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Abstract

Association rules are interesting correlations among attributes in a database. These rules
have many applications in areas ranging from e-commerce to sports to census analysis
to medical diagnosis. The discovery of association rules is an extremely computationally
expensive task and it is therefore imperative to have fast scalable algorithms for mining
these rules. In this thesis, we present efficient techniques for discovering association rules
from large databases and for removing redundancy from these rules so as to improve the
quality of output. We also handle growing databases.

Specifically, we present three new algorithms: (1) ARMOR: This algorithm discovers
association rules from databases and requires at most two database scans. We empirically
show its performance to be within a factor of two of an unachievable lower bound. (2)
g-ARMOR: This is an extension to ARMOR that is designed to remove redundancy from
association rules during the mining process. This is especially important because the
number of association rules generated in typical mining operations runs into the tens
of thousands. g-ARMOR results in an orders of magnitude reduction in the number of
rules thereby making the mining output comprehensible to end users. (3) DELTA: This
algorithm incrementally mines evolving databases. It utilizes previous mining results to
efficiently mine the current database after it has been updated with fresh data. It also
handles situations where the mining specifications over the current database differ from

those used over the original database, a common occurrence in practice.
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Chapter 1

Introduction

1.1 Motivation

Consider a supermarket with a large collection of items. Typical business decisions that
the management of the supermarket has to make include what to put on sale, how to
design the store layout, what promotional strategies to consider, etc. Analysis of past
sales data is a commonly used approach in order to improve the quality of such decisions.
Until recently, however, only global data about the cumulative sales during some time
period (a day, a week, a month, etc.) was available on the computer. Progress in bar-
code technology has made it possible to store the so called basket data that stores items
purchased on a per-transaction basis. Basket data type transactions do not necessarily
consist of items bought together at the same point of time. It may consist of items bought
by a customer over a period of time. Examples include monthly purchases by members
of a book club or a music club.

Several organizations have collected massive amounts of such data. These data sets
are usually stored on tertiary storage and are slowly migrating to database systems.
Discovering associations between items, also known as association rules, enables such
organizations to make informed business decisions. An example of such an association
rule is: “30% of transactions that contain Surf washing powder and Rin detergent bar

also contain Comfort fabric softener; 2% of all transactions contain all three of these
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items together”. The antecedent of this rule consists of Surf and Rin and the consequent
consists of Comfort alone. Here 90% is called the confidence of the rule, and 2% the
support of the rule. Both the antecedent and consequent may contain multiple items.
Given a market-basket database, it is desirable to find association rules that have
high confidence and support (i.e. those satisfying a user-specified minimum confidence
and minimum support). The confidence measure represents the strength of a rule or its
likelihood of being true. The support of a rule represents its statistical significance (a rule
with very low support is not statistically significant) and its applicability (a rule with high
support is applicable in many transactions). Finding such association rules is valuable for

many applications:

1. Cross marketing: Refers to suggesting customers to buy additional products based

on those that they have already purchased.

2. Attached mailing: Refers to promotional offers that are attached to mails sent on a

direct marketing campaign of some particular product.

3. Catalog design: Catalog pages that contain description of some product could, in ad-
dition, contain information regarding other products that are frequently purchased

along with it.
4. Add-on sales: Refers to selling multiple products together at discounted rates.

5. Store layout: Items that are frequently purchased together could be placed near each
other in the store so that customers would tend not to overlook them. Alternatively,
they may be placed far away from each other, so that customers may pick up other

items on the way.

Other Applications: Besides super-market basket analysis, association rule discovery
has been applied in numerous other areas such as e-commerce, sports, analysis of census
data and medical diagnosis. For example, in immunology it is often required to test a

patient for sensitivity to various allergens. These tests are expensive and patients usually
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have incomplete knowledge of possible allergens. Association rules such as “allergy to latex
rubber usually co-occurs with allergies to banana and tomato” would be very valuable in
deciding what allergens to test for.

The discovery of association rules is a computationally expensive task. Further, market
basket databases are typically very large. It is therefore imperative to have fast scalable
techniques for mining them. In this thesis, we present efficient techniques for discovering
association rules from large databases and for removing redundancy from these rules so

as to improve the quality of output. We also handle growing databases.

