes in the original LST into corresponding nodes in the reorganized LST. This
accounted for an additional additional 4 x I bytes, where I is the number of internal nodes
in the tree. In this experiment, the LST construction was completed in a little more than
4.5 hours, while Stellar reorganization needed additional 20 hours. Therefore, based on

the characteristics of the application at hand, one should consider the layout strategies.

6.6 Search Performance over USTs

So far, we have studied the performance of maximal substring search over a persistent
suffix-tree that provides suffix-links to traverse across the tree efficiently. However, it
has been previously suggested that presence of the suffix-links in the tree results in poor
performance of suffix-tree construction, and techniques for persistent UST (un-linked

suffix-tree) construction have been proposed [61), 110, 123].



CHAPTER 6. SEARCH OPTIMIZED SUFFIX-TREE STORAGE 125

‘ ‘
100 Stellar —+—
—~ SBFS -
c
= %
e B CO
=~ |
g x
= %
c 10 %
S E
= &
1
5 10 15 20 25 30 35 40 45 50
A
(a) hEST-50
100 Stellar —+— |
*
—~ SBFS -
£ *
g % CO -
o *
c 10 —t
h=
=]
g
1
5 10 15 20 25 30 35 40 45 50
A
(b) hEST-100
100 * Stellar —+—
—~ xx SBFS -
= X
£ X K- .- L0 X
g \@é(\'; >;< i S S
=
c 10
=l
=]
g
1

5 10 15 20 25 30 35 40 45 50

A
(¢) hEST-200

Figure 6.10: Search Time Profile



CHAPTER 6. SEARCH OPTIMIZED SUFFIX-TREE STORAGE 126

0.45

0.4

© %

6 ¥
0.35 :%z
03 5[

0.25

Relative |/O

0.15 ]

0.1 !
5 10 15 20 25 30 35 40 45 50

A

Figure 6.11: Gains due to SBFS Layout over UST

In this section, we first study the impact of disk layout on the search performance
over USTs, and then compare their performance against persistent suffix-trees that have
suffix-links, stored using Stellar disk layout. These experiments were conducted after in-
corporating additional index space optimization by removing the 4-byte suffix-link field
in each internal node (bringing the indexing overhead to about 20.0 bytes per symbol).
We used the persistent suffix-tree construction technique presented in [61], and the cre-
ation ordering of nodes generated during this construction comprises the baseline layout

— similar to the CO-layout presented earlier.

6.6.1 Impact of Layout on UST Search Performance

In the absence of suffix links, we applied SBFS layout strategy, as it provides the highest
tree-edge locality, and compared the performance gains obtained for MSSyst runs. Fig-
ure 6.11/ plots the impact of disk layout, with increasing values of A\, over UST built over
Human Chromosome II dataset.

These results show that a careful layout of persistent USTs saves more than 50% of
disk accesses, and in the commonly used values of A — ranging from 9 to 15, the I/O

savings are in the range of 60-70%.



CHAPTER 6. SEARCH OPTIMIZED SUFFIX-TREE STORAGE 127

22 ‘
21 %ﬁ;@@f 5 & ¥

2

19

18
17

16

T B,

15 * hEST50 —5—
14

13 /
!

12 :
5 10 15 20 25 30 35 40 45 50

A

Figure 6.12: UST Vs. LST

6.6.2 Search Utility of Suffix-Links

We now turn our attention to relative I/O performance of search tasks over persistent
UST and persistent suffix-trees with suffix-links (i.e., LSTs — linked suffix-trees), thereby
quantifying the search utility of suffix-links. We compare the performance of UST laid
out using SBFS strategy against the performance of LST laid out using Stellar layout
strategy. Note that these layout strategies are optimized for the respective structural
variants of suffix-trees.

Figure 6.12 presents the relative I/O incurred due to MSSyst as opposed to searching
with LST, with increasing values of A\. As these graphs illustrate, searching over LST
clearly provides distinct advantages over performing the same task with UST. Despite the
superior space economy of USTSs, it incurs more than 70% extra disk reads compared to
LSTs. As the value of A increases, the performance gap widens — at A set to 20, UST
incurs more than 2 times the disk I/O than LST.

In order to confirm the wider applicability of these results, we performed similar ex-
periments over UST and LST using the following two data-sequence and query-collection

pairs:

Drosophila EST over Drosophila Genome fragment. In these experiments, the

suffix-trees are built over a 25Mbp fragment of Drosophila genome (dataset D



CHAPTER 6. SEARCH OPTIMIZED SUFFIX-TREE STORAGE 128

2.2

21

3

o) e
H
10

iz

19

18

17

16

15

O— %
=%
m
9
=
8

14 |
5 10 15 20 25 30 35 40 45 50

A

Figure 6.13: UST Vs. LST - Drosophila Melanogaster Genome

used in Chapter 5, and query collection was generated using the EST collection
of Drosophila using the same method we used for generating hEST query collection.
We distinguish this query collection as dEST. The results of the experiments are
summarized in Figure 6.13. These graphs confirm our earlier finding that LSTs
indeed provide significant I/O benefits over USTs which incur more than 2-times

additional disk accesses during searching for practical values of .

Human EST over C. elegans Chromosome II. Both the previous experiments were
conducted with both the query collection and the data-sequence drawn from the
genome of the same organism. Now, we present the results of experiments when
the query-set is drawn from an organism that is phylogenetically very distant from
the organism whose genome fragment is indexed. We built suffix-trees over the
Chromosome II genome fragment of C. elegans (dataset C of Chapter [5) and used
hEST query collection over them. Figure6.14 summarizes the results. These graphs
show that even in this setting, /O incurred by USTs is twice that of LSTs with

Stellar layout for all practical values of .

These results show the need to retain suffix-links in the persistent suffix-trees, contrary
to the persistent suffix-tree construction and maintenance recommended in [60, 61}, 110,

123].



CHAPTER 6. SEARCH OPTIMIZED SUFFIX-TREE STORAGE 129

2 : = & 1
—
Q
5— 19
J %
~
O 18 %
D sy
o
~ /:
= 16y
g [ hEST50 —5—
® 1s hEST100 —%—
g | 4
o hEST200 O~
14

5 10 15 20 25 30 35 40 45 50

A

Figure 6.14: UST Vs. LST - over C.elegans Chromosome II
6.7 Conclusions

Developing suffix-trees as a persistent sequence index structure has been an active area
in recent times, and many techniques have been proposed to significantly improve the
construction time. However, there has been virtually no research on evaluating and opti-
mizing the search performance of these persistent suffix-trees, the topic we have addressed
here in detail.

Specifically, we have evaluated the impact of suffix-tree layout on disk on the 1/O
performance of common genomic search tasks, and shown through detailed empirical
evidence that existing index layout algorithms are not effective for storing suffix-trees on
disk. The layouts produced through these algorithms provide locality for only one of the
two traversal paths used during suffix-tree searches, and practically zero locality for the
other path.

Addressing this unsatisfactory state of affairs in persistent suffix tree layouts, we pre-
sented a layout strategy called Stellar, that optimizes the locality feature of both tree-
edges and suffix-links in the suffix-tree. The layouts produced by Stellar show close to
40% suffix-link locality, and 60% tree-edge locality, thus combining the strengths of the
two extreme layout schemes considered before.

Using real genomic DNA sequences drawn from GenBank repository, and querysets



CHAPTER 6. SEARCH OPTIMIZED SUFFIX-TREE STORAGE 130

from Human-EST collection, we showed that Stellar incurs only about 30-40% of the disk
I/O incurred by a suffix-tree stored in its creation order. Even in extreme cases, more
than 25% disk costs are saved by laying out the persistent suffix-tree through Stellar.
Furthermore, Stellar shows almost 2-fold improvement over SBFS index layout strategy
in terms of disk I/O saved. The relative performance of Stellar significantly improves with
increasing values of A (the minimum match length), thus highlighting the applicability
of Stellar in full-genome alignment software such as MUMmer, where values of \ are
typically in the range 20-50.

Finally, we presented results to show the utility of suffix-links in search tasks over
persistent suffix-trees. Our experiments indicated that suffix-link based searching requires
less than 50% of the disk 1/O required for searching without suffix-links, despite space
overheads due to the presence of suffiz-links in every internal node. Contrary to the recent
research in persistent suffix-tree construction where suffix-links have been abandoned to
result in faster construction techniques, these results highlight that suffix-links be retained

in the persistent suffix-trees in order to enable faster searches.



Chapter 7

Persistent Suflix-Trees for Proteins

7.1 Introduction

Previous chapters focused on the construction and storage organization of persistent suffix-
trees over DNA sequence collections. Although it is one of the most important application
domains for suffix-trees, there are many other areas where suffix-trees can be gainfully
employed. There are proposals to use them to index a variety of sequence collections, such
as protein sequences, textual data, time-series data [70] etc., as well as for 2-dimensional
raster images [44]. In these applications, unlike DNA data, the underlying alphabet size
could be rather large. For example, protein data comprises of an alphabet made of 20
amino-acid symbols.

In most of these applications, suffix-trees are used to accelerate similarity search algo-
rithms similar to those used in DNA sequence processing. Therefore, the suffix-link based
algorithms we considered in previous chapters are equally applicable in these domains as
well. With steady growth of the underlying data collections in each of these domains, there
is a clear motivation to study the persistent versions of suffix-trees in these applications.

