
Incorporating Disjunction and Union in Hidden Query

Extraction

A PROJECT REPORT

SUBMITTED IN PARTIAL FULFILMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

Master of Technology

IN

Faculty of Engineering

BY

Sumang Garg

Computer Science and Automation

Indian Institute of Science

Bangalore – 560 012 (INDIA)

July, 2021

Declaration of Originality

I, Sumang Garg, with SR No. 04-04-00-10-42-19-1-16975 hereby declare that the material

presented in the thesis titled

Incorporating Disjunction and Union in Hidden Query Extraction

represents original work carried out by me in the Department of Computer Science and

Automation at Indian Institute of Science during the years 2019-21.

With my signature, I certify that:

• I have not manipulated any of the data or results.

• I have not committed any plagiarism of intellectual property. I have clearly indicated and

referenced the contributions of others.

• I have explicitly acknowledged all collaborative research and discussions.

• I have understood that any false claim will result in severe disciplinary action.

• I have understood that the work may be screened for any form of academic misconduct.

Date: 10-07-2021 Student Signature

In my capacity as supervisor of the above-mentioned work, I certify that the above statements

are true to the best of my knowledge, and I have carried out due diligence to ensure the

originality of the report.

Advisor Name: Prof. Jayant R. Haritsa Advisor Signature

1

© Sumang Garg

July, 2021

All rights reserved

DEDICATED TO

My Friends & Family;

For their unconditional love.

Acknowledgements

I would like to express my sincere gratitude to my project advisor, Prof. Jayant R. Haritsa for

giving me an opportunity to work on this project with him. I am indebted to him not only for

the support and guidance he provided, but also for constantly motivating me.

I would also like to thank the Department of Computer Science and Automation and Indian

Institute of Science for providing all the necessary facilities and environment even in these tough

times.

I am extremely thankful to Kapil Khurana for helping and assisting me through out the

project. His valuable suggestions have played a big role in the completion of this project. I

would also like to thank all my lab mates for their constant support.

Finally, I would like to thank my family for always supporting and encouraging me.

i

Abstract

UNMASQUE is a non-invasive extraction algorithm which extracts SQL queries hidden within

database applications. Lots of database applications have queries in the form of stored proce-

dures or imperative functions which are then encrypted, making it very hard to know the exact

query. Hidden Query Extraction problem aims at extracting those queries exactly. Earlier work

on UNMASQUE showed how to extract a wide range of queries under certain assumptions in

a platform independent way.

Current version of UNMASQUE is not able to handle SQL constructs such as correlated Nested

Queries, Disjunctions, and Unions. This project adds to UNMASQUE the functionality for

handling Disjunction and Union operator under certain assumptions.

ii

Contents

Acknowledgements i

Abstract ii

Contents iii

List of Figures v

1 Introduction 1

1.1 UNMASQUE . 1

1.2 Related Work . 4

1.3 Contributions . 4

1.4 Organization . 5

2 Disjunction 6

2.1 Background . 6

2.2 Modifications to Filter Extraction . 8

2.3 Disjunction Extraction . 9

2.3.1 Assumptions . 9

2.3.2 Extraction . 10

2.4 Correctness . 12

2.5 Optimization . 13

3 Union 14

3.1 Background . 14

3.2 Assumptions . 15

3.3 Extraction . 15

3.4 Correctness . 20

iii

CONTENTS

3.5 Optimization . 21

4 Experiments 22

4.1 Disjunction . 23

4.2 Union . 24

4.3 Union vs Union All . 25

5 Conclusion and Future Work 26

Bibliography 27

6 Appendix 28

6.1 Disjunction Queries . 28

6.2 Union Queries . 29

6.3 Disjunction Original UNMASQUE Output . 32

6.4 Union Original UNMASQUE Output . 33

iv

List of Figures

1.1 UNMASQUE Pipeline . 2

1.2 Example Query: Qe = Qu ∪Ql . 3

2.1 Example Database and Minimizations . 7

2.2 Updated UNMASQUE Pipeline . 8

3.1 UNMASQUE Pipeline with Union . 15

3.2 Union Example . 16

4.1 Time Consumed . 23

4.2 SF1 Time Breakup . 24

4.3 SF10 Time Breakup . 24

4.4 Union Overhead(SF 1) . 24

4.5 Union Overhead(SF 10) . 24

v

Chapter 1

Introduction

Queries in database applications often appear in stored procedures or imperative functions,

which in turn are encrypted, making it hard or even impossible to see the query. We can still

run the encrypted query and get the output. Such queries are called Hidden Queries and the

functions in which they are embedded are termed as executable for the queries. Hidden Query

Extraction(HQE) was recently introduced and is the problem dealing with extracting these

hidden queries.

Formally defined, HQE is: Given a black-box application A containing a hidden query Q(in

either SQL format or its imperative equivalent),and a database instance D on which A produces

a populated result R, unmask Q to reveal the original query (in SQL format). That is, in

contrast to the speculative nature of standard QRE, we intend to find the precise Q such that

∀i Q(Di) = Ri.

Hidden Query Extraction finds a variety of use cases such as: Imperative Code to SQL

Translation, Debugging Application with stored SQL procedures, Enhancing Database Security

etc..HQE differs from the general Query Reverse Engineering problem because of availability

of a hidden ground truth. HQE can be particularly challenging due to challenges such as

dependencies between various clauses of the hidden query; as we will see later in the report, a

single clause extracted incorrectly can cause the entire extraction to fail.

1.1 UNMASQUE

UNMASQUE(Unified Non-invasive MAchine for Sql QUery Extraction) is a platform indepen-

dent hidden query extractor introduced in [1]. It uses a judicious combination of database

mutation and database generation to extract hidden queries.

1

Figure 1.1: UNMASQUE Pipeline

Currently UNMASQUE is able to extract a substantial class of SPJGAOL (Select, Project,

Join, Group By, Aggregate, Order By, Limit) queries, under certain assumptions. The UN-

MASQUE architecture is shown in Figure 1.1.

It has two sequential pipelines for extracting hidden queries: a Mutation pipeline and a

Generation pipeline. Mutation pipeline is based on mutations of the original/reduced database

and is responsible for handling the SPJ features of the query. The modules in this segment

require targeted changes to a specific table or column while keeping the rest of the database

intact.

