
Geometric Search Techniques

for Provably Robust Query Processing

A THESIS

SUBMITTED FOR THE DEGREE OF

Doctor of Philosophy

IN THE

Faculty of Engineering

BY

Srinivas Karthik V.

Computer Science and Automation

Indian Institute of Science

Bangalore – 560 012 (INDIA)

December, 2019

Declaration of Originality
I, Srinivas Karthik V., with SR No. 04-04-00-10-12-13-10465 hereby declare that the material
presented in the thesis titled

Geometric Search Techniques for Provably Robust Query Processing

represents original work carried out by me in the Department of Computer Science and Automa-
tion at Indian Institute of Science during the six years.
With my signature, I certify that:

• I have not manipulated any of the data or results.

• I have not committed any plagiarism of intellectual property. I have clearly indicated and refer-
enced the contributions of others.

• I have explicitly acknowledged all collaborative research and discussions.

• I have understood that any false claim will result in severe disciplinary action.

• I have understood that the work may be screened for any form of academic misconduct.

Date: 16-Dec-2019 Student Signature

In my capacity as supervisor of the above-mentioned work, I certify that the above statements are
true to the best of my knowledge, and I have carried out due diligence to ensure the originality of the
report.

Advisor Name: Prof. Jayant R. Haritsa Advisor Signature

1

© Srinivas Karthik V.
December, 2019

All rights reserved

DEDICATED TO

The Supreme Power

- The God himself

Acknowledgements

I would like to be extremely thankful to the God, my Guru - Jagadguru Sri Sri Bharathi Teertha
Mahaswami, and my family for everything in principle. My parents’ and brother’s (Dr. Srinivas
Vivek) academic inclination and constant encouragement propelled me to take up the PhD programme
and reach this stage. I am in-debt to their sacrifices, love they have showered on me and invaluable
support throughout my academic journey. My brother has been a huge source of motivation to me, in
short, a great friend-philosopher-guide. I always enjoy the endless discussions with him on philosophy
of life and academics.

I am immensely grateful to my advisor Prof. Jayant R. Haritsa for his guidance. I am sure this
thesis would have not been possible without his support. Further, no words can express my gratitude
towards him, and will remain specially thankful for his help during important phases. It has been a
great experience working with him and feel privileged for having got a glimpse of his vast knowledge
and experience. Meetings with him has always been a pill of inspiration. His work ethics, ability to
raise the standards of students, humility and sense of humor is something that I am fond of, and would
like to imbibe them to a great extent possible.

It also has been a fantastic experience working with Dr. Vinayaka Pandit even from my IBM
days. He has been a great mentor for me both personally and professionally. Needlessly to say that
his support has shaped me as a much better researcher, and immensely thankful for introducing me to
Prof. Haritsa that eventually led me to pursue this thesis under his guidance. Dr. Sreyash Kenkre, my
another IBM colleague, has been very supportive throughout my thesis. Technical interactions with
him is something I have always cherished.

During my PhD, one of the wonderful moments personally was my marriage with Dr. Shamaa
Kamalanathan, and birth of our son Vivaswath. I am grateful to my wife for playing a very important
role during the second half of my PhD. The arrival of my son has bought a positive change in our
life, and special thanks to him for making my PhD as joyful as possible. Special thanks to my aunt
Shobhamani, in-laws, Sumana, Seema, Samanvitha and my cousins.

Needless to say that all my lab mates has immensely helped me in several aspects. Primarily,
technical discussions with Dr. Anshuman Dutt has played crucial role in this thesis. It was really a

i

Acknowledgements

nice experience closely working with Sanket Purandare. Critical feedback and discussions with Anu-
pam Sanghi is something that I would like to remember. Further, I am also grateful to Rafia, Vishesh,
Sumit, Rajmohan, Manish, Lohit, Kuntal, two Santhoshs, Davinder, Sandeep, Urvashi, Gourav, Shiv-
ani and Dhrumil. Outside of the DSL lab, I would like to thank Dr. Bruhathi, Dr. Karthik Ramachan-
dra, Ravikiran and Smitha for their valuable support.

My sincere thanks to the faculty of the Department of Computer Science and Automation for
offering excellent courses and technical discussions. Finally, I thank all the office staff especially
Mrs. Suguna , Mrs. Padmavathi, Mrs. Meenakshi, Mrs. Kusheal, Mrs. Nishitha and Mr. Shekhar for
easing the administrative tasks.

ii

Abstract

Relational Database Management Systems (RDBMS) constitute the backbone of today’s information-
rich society, providing a congenial environment for handling enterprise data during its entire life cycle
of generation, storage, maintenance and processing. The Structured Query Language (SQL) is the de
facto standard interface to query the information present in RDBMS based repositories. An extremely
attractive feature of SQL is that it is “declarative” in nature, meaning that the user specifies only the
end objectives, leaving to the system the task of identifying the optimal execution strategy to achieve
these objectives.

A crucial input to generating efficient query execution strategies, called “plans”, are the statistical
estimates of the output data volumes for the algebraic predicates present in the query. However,
in practice, these estimates, called “selectivities”, are often significantly in error with respect to the
actual values subsequently encountered during query execution. These inaccuracies arise due to a
variety of reasons including intrinsic database complexities such as data skew and correlations. The
unfortunate outcome is a poor choice of execution plan, leading to highly inflated query response
times. Therefore, achieving robustness in query execution performance has been a long-standing
open problem in the database research community.

The first success in the above quest was achieved five years ago by the PlanBouquet algo-
rithm. The algorithm provide guarantees on Maximum Sub-optimality (MSO), a metric capturing
the worst-case execution performance relative to an oracular system that magically knows the cor-
rect selectivities. The guarantees are achieved by constructing a carefully calibrated “trial-and-error”
sequence of time-budgeted plan executions that lead to run-time selectivity discovery in a space con-
structed from the error-prone predicates. However, in spite of this breakthrough, PlanBouquet
suffers from critical limitations, including: (i) huge compile-time efforts to be amenable for run-time
MSO guarantees, (ii) inability to handle queries with a large number of predicates prone to estimation
errors, and (iii) performance variability across database platforms.

In this thesis, we address all the above-mentioned issues and take a substantive step forward in
delivering practical robust query processing. Specifically, we design a new suite of robust query pro-
cessing algorithms based on potent geometrical search techniques. We begin with SpillBound,

iii

Abstract

which provides an MSO guarantee of D2 + 3D, where D is the number of predicates prone to estima-
tion errors. This is achieved by incorporating focused allocation of execution time budgets through
“spilling”, whereby operator pipelines are prematurely terminated at chosen locations in the plan tree.
The spilling feature extends PlanBouquet’s hypograph pruning of the selectivity space to a much
stronger half-space pruning. A collateral benefit is that the guarantee is platform-independent and
can be issued simply by query inspection. Further, we also prove a lower bound of D on the guaran-
tee, which shows that SpillBound is within a factor of O(D) of the best deterministic algorithm
in its class. Through an optimized variant of SpillBound, called AlignedBound, we achieve
the linear lower bound for a restricted set of environments. Finally, when empirically evaluated
on contemporary database engines over both synthetic and real-world benchmarks, SpillBound
and AlignedBound provide markedly superior robustness as compared to PlanBouquet, with
AlignedBound typically achieving single-digit MSO guarantees.

Although providing strong and portable performance guarantees, SpillBound falls prey to the
“curse of dimensionality” since the query compilation overheads are exponential in D, and contem-
porary decision-support queries often possess a high ab initio value for this parameter. We tackle this
issue in the second segment of the thesis by proposing a principled and efficient three-stage pipeline,
called Dimensionality Reduction, that reduces the effective D to “anorexic” (small absolute number)
levels even for highly complex queries. This drastic reduction results in SpillBound becoming
practical for canned queries that are repeatedly invoked by the parent application. However, for ad-
hoc queries which are issued on the fly, the overheads prove to be still too high. Therefore, in the
third segment of the thesis, we investigate the trade-off between compilation overheads and the MSO
guarantees. This leads us to a modified version of SpillBound, called FrugalSpillBound,
that explicitly leverages the concave-down trajectory typically exhibited by plan cost functions over
the selectivity space. From a theoretical perspective, FrugalSpillBound exponentially reduces
the compilation overheads for a linear increase in the MSO guarantee. Empirically, we obtain more
than three orders of magnitude reduction in exchange for a doubling in MSO.

The above robustness guarantees are welcome for many real-world query workloads that exhibit
error-prone selectivity estimation. However, it is possible that even these workloads may include
specific database queries for which the native query optimizer itself is capable of accurate selectivity
estimations, and hence efficient plan choices with an MSO close to 1. For such queries, our query
processing algorithms would be an overkill, incurring unnecessary performance penalties. Therefore,
in the last segment of the thesis, we construct a software assist, called OptAssist, that aids the user
in making the choice of whether to use the native optimizer or our robust alternatives.

iv

Abstract

Overall, in this thesis, we achieve theoretical and practical performance guarantees for SQL query
processing by leveraging a potent set of geometrical search techniques, thereby taking a major step
towards making robust query processing a contemporary reality.

v

Publications based on this Thesis

1. Srinivas Karthik, Jayant R. Haritsa, Sreyash Kenkre and Vinayaka D. Pandit
Platform-independent Robust Query Processing,
In Proc. of the 32nd Intl. Conf. on Data Engg., ICDE ’16, pages 325-336, 2016.
(Best Student Paper Award).

2. Srinivas Karthik
Robust Query Processing,
In PhD Workshop, Proc. of the 32nd Intl. Conf. on Data Engg., ICDE ’16, pages 226-230,
2016.

3. Srinivas Karthik, Jayant R. Haritsa, Sreyash Kenkre and Vinayaka D. Pandit
A Concave Path to Low-overhead Robust Query Processing,
In Proc. of the VLDB Endow., 11(13), pages 2183-2195, 2018.

4. Sanket Purandare, Srinivas Karthik and Jayant R. Haritsa
Dimensionality Reduction Techniques for Robust Query Processing,
Technical Report TR-2018-02, DSL CDS/CSA, IISc, 2018.

dsl.cds.iisc.ac.in/publications/report/TR/TR-2018-02.pdf.

5. Srinivas Karthik, Jayant R. Haritsa, Sreyash Kenkre, Vinayaka D. Pandit and Lohit Krishnan
Platform-independent Robust Query Processing,
In IEEE Trans. on Knowledge and Data Engg. (TKDE), 31(1), pages 17-31, 2019.

vi

Contents

Acknowledgements i

Abstract iii

Publications based on this Thesis vi

Contents vii

List of Figures xii

List of Tables xv

1 Introduction 1
1.1 Query Optimizer Framework . 2
1.2 Optimizer Challenges . 3
1.3 Robustness for Database Systems . 5
1.4 Prior Work . 6

1.4.1 Maximum Sub-Optimality – Robustness Metric 6
1.4.2 Plan Bouquet . 7

1.5 PlanBouquet’s Limitations . 8
1.6 Our Contributions . 9

1.6.1 Execution Phase Enhancements . 9
1.6.2 Compilation Phase Enhancements . 10
1.6.3 Deployment Aspects . 11
1.6.4 Summary . 12
1.6.5 Thesis Organization . 12

vii

CONTENTS

2 Related Work 14
2.1 Full Dependence on Estimation Module . 14
2.2 Partial Dependence on Estimation Module . 17
2.3 No Dependence on Estimation Module . 17
2.4 Other Robustness Literature . 19

3 Problem Framework and Background 21
3.1 Selectivity Spaces . 21
3.2 POSP Plans . 22
3.3 Robustness Metrics . 22

3.3.1 Maximum Sub-Optimality (MSO) . 23
3.3.2 Average Sub-Optimality (ASO) . 23

3.4 Assumptions . 24
3.5 Database and System Framework . 25
3.6 Plan Bouquet Algorithm . 25

3.6.1 One-dimensional ESS . 26
3.6.2 Multidimensional ESS . 27

4 Platform-independent Guarantees 31
4.1 Introduction . 31

4.1.1 SpillBound . 31
4.2 Building Blocks of our Algorithms . 33

4.2.1 Half-space Pruning . 33
4.2.2 Contour Density Independent Execution . 37

4.3 The SpillBound Algorithm . 38
4.3.1 2D-SpillBound . 39
4.3.2 Extending to Higher Dimensions . 42

4.4 Experimental Evaluation . 46
4.4.1 SpillBound v/s PlanBouquet . 46
4.4.2 Wall-Clock Time Experiments . 51
4.4.3 Evaluation on the JOB Benchmark . 51

4.5 Conclusions . 52

5 MSO Lower Bound and its Matching Algorithm 53
5.1 Introduction . 53
5.2 Lower Bound on MSO . 54

viii

CONTENTS

5.3 The AlignedBound Algorithm . 58
5.3.1 Contour Alignment . 58
5.3.2 Native Contour Alignment . 60
5.3.3 Induced Contour Alignment . 60
5.3.4 Predicate Set Alignment (PSA) . 61
5.3.5 Algorithm Description . 64

5.4 Experimental Evaluation . 65
5.4.1 Comparison of Empirical MSO . 65
5.4.2 Comparison of ASO . 66
5.4.3 SubOptimality Distribution . 68
5.4.4 Evaluation on the JOB Benchmark . 68

5.5 Conclusions . 69

6 Dimensionality Reduction 70
6.1 Introduction . 70
6.2 Problem Definition . 71
6.3 Outline of the DimRed Procedure . 71
6.4 Schematic Removal of Dimensions . 74
6.5 MaxSel Removal of Dimensions . 76

6.5.1 Baseline Case: 2D Selectivity Space . 76
6.5.2 Extension to Higher Dimensions . 78
6.5.3 Efficient Computation of MaxSelRemoval 79
6.5.4 Proof of Corner Inflation . 80

6.6 WeakDimRemoval techniques . 84
6.6.1 WeakDimRemoval 2D scenario . 84
6.6.2 WeakDimRemoval 3D Scenario . 87
6.6.3 WeakDimRemoval Overheads . 88

6.7 Experimental Evaluation . 89
6.7.1 Goodness of OCS Surface Fit . 89
6.7.2 Validation of Corner Inflation . 89
6.7.3 Overheads Minimization Objective . 89
6.7.4 MSO Minimization Objective . 92
6.7.5 Time Efficiency of DimRed . 92

6.8 Conclusions . 96

ix

CONTENTS

7 Reducing Overheads to Support Ad-Hoc Queries 98
7.1 Introduction . 98
7.2 Assumptions . 100

7.2.1 Axis-Parallel Concavity (APC) . 100
7.3 Frugal SpillBound for 1D ESS . 103

7.3.1 Compilation Phase . 104
7.3.1.1 Implementation of Proxy Discovery 105
7.3.1.2 Bounded Compilation Overheads 106

7.3.2 Execution Phase . 106
7.4 Frugal SpillBound for 2D ESS . 106

7.4.1 Bounded Contour-covering Set (BCS) . 108
7.4.2 Compilation Phase . 108

7.4.2.1 Algorithm Description . 109
7.4.2.2 Proof of Correctness . 109
7.4.2.3 Bounded Computational Overheads 111

7.4.3 Execution Phase . 111
7.4.3.1 Maintaining the η constraint . 111
7.4.3.2 Half-Space Pruning and Contour Density Independent Execution . 112
7.4.3.3 Contour Covering Set identification 112

7.5 Multi-Dimensional FSB . 113
7.5.1 Multi-D Algorithm . 113
7.5.2 Proof of Correctness . 114

7.6 Experimental Evaluation . 117
7.6.1 Empirical Validation of APC . 117
7.6.2 Theoretical Characterization of γ − η . 117
7.6.3 Empirical Characterization of γ − η . 117
7.6.4 Validation of MSO Relaxation Constraint 120
7.6.5 Dependency of γ on η . 120
7.6.6 Wall-Clock Time Experiments . 120
7.6.7 JOB Benchmark Results . 121

7.7 Related Work . 123
7.7.1 Compilation Overheads . 123

7.7.1.1 BCG . 124
7.7.1.2 Concavity implies BCG . 125

7.8 Conclusions . 125

x

CONTENTS

8 Deployment Aspects 126
8.1 Essential Engine Features . 126

8.1.1 Selectivity Monitoring . 126
8.1.2 Selectivity Injection . 126
8.1.3 Abstract Plan Costing and Execution . 127
8.1.4 Cost-budgeted Executions . 127
8.1.5 Spilling . 127

8.2 Efficiency Features . 128
8.2.1 Parallelizing Compilation Phase . 128
8.2.2 OptAssist . 128

8.3 Relaxing Perfect Cost Model Assumption . 135
8.4 Architecture Description . 136
8.5 Performance Comparison b/w Native Optimizer and Proposed Robust Techniques . . 137

9 Conclusions and Future Work 138
9.1 Conclusions . 138
9.2 Future Work . 140

Bibliography 143
9.A Query Text . 151

xi

List of Figures

1.1 Example Query and an Optimizer Chosen Plan . 1
1.2 Query Optimizer Framework . 2
1.3 Example of Large Estimation Errors . 4
1.4 Sample 2D PSS . 7
1.5 Architecture of Proposed Robust Database Engine 12

2.1 Approaches to tackle errors in Cardinality Model 15

3.1 TPC-DS Query 27 (SPJ version) . 22
3.2 Plan Bouquet with single dimension ESS . 26
3.3 3D Optimal Cost Surface . 28
3.4 Isocost Contours in 2D ESS . 29

4.1 SpillBound’s Execution Trace . 32
4.2 Half-Space Pruning . 34
4.3 Execution Plan Tree of TPC-DS Query 26 . 35
4.4 Choice of Contour Crossing Plans . 38
4.5 Execution trace for TPC-DS Query 91 . 40
4.6 Comparison of MSO Guarantees (MSOg) . 47
4.7 Comparison of Empirical MSO (MSOe) . 48
4.8 Comparison of ASO performance . 50
4.9 Sub-optimality Distribution (5D Q84) . 50

5.1 ESS for Theorem 5.1 . 56
5.2 Contour Alignment . 59
5.3 Comparison of Empirical MSO (MSOe) . 66
5.4 Comparison of ASO performance . 67
5.5 Sub-optimality distribution (5D Q19) . 68

xii

LIST OF FIGURES

6.1 TPC-DS Query 27 (SPJ version) . 71
6.2 DimRed Pipeline . 72
6.3 Example 2D PSS . 77
6.4 3D PSS - Calculation of αY . 79
6.5 MSO Profile for Greedy Dimension Removal . 80
6.6 Original OCS and OCS fitted with an APL function per region of the partitioned input

domain . 83
6.7 WeakDimRemoval for D = 2 . 85
6.8 WeakDimRemoval 3D Scenario Phase 1 . 88
6.9 Dimensionality Reduction for Overheads Minimization 91
6.10 MSO Profile for Overheads Minimization . 92
6.11 Dimensionality Reduction for MSO Minimization 93
6.12 MSO Profile for MSO Minimization . 95

7.1 FSB η − γ Tradeoff for 4D Q26 . 100
7.2 Optimal Cost Surface (OCS) . 101
7.3 Validation of Axis-Parallel Concavity . 102
7.4 Concave OCS . 103
7.5 Bounded Contour-covering Set (BCS) . 108
7.6 Identification of BCS . 110
7.7 Theoretical and Empirical Overheads Reduction (η = 2) 119
7.8 Empirical MSO Ratio (η = 2) . 119
7.9 FSB Tradeoff (Theoretical) . 121

8.1 Cumulative distribution function of the sub-optimalities wrt ESS Coverage 130
8.2 Maximum value of sub-optimality function captured at line segment’s end points . . 131
8.3 Perimeter Band of the ESS . 133
8.4 Accuracy of MSOplan(P) value predicted from ESS Corners 134
8.5 Accuracy of MSO80

plan(P) value predicted from ESS perimeter band 135
8.6 Architecture of Proposed Robust Database Engine 136
8.7 Comparison of execution times . 137

9.1 Q7 (Based on TPC-DS Query 7) . 151
9.2 Q15 (Based on TPC-DS Query 15) . 151
9.3 Q18 (Based on TPC-DS Query 18) . 151
9.4 Q19 (Based on TPC-DS Query 19) . 152

xiii

LIST OF FIGURES

9.5 Q21 (Based on TPC-DS Query 21) . 152
9.6 Q22 (Based on TPC-DS Query 22) . 152
9.7 Q26 (Based on TPC-DS Query 26) . 152
9.8 Q27 (Based on TPC-DS Query 27) . 153
9.9 Q36 (Based on TPC-DS Query 36) . 153
9.10 Q37 (Based on TPC-DS Query 37) . 153
9.11 Q40 (Based on TPC-DS Query 40) . 154
9.12 Q53 (Based on TPC-DS Query 53) . 154
9.13 Q62 (Based on TPC-DS Query 62) . 154
9.14 Q67 (Based on TPC-DS Query 67) . 155
9.15 Q73 (Based on TPC-DS Query 73) . 155
9.16 Q84 (Based on TPC-DS Query 84) . 155
9.17 Q89 (Based on TPC-DS Query 89) . 155
9.18 Q91 (Based on TPC-DS Query 91) . 156
9.19 Q96 (Based on TPC-DS Query 96) . 156
9.20 Q99 (Based on TPC-DS Query 99) . 156

xiv

List of Tables

3.1 NOTATIONS . 30

4.1 SUB-OPTIMALITY CONTRIBUTION OF ICk+1 . 49
4.2 SpillBound EXECUTION ON TPC-DS QUERY 91 51
4.3 RESULTS ON JOB BENCHMARK WRT MSO . 52

5.1 COST OF ENFORCING CONTOUR ALIGNMENT . 61
5.2 MAXIMUM PENALTY FOR AB . 67
5.3 RESULTS ON JOB BENCHMARK WRT MSO . 68

6.1 Summary Performance Characterization . 73
6.2 Results for TPC-DS Q27 . 74
6.3 RMSE (TPC-DS) . 90
6.4 RMSE (JOB) . 90
6.5 DimRed EFFICIENCY: TPC-DS QUERY 91 . 93
6.6 DimRed TIME EFFICIENCY: TPC-DS (OVERHEADS MINIMIZATION) 94
6.7 DimRed TIME EFFICIENCY: JOB (OVERHEADS MINIMIZATION) 95
6.8 DimRed TIME EFFICIENCY: TPC-DS (MSO MINIMIZATION) 96
6.9 DimRed TIME EFFICIENCY: JOB (MSO MINIMIZATION) 97

7.1 % LOCATIONS IN ESS SATISFYING APC . 118
7.2 FSB EXECUTION ON TPC-DS QUERY 19 . 122
7.3 RESULTS ON JOB BENCHMARK WRT γ . 122
7.4 RESOURCE USAGE (100 GB) . 123

xv

Chapter 1

Introduction

Database Management Systems (DBMS) typically model data in the form of tables, called relations,
and query the information using the Structured Query Language (SQL). SQL is declarative in nature
and hence specifies what has to be done, and not how to do it. Let us consider a simple example SQL
query on the TPC-DS benchmark database as shown in Figure 1.1 (a). The query lists details of order
sales from stores that are sold in a particular year.

(a) Example Query (EQ) (b) Optimizer Chosen Plan for EQ

Figure 1.1: Example Query and an Optimizer Chosen Plan

Given a query, there exist a large number of semantically equivalent plans that can be used to pro-
cess the query, which are exponential in the number of relations. Associated with each plan is its cost,
which is typically a measure of its expected query response time. Since, the cost difference between
the best execution plan and a randomly chosen one can be very high, database systems incorporate a
query optimizer module to automatically find the best query execution strategy. Figure 1.1 (b) cap-
tures the best plan for the SQL query listed in Figure 1.1 (a), as chosen by an optimizer. The plan uses

1

Sequential scan access path for store sales, and Index scan for date dim. Finally, they are joined
using the Hash join algorithm.

1.1 Query Optimizer Framework
Let us now see the framework used by modern query optimizers1. These query optimizers each have
their own “secret sauce” to identify the best (i.e. cheapest/fastest) plan for answering declarative SQL
queries. However, the de-facto standard underlying strategy present in all these systems, which was
pioneered by the System R project at IBM Research [SAC+79], is the following:

1. First, apply a variety of heuristics to restrict the exponential plan search space to a manageable
size. For instance, the early database systems only considered left-deep plan trees.

2. Next, estimate with a cost model and a dynamic-programming-based processing algorithm, the
efficiency of each of these candidate plans.

3. Finally, choose the plan with the lowest estimated cost.

Figure 1.2: Query Optimizer Framework

A pictorial representation of the canonical query optimization framework is shown in Figure 1.2.
The input is the declarative SQL query and the output is the optimal (i.e. cheapest/fastest) execution
plan. Its core processing is mostly implemented by the dynamic programming-based search algo-
rithm, which leverages the fact that the globally optimal plan can be incrementally built up using

1Some of the contents in the rest of the chapter, corresponding to standard material in query optimization, are bor-
rowed from [Har18] with the author’s consent.

2

the locally optimal solution for each operator. There are two essential models that serve as inputs to
this process, namely, the cardinality estimation and the cost estimation models, which are described
below.

1. Cardinality Estimation Model: This model estimates the volume of data, measured in number of
database rows, that flows from one operator to the next in the plan tree. For the example query,
the cardinalities are estimated for the filter predicate (d year = 2018) and the join predicate
(date dim ./ store sales), as captured in red coloured text in Figure 1.3 (a). Further, 365

out of 7.3 × 105 tuples are estimated to pass through the (d year = 2018) predicate. These
estimates are a function of the data distributions within the relational columns, and the data
correlations across the columns. The individual column distributions are usually approximated,
in a piece-wise manner, using histogram-based summaries.

2. Cost Estimation Model: This model is responsible for estimating the time taken for processing
the data at each operator in the plan. As shown in Figure 1.2, its estimates, which are usually
computed on a normalized per-row basis, are dependent on the underlying computing platform
and the software implementation of the database engine. The overall cost of each operator is
the product of the estimated row cardinalities (as obtained from the cardinality model) and the
per-row cost estimates.

1.2 Optimizer Challenges
In practice, both the cardinality and cost estimation models are erroneous, often leading to poor
choices of query execution plans [Loh14]. In particular, the estimates in cardinality model are of-
ten significantly in error with respect to the actual values subsequently encountered during query
execution. Such errors, which can even be in orders of magnitude in real database environments
[MRS+04, Loh14, LGM+15], arise due to a variety of well-documented reasons [SLMK01, Loh14],
including outdated statistics, coarse summaries, attribute value independence assumptions, complex
user-defined predicates, and error propagation in the query plan tree [IC91]. Moreover, in industrial
environments such as ETL (Extract, Transform, Load) workflows, the statistics may actually be un-
available due to data source constraints, forcing the optimizer to resort to “magic numbers” for the
cardinality values (e.g. 0.1R for equality selections on columns of a relation with R rows [SAC+79]).

Example cardinality estimation errors for our example query, corresponding to huge overesti-
mates, as can be seen in Figure 1.3 (a). The query was run over a slightly modified version of 100
GB TPC-DS database, wherein less than 10 tuples were inserted to the original data. In the figure, the
cardinalities shown in red colour map to the estimated cardinalities whereas the one shown in green

3

colour correspond to the actual cardinalities. For instance, the estimated cardinality of the query out-
put is 13 million, while the actual is just 1! However, if we magically had got the estimates correct,
then the resulting optimal plan is shown in Figure 1.3 (b). The estimation errors originated from the
filter equality predicate (d year = 2018) wherein the optimizer estimated cardinality for the predicate
(i.e., 365) was based on the invalid uniform data distribution assumption. Then the error propagated
to the upper join operator, with the error getting magnified again due to the uniformity assumption
wrt primary key and foreign key join getting violated.

(a) Estimated and Actual Cardinalities (b) Optimal Plan

Figure 1.3: Example of Large Estimation Errors

The scale of performance degradation, in terms of query response time, faced by database queries
arising out of the poor choices of execution plans, can be huge - often in orders of magnitude - as
compared to an oracle that magically knows the optimal plan for processing the query. As a case in
point, for our example query, the slowdown in query response time, under PostgreSQL, relative to
the optimal plan's response time, exceeds four orders of magnitude! – the optimal plan took less than
around 70 ms whereas the time taken by the optimizer chosen plan shot upto around 30 mins.

Finally, apart from the obvious negative impact on user productivity and satisfaction, there are
also financial implications of this performance degradation – for instance, it is reported that the lack
of robustness can contribute as much as a third to the total cost of ownership for a database system
– primarily due to lost efficiency, over-provisioning of resources and increased human administrative
costs [WKG09].

These challenges in query optimization are corroborated by the following statements from leading
academic and industrial experts:

• Dr. Surajit Chaudhuri, Microsoft Research (2009, 2012): 1) To be provocative, one can say that

though the optimizers of today’s relational databases are able to do surprisingly sophisticated

4

optimization because of the power of transformation rules and their extensible framework; yet

they have significant weaknesses that lead to unexpectedly poor selection of execution plans at

times [Cha09]. 2) Almost all of us who have worked on query optimization find the current

state of the art unsatisfactory with known big gaps in the technology [Par12].

• Dr. Guy Lohman, IBM Research (2014): The wonder isn't “Why did the optimizer pick a bad

plan?” Rather, the wonder is “Why would the optimizer ever pick a decent plan?”[Loh14] !

• Prof. Jeffrey Naughton, University of Wisconsin - Madison (2016): In database query evalua-

tion, the difference between a good plan and a bad or even average plan can be multiple orders

of magnitude - so successful query optimization makes the difference between a plan that runs

quickly and one that never finishes at all. Accordingly, since the seminal papers in the 1970s,

query optimization has received and continues to receive a great deal of attention from both the

industrial and research database communities [Nau16].

In a nutshell, in spite of the long-standing research in this area, the query processing domain has
largely remained a black art and fail to provide robust query performance.

1.3 Robustness for Database Systems
The performance of database systems substantially depends on the accuracy of the underlying esti-
mation models. Due to the inaccuracies in the model, heavy performance penalties are being paid.
Therefore, it is highly desirable to design robust solutions that provide performance stability. The
importance of robustness in query performance is also showcased by the fact that there have been no
less than three Dagstuhl seminars on this topic [dag10, dag12, dag17] over the last decade.

Robust query processing for database systems can be seen as providing good and predictable

performance, even in case of highly uncertain database environments. However, the definition of
robustness itself has been debated for a long time, and no consensus has been achieved [dag10]. For
instance, one or more of the following could be a notion of robustness [Har19]:

• Worst-case performance improvement possibility at the expense of average-case.

• Graceful performance degradation as opposed to “performance cliffs”.

• Ability to seamlessly scale with work-load complexity, database size, distributional skew and
correlations.

• Providing strong theoretical guarantees wrt an oracular ideal.

5

Perhaps, robustness encompasses all of these scenarios with the specific choices being application-
dependent.

It is known that the cardinality model induces orders of magnitude errors, thus having huge impact
on plan choice. However, the same is not true with the cost model wherein, in general, it induces
relatively small errors thus having limited impact on plan choice [Loh14]. Hence, this thesis focuses

on mitigating the errors induced by the cardinality model with the aim of providing strong theoretical

guarantees wrt an oracular ideal.

1.4 Prior Work
A considerable body of literature exists on proposals to tackle this classical problem. The proposed
techniques include: (a) Improving estimation accuracy through novel statistical models, sampling and
execution-feedback mechanisms [AC99, MNS09, TDJ13]; (b) Identifying execution plans that are rel-
atively less sensitive to estimation errors [CHG02, BC05, DDH08, WBM+18]; and (c) Dynamically
changing plans at run-time if estimation errors are detected during the execution of the originally
chosen plan [KD98, BBD05, NG13].

While all these prior techniques provide novel and innovative formulations, a common limitation
is their inability to furnish performance guarantees. That is, we can only hope for good performance,
but cannot provide provable bounds in this regard. A notable exception to the above mentioned prior
literature is the PlanBouquet algorithm [DH16], proposed five years ago. The algorithm provide
guarantees on Maximum Sub-optimality (MSO), a metric capturing the worst-case execution per-
formance relative to an oracular system that magically knows the correct selectivities.

The goal of this thesis is to design query processing algorithms that provide strong theoretical

guarantees on the MSO metric. Given that the PlanBouquet technique provide bounded MSO
guarantees, our work builds on this framework. Let us now see the precise definition of MSO followed
by the brief description of the PlanBouquet algorithm.

1.4.1 Maximum Sub-Optimality – Robustness Metric
MSO of a query processing algorithm captures the worst-case ratio, over the entire modeled selectiv-
ity space, of its execution cost with respect to the optimal cost incurred by an oracular system that
magically knows all the correct selectivity values. Here, selectivity refers to normalized cardinality
which is a widely used terminology in database literature.

The precise mathematical definition of MSO is as follows: Assume that we have an multi-
dimensional selectivity space, referred to as the Predicate Selectivity Space (PSS). Here, the dimen-
sions in PSS correspond to predicates in the input query for which the optimizer estimation module
is invoked. A sample PSS on two predicates X and Y , with an example estimation error, is shown in

6

Figure 1.4. The two axes in the figure correspond to the varying selectivities, respectively from (0, 1],
of the two predicates.

Figure 1.4: Sample 2D PSS

A traditional query optimizer will first estimate qe ∈ PSS, and then use Pqe to execute the query.
However, from execution we may infer that the actual query location to be at qa ∈ PSS. LetCost(P, q)
represent the cost of executing a generic plan P at an arbitrary query location q. Then, the sub-
optimality of using Pqe , relative to an oracle that magically knows the actual location, and therefore
uses the ideal plan Pqa , is defined as:

SubOpt(qe, qa) =
Cost(Pqe , qa)

Cost(Pqa , qa)
(1.1)

With this characterization of a specific (qe, qa) combination, the MSO that can potentially arise
over the entire PSS is given by:

MSO = max
(qe,qa)∈PSS

(SubOpt(qe, qa)) (1.2)

As per this formulation, MSO values range over the interval [1,∞). Then, the objective is to design

query processing algorithms which minimize MSO.

1.4.2 Plan Bouquet
The PlanBouquet algorithm has two phases - namely, compilation and execution. In the compile-
time phase, the algorithm constructs the D-dimensional PSS. The next step is to identify, through

7

repeated invocations of the query optimizer, the “parametric optimal set of plans” (POSP) that cover
the entire selectivity space contained in the PSS. This overlay exercise is carried out at a discretized
resolution r along each dimension of the PSS, incurring a total of θ(rD) calls to the query optimizer.

At run-time, starting from the origin of the PSS and moving outwards in the space, a carefully
chosen subset of POSP plans, called the “plan bouquet”, is sequentially executed until one reaches
completion, with each execution assigned a time limit equal to the plan’s optimizer-assigned cost. By
sequencing the plan executions and their time limits in a calibrated manner, the execution overheads
entailed by this “trial-and-error” exercise can be bounded, irrespective of the query location in the
space. In particular, it is shown that MSO ≤ 4 ∗ |plan bouquet|. A more precise bound is given later
in Chapter 3.

1.5 PlanBouquet’s Limitations
Notwithstanding PlanBouquet’s welcome robustness, the framework suffers from key limitations
on both execution and compilation phases, as listed below:

• Execution Phase: The plan bouquet set, and hence the previously mentioned MSO guarantee, is
a function of not only the query, but also the optimizer’s behavioral profile over the underlying
database platform (including data contents, physical schema, hardware configuration, etc.). As
a result the guarantee value becomes highly variable, depending on the specifics of the current
operating environment.

• Compilation Phase: In this phase, PlanBouquet essentially needs to construct the PSS in
order to be amenable for MSO guarantees in the execution phase. These efforts are exponential
in the PSS dimensionality. This leads us to the following issues:

(a) High Dimensional Queries: Since the contemporary OLAP queries often have high ab ini-
tio dimensions, the time consumed in this phase becomes impractical after six dimensions,
even on contemporary servers.

(b) Ad-hoc Queries: For queries upto to six dimensions, PlanBouquet’s compilation ef-
forts are manageable for canned queries, which are repeatedly invoked by the parent ap-
plication. However, for ad-hoc queries that are issued on the fly, the overheads prove to
be still too high.

(c) Computation of Guarantee Value: As the MSO guarantee are a function of the cardinality
of the plan bouquet set, even just computing the guarantee value, let alone the execution,
requires substantial investments in preprocessing overheads.

8

1.6 Our Contributions
In this thesis, we address all the above-mentioned issues and take a substantive step forward in deliv-
ering practical robust query processing. Specifically, we design a new suite of robust query processing
algorithms based on a potent set of geometrical search techniques. Our contributions in this thesis, in
terms of the enhancements over PlanBouquet in execution and compilation phases, are described
next.

1.6.1 Execution Phase Enhancements
Our objective here is to develop a robust query processing approach that offers a strong MSO bound
which is solely query-dependent, irrespective of the underlying database platform. That is, we desire
a “structural bound” instead of a “behavioral bound”.

SpillBound

With the above goal, we present a new query processing algorithm, called SpillBound, that
achieves this objective in the sense that it delivers an MSO bound that is only a function of D, the
number of predicates in the query that are prone to selectivity estimation errors. Moreover, the depen-
dency is in the form of a low-order polynomial, with MSO expressed as D2 + 3D. Consequently, the
bound value becomes: (i) independent of the database platform under the assumption that D remains
constant across the platforms, (ii) known upfront by merely inspecting the query, and not incurring
any compilation overheads, and (iii) certifiably low in value. These benefits are attained through exe-
cuting plans in spill-mode wherein the operator pipelines are deliberately terminated at specific nodes
of a plan tree. The spilling feature extends PlanBouquet’s hypograph pruning of the selectivity
space to a much stronger half-space pruning.

Our experiments, under PostgreSQL, indicate that for most part, SpillBound provide similar
guarantees to PlanBouquet, and occasionally, tighter bounds. More pertinently, the empirical

MSO of SpillBound is significantly better than that of PlanBouquet for all the queries. As a
case in point, for TPC-DS Query 26 with 4 error-prone predicates, the MSO guarantee is close to 40
with PlanBouquet, but comes down to 28 with SpillBound. With regard to empirical MSO, the
value decreases from PlanBouquet’s 30.6 to 13 for SpillBound. The SpillBound algorithm
and its experimental results are presented in Chapter 4.

LowerBound

At this juncture, a natural question to ask is whether some alternative selectivity discovery algorithm
can provide better MSO bounds than SpillBound. In this regard, we prove that no deterministic
technique can provide an MSO bound less than D. Therefore, the SpillBound guarantee is no

9

worse than a factor O(D) as compared to the best possible algorithm in its class.

AlignedBound

Given this quadratic-to-linear gap on the MSO guarantee, we seek to characterize scenarios in which
SpillBound’s MSO approaches the lower bound by exploiting the geometric locations of the plans
along the boundary of the selectivity space. This leads us to the design of AlignedBound algorithm
that delivers an MSO in the platform-independent range [2D + 2,D2 + 3D]. Further, its empirical
performance is typically closer to the lower end of its range, i.e. 2D+2, and often provides substantial
benefits for query instances that are challenging for SpillBound. For instance, AlignedBound
brings the MSO of the previously-mentioned Q26 test case down to 9.2. Moreover, in the absolute
sense, AlignedBound consistently collapses the enormous MSOs which are incurred with contem-
porary industrial-strength query optimizers, down to single digit MSO guarantees. The lower bound
and AlignedBound algorithm with its empirical performance, are covered in Chapter 5.