Even though the algorithms for suffix-tree construction and searching continue to have
linear time and space complexities for sequences with larger alphabet-size, their absolute

performance is considerably affected due to the alphabet-size due to the following reasons:

1. In the case of array based implementations, effect of increased alphabet size appears

131



CHAPTER 7. PERSISTENT SUFFIX-TREES FOR PROTEINS 132

in the space utilization of the suffix-tree. Each internal node of the suffix-tree will
now have a |X|-size array for outgoing child pointers. As the disk pagesize is fixed,
this increase in the node size adversely affects the packing density. Furthermore,
for a fixed length of the indexed sequence, the fraction of null pointers in this array

increases as the size of the underlying alphabet is increased.

(An approach that suggests itself for reducing the fraction of null pointers due to
large alphabets is to reduce the effective alphabet-size by splitting up the bits of the
symbols in the original alphabet and then build the suffix-tree over the equivalent
(but longer) sequence on the smaller alphabet. However, it is important to note that
this approach will not yield an equivalent suffix-tree directly — a substring match
in the lower alphabet space is not equivalent to a substring match in the original
alphabet space due to missing information on the symbol boundaries. Additional
steps are needed to ensure that the resulting substring match is indeed a true match
in the original alphabet-space as well. There are atleast two alternative solutions
based on this technique — Sparse Suffiz-trees [68], and Word Suffiz-trees [2]. Both
these proposals result in a significantly complex construction algorithm, and addi-
tional steps in the substring searching. Hence, in this thesis we do not compare with

these techniques.)

2. On the other hand, with linked-list representation, the || factor shows up in the
time complexity of the suffix-tree construction and search algorithms. Increasing
the alphabet size results in increased length of the sibling linked-list that needs to
be traversed for locating appropriate child node. This adversely affects the overall

/0 efficiency of suffix-tree algorithms.

Further, the distribution of symbols in strings of larger alphabet could be very different
from that of DNA, severely affecting the behavior of suffix-tree indexes. In addition,
increase in the alphabet size typically alters the profile of access patterns observed during
searching over the suffix-tree. The minimum match-length threshold, A, is reduced as the
alphabet size increases to account for the increased domain of matching substrings. As a

result, TraverseSubtree needs to be performed much higher in the suffix-tree.



CHAPTER 7. PERSISTENT SUFFIX-TREES FOR PROTEINS 133

SPROT - Symbol Distribution

0.10

0.08

Frequency
o
o
(<)}

0.04

0.02

0.00

Trp Cys His Met Tyr GIn Phe Asn Pro Arg Asp Thr lle Lys Glu Val Gly Ser Ala Leu
W) © H M Y @ ® (N P R O M O K E VMG S A L

Amino Acids

Figure 7.1: SPROT: Distribution of Symbols

In the context of BODHI, protein sequences are an important large alphabet sequence
data that needs to be indexed for similarity searching. In this chapter, we present results
of the performance study of the techniques presented in Chapter 5/ and Chapter 6, for
construction and searching over suffix-trees built over protein sequences. Specifically, we
make the following contributions:

Firstly, we show that the TOP-Q buffering strategy outperforms the LRU and 2Q
strategies, for suffix-tree building over protein sequences. These results demonstrate that
TOP-Q is an effective strategy for suffix-trees independent of alphabet size, over a variety
of datasets.

Next, we present performance numbers to further highlight the superiority of array
representation of suffix-tree nodes over linked-list representation, even in the presence
of large alphabets. Again, these results clearly show that, despite their reduced space-
economy, array representation is the implementation choice for persistent suffix-trees.

Finally, moving on to the search aspect, we show that storage organization has con-
siderable impact on the search performance of persistent suffix-trees on large alphabets.

In our experiments, we used a 25 million length amino-acid sequence dataset, SPROT,
derived from SwissPROT collection of protein sequences [120]. Although the individual

protein sequences are short, it is possible to build and use a single suffix-tree index for



CHAPTER 7. PERSISTENT SUFFIX-TREES FOR PROTEINS 134

the complete database by concatenating the individual sequences together. Such a suffix-
tree is called a Generalized Suffix Tree, and commonly used for indexing a collection of
short sequences [53]. Accordingly, we generated the SPROT dataset by concatenating the
protein sequences. The distribution of symbols in the resulting data sequence is plotted
in Figure [7.1. As these values show, the symbol-wise distribution in the SPROT dataset
is highly skewed, in marked contrast to the pseudo-random nature of symbols in DNA

sequences.

7.1.1 Organization

The remainder of the chapter is organized as follows: In Section 7.2, we present results
for constructing persistent suffix-trees over protein sequences. Next, in Section 7.3, we
evaluate the performance of various storage organization strategies and their impact on

the search performance. Finally, we conclude in Section [7.4.

7.2 Suffix-Tree Construction over Protein Data

The results of our experiments with the SPROT dataset are summarized in Figure [7.2.
As in Section 5.7.1, in these graphs we present results for two partitioning schemes of
the available buffer-pool, namely, Equal-Partition (4000 buffers each for internal and leaf
pages) and Skewed-Partiotioning (7950 buffers for internal pages and 50 buffers for the leaf
pages). The graph does not include hitrates for 2Q, since they were very similar to LRU.
As these graphs demonstrate, with increasing length of the indexed sequence, the hitrate
of TOP-Q continues to gain over that of LRU. Further, TOP-Q responds favourably to
the increased bias for internal nodes in the the buffer pool allocation. Thus, the benefits
of TOP-Q are applicable not only with small-alphabet sequences such as DNA, but also

with large-alphabet sequences.



CHAPTER 7. PERSISTENT SUFFIX-TREES FOR PROTEINS

135

Hit Rate

Hit Rate

0.95

0.9

0.85

0.8

0.75

0.7

0.65

0.95

0.9

0.85

0.8

0.75

0.7

0.65

Array Implementation

TOP-Q, Equal Partition
LRU, Equal Partition ---------

TOP-Q, Skewed Partition - .
LRU, Skewed Partition

0 5 10 15 20 25 30
Sequence Length (in MB)
(a) Array Implementation
Linkedlist Implementation
TbP-Q, Equ‘al Partitioh
LRU, Equal Partition --------
R TOP-Q, Skewed Partition - 1
LRU, Skewed Partition
0 5 10 15 20 25 30

Sequence Length (in MB)
(b) Linkedlist Implementation

Figure 7.2: SPROT: Hitrates during Construction



CHAPTER 7. PERSISTENT SUFFIX-TREES FOR PROTEINS 136

7.3 Storage Organizations over Protein Data

We now turn our attention towards the performance of suffix-tree searching, under dif-
ferent disk layout schemes. The locality results for the suffix tree over SPROT dataset,
under different disk layout strategies is shown in Table [7.1. As these numbers demon-
strate, Stellar shows a locality profile similar to that for DNA sequences. Similarly, the
variation of the locality with the size of the diskpage is illustrated in Figure 7.3l The
graphs in Figure [7.4/ illustrate the depth-wise distribution of the locality profile through-
out the suffix-tree. In contrast to the similar graphs for DNA sequences in Figure 6.5
earlier, the locality distribution displays a sharp variation at depths ranging from 0 (root

of the suffix-tree) to 5.

’ Dataset \ Storage \ Suffix-Links \ Tree-Edges ‘
CO 49.2% 0.2%
SPROT SBFS 0.1% 56.1%
Stellar | 31.6% 49.6%

Table 7.1: SPROT: Static Edge and Link Locality

It should be noted that due to the choice of array-based representation of the suffix-
tree, the size of the internal node is significantly larger (93 bytes as opposed to 29 bytes
for DNA), leading to much smaller packing density of nodes. As a result, the scope for
packing nodes related via either a tree-edge or a suffix-link into the same page is reduced,

thus lowering the absolute value of locality.

7.3.1 Protein Substring Searches

For the protein sequence searches, an amino-acid query set of 10,000 randomly sampled
sequences from translated Human UniGene non-redundant set of gene-oriented clusters
was chosen [128].

Although the common search task over protein sequence databases is maximal sub-

string location, the parameters used in these search tasks differ significantly from those



CHAPTER 7. PERSISTENT SUFFIX-TREES FOR PROTEINS

137

% of Intra-page Links

Tree Edge Locality - SPROT

67.1

100
90
80
70
60
50
40

301
207
101

]
-
-
-
] B STELLAR
- M SBFs
- L
-
]
-

02

4KB 8KB 16KB
Pagesize
Suffix Link Locality - SPROT
49.8 50.4 50.7
M STELLAR
[ sBFS
31.6 32.2 32.6 []co
0.1 0.1 0.1
4KB 8KB 16KB
Pagesize

Figure 7.3: SPROT: Locality with varying Pagesize



CHAPTER 7. PERSISTENT SUFFIX-TREES FOR PROTEINS

138

Depth-wise Edge Locality

1 ! ! !
,X/,/x-~»><—~»>:<~f—><—»f—><»».%,,_, VIV
0s :‘ | X/ /‘/*"*"\0—0—0—#\_,_,,/4-\_;/
%] ,’l
() i
(=]
o o6
©
(8]
o
-
©
c 0.4
o
S
o
(TR
0.2
STELLAR —+—
0 e eSS e e MmN D FS%”:*"_;
0 5 10 15 20
Depth
(a) Edge Locality
Depth-wise Link Locality
1 = T T T
O R ERRRE SR K-o- fSRRREE RREL SEEEE SELEE LSRR 31
0.8 i
[}
X
c
3 0.6
©
(8]
o
- :
5 :
——— T
s o4 | ‘
I3
o
(TR
0.2
STELLAR —+—
0 SBFS -
CO =%
0 5 10 15 20

Depth
(b) Link Locality

Figure 7.4: SPROT: Locality with varying Depth



CHAPTER 7. PERSISTENT SUFFIX-TREES FOR PROTEINS 139

400

UniGene25 —H—
350 UniGene125 —-%--
UniGene250 - O

300

250

200

150

100

Relative Tree Edge Utilization

50 (o

~ ®

Figure 7.5: SPROT: Relative Edge Utilization

used in DNA database search, to account for the larger alphabet. Specifically, the A\
values are much smaller — the BLASTP package uses default value of 3. As a result, the
utilization of suffix-links during the search process is significantly less, and the search cost
is dominated by the use of tree-edges for reporting of results.