In contrast, the Generation pipeline is based on the generation of carefully-crafted synthetic

databases. It caters to the GAOL query clauses. The modules in this segment require generation

of new data for all the query related tables under various row-cardinality and column-value

constraints. The synthetic-database is crafted in such a manner that it complies with all the

conditions discovered in the previous pipeline; additionally data is generated by each module

in different manners such that query output on the data can be used to infer something about

the module.

There are certain clauses that UNMASQUE can not handle currently, for example Union,

Disjunction, and correlated Nested Queries. When presented with queries having such con-

structs UNMASQUE will either throw an error and declare the query to be out of extraction

scope or extract some wrong query. Consider for example, query from Figure 1.2, Qe. UN-

MASQUE will not be able to extract Qe because it has Disjunction and Union, and hence it

falls outside of the class of extractable queries.

2

Figure 1.2: Example Query: Qe = Qu ∪Ql

The class of queries that UNMASQUE can handle is defined in [1] as Extractable Query

Class(EQC). EQC assumes that : (i) Filter predicates feature only non-key columns and are

of the type column op value. Further, for numeric columns, op ∈ {=, ≤, ≥, <,>,between}
and for textual columns, op ∈ {=,like}; (ii) The join graph is a sub-graph of the schema graph

(comprised of all valid PK-FK and FK-FK edges); (iii) All ordering columns appear in the

projections; (iv) The limit value is at least 3 (v) All joins are key-based equi-joins.

This project takes under consideration a sub-class of EQC, EQC−H(EQC without HAVING

clause) and tries to expand its domain by including the ability to handle constructs such as

Union and Disjunction.

When presented with Qe, in the worst case UNMASQUE will extract nothing and declare that

the query is out of the extractable domain by raising an error. In practice, UNMASQUE may

not be able to identify that query is out of EQC and end up extracting a wrong query. The

behaviour of UNMASQUE for Qe is speculative and not deterministic because it is a function

of dbMinimizer output. The worst case refers to the minimization which will eventually force

UNMASQUE to raise an error.

One of the key modules in UNMASQUE is Database Minimizer. It addresses the row-

minimality problem which is defined as: Given a database instance D and an executable Q

producing a populated result on D, derive a reduced database instance Dmin from D such that

removing any row of any table present in Q results in an empty output.

Minimizer module of UNMASQUE takes initial database D(and Q) and finds D1(assuming

3

there is not HAVING clause), a minimized database such that all table present in the FROM

clause have exactly one row. For the rest of the report Dmin or the minimized database refers

to D1.

1.2 Related Work

SQUARES[2] is an enumeration based programming-by-example system developed on top of

Trinity. It takes desired input and output tables as input and generates corresponding query.

SQUARES is able to formulate even complicated nested queries and thus we considered

examining it to see whether the approach can be used to extract nested queries. Upon further

experimentation we found that their approach does not scale well and takes an enormous amount

of time even for small database sizes.

[3] proposes a solution to reverse engineer complex join queries with arbitrary join graphs. The

follow up works ([4], [5]) also handles aggregation.

There is a lot of work done along the lines of reverse engineering SQL queries, but there the

problem is fundamentally different from HQE. RQE does not have a ground truth and thus

produces one of many possible queries which can produce the given output on given input. The

result of QRE depends on the provided input table whereas HQE is completely independent of

that(as long as it meets the assumptions).

1.3 Contributions

In this work, we have added to UNMASQUE the ability to extract two more constructs with

some assumptions. The proposed modifications are as follows:

• Disjunction Extraction: We slightly modify Where Clause Extraction module which

allows UNMASQUE to perform well even in the presence of Disjunctions in the query. We

propose to add Disjunction Extractor module to UNMASQUE, which extracts Disjunc-

tions in the query (under certain assumption on the database and the query). Disjunction

Extractor uses a combination of selection query and dbMinimizer calls to extract Disjunc-

tion predicates in a depth-first manner.

• Union Extraction: We propose to add a Union Extractor module to UNMASQUE which

detects and extracts Union queries. Union Extractor systematically nullifies/restores the

table used in the query to detect as well as extract Union queries.

• Implementation: The proposed ideas were implemented in Python and added to current

UNMASQUE pipeline. They were also tested against various queries to verify correctness

and investigate the overheads incurred for added extraction.

4

1.4 Organization

In chapter 2 we discuss the working of current Filter Clause Extractor and analyze the difficulties

behind extracting Disjunctions in the current UNMASQUE framework. This is motivated by

an example which shows how the current UNMASQUE will behave in presence of Disjunctions.

This is followed the proposed modification to Filter Extraction module which prevents the

Disjunction worst case. Then, the algorithm to extract Disjunction along with its assumption

in discussed. In the end of the chapter we argue for the correctness of the proposed algorithm.

Chapter 3 begins with a summary of how the From Clause Extractor works and how it can

be used to detect set operations. We then discuss how set of tables identified by From Clause

Extraction can be used to identify the presence of a Union operator. Once, Union is identified

we propose Tables Detection algorithm, which is used to find out the set of tables present in

both queries and finally Union Extractor algorithm is discussed, which uses this knowledge to

extract the exact queries.

Finally, chapter 4 discusses the design and the results of the empirical evaluation.

5

Chapter 2

Disjunction

2.1 Background

To show why disjunctions are hard to extract in the current pipeline, first, let’s take a look

at how the filter predicate extraction works presently. Filter Extractor module runs after the

database is minimized. It checks every attribute in all the tables used in FROM clause(Filter

extraction is done after FROM clause extraction, so it knows which tables are used in the

query) for filters. For each attribute, the extractor checks for presence of a filter by setting its

value once to the maximum and once to minimum value of the domain and running the query.

If there is a filter on the attribute, the output will be empty for at least one of the two cases(as

long as there is no disjunction). Once, a filter is detected on some attribute, extractor finds the

filter by binary searching the attribute domain around the true value(value the attribute has

in minimized database). In case there is no filter or after the filter is extracted, the attribute

value is restored.