1.6.2 Compilation Phase Enhancements
Moving our attention to compilation phase enhancements, our objective is to reduce the compilation
efforts of SpillBound class of techniques so as to be amenable for canned and ad-hoc queries
of high-dimensional selectivity spaces. We achieve this in two stages: Firstly, identify removable

dimensions with the objective of minimizing compilation efforts while not violating the original MSO
guarantees. Secondly, given the reduced set of dimensions, we (further) reduce the compilation efforts
with moderate increase in MSO values.

Dimensionality Reduction

Although SpillBound class of techniques provide strong and platform independent guarantees,
they suffer from the curse of dimensionality on two fronts – firstly, the overheads of constructing the
PSS which are exponential in the number of its dimensions; and secondly, the MSO guarantees are
quadratic in this dimensionality. Since contemporary OLAP queries often have more than 15 ab initio
PSS dimensions, a legitimate question that arises is whether SpillBound can be made practical for
current database environments.

In Chapter 6, we tackle this problem by presenting a principled and efficient dimensionality reduc-

tion process, called DimRed. This procedure incorporates a pipeline of reduction strategies whose
collective benefits ultimately result in PSS dimensionalities that can be efficiently handled by mod-
ern computing environments. Further, the output of this process is the identification of impactful

error-prone predicates which collectively form the Error Selectivity Space (ESS).
Our empirical results indicate that DimRed is consistently able to bring down the PSS dimen-

sionality of the workload queries, some of which are as high as 19, to 5 or less. Further, not only the

10

preprocessing time taken reduces significantly, even the resulting MSOs are significantly better than
those on the original system. In general, reductions are substantial enough to be useful in practice. As
a case in point, for a query based on Q27 from TPC-DS, the original dimensionality of 9 is brought
down to as low as 2. Further, the preprocessing time for r = 100, is reduced from impractically high

value (more than a year) to few hours, and the MSO also saw a huge improvement from 108 to 20.

Frugal SpillBound

Even though DimRed algorithm provide substantial reduction in compilation overheads, a major
limitation of SpillBound is that the reduced overheads are manageable for canned queries but still
too high for ad-hoc queries.

With an objective of extending SpillBound to handle ad-hoc queries, in Chapter 7, we propose
FrugalSpillBound algorithm which provably achieve significant reductions in the compilation
overheads at the cost of mild relaxation on the MSO guarantees. The algorithm is designed lever-
aging an important observation that plan cost functions typically exhibit a concave down behaviour
wrt predicate selectivities. The good news is that the tradeoff between the relaxation factor on the
MSO guarantees and the relative reduction in compilation overheads is extremely attractive. Using
the contemporary multi-core architectures, efficiency in handling of ad-hoc queries is increased by
leveraging the inherent parallelism available in the ESS construction.

Our performance results indicate that, for twice relaxation in MSO guarantees, two orders of
magnitude theoretical reduction in overheads is routine, and empirically, the benefits are more than
three orders of magnitude. For instance, FrugalSpillBound brings the compilation overheads
of the previously-mentioned Q27 from few hours to few seconds on a well-provisioned multi-core
machine!

1.6.3 Deployment Aspects
An important aspect during the deployment of our technique is that there exist real-workloads which
may include specific database queries for which the native query optimizer itself is capable of accurate
selectivity estimations, and hence efficient plan choices with an MSO close to 1. For such queries,
our query processing algorithms would be an overkill, incurring unnecessary performance penalties.
In order to address this issue, we have built a software assist, OptAssist, which aids the user to
choose the better of our proposed robust algorithms or the native optimizer for a given query instance.

The complete architecture of our proposed robust database engine in terms of the flow diagram is
captured in Figure 1.5. The architecture has a driver layer that implements our proposed techniques
by interacting with the underlying database engine. An input query first goes through the DimRed
component to decide the set of removable dimensions. The query’s impactful error-prone dimensions

11

are then fed into OptAssist, which helps the user to decide whether to choose a robust algorithm
(either, SpillBound or FrugalSpillBound based on the query being respectively canned or
ad-hoc) or the native optimizer. Once this is decided, if the native optimizer is chosen then the query
results are produced using its plan choice. If not, based on the chosen robust algorithm, it goes
through the compilation phase, i.e., generating the ESS. After this phase, the driver interacts with
the executor module to finally produce the query results. Specifically, the driver layer, for every
execution, chooses the plan and its execution time limit which is a function of monitored selectivity

from previous executions. The OptAssist along with essential features required for deployment of
our proposed robust database engine are presented in Chapter 8.

Figure 1.5: Architecture of Proposed Robust Database Engine

1.6.4 Summary
In this thesis, with the goal of achieving practical and provable SQL query processing, we build on
the earlier proposed PlanBouquet framework. Specifically, we propose a suite of robust query
processing algorithms that overcome the key limitations of the PlanBouquet framework by lever-
aging a potent set of geometrical search techniques. Overall, our proposed techniques corroborated
with strong theoretical guarantees take a substantive step forward in practical robust query processing.

1.6.5 Thesis Organization
The remainder of the thesis is organized as follows: We start with reviewing the related literature in
Chapter 2. This is followed by a formal description of the robust query processing problem, along

12

with the underlying assumptions and notations in Chapter 3. Platform-independent MSO guarantees
are presented in Chapter 4. In the subsequent chapter, i.e. Chapter 5, lower bound results on MSO and
an algorithm to achieve tighter MSO guarantees are described. Then, Chapter 6 discusses techniques
to handle high dimension queries. Next, we move on to presenting algorithms to handle ad-hoc
queries in Chapter 7. The OptAssist component for helping the user to choose between the better
of our proposed robust query processing algorithm and the native optimizer, and the essential features
required for the deployment of the proposed architecture are enumerated in Chapter 8. We conclude
the thesis and discuss the future directions in Chapter 9.

13

Chapter 2

Related Work

In this chapter, we discuss the previous work related to robustness in database query processing. We
start with presenting the prior work related to cardinality estimation and then describe remaining work
in robust query optimization and processing.

Since the pioneering work of System R [SAC+79], there has been a plethora of work with respect
to different aspects of query optimization. The approaches include improving the statistical quality of
the meta-data through improved summary structures [MNS09, TDJ13], feedback-based adjustments
[AC99], on-the-fly re-optimization of queries [KD98, BBD05, NG13] and identifying robust plans
that are relatively less sensitive to estimation errors [CHG02, BC05, DDH08, WBM+18]. Although
these approaches had novel formulations, they were unable to provide performance guarantees. As
mentioned in the Introduction, the PlanBouquet framework [Dut] was the first work to provide
bounded guarantees on worst-case performance wrt cardinality estimation errors – the current thesis
builds on this work.

The related literature based on approaches to attack this chronic problem, as captured in Figure 2.1,
can be broadly classified into: fully relying on selectivity estimation process to its partial dependence,
and finally to no reliance on it. Our work and PlanBouquet share a significant fraction of our prior
literature. Thus, here, we summarize the salient features of the common portion and request the reader
to refer to [Dut, YHM15] for its details.

2.1 Full Dependence on Estimation Module
We now describe techniques that primarily try to improve the selectivity estimates, and then choose
the best plan based on these estimates. In other words, the chosen plan’s quality is primarily a function
of the accuracy of the estimates.

Histograms and sampling are widely used approaches for selectivity estimation. Typically, the

14

Figure 2.1: Approaches to tackle errors in Cardinality Model

eventual estimates are based on assumptions such as Attribute Value Independence (AVI) and certain
uniformity of data distributions. Unfortunately, in practice none of these approaches can guarantee
accurate estimates. However, one advantage of histogram based approaches is that, in certain scenar-
ios, one can deduce deterministic upper and lower bounds on selectivities, while such bounds may
not be feasible with non-histogram approaches.

A comprehensive survey on the standard estimation techniques is delineated in [Ioa03]. More
recently proposed along this thread is the DigitHist technique [SDG17], which is a histogram sum-
mary for selectivity estimation. The key idea is to use multi-dimensional and its one-dimensional
histograms along regular grids of different resolutions. Although their approach, while being re-
stricted to filter predicates, improves the state-of-the-art accuracy. However, the experimental results
still report nearly four orders of magnitude multiplicative (or relative) error in selectivity estimation
quality, on an average, on certain datasets.

On the sampling front, recently Index-based join sampling (IBJS) for join estimation is proposed
in [LRG+17]. In this work, for a given sampling budget, the budget is spent in bottom-up manner
to get the estimates of the intermediate results, and falls back to underlying engines estimates as the
budget gets exhausted. Though the approach improves on the native optimizer’s estimates on average,
the paper still reports more than 106 multiplicative error in cardinality estimates in worst-case. Further,
IBJS is heavily dependent on having suitable indexes. Combined Selectivity Estimation (CSE), a
novel approach combines sampling with synopses for the purpose of estimating the selectivity of
conjunctive predicates in [MMK18]. They only handle estimation of conjunctive filters of single

15

relation queries, and not that of standard benchmark queries involving multiple joins.
A two-level join sampling (TLJS) for join size estimation is proposed in [CY17], but their scheme

works for at most two joins. Furthermore, their techniques require a sample size of around 1% for
good accuracy. Similar is the case in [KHBM17] wherein Kernel Density Estimation (KDE) for
estimating join selectivities. The evaluation of the proposed technique is performed for only upto three
joins and, for 1% sample size, reports more than three orders of magnitude multiplicative errors on
the estimation quality. The above mentioned techniques use a sample of around 1% of the underlying
data size. Thus, running into scalability issues as the data grows, especially, in Big Data scenarios.

Machine Learning Techniques

After having seen some of the recent works on improving estimation using histograms and sampling,
let us now look into the novel application of Machine Learning Techniques for the same. Here is an
interesting quote made in [KYG+18]: Applications of machine learning to databases internals is still

the subject of significant debate this year and will probably continue to be a contentious question

for years to come. One of the recent and initial works which try to explore the possible application
of deep learning techniques to query optimization is [OBGK18]. They use neural networks (NN
Model), and their work is in its stages showing results for estimation of only single join. Along
similar lines, a multi-set convolutional network (MSCN) deep learning technique is applied for join
cardinality estimation in [KKR+19]. They also improve the state-of-the-art estimation accuracy, as
well as addressing 0-tuple situations in case of base table samples. This scenario can happen in
sampling based techniques when no tuples gets selected in base table samples due to very selective
predicates. While their empirical evaluation is limited to four joins, they report around three orders
of magnitude relative estimation errors in worst-case. Similar attempt is made in [DWN+19], which
uses neural networks to improve the estimation quality but the scope of their work is limited to multi-
dimensional range predicates.

Remark 1: It has to be noted that there have been similar efforts in the past which try to improve the
quality of histograms using feedback information such as self-tuning histograms (STHoles) [AC99,
BCG01, KMSB15]. But inspite of these efforts we see large errors in the cardinality model. In
general, the eventual model built using machine learning techniques inherently run into the issue of
being predominantly dependent on historical training data. It is known that there exist scenarios where
query performance is sensitive to minor changes in data. It is unlikely that current machine learning
techniques capture these changes until they become part of training. Finally, currently none of these
approaches are amenable to strong query performance guarantees. Hence, it would be an important
future work for machine learning techniques to address the above issues.

16

Remark 2: The training phase of the machine learning techniques could be seen analogous to the
initial compilation phase of our proposed robust algorithms. However, the outcome of our algorithms
is stronger since we can provide guarantees on the worst-case query performance. Moreover the
training requires a lot of thought about the choice of queries, etc., whereas ours is straightforward.

2.2 Partial Dependence on Estimation Module
In this category of techniques, the plan(s) used during execution are a function of both the optimizer
compile-time estimates and the run-time monitoring of selectivities, thus partially depending on the
estimation module.

Well known reoptimization techniques such as POP [MRS+04] and Rio [BBD05] fall into this
category of partial dependence on estimation module. They initially choose and execute a plan based
on the estimates and then make an re-optimization if they find the estimates to be significantly different
from the actual ones found during execution. Based on this information, a re-optimization may be
triggered followed by execution of the new plan from scratch or using intermediate results. This
whole process is continued until end of query execution. Both POP and Rio are based on heuristics
and do not provide any performance bounds. Further, POP may get stuck with a poor plan since its
selectivity validity ranges are defined using structure-equivalent plans only. Similarly, Rio’s sampling-
based heuristics for monitoring selectivities may not work well for join-selectivities, and its definition
of plan robustness based solely on the performance at the corners of the PSS has not been validated.

One of the recent approaches along this line is the sampling-based query re-optimization (SRO)
[WNS16]. Here, first the optimizer chosen plan (based on its estimates) is obtained, and then the
plan is executed on sample data (instead of the original data) drawn independently from each table.
Since the samples are independent, the sample size must be quite large to reduce the risk of empty
join results (the paper uses 5% of the relation size). In every execution, the selectivity estimates are
inferred which are then injected back into the query optimizer to compute a new query plan. The
process is repeated until it converges to a plan, which is subsequently used during execution. As
mentioned in [LRG+17] sampling-based query re-optimization sometimes avoid bad query plans, but
suffers from high sampling overheads, i.e., space and execution overheads.

2.3 No Dependence on Estimation Module
In this umbrella of techniques, the idea is to not depend on the selectivity estimates by understanding
its limitations. In essence, the goal is to aim for resistance rather than cure. In the view point of
resistance, the approaches include choosing plans which are robust to estimation errors. These robust
approaches (as well as other approaches) that use a single plan during the entire query execution run
into the basic infeasibility of a single plan being near-optimal across the entire selectivity space. On

17

the other end of the spectrum, there have been attempts to use different operators to execute different
portions of the data [AH00]. While these are radically new attempts, they are limited in their ability
to change join-order due to plan state management requirements.

Recently, there have been quite some works wrt no reliance on the estimation module. We present
this literature by further dividing in terms of the techniques used to address them, which are primarily
geometric or adaptive.

Geometry

Robustness metrics for plan selection wrt errors in cardinality estimation are proposed in [WBM+18].
They essentially propose two themes of robustness metrics for any plan. The first one uses the slope
of a plan using its plan cost function (PCF) and assigns a risk score, referred to by FS. The intuition
behind this is that more the slope of a plan, more the risk, or equivalently, lesser is the plan robustness.
In this work, a carefully chosen set of plans are given a FS score based on the corresponding PCF’s
slope at the optimizer estimated selectivities. Then the least FS score plan is chosen as the most robust
plan and executed. Further in the second metric, integral value (i.e. area under the curve) of a plan
using its PCF is taken as a robustness score of the plan, denoted by FI. Again, lesser the integral value
more is the plan robustness. Here, the most robust plan chosen for execution is the least FI score plan
from a carefully chosen set of plans. The evaluation of the algorithm show that these plan choices
improve the execution performance from the native optimizer’s plan choice by around a factor of two,
on an average. However, they do not provide guarantees of their robust plan choice wrt optimal plan
(i.e. error-free estimation scenario).

We have also empirically evaluated their technique and observed the following: Consider a simple
query with just a filter predicate. Assuming the query is very selective to have index scan as the
optimal plan. Since sequential has zero slope, the FS metric would suggest sequential scan as the
most robust plan for the query. By this, we have a scenario wherein the sub-optimality of the plan
chosen by FS metric, wrt optimal plan, is more than three orders of magnitude. Similarly, for the FI
integral metric, a query with just one join and one filter predicate produced more than four orders of
magnitude sub-optimal performance. These high sub-optimality examples can be extended for larger
queries.

As mentioned before, PlanBouquet provide guarantees on worst-case execution performance
and that our work builds on it. This leads us to the techniques presented in this thesis starting from
SpillBoundwhich achieves a platform-independent MSO guarantee ofD2+3D. Then to DimRed
which handle high dimensional queries tackling the curse of dimensionality on both MSO guarantees
and compilation overheads. Next, we present FrugalSpillBound which further reduce the com-
pilation overheads to support ad-hoc. The limitation of huge compilation phase of PlanBouquet

18

is tried to mitigate in PBAH [Dut] which also provides an MSO guarantees of D2 + 3D. The detailed
comparison of PBAH and our work, FrugalSpillBound which address similar issue is deferred to
Chapter 7. Finally, we present initial directions for OptAssist that chooses a better of native opti-
mizer and our robust alternatives for an input query. Note that all our techniques in thesis including
that of PlanBouquet leverage geometric search techniques to achieve deterministic guarantees on
worst-case query performance.

Adaptive

An adaptive query execution strategy, called as Lookahead Information Passing (LIP), is proposed in
[ZPSP17] with the goal of being robust to cardinality estimation errors wrt join order. The key idea
is to drop most of the redundant rows early in the joins, thus effectively avoiding a bad join order.
The scope of the paper is limited to in-memory star schema and plan uses only hash join operator
algorithm. Also they provide performance guarantees wrt optimal plan in the space of left-deep plans,
however, they use simplistic cost model and make uniform data distribution assumption in order to
achieve such guarantees.

As opposed to adaptive join ordering, an adaptive access path operator called Smooth Scan is in-
troduced in [BGIA+18]. This operator adapts itself to behave like index scan for low selectivity and
full scan for high selectivity. Like our work, they also provide guarantees on the worst-case execu-
tion performance. However, their guarantees are a function of the underlying cost model while our
guarantees are independent of it. More importantly, their technique is limited to handling estimation
errors wrt only filter predicates. Interestingly, our work and these adaptive operators, including that
of G-join [Gra12], can operate in conjunction wherein all the operators in plans are replaced by these
adaptive operators.

2.4 Other Robustness Literature
For completeness, below we also describe robustness literature wrt non-cardinality estimation such as
resource estimation, cost model errors, etc.

1. Resource Estimation: Estimating resources such as CPU time, memory, etc. required for query
execution is also critical for choosing the optimal query execution plan. Machine learning
techniques are recently used for estimation of such resources. Specifically, nearest neighbour
regression is used for resource estimation in [GKD+09], but it heavily relies on the input queries
being very similar to training queries. In a following work [LKNC12], regression trees are used
to train “scaling functions” that allow better predictions of queries not previously seen in the
training data.

19

2. Cost Model Estimation: Cost model problem is important for predicting query execution time
and during query planning, with cost being associated to rank competing plans. Broadly ma-
chine learning and tuning based approaches are used to attack this long standing problem. On
the machine learning front, plan and operator level models are used for predicting execution
time in [AÇR+12]. Further, the authors use linear regression models for each operator; that
means they implicitly force the output to vary linearly with each input feature. In reality, the re-
lationship between features and execution time is non-linear. One such relationship is captured
in Chapter 7, wherein function of plan cost wrt predicate selectivities is concave.

On the other hand, tuning the internal cost parameters of PostgreSQL engine is looked in
[WCZ+13]. They do this by running a set of calibrated queries and computing the constants
to be used for analytical cost model used by PostgreSQL. They achieve a Mean Relative Error
(MRE) of around 40% for the TPCH bechmark queries. In the regime of such bounded cost
model errors, we can show that our MSO increases by a factor of two compared to perfect cost
model scenarios.

3. Physical Database Design: Apart from the above estimation modules, the other important fac-
tors that affect the query performance are physical and logical database designs. Recently,
CliffGuard [MGY15] tries to come up with robust physical database design under uncertain
environments such as optimizer costs or cardinality estimates. Our work is orthogonal to this
aspect since we handle the uncertainty in cardinality estimation for a fixed database design.

4. Improving the Optimization Time and Plan Quality: There have been constant attempts on im-
proving the optimization time while maintaining the plan quality during query compilation.
Recently deep learning techniques are proposed for the problem in [KYG+18]. They improve
the state-of-the-art performance with small amount of pre-training, while assuming accurate
cardinality and cost model of the underlying engine. Similarly in parallel, initial approaches for
the same objective again using deep learning is proposed in [MP19]. Apart from the machine
learning approaches, mixed integer linear programming is used to handle nearly 60 tables with
different join graphs such as chain, cycle and star in [TK17]. This is further improved by han-
dling much larger scale of the problem [NR18] using search space linearization of the dynamic
programming lattice.

20

Chapter 3

Problem Framework and Background

In this chapter, we present our query model, robustness metrics, underlying assumptions and the ex-
perimental framework. Here, we also provide a detailed description of the PlanBouquet technique
to set up the required background for the rest of the thesis.

3.1 Selectivity Spaces
Given an SQL query q, any predicate for which the optimizer invokes the selectivity estimation mod-
ule is referred to as a selectivity predicate, or sp. Consider the SPJ version of TPC-DS Query 27,
which is shown in Figure 3.1. Here, each of the filter and join predicate is a sp. In this thesis, for
simplicity, we consider sps to be arising out of SPJ part of the query, however, the techniques are
extendable to other estimation based predicates.

For a query with D sps, the set of all sps is denoted by SP = {s1, . . . , sD}, where sj denotes
the jth sp. The selectivities of the D sps are mapped to a D-dimensional space, with the selectivity
of sj corresponding to the jth dimension. Since the selectivity of each predicate ranges over [0, 1],
a D-dimensional hypercube [0, 1]D results, henceforth referred to as the Predicate Selectivity Space

(PSS). Note that each location q ∈ [0, 1]D in the PSS represents a specific query instance where the
sps happen to have the selectivities corresponding to q. Accordingly, the selectivity value of q on the
jth dimension is denoted by q.j.

For tractability, the PSS is discretized at a fine-grained resolution r in each dimension. We refer
to the location corresponding to the minimum selectivity in each dimension as the origin of the PSS,
and the location at which the selectivity value in each dimension is maximum as the terminus, i.e., the
other end of the principal diagonal of the PSS.

As shown later in Chapter 6, some selectivity dimensions may not be error-prone, and are therefore
liable to be removed. Further, some other dimensions may be error-prone, but their errors do not

21

Figure 3.1: TPC-DS Query 27 (SPJ version)

materially impact the overall processing cost, and can therefore also be removed. The dimensions
that are retained after these pruning steps are called as impactful error-prone predicates, or epp, and
they collectively form the Error-prone Selectivity Space (ESS).

3.2 POSP Plans
The optimal plan for a generic selectivity location q ∈ PSS is denoted by Pq, and the set of such op-
timal plans over the complete PSS constitutes the Parametric Optimal Set of Plans (POSP) [HS02].
Note that letter subscripts for plans denote locations, whereas numeric subscripts denote identifiers.
We denote the cost of executing a generic plan P at a selectivity location q ∈ PSS by Cost(P, q).
Thus, Cost(Pq, q) represents the optimal execution cost for the selectivity instance located at q . For
ease of presentation, we will hereafter use cost of a location to refer to the cost of the optimal plan
at that location, and denote it by COST(q) (= Cost(Pq, q)). Finally, we assume that the query op-
timizer can identify the optimal query execution plan if the selectivities of all the sps are correctly
known, for example, through the classical Dynamic Programming based search of the plan enumera-
tion space [SAC+79].

3.3 Robustness Metrics
In our framework, the search space for robust query processing is the set of tuples< q, Pq,COST(q) >

corresponding to all locations q ∈ PSS. Let us now discuss the robustness metrics we consider in our
study.

22

3.3.1 Maximum Sub-Optimality (MSO)
We use the notion of Maximum Sub-optimality (MSO) introduced by [DH16]. The precise mathe-
matical definition of MSO is as follows: A traditional query optimizer will first estimate qe ∈ PSS,
and then use Pqe to execute a query which may actually be located at qa ∈ PSS. The sub-optimality
of this plan choice, relative to an oracle that magically knows the correct location, and therefore uses
the ideal plan Pqa , is defined as:

SubOpt(qe, qa) =
Cost(Pqe , qa)

COST(qa)
(3.1)

With this characterization of a specific (qe, qa) combination, the MSO that can potentially arise
over the entire PSS is given by

MSO = max
(qe,qa)∈PSS

(SubOpt(qe, qa)) (3.2)

As per this formulation, MSO values range over the interval [1,∞). The above definition captures
the MSO of only traditional optimizers.

Let us now generalize the MSO definition to selectivity discovery algorithms like PlanBouquet.
The algorithm carries out a sequence of budgeted plan executions in order to discover the location of
qa. We denote this sequence by Seqqa , with each element ti in the sequence being a pair, (Pi, ωi)

indicating that plan Pi is executed with a maximum time budget of ωi.
The sub-optimality of this plan sequence, denoted by SubOpt(Seqqa), is defined relative to an

oracle that magically knows the actual or correct query location, qa, apriori and therefore directly uses
the ideal plan Pqa . That is,

SubOpt(Seqqa) =

∑
ti∈Seqqa

ωi

COST(qa)

from which we derive
MSO = max

qa∈PSS
SubOpt(Seqqa)

In essence, MSO represents the worst-case sub-optimality that can occur with regard to plan perfor-
mance over the entire PSS space.

3.3.2 Average Sub-Optimality (ASO)
In addition to the above primary metric, we also evaluate our proposed robust query processing algo-
rithms over the average-case equivalent of MSO, referred by average sub-optimality (ASO). Specifi-
cally, if all qa’s are equally likely over the entire PSS, then ASO of a query processing algorithm can

23

be defined as follows:

ASO =

∑
qa∈PSS

SubOpt(Seqqa)∑
qa∈PSS

1
(3.3)

3.4 Assumptions
We make the following standard assumptions in our work which are described in detail next.

1. Plan Cost Monotonicity (PCM): The notion of a location q1 spatially dominating a location q2
in the PSS plays a central role in our robust query processing framework. Formally, given two
distinct locations q1, q2 ∈ PSS, q1 spatially dominates q2, denoted by q1 � q2, if q1.j ≥ q2.j for
all j ∈ {1, . . . , D}. Given spatial domination, an essential assumption that allows to systematic
exploration of the PSS is that the cost functions of the plans appearing in the PSS all obey Plan

Cost Monotonicity (PCM). This constraint on plan cost function (PCF) behavior may be stated
as follows: For any pair of distinct locations qb, qc ∈ PSS, and for any plan P ,

qb � qc ⇒ Cost(P, qb) > Cost(P, qc)

That is, it encodes the intuitive notion that when more data is processed by a query, signified by
the larger selectivities for the predicates, the cost of the query processing also increases. In a
nutshell, spatial domination implies cost domination. Apart from monotonicity, we also assume
the cost functions to be continuous (smooth) throughout the PSS.

In practice, however, we observe minor violations in monotonicity and smoothness assump-
tions. We overcome this issue by fitting a continuous monotonic function to the actual function.
Empirically we see that this fitting can achieved with small errors.

2. Perfect Cost Model: Although arbitrary selectivity estimation errors are permitted in our study,
we have assumed the optimizer's cost model to be perfect. While this assumption is certainly
not valid in practice, improving the model quality is, in principle, an orthogonal problem to
that of cardinality estimation accuracy. Furthermore, we show later that, we still can handle
scenario's wherein the cost modeling errors are bounded – for instance, cost modeling error of
40% is reported in [WCHN13].

3. Selectivity Independence: We assume that the selectivities for the sps are independent of each
other, while this is a common assumption in much of the query optimization literature, it often
does not hold in practice. Initial approaches to relax this assumption are considered in [DH16].

24

3.5 Database and System Framework
All our experiments in this thesis are carried out on a generic HP Z440 multi-core workstation provi-
sioned with 32 GB RAM, 512 GB SSD and 2TB HDD. The database engine was a modified version of
the PostgreSQL 9.4 engine [Pos], with the primary additions being: (a) Selectivity Injection, required
to generate the POSP overlay of the PSS; (b) Abstract Plan Costing, required to cost a specific plan at
a particular PSS location; (c) Abstract Plan Execution, required to force the execution engine to exe-
cute a particular plan; (d) Time-limited Execution, required to implement executions with associated
time budgets; and (e) spilling - to execute plans in spill-mode. All the above features are explained in
detail in Chapter 8. Further, the engine’s configuration parameters were tuned as per PGTune [PGT].

Our test workload is comprised of a representative suite of complex OLAP queries, which are all
based on queries appearing in the synthetic 100 GB TPC-DS benchmark and the 5GB real-data JOB
benchmark [LGM+15]. The number of relations in these queries range from 4 to 10, and a spectrum
of join-graph geometries are modeled, including chain, star, branch, etc. Further, we have primarily
modified the cyclic JOB benchmark queries to create an acyclic version of them. Since, the cyclic
predicates directly nullifying our selectivity independence assumption.

We also deliberately create challenging environments for robustness by maximizing the range of
cost values in the PSS. This was achieved through an index-rich physical schema that created indexes
on all the attribute columns appearing in the queries.

To succinctly characterize the queries, the nomenclature aD Qb is employed, where a specifies
the number of epps, and b the query number. For example, 3D Q15 indicates Query 15 with three of
its predicates considered to be error-prone on the specified benchmark (either, TPC-DS or JOB).

3.6 Plan Bouquet Algorithm
Let us now see the PlanBouquet technique which our work builds on. As mentioned earlier, we
use dimension reduction techniques to identify impactful error-prone predicates, i.e. epps, and give
it as input to the PlanBouquet algorithm.

The PlanBouquet algorithm systematically discovers the actual selectivities at run-time
through a sequence of cost-limited executions of a carefully chosen subset of POSP plans, called
the bouquet of plans, or equivalently, plan bouquet. To understand the main ideas, we first start with
the special case where the query has just one epp, leading to an one-dimensional ESS. Subsequently,
we present the generalization to multiple dimensions.

25

Figure 3.2: Plan Bouquet with single dimension ESS

3.6.1 One-dimensional ESS
Consider a sample 1D ESS shown in Figure 3.2 arising out of a query with just one epp. Here,
the X-axis captures the selectivity range, i.e. [0, 1], of the lone epp, while the Y -axis plots plan
execution costs – note that both axes are on a log scale. There are five POSP plans, P1, P2, P3, P4,
P5, and for each of these plans, its execution costs over the epp selectivity range are also captured
in the figure. By the definition of POSP, each plan is the best in some regime of the ESS. The curve
corresponding to the point-wise minimum cost at each of the locations in the ESS is referred to as the
Optimal Cost Surface (OCS), as indicated in the figure. We abuse notation and call OCS as a surface
since it is a surface in multi-dimension, even though it is just a curve in 1D. Further, by virtue of the
PCM assumption, the OCS will always be an increasing function of predicate selectivities.

Let Cmin and Cmax denote the minimum and maximum costs, respectively, on the OCS. Now,
discretize the OCS by projecting a graded progression of isocost (IC) steps, IC1 through ICm, onto
the curve. Specifically, let the steps represent a geometric progression with common ratio 2, such
that m = blog2(CmaxCmin

)c + 1 and ICm = Cmax. For example, in Figure 3.2, the dotted horizontal lines
represent a progression of doubling iscost steps, IC1 through IC7.

The intersection of each IC with the OCS (indicated by � in Figure 3.2), provides an associated
selectivity qi on the X-axis, along with the identity of the optimal plan Pqi at this location. For
example, the intersection of IC5 with the OCS corresponds to a selectivity of 0.0065, and associated
optimal plan P2.

26

Finally, the union of the above intersection plans forms the “plan bouquet” for the query – so, in
our example, the bouquet consists of P1,P2,P3,P5.

Given the plan bouquet, which is identified at query compilation time, the 1D PlanBouquet

algorithm operates as follows at run-time: It first picks up the bouquet plan Pq1 , corresponding to
the smallest selectivity location q1, and executes it with budget equal to IC1. If the plan is unable to
complete execution within the assigned budget, the execution is aborted. Next, Pq2 is executed with a
budget of IC2, followed by Pq3 with budget IC3, and so on until the budget of the executing plan is
sufficient to reach completion.

Example To make the above process concrete, consider the case, with reference to Figure 3.2,
where the actual selectivity of the epp is 0.05 , i.e. qa = 0.05. To begin with plan P1 is executed
with budget equal to 1.2E4, corresponding to the cheapest isocost step IC1. Since the budget does
not suffice (which is inferred by the non-completion), the budget is extended to IC2 (2.4E4) while
continuing to execute the same plan. Again the budget does not suffice, and the same continues until
IC4. Then, the plan is changed to P2 with a budget of IC5 (1.9E5), but this execution too does not
reach its conclusion. Finally, the execution of P3 with budget IC6 (3.8E5) finishes completely, since
the actual location, 5%, is within the selectivity range covered by IC6. In short, to process this query,
PlanBouquet would invoke the execution sequence:

P1|1.2E4,P1|2.4E4,P1|4.8E4,P1|9.6E4,P2|1.9E5,P3|3.8E5

A salient point to note here is that whenever there is a plan switch, the results computed for the
previous incomplete execution are completely discarded and the query evaluation begins afresh with
the new plan. The important result shown, for the 1D case, was that the MSO with the above algorithm
is always within 4.

3.6.2 Multidimensional ESS
We now move to the general case of D-dimensional ESS wherein the OCS now becomes a D-
dimensional surface. The optimal cost at any q ∈ [0, 1]D is given by COST(q). Further, for a given
cost C, the isocost contour with cost C consists of all ESS locations whose OCS cost is equal to C,
and it will be of dimension D − 1.

Consider an example 2D query with two epps, resulting in an ESS with X and Y dimensions. The
resulting 3-dimensional OCS, by incorporating a third Z dimension to capture the cost of the optimal
plan on the ESS, i.e, for q ∈ ESS, the value of the Z-axis corresponding to COST(q), is shown in
Figure 3.3. In this figure, the optimality region of each POSP plan is denoted by a unique color. So,
for example, the blue region corresponds to those locations where the “blue plan” is the optimal plan.

27

Note that since Figure 3.3 is only a perspective view of the OCS, it does not capture all the POSP
plans.

Figure 3.3: 3D Optimal Cost Surface

Discretization of OCS: As in the 1D scenario, let Cmin and Cmax denote the minimum and max-
imum costs on the OCS, corresponding to the origin and the terminus of the 3D space, respectively.
We then consider m = dlog2(

Cmax
Cmin

)e + 1 doubling cost hyperplanes that are parallel to the XY
plane. The first hyperplane is drawn at Cmin. For i = 2, . . . ,m − 1, the ith hyperplane is drawn at
Cmin · 2i−1. The last hyperplane is drawn at Cmax. These hyperplanes correspond to the m isocost
contours IC1, . . . , ICm. The isocost contour ICi is a one-dimensional hyperbolic curve obtained by
intersecting the OCS with the ith hyperplane. For our example, as can be seen in Figure 3.4, there are
5 isocost contours for the 2D ESS. An important aspect to note here is that, unlike the 1D case, there
could now be multiple POSP plans on an isocost contour, covering disjoint regions of the curve. For
example, in Figure 3.4, with the query being located at q∗ in the intermediate region between contours
IC3 and IC4, there are 3 plans, P2, P3, P4 on the IC2 contour. The set of POSP plans associated with
the contour ICi is denoted by PLi. Finally, the hypograph of an isocost contour ICi is the set of all
locations q ∈ ESS such that COST(q) ≤ CCi. We denote the cost of ICi by CCi.

Plan Bouquet Execution: The discovery process starts from contour IC1 and works its way up
sequentially through the contours. When on contour ICi, all the plans in PLi are executed with budget
equal to CCi, until one of them finishes its execution. If none of them do so, the search proceeds by
jumping to the next contour ICi+1. To process the query, PlanBouquet would invoke the following
budgeted execution sequence:

P1|C,P2|2C,P3|2C,P4|2C,P5|4C, . . . , P10|4C,P11|8C,P12|8C

28

Figure 3.4: Isocost Contours in 2D ESS

with the execution of the final P12 plan completing the query. The MSO for this algorithm is captured
in the following theorem:

Theorem 3.1 The PlanBouquet algorithm has an MSO guarantee of 4ρ where ρ is the maximum

number of plans in contours IC1, . . . , ICm, i.e., ρ = Max
i={1,...,m}

{|PLi|}.

As mentioned earlier, its bound is problematic since it depends on ρ, which is a behavioral param-
eter depending on a combination of the query, the optimizer, the database and the hardware platform.

For easy reference, all the notations introduced in this chapter, and predominantly used in subse-
quent chapters, are summarized in Table 3.1.

29

Table 3.1: NOTATIONS

Notation Meaning
PSS Predicate Selectivity Space
D Dimensionality of the PSS
s1, ..., sD Selectivity predicates in the query
ESS Error-prone Selectivity Space
epp (EPP) Error-prone predicates (its Set)
q ∈ [0, 1]D A location in the selectivity space
q.j Selectivity of q in the jth dimension
Pq Optimal Plan at q
qa Actual selectivity of query
Cost(P, q) Cost of plan P at location q
COST(q) Cost of the optimal plan Pq at loca-

tion q

30

Chapter 4

Platform-independent Guarantees

4.1 Introduction
The PlanBouquet algorithm, through a calibrated sequence of cost-limited executions from a care-
fully chosen set of plans, lends itself to providing an MSO ≤ 4 ∗ ρ, where ρ is the plan cardinality
on the maximum density contour.

The PlanBouquet formulation, while breaking new ground, suffers from a systemic drawback
– the specific value of ρ, and therefore the bound, is a function of not only the query, but also the
optimizer’s behavioral profile over the underlying database platform (including data contents, physical
schema, hardware configuration, etc.). As a result, there are adverse consequences: (i) The bound
value becomes highly variable, depending on the specifics of the current operating environment – for
instance, with TPC-DS Query 25, PlanBouquet’s MSO guarantee of 24 under PostgreSQL shot
up, under an identical computing environment, to 36 for a commercial engine, due to the change in
ρ; (ii) It becomes infeasible to compute the value without substantial investments in preprocessing
overheads; and (iii) Ensuring a bound that is small enough to be of practical value, is contingent on
the heuristic of “anorexic reduction” [DDH07] holding true. This heuristic essentially allows POSP
plans to be “swallowed” by other plans, that is, to occupy their regions in the ESS space, if the
sub-optimality introduced due to these swallowings can be bounded to a user-defined threshold.

4.1.1 SpillBound
Our objective here is to develop a robust query processing approach that offers an MSO bound which
is solely query-dependent, irrespective of the underlying database platform. That is, we desire a
“structural bound” instead of a “behavioral bound”. Accordingly, we present a new query processing
algorithm, called SpillBound, that achieves this objective in the sense that it delivers an MSO
bound that is only a function of D, the number of predicates in the query that are prone to selectivity

31

estimation errors. Moreover, the dependency is in the form of a low-order polynomial, with MSO
expressed as (D2 + 3D). Consequently, the bound value becomes: (i) independent of the database
platform,(ii) known upfront by merely inspecting the query, and not incurring any preprocessing over-
head, (iii) indifferent to the anorexic reduction heuristic, and (iv) certifiably low in value.

SpillBound shares the core contour-wise discovery approach of PlanBouquet, but its exe-
cution strategy differs markedly. For instance, the example scenario of Figure 3.4 is again captured
in Figure 4.1. The sequence of budgeted executions corresponding to SpillBound is the following
(the plans are associated with tilde symbol in the figure):

P1|C,P3|2C,P4|2C,P7|4C,P9|4C,P12|8C

PlanBouquet had 12 cost budgeted executions starting with P1 and ending with P12. Note that the
reduced executions with SpillBound result in cost savings of around 50% over PlanBouquet.

Figure 4.1: SpillBound’s Execution Trace

The advantages offered by SpillBound are achieved by the following key properties – Half-

space Pruning and Contour Density Independent execution – of the algorithm.

Half-space Pruning

With each contour whose plans do not complete within the assigned budget, PlanBouquet is able
to prune the corresponding hypograph – that is, the search region below the contour curve. How-
ever, with SpillBound, a much stronger half-space-based pruning comes into play. Our half-space
pruning property is achieved by leveraging the notion of “spilling”, whereby operator pipelines in
the execution plan tree are prematurely terminated at chosen locations, in conjunction with run-time

32

monitoring of operator selectivities.