The relative utilization of tree-edges with respect to suffix-links during the substring
search task is illustrated in Figure [7.5. As these graphs indicate the tree-edge utility
is significantly higher in the typical operating range of A values. Thus, higher tree-edge

locality is especially beneficial in the case of protein datasets.

Impact of Disk Layout

The relative performance of maximal substring search over persistent suffix-tree on
SPROT dataset, laid out using Stellar against the CO layout is shown in Figure 7.6
For low values of A, the I/O cost is dominated by the TraverseSubtree function. Due to
the lack of locality of tree-edges in CO-layout it suffers from bad search performance in
this range. Stellar on the other hand provides for good tree-edge locality, leading to signif-
icant I/O gains. Note that at A = 7, the performance differential between CO and Stellar
is very small — due to the fact that the average depth of the suffix-tree is ~ 7.54, which

results in negligible cost due to TraverseSubtree, even for CO layout. Thus, the main



CHAPTER 7. PERSISTENT SUFFIX-TREES FOR PROTEINS 140

Stellar Vs. CO - SPROT

1.0
0.8
o
=
o 0.6
=
e
K7 ] UniGene25
X 0.4 UniGenel25
[l UniGene250

[o)]
~N

5
A

Figure 7.6: SPROT: Performance of Stellar over CO

component of I/O cost is that of the main search function in MaximalSubstringSearch,
dominated by the suffix-link accesses. Since, CO-layout provides good suffix-link locality,

the relative performance improvements due to Stellar are not very significant.

Stellar Vs. SBFS

Due to the increased tree-edge utilization in the operating range of A values for protein
substring similarity searches, it seems natural to expect SBFS which localizes only the
tree-edges to perform much superior to Stellar.

The relative performance of Stellar over SBFS are shown in Figure [7.7. As expected,
in the extreme low-value range of A, the performance of SBFS is clearly superior to
that of Stellar — however, with increasing length of the query sequence this performance
gap decreases. As the value of X increases, the cost of suffix-link traversals comes into
prominence, and since Stellar optimizes these traversals, it starts to gain in performance

over SBFS. For moderate values of A (> 4), Stellar is quite competitive with SBF'S.



CHAPTER 7. PERSISTENT SUFFIX-TREES FOR PROTEINS 141

Stellar Vs. SBFS - SPROT

77—
6
5
Q
(1]
= 2l - [J uniGene25
3 Z
o % UniGenel25
21 % [l UniGene250
17 é
. N0 N2 ANi
L]
3 4 5 6 7
A

Figure 7.7: SPROT: Performance of Stellar over SBF'S

7.3.2 Utility of Suffix-Links

Shifting our focus to the utility of suffix-links for large-alphabet sequences, it seems natural
to expect that, due to the small value-range of A\, the UST-based methods hold advantage
over LSTs. The USTs clearly provide better space economy (a reduction of 4-bytes per
internal node), and TraverseSubtree being performed higher up in the tree the search cost
is dominated by the tree-edge traversals.

Figure 7.8 plots the relative disk I/O performance of UST and LST, with increasing
value of A. Both the indexes, built over the SPROT data, are laid out using the SBFS
strategy that is shown to optimize the performance. As these graphs indicate, the LST-
based searches continue to provide improved disk I/O performance over searching using
UST, despite small A values and large alphabet-size. For example, with \ set to 3-4
(commonly used with BLASTP searches), the UST searching incurs about 80% extra
disk accesses than LST. These results clearly indicate that benefits obtained due to the

retention of suffix-links are independent of the alphabet-size.



CHAPTER 7. PERSISTENT SUFFIX-TREES FOR PROTEINS 142

UniGene25 —H—
= UniGene125 -—-¥-- |
8 1.9
8’) [/\ UniGene250 O
A e
@) o}
=
o 17
=2
ks
(O]

o 1.6
1.5
3 4 5 6 7

Figure 7.8: SPROT: UST Vs. LST
7.4 Conclusions

In this chapter, we investigated the applicability of techniques for speeding up persistent
suffix-trees presented in the earlier chapters over Protein sequences, which have signifi-
cantly different alphabet characteristics than DNA sequences.

We showed that the TOP-Q buffering strategy can be used also over protein sequences
that have much larger alphabets. We also showed that even in the presence of skewed
distribution of symbols in the sequence, the TOP-Q strategy is superior to other buffering
strategies.

Next, we presented results to highlight the performance benefits gained through array
representation of suffix-tree nodes over linked-list representation, in the presence of large
alphabets, and with variable skew in the symbol distribution. These results showed that
improved performance due to array representation is not limited to the small alphabets,
thus justifying their use as a general physical implementation scheme for persistent suffix-
trees.

Moving on to the evaluation of storage organizations, we showed that despite a signif-
icant skew in the utilization of tree-edges over that of suffix-links over protein sequence
searches, Stellar organization is shown to very competitive to SBFS strategy. In com-

parison to the CO storage organization, Stellar saves close to 90% 1/O during searching.



CHAPTER 7. PERSISTENT SUFFIX-TREES FOR PROTEINS 143

Again, these results bring out the applicability of our techniques across the spectrum of

biological sequences.



Chapter 8

Performance Evaluation of BODHI

We have evaluated the performance of BODHI on a test-bed of typical queries in the
biodiversity domain. These consist of queries over both single-domains (such as taxonomy,
spatial or sequence domains) and multiple domains — i.e., queries similar to Query (1
presented in the Introduction. Moreover, since spatial data forms a large fraction of data
and is traditionally considered by the biodiversity researchers to be the main component
of the query processing time, we studied the performance of the spatial component in
detail. In particular, we evaluated the spatial data handling capabilities of BODHI over
the datasets and queries of the SEQUOIA 2000 regional benchmark [118], a standard
benchmark for spatial databases.

The performance numbers reported were generated on a Pentium-II11 700MHz pro-
cessor, with 512MB memory and an 18GB 10000-RPM SCSI hard disk (IBM DDYS-
T18350M model), connected with Adaptec AIC-7896/7 Ultra2 SCSI host adapter. In
order to reduce the effects of Linux’s aggressive memory mapping of files, we flushed the
benchmark database each time with an I/O over a large database.

The rest of the chapter is organized as follows: In Section 8.1, we describe the bio-
diversity datasets used in our experiments. Then, we present the performance profile of
BODHI on these datasets for single and multi-domain queries in Section 8.2. The spatial
data processing performance of BODHI, evaluated with SEQUOIA 2000 benchmark, is

presented in Section 8.3.

144



CHAPTER 8. PERFORMANCE EVALUATION OF BODHI 145

8.1 Description of Datasets

Although there is no paucity of benchmarks for evaluating various functional and per-
formance features of databases, many features required in biodiversity information sys-
tems are not handled by any benchmark in an unified manner. For example, the OO7
benchmark [20] is designed for solely evaluating object-oriented database performance.
However, it does not have queries that take into account the effects of spatial and se-
quence operators in conjunction with object queries. Moreover, it does not exercise the
lengthy sequence of joins due to long path-expression traversals that occur routinely in
biodiversity workloads. As a result, we needed to develop a benchmark suite that closely
models the range of data and query workload characteristics in biodiversity domain.

A serious hurdle that we faced in the design of the benchmark suite was the unavail-
ability of large-scale digitized taxonomy data collections with the collaborating domain
scientists, that can be effectively used in performance evaluation experiments. ¥ This is
because the domain experts we collaborated with have the bulk of their data in legacy
formats — in many cases on “herbarium sheets”#, and in text-books. While the digitization
of this data is going on, we obtained the taxonomy data of about fifteen closely studied
plant species that are marked endemic to the Western-Ghats region of Southern India, in
a format that was amenable for loading. Table 8.1 lists the details of these select species,
that form the basis of our benchmark data suite. This limited amount of data is scaled
by boosting with synthetic data, generated with inputs from domain experts.

The data used in our experiments conforms to a biodiversity object model, which is
presented in part as an object diagram in Figure 3.2. As shown in the object model, the
schema is hierarchical in nature and consists of aggregation paths, inheritance structures
over object types, spatial and genome sequence components. The well known taxon-
omy aggregation path of Order-Family-Genera-Species forms the backbone of the model.

Each Species has a set of identifying characters (IdentChar), and there are many sub-

'Recently, a handful of web-based taxonomy data sources, that enable extracting the information
stored in them, have come up. The domain scientists we collaborate with, are in the process of cleaning
and curating this data, which can be populated into our system.

2These are sheets that contain a plant specimen and its details.