This becomes tricky in the presence of Disjunctions. In Figure 2.1.a, we have an example

database D, on which lower query from Figure 1.2, Ql is run. If the database minimizer leaves

us with any one of the four minimizations 2.1.b, 2.1.c, 2.1.d, and 2.1.e then only one predicate

from each clause can be extracted. We can see here itself that as the UNMASQUE pipeline

is linear and Where Clause Extractor is never called again, the output, if everything else goes

smoothly will miss the predicates in Disjunction.

Assume after minimization, we have 2.1.b as the minimized database D’(Note that running the

query on 2.1.b gives a populated result, so 2.1.b is a candidate for a minimized database).

6

Figure 2.1: Example Database and Minimizations

Now, when the filter extractor changes the value of n name it finds that output disap-

pears and finally concludes that there is a filter on n name. The extractor then goes on to

find the filter, n name =’ARGENTINA’. But, when it comes to the attribute n regionkey,

changing its value will have no impact on the output as the value of n name is already

enough to satisfy the clause (n name =’ARGENTINA’ or n regionkey = 3), so the filter

extractor will conclude that n regionkey does not have any filter. The same goes for at-

tributes s acctbal and ps supplycost, and thus after the filter extraction is done we will have

(n nation =’ARGENTINA’ and s acctbal > 2000) as the filter predicate. Moreover, even if

the filter extraction module were supplied the information that n regionkey has a filter on it,

it still would not have been able to identify the predicate, as the extractor should know at

least one value for which the attribute satisfies the predicate in order to identify it. So, to

first identify and then extract the predicates which are in disjunction with the predicates al-

ready identified, we need to slightly modify current Filter Extractor and then add a new module.

Disjunction Extractor relies on the output of filter extraction module. It needs one predicate

7

to be extracted from each clause to extract the entire clause. But, there is an issue with current

filter extractor in the presence of disjunctions in query:

Consider, a variation of original database from Figure 2.1, where the nation table has a row

with n name =’ARGENTINA’ and n regionkey = 3. If the minimized version of this variation

of database contains just the row we just added, then the entire first clause will be missed by

the extractor.(as filter extraction modifies only one attribute at a time and checks whether the

output is null), and for the Disjunction Extractor to extract disjunctions, at least one predicate

is required from every clause.

2.2 Modifications to Filter Extraction

To counter this problem, the process for filter predicate extraction has to be changed. If the

attribute does not have a non-nullity condition, then after the filter predicate check, instead of

restoring the previous value, attributes are instead set to null.

Now, the filter extractor will not find any condition on n name and will set it to null, but when

n name is set to null, changing n regionkey’s value will let the extractor know that there is a

filter on n regionkey.

Landing in such minimization is pretty rare and it is the worst case scenario for current UN-

MASQUE as the Data Generation pipeline produces data in adherence with the filters. Data

Generation pipeline is not likely to work if there is a clause from which none of the predicates

were identified.

Figure 2.2: Updated UNMASQUE Pipeline

8

2.3 Disjunction Extraction

Disjunction Extractor is a new module added to UNMASQUE to extract Disjunctions. Ad-

dition of Disjunction Extractor changes UNMASQUE pipeline. Earlier the pipeline was lin-

ear, whereas now Disjunction Extractor repeatedly calls minimizer and filter extraction mod-

ules. The updated pipeline is shown in Figure 2.2. To extract a predicate, we need at

least one row which satisfies that predicate and affects the final output. The way filter ex-

tractor is defined, it starts with one value that satisfies the filter and then finds the up-

per and lower limits. So, the predicates in disjunction should also satisfy this condition,

i.e. for every predicate, there should be a row that satisfies the said predicate, and re-

moving that row affects the output. But even this will not allow us to extract the com-

plete condition. For example, consider yet another variation of our example database of Fig-

ure 2.1 with only such rows that our example query can only have two minimizations(2.1.b

and 2.1.d). If we land in the first minimization we extract (n name =’ARGENTINA’ and

s acctbal > 2000) as the filter and if we land in the second minimization we get (n regionkey = 3

and ps supplycost < 500) as the filter. There is no simple way for us to know whether

the complete filter is ((n name =’ARGENTINA’ or n regionkey = 3) and (s acctbal >

2000 or ps supplycost < 500)) OR ((n name =’ARGENTINA’ or ps supplycost < 500) and

(s acctbal > 2000 or n regionkey = 3)).

2.3.1 Assumptions

Once it is identified that there is a filter on a particular attribute, the filter extraction module

searches for the upper and lower limits of the predicate. The search requires at least one value

at which the attribute satisfies the predicate. In our example(2.1.b as minimized database), the

filter extraction module will search on right and left of 3000(value of s acctbal) to get upper

and lower limits. So, in order to extract any predicate in disjunction, we must have such a

minimization in which that particular predicate is the only one from its clause being satisfied.

Hence the two assumptions that the Disjunction Extraction module makes are:

• Filter is a conjunction of disjunctions.

• Every true assignment of filter, such that only one predicate is satisfied from each clause,

contributes at least one unique row to the output.

The first assumption is a crucial one from a computational point of view. Disjunction ex-

tractor checks for the presence of a disjunction by negating one filter predicate and finding

9

whether there is some other predicate in disjunction with it. If the filter were not a conjunction

of disjunctions, then we will have to negate all possible combination of predicates and then

search for disjunctions, which is computationally infeasible.

The second assumption makes sure that all predicates are extract-able. Continuing with our

example from Figure 2.1, say the filter extractor has extracted predicates (n name =’ARGENTINA’

and s acctbal > 2000). For the disjunction extractor to be sure that there is a disjunction on

n name, first we have to remove all rows satisfying n name =’ARGENTINA’ from the original

database(D) and then rerun the query. The rerun will result in a populated output and we

conclude that there is a disjunction on n name. But, if we were to minimize the database

now, we may end up with minimization 2.1.d and get filter predicate (n regionkey = 3 and

ps supplycost < 500), in which case we will have to add additional steps to figure out the exact

filter.

So, on top of removing rows that satisfy n name =’ARGENTINA’ we also add an additional

constraint on the database that we just keep the rows satisfying s acctbal > 2000. In this

case, we are sure to end up with minimization 2.1.e, which will give us filter (n regionkey = 3

and s acctbal > 2000), where we can easily see that n regionkey = 3 is in disjunction with

n name =’ARGENTINA’. The second assumption makes sure that all these minimizations are

possible. In a large database, the assumptions generally hold.