Contour Density Independent Execution

Let us define a “quantum progress” to be a step in which the algorithm either (a) jumps to the next
contour, or (b) fully learns the selectivity of some epp (thus reducing the effective number of epps).
When there are D error-prone predicates in the user query, SpillBound is guaranteed to make
quantum progress based on cost-budgeted execution of at most D carefully chosen plans on the con-
tour. Specifically, in each contour, for each dimension, one plan is chosen for spill-mode execution.
The plan chosen for spill-mode execution is the one that provides the maximal guaranteed learning of
the selectivity along that dimension.

Empirical Results

The summary of our experimental results indicate that for the most part, SpillBound provide sim-
ilar guarantees to PlanBouquet, and occasionally, tighter bounds. As a case in point, for TPC-DS
Query 26 with 4 error-prone predicates, the MSO guarantee is close to 40 with PlanBouquet,
but comes down to 28 with SpillBound. With regard to empirical MSO, the SpillBound pro-
vides markedly superior performance over PlanBouquet. For instance, the empirical MSO value
decreases from PlanBouquet’s 30.6 to 13 for SpillBound.

4.2 Building Blocks of our Algorithms
Let us now see in detail the two key properties of half-space pruning and contour density independent

execution which forms the building blocks of SpillBound algorithm.

4.2.1 Half-space Pruning
PlanBouquet is fundamentally based on hypograph pruning of search spaces. By hypograph we
mean the search region below the contour curve (after extending, if need be, the corner points of the
contour to meet the axes of the search space). A pictorial view is shown in Figure 4.2, which focuses
on a contour ICi – here, the hypograph of IC3 is the region spatially below the contour.

In this work, we make a conceptual movement from hypograph pruning to a much stronger half-

space pruning of the search space. Half-space pruning is the ability to prune half-spaces from the
search space based on a single cost-budgeted execution of a contour plan. This is vividly highlighted
in Figure 4.2, where the half-space corresponding to union of Region-1 and Region-2 is pruned by
the (budget-limited) execution of P6, while the half-space corresponding to union of Region-2 and
Region-3 is pruned by the (budget-limited) execution of P4.

We now present how half-space pruning is achieved by using spilling during execution of query
plans. While the use of spilling to accelerate selectivity discovery had been mooted in [DH16], they

33

Figure 4.2: Half-Space Pruning

did not consider its exploitation for obtaining guaranteed search properties. We use spilling as the
mechanism for modifying the execution of a selected plan – the objective here is to utilize the assigned
execution budget to extract increased selectivity information of a specific epp. Since spilling requires
modification of plan executions, we shall first describe the query execution model.

Execution Model

We assume the demand driven iterator model, commonly seen in database engines, for the execution
of operators in the plan tree [Gra93]. Specifically, the execution takes place in a bottom up fashion
with the base relations at the leaves of the tree.

In conventional database query processing, the execution of a query plan can be partitioned into
a sequence of pipelines [CNR04]. Intuitively, a pipeline can be defined as the maximal concurrently
executing subtree of the execution plan. The entire execution plan can therefore be viewed as an
ordering on its constituent pipelines. We assume that only one pipeline is executed at a time in the
database system, i.e, there is no inter-pipeline concurrency – this appears to be the case in current
engines. To make these notions concrete, consider the plan tree shown in Figure 4.3 – here, the
constituent pipelines are highlighted with ovals, and are executed in the sequence {L1, L2, L3, L4}.

Finally, we assume a standard plan costing model that estimates the individual costs of the inter-
nal nodes, and then aggregates the costs of all internal nodes to represent the estimated cost of the
complete plan tree.

34

Group Aggregate

Sort

Seq. Scan

Hash Join

Item
Hash

Seq. Scan

Promotion Hash Join

HashNested Loop Join

Bitmap Scan

Customer

Index Scan

Catalog Sales

Seq. Scan

Date Dim

Hash

L1

L4

L2

L3

N1

N3

N4

N6

N7

N5
N8

N9

N10

N11

N12

N13

N14

N2

Hash Join

Demographics

Figure 4.3: Execution Plan Tree of TPC-DS Query 26

35

Spill-Mode of Execution

We now discuss how to execute plans in spill-mode. For expository convenience, given an internal
node of the plan tree, we refer to the set of nodes that are in the subtree rooted at the node as its
upstream nodes, and the set of nodes on its path to the root of the complete plan tree as its downstream

nodes.
Suppose we are interested in learning about the selectivity of an epp ej . Let the internal node

corresponding to ej in plan P be Nj . The key observation here is that the execution cost incurred
on Nj’s downstream nodes in P is not useful for learning about Nj’s selectivity. So, discarding
the output of Nj without forwarding to its downstream nodes, and devoting the entire budget to the
subtree rooted at Nj , helps to use the budget effectively to learn ej’s selectivity. Specifically, given
plan P with cost budget B, and epp ej chosen for spilling, the spill-mode execution of P is simply
the following: Create a modified plan comprised of only the subtree of P rooted at Nj , and execute it
with cost budget B.

Since a plan could consist of multiple epps (red coloured nodes in Figure 4.3), the sequence of
spill node choices should be made carefully to ensure guaranteed learning on the selectivity of the
chosen node – this procedure is described next.

Spill Node Identification

Given a plan and an ordering of the pipelines in the plan, we consider an ordering of epps based on
the following two rules:

Inter-Pipeline Ordering: Order the epps (or, EPP) as per the execution order of their respective
pipelines; in Figure 4.3, since L4 is ordered after L2, the epp nodes N3 and N4 are ordered after
N9 and N10.

Intra-Pipeline Ordering: Order the epps by their upstream-downstream relationship, i.e., if
an epp node Na is downstream of another epp node Nb within the same pipeline, then Na is
ordered after Nb; in the example, N3 is ordered after N4.

It is easy to see that the above rules produce a total-ordering on the epps in a plan – in Figure 4.3, it is
N10, N9, N4, N3. Given this ordering, we always choose to spill on the node corresponding to the first

epp in the total-order. The selectivity of a spilled epp node is fully learnt when the corresponding
execution goes to completion within its assigned budget. When this happens, we remove the epp from
the set of epps and it is no longer considered as a candidate for spilling in the rest of the discovery
process.

As a result of this procedure, note that the selectivities of all predicates located upstream of the
currently spilling epp will be known exactly – either because they were never epps, or because they

36

have already been fully learnt in the ongoing discovery process. Therefore, their cost estimates are
accurate, leading to the following “half-space pruning” lemma.

Lemma 4.1 Consider a plan P for which the spill node identification mechanism identifies the pred-

icate ej for spilling. Further, consider a location q ∈ ESS. When the plan P is executed with a budget

Cost(P, q) in spill-mode, then we either learn (a) the exact selectivity of ej , or (b) that qa.j > q.j.

Proof: For an internal node N of a plan tree, we use N.cost to refer to the execution cost of
the node. Let Nj denote the internal node corresponding to ej in plan Pq. Partition the internal
nodes of Pq into the following: Upstream(Nj), {Nj}, and Residual(Nj), where Upstream(Nj)

denotes the set of internal nodes of Pq that appear before node Nj in the execution order, while
Residual(Nj) contains all the nodes in the plan tree excluding Upstream(Nj) and {Nj}. Therefore,
COST(q) =

∑
N∈Upstream(Nj)

N.cost+Nj.cost+
∑

N∈Residual(Nj)
N.cost. The value of the first term in the summation

is known with certainty because Upstream(Nj) does not contain any epp. Further, the quantity
Nj.cost is computed assuming that the selectivity of Nj is q.j. Since the output of Nj is discarded
and not passed to downstream nodes, the nodes in Residual(Nj) incur zero cost. Thus, when Pq is
executed in spill-mode, the budget is sufficiently large to either learn the exact selectivity of ej (if the
spill-mode execution goes to completion) or to conclude that qa.j is greater than q.j. 2

4.2.2 Contour Density Independent Execution
We now show how the half-space pruning property can be exploited to achieve the contour density
independent (CDI) execution property of the SpillBound algorithm. For this purpose, we employ
the term “quantum progress” to refer to a step in which the algorithm either jumps to the next contour,
or fully discovers the selectivity of some epp. Informally, the CDI property ensures that each quan-
tum progress in the discovery process is achieved by expending no more than |EPP| number of plan
executions.

For ease of understanding, we present here the technique for the special case of two epps referred
to by X and Y , deferring the generalization for D epps to the next section.

Consider a 2D ESS shown in Figure 4.4, and assume that we are currently exploring contour IC3.
The two plans for spill-mode execution in this contour are identified as follows: We first identify the
subset of plans on the contour that spill on X using the spill node identification algorithm – these
plans are identified as P x

7 , P x
8 , P x

10 in Figure 4.4. The next step is to enumerate the subset of locations
on the contour where these X-spilling plans are optimal. From this subset, we identify the location
with the maximum X coordinate, referred to as qxmax, and its corresponding contour plan, which is
denoted as P x

max. The P x
max plan is the one chosen to learn the selectivity of X – in Figure 4.4, this

choice is P x
7 .

37

Figure 4.4: Choice of Contour Crossing Plans

By repeating the same process for the Y dimension, we identify the location qymax, and plan
P y
max, for learning the selectivity of Y – in Figure 4.4, the plan choice is P y

9 . Note that the loca-
tion (qxmax.x, q

y
max.y) is guaranteed to be either on or beyond the IC3 contour.

The following lemma shows that the above plan identification procedure satisfies the CDI property.

Lemma 4.2 In contour ICi, if plans P x
max and P y

max are executed in spill-mode, and both do not

reach completion, then COST(qa) > CCi, triggering a jump to the next contour ICi+1.

Proof: Since the executions of both P x
max and P y

max do not reach completion, we infer that qxmax.x <
qa.x and qymax.y < qa.y. Therefore, qa strictly dominates the location (qxmax.x, q

y
max.y) whose cost, by

PCM, is greater than CCi. Thus COST(qa) > CCi. 2

Consider the general case of ICi when there are more than two epps. Corresponding to an epp
ej , the location qjmax and plan P j

max are defined similar to the way qxmax and P x
max are defined (i.e, by

replacing the X coordinate with the jth coordinate corresponding to ej).

4.3 The SpillBound Algorithm
In this section, we present our new robust query processing algorithm, SpillBound, which lever-
ages the properties of half-space pruning and CDI execution. We begin by introducing an important
notation: Our search for the actual query location, qa, begins at the origin, and with each spill-mode
execution of a contour plan, we monotonically move closer towards the actual location. The running
selectivity location, as progressively learnt by SpillBound, is denoted by qrun.

38

During the entire discovery process of SpillBound, only POSP plans on the isocost contour
are considered for spill-mode executions. Moreover, when we mention the spill-mode execution of
a particular plan on a contour, it implicitly means that the budget assigned is equal to the cost of the
contour. For ease of exposition, if the epp chosen to spill on is ej for a plan P , we shall hereafter
highlight this information with the notation P j .

For ease of exposition, we first present a version, called 2D-SpillBound, for the special case
of two epps, and then extend the algorithm to the general case of several epps.

4.3.1 2D-SpillBound

To provide a geometric insight into the working of 2D-SpillBound, we will refer to the two epps,
e1 and e2, as X and Y , respectively. 2D-SpillBound explores the doubling isocost contours
IC1, . . . , ICm, starting with the minimum cost contour IC1. During the exploration of a contour, two
plans P x

max and P y
max are identified, as described in Section 4.2.2, and executed in spill-mode. The

order of execution between these two plans can be chosen arbitrarily, and the selectivity information
learnt through their execution is used to update the running location qrun. This process continues
until one of the spill-mode executions reaches completion, which implies that the selectivity of the
corresponding epp has been completely learnt.

Without loss of generality, assume that the learnt selectivity is X . At this stage, we know that qa
lies on the line X = qa.x. Further, the discovery problem is reduced to the 1D case, which has a
unique characteristic – each isocost contour of the new ESS (i.e. line X = qa.x) contains only one

plan, and this plan alone needs to be executed to cross the contour, until eventually some plan finishes
its execution within the assigned budget. In this special 1D scenario, there is no operational difference
between PlanBouquet and 2D-SpillBound, so we simply invoke the standard PlanBouquet
with only the Y epp, starting from the contour currently being explored.

Note that plans are not executed in spill-mode in this terminal 1D phase because spilling in the 1D
case weakens the bound. This is because, if the plans are also executed in spilling mode in the final
1D phase, this would just lead to learning of the actual selectivity of the remaining epp. Also since
the tuples are spilled (and not returned to the user), one more final execution of the optimal plan, i.e.
Pqa is required. Thus leading to a bound of one more than what is provided by Theorem 4.1 (also
applies to multidimensional scenario).

Execution Trace

An illustration of the execution of 2D-SpillBound on TPC-DS Query 91 with two epps is shown
in Figure 4.5. In this example, the join predicate Catalog Sales 1 Date Dim, denoted by X , and the
join predicate Customer 1 Customer Address, denoted by Y , are the two epps (both selectivities are

39

Figure 4.5: Execution trace for TPC-DS Query 91

shown on a log scale).
We observe here that there are six doubling isocost contours IC1, . . . , IC6. The execution trace

of 2D-SpillBound (blue line) corresponds to the selectivity scenario where the user’s query is
located at qa = (0.04, 0.1).

On each contour, the plans executed by 2D-SpillBound in spill-mode are marked in blue – for
example, on IC2, plan P4 is executed in spill-mode for the epp Y . Further, upon each execution of a
plan, an axis-parallel line is drawn from the previous qrun to the newly discovered qrun, leading to the
Manhattan profile shown in Figure 4.5. For example, when plan P6 is executed in spill-mode for X ,
the qrun moves from (2E-4,6E-4) to (8E-4,6E-4). To make the execution sequence unambiguously
clear, the trace joining successive qruns is also annotated with the plan execution responsible for the
move – to highlight the spill-mode execution, we use pi to denote the spilled execution of Pi. So, for

40

instance, the move from (2E-4,6E-4) to (8E-4,6E-4) is annotated with p6.
With the above framework, it is now easy to see that the algorithm executes the sequence

p2, p4, p6, p7, p10, p11, which results in the discovery of the actual selectivity of Y epp. After this,
the 1D PlanBouquet takes over and the selectivity of X is learnt by executing P11 and P19 in
regular (non-spill) mode.

This example trace of 2D-SpillBound exemplifies how the benefits of half-space pruning
and CDI execution are realized. It is important to note that 2D-SpillBound may execute a few
plans twice – for example, plan P11 – once in spill-mode (i.e., p11) and once as part of the 1D
PlanBouquet exploration phase. In fact, this notion of repeating a plan execution during the search
process substantially contributes to the MSO bound in the general case of D epps.

Performance Bounds

Consider the situation where qa is located in the region between ICk and ICk+1, or is directly on
ICk+1. Then, the 2D-SpillBound algorithm explores the contours from 1 to k + 1 before discov-
ering qa. In this process,

Lemma 4.3 The 2D-SpillBound algorithm ensures that at most two plans are executed from each

of the contours IC1, . . . , ICk+1, except for one contour in which at most three plans are executed.

Proof: Let the exact selectivity of one of the epps be learnt in contour ICh, where 1 ≤ h ≤ k + 1.
From CDI execution, we know that 2D-SpillBound ensures that at most two plans are executed
in each of the contours IC1, . . . , ICh. Subsequently, PlanBouquet begins operating from contour
ICh, resulting in three plans being executed in ICh, and one plan each in contours ICh+1 through
ICk+1. 2

We now analyze the worst-case cost incurred by 2D-SpillBound. For this, we assume that the
contour with three plan executions is the costliest contour ICk+1. Since the ratio of costs between
two consecutive contours is 2, the total cost incurred by 2D-SpillBound is bounded as follows:

TotalCost ≤ 2 ∗ CC1 + . . .+ 2 ∗ CCk + 3 ∗ CCk+1

= 2 ∗ CC1 + . . .+ 2 ∗ 2k−1 ∗ CC1 + 3 ∗ 2k ∗ CC1
= 2 ∗ CC1

(
1 + . . .+ 2k

)
+ 2k ∗ CC1

= 2 ∗ CC1
(
2k+1 − 1

)
+ 2k ∗ CC1

≤ 2k+2 ∗ CC1 + 2k ∗ CC1
= 5 ∗ 2k ∗ CC1 (4.1)

From the PCM assumption, we know that the cost for an oracle algorithm (that apriori knows the

41

location of qa) is lower bounded by CCk. By definition, CCk = 2k−1 ∗ CC1. Hence,

MSO ≤ 5 ∗ 2k ∗ CC1
2k−1 ∗ CC1

= 10 (4.2)

leading to the theorem:

Theorem 4.1 The MSO bound of 2D-SpillBound for queries with two error-prone predicates is

bounded by 10.

Remark: Note that even for a ρ value as low as 3, the MSO bound of 2D-SpillBound is better than
the bound, 4 ∗ 3 = 12, offered by PlanBouquet.

4.3.2 Extending to Higher Dimensions
We now present SpillBound, the generalization of the 2D-SpillBound algorithm to handle D
error-prone predicates e1, . . . , eD. Before doing so, we hasten to add that the EPP set, as mentioned
earlier, is constantly updated during the execution, and every epp is removed from this set as and
when its selectivities become fully learnt. Further, when a contour ICi is explored, the effective

search space is the subset of locations on ICi whose selectivity along the learnt dimensions matches
the learnt selectivities. From now on, in the context of exploration, references to ICi will mean its
effective search space.

The primary generalization that needs to be achieved is to select, prior to exploration of a contour
ICi, the best set (wrt selectivity learning) of |EPP| plans that satisfy the half-space pruning prop-
erty and ensure complete coverage of the contour. To do so, we consider the (location, plan) pairs
(q1max, P

1
max), . . . , (q

|EPP|
max , P

|EPP|
max) as defined at the end of the Section 4.2.2. The set of |EPP| plans that

satisfy the contour density independent execution property is {P 1
max, . . . , P

|EPP|
max }.

A subtle but important point to note here is that, during the exploration of ICi, the identity of
P j
max may change as the contour processing progresses. This is because some of the plans that were

assigned to spill on other epps, may switch to spilling on ej due to their original epps being completely
learnt during the ongoing exploration. Accordingly, we term the first execution of a P j

max in contour
ICi as a fresh execution, and subsequent executions on the same epp as repeat executions.

Finally, it is possible that a specific epp may have no plan on ICi on which it can be spilled –
this situation is handled by simply skipping the epp. The complete pseudocode for SpillBound is
presented in Algorithm 1 – here, Spill-Mode-Execution(P j

max,ej ,CCi) refers to the execution of plan
P j
max spilling on ej with budget CCi.

With the above construction, the following lemma can be proved in a manner analogous to that of
Lemma 4.2:

42

Algorithm 1 The SpillBound Algorithm
Init: i=1, EPP = {e1, . . . , eD};
while i ≤ m do . for each contour

if |EPP| = 1 then . only one epp left
Run PlanBouquet to discover the selectivity of the remaining epp starting from the present
contour;
Exit;

end if
Run the spill node identification procedure on each plan in the contour ICi, and use this infor-
mation to choose plan P j

max for each epp ej;
exec-complete = false;
for each epp ej do

exec-complete = Spill-Mode-Execution(P j
max,ej ,CCi);

Update qrun.j based on selectivity learnt for ej;
if exec-complete then

/*learnt the actual selectivity for ej*/
Remove ej from the set EPP;
Break;

end if
end for
if ! exec-complete then

i = i+1; /* Jump to next contour */
end if
Update ESS based on learnt selectivities;

end while

Lemma 4.4 In contour ICi, if no plan in the set {P j
max|ej ∈ EPP} reaches completion when executed

in spill-mode, then COST(qa) > CCi, triggering a jump to the next contour ICi+1.

Performance Bounds

We now present a proof of how the MSO bound is obtained for SpillBound. In the worst-case anal-
ysis of 2D-SpillBound, the exploration cost of every intermediate contour is bounded by twice the
cost of the contour. Whereas the exploration cost of the last contour (i.e., ICk+1) is bounded by three
times the contour cost because of the possible execution of a third plan during the PlanBouquet
phase. We now present how this effect is accounted for in the general case.

Repeat Executions: As explained before, the identity of plan P j
max may dynamically change during

the exploration of a contour ICi, resulting in repeat executions. If this phenomenon occurs, the new
P j
max plan would have to be executed to ensure compliance with Lemma 4.4. We observe that each

repeat execution of an epp is preceded by an event of fully learning the selectivity of some other epp,

43

leading to the following lemma:

Lemma 4.5 The SpillBound algorithm executes at most D fresh executions in each contour, and

the total number of repeat executions across contours is bounded by
D(D − 1)

2
.

Proof: Consider any contour ICi for 1 ≤ i ≤ k + 1. Note that the number of possible fresh
executions on contour ICi is bounded by D (in fact, it is equal to |EPP| when the algorithm enters the
contour ICi).

As mentioned earlier, a repeat execution in a contour can happen only when the exact selectivity
of one of the epps is learnt on the contour. Let us say that when the exact selectivity of a epp is
learnt, it marks the beginning of a new phase. If |EPP| is the number of error-prone predicates just
before the beginning of a phase, it is easy to see that there are at most |EPP| − 1 repeat executions
within the phase. Further, in each phase the size of EPP decreases by 1. Therefore, total number of
repeat executions is bounded by

∑D−1
l=1 l = D(D−1)

2
. � 2

Suppose that the actual selectivity location qa is located in the range (ICk, ICk+1]. Then, the
SpillBound algorithm explores the contours from 1 to k + 1 before discovering qa. Thus, the
total cost incurred by the SpillBound algorithm is essentially the sum of costs from fresh and
repeat executions in each of the contours IC1 through ICk+1. Further, the worst-case cost incurred by
SpillBound is when all the repeat executions happen at the costliest contour, ICk+1. Hence, the
total cost of the SpillBound algorithm is given by

k+1∑
i=1

(#fresh executions(ICi)) ∗ CCi + D(D−1)
2
∗ CCk+1 (4.3)

Since the number of fresh executions on any contour is bounded by D, we obtain the following
theorem:

Theorem 4.2 The MSO bound of the SpillBound algorithm for any query with D error-prone

predicates is bounded by D2 + 3D.

Proof: By substituting the values for no. of fresh executions in each contour by D in equation 4.3,

44

the total cost for the SpillBound is

≤ D ∗ (
k+1∑
i=1

CCi) +
D(D − 1)

2
∗ CCk+1

= D ∗ (
k∑
i=1

CCi) +
D(D + 1)

2
∗ CCk+1

= D ∗ (CC1 + . . .+ 2k−1CC1) +
D(D + 1) ∗ 2kCC1

2

= D ∗ (2k − 1)CC1 +
D(D + 1) ∗ 2kCC1

2

(4.4)

The cost for an oracle algorithm that apriori knows the correct location of qa is lower bounded by
2k−1CC1. Hence,

MSO ≤
D ∗ (2k − 1)CC1 + D(D+1)∗2kCC1

2

2k−1CC1

≤ 2D +D(D + 1) = D2 + 3D

(4.5)

� 2

Remark 1: Note that the plan located at the end of the principal diagonal in the ESS hypercube
is guaranteed to ensure the termination of the 2D-SpillBound and SpillBound algorithms for
any qa ∈ ESS.

Remark 2: While proving that PlanBouquet delivers an MSO guarantee of 4 ∗ ρ, the authors of
[DH16] also showed that the constant term, i.e. 4, in the guarantee is minimized when the cost ratio,
cr, between the successive contours is 2. For ease of exposition of SpillBound, we have retained
the same factor of 2. However it is interesting to note that 2 is not the ideal choice for SpillBound
– in fact, the following lemma shows that SpillBound’s MSO is minimized by setting

cr = 1 +

√
2

D + 1

leading to

MSO ≤

(
√
D +

√
D(D + 1)

2

)2

Lemma 4.6 The MSO minimizing choice of cr for SpillBound is cr = 1 +
√

2
D+1

.

Proof: We know that the total cost incurred by SpillBound is at most D ∗ (
∑k+1

i=1 CCi)+ D(D−1)
2
∗

45

CCk+1. Again considering that cost for an oracle algorithm that apriori knows the correct location of
qa is lower bounded by crk−1CC1, we get

MSO ≤ D ∗ (1 +
1

cr
+

1

cr2
+ . . .) +

D(D + 1)

2
∗ cr

= D ∗ (
cr

cr − 1
) +

D(D + 1)

2
∗ cr

(4.6)

2 Differentiating the above MSO expression wrt cr, gives us that MSO is minimized at
cr = 1 +

√
2

D+1
.

So, for instance, withD = 2, the optimal value of cr is 1.8, resulting in an MSO of 9.9, marginally
lower in comparison to the 10 obtained with cr = 2. Overall, for the range of D values covered in
our study, only minor benefits were obtained by using the optimal cr value, and we have therefore
retained the doubling factor in our evaluation.

4.4 Experimental Evaluation
The MSO guarantees delivered by PlanBouquet and SpillBound are not directly comparable,
due to the inherently different nature of their dependencies on the ρ and D parameters, respectively.
However, we need to assess whether the platform-independent feature of SpillBound is procured
at the expense of a deterioration in the numerical bounds. Accordingly, we present in this section an
evaluation of SpillBound on a representative set of complex OLAP queries, and compare its MSO
performance with that of PlanBouquet.

The remainder of this section, for ease of exposition, we use the abbreviations PB and SB to
refer to PlanBouquet and SpillBound, respectively. Further, we use MSOg (MSO guarantee)
and MSOe (MSO empirical) to distinguish between the MSO guarantee and the empirically evaluated
MSO obtained on our suite of queries.

4.4.1 SpillBound v/s PlanBouquet
The MSO guarantee for PlanBouquet on the original ESS typically turns out to be very high due to
the large values of ρ. Therefore, as in [DH16], we conduct the experiments for PlanBouquet only
after carrying out the anorexic reduction transformation [DDH07] at the default λ = 0.2 replacement
threshold – we use ρRED to refer to this reduced value.

Comparison of MSO guarantees (MSOg)

A summary comparison of MSOg for PB and SB over almost a dozen TPC-DS queries of varying
dimensionality is shown in Figure 4.6 – for PB, they are computed as 4(1 + λ)ρRED, whereas for SB,
they are computed as D2 + 3D.

46

We observe here that in a few instances, specifically 4D Q26, 5D Q29 and 5D Q84, SB’s guar-
antee is noticeably tighter than that of PB – for instance, the values are 28 and 38.4, respectively, for
4D Q26. In the remaining queries, the bound quality is roughly similar between the two algorithms.
Therefore, contrary to our fears, the MSO guarantee is not found to have suffered due to incorporating
platform independence.

Figure 4.6: Comparison of MSO Guarantees (MSOg)

Comparison of Empirical MSO (MSOe)

We now turn our attention to evaluating the empirical MSO, MSOe, incurred by the two algorithms.
There are two reasons that it is important to carry out this exercise: Firstly, to evaluate the looseness of
the guarantees. Secondly, to evaluate whether PB, although having weaker bounds in theory, provides
better performance in practice, as compared to SB.

The assessment was accomplished by explicitly and exhaustively considering each and every lo-
cation in the ESS to be qa, and then evaluating the sub-optimality incurred for this location by PB and
SB. Finally, the maximum of these values was taken to represent the MSOe of the algorithm.

The MSOe results are shown in Figure 4.7 for the entire suite of test queries. Our first observation
is that the empirical performance of SB is far better than the corresponding guarantees in Figure 4.6. In
contrast, while PB also shows improvement, it is not as dramatic. For instance, considering 6D Q18,
PB reduces its MSO from 48 to 32, whereas SB goes down from 54 to just 17.1.

The second observation is that the gap between SB and PB is accentuated here, with SB perform-
ing substantially better over a larger set of queries. For instance, consider query 5D Q29, where the

47

MSOg values for PB and SB were 48 and 40, respectively – the corresponding empirical values are
38 and 16.4 in Figure 4.7.

Finally, even for a query such as 4D Q7, where PB had a marginally better bound (24 for PB and
28 for SB in Figure 4.6), we find that it is SB which behaves better in practice (16.4 for PB and 11.2
for SB in Figure 4.7).

Figure 4.7: Comparison of Empirical MSO (MSOe)

Analysis of Looseness of SB’s MSOg

We now profile the execution of the queries to investigate the significant gap between SB’s MSOg

and MSOe values. Recall that the analysis (Section 4.3.2) bounded the cost of repeat executions by
attributing all of them to the last contour, i.e., ICk+1. Moreover, the number of fresh executions in all
the contours, including ICk+1, was assumed to be D. This results in the execution cost over ICk+1

being the dominant contributor to MSOg. To quantitatively assess this contribution, we present in
Table 4.1 the drilled-down information of: (i) the number of fresh executions of plans on ICk+1, and
(ii) the number of repeat executions of plans on ICk+1. For each of these factors, we present both the
theoretical and empirical values. Note that the specific qa locations used for obtaining these numbers
corresponds to the locations where the MSO was empirically observed.

Armed with the statistics of Table 4.1, we conclude that the main reasons for the gap are the
following: Firstly, while the number of repeat executions in contour ICk+1, as per the analysis, is
D(D − 1)/2, the empirical count is far fewer – in fact there is only one repeat execution in queries
such as 3D Q15, 4D Q7 and 5D Q84. While it is possible that repeat executions did occur in the

48

Table 4.1: SUB-OPTIMALITY CONTRIBUTION OF ICk+1

Query Fresh
Executions

in ICk+1

Repeat
Executions

in ICk+1

Bound Empirical Bound Empirical
3D Q15 3 2 3 1
3D Q96 3 3 3 2
4D Q7 4 2 6 1

4D Q26 4 4 6 2
4D Q27 4 4 6 3
4D Q91 4 4 6 3
5D Q19 5 4 10 2
5D Q29 5 4 10 2
5D Q84 5 3 10 1
6D Q18 6 5 15 2

earlier lower cost contours, their collective contributions to sub-optimality are not significant.
Secondly, by the time the execution reaches the ICk+1 contour, it is likely that the selectivities

of some of the epps have already been learnt. The bound however assumes that all selectivities are
learnt only in the last contour. As a case in point, for 5D Q84, the selectivities of three of the five
epps had been learnt prior to reaching the last contour.

Average-case Performance (ASO)

A legitimate concern with our choice of MSO metric is that its improvements may have been pur-
chased by degrading average-case behavior.

To investigate this possibility, we evaluated the ASO of PB and SB for all the test queries, and
these results are shown in Figure 4.8. Observe that, contrary to our fears, SB provides much better
performance, especially at higher dimensions, as compared to PB. For instance, with 5D Q19, the
ASO for SB is nearly 100% better than PB, going down from 17.2 to 8.8. Thus, SB offers significant
benefits over PB in terms of both worst-case and average-case behavior.

Sub-Optimality Distribution

In our final analysis, we profile the distribution of sub-optimality over the ESS. That is, a histogram
characterization of the number of locations with regard to various sub-optimality ranges. A sample
histogram, corresponding to query 5D Q84, is shown in Figure 4.9, with sub-optimality ranges of
width 5. We observe here that for over 90% of the ESS locations, the sub-optimality of SB is less than
5. Whereas this performance is achieved for only 32% of the locations using PB. Similar patterns

49

Figure 4.8: Comparison of ASO performance

were observed for the other queries as well, and these results indicate that from both global and local

perspectives, SB has desirable performance characteristics as compared to PB.

Figure 4.9: Sub-optimality Distribution (5D Q84)

50

4.4.2 Wall-Clock Time Experiments
All the experiments thus far were based on optimizer cost values. We have also carried out experi-
ments wherein the actual query response times were explicitly measured for the native optimizer and
SB. As a representative example, we have chosen TPC-DS Q91 featuring 4 error-prone predicates,
referred to as e1, . . . , e4. In this experiment, the optimal plan took less than a minute (44 secs) to com-
plete the query. However, the native optimizer required more than 10 minutes (628 secs) to process
the data, thus incurring a sub-optimality of 14.3.

In contrast, SB took only around 4 minutes (246 secs), corresponding to a sub-optimality of 5.6.
Table 4.2 shows the drilled down information of plan executions for every contour with SB. In addi-
tion, the selectivities learnt for the corresponding epp during every execution are also captured. The
selectivity information learnt in each contour, shown in %, is indicated by boldfaced font in the table.
Further, for each execution, the plan employed, and the overheads accumulated so far, are enumer-
ated. A plan P executed in spill-mode is indicated with a p. As can be seen in the table, the execution
sequence consists of partial executions of 13 plans spanning 6 consecutive contours, and culminates
in the full execution of plan P10 which produces the query results.

Table 4.2: SpillBound EXECUTION ON TPC-DS QUERY 91

Contour
no.

e1
(plan)

e2
(plan)

e3
(plan)

e4
(plan)

Time
(sec.)

1 0 0 0 0.08
(p1)

1.3

2 0.02
(p3)

0 0 0.3 (p2) 7.5

3 0.08
(p4)

0 0 1 (p5) 21

4 0.2 (p4) 0 0 12 (p5) 51.2
5 5 (p9) 0.8 (p6) 0 12 86.3
5 30 (p9) 0.8 5 (p8) 60 (p7) 176.4
6 80 (P10) 0.8 5 60 246.4

4.4.3 Evaluation on the JOB Benchmark
All the above experiments were conducted on the TPC-DS benchmark, an industry standard. Recently
a new benchmark, called Join Order Benchmark (JOB), specifically designed to provide challenging
workloads for current optimizers, was proposed in [LGM+15]. Hence, we now present results on

51

the primary metric, i.e. MSO, for a representative set of queries from the benchmark. The JOB
results, which are enumerated in Table 4.3, are on similar lines to that of TPC-DS benchmark – thus,
showcasing the platform-independent nature of SpillBound.

Table 4.3: RESULTS ON JOB BENCHMARK WRT MSO

Query MSOg MSOe

PB SB PB SB
3D Q1a 14.4 18 11.52 7.8

4D Q13a 28.8 28 15.85 13.29
4D Q23c 28.8 28 11.32 10.97

4.5 Conclusions
We presented SpillBound, a query processing algorithm that delivers a worst-case performance
guarantee of D2 + 3D, which is dependent solely on the dimensionality of the selectivity space. This
substantive improvement over PlanBouquet is achieved through a potent pair of conceptual en-
hancements: half-space pruning of the ESS thanks to a spill-based execution model, and bounded
number of executions for jumping from one contour to the next. Our new approach facilitates porting
of the bound across database platforms, and that the bound is easy to compute as we could merely
do it by query inspection. Further, it has low magnitude and is not reliant on the anorexic reduction
heuristic. Further, our experimental evaluation demonstrated that SpillBound provides competi-
tive guarantees to its PlanBouquet counterpart, while the empirical performance is significantly
superior.

52

Chapter 5

MSO Lower Bound and its Matching
Algorithm

5.1 Introduction
At this juncture, a natural question to ask is whether some alternative selectivity discovery algorithm,
based on half-space pruning, can provide better MSO bounds than SpillBound. In this regard, we
prove that no deterministic technique in this class can provide an MSO bound less than D. There-
fore, the SpillBound guarantee is no worse than a factor O(D) as compared to the best possible
algorithm in its class.

The core idea behind the lower bound is to construct a special ESS and even by restricting the
qa’s to be along the perimeter of the ESS, we show that atleast D half-space prunings (collectively
through D executions) are required to prune the entire ESS.

Given this quadratic-to-linear gap on the MSO guarantee, we seek to characterize exploration
scenarios in which SpillBound’s MSO approaches the lower bound. For this purpose, we introduce
a new concept called contour alignment, which is described next.

Contour Alignment

A contour is aligned if the contour plan that is incident on the boundary of the ESS, has its selectivity
learning dimension (during spill-mode execution) matching with the incident dimension. Leveraging
this notion, we show that the MSO bound can be reduced to O(D) if the contour alignment property
is satisfied at every contour encountered during its execution.

Unfortunately, in practice, we may not always find the alignment property satisfied at all con-
tours. Therefore, we design the AlignedBound algorithm which extracts the benefit of alignment
wherever available, either natively or through an explicit induction. Specifically, AlignedBound

53

delivers an MSO that is guaranteed to be in the platform-independent range [2D + 2,D2 + 3D].

Empirical Performance

In general, AlignedBound’s empirical performance is closer to the lower end of its guarantee
range, i.e. 2D+ 2, and often provides substantial benefits for query instances that are challenging for
SpillBound. For instance, AlignedBound brings the MSO of Q19 from TPC-DS benchmark
down to less than 10 from SpillBound’s 16. In a nutshell, typically AlignedBound is able to
complete virtually all the benchmark queries evaluated in our study with a single digit MSO.

5.2 Lower Bound on MSO
We now present a lower bound on the MSO for a class of deterministic half-space pruning algorithms
denoted by E . Consider an algorithmA ∈ E . Half-space pruning means the following: A can select an
epp j and a plan P , and execute it in such a manner that the selectivity of ej can be partly/completely

learnt. Let PredCost(P, ej, `) denote the budget required by an execution of plan P , that allows A
to conclude that qa.j > `. For a given epp ej , we let CompPredCost(P, ej) denote the minimum
budget required by A to learn the selectivity of ej completely, using P . Thus an execution of P with
budget B to learn ej allows A to conclude that

1. qa.j exceeds `, so that CompPredCost(P, ej) > PredCost(P, ej, `).

2. qa.j is at most `, so that CompPredCost(P, ej) ≤ PredCost(P, ej, `); in this case, qa.j is
learned completely.

Note that not all plans P can be used to learn ej; in this case PredCost(P, ej, `) is∞, for any ` ≥ 0.
A spill-mode execution is one of the mechanisms for realizing half-space pruning in practice.

Given a query with an unknown selectivity qa, the goal ofA is to execute the query to completion.
For this, the actions and outcomes of a generic step of A can be one of the following: (i) a plan
P is executed to completion incurring Cost(P, qa), (ii) a plan P is executed with budget B and it
infers that q 6� qa for all q ∈ ESS with Cost(P, q) ≤ B, and (iii) a plan P is executed with budget
PredCost(P, ej, `), for selectivity j, and learns that (a) qa.j > ` or (b) infer qa.j exactly.

An example of an algorithm that has the capability of executing only (i) and (ii) is
PlanBouquet, while SpillBound is an example of an algorithm that has the capability of ex-
ecuting (i), (ii) and (iii). Thus the limitations of the algorithms in E apply to PlanBouquet and
SpillBound. An example of an algorithm that has the capability of executing only (i) above is that
of the native optimizer.

Notion of Separation: For a given q ∈ ESS, we let A(q) denote the sequence of steps taken by
A, when the unknown point qa is q. A convenient way of describing A(qa), i.e. the execution of A,

54

is by keeping track of the regions of the ESS where qa is likely to be. At any step of its execution,
if the action performed by A is hypograph pruning (action (ii)) or half space pruning (action (iii)),
then it rejects certain locations in the ESS as possible qa locations. At the completion of step t,
we let W qa

t be the set of locations of the ESS which are not pruned by A, and let T qa be the total
number of steps performed by A(qa). Thus W qa

0 = ESS, and we describe A(qa) to be the sequence
W qa

0 ,W
qa
1 , . . . ,W

qa
T qa . Hence we can view the execution ofA as a sequence of steps in which locations

of the ESS are separated out from the unknown qa, until the query is successfully executed. Note that
A need not explicitly maintain the W qa

t ; it is simply a means of describing the execution of A.
We say that A(qa) separates q1, q2 ∈ ESS if at some step t in its execution, q1 ∈ W qa

t , q2 6∈ W qa
t ,

while q1, q2 were both in W qa
t−1. More generally, for two disjoint subsets of the ESS, U1 and U2, we

say thatA(qa) separates the set U1 ∪U2 into U1 and U2, if there is a step t such that U1 ∪U2 ⊆ W qa
t−1,

but U1 ⊆ W qa
t and U2 ∩W qa

t = φ (i.e. U1 is a subset of W qa
t , while U2 is disjoint from W qa

t).
Consequence of Deterministic Behavior: The algorithms we consider are deterministic. Thus the

action ofA at a step is determined completely by the actions and outcomes of previous steps. A formal
way to capture this is as follows. Let q1 and q2 be two points of the ESS. Let t be the largest number
such that q2 ∈ W q1

t , and t′ be the largest number such that q1 ∈ W q2
t′ . Since W q1

0 = W q2
0 = ESS, these

points exist. At min(t, t′), and W q1
i = W q2

i for i = 0, 1, . . . , t. We are now ready to prove the lower
bound.