1.2 Data Mining

Association rule discovery is part of a larger field of study called data mining — a field
that consists of techniques to automatically find interesting patterns and trends in large
collections of data. In this Section, we provide a brief introduction to the broad area of
data mining that has been extracted and summarized from [HKO1].

Human capabilities of both generating and collecting data have been increasing rapidly
in the last several decades. Contributing factors include the computerization of many
business, scientific and government transactions, and advances in data collection tools
ranging from scanned text and image platforms to satellite remote sensing systems. In
addition, popular use of the World Wide Web as a global information system has flooded
us with a tremendous amount of data and information. This explosive growth in stored
data has generated an urgent need for new techniques and automated tools that can
intelligently assist us in transforming the vast amounts of data into useful information
and knowledge.

Knowledge Discovery in Databases (KDD) is the automated extraction of novel, un-
derstandable and potentially useful patterns implicitly stored in large databases, data
warehouses and other massive information repositories. KDD is a multi-disciplinary field,
drawing work from areas including database technology, artificial intelligence, machine
learning, neural networks, statistics, pattern recognition, information retrieval, high-

performance computing and data visualization.
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Data mining is an essential step in the process of knowledge discovery in databases,
in which intelligent methods are applied in order to extract patterns. Other steps in the
knowledge discovery process include pre-mining tasks such as data cleaning (removing
noise and inconsistent data) and data integration (bringing data from multiple sources
to a single location and into a common format), as well as post-mining tasks such as
pattern evaluation (identifying the truly interesting patterns representing knowledge) and
knowledge presentation (presenting the discovered rules using visualization and knowledge
representation techniques).

Many types of “interesting patterns” have been identified in the research literature
and association rules constitute one such type. Data mining tasks to find these various

patterns include:

1. Characterization: Data characterization is a summarization of the general charac-
teristics or features of a user-specified target class of data. For example, the user
may like to characterize software products whose sales increased by 10% in the last
year. The output of data characterization can be presented in various forms such

as pie charts, bar charts, multidimensional tables and data cubes.

2. Discrimination: Data discrimination is a comparison of the general features of a
user-specified target class data objects with the general features of objects from one
or a set of (user-specified) contrasting classes. For example, the user may like to
compare the general features of software products whose sales increased by 10% in
the last year with those whose sales decreased by at least 30% during the same

period.

3. Association Analysis: Association analysis is the discovery of association rules show-
ing attribute-value conditions that occur frequently together in a given set of data.
Association analysis is widely used for market basket or transaction data analysis

and forms the subject matter of this thesis.

4. Classification and Regression: Classification is the process of finding a set of models

that describe and distinguish data classes or concepts, for the purpose of being able
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to use the model to predict the class of objects whose class label is unknown. The
derived model is based on the analysis of a set of training data. While classification
predicts a categorical value, regression is applied if the field being predicted comes
from a real-valued domain. Common applications of classification include credit

card fraud detection, insurance risk analysis, bank loan approval, etc.

5. Cluster Analysis: Objects in a database are clustered or grouped based on the princi-
ple of maximizing intraclass similarity and minimizing interclass similarity. Unlike
classification which has predefined labels, clustering must in essence automatically
come up with the labels. Applications of clustering include demographic or market
segmentation for identifying common traits of groups of people, discovering new

types of stars in datasets of stellar objects, and so on.

6. Outlier Analysis: Outliers are data objects that do not comply with the general
behaviour or model of the data. Most data mining methods discard outliers as
noise or exceptions. However, in some applications such as fraud detection, the

analysis and mining of outliers is crucial.

7. Evolution Analysis: Data evolution analysis describes and models regularities or
trends for objects whose behaviour changes over time. Although this analysis may
include any of the above functionalities on time-related data, distinct features of
such an analysis include time-series data analysis, sequence or periodicity pattern

matching, and similarity-based data analysis.

In general, data mining tasks can be classified into two categories: descriptive and predic-
tive. Descriptive mining tasks characterize general properties of the data in the database.
Examples include association rule discovery and clustering. On the other hand, predic-
tive mining tasks perform inference on the current data in order to make predictions.
Examples of predictive mining tasks include classification and regression.