2.3.2 Extraction

Assuming that the two assumptions hold, the algorithm to extract disjunction is given in

Algorithm 1. Disjunction Extractor is called after Filter Extractor Module and thus receives

as input FE, which necessarily contains exactly one predicate from each clause because of

the modifications we made to Filter extraction. Disjunction Extractor finally outputs a two

dimensional list of all the filters and a string with complete filter.

The algorithm makes multiple calls to dbMinimizer and Filter Extraction modules, but as

shown in the pipeline in 2.2 the calls are both subroutine calls and they transfer the control

back to the algorithm i.e. Minimizer returns the output to Disjunction Extractor instead of

passing it on to Join Predicate Extractor.

10

Algorithm 1: Disjunction Extraction(FilterList[], D)

i = 0

Disjunction = [][]

n = len(FilterList)

final filter =′ True′

while i ≤ n− 1 do
outer con = true

outer con=
∧

0≤k<n,k 6=i FilterList[k]

Disjunction[i][0] = FilterList[i]

j = 1

final filter+ = ′and (′ +FilterList[i]

Db = select from D where outer con

while true do
inner con = true;

inner con = ¬
∨

0≤k<j Disjunction[i][k]

Db′ = select from Db where inner con

if exec(Db′) 6= φ then
Dbmin= dbMinimizer(Db′)

filters = FilterClauseExtractor(Dbmin)

Disjunction[i][j] = filters− FilterList[i]
j + +

final filter+ = ′or′ +Disjunction[i][j]

else
final filter+ = ′)′

break
end

end

i+ +

end

On our running example, consider that the filter extracted by WhereClauseExtractor is

(n name =’ARGENTINA’ and s acctbal > 2000), then Algorithm 1 proceeds in the following

fashion:

• Delete the rows from database having n name =’ARGENTINA’ and keep only the rows

11

having s acctbal > 2000.

• Minimize this database and call filter extractor module.

• FilterClauseExtractor returns (n regionkey = 3 and s acctbal > 2000) hence n regionkey =

3 is added to the Disjunction list of n name =’ARGENTINA’.

• Delete the rows from database having n name =’ARGENTINA’ or having n regionkey =

3 and keep only the rows having s acctbal > 2000.

• Executable output will be empty here and hence this clause is concluded.

• In similar fashion, the second clause will be extracted completely.

So, the selection step in disjunction extraction makes sure that dbMinimizer lands in a par-

ticular minimization. In our running example, if we assume that the first minimization we

naturally landed in is 2.1.b, disjunction extractor will have three iterations, each time making

sure that dbMinimizer lands in a different minimization. The complete filter string is stored in

final filter.

2.4 Correctness

We first note that Algorithm 1 first checks for disjunction by removing all the rows satisfying

a particular predicate. If there is no disjunction in the query, then Algorithm 1 only puts a

checking overhead on the extraction procedure and does not affect the working of UNMASQUE

in any way.

Now, we assume that Algorithm 1 extracts as final filter: (a1 or a2) and (b1 or b2).

Firstly, we claim that everything Algorithm 1 extracts is actually a filter. So, lets assume that

a2 is incorrect. There can be two such cases:

• One case would be that there is no a2 i.e. there is nothing in disjunction with a1, but

the initial check for disjunction(of a1) must have removed all rows satisfying a1 and must

have retained only the rows satisfying b1. Algorithm 1 only works when after the selec-

tion, query output is populated. So, it must be the case that even after removing all the

rows satisfying a1, the query gives populated output, thus there must be something in

disjunction with a1.

12

• Second case would be that there is indeed something in disjunction with a1 but it is

not a2. Algorithm 1 makes sure that only the rows not satisfying a1 and satisfying b1

are passed on to minimizer. So, the correctness of a2 depends on the correctness of filter

extraction module. If the filter extraction module is correct, then a2 must be the predicate.

Last claim we make is that complete filter will be extracted by Algorithm 1. So, we assume that

the actual filter was (a1 or a2) and (b1 or b2 or b3) and b3 was just not extracted. Here, we note

that after b2 was extracted by the disjunction extractor, it must have deleted all rows satisfying

b1, b2, and a1. So, there must be rows satisfying (a1 and b3) as per our assumption and thus

Algorithm 1 will conclude that there is indeed a predicate left to extract, so it will not stop at b2.

2.5 Optimization

To check disjunction, we load original database and then run our selection query on it(negating

certain predicate) and finally check the executable output on this database. To improve the

run-time further, instead of loading original database, we load sampled database. Sampling the

database is the first step during minimization. Minimizer samples each table and if the samples

returns a populated output for executable, those samples are used as starting point of minim-

imization. These sampled databases are separately stored and used to check for disjunctions.

If the check fails, i.e. we find no disjunction, original databases is loaded and checked. As the

sampled databases themselves are small, the overhead for checking is not much but we get a

speedup in identifying disjunctions in case it is present in sampled database.

13

Chapter 3

Union

3.1 Background

To understand how we can go about extracting queries with Union, lets first take a look at

how FROM clause is extracted in current UNMASQUE. Currently, there are two methods to

extract FROM clause in UNMASQUE, which are:

• Nullify Method:

To check whether a base table t is present or not in FROM clause, we nullify the table,

i.e. t is set to null and the query executable is run. If, t is present in the query and there

are no set operations then the output will necessarily be null. Once the query is run t is

restored. The downside of this method is that the query runs to completion every time

(for all tables) and thus it takes a lot of time.

• Rename Method:

This is the default method in UNMASQUE to extract FROM clause. To check whether

a table t is present or not in the query, we temporarily rename it. Then the query

executable is run, if t is part of the query, then the executable will throw an error, which

UNMASQUE catches. t is then reverted to its original name. This method will report

all the tables used in the query, irrespective of whether there is a set operation or not.

Also, to make sure the query does not run to completion for tables not present in query,

we use a timeout.

14

Figure 3.1: UNMASQUE Pipeline with Union

Rename Method and Nullify Method will give different outputs when there is a set operator

present in the query, and that is the core idea upon which Union Extractor works.

We represent query with Union as Q= X ∪ Y, where the order of X and Y does not matter.