Theorem 5.1 For any algorithm A ∈ E and D ≥ 2, there exists a D-dimensional ESS where the

MSO of A is at least D.

Construction of ESS: Suppose the MSO of A is strictly less than D. We construct a special D-
dimensional search space on which the contradiction is shown. It is constructed with the help of a set
of locations V = {q1, . . . , qD} given by qi.j = 1/D if j = i, else qi.j = 1. Further, our construction
is such that the ESS will have exactly D plans P1, P2, . . . , PD. The cost structure is as follows:

Cost(Pi, q) = D ∗ q.i ∀q ∈ ESS

Cost(Pi, q.j) = D ∗ q.j ∀q ∈ ESS, epp j

Thus the POSP plan at qi is Pi and has a cost of 1. For a two dimensional ESS and a cost c, the isocost
curves correspond to L shaped objects, consisting of two segments, blue and red, as shown in the
Figure 5.1. The blue segments consist of all points q with q.x = c/2, and q.y ≥ c/2. Similarly, the
red segments consist of all points q with q.y = c/2, and q.x ≥ c/2. The points q1 and q2 correspond
to (1/2, 1) and (1, 1/2) respectively.

55

Figure 5.1: ESS for Theorem 5.1

We verify the PCM property as follows: For a plan Pj , if q1 � q2, then q1.j ≤ q2.j; then
Cost(Pj, q1) = D ∗ q1.j ≤ D ∗ q2.j ≤ Cost(Pj, q2). Note that we have allowed equality in the
definition of the PCM for ease of exposition. We explain the proof with this relaxed version of the
PCM, and in the last part of this section we show a modification to the costs that allows the same
proof to work for the strict version of the PCM property.

Claim 5.1 Let qa ∈ V . Let V1, V2 be such that V1 ∩ V2 = φ and V1 ∪ V2 = V3 ⊆ V . IfA separates V3
into V1 and V2, then either |V1| = 1 or |V2| = 1.

If the claim is false, thenA(qa) splits V3 into V1 and V2 each of size at least two. Let qi1 , qi2 and qi3 , qi4
be the locations in V1 and V2 respectively. Then A separates qi1 , qi2 from qi3 , qi4 in the same step. By
the conditions on A, at least one of the following must have happened.

1. A explores a location q and concludes that qi1 , qi2 both ≺ q, while qi3 , qi4 6≺ q (or vice-versa,
in which case interchange the roles of V1 and V2). By construction of V , if qi1 , qi2 both ≺ q,
then q has to be such that q.j = 1 ∀j ∈ 1, . . . , D, i.e, q = 1. But, this implies that qi3 , qi4 � q

(contradiction).

2. A identifies an epp j, a plan P and budget B such that qi1 .j, qi2 .j are learned, while qi3 .j, qi4 .j
cannot be learned within budget B. Since i1 6= i2, the budget utilized for learning the selectivi-
ties is at leastD. Since qa ∈ V , its POSP cost is 1. So, the MSO ofA is at leastD (contradicting
the assumption that MSO is less than D).

56

This proves the above claim. From the above, we see that to split V3, A needs a cost of at least 1. We
are now ready to prove the Theorem 5.1.
Proof: (of Theorem 5.1) Suppose A ∈ E has an MSO less than D. The POSP plan at qi ∈ V is Pi,
and it incurs a cost of 1 to execute. The cost of executing Pi at qj ∈ V , where j 6= i is D. Since the
MSO of A is less than D, the final step of A(qi) cannot be the same for two different qi, qj . Thus the
execution of A(qi) and A(qj) differs and A separates qi and qj . Choose qa arbitrarily from V0 = V

and executeA. Consider the step in whichA separates V0 the first time. Suppose q1 is separated from
V1 = V0 \ {q1} in this step. Then choose qa arbitrarily from V1, and execute A(qa) again. Since A
is deterministic, A(q1) and A(qa) are identical till V0 is first separated. Thus, it will first separate V0
and then V1. Suppose it separates q2 from V2 = V1 \ {q2}. Choose qa arbitrarily from V2, and execute
A(qa) again. It will first separate V0, then V1, and then V2. Suppose it separates q3 from V3 = V2\{q3}.
Choose qa arbitrarily from V3 and repeat this process inductively. Say qD is left at the starting of Dth
step, then qa = qD, A separates each of V0, V1, . . . , VD−1 in different steps, and finally complete qa
successfully. As each separation step needs a cost of at least 1, and a cost of at least 1 to execute qa,
A pays a cost of at least D for qa = qD. But, the cost of PD at qD is 1. Thus, the MSO of A is at least
D, which contradicts our assumption. 2

We thus have the following corollary.

Corollary 5.1 For D ≥ 2, there exists an ESS, where any deterministic half-space pruning based

algorithm has an MSO of at least D

Dealing with strict PCM: The strict PCM property is as follows: if q1 and q2 are two points of
the ESS such that q1 ≺ q2, then for all plans P , Cost(P, q1) < Cost(P, q2). The cost function we
constructed above does not satisfy this property. However, the following cost functions follow the
strict PCM property. The plans are P1, . . . , PD as before. Their cost structure is now as follows.

Cost(Pi, q) = D ∗ q.i+ δ
∑
j 6=i

q.j ∀q ∈ ESS

Cost(Pi, q.j) = D ∗ q.j ∀q ∈ ESS, epp j

In the above δ is a very small positive constant whose exact value is chosen based on what we are
trying to prove. Note that since the cost function is a sum of increasing linear terms, the full function
is an increasing linear function.

Claim 5.2 The above cost function Cost() obey the strict PCM property.

Proof: Let q1 and q2 be points in the ESS such that q1 ≺ q2. Since the cost function corresponding

57

to any plan Pi are increasing, we have

D(q1.i) + δ
∑
j 6=i

q1.j ≤ D(q2.i) + δ
∑
j 6=i

q2.j

So that

D(q2.i− q1.i) + δ
∑
j 6=i

(q2.j − q1.j) ≥ 0

Since q1 ≺ q2, the above is a sum of non-negative terms. Since the relation is strict, there is at least
one k in 1, . . . , D, such that q1.k < q2.k, the above sum is strictly greater than zero. 2

Note that Cost(Pi, qi) = 1+ δ(D−1), and Cost(Pi, qj) = D+ δ(D−2+1/D). We then modify
the above theorem as follows.

Theorem 5.2 For any algorithm A ∈ E and ε > 0, for every D, there is a D-dimensional ESS where

the MSO of A is at least D − ε.

To prove the above theorem, we note the following. Let U ⊆ V , and qi ∈ U be such that A
separates qi from U \ {qi}. Then either A discovers a point q such that qi � q while it does not
dominate any point of U or vice versa. This means that q dominates some point of V . So the cost of
executing a plan at q is at least 1 + δ(D− 1) which exceeds 1. Thus, to separate any two points of V ,
a cost of at least 1 is required.

Now suppose A has an MSO of at most D − ε for some ε > 0. Take δ = ε
D2−1 . Then it is easy

to verify that Cost(Pi, qj)/Cost(Pi, qi) exceeds D− ε. So, the final step ofA(qi) cannot be the same
for two different qi, qj . The rest of the proof is on similar lines to the one of Theorem 5.1.

5.3 The AlignedBound Algorithm
Given the quadratic-to-linear gap on MSO, we now identify exploration scenarios in which the MSO
of SpillBound matches the Ω(D) lower bound – we do so by leveraging the contour alignment
notion which is described next.

5.3.1 Contour Alignment
We now introduce a key concept that helps characterize search scenarios in which the MSO of the
SpillBound algorithm matches the lower bound. Again, for ease of understanding, we consider
the special case of a 2D ESS with predicates X and Y .

Consider a contour, say ICi, and a dimension j ∈ {X, Y }. A location qjext ∈ ICi is said to be an
extreme location along dimension j if the location has the maximum coordinate value for dimension

58

j among the contour locations belonging to ICi, i.e, qjext.j ≥ q.j, ∀q ∈ ICi. In Figure 5.2, these
extreme locations are highlighted by (bold) dots.

A contour ICi is said to satisfy the property of contour alignment along a dimension j if it so
happens that qjmax = qjext, i.e., the optimal plan at qjext spills on predicate ej . For ease of exposition,
if a contour satisfies the contour alignment property along at least one of its dimensions, then we
refer to it as an aligned contour. In Figure 5.2, contours IC2 and IC4 are aligned along the X and Y
dimensions, respectively, and are therefore aligned contours – however, contour IC3 is not so because
it is not aligned along either dimension.

Figure 5.2: Contour Alignment

Given a contour ICi, Lemma 4.2 showed the sufficiency of two plan executions to guarantee a
quantum progress in the discovery process. Leveraging the alignment notion, the following lemma
describes when the same progress can be achieved with exactly one execution.

Lemma 5.1 If a contour ICi is aligned, then the execution of exactly one plan in spill-mode with

budget CCi, is sufficient to make quantum progress in the discovery process.

Proof: Without loss of generality, let us assume that the contour ICi satisfies contour alignment
along dimension j, i.e, the optimal plan P at the location qjext spills on dimension j. By Lemma 4.1,
the spill-mode execution of P with budget CCi ensures that we either learn the exact selectivity of ej
or learn that qa.j > qjext.j. Suppose we learn that qa.j > qjext.j, then it implies that qa lies beyond
ICi. Thus, just the execution of P in spill-mode yields quantum progress. 2

59

Note that in the general ESS case of more than two epps, there may be a multiplicity of qjmax or
qjext locations, but Lemma 5.1 can be easily generalized such that quantum progress is achieved with
a single execution in these scenarios also.

5.3.2 Native Contour Alignment
Consider the scenario in which all the contours are aligned – then by Lemma 5.1, each of these con-
tour requires only a single execution to make quantum progress. Following the lines of the analysis
of SpillBound, and the fact that the most expensive execution sequence occurs when all the selec-
tivities are learnt in the last contour (ICk+1), the total cost incurred in the worst-case would be:

TotalCost = CC1 + · · ·+ CCk +D ∗ CCk+1

= CC1 + · · ·+ 2k−1CC1 +D ∗ 2kCC1

≤ (2k−1CC1)(2D + 2)

leading to the following theorem:

Theorem 5.3 If the contour alignment property is satisfied at every step of the algorithm’s execution,

then the MSO bound is 2D + 2.

In practice, however, the contour alignment property may not be natively satisfied at all contours
– for instance, as enumerated later in Table 5.1, as few as 18 percent of the contours were aligned
for a 3D ESS with TPC-DS Query 96. Therefore, we propose in this section the AlignedBound
algorithm which operates in three steps: First, it exploits the property of alignment wherever available
natively. Second, it attempts to induce this property, by replacing the optimal plan with an aligned
substitute if the substitution does not overly degrade the performance. Finally, it investigates the
possibility of leveraging alignment at a finer granularity than complete contours.

To aid in description of the algorithm, we denote by Ext(i, j) the set of all extreme locations on a
contour ICi along a dimension j. With this, a contour ICi is said to satisfy contour alignment along
dimension j if qjmax ∈ Ext(i, j), i.e, at least one of the extreme locations along dimension j has an
optimal plan that spills on ej . Secondly, the set of all plans that spill on predicate ek is denoted by Pk.

5.3.3 Induced Contour Alignment
Given a contour ICi that does not satisfy contour alignment, we induce contour alignment on the
contour as follows: Consider a plan P which spills on ek ∈ EPP. It is a candidate replacement plan
for any location qkext ∈ Ext(i, k) in order to obtain alignment along dimension k – the cost of the
replacement is equal to Cost(P, qkext). Therefore, the minimum cost of inducing contour alignment

60

along dimension k is given by the pair (P k ∈ Pk, qkext ∈ Ext(i, k)) for which Cost(P k, qkext) is
minimized. Next, we find the dimension j for which the cost of the replacement pair (P j, qjext) is
minimum across all dimensions. Finally, the optimal plan at qjext is replaced by P j , and the penalty λ

of this replacement is the ratio of Cost(P j, qjext) to Cost(Pqjext , q
j
ext).

The usefulness of induced contour alignment depends on the penalty incurred in enforcing the
property. To assess this quantitatively, we conducted an empirical study, whose results are shown in
Table 5.1. Here, each row is a query instance. The “Original” column indicates the percentage of the
contours that satisfy contour alignment without any replacements. A column with a particular λ value,
say c, indicates the percentage of the contours satisfying contour alignment when the replacement
plans are not allowed to exceed a penalty of c. The last column shows the minimum penalty that
needs to be incurred for all the contours to satisfy contour alignment.

We see from the table that there are cases where full contour alignment can be induced relatively
cheaply – for instance, a 50 percent penalty threshold is sufficient to make Query 5D Q29 completely
aligned. However, there also are cases, such as 3D Q96, where extremely high penalty needs to be
paid to achieve contour alignment. Therefore, we now develop a weaker notion of alignment, called
“predicate set alignment”, which operates at a finer granularity than entire contours, and attempts to
address these problematic scenarios.

Table 5.1: COST OF ENFORCING CONTOUR ALIGNMENT

Query Original λ = 1.2 λ = 1.5 λ = 2.0 Max λ
3D Q96 18 18 27 45 130
4D Q7 70 70 90 90 3.62

4D Q26 20 30 40 50 66.95
4D Q91 67 67 77 77 5.38
5D Q29 40 70 100 - 1.35
5D Q84 100 - - - 1

5.3.4 Predicate Set Alignment (PSA)
We say that a set T ⊆ EPP satisfies predicate set alignment (PSA) with the leader dimension j if,
for any location q ∈ ICi whose optimal plan spills on any dimension in T , q.j ≤ qjmax.j. The
set of all locations in ICi whose optimal plan spills on a dimension corresponding to a predicate
in T , is denoted by ICi|T . For convenience, we assume that the predicate corresponding to the
leader dimension belongs to T . Note that PSA is a weaker notion of alignment – while contour
alignment with leader dimension j mandates that qjmax.j ≥ q.j for any q ∈ ICi, PSA only requires
that qjmax.j ≥ q.j for all q ∈ ICi|T .

61

Lemma 5.2 Suppose T1, . . . , Tl are sets of epps satisfying predicate set alignment such that

∪k=lk=1Tk = EPP, then ∪k=lk=1ICi|Tk = ICi.

Proof: Every q ∈ ICi spills on one of the dimensions in EPP. Therefore, it belongs to at least one
ICi|T . 2

Lemma 5.3 Suppose T1, . . . , Tl are sets of epps satisfying predicate set alignment such that

∪k=lk=1Tk = EPP, then spill-mode execution of l POSP plans on ICi is sufficient to make quantum

progress.

Proof: Let j1, . . . jl be the leader dimensions for T1, . . . , Tl, respectively. Then, the l POSP plans
chosen for the execution are P

q
jk
max

for k = 1, . . . , l. By definition of PSA,

For k=1 to l, qjkmax.jk ≥ q.j ∀q ∈ ICi|Tk (5.1)

From Lemma 5.1 and Equation 5.1, each of the ICi|Tk would make quantum progress. This observa-
tion along with Lemma 5.2 proves the lemma. 2

Inducing Predicate Set Alignment

Consider a contour ICi, and a candidate set T ⊆ EPP with a leader dimension j ∈ T . We now present
a mechanism to induce predicate set alignment on T with leader dimension j.

We consider the extreme location along the dimension j among all the locations in ICi|T , i.e,
qjT = argmaxq∈ICi|T q.j (in case of a multiplicity of such points, any one point can be picked).
Consider the set S = {q ∈ ICi∧ q.j = qjT .j}, i.e, all the locations belonging to ICi whose coordinate
value on jth dimension is equal to the coordinate value on jth dimension of an extreme location
in ICi|T . It is easy to see that T satisfies predicate set alignment if the optimal plan at any of the
locations in S is replaced with a plan P that spills on ej . We now find a pair (P ∈ Pj, q ∈ S) such
that Cost(P, q) is minimum. The predicate set alignment property is induced by replacing the optimal
plan at q with the plan P . The penalty λ for the replacement is defined as before.

We will now discuss the implementation intricacies for inducing predicate set alignment in brief.
Section 4.2 explains the process of Spill Node Identification which produces a total ordering on the
epps in a plan using Inter-Pipeline and Intra-Pipeline Ordering. Given this ordering, we choose to
spill on the node corresponding to the first epp in the total-order. As a result of this procedure, the
selectivities of all the predicates located in the upstream of the current spilling epp will be known
exactly.

We try to achieve this property while exploring plans with a user-defined epp. For a query, ex-
ploration of plans inside the optimizer takes places using the dynamic programming paradigm. In the

62

optimizer, we change the code of generation of DP lattice such that, at each node of the DP lattice, it
prunes away all plans (or sub-plans) which has user-defined epp in the downstream of any other epp.

Finding Minimum Cost Predicate Set Cover

Lemma 5.3 essentially says that a set of predicate sets T1, . . . , Tl that cover EPP can be leveraged to
make quantum progress. We now argue that it is sufficient to limit the search to merely the set of
partition covers of EPP.

Consider a set T which satisfies PSA along dimension j. The cover cost of T1, . . . , Tl is said to be
sum of cost of enforcing PSA for each of the Tis. We say that T satisfies maximal PSA with leader
dimension j if no super-set of T satisfies the property with same or lesser cost. Consider T1, . . . , Tl
which cover EPP and have been enforced to satisfy maximal PSA. We now obtain a partition cover
whose cover cost is at most the cover cost of T1, . . . , Tl.

Let j1, . . . , jl be the leader dimensions for T1, . . . , Tl. The maximal property of the Tis implies
that no dimension can be a leader dimension for more than one Ti. Therefore, the following sets
π1 = T1 + {j1} − ∪m=l

m=2{jm}, πk = Tk + {jk} − ∪m=l
m=1,m 6=k{jm} − ∪m<km=1πm for k = 2, . . . l − 1, and

πl = Tl − ∪m=l−1
m=1 πm provide a partition cover with the same set of leader dimensions j1, . . . , jl. It

follows that the cover cost of π1, . . . , πl is at most the cover cost of T1, . . . , Tl.
Let j1, . . . jl be the leader dimensions for T1, . . . , Tl. Let CPSA(Ti, ji) denote the minimum cost

required to induce Predicate Set Alignment for set Ti with leader dimension ji. The maximal property
of the Tis implies that no dimension can be a leader dimension for more than one Ti. Therefore,
the following sets π1 = T1 + {j1} − ∪m=l

m=2jm, πk = Tk + {jk} − ∪m=l,m6=k
m=1 {jm} − ∪m<km=1πm for

k = 2, . . . l − 1, and πl = Tl − ∪m=l−1
m=1 πm provide a partition cover with the same set of leader

dimensions j1, . . . , jl.

Lemma 5.4 CPSA(T/j) ≥ CPSA(T ′/j), if T ′ ⊆ T

Proof: By definition of leader dimension, if j induces Predicate Set Alignment on T with cost
CPSA(T/j), it also induces Predicate Set Alignment on T ′ with atmost the same cost. 2

Lemma 5.5
i=l∑
i=1

CPSA(Ti/ji) ≥
i=l∑
i=1

CPSA(πi/ji)

Proof: From above, we know that no dimension can be leader dimension for more than one Ti. Since
we are removing dimensions from Ti to obtain πi, πi ⊆ Ti. Moreover, the leader dimension of Ti and
πi is same. Thus, from Lemma 5.4 and the above arguments, we prove the lemma. 2

Thus the cover cost of π1, . . . , πl is at most the cover cost of T1, . . . , Tl. Therefore, we can restrict
the search for EPP cover to only partition covers without incurring any increase in the penalty of the

63

EPP cover. The benefit of this is that the number of partition covers of a set is much smaller than the
number of different ways of covering a set with its subsets.

Given a partition cover π = {π1, . . . , πl}, πλ denotes the sum of the penalties incurred in enforcing
PSA for each of the πis along their leader dimensions.

5.3.5 Algorithm Description
The AlignedBound algorithm is presented in Algorithm 2. The steps that are identical to the steps
in SpillBound are not presented again and simply captured as comments.

The key steps of the algorithm are S1 and S2 which are executed using the partition cover and
predicate set alignment techniques are described in Section 5.3.4.

A legitimate concern at this point is whether in trying to induce alignment, the D2 +3D guarantee
may have been lost along the way. The key to the analysis is an alternate way of understanding the
O(D2) MSO of SpillBound. At each inner for-loop of SpillBound it incurs a penalty of |EPP|,
i.e, a penalty of 1 for each of the epp in EPP. On the last contour, in the outer while-loop, the penalty
of the inner for-loop is incurred for at most D − 1 repeat executions.

With this perspective, we prove the following theorem.

Theorem 5.4 The MSO bound of AlignedBound algorithm for any query with D error-prone pred-

icates is bounded by D2 + 3D.

Proof: (i) At each execution of S1 step, there is a trivial way to obtain penalty equal to |EPP| by
considering just singleton parts corresponding to each remaining epp. So, the penalty of this step is
upper bounded by |EPP|, (ii) The number of repeat executions also continues to be bounded by D− 1

as in the case of SpillBound. So MSO is bounded by D2 + 3D, similar to SpillBound. 2

Theorem 5.5 In the best case, MSO bound of AlignedBound is O(D).

Proof: In the best case, the penalty of the chosen partitions in the S1 steps is a constant. This can
happen even when contour alignment is not satisfied, because a partition cover with constant number
of parts, each having a constant penalty, is also sufficient to obtain a constant penalty at step S1. This
will lead to MSO of O(D) 2

Thus, it captures a larger set of search scenarios in which an MSO of O(D) can be obtained.
Finally, from an empirical point of view, the algorithm is designed to take advantage of PSA to
whatever extent possible during the search. We show the empirical benefits of this optimization in the
experimental section, especially for query instances on which the empirical MSO of SpillBound
is relatively larger.

64

Algorithm 2 The AlignedBound Algorithm
1: Init: i=1, EPP={e1, . . . , eD};
2: while i ≤ m do . for each contour
3: /* Handle special 1-D case when it is encountered */
4: S0: Π = Set of all partitions of EPP (remaining epps);
5: S1: We pick π ∈ Π with minimum πλ;
6: for each part πk ∈ π do
7: S2: Let jk be the leader dimension, P the replacement plan along dimension jk, and q the

location whose optimal plan is replaced with P ;
8: exec-complete = Spill-Mode-Execution(P, ejk , Cost(P, q));
9: Update qrun.jk based on selectivity learnt for ejk ;

10: if exec-complete then
11: Remove ejk from the part πk and the set EPP;
12: Break;
13: end if
14: end for
15: /* Update ESS, jump contour as in SpillBound */
16: end while

5.4 Experimental Evaluation
Let us now assess the empirical performance of AlignedBound over SpillBound. In addition
to modifications to engine such as spilling mentioned before, we implement a feature that obtains
a least cost plan from optimizer which spills on a user-specified epp. This is primarily needed for
AlignedBound algorithm to find the minimum penalty replacement pair which is mentioned in
Section 5.3.

The remainder of this section, for ease of exposition, we use the abbreviations SB and AB to refer
to SpillBound and AlignedBound, respectively. Further, as mentioned before, we use MSOg

(MSO guarantee) and MSOe (MSO empirical) to distinguish between the MSO guarantee and the
empirically evaluated MSO obtained on our suite of queries.

5.4.1 Comparison of Empirical MSO
We now see how the predicate set alignment (PSA) property, exploited by AB, impacts its empirical
performance as compared to SB. Specifically, we assess the MSOe incurred by the two algorithms,
along with the comparison on other metrics, such as ASO and sub-optimality distribution.

The MSOe numbers for SB and AB are captured in Figure 5.3. First, we highlight that the MSOe

values for AB are consistently less than around 10, for all the queries. Second, AB significantly brings
down the MSOe numbers for the queries whose MSOe values with SB are greater than 15. As a case

65

in point, AB brings down the MSOe of 6D Q18 from 17.1 to 10.8.

Figure 5.3: Comparison of Empirical MSO (MSOe)

Rationale for AB’s Performance Benefits
Recall that AB provides an MSO guarantee in the range [2D + 2, D2 + 3D]. As can be seen in
Figure 5.3, the MSOe values for AB are closer to the corresponding 2D + 2 bound value, shown with
dotted lines in the figure. These results suggest that the empirical performance of AB is close to the
O(D) lower bound on MSO.

We now shift our focus to examining the reasons for AB’s MSOe performance benefits over SB.
In Table 5.2, the maximum penalty over all partitions encountered during execution is tabulated for
the various queries. The important point to note here is that these penalty values are lower than 3,
even for the 6D query. Since the highest cost investment for quantum progress in any contour is the
maximum penalty times the cost of the contour, the low value for penalty results in the observed
benefits, especially for higher dimensional queries.

5.4.2 Comparison of ASO
Moving our attention to average case metric of MSO, we see in Figure 5.4 that the AB’s ASO numbers
improve significantly over SB. As a case in point, for 6D Q18 the ASO reduces from 9.8 for SB to
4.7 for AB.

66

Table 5.2: MAXIMUM PENALTY FOR AB

Query Max. Penalty for AB
3D Q15 2.0
3D Q96 3
4D Q7 3

4D Q26 2.7
4D Q27 2.9
4D Q91 2
5D Q19 3
5D Q29 1.8
5D Q84 1.1
6D Q18 1.8

Figure 5.4: Comparison of ASO performance

67

5.4.3 SubOptimality Distribution
We now profile the distribution of the sub-optimalities over the ESS. In Figure 5.5, we observe that
nearly 80% of the ESS locations have sub-optimality less than 6 when we use AlignedBound algo-
rithm. This is much more as compared to SpillBound which only has around 43% locations within
this performance range. Similar pattern was observed for other queries as well. These results indicate
that AlignedBound has desirable performance characteristics as compared to SpillBound.

Figure 5.5: Sub-optimality distribution (5D Q19)

5.4.4 Evaluation on the JOB Benchmark
We now present results, in Table 5.3, for the same representative queries from the JOB benchmark as
captured in Table 4.3. Here as well we see that the MSOe values for AB are less than around 10 for
all the queries, along with performing better than SB.

Table 5.3: RESULTS ON JOB BENCHMARK WRT MSO

Query MSOe

SB AB
3D Q1a 7.8 6.4

4D Q13a 13.29 9.12
4D Q23c 10.97 7.24

68

5.5 Conclusions
In this chapter, we first proved a lower bound of D on MSO among the class of half-space pruning
algorithms. Then, we introduced the contour alignment and predicate set alignment properties, and
leveraged them to design AlignedBound with the objective of bridging the quadratic-to-linear
MSO gap between SpillBound and the lower bound. Our detailed empirical evaluation suggests
that AlignedBound’s empirical performance often approaches the ideal of MSO linearity in D.

69

Chapter 6

Dimensionality Reduction

6.1 Introduction
Notwithstanding the unique and welcome benefits of the SpillBound class of techniques with re-
gard to robust query processing, it suffers from the “curse of dimensionality” on two important fronts
– firstly, the overheads of constructing the POSP overlay are exponential in the PSS dimensionality,
and secondly, the MSO guarantees are quadratic in this dimensionality.

For ease of presentation, we use SpillBound as a representative algorithm for
AlignedBound unless otherwise mentioned. Just to recall that the MSO of SpillBound has
the following upper bound:

MSOSB(D) ≤ D2 + 3D (6.1)

Contemporary OLAP queries often have a high ab initio PSS dimensionality, a legitimate question
that arises is whether the SpillBound technique can be made practical for current database envi-
ronments. As a case in point, consider the SPJ version of TPC-DS Query 27 shown in Figure 6.1,
whose raw dimensionality is 9 (comprised of 4 join predicates, 4 equality filter predicates, and 1 set
membership predicate). Constructing its PSS at even a modest resolution of r = 20 (corresponding
to 5% increments in the selectivity space) would require making about 0.5 trillion calls to the query
optimizer, and the MSO would exceed 100.

Earlier, the PSS dimensionality issue was handled by manually identifying and eliminating dimen-
sions that were either accurately estimated by the optimizer, or whose errors did not materially impact
the overall plan performance – the resulting reduced space was termed as the Error Selectivity Space
(ESS). This inspection-based approach is not a scalable solution, and moreover, may have missed
opportunities for dimension removal due to its ad-hoc nature. We therefore propose an automated
technique, called DimRed, for converting high-dimensional PSS into equivalent low-dimensional

70

Figure 6.1: TPC-DS Query 27 (SPJ version)

ESS, and report on the outcomes here.

6.2 Problem Definition
Given the above framework, a mandatory criterion for our dimensionality reduction algorithm is that
the MSO of the resultant ESS should be no worse than that of the initial PSS – that is, the reduction
should be “MSO-safe”. Within this constraint, there are two ways in which the optimization problem
can be framed – we can choose to either minimize the compilation overheads, or to minimize the
MSO, leading to the following problem definitions:

Overheads Metric: Develop an MSO-safe time-efficient ESS construction algorithm that, given a
query Q with its PSS, removes the maximum number of PSS dimensions.

MSO Metric: Develop an MSO-safe time-efficient ESS construction algorithm that, given a query
Q with its PSS, removes a set of PSS dimensions such that the resulting MSO is minimized.

6.3 Outline of the DimRed Procedure
We now present an outline of DimRed which incorporates a pipeline of reduction strategies whose
collective benefits ultimately result in ESS dimensionalities that can be efficiently handled by modern
computing environments.

The DimRed procedure is composed of three components: SchematicRemoval,
MaxSelRemoval, and WeakDimRemoval that are applied in sequence in the processing chain
from the user query submission to its execution with SpillBound, as shown in Figure 6.2. Here,
SchematicRemoval and MaxSelRemoval reduce the overheads through explicit removal of

71

PSS dimensions, whereas WeakDimRemoval improves the MSO through implicit removal of di-
mensions. To illustrate DimRed’s operation, we use TPC-DS Query 27 (Figure 6.1) as the running
example.

Figure 6.2: DimRed Pipeline

In the first component, SchematicRemoval, a dimension d is removed whenever we expect
that the selectivity estimates made by the optimizer, using either the metadata statistics or the physical
schema, will be highly accurate. For instance, database engines typically maintain exact frequency
counts for columns with only a limited number of distinct values in their domains – therefore, the
dimensions corresponding to the d year and s state columns in Q27 can be safely removed from the
PSS.

The second component, MaxSelRemoval, takes a cost-based approach to identify “don’t-care”
dimensions where the actual selectivity value does not play a perceptible role on overall performance.
Specifically, given a candidate dimension d, it conservatively assumes that dimension d’s selectivity
is the maximum possible (typically, 1). Due to this movement to the ceiling value, there are coun-
tervailing effects on the MSO guarantee – on one hand, the value of D is decremented by one in
Equation 6.1, but on the other, an inflation factor αd is suffered due to SpillBound’s choice of
bouquet plan executions being now dictated by the maximum selectivity, rather than the actual value.
The good news is that αd can be bounded and efficiently computed, as explained in Section 6.5.
Therefore, we can easily determine whether the benefits outweigh the losses, and accordingly de-
cide whether or not to remove a dimension. For instance, in Figure 6.1, the three filter predicates on
cd gender, cd marital status and cd education status can be removed since their inflation factors
are small, collectively amounting to just 1.34.

After the explicit dimension removal by the SchematicRemoval and MaxSelRemoval com-
ponents, the POSP overlay of the ESS is computed. Subsequently, rather than separately discover-
ing the selectivity of each of the remaining dimensions, we attempt, using the WeakDimRemoval
component, to piggyback the selectivity discovery of relatively “weak” dimensions on their “strong”
siblings – here, the strength of a dimension is characterized by its αd value, as computed previously
by the MaxSelRemoval module. That is, a dimension d with low αd is discovered concurrently

72

with a high inflation counterpart – again, there are countervailing factors since the concurrent discov-
ery effectively reduces the dimensionality by one, but incurs a second inflation factor βd due to the
increased budgetary effort incurred in this process. However, the good news again is that βd can be
bounded and efficiently computed if the ESS is available, as explained in Section 6.6, and it can be
easily determined whether the benefits outweigh the losses. For instance, in Figure 6.1, the last two
join predicates are implicitly removed through this process, since their execution is piggybacked on
the first two join predicates.

Performance Results
The summary theoretical characterization of the DimRed procedure, with regard to dimensionality,
computational overheads and MSO guarantees, is captured in Table 6.1. In this table, ks and km de-
notes the number of dimensions that are explicitly removed thanks to the SchematicRemoval and
MaxSelRemoval components, respectively, while kw denotes the number of implicitly removed
dimensions from the WeakDimRemoval component. αM captures the collective MSO inflation fac-
tor arising from the removal of the km don’t-care dimensions, while βW indicates the net inflation
factor arising out of the kw piggybacked discoveries. The last column compares the cumulative over-
heads, captured by rD, incurred after applying the DimRed pipeline relative to what would have been
incurred on the native PSS.

Note that there is a optimized variant, called Nexus proposed in [DH16], which only discover
parts of the PSS corresponding only to the contours. Even though there are material reductions in
compilation overheads but it still has exponential dependency on the dimensions. For reasons detailed
in Section 7.7.1, we use complete exploration of PSS, requiring rD optimizer calls for compilation
overheads.

Table 6.1: Summary Performance Characterization

Dimensionality Maximum Suboptimality Overheads
(Opt Calls)

PSS D MSOSB(D) rD

Schematic
Removal

D − ks MSOSB(D − ks) rD−ks−km+
θ(2D)MaxSel

Removal
(D − ks − km)

αM ∗
MSOSB(D − ks − km)

WeakDim
Removal

(D − ks − km − kw)
αM ∗ βW ∗

MSOSB(D − ks − km − kw)

Given this characterization, we need to assess whether the values of ks, km and kp are substantial
enough in practice to result in a low-dimensional ESS, and we have therefore conducted a detailed
empirical evaluation of the DimRed procedure. Specifically, we have evaluated its behavior on a

73

representative suite of 50-plus queries, sourced from the popular TPC-DS and JOB benchmarks.
Our results indicate that DimRed is consistently able to bring down the PSS dimensionality of the
workload queries, some of which are as high as 19, to 5 or less. A sample outcome for Query 27
is shown in Table 6.2, and we see here that the original dimensionality of 9 is brought down to as
low as 1 when optimizing for overheads, and as low as 2 when optimizing for MSO. Further, the
preprocessing time taken before query execution can actually begin is now down to seconds from
days. Finally, the resulting MSOs are not only safe, but significantly better than those on the original
system – for instance, optimizing for MSO produces a huge improvement from 108 to less than 20.

Table 6.2: Results for TPC-DS Q27

Overheads Metric MSO Metric
Retained

Dimensions MSO Overheads
(Opt calls)

Retained
Dimensions MSO Overheads

(Opt calls)
PSS 9 108 0.5 trillion 9 108 0.5 trillion

Schematic
Removal

7 70
528

(<1 sec)

7 70
160128

(36 secs)MaxSel
Removal

1 70 4 37.5

WeakDim
Removal

- - 2 20

We shall now see in detail each component of the DimRed pipeline respectively in the following
three sections.

6.4 Schematic Removal of Dimensions
This component is based on the observation that using standard meta-data structures such as his-
tograms, and physical schema structures such as indexes, it is feasible to establish the selectivities of
some of the query predicates with complete or very high accuracy. Further, even if an almost-precise
value cannot be established, the metadata could serve to provide tighter lower and upper bounds for
selectivities as compared to the default (0, 1] range – these bounds can be leveraged by the subsequent
MaxSelRemoval stage of the DimRed pipeline. We hasten to add that while what we describe here
is largely textbook material, we include it for completeness and because of its significant reduction
impact on typical OLAP queries, as highlighted in our experimental results of Section 6.7.

For starters, consider the base case of a filter predicate on an ordered domain, a very common
occurrence in OLAP queries, whose selectivity analysis can be carried out as follows for equality and
range comparisons, respectively.

Equality Predicates: Database engines typically store the exact frequency counts for the most com-

74

monly occurring values in a column. Therefore, if the equality predicate is on a value in this
set, the selectivity estimate can be made accurately. On the other hand, values outside of this
set will be associated with some bucket of the column’s histogram. Therefore, the selectivity
range can be directly bounded within [0, BucketFrequency].

An alternate approach to selectivity estimation is to use, if available, an index on the queried
column. This is guaranteed to provide accurate estimates, albeit at higher computational cost
arising out of index traversal. However, since the typical running times for OLAP queries are in
several minutes, investing a few seconds on such accesses appears to be an acceptable tradeoff,
especially given that choosing wrong plans due to incorrect estimates could result in arbitrary
blowups of the response time.

Range Predicates: In this case, histograms can be easily leveraged to obtain tighter bounds, espe-
cially with equi-depth histogram implementations. Specifically, the lower bound for the selec-
tivity range is the summation of the frequencies of the buckets that entirely fall within the given
range, and the upper bound is the summation of the frequencies of the buckets that partially or
completely overlap with the given range.

Similar to equality predicates, if an index is available on the predicate column, then accurate
estimates are guaranteed while incurring the index traversal costs.

String predicates: The traditional meta-data structures for string queries often do not yield satisfac-
tory accuracy for selectivity estimation, and typically tend to under-estimate the expected cardi-
nalities. Moreover, they are not particularly useful for obtaining tight lower and upper bounds.
Hence, we leverage the strategy described in [LNS07], where summary structures based on q-

grams are proposed for storing string-related metadata. But for combining the selectivities of
the individual sub-string predicates and obtaining deterministic tight bounds, we make use of
the Short Identifying Substring Hypothesis stated and applied in [CGG04, LNS09]. We also
hasten to add that even though these aforementioned strategies provide point estimates for the
selectivities, we just adopt their mechanisms for providing bounds on the selectivity range.

The above discussion was for individual predicates. However, in general, there may be multiple
filter predicates on a base relation. In such cases, we first compute the ranges or values for each
individual predicate (in the manner discussed above), and then use these individual bounds to compute
bounds on the relational selectivity as a whole. For instance, when there are conjunctive predicates on
a relation, the upper bound on the relational selectivity is simply the upper bound of the least selective
predicate. Analogously, for disjunctive predicates, the lower bound is simply the maximum lower
bound among the individual predicates. After determining the bounds of the relational selectivity, we

75

vary the individual predicates between [0, 1], discarding any selectivity combinations that violate the
relational selectivity bounds.