We add a remark here that apart from the applications mentioned in the previous
section, association rules have also been shown to be useful for classification [LHM98] and

clustering [HKKMO97] tasks. In [LHM98], association rules for each class in a classification
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model are mined separately and then used to predict the class of objects whose class label
is unknown. In [HKKM97], association rules are used to construct a hypergraph, and a
hypergraph partitioning algorithm is used to find clusters of related items. This knowledge
is then used to cluster the actual transactions in the database. These studies have shown
that association rule mining enables efficient classification and clustering especially for
databases that are large (in terms of either the number of transactions or the number of

items).

1.3 Association Rule Mining

As has been explained earlier, association rule mining searches for interesting correlations
among items in a given data set. It was originally proposed almost a decade ago, in
[AIS93], and has since then attracted enormous attention in both academia and industry.
In this section, we provide a formal description of the association rule mining problem
along with an outline of the solution strategy and explain why the problem is technically
challenging. We also briefly describe various extensions to the basic model that have been

proposed in the research literature.

1.3.1 Problem Description

The inputs to this model are Z, a set of items sold by the store, and D, a database
of customer purchase transactions. In this context, an association rule is a (statistical)
implication of the form X — Y, where XY C 7 and X NY = ¢. Given an itemset X
(i.e. a set of items), X C Z, its tidset is defined as #(X) = set of tids of transactions that
contain X. The support of X is defined as support(X) = |t(X)|/|D|. The confidence of
the rule X — Y is given by [t(X UY)|/|t(X)|, while its support is equal to support(X U
Y). The problem then, is to find all association rules whose confidence is not less than
mincon f and whose support is not less than minsup where mincon f and minsup are user-
specified parameters. Such rules are expected to be “interesting”. Alternative measures

of interestingness of rules are discussed in Chapter 3.
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Solution Strategy: It has been observed in [AIS93] that association rule mining can
be decomposed into two sub-tasks: (1) Find all frequent itemsets (i.e. itemsets whose
support is not less than minsup). Algorithms that discover frequent itemsets usually
follow the strategy of isolating itemsets that are potentially frequent (called candidate
itemsets) and then compute the number of their occurrences (also called counts) over
the database. The process of determining the counts of these itemsets is often referred
to as counting. (2) For each discovered frequent itemset Z, generate rules of the form
X — (Z — X), VX C Z and output those whose confidence is not less than minconf.
The confidence of any of these rules can be calculated as support(Z)/support(X). The
support of Z would be available from step 1 of the solution strategy since it is frequent.
Note that X, being a subset of Z, would also be frequent since it must be present in all
transactions that contain Z. Therefore, its support would also be available from step 1
of the solution strategy. This result, originally from [AIS93], is highlighted in the lemma

below.

Lemma 1 All subsets of a frequent itemset are also frequent.

Technical Challenges: In spite of the simplicity and elegance of the problem statement
of association rule mining, it is difficult to solve satisfactorily. The first sub-task described
above, which is to determine the frequent itemsets, is extremely computationally intensive
and has been the focus of most of the research efforts on association rule mining. While the
computational complexity of the second sub-task in terms of response-time performance
is almost negligible in comparison, it has two major problems: (1) Rule quantity:
too many rules are usually generated, and (2) Rule quality: not all of the rules are
interesting. Both these problems are strongly related because approaches to identify
interesting rules would automatically mitigate the rule quantity problem since only the

interesting rules would be output.
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1.3.2 Extensions

Rules generated by the basic association rule model discussed above are referred to as
boolean association rules in the mining literature since the only relevant information in
each database transaction is the presence or absence of an item. For brevity, we denote
boolean association rule mining as BA R-mining. Many kinds of rules have been proposed
in the research literature as extensions to BAR-mining. These include hierarchical, quan-
titative, categorical, cyclic, constrained and sequential rules. We briefly describe each of

these extensions below:

1. Hierarchical Rules: It is possible to extract a semantically richer set of rules, called
hierarchical rules [SA95], from a transaction database if an is-a hierarchy over the
set, of items in the database is provided. For example, given that sweaters and ski
jackets are both instances of winter wear, the rules output could contain a “pseudo-
item” called winter wear to denote “either sweater or ski jacket or both”. An

example of a hierarchical rule would be: winter wear — hiking boots.