Further, we represent set of tables present in X (similarly, Y) as Tx(similarly, Ty) and Tcommon

refers to set of tables in Tx∩Ty. Now, we can use a combination of these two methods to clearly

decide which tables are part of which query.

3.2 Assumptions

Union extractor operates under the assumption that Tx and Ty are not subsets of each other.

We also make a slight change to the initial condition of UNMASQUE, where initially we re-

quired a database with populated output, now we require an initial database such that both

queries of Union produce populated outputs individually.

3.3 Extraction

Union extractor is first invoked after database minimization as can be seen in the updated

pipeline in Figure 3.1. So, Union extractor receives as input a minimized version of database

and TE, which is set of all tables used in Q as determined by Rename Method of FROM Clause

Extractor. Union extractor then determines whether there is a Union present in the query or

not.

To detect whether a Union is present, first we note that if Union operator is indeed present,

then the minimized database(the one Union Extractor receives) must fall in one of the following

three possible cases:

• Both X and Y produce the same populated output on minimized database.

15

• X and Y produce different populated outputs on minimized database.

• Only X produces a populated output on the minimized database.

Figure 3.2: Union Example

Figure 3.2 shows an example for all three cases and corresponding outputs when Q is

(Select * from T,V where T.A=V.A) Union (Select * from U,V where U.A = V.A).

It is easy to see that in all three cases there must exist a table t in TE, which can be set to null

while still maintaining a populated output. More precisely, all the tables present in Ty − Tx
can be set to null while still keeping the output populated. We use this observation to detect

whether a Union is present in the query or not in Union Detection algorithm.

After Union Detection is run, single query tables is the set of tables that appear in either X

or Y, but not both, whereas, common tables are either the tables appearing in both queries(for

Case 1 and 2) or the tables appearing in X (for Case 3). Continuing our initial example from

16

Figure 1.2, single query tables will be {customer, orders, lineitem, partsupp, region }
and common tables will be {nation, supplier} for case 1 or 2, but they will correspondingly

be {supplier} and {customer, orders, lineitem, partsupp, nation, region } for case

3(assuming that Qu is Qx).

If the current UNMASQUE tries to extract Qe from Figure 1.2, it will be able to identify the

set of all tables, and in general will end up extracting some query which will have all the tables

from TE in the FROM clause but other constructs will be of only one query(it can be any one

of the two) as shown in appendix. But the relatively rare case, when the minimization lands in

case 1 or 2, will be problematic. In this case, it may happen that UNMASQUE fails to extract

any query at all.

Algorithm 2: Union Detection(TE, D)

isUnion = false

common tables = [], i = 0

single query tables = []

while i < len(TE) do
e = TE[i+ +]

Nullify(e)

if exec(D) 6= φ then
single query tables.append(e)

else
common tables.append(e)

end

Restore(e)

end

if len(single query tables) ≥ 1 then
isUnion = true

end

For example, when the FilterClauseExtractor tries to toggle values of attributes in table

set of Qu, the output from Ql may prevent final result from becoming empty and thus not

allowing UNMASQUE to figure out the filters, without which the extraction is likely to not

work at all. Landing in case 1 or 2 is relatively rare because dbMinimizer only cares for a

17

populated output when minimizing. If during the minimization process, output from one query

disappears due to some choice that dbMinimizer makes, it will not matter to dbMinimizer.

If Union is not present, then UNMASQUE goes about its business as usual and Union extractor

does nothing more. But, if Union is present, then Union extractor further tries to determine

Tx and Ty. To decide Tx and Ty we first determine which case out of the three, the minimized

database is in and we call Tables Detection.

The idea behind Tables Detection is that if we are in case 1 or 2, then single query tables

must be (Tx \ Ty) ∪ (Ty \ Tx). Else, if we are in case 3, then single query tables will only

contain Ty \ Tx.

Algorithm 3: Tables Detection(single query tables,D)

T1 = [single query tables[0]]

T2 = [], isCase3 = true

i = 1

Nullify(single query tables[0])

while i < len(single query tables) do
e = single query tables[i+ +]

Nullify(e)

if exec(D) 6= φ then
T1.append(e)

else
T2.append(e)

end

Restore(e)

end

if len(T2) ≥ 1 then
isCase3 = false

end

If we are not in case 3, then Tx = common tables ∪ T1 and Ty = common tables ∪ T2,

otherwise all we know for sure is that Tx = common tables and Ty is union of T1 and some

subset of common tables. So, if we are not in case 3, Algorithm 3 finds Tx for our Figure 1.2

18

example as {customer, orders, lineitem, supplier, nation, region } and Ty as {supplier,

partsupp, nation }. If we are in case 3, then Tx is the same, where as Ty is not known.

Algorithm 4: Union Extractor(TE, D
1)

if isCase3 then
control stub(isCase3, Tx, 1)

load Database D

TE=FromClauseExtractor(method=Nullify)

Ty = TE ∪ T1

Tx = Tx \ TE
TE = Ty

Nullify(Tx[0])

D′ = dbMinimizer(D)

control stub(isCase3, Ty, 0)

else
Nullify(T2[0])

control stub(isCase3, Tx, 1)

Restore(T2[0])

Nullify(T1[0])

control stub(isCase3, Ty, 0)

end

Once we find Tx, we extract exact queries with Union Extractor. If we are not in case 3,

then Union extractor’s work is almost done. It Nullifies any one table from T2 and then calls

control stub. control stub calls the rest of the UNMASQUE pipeline(starting withWhereClause

Extractor) with TE set as its second argument. As, the third argument is 1, control stub re-

turns the control to Union extractor after this run of UNMASQUE. As Tx was set as TE and

there was no impact from Y (because T2[0] is nullifed), the query that UNMASQUE extracts

now is guaranteed to be X. Once X is extracted, control is transferred back to Union extractor,

which restores common tables to the state they were in after minimization, it sets TE as Ty

and calls the next module. In this second run of UNMASQUE, Y is extracted.

Things go slightly different if we land in case 3. The initial step for extracting X are

essentially the same, TE is set to Tx(which is common tables here), as the tables from Y have

19

no impact here there is no point in nullifying them and the control stub is called. Once, this

run is complete, i.e. X is extracted, it moves on to the next step.