6.5 MaxSel Removal of Dimensions
After the schematic removal of dimensions is completed, we know that the optimizer may not be able
to accurately estimate the selectivities of the remaining dimensions. However, it may still be feasible
to consider some of these selectivities as “don’t-cares” (i.e. ∗ in regex notation), which is equivalent
to removing the dimensions, while provably continuing to maintain overall MSO-safety. The system-
atic identification and removal of such don’t-care dimensions is carried out by the MaxSelRemoval
module – it does so by the simple expedient of assigning the maximum selectivity (typically, 1) to the
candidate dimensions. This maximal assignment guarantees, courtesy the PCM assumption, that the
time budgets subsequently allocated by SpillBound to the bouquet plans in the reduced space are
sufficient to cover all selectivity values for these dimensions. What is left then is to check whether
these deliberately bloated budgets could result in a violation of MSO-safety – if not, the dimensions
can be removed.

We describe the operation of the MaxSelRemoval module in the remainder of this section. For
ease of understanding, we first consider the baseline case of a 2D PSS, and then extend the design to
higher dimensions. This is followed by an analysis of the module’s algorithmic efficiency. Further,
for ease of notations we assume D dimensions are retained post the SchematicRemoval phase.

6.5.1 Baseline Case: 2D Selectivity Space
Consider a 2D PSS with dimensions X and Y , as shown in Figure 6.3, and let the actual (albeit
unknown) selectivity of the query in this space be an arbitrary location qa(x, y). Now assume that
we wish to establish whether the X dimension can be dropped in an MSO-safe manner. We begin
by projecting qa to the extreme X-boundaries of the PSS, that is, to X = 0 and X = 1, resulting in
qmina = (0, qa.y) and qmaxa = (1, qa.y), respectively, as shown in Figure 6.3.

Next, we compute a bound on the sub-optimality of using SpillBound with bloated time bud-
gets based on qmaxa .

Lemma 6.1 The sub-optimality for qa is at most 4 ∗ COST(qmaxa)
COST(qmina)

after removing dimension X from the

2D PSS.

Proof: Let the total execution cost incurred by the SpillBound algorithm be denoted by

76

Figure 6.3: Example 2D PSS

CostSB(qmaxa). Then, its sub-optimality is given by

SOSB =
CostSB(qmaxa)

COST(qa)

=
CostSB(qmaxa)

COST(qmaxa)
∗ COST(qmaxa)

COST(qa)

From Equation 6.1, we know that the MSO of SB for a single dimension is 4, and therefore
CostSB(qmaxa)

COST(qmaxa)
is also upper-bounded by 4. Hence,

SOSB ≤ 4 ∗ COST(qmaxa)

COST(qa)

Now by the PCM assumption, we know that COST(qa) ≥ COST(qmina). Therefore, we have

SOSB ≤ 4 ∗ COST(qmaxa)

COST(qmina)

2

The ratio
COST(qmaxa)

COST(qmina)
captures the inflation in sub-optimality for qa. But note that qa can be

located anywhere in the 2D space, and we therefore need to find the maximum inflation over all

possible values of y for qa, and this is denoted by αX . Formally, the αX for removing dimension X is
defined as:

αX := max
qa.y∈[0,1]

COST(qa
max)

COST(qamin)

This leads us to the generalization:

77

Corollary 6.1 After removing a single dimension d from a 2D PSS, the MSO increases to at most

4 ∗ αd.

Now all that remains is to check whether MSO-safety is retained in spite of the above inflation –
specifically, whether

4 ∗ αd ≤ 10

If the check is true, dimension d can be safely removed from the PSS after assigning it the maximum
selectivity. (The value 10 comes from the MSO bound for 2D in Equation 6.1.)

Testing Overheads

We now turn our attention to the computational effort incurred in the dimension removal testing
procedure. Note that calculating αd only requires knowledge of the boundaries sel(d) = 0 and
sel(d) = 1, and therefore only 4r optimization calls are required in total for testing both dimensions
in a 2D space. This is in sharp contrast to the r2 calls that would have been required for a POSP
overlay of the complete PSS.

6.5.2 Extension to Higher Dimensions
We now move on to calculating the maximum inflation in sub-optimality for the generic case of
removing k dimensions, s1, . . . , sk from a D-dimensional PSS, while maintaining MSO-safety. For
this, the key idea, analogous to the 2D case, is given a qa in the PSS, find the cost ratios between
when the selectivities of the s1, . . . , sk dimensions of qa are all set to 1, and when they are all set to 0.
Since qa can be located anywhere in the PSS, these cost ratios have to be computed for all possible
selectivity combinations of the retained dimensions. Finally, the maximum of these values gives us
αs1,...,sk . That is,

αs1,...,sk = max
∀(q.jk+1,...,q.jD)∈[0,1]D−k

COST(qmax)

COST(qmin)
(6.2)

with qmax and qmin corresponding to the locations with q.i = 1 and q.i = 0, respectively, ∀i ∈
{1, .., k}.

To illustrate the above, consider the example 3D PSS with dimensions X , Y and Z shown in
Figure 6.4 (a). Here, if we wish to consider dimension Y for removal, we need to first compute the
sub-optimality inflations across all matching pairs of points in the (red-colored) 2D surfaces corre-
sponding to Y = 0 and Y = 1. Then, αY is given by the maximum of these inflation values.

Finally, to determine whether the removal of the s1, . . . , sk dimensions is MSO-safe, the check is
simply the following:

αs1,...,sk ∗MSOSB(D − k) < MSOSB(D) (6.3)

78

(a) αY from Surface (b) αY from Corners

Figure 6.4: 3D PSS - Calculation of αY

Testing Overheads:

The computational efforts incurred, in terms of optimizer calls, for calculating αs1,...,sk is θ(2D∗rD−1).
This is because the sub-optimality inflations need to be calculated for every selectivity combination
of the retained dimensions, making the testing overheads to grow exponentially with the PSS di-
mensionality. It may therefore appear, at first glance, that we have merely shifted the computational
overheads from the exhaustive POSP overlay to the modules of the DimRed pipeline. However, as is
shown next, it is feasible, with mild assumptions, to design an efficient mechanism to compute αM .

6.5.3 Efficient Computation of MaxSelRemoval
To provide efficiency in the MaxSelRemoval algorithm, we bring in two techniques, Greedy Re-

moval and Corner Inflation. With Greedy Removal, we do not exhaustively consider all possible
groups of dimensions for removal. Instead, we first compute for each dimension d, its individual αd
assuming that just d is removed from the PSS and all other dimensions are retained. Based on these
inflation values, a sequence of dimensions is created in increasing αd order. Then, we iteratively
consider prefixes of increasing length from this sequence with the stopping criterion based on the
objective – overheads minimization or MSO minimization.

As an example, we show in Figure 6.5 the resultant MSOs for the greedy removal of dimensions
for TPC-DS Q7, which has an 8-dimensional PSS. As can be seen in the figure, the MSO initially
declines from its starting value of 88 as we keep removing the low αd dimensions. However, after
a certain point, it begins to rise again. When overheads minimization is the objective, the algorithm
will remove the dimension group {d4, d5, d6, d7, d0, d1, d2}, and then stop due to violation of MSO-

79

safety. By this time, the ESS dimensionality is reduced to just 1, and the MSO guarantee is 70. On
the other hand, when MSO minimization is the objective, the minimum MSO of 33 is obtained by
removing dimensions {d4, d5, d6, d7} with a combined inflation factor of just 1.17!

Figure 6.5: MSO Profile for Greedy Dimension Removal

Although the greedy removal strategy does significantly lower the overheads, it still requires
O(D ∗ rD−1) optimizer calls since the αd has to be calculated for every dimension d. This is where
we bring in our second strategy of Corner Inflation. Specifically, we assume that the αd (for every
dimension d) is always located at one of the corners of the PSS and not in the interior – if this is
true, then the number of optimizer calls required to calculate for all αds is reduced to θ(2D), which
is independent of the resolution. We have empirically verified, as highlighted in Section 6.7, that this
assumption is is generally valid. Moreover, in the remainder of this section, we formally prove that,
under some mild assumptions, the corner location of the αd is only to be expected.

6.5.4 Proof of Corner Inflation
For ease of exposition, we first analyze a 3D PSS, and later generalize the proof to higher dimensions.
Consider the 3D PSS shown in Figure 6.4 (b), with dimensions X, Y and Z, and dimension Y being
the candidate for removal. Our objective is to show that optimization calls are required only along the
corners in the figure, and not along the surface walls (unlike Figure 6.4 (a)). To start with, we introduce
an inflation function, f , that captures the sub-optimality inflation as a function of the selectivity
combinations of the retained dimensionsX andZ, along the extreme values of the removed dimension

80

Y . Formally, the inflation function, f(x, z), is defined as follows:

f(x, z) =
COST(q.x, q.y = 1, q.z)

COST(q.x, q.y = 0, q.z)

Behavior of function f

To analyze f ’s behavior, we leverage the notion of optimal cost surface (OCS), which captures the cost
of the optimal plan at every location in the PSS. For now, assume that the OCS exhibits axis-parallel

linearity (APL) in X , Y and Z. That is, the OCS is of the form:

OCS(x, y, z) = u1x + u2y + u3z + u4xy + u5yz + u6xz + u7xyz + u8 (6.4)

where the ui are arbitrary scalar coefficients.
When dimension Y = 1, the projected OCS with this y value is represented as

OCS|y=1 = a1x+ a2z + a3xz + a4, (6.5)

where the ai are the new scalar coefficients. Analogously, when Y = 0, the projected OCS becomes

OCS|y=0 = b1x+ b2z + b3xz + b4 (6.6)

Thus f can now be rewritten as a point-wise division of a pair of 2D APL functions:

f(x, z) =
OCS|y=1

OCS|y=0

=
a1x+ a2z + a3xz + a4
b1x+ b2z + b3xz + b4

(6.7)

Now consider the function fz(x), which keeps dimension Z constant at some value and varies only
along dimension X . When Z = z0, fzo(x) which is essentially division of two lines, using which we
show the following lemma.

Lemma 6.2 Given a line segment Z = zo that is parallel to the X axis, the maximum sub-optimality

occurs at one of the end points ((0, zo) and (1, zo)).

Proof: In order to prove this, we use a crucial observation that the function value of f ′zo(x) mono-
tonically increases or decreases. Thus, showing that the maximum sub-optimality occurs at the end
points. Consider,

fzo(x) =
cx+ d

px+ q
(6.8)

81

where c = a1 + a3z0, d = a2z0 + a4, p = b1 + b3z0, and q = b2z0 + b4. Taking the derivative of the
above function wrt x, we get

f ′zo(x) =
c(px+ q)− p(cx+ d)

(px+ q)2
=

cq − dp
(px+ q)2

(6.9)

The above equation shows that the sign of derivative is constant wrt varying x. This means that
the function fzo(x) is either decreasing or increasing. Clearly the value of the inflation function is
maximum at either of the end-points. 2

Putting together all this machinery leads to the following lemma:

Lemma 6.3 Computing αY along the corners of an PSS is sufficient to establish αY within the entire

PSS.

Proof: From the previous lemma, we know that for the lines segments Z = z, z ∈ (0, 1) that are
parallel to X-axis, the local αY occurs at one of the end-points of these line segments. By induction,
the local αY computation can be moved to the corners of the PSS. 2

Relaxing the APL assumption

In the above analysis, we assumed that the OCS follows the APL property (Equation 6.4), but this
may not always hold in practice. Thus, we now extend the previous result by relaxing the linearity
assumption to its piece-wise equivalent [HS02], and assuming that these linear pieces follow a certain
empirically validated slope behaviour. The idea now is to divide the domain of the OCS into its
constituent APL-compliant pieces. Later, we show that these αY ’s can be moved across pieces to
finally end up at the corners of the original PSS. This leads us to the following main theorem:

Theorem 6.1 Computing αY along the corners is sufficient to establish αY within the entire PSS.

Proof: We saw in Lemma 6.3 that if OCS follows APL assumption, then computation at the corners
of the PSS is sufficient to calculate αY . With OCS following piecewise APL property (presented
next), let us say that there are at most k pieces in any 1D segment of the PSS.

Then, for each of the 2k pieces conditioned on the two segments Z = z0 at OCS|y=1 and
OCS|y=0, we make a mild assumption that for these 2k pieces the slope of the inflation function
is monotonically increasing or deceasing. This assumption is assessed exhaustively over thousands of
such 1D segments (chosen from our suite of queries), by evaluating if cq ≥ dp or cq ≤ dp (numerator
in equation 6.9) is consistently true across all the above 2k pieces. The assessment shows that it is
indeed true in more than 90% of the 1D segments in the ESS, on an average across queries, along
all such 2k pieces. Thus we can claim that the αY would still lie at one of the corners of an ESS for
practical settings. 2

82

Piecewise APL Fit of OCS Let us now discuss the accuracy of OCS to a Piecewise APL function.
It is important point to note here is that we do not require an accurate quantitative fit, but only an
accurate qualitative fit – that is, the slope behavior should be adequately captured.

(a) Original OCS (b) Partitioned OCS Domain (c) OCS fitted with piecewise functions

Figure 6.6: Original OCS and OCS fitted with an APL function per region of the partitioned input
domain

Let us consider an example OCS of the TPC-DS query 26, generated using repeated invocations of
the PostgreSQL optimizer. This is shown in Figure 6.6 (a). The 2D input domain of the OCS, which
is the 2D selectivity region spanned by dimensions 1 and 2 is divided into 9 regions. Each region is
then fitted with the 2D APL function of the form,

f(x, y) = ax+ by + cxy + d (6.10)

We use non-linear least squares regression to fit the function and we are able to do so with normalized
RMSE = 9%. The projection of the boundaries of these regions on the input domain is shown in
Figure 6.6 (b).

The problem now is identification of these regions where the Function 6.10 fits nicely. This is
done using the K-subspace clustering methods for 2D and higher dimensional planes as described in
[WDL09] shown in Figure 6.6 (c).

Extension to Higher Dimensions

Our above analysis of the Corner Inflation procedure was carried out for a 3D PSS. For handling a
higher dimension PSS, the process follows by induction wherein for every 1D segment αd is moved
to its end points. Hence, by induction we can show that αd occurs at the PSS corners.

83

6.6 WeakDimRemoval techniques
The dimensions retained post SchematicRemoval and MaxSelRemoval techniques are the di-
mensions for which the ESS is constructed, that we assume to be D in number for the ease of no-
tations. After the ESS construction the isocost contours are identified for SpillBound’s (SB)
execution. Here, an isocost contour, corresponding to cost C, represents the connected selectivity
curve along which the cost of the optimal plan is C. A sample contour can be seen in Figure 6.7 (a)
shown as colored 1D curve. Series of contours starting from the lowest to highest cost in ESS, with
geometric progression of two, are constructed. The key idea in SB is to perform D plan executions
per contour from the lowest cost contour, until the actual selectivities of all the epps are explicitly
learnt. Finally, the optimal plan is identified and executed for query completion. In this section we
show how can we reduce the number of plan executions per-contour from D, to attain a tighter MSO.
Again for ease of exposition, we consider the base case of D = 2, with eppX and Y . Then, move on
to the 3D scenario to present the subtleties of the algorithm, from where it can easily be generalized
to arbitrary dimensions.

6.6.1 WeakDimRemoval 2D scenario
We use the sample 2D ESS, shown in Figure 6.7 (a), for ease of exposition of the algorithm. The
figure depicts the isocost contour ICi, associated with cost CCi, and annotated with the optimal plans
P1, P2, P3 and P4. Note that the cost of these four plan on the contour locations costs CCi. In SB each
of these contour plans tries to individually and incrementally learn selectivities of the two epps. SB
carefully assign an epp for a contour plan to learn its selectivity, in order to achieve MSO guarantees.
This mode of execution of plans trying to learn individual epp selectivities is referred to as spill-

mode execution of the plan while spilling on the epp. For instance, in Figure 6.7 (a), the plan P1 is
annotated as P y

1 to indicate that it spills on the epp Y during execution and learn its selectivity.

Contour Plan’s Learning epp in SB

For each plan on the contour ICi, SB chooses an epp on which that plan needs to be spilled, so that
the cost-budget for the plan is utilized to maximally learn the selectivity of that predicate only. This
choice is based on the plan structure and the ordering of its constituent pipelines. We use this critical
component of SB for our WeakDimRemoval technique, which is described next.

The 2D Algorithm

As mentioned before, SB requires at most two executions per contour until all the actual selectivity for
both the epps are learnt. Let us say that dimension X is removed (we discuss this choice later) using
the 2D WeakDimRemoval algorithm. The idea in the algorithm, is to piggyback X’s plan execution

84

(a) Contour on a 2D ESS (b) P1 replacing other plans

Figure 6.7: WeakDimRemoval for D = 2

(and, hence its selectivity learning) along with Y -spilling plans. This is achieved by considering
all plans that are X-spilling to be Y -spilling, in short, by ignoring the error-prone X-predicate in
the pipeline order. Thus, we end up in all plans in a contour to be Y spilling. Finally, in order to
make WeakDimRemoval MSO-efficient, we choose a plan on the contour which is relatively the
cheapest on all locations of the contour, which is captured by an inflation factor. The maximum of
these inflation factor’s across all the contours is captured by βX .

Now, if βX is low such that MSOSB(1) ∗ (1 + βX) < MSOSB(2), then WeakDimRemoval is
successful for reduction in the MSO. In essence, we say that the weak dimension, X’s execution is
piggybacked by its strong dimension counterpart Y .

Algorithm Trace Let us now trace the above algorithm for our example ESS and contour ICi. First,
we choose all the contour plans, which is P1 to P4. All these plans are assigned to spill on epp Y .
Then, each of these four plans, are costed at all the contour locations, in order to find the best one-plan
replacement with the least inflation factor. In this scenario, P1 happens to be our best replacement
plan, as shown in Figure 6.7 (b).

Proof of Correctness

The algorithm’s correctness, in order to achieve the desired MSO, is primarily dependent on the lower
bound of selectivity learning of a plan while piggybacking the executions.

Lemma 6.4 (Piggybacked Execution) Consider the contour plan Pr which replaces all the plans on

contour ICi with an cost inflation factor of βX . Further, let Pr is assigned to spill on Y and executed

with budget CCi(1 + βX). Then, then we either learn: (a) the exact selectivity of Y , or (b) infer that

85

qa lies beyond the contour.

Proof: ICi represents the set of points in the ESS having their optimal cost equal to CCi. The cost of
all points q ∈ ICi is at most CCi(1 + βiX) when costed using Pr. Now when the plan Pr is executed
in the spill-mode with cost budget CCi(1 + βiX) it may or may not complete.

For an internal node N of a plan tree, we use N.cost to refer to the execution cost of the node.
Let NY denote the internal node corresponding to Y in plan Pr. Partition the internal nodes of Pr into
the following: Upstream(NY), {NY }, and Residual(NY), where Upstream(NY) denotes the set of
internal nodes of Pr that appear before node NY in the execution order, while Residual (NY) contains
all the nodes in the plan tree excluding Upstream(NY) and {NY }.Therefore,

Cost(Pr, q) =
∑

N∈Upstream(NY)

N.cost+NY .cost+
∑

N∈Residual(NY)

N.cost

Case-1 : The value of the first term in the summation Upstream(NY) is known with certainty if
it does not contain NX . Further, the quantity NY .cost is computed assuming that the selectivity of
NY is q.y for any point q ∈ ICi with maximum sub-optimality of βiX . Since the output of NY is
discarded and not passed to downstream nodes, the nodes in Residual(NY) incur zero cost. Thus,
when Pr is executed in spill-mode, the budget CCi(1+βiX) is sufficiently large to either learn the exact
selectivity of Y (if the spill-mode execution goes to completion) or to conclude that qa.y is greater
than q.y, ∀q ∈ ICi, since Pr is costed for all q ∈ ICi. Hence, qa lies beyond the contour ICi.

Case-2 : Now ifNX is contained inUpstream(NY) then its cost is not known with certainty, how-
ever since Pr is costed for all q ∈ ICi, all the selectivity combinations of (q.x, q.y), ∀q ∈ ICi get con-
sidered. Hence, for all these combinations the sum of the quantity

∑
N∈Upstream(NY)

N.cost+NY .cost ≤

CCi(1 + βiX). Similar to Case-1, the output of NY is discarded and not passed to downstream nodes,
hence the nodes in Residual(NY) incur zero cost. Thus, when Pr is executed in spill-mode, the bud-
get is sufficiently large to either learn the exact selectivity of Y and X (if the spill-mode execution
goes to completion) or to conclude that qa � q (strictly dominates) for any q ∈ ICi which implies
that Cost(Pqa , qa) > CCi i.e it lies beyond the contour by PCM. 2

Let there be m = log2

(
Cmax
Cmin

)
number of contours, let Pi be the best 1-plan replacement with

sub-optimality βiX for each contour ICi from i = 1→ m. Let βX = max
i=1→m

βiX .

Lemma 6.5 The MSO for the 2D scenario when contour plan replacement is done along a single

dimension X is 4(1 + βX).

86

Proof: The query processing algorithm executes the best 1-plan replacement, Pi, for each contour
ICi, starting from the least cost contour. Each execution of Pi is performed with an inflated budget
of CCi(1 + βX). Since each contour now has only 1 plan with fixed inflated budget, using the 1D
SB algorithm with inflated contour budgets it is easy to show that the MSO for the 2D scenario post
WeakDimRemoval is equal to MSOSB(1) ∗ (1 + βX) = 4 ∗ (1 + βX). 2

It is important to note that βX - which denotes the worst case sub-optimality incurred for making
plan replacements along the dimension X is a function of the dimension X itself.

Hence, By doing piggybacked executions of ‘weak’ dimensions (dimensions with low α) along
the ‘strong’ dimensions (dimensions with high α), WeakDimRemoval makes the MSO a function
of impactful dimensions only.

6.6.2 WeakDimRemoval 3D Scenario
In this sub-section we see how the WeakDimRemoval technique can be extended to the 3D scenario,
consisting of dimensions X , Y and Z, where we wish to do WeakDimRemoval along dimensionX .
As in the 2D scenario, all the plans on the contour become either Y -spilling or Z-spilling by ignoring
the epp X in the pipeline order. Let the set of plans which were originally X-spilling plans, but now
considered as either Y -spilling or Z-spilling, be denoted by P T .

The main idea of the algorithm as stated earlier is to execute two plans (one for each strong dimen-
sion) and piggyback the execution of the weak dimension along with these strong ones. In our case,
the execution of X is piggy backed with Y and Z. Let qxsup, q

x
inf denote the points having maximum

and minimum X-selectivity on the contour respectively. Also, let Supx = qxsup.x and Infx = qxinf .x.
Let us first characterize the geometry of the contours based on the minimum and maximum selectivi-
ties of the replaced dimension X , captured by X = Infx and X = Supx respectively. There are three
possibilities:

1. a 2D contour line on the X = Infx slice and a point on X = Supx slice

2. a 2D contour line on the X = Supx slice and a point on X = Infx slice

3. a 2D contour line on both X = Infx and X = Supx slices

The rest of the section and figures correspond to the Case 1, but all the Lemmas and Theorems are
easily generalizable for all the cases mentioned above.

To piggyback X’s execution with Y , consider a point q′ on the X = Infx slice, let its coordinates
be such that q′ = (Infx, y′, z′). This is shown in Figure 6.8. Let us define the set Sy′ := {q|q ∈
ICi and q.y ≤ y′}, that contains all the (x, y) selectivity combinations pertaining to the contour such

87

that y ≤ y′. We now construct the minimal (x, y)-dominating set, that spatially dominates all points
in Sy′ denoted by Ŝy′ . Formally,

Ŝy′ := ∀q ∈ Sy′ ,∃q̂ ∈ Ŝy′ such that (q̂.x, q̂.y) � (q.x, q.y) (6.11)

(a) Choice of a Plan for a point q′ (b) Choice of P z Plan for a point q′ (c) Choice of P y Plan for a point q′

Figure 6.8: WeakDimRemoval 3D Scenario Phase 1

6.6.3 WeakDimRemoval Overheads
Let the maximum number of plans on any contour be denoted by ρ, the maximum number of contours
bem. The ESS dimensionality post SchematicRemoval and MaxSelRemoval isD−kr, which
makes the size of the contour rD−kr−1. Then the effort required to do WeakDimRemoval is of the
order O(ρ ∗ m ∗ rD−kr−1) Abstract Plan Costing (APC) calls. The APC calls are typically at least
100 times faster than usual optimizer calls, since the optimizer does not need to come up with a
plan for the given location, instead it just needs to cost the specified plan using its cost model which
makes it extremely economical. By doing an intra-contour anorexic plan reduction [DDH07], we
have ρanorexic: the maximum number of reduced plans on any contour, which is typically less than 10.

Overheads((PR))

Overheads(SB)
=

(ρanorexic ∗m ∗ rD−kr−1) ∗ APC calls
rD−kr ∗ OPT calls

=
(ρanorexic ∗m ∗ rD−kr−1) ∗ 10−2

m ∗ rD−kr−1

=
ρanorexic ∗m
r ∗ 100

≤ 1

r
(For typical values of ρanorexic and m)

88

This makes the overheads of WeakDimRemoval just 1% of the overall required compile time
effort for the resolution r = 100, and 5% for r = 20.

6.7 Experimental Evaluation
Having described the DimRed technique, we now turn our attention to its empirical evaluation. Un-
like SpillBound class of techniques which provide platform-independent performance guarantees,
DimRed does not provide guarantees on the number of dimensions that can be removed for a query.
Hence, here we increase the scope of performance evaluation to 37 TPC-DS and 21 JOB queries.
Moreover, the JOB queries feature complex filter predicates involving string comparisons with the
LIKE operator, and multiple predicates on a single base relation.

6.7.1 Goodness of OCS Surface Fit
To measure the goodness of the fit we compute the Normalized RMSE and Normalized Max Error.
The results in the Tables 6.3 and 6.4 show that we are able to achieve good fitting and hence validate
our claims.

6.7.2 Validation of Corner Inflation
As discussed in Section 6.5, an efficient implementation of MaxSelRemoval requires the αd cor-
responding to any dimension d to be located on the corners of the PSS itself. We have conducted a
detailed validation of this behavioral assumption. Specifically, we carried out an offline exhaustive
construction of the complete PSS and calculated the αd for each dimension d. These values were
then compared with the αs obtained by restricting the calculation to only the corners’ of the PSS. The
results showed that for most dimensions in the queries in our workload, α did occur on the corners of
the PSS.

6.7.3 Overheads Minimization Objective
We now turn our attention to the DimRed performance on the overheads minimization metric, where
the objective is to minimize the PSS dimensionality while retaining MSO-safety. The performance
results for this scenario are shown in Figures 6.9 (a) and 6.9 (b) for the TPC-DS and JOB query suites,
respectively. In these figures, the full height of each vertical bar shows the original PSS dimension-
ality, while the bottom segment (blue fill) within the bar indicates the final ESS dimensionality, after
reduction by the SchematicRemoval (yellow checks) and MaxSelRemoval (green braid) mod-
ules.

The important observation here is that across all the queries, containing as high as 19 dimensions

89

Table 6.3: RMSE (TPC-DS)

Query
Number

Surface Fit
Normalized

RMSE
Normalized
Max Error

Q03 11.60 24.51
Q07 15.79 22.16
Q12 16.50 16.56
Q15 10.62 16.63
Q18 10.48 21.79
Q19 16.45 22.68
Q21 16.34 27.32
Q22 11.33 14.84
Q26 11.42 22.02
Q27 16.94 27.32
Q29 15.20 16.33
Q36 8.47 23.15
Q37 9.58 23.29
Q40 15.48 21.48
Q42 9.09 26.96
Q43 14.99 22.42
Q52 15.14 21.70
Q53 14.39 21.32
Q55 9.03 14.72
Q62 15.78 22.78
Q63 9.90 10.28
Q67 10.19 11.21
Q73 14.52 19.30
Q82 10.56 17.36
Q84 16.78 27.29
Q86 15.35 19.54
Q89 10.59 19.92
Q91 16.42 22.22
Q96 14.17 27.84
Q98 14.20 15.70
Q99 14.88 15.63

Table 6.4: RMSE (JOB)

Query
Number

Surface Fit
Normalized

RMSE
Normalized
Max Error

Q01 15.30 20.62
Q08 11.86 15.82
Q09 12.40 13.65
Q10 14.31 22.79
Q11 12.27 19.12
Q12 11.18 16.13
Q13 7.91 10.14
Q14 13.06 13.54
Q15 15.43 16.74
Q16 16.77 25.68
Q19 15.11 24.27
Q20 10.19 16.54
Q21 9.84 19.68
Q22 8.77 19.29
Q23 12.91 17.63
Q24 11.36 17.39
Q25 11.72 11.83
Q26 9.23 14.11
Q28 12.46 17.19
Q29 9.11 11.88
Q33 11.83 20.65

90

(a) TPC-DS Queries (b) JOB Queries

Figure 6.9: Dimensionality Reduction for Overheads Minimization

of the initial PSS, the eventual ESS dimensionality is essentially “anorexic”, being always brought
down to five or less. In fact, for as many as 10 queries in TPC-DS and 11 queries in JOB the number
of dimensions retained is just 1! We also see that MaxSelRemoval usually plays the primary
role, and SchematicRemoval the secondary role, in realizing these anorexic dimensionalities.
Inspection of the retained dimensions showed that all the base filter predicates are removed from the
PSS either by SchematicRemoval or by MaxSelRemoval, leaving behind only the high-impact
join dimensions. Another observation is that SchematicRemoval removal is not as successful on
the JOB benchmark as on TPC-DS – this is due to the complex filter predicates on the base relations.
But by using the bounds provided by SchematicRemoval, MaxSelRemoval is successfully able
to remove all of them with only a small MSO inflation. These results also justify our creation of an
automated pipeline to replace the handpicking of dropped dimensions in the earlier literature.

After the above dimensionality reduction, the next step in the DimRed pipeline is to try and
improve the MSO through invocation of the WeakDimRemoval module. The resulting MSO val-
ues are shown in Figures 6.10 (a) and 6.10 (b) for the TPC-DS and JOB query suites, respec-
tively. In these figures, the full height of each vertical bar shows the MSO of the original PSS,
while the bottom segment (blue fill) within the bar indicates the final MSO, after initial improve-
ments by SchematicRemoval and MaxSelRemoval (yellow-green checks) and subsequently
by WeakDimRemoval (red lines). The important observation here is that for a majority of the
queries, the final MSO is substantially lower than the starting value. For instance, with TPC-DS Q91,
the MSO is tightened from 180 to 40, and with JOB Q19, the improvement is from 130 to 35. Overall,
we find an average decrease of 54% and 67% for TPC-DS and JOB, respectively.

91

(a) TPC-DS Queries (b) JOB Queries

Figure 6.10: MSO Profile for Overheads Minimization

6.7.4 MSO Minimization Objective
We now turn our attention to the goal of dimensionality reduction with the objective of minimiz-
ing MSO, subject to the safety requirement. The dimensionality results for this alternative scenario
are shown in Figures 6.11 (a) and 6.11 (b) for the TPC-DS and JOB query suites, respectively. In
these figures, the full height of each vertical bar shows the original PSS dimensionality, while the
bottom blue segment within the bar indicates the final ESS dimensionality, after reduction by the
SchematicRemoval (yellow checks) and MaxSelRemoval (green braids) modules.

As should be expected, the number of dimensions retained are slightly higher with MSO mini-
mization as compared to overheads minimization. However, all queries still have less than or equal to
five dimensions.

The corresponding MSO profile is shown in Figures 6.12 (a) and 6.12 (b) for the TPC-DS and
JOB query suites, respectively confirm this claim. Again, the full vertical height captures the orig-
inal MSO, and the bottom segment (blue fill) shows the final MSO, after improvements due to
SchematicRemoval (yellow checks), MaxSelRemoval (green braid) and WeakDimRemoval
(red lines).

In summary, for the TPC-DS queries, we obtain an average improvement of 63%, whereas for the
JOB queries it is 77%.

6.7.5 Time Efficiency of DimRed
A plausible concern about DimRed is whether the overheads saved due to dimensionality reduction
may be negated by the computational overheads of the pipeline itself. To address this issue, we

92

(a) TPC-DS Queries (b) JOB Queries

Figure 6.11: Dimensionality Reduction for MSO Minimization

present in Table 6.5, a sample profile of DimRed’s efficiency, corresponding to TPC-DS Query 91,
which is the highest dimensionality query in our workload, featuring 6 filter and 6 join predicates. In
the table, the optimizer calls made by the pipeline, and the overall time expended in this process, are
enumerated. We find that the entire pipeline completes in less than 12 minutes, inclusive of the POSP
overlay on the ESS, whereas the compilation efforts on the original PSS would have taken more than
a year!

Table 6.5: DimRed EFFICIENCY: TPC-DS QUERY 91

Dimensionality MSO Overheads
(Opt Calls) Time (Secs)

PSS 12 180 4 quadrillion(1015) > 1 year
Schematic
Removal

9 108 29(MaxSel)
+ 32 ∗ 105(ESS)

+ 1.6 ∗ 105(WeakDim)
= 33.6 ∗ 105

0.01 (MaxSel)
+ 640 (ESS)

+ 32 (WeakDim)
≈ 11 minutes

MaxSel
Removal

5 84

WeakDim
Removal

2 44

93

Table 6.6: DimRed TIME EFFICIENCY: TPC-DS (OVERHEADS MINIMIZATION)

Query
Number

Overheads (Optimizer Calls) Overheads(Time in Secs)
MaxSel
Calls

ESS
Calls

WeakDim
Calls Total MaxSel ESS WeakDim Total

Q03 16 400 20 436 0.0032 0.0800 0.0040 0.0872
Q07 32 20 1 53 0.0064 0.0040 0.0002 0.0106
Q12 16 400 20 436 0.0032 0.0800 0.0040 0.0872
Q15 32 8000 400 8432 0.0064 1.6000 0.0800 1.6864
Q18 256 3200000 160000 3360256 0.0512 640.0000 32.0000 672.0512
Q19 256 3200000 160000 3360256 0.0512 640.0000 32.0000 672.0512
Q21 128 20 1 149 0.0256 0.0040 0.0002 0.0298
Q22 16 20 1 37 0.0032 0.0040 0.0002 0.0074
Q26 64 400 20 484 0.0128 0.0800 0.0040 0.0968
Q27 512 20 1 533 0.1024 0.0040 0.0002 0.1066
Q29 512 3200000 160000 3360512 0.1024 640.0000 32.0000 672.1024
Q36 16 8000 400 8416 0.0032 1.6000 0.0800 1.6832
Q37 64 8000 400 8464 0.0128 1.6000 0.0800 1.6928
Q40 64 8000 400 8464 0.0128 1.6000 0.0800 1.6928
Q42 16 20 1 37 0.0032 0.0040 0.0002 0.0074
Q43 8 20 1 29 0.0016 0.0040 0.0002 0.0058
Q52 16 20 1 37 0.0032 0.0040 0.0002 0.0074
Q53 64 400 20 484 0.0128 0.0800 0.0040 0.0968
Q55 32 20 1 53 0.0064 0.0040 0.0002 0.0106
Q62 32 160000 8000 168032 0.0064 32.0000 1.6000 33.6064
Q63 64 400 20 484 0.0128 0.0800 0.0040 0.0968
Q67 16 8000 400 8416 0.0032 1.6000 0.0800 1.6832
Q73 32 8000 400 8432 0.0064 1.6000 0.0800 1.6864
Q82 512 8000 400 8912 0.1024 1.6000 0.0800 1.7824
Q84 256 3200000 160000 3360256 0.0512 640.0000 32.0000 672.0512
Q86 8 20 1 29 0.0016 0.0040 0.0002 0.0058
Q89 32 8000 400 8432 0.0064 1.6000 0.0800 1.6864
Q91 4096 3200000 160000 3364096 0.8192 640.0000 32.0000 672.8192
Q96 32 8000 400 8432 0.0064 1.6000 0.0800 1.6864
Q98 16 20 1 37 0.0032 0.0040 0.0002 0.0074
Q99 32 160000 8000 168032 0.0064 32.0000 1.6000 33.6064

94

(a) TPC-DS Queries (b) JOB Queries

Figure 6.12: MSO Profile for MSO Minimization

Table 6.7: DimRed TIME EFFICIENCY: JOB (OVERHEADS MINIMIZATION)

Query
Number

Overheads (Optimizer Calls) Overheads(Time in Secs)
MaxSel
Calls

ESS
Calls

WeakDim
Calls

Total MaxSel ESS WeakDim Total

Q01 16 20 1 37 0.0032 0.0040 0.0002 0.0074
Q08 16 20 1 37 0.0032 0.0040 0.0002 0.0074
Q09 256 400 20 676 0.0512 0.0800 0.0040 0.1352
Q10 32 400 20 452 0.0064 0.0800 0.0040 0.0904
Q11 256 20 1 277 0.0512 0.0040 0.0002 0.0554
Q12 16 20 1 37 0.0032 0.0040 0.0002 0.0074
Q13 64 160000 8000 168064 0.0128 32.0000 1.6000 33.6128
Q14 128 400 20 548 0.0256 0.0800 0.0040 0.1096
Q15 64 20 1 85 0.0128 0.0040 0.0002 0.7722
Q16 16 400 20 436 0.0032 0.0800 0.0040 0.0872
Q19 256 20 1 277 0.0512 0.0040 0.0002 0.0554
Q20 32 400 20 452 0.0064 0.0800 0.0040 0.0904
Q21 128 20 1 149 0.0256 0.0040 0.0002 0.0298
Q22 128 400 20 548 0.0256 0.0800 0.0040 0.1096
Q23 32 8000 400 8432 0.0064 1.6000 0.0800 1.6864
Q24 256 20 1 277 0.0512 0.0040 0.0002 0.0554
Q25 8 20 1 29 0.0016 0.0040 0.0002 0.0058
Q26 128 20 1 149 0.0256 0.0040 0.0002 0.0298
Q28 128 400 20 548 0.0256 0.0800 0.0040 0.1096
Q29 256 400 20 676 0.0512 0.0800 0.0040 0.1352
Q33 32 20 1 53 0.0064 0.0040 0.0002 0.0106

95

Table 6.8: DimRed TIME EFFICIENCY: TPC-DS (MSO MINIMIZATION)

Query
Number

Overheads (Optimizer Calls) Overheads (Time in Secs)
MaxSel
Calls

ESS
Calls

WeakDim
Calls

Total MaxSel ESS WeakDim Total

Q03 16 400 20 436 0.0032 0.0800 0.0040 0.0872
Q07 32 160000 8000 168032 0.0064 32.0000 1.6000 33.6064
Q12 16 400 20 436 0.0032 0.0800 0.0040 0.0872
Q15 32 8000 400 8432 0.0064 1.6000 0.0800 0.0106
Q18 256 3200000 160000 3360256 0.0512 640.0000 32.0000 672.0512
Q19 256 3200000 160000 3360256 0.0512 640.0000 32.0000 672.0512
Q21 128 8000 400 8528 0.0256 1.6000 0.0800 1.7056
Q22 16 8000 400 8416 0.0032 1.6000 0.0800 1.6832
Q26 32 160000 8000 168032 0.0064 32.0000 1.6000 33.6064
Q27 512 160000 8000 168512 0.1024 32.0000 1.6000 33.7024
Q29 512 3200000 160000 3360512 0.1024 640.0000 32.0000 672.1024
Q36 16 8000 400 8416 0.0032 1.6000 0.0800 1.6832
Q37 32 8000 400 8432 0.0064 1.6000 0.0800 1.6864
Q40 32 8000 400 8432 0.0064 1.6000 0.0800 1.6864
Q42 16 400 20 436 0.0032 0.0800 0.0040 0.0872
Q43 8 400 20 428 0.0016 0.0800 0.0040 0.0856
Q52 16 400 20 436 0.0032 0.0800 0.0040 0.0872
Q53 32 8000 400 8432 0.0064 1.6000 0.0800 1.6864
Q55 32 400 20 452 0.0064 0.0800 0.0040 0.0904
Q62 32 160000 8000 168032 0.0064 32.0000 1.6000 33.6064
Q63 32 8000 400 8432 0.0064 1.6000 0.0800 1.6864
Q67 16 8000 400 8416 0.0032 1.6000 0.0800 1.6832
Q73 32 8000 400 8432 0.0064 1.6000 0.0800 0.0106
Q82 512 8000 400 8912 0.1024 1.6000 0.0800 1.7824
Q84 256 3200000 160000 3360256 0.0512 640.0000 32.0000 672.0512
Q86 8 400 20 428 0.0016 0.0800 0.0040 0.0856
Q89 32 8000 400 8432 0.0064 1.6000 0.0800 0.0106
Q91 4096 3200000 160000 3364096 0.8192 640.0000 32.0000 672.8192
Q96 32 8000 400 8432 0.0064 1.6000 0.0800 0.0106
Q98 16 400 20 436 0.0032 0.0800 0.0040 0.0872
Q99 32 160000 8000 168032 0.0064 32.0000 1.6000 33.6064

6.8 Conclusions
Although, SpillBound class of algorithms bring welcome robustness guarantees, they are practical
only for low-dimensional selectivity spaces since their compilation overheads are exponential in the

96

Table 6.9: DimRed TIME EFFICIENCY: JOB (MSO MINIMIZATION)

Query
Number

Overheads (Optimizer Calls) Overheads(Time in Secs)
MaxSel
Calls

ESS
Calls

WeakDim
Calls Total MaxSel ESS WeakDim Total

Q01 16 20 1 37 0.0032 0.0040 0.0002 0.0074
Q08 16 20 1 37 0.0032 0.0040 0.0002 0.0074
Q09 256 160000 8000 168256 0.0512 32.0000 1.6000 33.6512
Q10 32 400 20 452 0.0064 0.0800 0.0040 0.0904
Q11 256 8000 400 8656 0.0512 1.6000 0.0800 1.7312
Q12 16 20 1 37 0.0032 0.0040 0.0002 0.0074
Q13 32 160000 8000 168032 0.0064 32.0000 1.6000 33.6064
Q14 128 8000 400 8528 0.0256 1.6000 0.0800 1.7056
Q15 32 8000 400 8432 0.0064 1.6000 0.0800 1.6864
Q16 16 400 20 436 0.0032 0.0800 0.0040 0.0872
Q19 256 160000 8000 168256 0.0512 32.0000 1.6000 33.6512
Q20 32 8000 400 8432 0.0064 1.6000 0.0800 0.0106
Q21 128 8000 400 8528 0.0256 1.6000 0.0800 1.7056
Q22 128 160000 8000 168128 0.0256 32.0000 1.6000 33.6256
Q23 32 160000 8000 168032 0.0064 32.0000 1.6000 33.6064
Q24 256 8000 400 8656 0.0512 1.6000 0.0800 1.7312
Q25 8 400 20 428 0.0016 0.0800 0.0040 0.0856
Q26 128 160000 8000 168128 0.0256 32.0000 1.6000 33.6256
Q28 128 160000 8000 168128 0.0256 32.0000 1.6000 33.6256
Q29 256 160000 8000 168256 0.0512 32.0000 1.6000 33.6512
Q33 32 8000 400 8432 0.0064 1.6000 0.0800 0.0106

dimensionality, and their performance bounds are quadratic in the dimensionality.
In order to address this limitation, we presented the DimRed pipeline, which leverages schematic,

geometric and piggybacking techniques to reduce even queries with more than 15 dimensionality to
five or less dimensions. In fact, for quite a number of queries, the dimensionality came down to the
lowest possible value of 1! Gratifyingly, not only could we dramatically decrease the overheads due
to such reductions, but could also significantly improve the quality of the performance guarantee.