CHAPTER 8. PERFORMANCE EVALUATION OF BODHI

146

Order Family Genera Species
Euphorbiales | Euphorbiaceae Aporosa bourdillonii
Euphorbiales | Euphorbiaceae Aporosa lindleyana
Laurales Lauraceae Actinodaphne | bourneae
Laurales Lauraceae Actinodaphne | lanata
Laurales Lauraceae Actinodaphne | lawsonii
Laurales Lauraceae Actinodaphne | malabarica
Laurales Lauraceae Appolonias arnotti
Magnoliales | Magnoliaceae Michelia champa
Primulales Myrsinaceae Aridisia sonchifolia
Polemoniales | Convolvulaceae Ipomoea campanulata
Rutales Meliaceae Aglaia barberi
Rutales Meliaceae Aglaia lawii
Rutales Meliaceae Aglaia indica
Rutales Meliaceae Aglaia jainii
Rutales Meliaceae Aglaia simplicifolia
Rosales Chrysobalanaceae | Atuna travancorica

Table 8.1: Details of Endemic Plant-species

characteristics that are inherited from this. The spatial component of the model consists
of a collection of reported habitat areas for each Species. Also associated with each Species
is a collection of DNA sequences that are used to study the evolutionary pathways among
the species by locating homologies (sequences which have a high likelihood of sharing a
common ancestor). We describe the individual components of the benchmark dataset

below:

Taxonomy Data: The real data available for about fifteen closely studied Plant species
was scaled with synthetically generated data. The object relationships in taxonomy
and characteristics hierarchies were generated through the use of heuristic proba-
bility of association at each optional relationship (uniform distribution in the range
of 1-19 at each level of the hierarchy [87]). In case of collections in the aggregation

path, the branch factor of the collection was also uniformly distributed.

Spatial Data We used the technique proposed in [67] to generate a synthetic 2-

dimensional spatial data. The data consists of rectangular regions, whose centers are



CHAPTER 8. PERFORMANCE EVALUATION OF BODHI 147

| Element | No. of Tuples | Overall Size(in KB) |
Order 4 0.6
Family 46 7.1
Genera 496 76.0
Species 5155 1153.1
FlowerChar 5155 564.0
Habitats 5155 607.0
InfloChar 5 20.4
EMBLEntry 51550 2902
Compressed Genomic Sequence | 51550 4743

| Total \ [ 10073.2

Table 8.2: Statistics of the Synthetic Dataset

uniformly distributed over a unit square. The overlap between rectangular regions
can be controlled by specifying the distribution of their height and width values.
It should be noted that this dataset consists of only rectangular regions, while in
reality we have to handle non-convex polygonal regions as well. The performance of
spatial data handling over real dataset (involving non-convex polygonal regions) is
evaluated separately through the SEQUOIA 2000 benchmark. Each species object
generated above is associated with a synthetically generated polygon that represents

the habitat of the species.

Genome Data In the case of Genome sequence data, we utilized publicly available data
through the GenBank repository. In our experiments, we made use of a randomly
selected sample of “expressed sequence tags” (ESTs) of various species available

from the BLAST database of EMBL GenBank [41].

The statistics of the resulting benchmark dataset, which conforms to the schema illus-
trated in Figure 3.2, are summarized in Table 8.2. We consider a set of 5 queries over this
dataset, spanning the domains of taxonomy, spatial and genome data, to illustrate the
capabilities of BODHI in handling these domains. In addition, the performance numbers
of these queries provide an indicator towards overall expected performance of the system.

We use the response time as the metric of evaluation in our experiments.



CHAPTER 8. PERFORMANCE EVALUATION OF BODHI

148

[1d

‘ Time

|

Taxonomy Query-1

73 min. (Without Path-Dictionary)

0.5 min. (With Path-Dictionary)

Genome Query-1

0.2 sec.

Genome Query-2

~ 2.5 min. (Without Suffix-tree)

4.5 sec. (With Suffix-tree)

Table 8.3: Performance Numbers for Single-domain queries

Id No Index | Path-Dictionary | Spatial& Suffix-tree &
Path-Dictionary | Spatial &
Path-Dictionary
MDQ1 | 26.99 sec. 11.13 sec. 2.1 sec. =
MDQ2 | 8275.66 sec. | 8264.12 sec. 8252.2 sec. 135.2 sec.

Table 8.4: Performance Numbers for Multi-domain Queries

8.2 Biodiversity Queries

We now describe the set of queries considered to illustrate the capabilities of BODHI

and present the performance numbers over each of these queries. The biodiversity query

collection consists of two categories: (i) Single-domain queries — that are restricted to a

single data domain (taxonomy, spatial or genome data), and (ii) Multi-domain queries —

that combine multiple data domains in a single query. As we have explored the spatial

query performance, in detail, with SEQUOIA 2000 benchmark in the subsequent section,

we present only the taxonomy and genome sequence based queries under single-domain

queries here.

The performance numbers for the queries are summarized in Tables 8.3 and 8.4.

8.2.1 Single-domain Queries

Taxonomy Query-1: Find the names of all species that have the same Inflorescence

characteristic in their Flowers as that of “Michelia-champa”.

With reference to the bio-diversity data model shown in Figure 3.2, this query

performs a three level path traversal over the aggregation hierarchy of Species,



CHAPTER 8. PERFORMANCE EVALUATION OF BODHI 149

Flower and Inflorescence Characteristics. The performance results in Table 8.3 for
this query show that without any indexing strategy for accessing the aggregation
paths, the query execution times are unacceptably high (73 minutes) — especially
considering the modest size of the dataset. The reason for this high evaluation time
of this query is due to the choice of a nested loop join used for evaluating this query.
Clearly it would be more beneficial to choose either the sort-merge join or the hash
join for the purpose. However, we were not able to use these due to the limitations
imposed by the version of SHORE and A-DB used in building BODHI. The hash join
was not supported in \-DB and the sorting of intermediate streams was not possible
in the version of SHORE we used. The performance of the query execution improves
by two orders of magnitude with the presence of a Path-Dictionary index over the
queried path, taking only about 30 seconds. As discussed earlier in Section 3.4,
the Path-Dictionary maintains a compact materialization of joins along the queried

path, preventing the repeated computation of these expensive joins.

Genome Query-1: Retrieve all DNA sequences of Michelia-champa.

The DNA sequences are stored encoded, using context-free encoding, in a separate
storage. This encoding increases the disk-memory bandwidth and enables the se-
quence similarity algorithms to operate in this encoded domain itself. At the same
time, there is an overhead of decoding them before presenting to the user. The per-
formance numbers for this query give an estimate of the delay involved in decoding

these sequences.

Genome Query-2: List names of all Species that have a DNA sequence within a

BLAST score of 70 with any sequence of Michelia-champa.

The computation of BLAST scores over a database could be a time consuming task,
especially in the absence of any indexing strategy for speeding these queries. This is
evident from the corresponding entries in the Table 8.3. The timing for this query —
which results in 10 BLAST computations — is about 2.5 minutes! With a persistent

suffix-tree index built on the sequence collection, this reduced dramatically to mere



CHAPTER 8. PERFORMANCE EVALUATION OF BODHI 150

4.5 seconds, an improvement of almost 30 times in query execution speed.

8.2.2 Multi-domain Queries

Multi-domain Query-1: Find the names of all Species sharing a common habitat and

having the same Inflorescence characteristic as Michelia-Champa.

This query, which is common among ecologists, is targeted at the combination of
hierarchical data of Taxonomy domain, and associated Spatial data. The query
evaluates the combined effectiveness of the Path-Dictionary index and R*-Tree in-
dexes available in BODHI. The performance numbers provided in Table 8.4 are for
the optimal query plan which performs the spatial overlap before computing the
joins over the aggregation paths. Since spatial overlap is highly selective in the ex-
isting dataset, the number of path aggregation traversals are reduced to a very small
number. As a result, we see that even though this query is more complicated than
Tazonomy Query-1, it takes less than 0.6% of time taken for Tazonomy Query-1
even in the absence of the Path-Dictionary index. The presence of Path-Dictionary
reduces the execution time further, from 26.99 seconds to 11.13 seconds — a reduc-
tion of 58%. In this case, the execution times are dominated by the spatial overlap
computation. We can see this clearly by looking at the performance of the query
when both R*-Tree and Path-Dictionary indexes are present. The query time is just
around 2 seconds, almost an 80% improvement. This clearly indicates that both

indexing strategies are extremely useful for such queries.

Multi-domain Query-2: Retrieve names of all pairs of Species sharing a common

habitat, having same Inflorescence characteristic and having a DNA sequence within

BLAST score of 70 of each other.

This query, which extends the Multi-domain Query-1 by adding an extra predicate
for the BLAST score computation for each of the sequences in the target species, is

similar to the “goal” query that we presented earlier as Query [1 in the Introduction.

Referring to Table 8.4, we see that the execution times without a suffix-tree index



CHAPTER 8. PERFORMANCE EVALUATION OF BODHI 151

are close to 3 orders of magnitude higher than those of Multi-domain Query-1 — due
to the additional 50 BLAST computations. On the other hand, the suffix-tree index
based BLAST computation reduces the gap to within acceptable limits, evaluating
the query in close to 2 minutes. The reduction in execution times due to other
access-methods are approximately the same as in Multi-domain Query-1, about 11
seconds in presence of Path-Dictionary index and by a further 10 seconds in presence

of both R*-Tree and Path-Dictionary indices.

8.3 Evaluating Spatial Data Handling

The evaluation of queries over spatial data has traditionally been considered as a highly
compute-intensive operation, and many indexing strategies have been proposed to improve
the performance of these queries. The SEQUOIA benchmark has been quite popular for
evaluating the performance and capabilities of spatial databases. It consists of a set of
10 queries over a schema involving spatial objects (such as polygons, points and graphs)
and also bitmap (raster) objects. As we do not have support for bitmap data formats in
BODHI, we have chosen to ignore the raster dataset and the queries (2),(3),(4) & (9),
which involve these objects. The vector benchmark data consists of 62556 Point objects,
58585 Polygons and 201659 Graph objects. Table [8.5/ summarizes the response times (in
seconds) for the queries on this data. We have compared BODHI’s performance with
Paradise [30], a spatial database system also built on the SHORE storage manager, and
Postgres [119], a popular free object-relational database. The numbers given for these
two systems are taken from those reported in [30].