To extract Y, the extractor needs to know Tx and Ty and to do it, all the tables are restored

to their initial state i.e. the state before the first minimization. At this stage, due to our

assumption, Y has necessarily populated output. Here, the Nullify Method of FROM clause

extractor is called and the output is stored in a TE. Because of the way Nullify Method is

defined, tables in TE list are exactly the tables which appear in both queries.

Hence, Ty now becomes TE∪T1 and set of tables unique to X is Tx\TE. Extractor then nullifies

any one of the tables unique to X, sets TE to Ty and calls dbMinimizer. As dbMinimizer only

minimizes the set of table in TE, it minimizes all the tables in Ty. Following the same reasoning

as earlier, we note that this time the extracted query will be Y.

3.4 Correctness

First claim is that if there is no Union in the query, then Union Detection will not report any

Union. This is easy to see because Union Detection only reports Union when there exists some

table which when not present in database, makes query execution throw an error, but when

nullified does not make the output empty. This behaviour is not possible for a query that does

not have have any set operations, and as Union is the only set operation permissible, there

must be a Union in the query.

Next claim is that sets of tables are correctly identified by Tables Detection(for case 1 and 2).

When both queries contribute to output, then to nullify output, either we nullify any table from

Tx ∩ Ty or we nullify at least one table each from Tx \ common tables and Ty \ common tables.
As for case 1 and 2, single query tables is (Tx∪Ty)\ common tables. Sets are detected by first

putting one table in T1, then nullifying it, and then noticing which other table when nullified

together with this one table, will make output null.

Lets assume that some table e is wrongly added to T2 by Tables Detection and it actually

belongs in T1. To be added in T2, nullifying e must have made the output null. As the only

other table nullified in this iteration was the first table(which is empty for all iterations), e

must be in a different set than the first table, and as first table is in T1, e must necessarily be

in T2 and thus we contradict the assumption. Similar argument can be used to argue that all

tables added in T1 must necessarily belong there.

So, when there is no Union, Union detector does not affect the working of UNMASQUE at all

and when there is a Union it identifies tables and uses the rest of UNMASQUE as a black box.

20

3.5 Optimization

Similar to the optimization in Disjunction Extractor, in case of second minimization(for case

3), before loading the original database back, first the sampled tables are loaded to see if Y

produces populated output on them. Only failing that original database is loaded back.

21

Chapter 4

Experiments

The new modules were tested against a set of Union and Disjunction queries to verify correct-

ness and to see how much overhead is incurred due to the additions.

All the experiments were run on PostgreSQL[6] hosted on an Intel Xeon 2.3 GHz CPU, 32GB

RAM, Ubuntu Linux equipped machine. Experiments were conducted on TPC-H[7] benchmark

queries which were slightly tweaked to remove nesting and in some cases Disjunction was explic-

itly introduced. For Union experiments select clause in TPC-H queries were slightly changed

such that Union operator can be applied.

As UNMASQUE extracts the hidden ground truth, it is independent of original database as

long as assumptions are met, so to conduct better evaluation we need complexity in queries,

which TPC-H provides. Additionally, TPC-H queries test the performance of new modules

as part of the UNMASQUE system, rather than just checking the performance of standalone

modules.

All of UNMASQUE’s original code-base, other than the change in FilterExtraction module,

was used as a black-box. The modules for Union and Disjunction extraction, make routine

calls to UNMASQUE modules. The algorithms were implemented in Python 3.6 and have been

integrated with UNMASQUE code-base.

All the extracted queries were manually verified to be correct. Both the Disjunction and Union

queries are listed in appendix. Also listed in appendix is output of one run of original UN-

MASQUE on Disjunction and Union queries. The experiments were performed on TPC-H

database of sizes 1 and 10 GB(SF 1 and SF 10).

22

4.1 Disjunction

Queries to evaluate Disjunction performance were slight modification of original TPC-H queries.

Disjunctions were introduced on various types of attribute to cover all edge cases. As IN op-

erator is also a Disjunction, the module was able to extract it too. The time taken to extract

the queries and disjunction is listed in Figure 4.1 (total extraction time= Extraction Time +

Disjunction Time). First, we note that the disjunction extraction module itself takes a lot more

time than the total time taken by all other modules combined. There is varied range of time

consumed(6s-167s) and this is in major part due to selection queries on lineitem table.

Selection queries are necessary to make sure that minimization we end up with is not something

that we have seen earlier. But in case when there is no index on the attribute selection query

is run on, it is a very time-consuming operation. As lineitem table has the most rows out of all

tables in TPC-H, selection operator is especially costly when this table is involved in the query.

Figure 4.1: Time Consumed

As, we can see from the stated algorithm, Disjunction Extraction has two very costly steps:

dbMinimizer and Selection Queries. To further understand the time taken by Disjunction

extraction, the time taken for different minimizations and different selections were summed up

separately and then compared. The results are plotted in Figure 4.2 and 4.3.

23

Figure 4.2: SF1 Time Breakup Figure 4.3: SF10 Time Breakup

One thing to note here was that individual database minimizations took far less time than

the initial minimization and that is because selection reduced the size of source table and that

was because after each selection the table sizes were reduced.

4.2 Union

Union experiments were also done for scale factors 1 and 10. As expected, most of the queries

land in case 3. Query U1 has just the select statements and no filters or joins, thus it lands in

case 1 or 2 and hence the Union overhead for it was size invariant. Time taken for extraction

and the Union overhead for different queries is listed in Figures 4.4 and 4.5.

Figure 4.4: Union Overhead(SF 1) Figure 4.5: Union Overhead(SF 10)

24

Overall Union overhead depends on the size of database but is still pretty small and practical

for offline analysis environment.

4.3 Union vs Union All

Extracted Union queries were not exactly syntactically equivalent to the hidden queries and

this because the Union operator removes duplicates.

So, the queries extracted had some attributes in group by clause which were not present in

original queries and that accounts for this duplication removal. For example, extracted U1

actually was

(select c acctbal from customer group by c acctbal) Union (select l extendedprice from

lineitem group by l quantity)

Here the portion in bold was not present in original query. But the extracted query is still

semantically equivalent to original query. Moreover, these redundant group by’s are later re-

moved during canonicalization.

Union All operator is the same as Union operator except that it does not remove duplicates.