2. Quantitative and Categorical Rules: Relational tables in most business and scientific
domains have richer attribute types than the boolean attributes considered in the
basic problem for transactional databases. Attributes can be quantitative (e.g.
age, income) or categorical (e.g. zip code, make of car). The problem of mining
association rules over such attributes in relational databases has been addressed in
[SA96]. An example of such a rule would be: (Age: 30...39) and (Married: Yes)

— (NumCars: 2).

3. Cyclic Rules: These rules, proposed in [ORS98]|, are association rules that display
regular cyclic variation over time. For example, if we compute association rules
over monthly sales data, we may observe seasonal variation where certain rules are
true at approximately the same month each year. Discovering such rules and their
periodicities may reveal interesting information that can be used for prediction and

decision making.
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4. Constrained Rules: In [NLHP98]|, the authors propose constrained rules as a means
of specifying constraints (including domain, class and SQL-style aggregate con-
straints) to be satisfied by the antecedent and consequent of a mined association rule.
For example, the user may want to find associations between itemsets whose types
do not overlap, or associations from itemsets whose total price is under Rs.1,000 to

itemsets whose average price is at least Rs.10,000.

5. Sequential Rules: While standard boolean association rules find associations be-
tween items within a single transaction, sequential rules, proposed in [AS95], dis-
cover associations between items purchased at different times. An example of such
a rule is: customers typically rent “Star Wars”, then “Empire Strikes Back” and

then “Return of the Jedi”.

BAR-mining is an important component in mining all of the above types of pat-
terns. Previous works on generating hierarchical, quantitative and categorical rules
(e.g. [SA95, SA96]) have shown that albeit requiring some preprocessing, these prob-
lems are finally reducible to BAR-mining. For cyclic and constrained rules, the authors
in [ORS98, NLHP98|, have integrated their techniques with existing BAR-mining al-
gorithms. In [AS95], the strategy recommended for mining sequential rules includes a
preprocessing stage that consists of standard BAR-mining. These examples, combined
with the fact that BAR-mining can be successfully applied for classification and cluster-
ing tasks (refer Section 1.1) indicate that BAR-mining is an important “high-impact”

problem. Therefore, in this thesis we mainly focus on BAR-mining.

1.4 Thesis Contributions

Various issues arise in BAR-mining including the efficiency of algorithms for the task, the
conciseness of results that are output by these algorithms and the re-mining of a database
after it has been updated with fresh data. Each of these issues are introduced below and

are addressed in this thesis.
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1.4.1 Issue 1: Efficiency of Algorithms

Market basket databases are typically very large and BAR-mining is computationally in-
tensive due to the requirement of having to discover frequent itemsets in the data. It
is therefore imperative to have fast scalable algorithms for this task. After the initial
algorithms proposed in [AIS93, AS94], there have been a whole host of algorithms for ad-
dressing this problem (see Chapter 3). These algorithms have concentrated on improving
both I/O costs by reducing the number of passes over the transaction database, and CPU
costs by improving the efficiency of itemset counting techniques.

While the above efforts have certainly resulted in a variety of novel algorithms, each
in turn claiming to outperform its predecessors on a representative set of databases, no
logical end appears to be in sight. Therefore, in this thesis, we focus our attention on
the question of how much space remains for performance improvement over current BAR-
mining algorithms. The environment we consider, similar to the majority of the prior
art in the field, is one where the data mining system has a single processor and the
pattern lengths in the database are small enough that the frequent itemsets along with
intermediate results produced by mining algorithms can fit in main memory. The case of
longer patterns is discussed in Section 1.4.2.

Within the above framework, we make the following contributions (published in
[PHO02a, PHO2b]):

First, we introduce the notion of an “Oracle algorithm” that knows in advance
the identities of all frequent itemsets in the database and only needs to gather the ac-
tual supports of these itemsets to complete the mining process. Clearly, any practical
algorithm will have to do at least this much work in order to generate mining rules.
Thus, this “Oracle approach” permits us to clearly demarcate the maximal space avail-
able for performance improvement over the currently available algorithms by comparing
their performance against that of the Oracle. Further, it enables us to construct new
mining algorithms from a completely different perspective, namely, as minimally-altered
deriwatives of the Oracle.