The SEQUOIA benchmark results in Table 8.5 show that BODHI is very close in
performance to that of Paradise, which is a specialized and highly optimized spatial
database system. Even though the hardware platform used by the two systems are difficult
to compare, it should be noted that both Paradise and BODHI use the same underlying
storage manager (Shore). In addition the following points regarding numbers reported
under BODHI should be noted: (i) We use file-based storage management instead of using
raw-disk as done by Paradise system; (ii) The optimal physical query plan is generated



CHAPTER 8. PERFORMANCE EVALUATION OF BODHI 152

through a generic object-oriented query processor; (iii) The type-system is user-defined
whereas in Paradise the basic type system of SHORE has been augmented; and, (iv) the
size of the buffer pool used by SHORE is the default value — 320KB, whereas Paradise
used 16MB.

Id | BODHI BODHI Paradise
(with R*-Tree) | (with Hil. R-Tree)

1 5742.0 4662.0 3613.0
(R*-Tree: 1342.0) | (Hil. R-Tree: 262.0)

5 0.12 0.11 0.2

6 | 8.0 8.0 7.0

7 | 0.66 0.7 0.6

8 | 9.7 9.6 9.4

10 || 11.0 10.8 Not supported

Table 8.5: SEQUOIA Benchmark numbers (in seconds)

We now present the chosen set of SEQUOIA queries and their performance statistics.
We also explain a few of these queries and highlight their importance in a typical set of

bio-diversity query workloads.

Sequoia 1 — Dataloading and Index creation. This query populates the database
from a given set of datafiles, and is expected to exercise the bulk-loading facility in
the database. At the time of writing, we do not a bulk-loading feature in BODHI,
resulting in a transaction commit for each object hierarchy. Therefore, the table
represents only an upper bound on the dataload and indexing times for the spatial
component. Referring to Table 8.5, we see that this is the only benchmark query
in which BODHI is far worse than Paradise which supports bulk-loading facility.
However, we don’t see it as a major bottleneck in BODHI, since the bio-diversity
databases are not expected to have high rates of bulk data updates. Instead, these
databases are highly query-intensive and hence it is important to have fast query
processing speeds. In addition, we expect improvements in performance when a

bulk-loading scheme is put in place for BODHI.



CHAPTER 8. PERFORMANCE EVALUATION OF BODHI 153

Sequoia 5 — Select a point based on its name.

Sequoia 6 — Select polygons overlapping a specified rectangle. This is one of
the typical spatial queries asked in ecological studies where a geographic region
is split into a set of grids and the researchers would want to identify the species
whose previously recorded habitat boundaries overlap with the grid being studied.
This could be important in identifying species whose co-existence in a region is to
be targeted for study. The performance of spatial operators such as overlap depend
directly on the performance of implementing these operators on a spatial index
such as R*-Tree or Hilbert R-Tree. Since the R*-Tree implementation of BODHI is
the same as that of Paradise (both use the index provided by the SHORE storage

manager), we don’t see much difference in the query execution performance.

Sequoia 7 — Select polygons greater than specified area, contained within a
circle. We see similar queries occurring in bio-diversity studies with variations in
the area selection clause of the query. The area of a polygon is provided through
a derived attribute — computed based on the co-ordinates of the polygon. This is
extendible to allow for selection over arbitrary derived attributes over which an index
can be built. Thus, in ecological study databases, we get variations of the query
that locate all the habitats that are near a study center, with a derived attribute

value (such as bio-mass index of the habitat, etc.).

This query reflects the combination of B-Tree and spatial index based query pro-
cessing. The order in which this query gets evaluated — whether the B-Tree lookup
or the R*-Tree based overlap selection is made as the first step — makes a big differ-
ence in the query answering times. The usage of query optimizer which maintains
cost statistics and uses it to arrive at the final evaluation order is also tested in
this query. The numbers presented in Table 8.5 are for the optimal plan generated
by the query processor of BODHI, which is to perform the R*-Tree based overlap

selection first and then the B-Tree-based polygon area selection.

Sequoia 8 — Select polygons overlapping a rectangular region around a point.



CHAPTER 8. PERFORMANCE EVALUATION OF BODHI 154

(1d [ Time |
11 || 3.36 sec.
12 || 51 sec.
13 || 66 min.

Table 8.6: Performance over Paradise Queries

Sequoia 10 — Select points contained in polygons with specific landuse type.

We also executed the above Sequoia benchmark queries with Hilbert R-Tree in place
of R*-Tree. The results obtained are shown in Table 8.5. The building times of Hilbert
R-Tree were quite low in comparison to that of R*-Tree, and at the same time provide
almost the same performance. The numbers shown are for Hilbert R-Tree which employs
s-to-(s+1) split policy on overflow, with s = 2. Even though the performance of the
Hilbert R-Tree could be improved by increasing the value of s, the index creation times
increase sharply with s. Hence, the current choice of split policy was chosen to optimize
on the index building time and the performance of the index over benchmark queries.

In addition, BODHI also supports the spatial aggregate operator Closest, on the lines
of Paradise spatial data management system. This operator was used in executing two
spatial aggregate benchmark queries given by Paradise system, Query-11 and Query-12,
in [96]. For completeness, we have also included Query-13, which is not an aggregation
query, but is a spatial join in benchmark queries of Paradise. But we cannot compare the
performance numbers obtained in BODHI with those reported in [96], as the benchmark
datasets are completely different in both schema and the scale (they used 10 years of 8
Km. resolution AVHRR satellite images obtained from NASA, and DCW global data set
containing information about roads, cities, land use, drainage properties etc.). Hence, we

present the numbers in an absolute sense in Table 8.6.

Paradise 11 - Select closest graphs (polylines) to a given point. This query re-
quires the evaluation of the spatial aggregate “Closest” using available index struc-
tures. This aggregation operator is implemented as an iterative searching for the

closest polyline (Graph in Sequoia dataset). At each iteration step, a box is con-



CHAPTER 8. PERFORMANCE EVALUATION OF BODHI 155

structed around the given point, and all polylines that overlap with the box are
located using the spatial index. If no polylines that satisfy this constraint are found,
then dimensions of the box are increased and another iterative search is performed.
When we obtain a non-null candidate set through this step, we compute exact dis-
tances between the point and the polylines in the candidate set, and the closest
polyline is determined. The performance of this query depends heavily on the loca-
tion of the point and the distribution of polylines in the region. If the polylines are
densely packed, we obtain a non-null candidate set within a few iterations (most
likely in the first iteration itself), thus getting the target polyline instantaneously.
The performance numbers presented in Table 8.6 were obtained over a sample of

100 points from the Sequoia dataset.

Paradise 12 - Select closest graphs to every point. This query is an extension of
the previous query, and performs a spatial aggregate on a cross product of two
relations (in this case polylines and points). For each point in the Sequoia dataset,

we compute the closest polyline, by running the previous query.

Paradise 13 - Select all polylines which intersect with each other. This query
joins two large spatial relations and tests the efficiency of the system’s spatial join
algorithm. The cardinality of the polyline extents in Sequoia benchmark is very
high, with 201659 graph objects in the dataset. In order to answer this query, we
need to perform a self spatial-join of this extent, which is highly expensive. ¥ This

is clear from 66 minutes reported in Table 8.6, to answer this query.

8.4 Conclusions

In this chapter, we presented a detailed evaluation of the BODHI system, both in terms
of the range of its querying capabilities as well as its performance profile. The complex

multi-domain query, presented in the Introduction as Query 1 is shown to be computable

3Even in [96], the performance results, obtained with parallel disks and multiple processors, indicate
that Query 13 takes an order of magnitude more time than Query 12.



CHAPTER 8. PERFORMANCE EVALUATION OF BODHI 156

in approximately 2 minutes, in presence of the access-structures provided by the BODHI
system — the Path-dictionary index for aggregation path traversals, Hilbert R-Tree for
spatial data handling and the Persistent Suffix-tree over genomic DNA sequences. The
same query would have taken more than 137 minutes, without utilizing any of the index
structures. Further, we also presented a detailed evaluation of spatial data handling
within BODHI, making use of the well-known SEQUOIA 2000 benchmark. These results
showed that the BODHI system is comparable in performance and in the supported query

repertoire to Paradise, a specialized spatial data management system.



Chapter 9

Conclusions and Future Research

9.1 Summary of Contributions

In this thesis, we have investigated the design and implementation of a holistic bio-
diversity database, BODHI, that can be productively used by modern day biologists.
This system addresses an urgent need for information management systems that can in-
tegrate a wide range of data associated with bio-diversity studies, including taxonomy
information, spatial distributions, and genome sequence information. Focusing on ac-
celerating the computationally expensive sequence processing capability of BODHI, we
presented techniques to efficiently construct persistent suffix-trees using a combination
of appropriate physical representation and a novel buffering strategy called TOP-Q that
takes into account the behavior of traversals during suffix-tree construction. Further, we
proposed a new storage organization, STELLAR, for persistent suffix-trees that caters
to the combined traversal of tree-edges and suffix-links during searching over suffix-trees,
and optimizes the disk 1/O performance. We summarize our contributions in each of these

areas below.

9.1.1 Design of BODHI

Modern bio-diversity studies generate and utilize a variety of inter-related data types

forming deeply nested hierarchies. The queries that span these hierarchies need to perform

157



CHAPTER 9. CONCLUSIONS AND FUTURE RESEARCH 158

multiple joins and, in many cases, the join-path could contain spatial or sequence similarity
predicates, thus hindering efficient evaluation.

A multitude of tools have been deployed to handle each of the domains involved in
isolation, and wrapper-based integration systems are being built to provide a functional
integration. However, to the best of our knowledge, there has been no effort to support
the diverse data-types efficiently under a single database platform. In this thesis, we
presented the design and implementation of BODHI, a holistic approach to this problem
of bio-diversity data unification.