So, the same queries with Union All operator instead of Union operator were extracted as they

were.

25

Chapter 5

Conclusion and Future Work

UNMASQUE now has the ability to extract Disjunction and Union operator under certain

assumptions. There are some restriction on Disjunction operator, but the modifications in Filter

extraction makes sure that even when the assumptions are not met, UNMASQUE extracts at

least one predicate from each clause, which allows Data Generation pipeline to work and hence

some portion of query is still always extracted. Similarly with Union operator, if the assumption

is not met, then at least one out of two queries will always be extracted.

There are some operators that can not be extracted by UNMASQUE yet. One possible direction

for future work would be to come up with new ideas to extract set operations like set difference

and intersection. More fundamentally, formally identifying the capabilities of non-Invasive

extraction remains to be solved.

26

Bibliography

[1] K. Khurana and J. Haritsa. Shedding Light on Opaque Application Queries. Proc. of ACM

SIGMOD Intl. Conf. on Management of Data, Xi’an, China, June 2021 1

[2] Pedro Orvalho, Miguel Terra-Neves, Miguel Ventura, Ruben Martins and Vasco Manquinho.

SQUARES : A SQL Synthesizer Using Query Reverse Engineering. PVLDB, 13(12): 2853-

2856, 2020. 4

[3] M. Zhang, H. Elmeleegy, C. M. Procopiuc, and D. Srivastava. Reverse Engineering Complex

Join Queries. In SIGMOD, 2013. 4

[4] C. Tan, M. Zhang, H. Elmeleegy, and D. Srivastava. Reverse Engineering Aggregation

Queries. PVLDB, 10(11), 2017. 4

[5] W. C. Tan, M. Zhang, H. Elmeleegy, and D. Srivastava. REGAL+: Reverse Engineering

SPJA Queries. PVLDB, 11(12), 2018. 4

[6] http://www.postgresql.org/ 22

[7] http://www.tpc.org/tpch/ 22

27

http://www.postgresql.org/
http://www.tpc.org/tpch/

Chapter 6

Appendix

6.1 Disjunction Queries

Q.1 :

select l returnflag, l linestatus,sum(l quantity) as sum qty, sum(l extendedprice) as sum base price,

sum(l discount) as sum disc price, sum(l tax) as sum charge, avg(l quantity) as avg qty, avg(l extendedprice)

as avg price, avg(l discount) as avg disc ,count(*) as count order

from lineitem

where l shipdate IN (date ’1998-12-01’, date ’1998-11-11’, date ’1992-01-06’)

group by l returnflag, l linestatus

order by l returnflag,l linestatus;

Q.2 :

select l orderkey,sum(l extendedprice) as revenue,o orderdate,o shippriority

from customer,orders,lineitem

where (c mktsegment = ’FURNITURE’ or c mktsegment = ’AUTOMOBILE’) and c custkey

= o custkey and l orderkey = o orderkey and o orderdate < date ’1995-03-29’ and l shipdate

> date ’1995-03-29’

group by l orderkey,o orderdate,o shippriority

order by revenue desc,o orderdate limit 10;

Q.3:

select l shipmode,sum(l extendedprice) as revenue

from lineitem

28

where l shipdate ≥ date ’1994-01-01’ and l shipdate < date ’1994-01-01’ + interval ’1’ year

and (l quantity =42 or l quantity =50 or l quantity=24)

group by l shipmode limit 100;

Q.4:

select AVG(l extendedprice) as avgTOTAL

from lineitem,part

where p partkey = l partkey and (p brand = ’Brand#52’ or p brand = ’Brand#12’) and

(p container = ’LG CAN’ or p container = ’LG CASE’);

Q.5 :

select c mktsegment,MAX(c acctbal)

from customer

where c nationkey IN (1,5,9,10)

group by c mktsegment;

Q.6:

select n name,SUM(s acctbal)

from supplier,partsupp,nation

where ps suppkey=s suppkey and

s nationkey=n nationkey and (n name =’ARGENTINA’ or n regionkey =3) and (s acctbal

> 2000 or ps supplycost < 500)

group by n name;

6.2 Union Queries

U1:

(select c acctbal

from customer)

Union

(select l extendedprice

from lineitem)

U2:

(select sum(l quantity) as sum qty, sum(l extendedprice) as sum base price

from lineitem

29

where l shipdate ≤ date 1́998-12-01́- interval 7́1 days´

group by l returnflag, l linestatus

order by l returnflag, l linestatus)

Union

(select s acctbal,p partkey

from part, supplier, partsupp, nation, region

where p partkey = ps partkey and s suppkey = ps suppkey and p size = 38 and p type like

’%TIN’ and s nationkey = n nationkey and n regionkey = r regionkey and r name = ’MIDDLE

EAST’

order by s acctbal desc, n name, s name, p partkey)

U3:

(select l orderkey, sum(l extendedprice · (1− l discount)) as revenue

from customer, orders, lineitem

where c mktsegment = ’BUILDING’ and c custkey = o custkey and l orderkey = o orderkey

and o orderdate < date ’1995-03-15’ and l shipdate > date ’1995-03-15’

group by l orderkey, o orderdate, o shippriority

order by revenue desc, o orderdate)

Union

(select s acctbal,p partkey

from part, supplier, partsupp, nation, region

where p partkey = ps partkey and s suppkey = ps suppkey and p size = 38 and p type like

’%TIN’ and s nationkey = n nationkey and n regionkey = r regionkey and r name = ’MIDDLE

EAST’

order by s acctbal desc, n name, s name, p partkey)

U4:

(select c name,sum(l extendedprice ∗(1− l discount)) as revenue

from customer, orders, lineitem, nation

where c custkey = o custkey and l orderkey = o orderkey and o orderdate ≥ date ’1994-

01-01’ and o orderdate < date ’1994-01-01’ + interval ’3’ month and l returnflag = ’R’ and

c nationkey=n nationkey

group by c name, c acctbal, c phone, n name, c address, c comment

order by revenue desc)

Union

30

(select ps COMMENT, sum(ps supplycost * ps availqty) as value

from partsupp, supplier, nation

where ps suppkey = s suppkey and s nationkey = n nationkey and n name = ’ARGENTINA’

group by ps COMMENT

order by value desc)