Second, we present a carefully engineered implementation of Oracle that makes the
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best choices of data structures and database organizations (w.r.t. the enumeration of
itemsets being counted). Our experimental results show that there is a considerable gap
in the performance between the Oracle and existing mining algorithms.

Finally, we present a new mining algorithm, called ARMOR (Association Rule Min-
ing based on ORacle), whose structure is derived by making minimal changes to the
Oracle, and is guaranteed to complete in two passes over the database. Although AR-
MOR is derived from the Oracle, it may be seen to share the positive features of a variety
of previous algorithms such as PARTITION [SON95], CARMA [Hid99], AS-CPA [LD98]
and VIPER [SHST00]. Our empirical study shows that ARMOR performs within a factor
of two of the Oracle, over both real and synthetic databases for practical ranges of support

specifications.

1.4.2 Issue 2: Conciseness of Results

The number of association rules generated in typical mining operations could run into
the thousands, tens of thousands or even more. This makes it impractical for manual
examination of the mining output [LHM99]. While this is true for sparse datasets where
frequent itemsets are “short”, it is often impractical to even generate all frequent itemsets
and their associated supports for dense datasets. For instance, if the length of frequent
itemsets grow beyond a mere thirty, the total number of frequent itemsets exceeds one
billion! This result is due to the fact that all subsets of a frequent itemset must also be
frequent (see Lemma 1).

In this thesis, we present techniques to reduce the output size of BAR-mining algo-
rithms by identifying and pruning “redundant” rules. For this, we propose the generalized
closed itemset framework (also referred to as g-closed itemset framework), published in
[PHO3a, PHO3b]. In our scheme, we do not output ezact supports of frequent itemsets
— however, the supports of frequent itemsets can be estimated within a deterministic,
user-specified “tolerance” factor. We empirically show that after removing redundant
rules, our scheme results in exponentially fewer rules for most datasets and support spec-

ifications than the total number of frequent itemsets, even by allowing for a very small
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tolerance. Our experiments were run on a variety of databases, both real and synthetic
as well as sparse and dense, to confirm that the scheme works across a broad spectrum of
database schemas and contents.

A side-effect of allowing for a tolerance in itemset supports is that the supports of some
“borderline” infrequent itemsets may be over-estimated causing them to be incorrectly
identified as frequent. We feel that this is acceptable in most mining scenarios for tolerance
factors that are much less than the minimum support threshold. As such, by allowing for
the tolerance factor, the user has authorized the supports of these borderline itemsets to
be estimated above the minimum support. Finally, we ensure that no false negatives are
ever produced — all frequent itemsets are correctly identified as frequent.

Our scheme can be used in one of two ways: (1) as a post-processing step of the mining
process, or (2) as an integrated solution. We show that our scheme can be integrated
into both levelwise algorithms as well as the more recent two-pass mining algorithms. We
chose the classical Apriori algorithm [AS94] as a representative of the levelwise algorithms
and the ARMOR algorithm [PHO2b] (proposed in this thesis), as a representative of the
class of two-pass mining algorithms. Integration into Apriori yields a new algorithm, g-
Apriori and into ARMOR, yields g-ARMOR. Our experimental results show that these
integrations often result in a significant reduction in response-time, especially for dense
datasets.

We note that integration of our scheme into two-pass mining algorithms is a novel and
important contribution because two-pass algorithms have several advantages over Apriori-
like levelwise algorithms. These include: (1) significantly less I/O cost, (2) significantly
better overall performance as shown in [PT01, PHO2b], and (3) the ability to provide
approximate supports of frequent itemsets at the end of the first pass itself, as in [Hid99,
PHO2b]. This ability is an essential requirement for mining data streams [MMO02] as it is

infeasible to perform more than one pass over the complete stream.
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1.4.3 Issue 3: Re-mining

In many business organizations, the historical database is dynamic in that it is periodically
updated with fresh data. For such environments, data mining is not a one-time operation
but a recurring activity, especially if the database has been significantly updated since
the previous mining exercise. Repeated mining may also be required in order to evaluate
the effects of business strategies that have been implemented based on the results of the
previous mining. In an overall sense, mining is essentially an exploratory activity and
therefore, by its very nature, operates as a feedback process wherein each new mining is
guided by the results of the previous mining.