BODHI is a native object-oriented database system that seamlessly integrates multiple
types of data occurring in biodiversity studies. To the best of our knowledge, BODHI is
the first system to provide such an integrated view of diverse biological domains ranging
from molecular to organism-level information.

In addition to providing a functionally comprehensive query interface, BODHI achieves
high performance by employing a variety of specialized access structures, such as Multi-
key Type Index, Path-dictionary Index, R*-Tree, Hilbert R-tree, that are reported in the
research literature for handling predicates over taxonomy hierarchies and spatial data.
The Path-dictionary index was extended from its original proposal, to support N:M re-
lationships as well as bags and sequences in the aggregation, a commonly found feature
in the biodiversity schema. In addition, these indexes were implemented to satisfy the
dual needs of efficiency and the ability to extend and improve the system. While these
index structures are efficient in their respective domains, there are very few proposals for
sequence indexing to accelerate a large class of biological sequence processing tasks.

In order to overcome the resulting performance bottleneck of sequence similarity
queries, BODHI provides persistent version of suffix-trees, the ubiquitous main-memory
sequence indexing structure. The persistent suffix-tree index is useful in a number of
sequence querying applications, and provides an accurate indexing solution for biological
sequences. We are not aware of any other database system that incorporates persistent

suffix-trees as a first class sequence indexing strategy.



CHAPTER 9. CONCLUSIONS AND FUTURE RESEARCH 159

9.1.2 Efficient Construction of Persistent Suffix-tree Indexes

In the field of computational molecular biology, the suffix-tree has been considered a
defacto index structure for biological sequence processing. However, its usage had been
limited to small-sized datasets due to its large space requirements. With increase both in
the volume of biological sequence data as well as the usage of sequence processing tasks,
it has been considered essential to support suffix-tree indexes within persistent store —
hitherto considered impractical using the standard construction algorithms.

We addressed this issue by designing a novel buffering policy called TOP-Q, that
takes into account the nature of traversals during suffix-tree construction. In addition,
we showed that the much preferred implementation of suffix-trees that uses a linked-list
of sibling nodes is much more disk I/O intensive than a simpler array representation of
suffix-trees — despite the increased space overhead due to the latter.

A significant advantage of our proposal is that all the existing suffix-tree based bioin-
formatics tools can be migrated to persistent store without having to reinvent or reimple-
ment the algorithms. This is due to the fact that unlike alternate proposals for suffix-tree
building [61, 123], we completely retain all the structural elements of suffix-tree. In par-
ticular, the suffiz-links between internal nodes, which play an important role in linear time

construction and subsequent querying over suffix-trees, are retained in our technique.

9.1.3 Storage Organization of Suffix-tree Indexes

Taking the next logical step in improving the utility of persistent suffix-trees, we addressed
the issue of optimizing, in terms of disk 1/O, the search tasks over the suffix-trees. We
approached this issue in the same spirit as the previous work —i.e., to tune the parameters
of the environment in which the suffix-trees are deployed, without modifying either the
structure or the algorithms over the index.

Specifically, we presented a linear-time, top-down algorithm called Stellar, to reorder
the persistent suffix-tree nodes such that the localities of both suffix-link and tree-edge
based traversals during search is improved. We observed close to 60-70% reduction in

I/O incurred during searches over DNA sequence collections when the suffix-tree is stored



CHAPTER 9. CONCLUSIONS AND FUTURE RESEARCH 160

using Stellar strategy.
We also presented results to show that searching of persistent suffix-trees without
utilizing suffix-links is far more expensive than the searches involving suffix-links. These

results highlight the utility of retaining suffix-links in persistent suffix-trees.

9.2 Future Research

The work presented in this thesis can be extended in a number of ways, some of which

are listed here:

1. Multiple and Evolving Taxonomy. The taxonomic organization is constantly
evolving, due to the introduction of novel techniques for discovering the evolutionary
and ecological relationships between organisms [99]. It is important to not only
incorporate the ability to handle the resulting multiple taxonomies simultaneously,
but also to track their lineage and discover inter-relationships between them. It
would be necessary to expand the data modeling and querying capability of BODHI

to be able to handle this requirement.

2. Support for Distributed Data Repository. With increasing volume and distri-
bution of biodiversity information, it is inconceivable that a single data repository
would be sufficient for supporting all the requirements of researchers. In order to
cater to this need, distributed data handling capability can be added to the BODHI
system. This support can be easily added since BODHI already provides shipping
of OQL query results in XML format, the standard data interchange format over

the Internet.

3. Persistent Suffix-tree Support. The techniques presented in this thesis for
adding efficient suffix-tree index support in database kernels can be implemented in

other popular database systems such as PostgreSQL [97] and MySQL [85].



References

[1]

S. Altschul, W. Gish, W. Miller, E. W. Myers, and D. Lipman. A Basic Local
Alignment Search Tool. Journal of Molecular Biology, 215(3), 1990.

A. Andersson, N. J. Larsson, and K. Swansson. Suffix Trees on Words. In Proceed-

ings of the Annual Symposium on Combinatorial Pattern Matching (CPM), 1996.

ANZMETA DTD Versionl.1.

http://www.erin.gov.au/database/metadata/anzmeta/anzmeta-1.1.html.

A. Apostolico, editor. Combinatorial Algorithms on Words, chapter The Myriad
Virtues of Subword Trees. Springer Verlag, 1985.

R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison Wes-
ley, 1999.

P. G. Baker, A. Brass, S. Bechhofer, C. Goble, N. Paton, and R. Stevens. TAMBIS—
Transparent Access to Multiple Bioinformatics Information Sources. In Proceedings

of the Intelligent Systems for Molecular Biology, 1998.

N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R*-Tree: An Efficient
and Robust Access Method for Points and Rectangles. In Proceedings of the ACM
SIGMOD International Conference on Management of Data (SIGMOD), 1990.

S. Bedathur and J. Haritsa. Engineering a Fast Online Persistent Suffix Tree Con-
struction. In Proceedings of the IEEE International Conference on Data Engineering

(ICDE), 2004.

161



REFERENCES 162

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[18]

D. A. Benson, I. Karsch-Mizrachi, D. J. Lipman, J. Ostell, and D. L. Wheeler.
GenBank: Update. Nucleic Acids Research, 32((Database Issue)), 2004.

E. Bertino and W. Kim. Indexing Techniques for Queries on Nested Objects. [EFFE
Transactions on Knowledge and Data Engineering (TKDE), 1(2), 1989.

P. Bieganski. Genetic Sequence Data Retrieval and Manipulation based on Gener-

alized Suffiz Trees. PhD thesis, University of Minnesota, 1995.

Biopolymer Markup Language - BIOML.

http://bioinformatics.genomicsolutions.com/BioML.html.

T. Boston and D. Stockwell. Interactive Species Distribution Reporting, Mapping
and Modeling using the World Wide Web. In Proceedings of the International WWW
Conference (WWW), 1994.

P. Buneman, S. B. Davidson, K. Hart, G. C. Overton, and L. Wong. A Data Trans-
formation System for Biological Data Sources. In Proceedings of the International

Conference on Very Large Databases (VLDB), 1995.

X. Cao, S. C. Li, B. C. Ooi, and A. K. H. Tung. Piers: An Efficient Model for
Similarity Search in DNA Sequence Databases. SIGMOD Record, 33(2), 2004.

X. Cao, S. C. Li, and A. K. H. Tung. Indexing DNA Sequences Using g-grams.
In Proceedings of the International Conference on Database Systems for Advanced

Applications (DASFAA), 2005.

X. Cao, B. C. Ooi, H. H. Pang, and K. L.Tan. DSIM: A Distance-based Indexing
Method for Genomic Sequences. In Proceedings of the IEEE International Confer-
ence on Bioinformatics and Bioengineering (BIBE), 2005.

X. Cao, A. K. H. Tung, B. C. Ooi, K. L.Tan, and S. C. Li. String Join Using Prece-
dence Count Matrix. In Proceedings of the International Conference on Scientific

and Statistical Database Management (SSDBM), 2004.



REFERENCES 163

[19]

[20]

[21]

[22]

[25]

[26]

[27]

M. J. Carey, D. J. DeWitt, M. J. Franklin, N. E. Hall, M. L. McAuliffe, J. F.
Naughton, D. T. Schuh, M. H. Solomon, C. K. Tan, O. G. Tsatalos, S. J. White,
and M. J. Zwilling. Shoring up Persistent Applications. In Proceedings of the ACM
SIGMOD International Conference on Management of Data (SIGMOD), 1994.

M. J. Carey, D. J. DeWitt, and J. F. Naughton. The OO7 Benchmark. In Pro-
ceedings of the ACM SIGMOD International Conference on Management of Data
(SIGMOD), 1993.

R. G. G. Cattel, editor. The Object Database Standard: ODMG-93. Morgan-
Kaufmann Publishers, 1994.

W. 1. Chang and E. L. Lawler. Approximate String Matching in Sublinear Expected
Time. In Proceedings of the IEEE Annual Symposium on Foundations of Computer
Science (FOCS), 1990.

H. Chou and D. Dewitt. An Evaluation of Buffer Management Strategies for Rela-
tional Database Systems. In Proceedings of the International Conference on Very

Large Databases (VLDB), 1985.

R. Clifford and M. Sergot. Distributed and Paged Suffix Trees for Large Genetic
Databases. In Proceedings of the 14th Annual Symposium on Combinatorial Pattern

Matching (CPM), 2003.

A. Cobbs. Fast Approximate Matching using Suffix Trees. In Proceedings of the
Annual Symposium on Combinatorial Pattern Matching (CPM), 1995.