U5

(select s acctbal,p partkey

from part, supplier, partsupp, nation, region

where p partkey = ps partkey and s suppkey = ps suppkey and p size = 38 and p type like

’%TIN’ and s nationkey = n nationkey and n regionkey = r regionkey and r name = ’MIDDLE

EAST’

order by s acctbal desc, n name, s name, p partkey)

Union

(select c acctbal,sum(l extendedprice ∗(1− l discount)) as revenue

from customer, orders, lineitem, nation

where c custkey = o custkey and l orderkey = o orderkey and o orderdate ≥ date ’1994-

01-01’ and o orderdate < date ’1994-01-01’ + interval ’3’ month and l returnflag = ’R’ and

c nationkey=n nationkey

group by c name, c acctbal, c phone, n name, c address, c comment

order by revenue desc)

U6

(select n name, sum(l extendedprice * (1 – l discount)) as revenue

from customer, orders, lineitem, supplier, nation, region

where c custkey = o custkey and l orderkey = o orderkey and l suppkey = s suppkey and

c nationkey = s nationkey and s nationkey = n nationkey and n regionkey = r regionkey and

r name = ’MIDDLE EAST’ and o orderdate geq date ’1994-01-01’ and o orderdate < date

’1994-01-01’ + interval ’1’ year

group by n name

order by revenue desc

limit 100)

Union

(select n name, SUM(s acctbal)

from supplier, partsupp, nation

31

where ps suppkey = s suppkey and s nationkey = n nationkey and (n name=’ARGENTINA’

or n regionkey = 3) and (s acctbal > 2000 or ps supplycost < 500)

group by n name)

6.3 Disjunction Original UNMASQUE Output

Q.1 :

select l returnflag, l linestatus,sum(l quantity) as sum qty, sum(l extendedprice) as sum base price,

sum(l discount) as sum disc price, sum(l tax) as sum charge, avg(l quantity) as avg qty, avg(l extendedprice)

as avg price, avg(l discount) as avg disc ,count(*) as count order

from lineitem

where l shipdate = date ’1998-12-01’

group by l returnflag, l linestatus

order by l returnflag,l linestatus;

Q.2 :

select l orderkey,sum(l extendedprice) as revenue,o orderdate,o shippriority

from customer,orders,lineitem

where c mktsegment = ’FURNITURE’ and c custkey = o custkey and l orderkey = o orderkey

and o orderdate < date ’1995-03-29’ and l shipdate > date ’1995-03-29’

group by l orderkey,o orderdate,o shippriority

order by revenue desc,o orderdate limit 10;

Q.3:

select l shipmode,sum(l extendedprice) as revenue

from lineitem

where l shipdate ≥ date ’1994-01-01’ and l shipdate < date ’1994-01-01’ + interval ’1’ year

and l quantity =42

group by l shipmode limit 100;

Q.4:

select AVG(l extendedprice) as avgTOTAL

from lineitem,part

where p partkey = l partkey and p brand = ’Brand#52’ and p container = ’LG CASE’;

32

Q.5 :

select c mktsegment,MAX(c acctbal)

from customer

where c nationkey = 5

group by c mktsegment;

Q.6:

select n name,SUM(s acctbal)

from supplier,partsupp,nation

where ps suppkey=s suppkey and

s nationkey=n nationkey and n name =’ARGENTINA’ and s acctbal > 2000

group by n name;

6.4 Union Original UNMASQUE Output

U1:

select c acctbal as l extendedprice

from customer, lineitem

U2:

select sum(l quantity) as sum qty, sum(l extendedprice) as sum base price

from lineitem,part,supplier,partsupp,nation,region

where l shipdate ≤ date 1́998-12-01́- interval 7́1 days´

group by l returnflag, l linestatus

order by l returnflag, l linestatus

U3: select s acctbal as l orderkey,p partkey as revenue

from part, supplier, partsupp, nation, region, customer,orders,lineitem

where p partkey = ps partkey and s suppkey = ps suppkey and p size = 38 and p type like

’%TIN’ and s nationkey = n nationkey and n regionkey = r regionkey and r name = ’MIDDLE

EAST’

order by s acctbal desc, n name, s name, p partkey

U4:

select c name,sum(l extendedprice ∗(1− l discount)) as revenue

from customer, orders, lineitem, nation, partsupp, supplier, nation

33

where c custkey = o custkey and l orderkey = o orderkey and o orderdate ≥ date ’1994-

01-01’ and o orderdate < date ’1994-01-01’ + interval ’3’ month and l returnflag = ’R’ and

c nationkey=n nationkey

group by c name, c acctbal, c phone, n name, c address, c comment

order by revenue desc

U5

select s acctbal as c acctbal,p partkey as revenue

from part, supplier, partsupp, nation, region, customer, orders, lineitem

where p partkey = ps partkey and s suppkey = ps suppkey and p size = 38 and p type like

’%TIN’ and s nationkey = n nationkey and n regionkey = r regionkey and r name = ’MIDDLE

EAST’

order by s acctbal desc, n name, s name, p partkey

U6

select n name, sum(l extendedprice * (1 – l discount)) as revenue

select n name, SUM(s acctbal)

from supplier, partsupp, nation, customer, orders, lineitem, region

where ps suppkey = s suppkey and s nationkey = n nationkey and (n name=’ARGENTINA’

) and (s acctbal > 2000)

group by n name

34

	Acknowledgements
	Abstract
	Contents
	List of Figures
	1 Introduction
	1.1 UNMASQUE
	1.2 Related Work
	1.3 Contributions
	1.4 Organization

	2 Disjunction
	2.1 Background
	2.2 Modifications to Filter Extraction
	2.3 Disjunction Extraction
	2.3.1 Assumptions
	2.3.2 Extraction

	2.4 Correctness
	2.5 Optimization

	3 Union
	3.1 Background
	3.2 Assumptions
	3.3 Extraction
	3.4 Correctness
	3.5 Optimization

	4 Experiments
	4.1 Disjunction
	4.2 Union
	4.3 Union vs Union All

	5 Conclusion and Future Work
	Bibliography
	6 Appendix
	6.1 Disjunction Queries
	6.2 Union Queries
	6.3 Disjunction Original UNMASQUE Output
	6.4 Union Original UNMASQUE Output