97

Chapter 7

Reducing Overheads to Support Ad-Hoc
Queries

7.1 Introduction
The ESS is computed from the dimensions remaining after explicit removal of dimensions
by SchematicRemoval and MaxSelRemoval components of the DimRed pipeline, Even
though DimRed provides substantial reduction in compilation overheads, a major limitation of
SpillBound (SB) is that the reduced overheads are still manageable for canned queries but remain
too high for ad-hoc queries.

An obvious first step towards addressing the above issue is to utilize multi-core computing plat-
forms to leverage the intrinsic parallelism available in contour identification. However, this may not be
sufficient to fully address the strong exponential dependence on dimensionality. In our view, adapt-
ing the SB methodology for ad-hoc queries requires, in addition to hardware support, algorithmic

approaches for substantive reduction of the compilation overheads – the design of such approaches
forms the focus of this chapter.

Problem Formulation Specifically, we investigate the trade-off between the two key attributes of
the SB approach, namely, the compilation overheads and the MSO guarantee. The overhead of SB
is measured as the number of optimization calls made to the query optimizer in order to construct all
the isocost contours. Given an algorithmic approach aimed at reducing this compilation overheads,
we use γ (≥ 1) to denote its overheads reduction factor relative to the compilation overheads of
SB. However, bringing down the compilation overheads may result in a weaker MSO guarantee. We
use η (≥ 1) to denote this relaxation factor in the guarantee, relative to the MSO of SB. With this
characterization, the formal problem addressed is the following:

98

Given a user query Q for which SpillBound provides an MSO guarantee M , and a user-

permitted relaxation factor η on this guarantee, design a query processing algorithm that maximizes

γ while ensuring that the MSO guarantee remains within ηM .

Algorithmic Reduction of the Overheads The MSO guarantees of SB are only predicated on the
standard assumption of monotonic behavior of plan cost functions with regard to ESS predicate se-
lectivities. Here, we leverage the stronger fact that plan cost functions typically exhibit a concave

down behavior in the ESS (and PSS as well) – i.e. they have monotonically non-increasing slopes.1

Specifically, we design a modified algorithm, FrugalSpillBound (FSB), that incorporates the
concave behavior to substantially reduce the compilation overheads at the cost of a mild relaxation on
the MSO guarantee. Quantitatively, for ESS resolution r, the attractive tradeoff between η and γ is
the following:

γ = r/ logη r D = 1

γ = Ω(rD/(D logη r)
D−1) D ≥ 2 (7.1)

That is, the initial regime of FSB provides an exponential improvement in γ for a linear increase in η.
More concretely, a sample instance of the η − γ tradeoff is shown in the red line of Figure 7.1,

obtained for r = 100 (corresponding to selectivity characterization at 1% intervals) and a 4D ESS

derived from Query 26 of the TPC-DS benchmark. In this figure, which graphs a semi-log plot,
the initial exponential overhead reduction regime is long enough that a two orders of magnitude
improvement in γ is achieved with an η of 2. Further, when empirically evaluated, the decrease in
overheads is much greater – this is shown in the blue line of Figure 7.1, where nearly four orders of
magnitude improvement in γ is achieved for η = 2.

The concavity assumption directly leads to an elegant FSB construction for the base case of a one-
dimensional ESS. To handle the multi-dimensional scenario, however, we need additional machinery,
called bounded contour-covering sets (BCS) – these sets serve as low-overhead replacements for
the original isocost contours. More precisely, a BCS is a set of locations that collectively spatially

dominate all locations on the associated contour, and whose costs are within a bounded factor of the
contour cost. Efficient identification of the BCS is made possible thanks to the concavity assumption,
and the aggregate cardinality of the BCS over the contours is exponentially smaller than the number
of locations in the ESS, resulting in the substantially decreased overheads.

Performance Results The empirical performance results indicate that a two orders of magnitude
theoretical reduction in overheads is routine with η = 2, while the empirical reduction in overheads

1As explained in Section 7.2, a weaker form of concavity, called Axis-Parallel Concavity, is sufficient for our tech-
niques to hold.

99

Figure 7.1: FSB η − γ Tradeoff for 4D Q26

is typically an order of magnitude more than this guaranteed value, delivering a cumulative benefit
of more than three orders of magnitude. Therefore, the new FSB approach represents a substantive
step towards practically achieving robust query processing for ad-hoc queries with moderate ESS
dimensionalities – especially in conjunction with contemporary multi-core architectures that exploit
the inherent parallelism in the ESS construction. So, for instance, a 5D query which takes a few days
even on a well-provisioned multi-core machine to complete nearly 10 billion optimizer calls required
for constructing the entire ESS (at a resolution of 100), can now be made ready for execution within
a few minutes by FrugalSpillBound!

7.2 Assumptions
We augment the PCM assumption with a stricter condition, wherein not only are the PCFs monotonic,
but also exhibit a weak form of concavity in their cost trajectories, as explained next.

7.2.1 Axis-Parallel Concavity (APC)
We augment the above PCM assumption with a stricter condition, wherein the PCFs are not only
monotonic, but also exhibit a weak form of concavity in their cost trajectories, as explained next.

In the 1D world, a plan cost function Fp is said to be concave if, for any pair of locations q1, q2 in
the 1D ESS, and any α ∈ [0, 1],

Fp((1− α)q1 + αq2) ≥ (1− α)Fp(q1) + αFp(q2) (7.2)

100

Generalizing to D dimensions, a PCF Fp is said to be axis-parallel concave (APC) if the function
is concave along every axis-parallel 1D segment of the ESS. That is, Equation 7.2 is satisfied by any
generic pair of locations q1, q2 in the ESS that belong to a common 1D segment of the ESS (i.e.,
∃j s.t. q1.k = q2.k, ∀k 6= j).

So, for example, if e1 and e2 are the epps of a 2D ESS, then the APC requirement is that each
PCF should be concave along every vertical and horizontal line in the ESS.

Note that APC is a strictly weaker condition than complete concavity across all dimensions – that
is, all fully-concave functions satisfy APC, but the reverse may not be true. Further, an important and
easily provable implication of the PCFs exhibiting APC is that the corresponding OCS, which is the
infimum of the PCFs, also satisfies APC. Finally, for ease of presentation, we will generically use
concavity to mean APC in the remainder of this chapter.

Empirical Validation of APC

An immediate question that arises in the above context is whether the concavity assumptions on the
PCFs (and, by implication, the OCS) generally hold true in practice. For this purpose, we have
carried out extensive experimental evaluation with the TPC decision-support benchmarks operating
on contemporary database engines. The summary finding of this empirical evaluation, whose details
are presented later in Section 7.6, is that APC is consistently observed over almost the entire ESS.

Figure 7.2: Optimal Cost Surface (OCS)

As a sample instance, the axis-parallel projections of a 3D OCS presented in Figure 7.2, are
computed in Figures 7.3 (a) and 7.3 (b), respectively. These figures are graphed on a log-log scale

and for ease of representation, capture only the optimality region of each PCF. We observe here that

101

the PCFs clearly exhibit concavity in their optimality regions with respect to selectivity. As a direct
consequence, the OCS exhibits concavity over the entire selectivity range, justifying the assumption
on which our results are based. Moreover, given current relational operator cost functions, a detailed
rationale as to why PCF and OCS concavity is to be expected, is discussed below.

(a) Projection on X dimension (b) Projection on Y dimension

Figure 7.3: Validation of Axis-Parallel Concavity

Rationale of APC Let us now see the rationale behind why we can expect axis-parallel concave
behaviour of PCFs. Since a plan is a tree of operators, the individual operator cost behaviours are
as follows: Except for the sort operator, we observed that all the operators are having non-increasing
slope, piecewise linear or simply linear behaviour.

Starting with join operators, Hash Join and Merge Join (in case of already sorted inputs) costs
O(sx + sy) where sx, sy represents the two input selectivities from its upstream operators. As we
are interested in 1D axis-parallel projections, wherein one of sx or sy is constant, we can expect the
two operators to behave linearly. Similar is the case with Nested Loop Join in which case it costs
O(sx ∗ sy). Shifting the focus to scanning operators, Sequential Scan has constant cost, whereas
Index Scan and Bitmap Scan is linear. Finally, Sort operator has cost of the formO(sx log(sx)) which
is superlinear. We can expect axis-parallel concave behaviours of PCFs, based on the following
observations:

1. Estimated cost of a complete plan tree is an aggregate sum of costs of all its internal nodes -
this appears to be case in current engines, especially, PostgreSQL.

102

2. In practice, contribution from Sort is very less compared to the total cost of a plan in industrial
strength benchmarks. [DNC17]

3. Point-wise sum of a set of concave functions is also a concave function.

OCS concavity follows from the fact that OCS is a infimum of all POSP PCFs.Further, note that for
the working of the FrugalSpillBound algorithm, we just need OCS to be axis-parallel concave.

7.3 Frugal SpillBound for 1D ESS
1D SB We begin by reviewing how the SpillBound algorithm operates on a 1D ESS along with
setting up the required notations to aid FSB’s description. Consider the sample concave OCS function
F shown in Figure 7.4. In this figure, the selectivity axis represents the selectivity range for the lone
epp, and the cost axis represents the OCS function. The cost axis is discretized into doubling-based
isocost contours, IC1 through ICm, with CCi = 2i−1C. Note that, in the case of 1D OCS, each of
the contours correspond to a single selectivity location on the selectivity axis. We denote the location
corresponding to ICi by Qi. Further, Q1 = 1/r and Qm = 1 correspond to the origin and terminus
locations, respectively.

Figure 7.4: Concave OCS

During the compilation phase of 1D-SB, for each of the r uniformly spaced locations on the
selectivity axis, the optimal plan at the location and its cost are determined. Using the cost information
from the r locations, the precise location of Qi is identified for i = 1, . . . ,m. The set of optimal
plans at the Qi locations is called the “bouquet of plans”. Then, during the execution phase, this

103

bouquet of plans is sequentially executed, starting from the cheapest isocost contour, with a budget
equal to the associated contour cost. The process ends when a plan reaches completion within its
allocated budget. This budgeted sequence of plan executions achieves an MSO guarantee of 4 with a
compilation overhead of r optimizer calls.

We now move on to presenting our 1D-FSB algorithm, which has compilation and execution
phases, as described below.

7.3.1 Compilation Phase
The main idea in the compilation phase of FSB is to dispense with SB’s approach of precisely iden-
tifying the location of the Qis. Instead, for each Qi, we identify a proxy location, q̂i, such that the
cost of the optimal plan at q̂i is in the range [F(Qi), ηF(Qi)]. The compilation phase consists of
identifying these proxy locations q̂is via a sequence of calibrated jumps in the selectivity space. Let
us now see how to find these proxy locations starting with Q2.

Discovering the proxy for Q2

Since Q1 is known, we set q̂1 = Q1. The search for q̂2 starts from q̂1. We now perform a sequence
of jumps in the selectivity space until we land exactly at Q2 or overshoot it for the first time. Further,
the lengths of the jumps are calibrated such that when q̂2 is reached, its cost is guaranteed to be in the
range [F(Q2), ηF(Q2)], as described below.

First Jump Identify the optimal plan Pq̂1 at q̂1, and compute its slope, s(q̂1) at q̂1. Due to PCM,
the slope at any location in F is > 0. The slope is calculated through abstract plan costing (a feature
detailed in Section 8.1) of Pq̂1 at a selectivity location in the close neighborhood of q̂1.

Our first estimate for q̂2, denoted by q12 (refer to Figure 7.4), is the location that is expected to have
η times the cost of F(q̂1) when extrapolated by a tangent line with a slope of s(q̂1), i.e,

F(q̂1) + s(q̂1) · (q12 − q̂1)
F(q̂1)

= η

By rearranging, we get

q12 = q̂1 +
(η − 1) · F(q̂1)

s(q̂1)

∴ q12 = q̂1 + J1

where J1 represents the first jump towards q̂2, relative to the starting location, q̂1. The following
lemma immediately follows from the concavity of the PCF:

104

Lemma 7.1 The cost condition F(q12) ≤ η · F(q̂1) is satisfied.

We next show that the jump J1 is such that the selectivity of q12 is at least η times the selectivity at
q̂1.

Lemma 7.2 The selectivity of q12 is at least η times the selectivity at q̂1, i.e, q12 ≥ ηq̂1 .

Proof: Let the tangent of F at q̂1 be expressed as

F(q) = s(q̂1) · q + c′ 0 ≤ q ≤ 1, c′ ≥ 0

(Here, c′ ≥ 0 to ensure non-negative cost at q = 0.) Based on this equation, we obtain the following
pair of equations by separately considering the PCF cost at q̂1 and the estimated cost at q12 .

F(q̂1) = s(q̂1) · q̂1 + c′

η · F(q̂1) = s(q̂1) · q12 + c′

Simplifying the equation pair, we get

ηs(q̂1) · q̂1 + ηc′ = s(q̂1) · q12 + c′

∴ q12 = ηq̂1 +
(η − 1)c′

s(q̂1)
≥ ηq̂1

2

Depending on the cost at the first jump’s landing location, i.e. at q12 , two cases are possible:

1. Cost Overshoot, i.e, F(q12) ≥ F(Q2): In this case, we have identified a proxy location for Q2

whose cost is at most ηF(Q2) (by Lemma 7.1).

2. Cost Undershoot, i.e., F(q12) < F(Q2): In this case, the jump scheme is repeated with q12 as

the starting location. That is, we jump to q22 , with the jump length being J2 =
(η − 1)F(q12)

s(q12)
.

This process is repeated until we reach q̂2, signalled by F(q̂2) ≥ F(Q2). Since the cost of q̂2’s
previous location is less than F(Q2), Lemma 7.1 guarantees that F(q̂2) ≤ ηF(Q2).

7.3.1.1 Implementation of Proxy Discovery

The above compilation phase of FSB for the 1D scenario is detailed in Algorithm 3. Here, the entire
search from q̂1 to q̂2 is captured as a generic Explore subroutine, with three arguments: seed, the
starting location, t cost, the cost at the terminal location, and r factor, the relaxation factor wrt t cost.

The proxy location q̂i for Qi is obtained starting with the proxy location q̂i−1. This is done by
calling the Explore subroutine, with seed as q̂i−1, target cost of CCi, and relaxation factor of η. The

105

derivation that bounded the relative cost of q̂2 w.r.t. the cost of Q2 can be repeated to show that the
cost of q̂i is at most ηF(Qi) for i = 2, . . . ,m−1. Finally, the output of the algorithm is a set of proxy
locations, ProxyContourLocs = {Q1 ∪ {

⋃m−1
i=2 q̂i} ∪Qm}.

7.3.1.2 Bounded Compilation Overheads

Theorem 7.1 The compilation overheads reduction, γ, of 1D-FSB is at least
r

logη r
.

Proof: From Lemma 7.2, the maximum number of jumps is required when the selectivity estimation
at each jump is exactly η times the selectivity of the previous location. Therefore, the total number of
query optimizer calls is bounded as follows:

Total Optimization Calls ≤ logη
Qm

Q1

≤ logη r

Thus, the compilation overheads reduce from r to logη r. 2

7.3.2 Execution Phase
The execution phase of FSB, as shown in Algorithm 3, is the same as that of SB except that the plan
bouquet now consists of the optimal plans at the proxy locations in ProxyContourLocs. We therefore
easily derive the following theorem for maintaining the η constraint.

Theorem 7.2 The MSO relaxation of 1D-FSB is at most η.

Proof: From the compilation phase, we know that the cost of a proxy location q̂i is at most η times
the cost of Qi. The bounded cost of each proxy location ensures that the sequence of execution costs
for the 1D-FSB plan bouquet is C, 2ηC, 4ηC, . . . (as opposed to C, 2C, 4C, . . . for 1D-SB). Since
the MSO of 1D-SB is 4, it follows that the MSO of 1D-FSB is bounded by 4η. 2

7.4 Frugal SpillBound for 2D ESS
In this section, we present the extension of 1D-FSB to the 2D case. For ease of exposition, we refer
to the two epps as x and y, respectively.

In the 1D ESS, each contour was a single point. However, in 2D, it is a continuous curve as shown
in Figure 7.5. Therefore, the step of identifying the proxy locations forQis has to be generalized so as
to cover an isocost contour ICi with an appropriate set of proxy locations. We achieve this by finding
a bounded contour-covering set (BCS) of locations for each contour ICi. The definition of these sets
and their identification procedure are presented next.

106

Algorithm 3 1D-FSB (η)

1: Compilation Phase:
2: set Q1 = 1/r and Qm = 1;
3: set k = 2;
4: set ProxyContourLocs = {Q1, Qm};
5: set q̂1 = Q1;
6: while k < m− 1 do
7: q̂k = Explore(q̂k−1, CCk, η);
8: Add q̂k to ProxyContourLocs;
9: k++;

10: end while

11: function Explore(seed, t cost, r factor);
12: compute cost = F(seed) (using an optimizer call);
13: while cost < t cost do
14: compute slope at seed (using abstract plan costing);

15: next jump = (r factor − 1) · cost
slope

;

16: seed + = next jump ;
17: cost = F(seed);
18: end while
19: return seed;
20: end function

21: Execution Phase:
22: for q in ProxyContourLocs do
23: Execute optimal plan Pq with budget F(q);
24: if Pq completes execution then
25: Return query result;
26: else
27: Terminate Pq and discard partial results;
28: end if
29: end for

107

7.4.1 Bounded Contour-covering Set (BCS)
The BCS for a contour is defined as the set of locations such that:

(a) Every location in the contour is spatially dominated by at least one location in this set; and

(b) The cost of each location in BCS is bounded to within an η factor of the contour cost.

We denote the BCS of contour ICi by BCSi. Formally, BCSi is a set that needs to satisfy the
following condition:

∀q ∈ ICi,∃ q′ ∈ BCSi such that q � q′and COST(q′) ≤ ηCCi

To make this notion concrete, a candidateBCSi for the example contour ICi shown in Figure 7.5,
is {c1, c2, c3} which covers the entire contiguous length of the contour. As a specific case in point, the
covering location c2 fully covers the optimality segments of P5 and P6, as well as parts of P4 and P7,
in ICi.

Figure 7.5: Bounded Contour-covering Set (BCS)

7.4.2 Compilation Phase
We now present a computationally efficient method to find a BCS for an isocost contour in the 2D
ESS. To generalize the 1D method, we carry out jumps in the selectivity space along both the x and
y dimensions. These jumps are designed to be axis-parallel and we leverage APC in their analysis. A
special feature, however, is that the jumps are in opposite directions in the two dimensions – forward in

108

one, and reverse (i.e. jumps are performed in the decreasing selectivity direction) in the other. Further,
in the reverse jumps, the selectivity of the next location is decreased by a constant factor, as explained
below – this is in marked contrast to the forward jumps, where the Explore (seed,t cost,r factor)

subroutine is invoked to decide the next location.
In principle, the choice of dimensions for forward and reverse jumps can be made arbitrarily.

However, for ease of presentation, we assume hereafter that all forward jumps are in the y dimension,
and all reverse jumps are in the x dimension.

7.4.2.1 Algorithm Description

We explain the compilation phase by describing the process of constructing BCSi for the isocost
contour ICi shown in Figure 7.5. For ease of presentation, we refer to Figure 7.6, which overlays the
construction of BCSi on top of contour ICi.

The main idea is to carry out a sequence of interleaved search steps that alternatively explore the
x and y dimensions. Specifically, we start from the location c0 = (1, 1/r) as the seed, and search
for a location, u1, on y = 1/r line whose cost is in the range [CCi,

√
ηCCi]. A sequence of reverse

jumps from c0, with constant
√
η factor decrease in selectivity each time, is carried out until we reach

u1. The Explore subroutine is now invoked along the increasing y dimension with u1 as the seed
location, terminating cost

√
ηCCi, and relaxation factor

√
η. Let the location returned be c1, and by

the construction of Explore, we know that its cost is in the range [
√
ηCCi, ηCCi]. Now, starting from

c1, a sequence of reverse jumps, again with
√
η factor selectivity decrease in each jump, is carried

out till we reach a location u2 whose cost is in the range [CCi,
√
ηCCi]. This is followed by a call to

Explore with u2 as the seed and the same settings as before for the other arguments. The returned
location is now c2. This interleaved process of reverse jumps along the x dimension and forward
jumps along the y dimension, is repeated until the process hits the boundary of the ESS. Let us say
that the process ends at location ck (k = 4 for the example contour in Figure 7.6). Then, the set
BCSi = {c1, . . . , ck} is returned as the BCS of contour ICi. This description of the compilation
phase of 2D-FSB is codified in Algorithm 4.

7.4.2.2 Proof of Correctness

In order to demonstrate that every location in the contour is spatially dominated by at least one location
in the associated BCS, we need to first prove that reverse jumps allow us to find uis, whose costs are
in the range [CCi,

√
ηCCi]. Equivalently, it is sufficient to show that each reverse jump results in a

relative cost decrease of at most
√
η. To do so, let us fix a covering location ck, and let Fap denote the

restriction of OCS to the horizontal line passing through ck. Then, we have the following lemma:

109

Figure 7.6: Identification of BCS

Lemma 7.3 The reverse jump from a location q along the x direction by a factor
√
η results in a

relative cost decrease of at most
√
η, i.e., Fap(q.x√η , q.y) ≥ Fap(q.x, q.y)/

√
η .

Proof: Let q′ denote the location (q.x/
√
η, q.y). Consider the line passing through q′, parallel to the

x-axis, and tangent to OCS. Let s be its slope and c′ its intercept on the cost axis (c′ ≥ 0 to ensure
non-negative cost at the origin). We know that this line overestimates the cost at q because Fap is both
increasing and concave (by virtue of its PCM and APC characteristics). Thus, we have

Fap(q) ≤ s · (q.x) + c′

≤ √
η

(
s · (q.x√

η
) +

c′
√
η

)
≤ √

η

(
s · (q.x√

η
) + c′

)
=
√
ηFap(q′)

where the second and third inequalities are implied by η ≥ 1 and c′ ≥ 0. The last equality follows
from the fact that the line passes through q′. 2

Lemma 7.4 Every location in ICi is dominated by at least one location in BCSi .

Proof: Consider any point q in ICi. By construction we know that there exists ck ∈ BCSi s.t.
ck.y ≤ q.y ≤ ck+1.y. We will show that ck+1 ∈ BCSi is a dominating location for q by proving
q.x ≤ ck+1.x. Consider the location uk+1 whose x coordinate is the same as that of ck+1. This means

110

that (a) uk+1.x = ck+1.x, and (b) uk+1.y = ck.y. Since the cost of location uk+1 is ≥ the cost of
location q, and uk+1.y ≤ q.y by PCM, it implies that uk+1.x ≥ q.x. Therefore, q is dominated by
ck+1. 2

7.4.2.3 Bounded Computational Overheads

Now that we have shown the coverage properties of the BCS, we move on to proving that their
identification can be accomplished with bounded overheads.

Lemma 7.5 The overheads reduction, γ, of 2D-FSB is at least
r2

4 ·m · logη r
.

Proof: Let us first consider the number of optimization calls required per contour for 2D-FSB.
We know that the exploration of cks and uks move unidirectionally along the y-axis (1/r to 1) and
x-axis (1 to 1/r), respectively. Furthermore, we have earlier shown that each jump results in a relative
increase (or decrease) in selectivity of at least

√
η. Thus, by geometric progression, we can infer the

following:

Opt. calls per Contour = Opt. calls for cks + Opt. calls for uks

≤ log√η r + log√η r

= 2 log√η r = 4 · logη r

Since there are m contours in the ESS, we conclude that there are 4 · m · logη r optimization calls

across all contours for 2D-FSB, as compared to r2 for 2D-SB. Thus, γ is at least
r2

4 ·m · logη r
. 2

7.4.3 Execution Phase
In the execution-phase, we run the original 2D-SB algorithm, treating the BCS identified for every
contour as the effective contour. Specifically, starting from the least cost BCS1, the plans corre-
sponding to the locations in each successive BCSi are executed as per the 2D-SB algorithm. This
BCS-based execution of plans (in spill-mode) is continued until the actual selectivities of both the
epps are learned. Finally, the optimal plan at the discovered selectivity location is executed to com-
pletion to compute the query results for the user. We show below that with this execution strategy, the
MSO guarantee is relaxed by at most η.

7.4.3.1 Maintaining the η constraint

Theorem 7.3 The MSO relaxation of 2D-FSB is at most η.

Proof: We know that the cost of any location in BCSi is at most ηCCi. Furthermore, the execution-
phase runs the 2D SB algorithm on the BCS of every contour. Thus, every execution in 2D-FSB is

111

Algorithm 4 2D FrugalSpillBound Algorithm (η)

1: Compilation Phase:
2: Set: qcur = (1/r, 1/r);
3: Set: β =

√
η;

4: while contours are remaining do
5: /*Let ICi denote current contour and CCi be its cost*/
6: while qcur.x ≥ 1

r and qcur.y ≤ 1 do
7: Find ui with cost in [CCi, β · CCi], by x-axis reverse jumps;
8: qcur.x = ui.x;
9: Call Explore(ui, β · CCi, β) along y-axis to find ci;

10: qcur.y = ci.y;
11: end while
12: Union of all cis forms the bounded contour-covering set, BCSi;
13: /* Move to next contour */
14: end while

15: Execution Phase:
16: Run the original 2D SpillBound algorithm on the plans corresponding to BCSi, of every contour ICi;

performed with a budget of η times its corresponding contour cost. Hence, the overall cost of 2D-FSB
is at most η times that of 2D SB, which increases the MSO by at most η. 2

The analysis of the 2D SpillBound algorithm relied on two crucial properties: Half-Space
Pruning (HSP) and Contour Density Independent Execution (CDIE) as described in Section 4.2. Both
HSP and CDIE properties continue to hold for 2D FSB also, which is explained next.

7.4.3.2 Half-Space Pruning and Contour Density Independent Execution

With regard to identifying the set of plans to be executed and which epp to spill on, SB and FSB

employ the same procedure which is sufficient to establish the CDIE property of FSB.
Moving to HSP, in SB, at any point in time, if a location q is being explored, it is always ensured

that the selectivity value of q along non-epp dimensions is set to their selectivity at qa. However,
when we replace a continuous isocost contour with a discrete covering set in FSB, at the first sight it
might look that the budget during partial executions may not be sufficient for HSP to hold true. But
the key observation is that, when a location q is explored in FSB, for a non-epp dimension j, we
ensure that q.j ≥ qa.j. This condition ensures that the budget is sufficient such that HSP (Lemma 4.1)
applies to FSB as well.

7.4.3.3 Contour Covering Set identification

In the original SB algorithm, once a selectivity is completely learnt for an epp, the original ESS gets
projected on the selectivity value of the learnt dimension. This process of reducing the dimensionality

112

of the ESS by 1 continues as and when an epp get completely learnt, until the actual selectivity of all
the epps are discovered.

The isocost contours in the SB are continuous whereas the contour covering sets are discrete sets.
Therefore, the update to the effective ESS by projecting the current ESS onto the selectivity of the
learnt dimension needs to be done carefully in the case of FSB. The sensitive situation is when the
learnt selectivity value is such that, there is no location in the covering set whose value on the learnt
dimension is exactly equal to the learnt value. For example, in Figure 7.6, say that FSB learns the
complete or actual selectivity in the Y -dimension first, whose value is strictly in between u3.y and
c3.y, i.e. u3.y < qa.y < c3.y. In this case, we have to take care to ensure that, we project the 2D
ESS onto the line y = c3.y to ensure that there is a valid starting locations for the 1D search along x
dimension.

7.5 Multi-Dimensional FSB
In this section, we show how to extend 2D-FSB to higher dimensions. For ease of exposition, we
initially describe the algorithm and present the corresponding proof of correctness intuitively. After
this, we move on to formalizing the intuitive proofs.

7.5.1 Multi-D Algorithm
The MultiD-FSB algorithm is executed on the set of dimensions retained after the DimRed pre-
processing step. The retained epps are first ordered in decreasing value of their inflation factors

(as defined in Section 6.3), i.e, e1 has the highest inflation factor and eD, the lowest. Then, for
every contour, we construct a specially designed sparse grid G for the first (D − 2) dimensions. It
is constructed such that there are totally (logβ(1/r))D−2 points, where β = D

√
η. Further, in each

dimension, there are logβ(1/r) points that are spread out in a geometric distribution with factor β.
The key feature of this grid is that, even if we restrict the search space in the first D − 2 dimensions
to just the points in G, we incur an MSO relaxation factor no more than βD−2 while still ensuring
complete coverage of the underlying contour – the proof of this can be seen in Lemma 7.8.

The algorithm to cover an isocost contour ICi runs in two important steps:

S1: Corresponding to each point p in the grid G, run a 2D-FSB with the first (D − 2) dimensions
fixed as per p, and the last two dimensions at the full resolution of r. The output is treated as a
subset of BCSi.

S2: Compute the union of the 2D-FSB outputs obtained in step S1 over all the points in G – this
union forms the final BCSi.

113

Each invocation of 2D-FSB incurs an MSO relaxation factor of β2 corresponding to the last
two dimensions. Further, G contributes an MSO relaxation factor of βD−2 due to the first (D −
2) dimensions. Thus, the overall MSO relaxation is contained at βD, i.e, η. The pseudocode for
MultiD-FSB is presented in Algorithm 5, and the proofs of overheads reduction and maintenance
of the η relaxation constraint, can be seen in the following section.

Algorithm 5 MultiD-FSB (η)

1: Compilation Phase:
2: Set: β = D

√
η;

3: Set: k = 1; /*initialization to first contour*/
4: while contours are remaining do
5: Set: qcur = (1r , · · · ,

1
r); /*starting to explore the kth contour*/

6: BCSk = ∅
7: for qcur.1 = 1

r ; qcur.1 ≤ 1; qcur.1 = βqcur.1 do
8: /* D− 3 more nested for loops like the above corresponding to the dimensions 2 through (D− 2)*/
9: /* At the end of (D− 2) nested for loops, qcur is such that its first (D− 2) dimensions correspond to

one of the points in the special grid G */
10: qmin = qmax = qcur;
11: qmax.(D − 1) = qmax.D = 1;
12: qmin.(D − 1) = qmin.D = 1

r ;
13: /*qmin and qmax are origin and terminus of 2D space of dimensions (D − 1) and D*/
14: if Cost(qmin) ≤ CCk and Cost(qmax) ≥ CCk then
15: Augment BCSk with the output of 2D-FSB covering a 2D contour of cost (β)D−2CCk with cost

relaxation factor of β2;
16: end if
17: end for /* End of (D − 2) nested for loops */
18: Output BCSk and set k = k + 1; /* Move to next contour */
19: end while

20: Execution Phase:
21: Run the multi-D SpillBound algorithm on the plans corresponding to BCSi for each contour ICi;

7.5.2 Proof of Correctness
We shall begin with introducing the notion of a sub-contour, denoted by IC|HE , for any contour IC .
It is defined to be the set of locations that belong to intersection of hyperplane H and IC , and then
projected on the dimensions E ⊆ EPP. Note that any location q ∈ IC|HE would be a |E| dimensional
location. Furthermore, a sub-contour, ICi1|HE , covers another sub-contour ICi2|HE , if @ a location
q ∈ ICi2|HE s.t. q dominates1 some location of ICi1|HE . In words, there should not exist a location
in ICi2|HE which dominates some location in ICi1 |HE . Furthermore, for any location q ∈ ESS, we use

1By domination, we mean strict domination

114

q|E to denote the projection of q on dimensions E. Notation [n], n ∈ Z+ is used represent the set of
integers from {1, · · · , n}. Finally, we can also represent a location q ∈ ESS by its direct sum of its
hyperplanes, q1|[D−2] and q2|D−1,D for some q1, q2 ∈ ESS. Denoting the direct sum by ◦, then

{q := q1|[D−2] ◦ q2|D−1,D} ⇔ {q.j = q1.j, j ∈ [D − 2] and q.j = q2.j, j ∈ {D − 1, D}}

Lemma 7.6 For some two locations q1, q2 ∈ IC and q2|[D−2] � q1|[D−2], the 2D contour obtained by

intersecting the hyperplane q1|[D−2] with IC , covers the one obtained by intersecting IC with q2|[D−2].
That is, sub-contour IC|q1|[D−2]

D−1,D covers IC|q2|[D−2]

D−1,D .

Proof: For sake of contradiction, let us say that sub-contour IC|q1|[D−2]

D−1,D does not cover IC|q2|[D−2]

D−1,D .

Further, this means there exist a 2D location q′2 ∈ IC|
q2|[D−2]

D−1,D which dominates some 2D location,

q′1 ∈ IC|
q1|[D−2]

D−1,D . Since q2|[D−2] � q1|[D−2], we can conclude

{q2 := q2|[D−2] ◦ q′2} � {q1 := q1|[D−2] ◦ q′1} (7.3)

By PCM, there is a contradiction that q1, q2 belong to the same contour and have same cost. 2

Lemma 7.7 Consider two distinct contours IC1, IC2 s.t. CC2 = (β)D−2 ∗ CC1, and two hyperplanes

defined by D − 2 dimensional locations, q and qβ where qβ.j = β ∗ q.j, ∀j ∈ [D − 2]. Then, the 2D

contour obtained by intersecting qβ hyperplane with IC2, covers the one obtained by intersecting q

hyperplane with IC1. That is, sub-contour ICi2|
qβ
D−1,D covers ICi1|

q
D−1,D.

Proof: For sake of contradiction, let us say that sub-contour ICi2|
qβ
D−1,D does not cover ICi1|

q
D−1,D.

Further, this means there exist a 2D location q′1 ∈ ICi1|
q
D−1,D which dominates some 2D location,

q′2 ∈ ICi2|
qβ
D−1,D. We know that location q′ ∈ IC1, where q′ := q ◦q′1. This means that cost of location

q′ is equal to CC1. Since q′1 � q′2, cost of location q′3, where q′3 := q ◦ q′2, is strictly less than CC1. By
concavity, then the cost of location q′β , q′β := qβ ◦ q′2, has cost strictly less than CC2. This contradicts
the fact that q′β ∈ IC2, and thus having cost equal to CC2. 2

Lemma 7.8 Let BCSi be the bounded contour-covering set output for contour ICi using Multi-D

FSB, then

1. every location in ICi is dominated by some location in BCSi

2. cost of the dominating location (found in part 1) in BCSi is at most η · CCi

Proof:

115

1. Consider a location q ∈ ICi. The proof goes by eventually constructing a location dom ∈
BCSi, which dominates q. We know that each of {qcur.1, · · · , qcur.(D− 2)} in Algorithm 5, is
iteratively increased from 1/r → 1, with a step size of β. Thus, it is easy to see that there exist
a qcur such that

qcur.j

β
< q.j ≤ qcur.j ∀j ∈ [D − 2]

In other words, qcur dominates q when projected on its first D − 2 dimensions. and thus we set
dom.j = qcur.j ∀j ∈ [D − 2]. Let qβ be D dimensional location such that qβ.j = qcur.j/β.
Then, Lemma 7.6 shows that sub-contour ICi|

qβ |[D−2]

D−1,D covers ICi|
q|[D−2]

D−1,D. Furthermore from

Lemma 7.7, we know that sub-contour ICi1|
qrun|[D−2]

D−1,D covers ICi|
qβ |[D−2]

D−1,D where CCi1 = (β)D−2 ∗
CCi. From 2D FSB, we know that every location in ICi1 is covered by the covering set. This
implies that there exist an assignment of values for (dom.(D−1), dom.(D)) s.t. dom dominates
q.

2. Since we are covering the (β)D−2 · CCi contour, with an cost inflation factor of at most β2.
Leveraging the proof of Lemma 7.4, we conclude that any location in BCSi has at most η · CCi
cost.