S. Davidson, C. Overton, and P. Buneman. Challenges in Integrating Biological

Data Sources. Journal of Computational Biology, 2(4), 1995.

S. B. Davidson, V. Tannen, J. Crabtree, G. C. Overton, B. P. Brunk, C. J. Stoeck-
ert Jr., and J. Schug. K2/Kleisli and GUS: Experiments in Integrated Access to
Genomic Data Sources. IBM Systems Journal, 40(2), 2001.



REFERENCES 164

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

M. Dayhoff, R. M. Schwartz, and B. C. Orcutt. A Model of Evolutionary Change
in Proteins. Atlas of Protein Sequence and Structure, 5, 1978.

A. L. Delcher, S. Kasif, R. D. Fleischmann, J. Peterson, O. White, and S. L.
Salzberg. Alignment of Whole Genomes. Nucleic Acids Research, 27(11), 1999.

D. J. DeWitt, N. Kabra, J. Luo, J. M. Patel, and J.-B. Yu. Client-Server Paradise.
In Proceedings of the International Conference on Very Large Databases (VLDB),
1994.

A. A. Diwan, S. Rane, S. Seshadri, and S. Sudarshan. Clustering Techniques for
Minimizing External Path Length. In Proceedings of the 22nd International Con-
ference on Very Large Databases (VLDB), 1996.

R. Durbin and J. Thierry-Mieg. A C.elegans Database Documentation.
http://www.acedb.org/.

W. Effelsberg and T. Haerder. Principles of Database Buffer Management. ACM
Transactions on Database Systems (TODS), 9(4), 1984.

Environmental Information System. http://envis.nic.in/.

T. Etzold and P. Argos. SRS: An Indexing and Retrieval Tool for Flat File Data
Libraries. Computer Applications in the Biosciences, 9(1), 1993.

M. Farach, P. Ferragina, and S. Muthukrishnan. Overcoming the Memory Bottle-
neck in Suffix Tree Construction. In Proceedings of the IEEE Annual Symposium
on Foundations of Computer Science (FOCS), 1998.

M. Farach-Colton. Optimal Suffix Tree Construction with Large Alphabets. In
Proceedings of the IEEE Annual Symposium on Foundations of Computer Science
(FOCS), 1997.

L. Fegaras. An Experimental Optimizer for OQL. Technical Report TR-CSE-97-
007, University of Texas at Arlington, 1997.



REFERENCES 165

[39]

[40]

[41]
[42]

[43]

[45]

[46]

[47]

[48]

[49]

[50]

P. Ferragina and R. Grossi. The String B-tree: a New Data Structure for String
Search in External Memory and its Applications. Journal of the ACM (JACM),
46(2), 1999.

V. Gaede and O. Giinther. Multidimensional Access Methods. ACM Computing
Surveys, 30(2), 1998.

GenBank. http://www.ncbi.nlm.nih.gov/Genbank/.
GenBank Statistics. http://www.ncbi.nlm.nih.gov/Genbank/genbankstats.html.
Getting to Know ArcView GIS for Version 3.1. ESRI Press, 1999.

R. Giancarlo. The Suffix-tree of a Square Matrix, with Applications. In Proceedings
of the ACM-SIAM Symposium on Discrete Algorithms (SODA), 1993.

R. Giegerich and S. Kurtz. A Comparison of Imperative and purely Functional

Suffix tree constructions. Science of Programming, 1995.

R. Giegerich and S. Kurtz. From Ukkonen to McCreight and Weiner: A Unifying
View of Linear Time Suffix Tree Construction. Algorithmica, 19(3), 1997.

R. Giegerich, S. Kurtz, and J. Stoye. Efficient Implementation of Lazy Suffix Trees.
In Proceedings of the Third Workshop on Algorithmic Engineering (WAE 99), 1999.

J. Gil and A. Ttai. How to Pack Trees. Journal of Algorithms, 32(2), 1999.

E. Giladi, M. G. Walker, J. Z. Wang, and W. Volkmuth. SST : An Algorithm
for Searching sequence Databases in Time Proportional to the Logarithm of the

Database Size. In Proceedings of the International Conference on Research in Com-

putational Molecular Biology (RECOMB), 2000.

N. Goodman, S. Rozen, and L. Stein. A Glimpse at the
DBMS Challenges Posed by the Human Genome Project.
ftp://genome.wi.mit.edu/pub/papers/Y 1994 /challenges.ps.Z.



REFERENCES 166

[51]

[52]

[53]

[54]

[55]

[59]

N. Goodman, S. Rozen, and L. Stein. Building a Laboratory Information System
around a C++-based Object oriented DBMS. In Proceedings of the International
Conference on Very Large Databases (VLDB), 1994.

G. Graefe, R. L. Cole, D. L. Davison, W. J. McKenna, and R. H. Wolniecwicz.
Extensible Query Optimization and Parallel Execution in Volcano. In J.C. Frey-
tag, D. Maier, and G. Vossen, editors, Query Processing for Advanced Database
Applications. Morgan Kaufmann, 1993.

D. Gusfield. Algorithms on Strings, Trees and Sequences: Computer Science and

Computational Biology. Cambridge University Press, Cambridge, 1997.

D. Gusfield. Suffix Trees Come of Age in Bioinformatics (Invited Talk). In IEEE
Bioinformatics Conference (CSB), 2002.

R. H. Giiting. An Introduction to Spatial Database Systems. VLDB Journal, 3(4),
1994.

A. Guttman. R-Trees: A Dynamic Index Structure for Spatial Searching. In Pro-
ceedings of the ACM SIGMOD International Conference on Management of Data
(SIGMOD), 1984.

L. M. Haas, J. E. Rice, P. M. Schwarz, W. C. Swope, P. Kodali, and E. Kotlar.
DiscoveryLink: A system for integrated access to life sciences data sources. IBM

Systems Journal, 40(2), 2001.

J. Hammer and M. Schneider. Genomics Algebra: A New, Integrating Data Model,
Language, and Tool for Processing and Querying Genomic Information. In Proceed-
ings of the First Biennial Conference on Innovative Data Systems Research (CIDR),
2003.

S. Henikoff and J. G. Henikoff. Amino Acid Substritution Matrics from Protein
Blocks. Proceedings of National Academy of Sciences USA, 89, 1992.



REFERENCES 167

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[68]

[69]

E. Hunt, M. Atkinson, and R. Irving. Database Indexing for Large DNA and Protein
Sequence Collections. VLDB Journal, 7(3), 2001.

E. Hunt, M. P. Atkinson, and R. W. Irving. A Database Index to Large Biological
Sequences. In Proceedings of the International Conference on Very Large Databases

(VLDB), 2001.

International Human Genome Sequencing Consortium. Initial sequencing and anal-

ysis of the human genome. Nature, 409, 2001.
R. Japp. First Year Report. Master’s thesis, University of Glasgow, July 2001.

T. Johnson and D. Shasha. 2Q : A Low Overhead High Performance Buffer Man-
agement Replacement Algorithm. In Proceedings of the International Conference

on Very Large Databases (VLDB), 1994.

T. Kahveci and A. Singh. Progressive Searching of Biological Sequences. Bulletin
of the IEEE Computer Society Technical Committee on Data Engineering, 27(3),
2004.

T. Kahveci and A. K. Singh. An Efficient Index Structure for String Databases.
In Proceedings of the International Conference on Very Large Databases (VLDB),
2001.

[. Kamel and C. Faloutsos. Hilbert R-tree: An Improved R-tree Using Fractals.
In Proceedings of the International Conference on Very Large Databases (VLDB),
1994.

J. Kérkkainen and E. Ukkonen. Sparse Suffix Trees. In Proceedings of the Annual
International Conference on Computing and Combinatorics (COCOON), 1996.

A. Kemper, C. Kilger, and G. Moerkotte. Function Materialization in Object bases.
In Proceedings of the ACM SIGMOD International Conference on Management of
Data (SIGMOD), 1991.



REFERENCES 168

[70]

[71]

[72]

73]

[74]

[78]

E. Keogh, S. Lonardi, and B. Chiu. Finding Surprising Patterns in a Time Se-
ries Database in Linear Time and Space. In Proceedings of the ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, 2002.

W. Kim, K. Kim, and A. Dale. Indexing Techniques for Object-oriented Databases.
In W. Kim and F. Lochovsky, editors, Object-oriented Concepts, Database and Ap-
plications. Addison-Wesley Publishing Company (ACM Press), 1989.

S. Kurtz. Reducing Space Requirement of Suffix Trees. Software Practice and
FEzperience, 29(13), 1999.

M. A. Lane, J. L. Edwards, and E. Nielsen. Biodiversity Informatics: The Challenge
of Rapid Development, Large Databases, and Complex Data (keynote). In Proceed-
ings of the International Conference on Very Large Databases (VLDB), 2000.

W. Lee and D. L. Lee. Path Dictionary: A New Access Method for Query Pro-
cessing in Object-oriented Databases. IEEE Transactions on Knowledge and Data

Engineering, 10(3), May 1998.

D. J. Lipman and W. R. Pearson. Rapid and Sensitive Protein Similarity Searches.
Science, 227(4693), 1985.

C. Low, B. Ooi, and H. Lu. H-trees: A Dynamic Associative Search Index for OODB.
In Proceedings of the ACM SIGMOD International Conference on Management of
Data (SIGMOD), 1992.

D. R. Maddison and W. P. Maddison. The Tree of Life: A multi-authored, dis-
tributed Internet project containing information about phylogeny and biodiversity.

http://phylogeny.arizona.edu/tree /phylogeny.html, 1998.