2

Next, let us bound the number of optimization calls required by multi-D FSB algorithm per con-
tour.

Lemma 7.9 The number of optimization calls per contour, for an MSO relaxation of η, is upper

bounded by 2 ∗ (D ∗ logη(r))
D−1

Proof: We know from Lemma 7.5 that total number of optimization calls for 2D FSB is 2 ∗ logβ(r).
However, the 2D algorithm is executed (logβ(r))D−2 times. Equivalently the factor can be rewritten
as, (log2(r)

log2(D
√
η)

)D−2, or {DD−2 ∗ (logη(r))
D−2}. Thus, optimization calls per contour is upper bounded

by 2 ∗ (D ∗ logη(r))
D−1. 2

Theorem 7.4 The compile-time overheads reduction, γ, of Multi-D FSB is at least rD/(2 ·m · (D ·
logη r)

D−1).

Theorem 7.5 MSO relaxation of Multi-D FSB is at most η.

Proof: Using Part 2 of Lemma 7.8 and analysis similar to that of 2D scenario, the proof follows. 2

116

7.6 Experimental Evaluation
In this section, we profile the γ − η performance of FSB using SB’s performance as the reference
baseline. For ease of exposition, and that the overheads for queries with less than three dimensions are
in few hundreds of optimizer calls, we present the results for queries with three or more dimensions.

7.6.1 Empirical Validation of APC
We begin with an experimental validation of the APC assumption that is central to the FSB approach.
For this purpose, we obtained the cost functions of the POSP plans over the ESS using the selectivity
injection feature for all the queries in our evaluation suite. Then, we verified, for each cost function,
whether its slope was monotonically non-increasing with selectivity for every 1D projection of the
function. Representative results of this evaluation, reflecting 120-plus plans sourced from our query
workload, are tabulated in Table 7.1, for both the constituent PCFs and the aggregate OCS.

In the table, a cell corresponding to OCS (or PCF), under Average, captures the % of locations in
ESS satisfying the assumption averaged over OCSs (or PCFs) in a query along different projections.
Supporting metrics such as Median, Minimum and Maximum are also enumerated to provide a sense
of the overall distribution. Note that our FSB approach requires concavity only on the OCS, and the
vast majority (> 95%) of locations in the ESS satisfy this slope constraint. Moreover, the median
value being 100% for most queries indicates that the majority of OCSs and PCFs do not violate the
assumption at all. Further, even the rare violations that surfaced were found to be artifacts of rounding
errors, cost-modeling errors, and occasional PCM violations due to the PostgreSQL query optimizer
not being entirely cost-based in character.

7.6.2 Theoretical Characterization of γ − η
Using the formula derived in Theorem 7.4, we evaluated the γ value for our suite of benchmark
queries with η set to 2, and these results are shown in Figure 7.7 on a log scale. We observe a
consistent overheads decrease by more than two orders of magnitude for FSB, i.e. γ >= 100, over all
the queries. Further, the decrease shows a trend of being magnified with dimensionality – for instance,
the overheads decrease by a factor of almost 400 for the five-dimensional 5D Q84.

7.6.3 Empirical Characterization of γ − η
We now turn our attention to assessing the empirical reduction in compilation overheads achieved by
FSB for the above database environment – these results are also captured in Figure 7.7. We see here
that for most of the queries, the savings are over three orders of magnitude. Furthermore, quite a
few of the 4D and 5D queries even reach four orders of magnitude reduction – in fact, the overheads
saving for 5D Q91 is by a factor of almost 40000! When the effective dimensionality and the number

117

Table 7.1: % LOCATIONS IN ESS SATISFYING APC

Query Average Median Min. Max.

3D Q15
OCS 100 100 100 100
PCF 100 100 100 100

3D Q96
OCS 100 100 100 100
PCF 100 100 100 100

4D Q7
OCS 100 100 100 100
PCF 98.4 100 74.4 100

4D Q26
OCS 99.7 100 98.8 100
PCF 99.7 100 93.9 100

4D Q27
OCS 100 100 100 100
PCF 99.2 100 75.2 100

5D Q19
OCS 100 100 100 100
PCF 100 100 100 100

5D Q84
OCS 96.9 96.5 96.5 97.6
PCF 94.5 96.8 71.2 100

5D Q91
OCS 100 100 100 100
PCF 100 100 98.4 100

of contours is moderate, as in the case of few 3D queries in Figure 7.7, the savings become saturated
at around 2.5 orders of magnitude since the overheads reach a low value in absolute terms itself, of
the order of a few thousand optimization calls.

The reasons for the considerable gap between the theoretical and empirical values include the
following:

• Our conservative formulation in Lemma 7.2 for the distances covered by the forward jumps
in FSB. These jumps are based on the slope of the optimal plan function at the corresponding
location, but the lengths of the jumps in practice are considerably more due to the concave
trajectory. For instance, we found that with 5D Q84, around 60 percent of the jump lengths
exceeded 1.5 times the guaranteed value, while about 20 percent were more than twice the
guaranteed value.

• Our conservative assumption that all covering contours start from 1/r and work their way upto
the maximum selectivity of 1. In practice, however, the contour traversals could be much
shorter. As a case in point, we found that with 5D Q84, around 80 percent of the underly-
ing 2D contour explorations were skipped based on the cost condition check in Line 14 of
Algorithm 5.

118

Figure 7.7: Theoretical and Empirical Overheads Reduction (η = 2)

Figure 7.8: Empirical MSO Ratio (η = 2)

119

7.6.4 Validation of MSO Relaxation Constraint
A legitimate concern about FSB could be that while it guarantees maintenance of the η constraint in
the theoretical framework, the MSO relaxation may exceed η in the empirical evaluation. To assess
this possibility, we explicitly evaluated the empirical MSO ratio, ηe, incurred by FSB relative to SB.
This was accomplished by exhaustively considering each and every location in the ESS to be qa,
and then evaluating the sub-optimalities incurred for these locations by SB and FSB. Finally, the
maximum of these values was taken to represent the empirical MSO of each algorithm.

Contrary to our fears, the ηe values of FSB are always within η = 2, as shown in Figure 7.8. In
fact, the ηe factors are within 1.5 for all queries. The main reason for the low ηe values in practice is
due to the aggressive half-space pruning at each contour, and especially so at the final contour.

7.6.5 Dependency of γ on η
Thus far, we have analyzed the FSB results for the specific η setting of 2. We now move on to
evaluating the γ behavior for different settings of η. This tradeoff is captured in Figure 7.9 for η
values ranging over [1, 3] for three different queries – Q15, Q27 and Q19 – with ESS dimensionalities
of 3, 4 and 5, respectively.

We see an initial exponential increase in overheads reduction while going from η = 1 to η = 2,
but this increase subsequently tapers off for larger values of η. For 3D Q15, the number of opti-
mization calls decreases steeply from 106 to 7010 when η is increased from 1 to 2, and then goes
down marginally to 2950 calls when η is further increased to 3. The plateauing of the improvement
with increasing η is because a certain minimum number of optimization calls is required for the basic
functioning of the FSB algorithm.

7.6.6 Wall-Clock Time Experiments
All the experiments thus far assessed the γ−η profile in the abstract world of optimizer cost values. We
now present an actual execution experiment, where the end-to-end real-time performance (i.e. wall-
clock times) was explicitly measured for the FSB and SB algorithms. Our representative example is
based on TPC-DS Q19 featuring 5 error-prone predicates.

As mentioned previously, the task of identifying the contours is inherently amenable to paral-
lelism. Even after exploiting this feature on a 64-core workstation platform, SB took a few days to
identify all the contours for 5D Q19. In marked contrast, a parallel version of the BCS identification
in FSB, which utilizes the fact that there are (D∗ logη(

1
ε
))D−2 independently-explorable 2D segments

per contour, completed the identification within 10 minutes (for η = 2).
After building the ESS, it took SB around 20 mins to complete its query execution, incurring

a sub-optimality of 4.8. On the other hand, FSB completed in around 26 mins, resulting in a sub-

120

Figure 7.9: FSB Tradeoff (Theoretical)

optimality of 6.2. The drilled-down information of plan executions for every contour with FSB can
be seen in Table 7.2.

So, overall, SB took days to create the ESS and execute this instance of Q19, whereas FSB
required only (10 minutes + 26 minutes) = 36 minutes to complete the entire query processing.
This means that even if the ad-hoc query eventually turns out to be a canned query, it would take more
than 500 successive invocations before SB begins to outperform FSB.

We conducted additional experiments to establish the practicality of the FSB approach. Specifi-
cally, on a representative set of queries, we profiled FSB for its memory usage, CPU usage, and end-
to-end latency. The memory usage is also a function of the server’s database configuration, which
was set with the PostgreSQL tuning tool [PGT]. The results, presented in Table 7.4, demonstrate that
FSB’s resource requirements are reasonable and easily justified by the substantive performance ben-
efits that it delivers. Moreover, the CPU usage is relatively small compared to the end-to-end latency
since our database environment is disk-bound.

7.6.7 JOB Benchmark Results
The results on JOB benchmark are on similar lines to that of TPC-DS benchmark – one of the primary
reasons being that the theoretical reduction in overheads are just a function of (D, r) for a fixed η.
Table 7.3 captures the overheads reduction achieved with the same algorithmic parameters (such as r,
and η = 2) used for TPC-DS.

The results again show that the theoretical reduction in overheads is least two orders of magnitude,

121

Table 7.2: FSB EXECUTION ON TPC-DS QUERY 19

Contour
no.

e1 e2 e3 e4 e5 Time
(sec.)

1 - p1 - p2 p3
(100)

54.1

2 - p4 - p5 - 122.5
3 - p4

(1)
- - - 182.1

3 - - - p5 - 251.4
4 - - - p5 - 357.8
5 - - - p5 - 509.9
6 p6

(5)
- - - - 789.2

6 - - p7
(96)

- - 1051.6

7 - - - p8
(99)

- 1562

Table 7.3: RESULTS ON JOB BENCHMARK WRT γ

Query Theoretical Empirical
3D Q1a 179.8 826.4

4D Q13a 332.9 2444.7
4D Q23c 332.9 1972.8

122

and empirical reductions are around three orders of magnitude (especially, for the 4D queries).

Table 7.4: RESOURCE USAGE (100 GB)

Query Memory
Usage
(MB)

CPU
Times
(mins)

Latency
(mins)

3D Q15 360 1.4 28.1
3D Q96 220 1.3 17.8
4D Q7 489 1.2 23
4D Q26 490 1.5 12.6
4D Q27 464 1.8 30.5
5D Q19 1000 11 36
5D Q84 348 2.8 10.1
5D Q91 828 1.3 4.3

7.7 Related Work
In the prior robust query processing literature, there have been two strands of work – the first deliv-
ering savings on optimization overheads, and the other addressing the query execution performance.
Given this context, FSB appears a unique proposition since it offers an attractive tradeoff between
these two competing and complementary aspects. Since the related work wrt query execution is ex-
tensively covered in Chapter 2, we focus on compilation overheads below.

7.7.1 Compilation Overheads
As mentioned before, we measure the query compilation overheads in terms of the number of op-
timization calls made to the underlying database engine. With regard to this metric, the overheads
incurred by SB in constructing the ESS can be computed as follows: SB first computes the optimal
plans for all locations in the discretized ESS grid. This is carried out through repeated invocations
of the optimizer with different selectivity values and combinations. Then, the isocost contours are
drawn as connected curves on this discretized diagram. So, if we assume a grid resolution of r in each
dimension of the ESS, the total number of optimization calls required by this approach is rD.

Note, however, that we do not require the complete characterization of the ESS, but only the
parts related to the isocost contours. An optimized variant, called Nexus, was proposed in [DH16]
to implement this observation, and shown to make material reductions in the contour identification
overheads. However, we have not included Nexus in our current study for the following reasons:
(1) When a large number of contours are present in the ESS, which can happen if the cost at the

123

ESS terminus is much larger than at the origin, the net effort by Nexus in contour identification
effectively becomes close to complete enumeration. (2) If a lower bound on a query’s location in the
ESS happens to be known through domain knowledge, SB can take advantage by making the lower
bound to be the origin and thereby shrinking the ESS. However, the isocost contours would have to
be redrawn from scratch by Nexus. (3) To provide performance fairness to queries across the ESS,
randomized placement of contours was presented as a solution in [DH16]. In such cases, multiple
sets of contours would have to be identified by Nexus, and it may cumulatively turn out to be more
expensive as compared to complete enumeration. We have therefore chosen to instead simply assume
that the entire ESS is enumerated, and consequently rD is used as the baseline SB overheads in the
sequel. Further, note that FSB is not impacted by such deployment issues since its compile-time
efforts are carried out afresh at each ad-hoc query’s submission time.

Other line of work wrt compilation overheads has been in the context of Parametric Query Op-
timization (PQO), where the objective is to have precomputed the appropriate plans for freshly sub-
mitted queries. In [HS03], the selectivity space was decomposed into polytopes that approximate
plan-optimality regions, based on the geometric heuristic that “If all vertices of a polytope have the
same optimal plan, then the plan is also optimal within the entire polytope”. However, this assump-
tion, as well as the presence of regular boundaries for the optimality regions, were later shown in
[DDH08] to be largely violated in industrial-strength settings.

Instead of trying to characterize the entire selectivity space in advance, an alternative “pay as you
go” approach was taken in [BBD09]. Here, the PQO overheads were restricted only on the actual
query workload submitted to the system, facilitating a progressive and efficient exploration of the
parameter space. In our setting, however, since we are apriori unaware of the query location, the BCS
has to be constructed in an agnostic manner to this location.

More recently, a geometric property called Bounded Cost Growth (BCG) was identified in
[DNC17], which typically holds on plan cost functions. In BCG, the relative increase of plan costs
is modeled as a low-order polynomial function of the relative increase in plan selectivities. In fact,
using the identity function for this polynomial is itself found to be generally satisfactory. Our use of
concavity is similar to BCG in that, when the polynomial is the identity function, it is shown below
that any PCF that satisfies APC also satisfies BCG.

7.7.1.1 BCG

Let us now see BCG’s definition formally. For any PCF Fp:

Fp(α ∗ q.j) ≤ f(α) ∗ Fp(q.j) ∀j ∈ {1, . . . , D},∀α ≥ 1 (7.4)

124

where f(α) is an increasing function and Fp(q) represents the cost of the corresponding plan at
location q. In words, for any plan, if the selectivity is increased in any one of the dimensions by a
factor α ≥ 1, then the cost of the plan also increases by a factor at most f(α). Moreover, they also
claim that f(α) = α would suffice in practice. As in the case of our axis-parallel concave assumption,
they also show that if BCG holds true for POSP plans then it is also true for OCS.

7.7.1.2 Concavity implies BCG

Let us consider a PCF Fp, if Fp is axis-parallel concave, then we will show that the PCF also satisfies
the BCG assumption when f(α) = α. For this, we just need to show the implication over an 1D
projection, which then easily generalizes for the generic scenario. Consider a location q, whose
projection on dimension j (i.e., q.j) has slope m on Fp. Thus the tangent at q.j can be expressed as a
line of the form Fp(q.j) = m ∗ q.j + c. However, c ≥ 0 for the function value to be non-negative for
q.j = 0. Hence, Fp(α ∗ q.j) ≤ m(α ∗ q.j) + c ≤ α ∗ (mq.j + c) = α ∗ Fp(q.j),

7.8 Conclusions
Even though DimRed provides substantial reduction in compilation overheads, a major limitation of
SpillBound is that the reduced overheads are still manageable for canned queries but remain too
high for ad-hoc queries.

In this chapter, we address the above limitation by designing FrugalSpillBound whose
compilation overheads are exponentially lower than those of SpillBound. Our construction of
FrugalSpillBound is based on two basic principles: (a) leveraging the axis-parallel concave
behavior exhibited by the PCFs and OCS with respect to predicate selectivities in the ESS; (b) sub-
stituting the original contours with much smaller contour-covering sets. Our theoretical analysis es-
tablishes a µ − γ tradeoff that is extremely attractive, delivering exponential improvements in γ for
linear relaxations in µ. Further, the empirical improvements are even higher, by more than an order
of magnitude. So, FrugalSpillBound takes an important step towards extending the benefits of
MSO guarantees to ad-hoc queries.

125

Chapter 8

Deployment Aspects

In this chapter, we shall discuss some pragmatic aspects wrt usage of our proposed robust techniques
in a real-world context, and also describe the complete workflow of our proposed robust database
engine. For the deployment of the database engine, the following essential functionalities need to
supported by it: (1) selectivity monitoring; (2) selectivity injection; (3) abstract plan costing and
execution; (4) cost-budgeted partial execution of plans; and (5) spilling of plan executions. After
describing these essential features in detail, we also discuss key additional deployment aspects such
as OptAssist and parallel compilation. As mentioned before, our proposed algorithms are intrusive
to the engine since they require changes to the core engine to support operator spilling and monitoring
of selectivities. Our experience with PostgreSQL is that these facilities can be incorporated relatively
easily – the full implementation required only a few hundred lines of code.

8.1 Essential Engine Features

8.1.1 Selectivity Monitoring
In every intermediate plan execution of our approach, we learn the lower bound on selectivity of an
error-prone predicate (or it’s actual value) through monitoring of selectivities. In PostgreSQL, we
achieve this using the plan’s tuple count data structure. Once the plan execution terminates (or,
finishes), the monitored selectivity value contains the lower bound on selectivity of an epp (or, the
epp’s actual selectivity value).

8.1.2 Selectivity Injection
For identification of isocost contours or bounded contour-covering sets, we need to be able to inject
the desired selectivities for query predicates instead of the optimizer estimated values. One non-
intrusive option is to suitably modify, for each new location in the ESS, the query constants and

126

the data distributions, but this is clearly cumbersome and time-consuming. We have therefore taken
an alternative approach in our PostgreSQL implementation, wherein the optimizer is instrumented
to directly support injection of selectivity values in the cost model computation. Specifically, the
optimizer estimated values are replaced with the injected ones where the estimates are computed for
later use. Interestingly, some commercial optimizer APIs already support such selectivity injections
to a limited extent (e.g. IBM DB2 [DB2]).

8.1.3 Abstract Plan Costing and Execution
In Chapter 7, we saw that abstract plan costing feature is required to compute the slope of plan cost
functions at ESS locations. Further, during the execution phase, we need to be able to instruct the
execution engine to execute a particular plan. The abstract plan costing feature is implemented by
pruning away all but one plan in the engine’s search space. This plan is essentially the abstract plan
to be costed and executed. To prune away the search space the GUC (Grand Unified Configuration)
parameters of PostgreSQL are used. The above features are currently provided by a few commercial
systems (e.g., Microsoft SQL Server [Ser]).

8.1.4 Cost-budgeted Executions
As mentioned in earlier chapters, all the intermediate plan executions in our approach terminate if
they exceed their assigned cost budget. One way is to have a cost-instrument which monitors the
progressive cost during plan execution. The other way is to use a timer that keeps track of the time
elapsed. Although bouquet identification provide budget in terms of abstract optimizer cost units,
they can be converted to equivalent time budgets through the techniques proposed in [WCHN13].
No material changes need to be made in the engine internals in the timer scenario. The premature
termination of plans can be achieved easily using the statement.cancel() functionality supported by
JDBC drivers.

8.1.5 Spilling
As described in Section 4.2, spilling is achieved by deliberately breaking the operator pipeline at a
specific node in the plan tree. This ensures that the downstream nodes do not get any data/tuples to
process in order to achieve half-space pruning in the ESS. Equivalently the pipeline can be broken by
just executing the sub-plan rooted at a specified node (leveraging the demand driven iterator execution
model in place in PostgreSQL). Note that in each of our proposed algorithm, the final plan execution
is not a spilled version, and hence after its execution the results are returned to the user.

In addition, AlignedBound requires a feature to get a least cost plan from optimizer which
spills on a user-specified epp. This is implemented by pruning sub-plans in the DP lattice that violate

127

the rule of having another epp in the sub-tree rooted at the specified epp.

8.2 Efficiency Features

8.2.1 Parallelizing Compilation Phase
Construction of the contours in the ESS can be speed-ed up by leveraging the multiplicity of hardware
to generating them in parallel since each call to the optimizer is independent of each other. Similar
enhancement, is also applicable for finding bounded contour-covering sets.

8.2.2 OptAssist
Despite the fact that our robust algorithms provides worst-case run-time bounds, typically the sub-
optimality incurred for query instances may reach upto 10 (due to the multiple partial executions
involved in the process). Given this, a crucial deployment issue is that, there exist real query work-
loads where the performance of the native optimizer’s chosen plan for a query instance happens to
be close to its optimal plan. For instance, if the native optimizer’s estimates turn out to be correct
(or, very close to the actual ones), then its plan choice is certainly a better alternative than any of our
robust algorithms. So, we would prefer to execute the query using our robust algorithms only when
the native optimizer is likely to have worse performance than the robust algorithms. Thus, for an
input query instance, let us now see how to design OptAssist that help users to choose the better
of native optimizer and our robust alternatives to process the query.

Approach

For ease of presentation, we choose SpillBound as a representative for the robust algorithms.
OptAssist is not affected by this choice since any of our robust algorithms provide MSO guar-
antees just by query inspection. We approach this problem by first identifying the set of effective
error-prone predicates (epps) for the input query using the DimRed component, specifically, until
MaxSelRemoval of the DimRed pipeline. The next step is to predict the risk of the native opti-
mizer chosen plan P , denoted by MSOplan(P) metric. Along with this, we also propose a relaxed
metric for plan risk, MSO80

plan(P), which captures the worst sub-optimal performance in most (say,
80% of the cases – assuming uniform distribution of error scenarios) rather than all cases. Using these
above risk values along with SpillBound’s MSO guarantee, i.e., MSOSB = D2 + 3D, the user
can then make a choice of the query path, accordingly. The good news is that all the above mentioned
values, MSOplan(P), MSO80

plan(P) and MSOSB can be computed efficiently, thus making it viable
for ad-hoc queries.

128

Problem Framework

We use MSOplan(P) and MSO80
plan(P) metrics to assess the risk of a plan P , which are formally

defined below:
MSOplan(P) = max

qa∈ESS

Cost(P, qa)

COST(qa)
(8.1)

In essence, MSOplan(P) captures the worst-case impact on sub-optimality due to estimation errors
of using plan P for the input query. In other words, the metric says that the sub-optimality incurred
by using plan P , for the actual selectivity qa being anywhere in the ESS, is less than or equal to
MSOplan(P) value. Here, we assume that estimation errors, i.e., qa can lie anywhere in the ESS with
equal probability. This assumption is justified from the fact that the cardinality model in real system
can easily induce orders of magnitude estimation errors [Loh14, LGM+15]. Furthermore, approaches
such as [Hue] and [WBM+18] also make uniformity assumption on the distribution of qa in the ESS
to assess plan riskiness wrt execution performance.

At this juncture, a natural OptAssist is to check the condition: MSOplan(P) < MSOSB. If
this is true, then choose P to execute; else, choose SpillBound for query execution. An interesting
observation is that, it is often the case that for most qa’s in the ESS the corresponding sub-optimality
is less than MSOSB but for few locations it becomes much more than MSOSB. This is captured,
in Figure 8.1, by the cumulative distribution function (CDF) of maximum sub-optimality wrt the
percentage of the ESS locations covered by a native optimizer chosen plan from TPC-DS Q91 query
instance. Here, if the user wants to cover 80% of the ESS locations then the maximum sub-optimality
is 4.2. However, the value shoots up to 707.6 if all the locations needs to be covered. To demonstrate
that the above behaviour is not a isolated instance, we considered the CDF function over our entire
suite of queries. The results show that, on an average, for around 3000 plans, the value increases by a
factor of around 100 when one wants to cover 100% locations from 80% locations.

Thus, to handle scenarios where the user is interested in covering most cases rather than all, we
consider a relaxed version of MSOplan(P). This is captured by MSO80

plan(P) for any plan P which
covers most, say 80%, of the ESS locations. Thus,

MSO80
plan(P) = 80th percentile value in {Cost(P, qa)

COST(qa)
,∀ qa ∈ ESS} (8.2)

In this case, the modified condition for OptAssist could be MSO80
plan(P) < MSOSB. Given

the above framework, our next objective is to efficiently compute MSOplan(P) and MSO80
plan(P), to

support ad-hoc queries.

129

Figure 8.1: Cumulative distribution function of the sub-optimalities wrt ESS Coverage

Efficient Computation of Metrics for Plan Risk

Now we show that both the above mentioned plan risk metrics can be efficiently computed. Specif-
ically, we theoretically prove that MSOplan(P) is located at one of the corners of the ESS. Further,
MSO80

plan(P) can be computed by making optimizer calls at a small perimeter band of the ESS.

MSOplan(P): To efficiently compute MSOplan(P), the key idea is that, for any axis parallel 1D
line segment in the ESS, the maximum value of the sub-optimality values occurs at one of the two
end points. This follows by assuming that OCS and Plan Cost Functions (PCFs) satisfy axis-parallel
piece-wise linearity assumption and certain slope behaviour among these pieces. Let us now prove
this formally.

Theorem 8.1 MSOplan(P) for any plan P occurs at one of the vertices of the ESS.

Proof: The proof for this theorem is along the same lines as that of Theorem 6.1. For simplicity, we
consider the 2D scenario with dimensions X and Y , and present the proof in brief, highlighting the
major differences from the earlier proof.

We use the sub-optimality function, fs, for a plan to denote the sub-optimality of the plan at an
ESS location. Formally, the sub-optimality function, fs(P, q) of plan P , at location q ∈ ESS, is
defined as:

fs(P, q) =
Cost(P, q)

COST(q)

130

Thus, we can define MSOplan(P) in terms of the sub-optimality function as:

MSOplan(P) = max
qa∈ESS

{fs(P, q)} (8.3)

Now, our objective is to show that the maximum value of the sub-optimality function, fs, occurs
at the vertices of an ESS. In order to achieve this, we do the following: (a) Prove the above with
axis-parallel linear assumption (APL) of OCS and PCFs; (b) However, the linearity is often not true
in practice. Thus, we extend the previous result by relaxing the linearity assumption to its piece-
wise equivalent, and assuming that these linear pieces follow a certain empirically validated slope
behaviour.

Axis-parallel Linear Assumption Let us now focus on the case when the OCS and the PCFs
follow APL property. We use the following lemma that, for any axis-parallel linear segment, the
maximum value of the sub-optimality function fs occurs at the end points of the line segment. For
ease of presentation, the lemma is visually captured in Figure 8.2.

Lemma 8.1 Given a line segment Y = q.yc that is parallel to the X axis, the maximum value of fs,

among the points in the line segment, occurs at one of its end points: either (0, q.yc) or (1, q.yc).

Proof: We request the reader to refer to the proof of Lemma 6.2 since the proof is on very similar
lines. 2

Figure 8.2: Maximum value of sub-optimality function captured at line segment’s end points

Extending to the entire ESS from an individual segment, we get

131

Lemma 8.2 Computing fs along the vertices of an ESS is sufficient to establish fs within the entire

ESS.

Proof: From the previous lemma, we know that for any axis-parallel lines segment, the local fs
occurs at one of its end-points. Let the lemma hold for a d-dimensional space. By mathematical
induction we next show that the lemma also holds for a d + 1-dimensional space. Note that a d + 1-
dimensional space can be viewed as two d-dimensional spaces where the corresponding vertices are
connected by 1D lines. By the induction hypothesis the the local fs computation can be moved to the
vertices of each of the two d-dimensional spaces. Hence the lemma also holds for a d+1-dimensional
space. 2

Relaxing Axis-parallel Linear Assumption As mentioned before, the APL assumption for
OCS and PCFs does not always hold in practice. We relax the APL assumption to its axis-parallel
piece-wise linear version (since any 1D function can be approximately divided into piece-wise linear
segments). In Section 6.5.4, we empirically saw that OCS fitting with axis-parallel piece-wise linear
property with less error. Hence we expect better fits with PCFs since it is a lesser complex function
than OCS (OCS function is essentially the point-wise minimum of all PCFs).

With the piece-wise APL property, let us say that there are at most k pieces in any 1D segment of
the OCS and PCF’s in the ESS. Then, for each of the 2k pieces conditioned on PCFs and OCS, we
make an assumption that for these 2k pieces the slope of the sub-optimality function is monotonically
increasing or deceasing. This assumption is assessed by considering 1D segments over thousand of
plans and corresponding OCS (chosen from our suite of queries), and evaluating if the pairwise slope-
intercept product is consistently dominating across all the above 2k pieces (specifically, checking
whether cq ≥ dp or cq ≤ dp, corresponding to the numerator in Equation 6.9, is consistently true).
The assessment shows that it is indeed true by more than 80% of the 1D segments in ESS, along all
such 2k pieces. Thus we can claim that the fs would still lie at one of the ESS corners for practical
setting. 2

MSO80
plan(P): Let us now turn our attention to the computation of MSO80

plan(P) metric. Instead of
the vertices, we next show empirically that we need to consider a small perimeter band in an ESS.
Here, perimeter band refers to the set locations in the ESS grid which are at a small axis-parallel
distance from any perimeter point of the ESS. Specifically, if we say that the band is size b, then it
is all the ESS locations which are at a axis-parallel distance b from any point of the perimeter. The
perimeter and perimeter band locations for an example 2D ESS (with epps X and Y) are illustrated
in Figure 8.3. The green coloured 1D segments correspond to the perimeter, whereas, additionally,
blue colored segments correspond to the perimeter band for b = 2. After computing the set of sub-
optimalities along the perimeter band, and from this a carefully chosen value is set as MSO80

plan(P),

132

as explained later in the Subsection Empirical Evaluation.

Figure 8.3: Perimeter Band of the ESS

Now that we know an efficient way of computing the plan riskiness metrics, the user could
use the following OptAssist algorithm, whose pseudocode can be seen in Algorithm 6. Since,
MSOplan(P) covers all the ESS locations and easier to compute than MSO80

plan(P), first check the
MSOplan(P) < MSOSB condition. If this is true, then choose the native optimizer for query execu-
tion; if not, then go on to the check second condition MSO80

plan(P) < MSOSB. If this is true, again
choose native optimizer; else, choose SpillBound for query execution.

Empirical Evaluation

We empirically evaluate the accuracy of our proposed techniques for estimating MSOplan(P) and
MSO80

plan(P) values. We have used the Q-Error [MNS09] as our error metric, wherein the error value
for two real values a, b is the following:

Q-Error(a, b) = Max(a/b, b/a)

The assessment is performed on over 3000 POSP plans generated from 21 TPC-DS query templates.

Accuracy of Plan Riskiness Metrics: Figure 8.4 captures the average Q-error of the predicted
MSOplan(P) using the ESS corners and the actual MSOplan(P) value enumerated using the entire
ESS, over all the considered plans P in our suite.

We see that the Q-error is equal to 1 for most queries with minor violations in few. The results

133

Algorithm 6 OptAssist Algorithm
1: Input: Query Instance q;
2: Obtain the native optimizer P for q;
3: Compute MSOplan(P) using the corners of the ESS;
4: if MSOplan(P) < MSOSB then
5: Choose “Native Optimizer” for q’s execution;
6: Return;
7: end if
8: Compute MSO80

plan(P) using the perimeter band of width b of the ESS;
9: if MSO80

plan(P) < MSOSB then
10: Choose “Native Optimizer” for q’s execution;
11: else
12: Choose “SpillBound” for q’s execution;
13: Return;
14: end if

Figure 8.4: Accuracy of MSOplan(P) value predicted from ESS Corners

134

suggest that, also confirming our theoretical analysis, using the vertices of the ESS, we can almost
accurately predict the actual MSOplan(P) value. The minor errors, for instance with query template
5D 84, is because some plans violate the fundamental PCM property.

Moving to the relaxed version of the above metric, i.e., MSO80
plan(P), we begin with enumerating

the sub-optimalities using the perimeter band of an ESS. We choose the value corresponding to 2/3rd-
percentile (an empirically chosen value) from the set of sub-optimalities, and set it to MSO80

plan(P).
The accuracy of the predicted MSO80

plan(P) value, captured in terms of the Q-error, is shown in the
Figure 8.5. We observe that we were able to successfully predict the MSO80

plan(P) value with an
average Q-error of less than 1.5 for most queries. Further, we see that a value of b = 4 for resolution
of 100 suffices for all queries, and the time taken to compute the band for any query is few minutes
using parallelization on a 64-core machine.

Figure 8.5: Accuracy of MSO80
plan(P) value predicted from ESS perimeter band

8.3 Relaxing Perfect Cost Model Assumption
Finally, another deployment issue is that until now we have assumed cost model to be perfect, but this
assumption is hardly true in practice. However, if we were to be assured that the cost modeling errors,
while non-zero, are bounded within a δ multiplicative error factor, then the MSO guarantees in this
thesis will carry through modulo an inflation by a factor of (1 + δ)2. For example, the MSO guarantee
of SpillBound would be (D2 +3D)(1+ δ)2. Moreover, the errors induced by cost model are fairly
small, for instance, δ = 0.4 is reported in [WCHN13], resulting in doubling of MSO.

135

Figure 8.6: Architecture of Proposed Robust Database Engine

8.4 Architecture Description
The flow diagram of the architecture of our proposed robust database engine is captured in Figure 8.6.
The query first goes through the DimRed component to identify the epps. Then it is fed into the
OptAssist component which aids the user to choose either the native optimizer plan or our ro-
bust algorithm for its query execution. If the native optimizer is chosen by the user then the query
is executed with the corresponding plan and the query results are returned. In the other case, ei-
ther SpillBound or FrugalSpillBound is chosen based on the query being canned or ad-hoc,
respectively.

Once a robust algorithm is chosen, then it is followed by the construction of contours or bounded
contour-covering sets by interacting with the query optimizer as part of its compilation phase. Then,
in the execution phase, the chosen algorithm selects the (plan, budget, predicate) for every execution.
The triplet information corresponds to the plan being executed with the cost budget spilling on the
predicate. The first plan is execution based on the triplet information corresponding to the origin of
the ESS, i.e., assuming zero selectivity for all the epps. Based on the selectivity information learnt
from this execution (either the lower bound or actual selectivity of the epp) the next plan is chosen.
This sequence is repeated until a plan reaches completion returning the query results to the user.

136

8.5 Performance Comparison b/w Native Optimizer and Pro-
posed Robust Techniques

To asses the benefits of our proposed techniques delivered at run-time, we carried out experiments
wherein query response times of SpillBound (an illustrative robust algorithm) were explicitly mea-
sured in comparison to the native optimizer (PostgreSQL). We use the example query (EQ), as shown
in Figure 1.1(a), and Q32 and Q19 as the representative set of queries from the TPC-DS benchmark.
Here, the number of joins in the queries go up to 5. The results of the evaluation, captured in Fig-
ure 8.7, show that the execution time of SpillBound is consistently less than 50% as compared to
PostgreSQL, the running time of which is normalized to 1.

Figure 8.7: Comparison of execution times

137

Chapter 9

Conclusions and Future Work

It is a folklore in database research that errors in selectivity estimates result in poor choice of query
execution plans, leading to orders of magnitude slowdown in query performance. To address the
classical selectivity estimation problem, a different approach called PlanBouquet was proposed in
2014, wherein the estimation process is completely abandoned and replaced with a calibrated discov-
ery mechanism. The beneficial outcome of this new construction is that it lends itself to obtaining
provable guarantees on worst-case query execution performance.

However, PlanBouquet has several key limitations on compilation and execution fronts for
practical use. These limitations include: (a) huge compilation efforts to be amenable for MSO guaran-
tees, (b) no support for high-dimensional queries, and (c) variable MSO guarantees across platforms.
The primary contribution in this thesis is a set of robust query processing algorithms that: (i) provide
strong and platform-independent MSO guarantees, (ii) handle high-dimensional queries, and (iii) sup-
port ad-hoc queries with low compilation overheads. Further, we present a OptAssist heuristic to
aid the user in choosing between the native optimizer and our proposed robust algorithms.

We next present our conclusions in more detail. Later on we describe some directions for further
research to achieve robustness in data management.

9.1 Conclusions
In the first segment of the thesis, we presented SpillBound, a query processing algorithm that
delivers an MSO guarantee of D2 + 3D, which is dependent solely on the dimensionality of the se-
lectivity space. This substantive improvement over PlanBouquet is achieved through a potent pair
of conceptual enhancements: half-space pruning of the ESS thanks to a spill-based execution model,
and bounded number of executions for jumping from one contour to the next. Our new approach
facilitates porting of the bound across database platforms, and that the bound is easy to compute as

138

we could merely do it by query inspection. Further, it has low magnitude and is not reliant on the
anorexic reduction heuristic. We also showed that SpillBound is within anO(D) factor of the best
deterministic selectivity discovery algorithm in its class. Finally, we introduced the contour align-
ment and predicate set alignment properties, and leveraged them to design AlignedBound with the
objective of bridging the quadratic-to-linear MSO gap between SpillBound and the lower bound.

A detailed experimental evaluation on industrial strength benchmark queries demonstrated that
our algorithms provide competitive guarantees to PlanBouquet, while their empirical performance
is significantly superior. The performance of AlignedBound is even better than SpillBound

while achieving single-digit MSO guarantees.
In the subsequent segment, we overcome an important limitation of the SpillBound class of

techniques. Namely, these techniques are not operational for high-dimensional selectivity spaces
since: (a) their compilation overheads are exponential in the dimensionality of the space, and (b)
their performance bounds are quadratic in the dimensionality. We address this dimension limitation
by presenting the DimRed pipeline. Our proposed method systematically reduces seemingly high-
dimensional queries to low-dimension equivalents without sacrificing the performance guarantees.

The DimRed pipeline, which leverages schematic, geometric and piggybacking techniques to
reduce even queries with more than 15 dimensions in the selectivity space to five or less dimensions.
In fact, for quite a number of queries, the dimensionality came down to the lowest possible value of
1! Gratifyingly, not only could we dramatically decrease the overheads due to such reductions, but
could also significantly improve the quality of the MSO guarantee.

The drastic reduction in overheads attained by DimRed made SpillBound practical for canned
queries that are repeatedly invoked by the parent application. However, for ad- hoc queries which are
issued on the fly, the overheads proved to be still too high. We addressed this limitation, in the sub-
sequent chapter, by designing FrugalSpillBound that provides a trade-off between MSO guar-
antees and compilation overheads. Our theoretical analysis establishes that the trade-off is extremely
attractive, delivering exponential improvements in compilation overheads for linear relaxations in
MSO guarantees. This is attained by leveraging the concave-down property of plan cost functions
over the ESS. The empirical improvements are even better, delivering a cumulative benefit of more
than three orders of magnitude for just a doubling in the MSO guarantee.

Finally, for increasing the efficacy of our robust alternatives, we proposed OptAssist for assist-
ing the user to choose between the native optimizer or our proposed robust alternatives. This becomes
important since it is possible that real-world workloads may include query instances for which the
MSO of the native optimizer plan is very low, in which case our proposed techniques would turn out
to be a sub-optimal choice. Currently, our assist provide initial directions to address this problem.

To summarize, this thesis proposed query processing algorithms based on a potent set of geometric

139

search techniques to achieve theoretical and practical guarantees on query performance. Thereby, take
a substantive step forward in making robust query processing a contemporary reality.

9.2 Future Work
We now move on to enumerating a set of future research directions, some of which are borrowed
from [Har19] with the author’s consent. Solutions to some of these issues would take significant steps
further towards the ultimate quest for robust query processing. We would like to note that the future
directions mentioned below are applicable to the PlanBouquet technique as well.