D. Maier and J. Stein. Indexing in an Object-oriented DBMS. In Proceedings of the

International Workshop on Object-oriented Database Systems, 1986.



REFERENCES 169

[79]

[30]

[81]

[82]

[83]

[84]

[85]

[30]

[87]

8]

[89]

U. Manber and G. Myers. Suffix Arrays: A New Method for On-line String Searches.
In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA),
1990.

E. M. McCreight. A Space-Efficient Suffix Tree Construction Algorithm. Journal
of the ACM (JACM), 23(2), 1976.

C. Meek, J. M. Patel, and S. Kasetty. OASIS: An Online and Accurate Technique
for Local-alignment Searches on Biological Sequences. In Proceedings of the Inter-

national Conference on Very Large Databases (VLDB), 2003.

T. Mitchellolds. Does Environmental Variation Maintain Genetic Variation - a

Question of Scale. Trends in Ecology & Evolution, 7(12), 1992.

T. A. Miick and M. L. Polaschek. A Configurable Type Hierarchy Index for OODB.
VLDB Journal, 6(4), 1997.

W. E. G. Miiller, F. Briimmer, R. Batel, I. M. Miiller, and H. C. Schroder. Molecular
biodiversity - case study: Porifera (sponges). Naturwissenschaften, 90(3), 2003.

MySQL: The World’s Most Popular Open Source Database.

http://www.mysql.org.

L. Nakhleh, D. Miranker, F. Barbancon, W. H. Piel, and M. Donaghue. Require-
ments of Phylogenetic Databases. In Proceedings of the IEEE International Con-
ference on Bioinformatics and Bioengineering (BIBE), 2003.

V. Nanjundiah and M. Gadgil. Personal communication, 1999.
National Biodiversity Institute (INBio). http://www.inbio.ac.cr/en/default.html.

G. Navarro and R. Baeza-Yates. A Hybrid Indexing Method for Approximate String
Matching. Journal of Discrete Algorithms, 1(1), 2000.



REFERENCES 170

[90]

[91]

[92]

93]

[94]

[95]

[97]

[98]

N. Neelapala, R. Mittal, and J. Haritsa. SPINE: Putting Backbone into String
Indexing. In Proceedings of the IEEE International Conference on Data Engineering

(ICDE), 2004.

J. Nievergelt, H. Hinterberger, and K. C. Sevcik. The Grid File: An Adapt-
able, Symmetric Multikey File Structure. ACM Transactions on Database Systems
(TODS), 9(1), 1984.

Research Directions in Biodiversity and Ecosystem Informatics. Report of an NSF,

USGS, NASA Workshop on Biodiversity and Ecosystem Informatics, 2001.

E. J. O’Neil, P. E. O'Neil, and G. Weikum. The LRU-K Page Replacement Algo-
rithm for Database Disk Buffering. In Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data (SIGMOD), 1993.

R. J. Pankhurst. Practical Taxonomic Computing. Cambridge University Press,

1991.

Paradise Team. Paradise: A Database System for GIS Applications. In Proceedings
of the ACM SIGMOD International Conference on Management of Data (SIG-
MOD), 1995.

J. M. Patel, J.-B. Yu, N. Kabra, K. Tufte, B. Nag, J. Burger, N. E. Hall, K. Ra-
masamy, R. Lueder, C. Ellman, J. Kupsch, S. Guo, D. J. DeWitt, and J. F.
Naughton. Building a Scaleable Geo-Spatial DBMS: Technology, Implementation,
and Evaluation. In Proceedings of the ACM SIGMOD International Conference on
Management of Data (SIGMOD), 1997.

PostgreSQL: The World’s Most Advanced Open Source Database.
http://www.postgresql.org.

Prometheus Project.

http://www.dcs.napier.ac.uk/ prometheus/.



REFERENCES 171

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

107]

C. Raguenaud, M. Graham, and J. Kennedy. Two Approaches to Representing Mul-
tiple Overlapping Classifications: a Comparison. In Proceedings of the International

Conference on Scientific and Statistical Database Management (SSDBM), 2001.

C. Raguenaud, J. Kennedy, and P. J. Barclay. The Prometheus Taxonomic
Database. In Proceedings of the IEEE International Conference on Bioinformat-

ics and Bioengineering (BIBE), 2000.

R. Ramakrishnan and J. Gehrke. Database Management Systems. McGraw-Hill,
274 edition, 2000.

S. Ramaswamy and P. C. Kanellakis. OODB Indexing by Class Division. In Pro-
ceedings of the ACM SIGMOD International Conference on Management of Data
(SIGMOD), 1995.

J. T. Robinson. The K-D-B-Tree: A Search Structure for Large Multidimensional
Dynamic Indexes. In Proceedings of the ACM SIGMOD International Conference
on Management of Data (SIGMOD), 1981.

H. Saarenmaa. The Global Biodiversity Information Facility: Architectural and
Implementation Issues. Technical Report TR-34, European Environment Agency,

1999.

H. Saarenmaa, S. Leppajarvi, J. Perttunen, and J. Saarikko. Object-oriented
Taxonomic Biodiversity Databases on the World Wide Web. In A. Kempf and
H. Saarenmaa, editors, Internet Applications and FElectronic Information Resources

in Forestry and Environmental Sciences. Furopean Forest Institute, 1995.

G. M. Sacco. Index Access with Finite Buffer. In Proceedings of the International
Conference on Very Large Databases (VLDB), 1987.

H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley

Publishing Company, 1990.



REFERENCES 172

[108]

109]

[110]

[111]

[112]

113]

[114]

[115]

[116]

[117]

[118]

Scaleable Similarity Searching.

http://www.research.ibm.com/compsci/compbio/scaleable.html.

J. L. Schnase, J. Cushing, M. Frame, A. Frondorf, E. Landis, D. Maier, and A. Sil-
berschatz. Information Technology Challenges of Biodiversity and Ecosystem In-

formatics. Information Systems, 28(4), 2003.

K.-B. Schiirman and J. Stoye. Suffix Tree Construction and Storage with Limited
Main Memory. Technical Report 2003-06, Universitat Bielefeld, 2003.

P. H. Sellers. The Theory and Computation of Evolutionary Distances. Journal of
Algorithms, 1, 1980.

J. C. Setubal and J. Meidanis. Introduction to Computational Molecular Biology.
PWS Publishing Company, 1997.

T. F. Smith and M. S. Waterman. Identification of Common Molecular Subse-
quences. Journal of Molecular Biology, 1(147), 1981.

Species2000. http://www.species2000.org/.

B. Sreenath and S. Seshadri. The hcC-Tree: An Efficient Index Structure for Object
Oriented Databases. In Proceedings of the International Conference on Very Large

Databases (VLDB), 1994.

S. M. Stephens, J. Y. Chen, M. G. Davidson, S. Thomas, and B. M. Trute. Ora-
cle Database 10g: a Platform for BLAST search and Regular Expression Pattern
Matching in Life Sciences. Nucleic Acids Research, 33(Database issue):675-679,
2005.

R. Stevens, C. Goble, P. Baker, and A. Brass. A Classfication of tasks in bioinfor-
matics. Bioinformatics Journal, 17(2):180-188, 2001.

M. Stonebraker, J. Frew, K. Gardels, and J. Meredith. The SEQUOIA 2000 Storage
Benchmark. In Proceedings of the ACM SIGMOD International Conference on
Management of Data (SIGMOD), 1993.



REFERENCES 173

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]
[127)

128]

[129]

[130]

M. Stonebraker and L. A. Rowe. The Design of Postgres. In Proceedings of the ACM
SIGMOD International Conference on Management of Data (SIGMOD), 1986.

SWISS-PROT Protein Knowledgebase. http://www.expasy.org/sprot/.

W. Szpankowski. Awverage Case Analysis of Algorithms on Sequences. Wiley-

Interscience, 2001.

7. Tan, X. Cao, B. C. Ooi, and A. K. H. Tung. The ed-tree: An Index for Large DNA
Sequence Databases. In Proceedings of the International Conference on Scientific

and Statistical Database Management (SSDBM), 2003.

S. Tata, R. A. Hankins, and J. M. Patel. Practical Suffix Tree Construction. In
Proceedings of the 30th International Conference on Very Large Databases (VLDB),
2004.

M. A. Thomas and R. Klaper. Genomics for the Ecological Toolbox. TRENDS in
Ecology and Evolution, 19(8), 2004.

E. Ukkonen. Approximate String Matching over Suffix Trees. In Proceedings of the
4th Annual Symposium on Combinatorial Pattern Matching (CPM), 1993.

E. Ukkonen. Online Construction of Suffix-trees. Algorithmica, 14(3), 1995.
Unified Modeling Language (UML). http://www.uml.org/.

UniGene: Organized view of the transcriptome.

ftp://ftp.ncbi.nih.gov/repository /UniGene/.

P. Valduriez. Join Indices. ACM Transactions on Database Systems (TODS), 12(2),
1987.

P. Weiner. Linear Pattern Matching algorithms. In Proceedings of the IEEE Sym-
posium on Switching and Automata Theory, 1973.



REFERENCES 174

[131] H. E. Williams. CAFE: an Indexed Approach to searching Genomic Databases. In
Proceedings of the ACM SIGIR International Conference on Research and Develop-
ment in Information Retrieval (SIGIR), 1998.

[132] H. E. Williams and J. Zobel. Indexing and Retrieval for Genomic Databases. I[EEE
Transactions on Knowledge and Data Engineering, 14(1), 2002.

[133] World Conservation Monitoring Center. http://www.unep-weme.org/.

[134] S. B. Zdonik and D. Maier, editors. Readings in Object-Oriented Database Systems.
Morgan Kaufmann Publishers, 1990.