1. Handling Database Updates: Our proposed robust algorithms’ compilation phase are inher-
ently robust to changes in data distribution, since these changes only shift the location of qa in
the ESS. However, the same is not true with regard to database scale-up. That is, if the database
size increases significantly, then the original ESS no longer covers the entire error space. An
obvious solution to handle this problem is to recompute the bouquet from scratch, but most of
the processing may turn out to be redundant. Therefore, the development of incremental and
efficient techniques for bouquet maintenance is essential for catering to dynamic databases.

2. Graceful Performance Degradation: A major problem faced in real deployments is the pres-
ence of “performance cliffs”, where the performance suddenly degrades precipitously although
there has only been a minor change in the operational environment. This is particularly true
with regard to hardware resources, such as memory. So, an important future challenge is to
design algorithms that provably degrade gracefully with regard to all their performance related
parameters.

3. Handling Dependent Predicate Selectivities: In this thesis, we have assumed independence
in predicate selectivities. However, this assumption often does not hold in practice even though
it is widely made in the literature. Therefore, extending our techniques to handle dependent
selectivities with strong MSO guarantees would certainly be one of the important future direc-
tions.

4. Robust Query Processing at Large Scale: The goal of large scale query optimization is to
reduce the optimization time of queries with large number of joins, handling in excess of 100
tables [NR18]. A natural extension is to see whether execution-time guarantees could be pro-
vided w.r.t. the optimal plan for such large queries, possibly leveraging some of our results.

5. Extension to Non-relational Systems: In recent times, the database community has seen a
large number of attempts to suit different kinds of data processing requirements that do not re-
semble the traditional relational database systems. Further, it is well known that many crucial

140

optimizations, such as join order, are not well supported in these Data-Intensive Scalable Com-
puting (DISC) systems because they lack the necessary data statistics [LLDI18]. We wish to
highlight that the proposed techniques are useful to any system that: (i) uses a cost-based opti-
mizer to choose the ideal execution plan as a function of selectivities, and (ii) uses a bottom-up
and sequentially pipelined based executor to support spilling of plan executions.

As a case in point, in graph databases the query optimization problem gets more complex due
to sparse statistics. Since, specialized graph database systems such as Neo4j support both cost-
based optimization and bottom-up pipelined based execution [Neo], we hope that our proposed
techniques can be ported to these systems to achieve robust performance. Moreover, on the
other extreme end, there are relational systems which natively support graph analytics, in which
case, our proposed techniques could be even easier to port. Further, the type of queries issued
for graph databases are different than that of relational databases. However, there are some
initial works which can convert the graph queries into SQL equivalents for Apache TinkerPop (a
graph computing framework for both transactional and analytical graph database systems) [Tin].
Finally, these SQL versions of graph queries need to be along the lines of typical analytical
processing benchmark (such as TPC-H and TPC-DS) queries for the porting. However, it will
be interesting future work to extend these techniques for the larger domain of queries which are
handled in graph database systems.

6. Machine Learning for Robust Query Processing: Recently, machine learning techniques
have been applied to query processing and optimization in RDBMS. However, none of these
ML techniques currently provide strong guarantees on worst-case query execution performance.
Thus, it is an interesting research direction to provide such guarantees in the quest of robust
query processing.

7. Multi-dimensional Online Bidding Problem: A classical problem in the theoretical computer
science literature is the online bidding problem [CKNY08]. The problem is as follows: In
the face of an unknown threshold T ∈ R+, an algorithm must submit bids B ∈ R+ until it
submits a bid b ≥ T . The goal is to minimize the competitive ratio, i.e. ratio of sum of bids
paid over the unknown threshold. This problem was successfully mapped to the 1D version of
PlanBouquet (or equivalently, SpillBound) to get a matching upper and lower bound of
4 on the MSO guarantee.

The multi-dimension version of online bidding problem can be viewed as each bid being a D-
dimensional vector. Further, the termination criteria being that the final bid vector dominates
the threshold in all the dimensions. Currently, we are not aware of any general results to this

141

problem.

A rich set of interesting theoretical problems arise from the original multidimensional on-
line bidding problem by considering different class of bidding functions and rules. Note that
SpillBound can also be mapped to this multi-dimension problem constrained to a particular
set of bidding rules.

142

Bibliography

[AC99] Ashraf Aboulnaga and Surajit Chaudhuri. Self-tuning histograms: Building histograms
without looking at data. In Proc. of the 1999 ACM SIGMOD Intl. Conf. on Management

of Data, pages 181–192, 1999. 6, 14, 16

[AÇR+12] Mert Akdere, Ugur Çetintemel, Matteo Riondato, Eli Upfal, and Stanley B. Zdonik.
Learning-based query performance modeling and prediction. In Proc. of the 28th IEEE

Intl. Conf. on Data Engg., ICDE ’12, pages 390–401, 2012. 20

[AH00] Ron Avnur and Joseph M. Hellerstein. Eddies: Continuously adaptive query processing.
In Proc. of the 2000 ACM SIGMOD Intl. Conf. on Management of Data, pages 261–272,
2000. 18

[BBD05] Shivnath Babu, Pedro Bizarro, and David J. DeWitt. Proactive re-optimization. In Proc.

of the 2005 ACM SIGMOD Intl. Conf. on Management of Data, pages 107–118, 2005.
6, 14, 17

[BBD09] Pedro Bizarro, Nicolas Bruno, and David J. DeWitt. Progressive parametric query op-
timization. In IEEE Trans. on Knowledge and Data Engineering (TKDE), 21(4), pages
582–594, 2009. 124

[BC05] Brian Babcock and Surajit Chaudhuri. Towards a robust query optimizer: A principled
and practical approach. In Proc. of the 2005 ACM SIGMOD Intl. Conf. on Management

of Data, pages 119–130, 2005. 6, 14

[BCG01] Nicolas Bruno, Surajit Chaudhuri, and Luis Gravano. Stholes: a multidimensional
workload-aware histogram. In Proc. of the 2001 ACM SIGMOD Intl. Conf. on Man-

agement of Data, pages 211–222, 2001. 16

[BGIA+18] Renata Borovica-Gajic, Stratos Idreos, Anastasia Ailamaki, Marcin Zukowski, and
Campbell Fraser. Smooth scan: robust access path selection without cardinality esti-

143

BIBLIOGRAPHY

mation. In Intl. Journal on Very Large Data Bases (VLDB), 27(4), pages 521–545, 2018.
19

[CGG04] Surajit Chaudhuri, Venkatesh Ganti, and Luis Gravano. Selectivity estimation for string
predicates: Overcoming the underestimation problem. In Proc. of the 20th IEEE Intl.

Conf. on Data Engg., ICDE ’04, pages 227–238, 2004. 75

[Cha09] Surajit Chaudhuri. Query optimizers: time to rethink the contract? In Proc. of the 2009

ACM SIGMOD Conf. Intl. Conf. on Management of Data, pages 961–968, 2009. 5

[CHG02] Francis Chu, Joseph Halpern, and Johannes Gehrke. Least expected cost query opti-
mization: What can we expect? In Proc. of the 21st ACM Symposium on Principles of

Database Systems, PODS ’02, pages 293–302, 2002. 6, 14

[CKNY08] Marek Chrobak, Claire Kenyon, John Noga, and Neal E. Young. Incremental medians
via online bidding. In Algorithmica, 50(4), pages 455–478, 2008. 141

[CNR04] Surajit Chaudhuri, Vivek Narasayya, and Ravishankar Ramamurthy. Estimating progress
of execution for sql queries. In Proc. of the 2004 ACM SIGMOD Intl. Conf. on Manage-

ment of Data, pages 803–814, 2004. 34

[CY17] Yu Chen and Ke Yi. Two-level sampling for join size estimation. In Proc. of the 2017

ACM SIGMOD Intl. Conf. on Management of Data, pages 759–774, 2017. 16

[dag10] Dagstuhl Seminar. Robust Query Processing. www.dagstuhl.de/en/program/

calendar/semhp/?semnr=10381, 2010. 5

[dag12] Dagstuhl Seminar. Robust Query Processing. www.dagstuhl.de/en/program/

calendar/semhp/?semnr=12321, 2012. 5

[dag17] Dagstuhl Seminar. Robust Query Processing. www.dagstuhl.de/en/program/

calendar/semhp/?semnr=17222, 2017. 5

[DB2] IBM DB2. Using a selectivity clause to influence the optimizer. www.ibm.com/

developerworks/data/library/tips/dm-0312yip/. 127

[DDH07] Harish D., Pooja N. Darera, and Jayant R. Haritsa. On the production of anorexic plan
diagrams. In Proc. of the 33rd Intl. Conf. on Very Large Data Bases, VLDB ’07, pages
1081–1092, 2007. 31, 46, 88

144

www.dagstuhl.de/en/program/calendar/semhp/?semnr=10381
www.dagstuhl.de/en/program/calendar/semhp/?semnr=10381
www.dagstuhl.de/en/program/calendar/semhp/?semnr=12321
www.dagstuhl.de/en/program/calendar/semhp/?semnr=12321
www.dagstuhl.de/en/program/calendar/semhp/?semnr=17222
www.dagstuhl.de/en/program/calendar/semhp/?semnr=17222
www.ibm.com/developerworks/data/ library/tips/dm-0312yip/
www.ibm.com/developerworks/data/ library/tips/dm-0312yip/

BIBLIOGRAPHY

[DDH08] Harish D., Pooja N. Darera, and Jayant R. Haritsa. Identifying robust plans through plan
diagram reduction. In Proc. of the VLDB Endow., 1(1), pages 1124–1140, 2008. 6, 14,
124

[DH16] Anshuman Dutt and Jayant R. Haritsa. Plan bouquets: A fragrant approach to robust
query processing. In ACM Trans. on Database Systems (TODS), 41(2), pages 1–37,
2016. 6, 23, 24, 33, 45, 46, 73, 123, 124

[DNC17] Anshuman Dutt, Vivek Narasayya, and Surajit Chaudhuri. Leveraging re-costing for
online optimization of parameterized queries with guarantees. In Proc. of the 2017 ACM

SIGMOD Intl. Conf., pages 1539–1554, 2017. 103, 124

[Dut] Anshuman Dutt. Plan bouquets: An exploratory approach to robust query processing.
PhD Thesis, Indian Institute of Science, 2016, https://dsl.cds.iisc.ac.in/
publications/thesis/anshuman_thesis.pdf. 14, 19

[DWN+19] Anshuman Dutt, Chi Wang, Azade Nazi, Srikanth Kandula, Vivek Narasayya, and Sura-
jit Chaudhuri. Selectivity estimation for range predicates using lightweight models. In
Proc. of the VLDB Endow., 12(9), pages 1044–1057, 2019. 16

[GKD+09] Archana Ganapathi, Harumi Kuno, Umeshwar Dayal, Janet L. Wiener, Armando Fox,
Michael Jordan, and David Patterson. Predicting multiple metrics for queries: Better
decisions enabled by machine learning. In Proc. of the 25th IEEE Intl. Conf. on Data

Engg., ICDE ’09, pages 592–603, 2009. 19

[Gra93] Goetz Graefe. Query evaluation techniques for large databases. In ACM Computing

Surveys, 25(2), pages 73–170, 1993. 34

[Gra12] Goetz Graefe. New algorithms for join and grouping operations. In Computer Science -

Research and Development, 27(1), pages 3–27, 2012. 19

[Har18] Jayant R. Haritsa. Robust query processing in database systems. In Advanced Computing

& Communications, 2(2), pages 13–21, 2018. 2

[Har19] Jayant R. Haritsa. Robust query processing: Mission possible (tutorial). In Proc. of the

35th IEEE Intl. Conf. on Data Engg., ICDE ’19, pages 2072–2075, 2019. 5, 140

[HS02] Arvind Hulgeri and S. Sudarshan. Parametric query optimization for linear and piece-
wise linear cost functions. In Proc. of the 28th Intl. Conf. on Very Large Data Bases,

VLDB ’02, pages 167–178, 2002. 22, 82

145

https://dsl.cds.iisc.ac.in/publications/thesis/anshuman_thesis.pdf
https://dsl.cds.iisc.ac.in/publications/thesis/anshuman_thesis.pdf

BIBLIOGRAPHY

[HS03] Arvind Hulgeri and S. Sudarshan. Anipqo: Almost non-intrusive parametric query opti-
mization for nonlinear cost functions. In Proc. of the 29th Intl. Conf. on Very Large Data

Bases, VLDB ’03, 2003. 124

[Hue] Fabian Hueske. Specification and optimization of analytical data flows. PhD Thesis, TU
Berlin, 2016. 129

[IC91] Yannis E. Ioannidis and Stavros Christodoulakis. On the propagation of errors in the size
of join results. In Proc. of the 1991 ACM SIGMOD Intl. Conf. on Management of Data,
pages 268–277, 1991. 3

[Ioa03] Yannis E. Ioannidis. The history of histograms (abridged). In Proc. of the 29th Intl.

Conf. on Very Large Data Bases, VLDB ’03, pages 19–30, 2003. 15

[KD98] Navin Kabra and David J. DeWitt. Efficient mid-query re-optimization of sub-optimal
query execution plans. In Proc. of the 1998 ACM SIGMOD Intl. Conf. on Management

of Data, pages 106–117, 1998. 6, 14

[KHBM17] Martin Kiefer, Max Heimel, Sebastian Breß, and Volker Markl. Estimating join selectiv-
ities using bandwidth-optimized kernel density models. In Proc. of the VLDB Endow.,

10(13), pages 2085–2096, 2017. 16

[KKR+19] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter Boncz, and Alfons
Kemper. Learned cardinalities: Estimating correlated joins with deep learning. In Proc.

of the Conf. on Innovative Data Systems Research (CIDR), 2019. 16

[KMSB15] Andranik Khachatryan, Emmanuel Müller, Christian Stier, and Klemens Böhm. Improv-
ing accuracy and robustness of self-tuning histograms by subspace clustering. In IEEE

Trans. on Knowledge and Data Engineering (TKDE), 27(9), pages 2377–2389, 2015. 16

[KYG+18] Sanjay Krishnan, Zongheng Yang, Ken Goldberg, Joseph Hellerstein, and Ion Sto-
ica. Learning to optimize join queries with deep reinforcement learning. In ArXiv

preprint:1808.03196, 2018. 16, 20

[LGM+15] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and
Thomas Neumann. How good are query optimizers, really? In Proc. of the VLDB

Endow., 9(3), pages 204–215, 2015. 3, 25, 51, 129

146

BIBLIOGRAPHY

[LKNC12] Jiexing Li, Arnd Christian König, Vivek Narasayya, and Surajit Chaudhuri. Robust
estimation of resource consumption for sql queries using statistical techniques. In Proc.

of the VLDB Endow., 5(11), pages 1555–1566, 2012. 19

[LLDI18] Youfu Li, Mingda Li, Ling Ding, and Matteo Interlandi. Rios: Runtime integrated opti-
mizer for spark. In Proc. of the ACM Symposium on Cloud Computing, SoCC ’18, pages
275–287, 2018. 141

[LNS07] Hongrae Lee, Raymond T. Ng, and Kyuseok Shim. Extending q-grams to estimate se-
lectivity of string matching with low edit distance. In Proc. of the 33rd Intl. Conf. on

Very Large Data Bases, VLDB ’07, pages 195–206, 2007. 75

[LNS09] Hongrae Lee, Raymond T. Ng, and Kyuseok Shim. Approximate substring selectivity
estimation. In Proc. of the 12th Intl. Conf. on Extending Database Technology, EDBT

’09, pages 827–838, 2009. 75

[Loh14] Guy Lohman. Is query optimization a solved problem? http://wp.sigmod.org/

?p=1075, 2014. 3, 5, 6, 129

[LRG+17] Viktor Leis, Bernharde Radke, Andrey Gubichev, Alfons Kemper, and Thomas Neu-
mann. Cardinality estimation done right: Index-based join sampling. In Proc. of the

Conf. on Innovative Data Systems Research (CIDR), 2017. 15, 17

[MGY15] Barzan Mozafari, Eugene Zhen Ye Goh, and Dong Young Yoon. Cliffguard: A principled
framework for finding robust database designs. In Proc. of the 2015 ACM SIGMOD Intl.

Conf. on Management of Data, pages 1167–1182, 2015. 20

[MMK18] Magnus Müller, Guido Moerkotte, and Oliver Kolb. Improved selectivity estimation
by combining knowledge from sampling and synopses. In Proc. of the VLDB Endow.,

11(9), pages 1016–1028, 2018. 15

[MNS09] Guido Moerkotte, Thomas Neumann, and Gabriele Steidl. Preventing bad plans by
bounding the impact of cardinality estimation errors. In Proc. of the VLDB Endow.,

2(1), pages 982–993, 2009. 6, 14, 133

[MP19] Ryan Marcus and Olga Papaemmanouil. Towards a hands-free query optimizer through
deep learning. In Proc. of the Conf. on Innovative Data Systems Research (CIDR), 2019.
20

147

http://wp.sigmod.org/?p=1075
http://wp.sigmod.org/?p=1075

BIBLIOGRAPHY

[MRS+04] Volker Markl, Vijayshankar Raman, David Simmen, Guy Lohman, Hamid Pirahesh, and
Miso Cilimdzic. Robust query processing through progressive optimization. In Proc. of

the 2004 ACM SIGMOD Intl. Conf. on Management of Data, pages 659–670, 2004. 3,
17

[Nau16] Jeffrey F. Naughton. Technical perspective: Broadening and deepening query optimiza-
tion yet still making progress. In ACM SIGMOD Record, 45(1), page 23, 2016. 5

[Neo] Neo4j. https://neo4j.com/blog/introducing-new-cypher-query-optimizer/.
141

[NG13] Thomas Neumann and Cesar Galindo-Legaria. Taking the edge off cardinality estimation
errors using incremental execution. In Proc. of the 15th Conf. on Database Systems for

Business, Technology, and Web, BTW ’13, pages 73–92, 2013. 6, 14

[NR18] Thomas Neumann and Bernhard Radke. Adaptive optimization of very large join
queries. In Proc. of the 2018 ACM SIGMOD Intl. Conf. on Management of Data, pages
677–692, 2018. 20, 140

[OBGK18] Jennifer Ortiz, Magdalena Balazinska, Johannes Gehrke, and S. Sathiya Keerthi. Learn-
ing state representations for query optimization with deep reinforcement learning. In
Proc. of the 2nd Workshop on Data Management for End-To-End Machine Learning,

DEEM ’18, 2018. 16

[Par12] Aditya Parameswaran. An interview with surajit chaudhuri. In XRDS: Crossroads, The

ACM Magazine for Students, 19(1), pages 38–39, 2012. 5

[PGT] PGTune. https://pgtune.leopard.in.ua/. 25, 121

[Pos] PostgreSQL. http://www.postgresql.org/docs/9.4/static/

release.html. 25

[SAC+79] P. Griffiths Selinger, Morton M. Astrahan, Donald D. Chamberlin, Raymond A. Lorie,
and Thomas G. Price. Access path selection in a relational database management system.
In Proc. of the 1979 ACM SIGMOD Intl. Conf. on Management of Data, pages 23–34,
1979. 2, 3, 14, 22

[SDG17] Michael Shekelyan, Anton Dignös, and Johann Gamper. Digithist: a histogram-based
data summary with tight error bounds. In Proc. of the VLDB Endow., 10(11), pages
1514–1525, 2017. 15

148

https://neo4j.com/blog/introducing-new-cypher-query-optimizer/
https://pgtune.leopard.in.ua/
http://www.postgresql.org/docs/9.4/static/release.html
http://www.postgresql.org/docs/9.4/static/release.html

BIBLIOGRAPHY

[Ser] Microsoft SQL Server. Hints (transact-sql) - query. https://docs.microsoft.
com/en-us/sql/t-sql/queries/hints-transact-sql-query?view=

sql-server-2017. 127

[SLMK01] Michael Stillger, Guy M. Lohman, Volker Markl, and Mokhtar Kandil. LEO - DB2’s
learning optimizer. In Proc. of the 27th Intl. Conf. on Very Large Data Bases, VLDB ’01,
pages 19–28, 2001. 3

[TDJ13] Kostas Tzoumas, Amol Deshpande, and Christian S Jensen. Efficiently adapting graphi-
cal models for selectivity estimation. In Intl. Journal on Very Large Data Bases (VLDB),

22(1), pages 3–27, 2013. 6, 14

[Tin] Apache TinkerPop. http://tinkerpop.apache.org/. 141

[TK17] Immanuel Trummer and Christoph Koch. Solving the join ordering problem via mixed
integer linear programming. In Proc. of the 2017 ACM SIGMOD Intl. Conf. on Manage-

ment of Data, pages 1025–1040, 2017. 20

[WBM+18] Florian Wolf, Michael Brendle, Norman May, Paul R. Willems, Kai-Uwe Sattler, and
Michael Grossniklaus. Robustness metrics for relational query execution plans. In Proc.

of the VLDB Endow., 11(11), pages 1360–1372, 2018. 6, 14, 18, 129

[WCHN13] Wentao Wu, Yun Chi, Hakan Hacı́gümüş, and Jeffrey F. Naughton. Towards predicting
query execution time for concurrent and dynamic database workloads. In Proc. of the

VLDB Endow., 6(10), pages 925–936, 2013. 24, 127, 135

[WCZ+13] Wentao Wu, Yun Chi, Shenghuo Zhu, Junichi Tatemura, Hakan Hacigumus, and Jef-
frey F. Naughton. Predicting query execution time: Are optimizer cost models really
unusable? In Proc. of the 29th IEEE Intl. Conf. on Data Engg., ICDE ’13, pages 1081–
1092, 2013. 20

[WDL09] Dingding Wang, Chris Ding, and Tao Li. K-subspace clustering. In Proc.of the 2009

European Conf. on Machine Learning and Knowledge Discovery in Databases, ECML

PKDD, pages 506–521, 2009. 83

[WKG09] Janet L. Wiener, Harumi Kuno, and Goetz Graefe. Benchmarking query execution ro-
bustness. In Proc. of the 1st TPC Technology Conference on Performance Evaluation

and Benchmarking, TPCTC ’09, pages 153–166, 2009. 4

149

https://docs.microsoft.com/en-us/sql/t-sql/queries/hints-transact-sql-query?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/t-sql/queries/hints-transact-sql-query?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/t-sql/queries/hints-transact-sql-query?view=sql-server-2017
http://tinkerpop.apache.org/

BIBLIOGRAPHY

[WNS16] Wentao Wu, Jeffrey F. Naughton, and Harneet Singh. Sampling-based query re-
optimization. In Proc. of the 2016 ACM SIGMOD Intl. Conf. on Management of Data,
pages 1721–1736, 2016. 17

[YHM15] Shaoyi Yin, Abdelkader Hameurlain, and Franck Morvan. Robust query optimization
methods with respect to estimation errors: A survey. In ACM SIGMOD Record, 44(3),
pages 25–36, 2015. 14

[ZPSP17] Jianqiao Zhu, Navneet Potti, Saket Saurabh, and Jignesh M. Patel. Looking ahead makes
query plans robust: Making the initial case with in-memory star schema data warehouse
workloads. In Proc. of the VLDB Endow., 10(8), pages 889–900, 2017. 19

150

BIBLIOGRAPHY

9.A Query Text

select i item id, ss quantity, ss list price, ss coupon amt, ss sales price
from store sales, customer demographics, date dim, item, promotion
where ss sold date sk = d date sk and ss item sk = i item sk and ss cdemo sk
= cd demo sk and ss promo sk = p promo sk and cd gender = ’F’ and
cd marital status = ’M’ and cd education status = ’College’ and d year = 2001
and ss list price <= 1.5

Figure 9.1: Q7 (Based on TPC-DS Query 7)

select ca zip, cs sales price
from catalog sales, customer, customer address, date dim
where cs bill customer sk = c customer sk and c current addr sk =
ca address sk and cs sold date sk = d date sk and ca gmt offset = -7.0
and d year = 1900 and cs list price <= 10.5

Figure 9.2: Q15 (Based on TPC-DS Query 15)

select i item id, ca country, ca state, ca county, cs quantity, cs list price,
cs coupon amt, cs sales price, cs net profit, c birth year, cd1.cd dep count
from catalog sales, date dim, item, customer demographics cd1, customer,
customer demographics cd2, customer address
where cs sold date sk = d date sk and cs item sk = i item sk and
cs bill cdemo sk = cd1.cd demo sk and cs bill customer sk = c customer sk and
c current cdemo sk = cd2.cd demo sk and c current addr sk = ca address sk
and cd1.cd gender = ’F’ and cd1.cd education status = ’2 yr Degree’ and
c birth month in (10, 9, 7, 5, 1, 3) and d year = 2001 and ca gmt offset = -7 and
i current price <= 10

Figure 9.3: Q18 (Based on TPC-DS Query 18)

151

BIBLIOGRAPHY

select i brand id, i brand, i manufact id, i manufact, ss ext sales price
from store sales, date dim, item, customer, customer address, store
where d date sk = ss sold date sk and ss item sk = i item sk and ss store sk
= s store sk and ss customer sk = c customer sk and c current addr sk =
ca address sk and i manager id=97 and d moy=12 and d year=2002 and
ss list price <= 17.5

Figure 9.4: Q19 (Based on TPC-DS Query 19)

select w warehouse name,i item id, sum(inv quantity on hand)
from inventory, warehouse, item, date dim
where i item sk = inv item sk and w warehouse sk = inv warehouse sk and
d date sk = inv date sk and i current price between 0.99 and 1.49 and d date
between cast (’2002-01-26’ as date) and cast (’2002-03-26’ as date)
group by w warehouse name, i item id

Figure 9.5: Q21 (Based on TPC-DS Query 21)

select i product name, i brand, i class, i category, sum(inv quantity on hand)
from inventory, warehouse, item, date dim
where i item sk = inv item sk and w warehouse sk = inv warehouse sk and
d date sk = inv date sk and d year = 1998
group by i product name, i brand, i class, i category

Figure 9.6: Q22 (Based on TPC-DS Query 22)

select i item id, avg(cs quantity), avg(cs list price), avg(cs coupon amt),
avg(cs sales price)
from catalog sales, customer demographics, date dim, item, promotion
where cs sold date sk = d date sk and cs item sk = i item sk and
cs bill cdemo sk = cd demo sk and cs promo sk = p promo sk and cd gender
= ’F’ and cd marital status = ’U’ and cd education status = ’Unknown’ and
(p channel email = ’N’ or p channel event = ’N’) and d year = 2002 and
i current price <= 10
group by i item id
order by i item id

Figure 9.7: Q26 (Based on TPC-DS Query 26)

152

BIBLIOGRAPHY

select *
from store sales, date dim, item, store, customer demographics
where ss sold date sk = d date sk and ss item sk = i item sk and ss store sk
= s store sk and ss cdemo sk = cd demo sk and cd gender = ’F’ and
cd marital status = ’D’ and cd education status = ’Primary’ and d year = 2000
and s state in (’TN’) and i current price <= 15

Figure 9.8: Q27 (Based on TPC-DS Query 27)

select i item id, i item desc, s store id, s store name, ss quantity,
sr return quantity, cs quantity
from date dim d1, date dim d2, date dim d3, store sales, store returns, cata-
log sales, store, item
where d1.d date sk = ss sold date sk and sr returned date sk = d2.d date sk
and cs sold date sk = d3.d date sk and s store sk = ss store sk and i item sk =
ss item sk and ss customer sk = sr customer sk and ss item sk = sr item sk and
ss ticket number = sr ticket number and sr customer sk = cs bill customer sk
and sr item sk = cs item sk and d1.d year = 1999 and d2.d moy between 4 and
9 and d2.d year = 2000 and d3.d year in (2000,2001,2002,2003,2004,2005)
and i current price <= 20

Figure 9.9: Q36 (Based on TPC-DS Query 36)

select i item id, i item desc, i current price
from store sales, date dim, item, store
where d date sk = ss sold date sk and i item sk = ss item sk and s store sk
= ss store sk and s state in (’TN’,’TN’,’TN’,’TN’,’TN’,’TN’,’TN’,’TN’) and d year =
2001
group by i item id, i item desc, i current price
order by i item id

Figure 9.10: Q37 (Based on TPC-DS Query 37)

153

BIBLIOGRAPHY

select w state, i item id, sum(cs sales price)
from catalog sales, warehouse, item, date dim
where i item sk = cs item sk and w warehouse sk = cs warehouse sk and
d date sk = cs sold date sk and i current price between 0.99 and 1.49 and
d date between (cast (’2001-01-17’ as date)) and (cast (’2001-03-17’ as date))
group by w state,i item id
order by w state,i item id

Figure 9.11: Q40 (Based on TPC-DS Query 40)

select *
from item, store sales, date dim, store
where i item sk = ss item sk and d date sk = ss sold date sk and s store sk =
ss store sk and d year in (2001) and i category in (’Books’, ’Children’, ’Electron-
ics’) and i class in (’personal’, ’portable’, ’reference’, ’self-help’) and i brand in
(’scholaramalgamalg #14’, ’scholaramalgamalg #7’, ’exportiunivamalg #9’, ’schol-
aramalgamalg #9’)

Figure 9.12: Q53 (Based on TPC-DS Query 53)

select sm type, web name, sum(case when (ws ship date sk - ws sold date sk
<= 30) then 1 else 0 end) as “30 days”, sum(case when (ws ship date sk -
ws sold date sk > 30) and (ws ship date sk - ws sold date sk <= 60) then 1
else 0 end) as “31-60 days”, sum(case when (ws ship date sk - ws sold date sk
> 60) and (ws ship date sk - ws sold date sk <= 90) then 1 else 0 end) as
“61-90 days”, sum(case when (ws ship date sk - ws sold date sk > 90) and
(ws ship date sk - ws sold date sk <= 120) then 1 else 0 end) as “91-120 days”,
sum(case when (ws ship date sk - ws sold date sk > 120) then 1 else 0 end) as
“>120 days”
from web sales, warehouse, ship mode, web site, date dim
where d date sk = ws ship date sk and w warehouse sk = ws warehouse sk
and sm ship mode sk = ws ship mode sk and web site sk = ws web site sk and
d year = 2001
group by sm type, web name
order by sm type, web name

Figure 9.13: Q62 (Based on TPC-DS Query 62)

154

BIBLIOGRAPHY

select i category, i class, i brand, i product name, d year, d qoy, d moy,
s store id, sum(coalesce(ss sales price*ss quantity,0)) sumsales
from store sales, date dim, store, item
where d date sk = ss sold date sk and i item sk = ss item sk and s store sk =
ss store sk and d year=1999
group by i category, i class, i brand, i product name, d year, d qoy, d moy,
s store id

Figure 9.14: Q67 (Based on TPC-DS Query 67)

select ss ticket number, ss customer sk, count(*) cnt
from store sales, date dim, store, household demographics
where d date sk = ss sold date sk and s store sk = ss store sk and hd demo sk
= ss hdemo sk and d dom <= 2 and hd buy potential = ’> 10000’ and
hd vehicle count > 0 and d year in (2000, 2000+1, 2000+2) and s county
in (’Williamson County’, ’Williamson County’, ’Williamson County’, ’Williamson
County’)
group by ss ticket number, ss customer sk

Figure 9.15: Q73 (Based on TPC-DS Query 73)

select c customer id as customer id, c last name , c first name
from customer, customer address, customer demographics, house-
hold demographics, income band, store returns
where c current addr sk = ca address sk and cd demo sk = c current cdemo sk
and hd demo sk = c current hdemo sk and ib income band sk =
hd income band sk and sr cdemo sk = cd demo sk and ib lower bound
>= 52066 and ib upper bound <= 52066 + 50000 and ca gmt offset=-7

Figure 9.16: Q84 (Based on TPC-DS Query 84)

select i category, i class, i brand, s store name, s company name, d moy,
sum(ss sales price)
from item, store sales, date dim, store
where i item sk = ss item sk and d date sk = ss sold date sk and s store sk =
ss store sk and d year in (1999) and i category in (’Jewelry’, ’Electronics’, ’Mu-
sic’) and i class in (’mens watch’, ’wireless’, ’classical’)
group by i category, i class, i brand, s store name, s company name, d moy

Figure 9.17: Q89 (Based on TPC-DS Query 89)

155

BIBLIOGRAPHY

select cc call center id, cc name, cc manager, sum(cr net loss)
from call center, catalog returns, date dim, customer, customer address, cus-
tomer demographics, household demographics
where cr call center sk = cc call center sk and cr returned date sk =
d date sk and cr returning customer sk = c customer sk and cd demo sk
= c current cdemo sk and hd demo sk = c current hdemo sk and ca address sk
= c current addr sk and d year = 2000 and d moy = 12 and ((cd marital status
= ’M’ and cd education status = ’Unknown’) or (cd marital status = ’W’ and
cd education status = ’Advanced Degree’)) and hd buy potential like ’5001-
10000%’ and ca gmt offset = -7
group by cc call center id, cc name, cc manager
order by sum(cr net loss)
desc

Figure 9.18: Q91 (Based on TPC-DS Query 91)

select s store name, hd dep count, ss list price, s company name
from store sales, household demographics, time dim, store
where ss sold time sk = time dim.t time sk and ss hdemo sk = hd demo sk and
ss store sk = s store sk and t hour = 8 and t minute >= 30 and hd dep count =
2 and s store name = ’ese’ and ss list price <= 19.5

Figure 9.19: Q96 (Based on TPC-DS Query 96)

select sm type, cc name, count(*)
from catalog sales, warehouse, ship mode, call center, date dim
where d date sk = cs ship date sk and w warehouse sk = cs warehouse sk and
sm ship mode sk = cs ship mode sk and cc call center sk = cs call center sk
and d year = 2002
group by sm type, cc name
order by sm type, cc name

Figure 9.20: Q99 (Based on TPC-DS Query 99)

156

	Acknowledgements
	Abstract
	Publications based on this Thesis
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Query Optimizer Framework
	1.2 Optimizer Challenges
	1.3 Robustness for Database Systems
	1.4 Prior Work
	1.4.1 Maximum Sub-Optimality – Robustness Metric
	1.4.2 Plan Bouquet

	1.5 PlanBouquet's Limitations
	1.6 Our Contributions
	1.6.1 Execution Phase Enhancements
	1.6.2 Compilation Phase Enhancements
	1.6.3 Deployment Aspects
	1.6.4 Summary
	1.6.5 Thesis Organization

	2 Related Work
	2.1 Full Dependence on Estimation Module
	2.2 Partial Dependence on Estimation Module
	2.3 No Dependence on Estimation Module
	2.4 Other Robustness Literature

	3 Problem Framework and Background
	3.1 Selectivity Spaces
	3.2 POSP Plans
	3.3 Robustness Metrics
	3.3.1 Maximum Sub-Optimality (MSO)
	3.3.2 Average Sub-Optimality (ASO)

	3.4 Assumptions
	3.5 Database and System Framework
	3.6 Plan Bouquet Algorithm
	3.6.1 One-dimensional ESS
	3.6.2 Multidimensional ESS

	4 Platform-independent Guarantees
	4.1 Introduction
	4.1.1 SpillBound

	4.2 Building Blocks of our Algorithms
	4.2.1 Half-space Pruning
	4.2.2 Contour Density Independent Execution

	4.3 The SpillBound Algorithm
	4.3.1 2D-SpillBound
	4.3.2 Extending to Higher Dimensions

	4.4 Experimental Evaluation
	4.4.1 SpillBound v/s PlanBouquet
	4.4.2 Wall-Clock Time Experiments
	4.4.3 Evaluation on the JOB Benchmark

	4.5 Conclusions

	5 MSO Lower Bound and its Matching Algorithm
	5.1 Introduction
	5.2 Lower Bound on MSO
	5.3 The AlignedBound Algorithm
	5.3.1 Contour Alignment
	5.3.2 Native Contour Alignment
	5.3.3 Induced Contour Alignment
	5.3.4 Predicate Set Alignment (PSA)
	5.3.5 Algorithm Description

	5.4 Experimental Evaluation
	5.4.1 Comparison of Empirical MSO
	5.4.2 Comparison of ASO
	5.4.3 SubOptimality Distribution
	5.4.4 Evaluation on the JOB Benchmark

	5.5 Conclusions

	6 Dimensionality Reduction
	6.1 Introduction
	6.2 Problem Definition
	6.3 Outline of the DimRed Procedure
	6.4 Schematic Removal of Dimensions
	6.5 MaxSel Removal of Dimensions
	6.5.1 Baseline Case: 2D Selectivity Space
	6.5.2 Extension to Higher Dimensions
	6.5.3 Efficient Computation of MaxSelRemoval
	6.5.4 Proof of Corner Inflation

	6.6 WeakDimRemoval techniques
	6.6.1 WeakDimRemoval 2D scenario
	6.6.2 WeakDimRemoval 3D Scenario
	6.6.3 WeakDimRemoval Overheads

	6.7 Experimental Evaluation
	6.7.1 Goodness of OCS Surface Fit
	6.7.2 Validation of Corner Inflation
	6.7.3 Overheads Minimization Objective
	6.7.4 MSO Minimization Objective
	6.7.5 Time Efficiency of DimRed

	6.8 Conclusions

	7 Reducing Overheads to Support Ad-Hoc Queries
	7.1 Introduction
	7.2 Assumptions
	7.2.1 Axis-Parallel Concavity (APC)

	7.3 Frugal SpillBound for 1D ESS
	7.3.1 Compilation Phase
	7.3.1.1 Implementation of Proxy Discovery
	7.3.1.2 Bounded Compilation Overheads

	7.3.2 Execution Phase

	7.4 Frugal SpillBound for 2D ESS
	7.4.1 Bounded Contour-covering Set (BCS)
	7.4.2 Compilation Phase
	7.4.2.1 Algorithm Description
	7.4.2.2 Proof of Correctness
	7.4.2.3 Bounded Computational Overheads

	7.4.3 Execution Phase
	7.4.3.1 Maintaining the constraint
	7.4.3.2 Half-Space Pruning and Contour Density Independent Execution
	7.4.3.3 Contour Covering Set identification

	7.5 Multi-Dimensional FSB
	7.5.1 Multi-D Algorithm
	7.5.2 Proof of Correctness

	7.6 Experimental Evaluation
	7.6.1 Empirical Validation of APC
	7.6.2 Theoretical Characterization of -
	7.6.3 Empirical Characterization of -
	7.6.4 Validation of MSO Relaxation Constraint
	7.6.5 Dependency of on
	7.6.6 Wall-Clock Time Experiments
	7.6.7 JOB Benchmark Results

	7.7 Related Work
	7.7.1 Compilation Overheads
	7.7.1.1 BCG
	7.7.1.2 Concavity implies BCG

	7.8 Conclusions

	8 Deployment Aspects
	8.1 Essential Engine Features
	8.1.1 Selectivity Monitoring
	8.1.2 Selectivity Injection
	8.1.3 Abstract Plan Costing and Execution
	8.1.4 Cost-budgeted Executions
	8.1.5 Spilling

	8.2 Efficiency Features
	8.2.1 Parallelizing Compilation Phase
	8.2.2 OptAssist

	8.3 Relaxing Perfect Cost Model Assumption
	8.4 Architecture Description
	8.5 Performance Comparison b/w Native Optimizer and Proposed Robust Techniques

	9 Conclusions and Future Work
	9.1 Conclusions
	9.2 Future Work

	Bibliography
	9.A Query Text