In the above context, it is attractive to consider the possibility of using the results of the
previous mining operations to minimize the amount of work done during each new mining
operation. That is, given a previously mined database DB and a subsequent increment
db to this database, to efficiently mine db and DBUdb. Mining db is necessary to evaluate
the effects of business strategies; whereas mining DB U db is necessary to maintain the
updated set of mining rules. This issue of “incremental” mining is also addressed in this
thesis. Practical applications where incremental mining techniques are especially useful
include data warehouses and web mining since these systems are constantly updated with
fresh data — on the web, for instance, about one million pages are added daily [GRRS99].

In this thesis, we present and evaluate an incremental mining algorithm called DELTA
(Differential Evaluation of Large iTemset Algorithm), published in [PH00]. DELTA rep-
resents a practical algorithm that can be effectively utilized for real-world databases.
DELTA mines the frequent itemsets in both db as well as in DB U db and guarantees that
the entire mining process is completed in at most three passes over the increment and one
pass over the previous database. We expect that such bounds will be useful to businesses
for the proper scheduling of their mining operations.

DELTA can handle multi-support environments, where the minimum support specified
by the user for the current database is not the same as for the previous database. It
requires only one additional pass over the current database to achieve this functionality.

By integrating optimizations previously proposed for first-time hierarchical mining
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algorithms, the DELTA design has been extended to efficiently handle incremental min-
ing of hierarchical association rules. This illustrates the point noted in Section 1.3.2
that extensions to the basic association rule model including hierarchical, categorical and
quantitative rules are finally reducible to BAR-mining.

The performance of DELTA is evaluated on a variety of dynamic databases and com-
pared with that of Apriori and the previously proposed incremental mining algorithms for
boolean association rules. For hierarchical association rules, we compare DELTA against
the Cumulate first-time mining algorithm presented in [SA95]. All experiments are made
on databases that are significantly larger than the entire main memory of the machine on
which the experiments were conducted. The effects of database skew are also modeled.
The results of our experiments show that DELTA can provide significant improvements in
execution times over the previous algorithms in all these environments. Further, DELTA’s
performance is comparatively robust with respect to database skew.

We also include in our evaluation suite the performance of an an Oracle that has
complete apriori knowledge of the identities of all the frequent itemsets both in the current
database as well as in the increment and only requires to find their respective counts. Our
experiments show that DELTA’s efficiency is close to that obtained by the oracle for many
of the workloads considered in our study. This shows that DELTA is able to extract most
of the potential for using the previous results in the incremental mining process.

A final remark: Our work on incremental mining presented in this thesis was actually
done prior to our work on the other two issues discussed above. However, for pedagogical

reasons, we present it in the end.

1.4.4 Overall Architecture

In summary, the overall architecture for BAR-mining that we advocate in this thesis is
shown in Figure 1.1. The user inputs the database and the following mining parameters —
minimum support, minimum confidence and the tolerance factor for support approxima-
tion. The BAR-mining system performs the required processing by accessing the database

and first produces concise frequent itemsets and other intermediate results. These results
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Figure 1.1: Architecture for BAR-mining

are then used to form the association rules that are presented to the user. In this the-
sis, we present the ARMOR algorithm for first-time mining, followed by the g-ARMOR
algorithm which is an enhancement of ARMOR to remove redundancy from the output.

Finally, we present the DELTA algorithm to handle re-mining in an incremental fashion.

1.5 Organization

The remainder of this dissertation is organized in the following fashion: In Chapter 2,
we describe the overall methodology and scope of our work. Next, in Chapter 3, we
review the published research related to our work. In Chapter 4, we present the Oracle
approach using which we evaluate the performance of current BAR-mining algorithms.
In this chapter we also present and evaluate the ARMOR algorithm for BAR-mining.
Next, in Chapter 5 we present the g-closed itemset framework along with the g-Apriori
and g-ARMOR algorithms for mining frequent g-closed itemsets. The DELTA algorithm
for incremental mining is presented and evaluated in Chapter 6. Finally, Chapter 7

summarizes the main contributions of our study and outlines future avenues to explore.



Chapter 2

Methodology and Scope

The problem of BAR-mining has been described in the previous chapter. In this chapter,
we describe the overall methodology and scope of this thesis in terms of the database,
system and pattern characteristics considered in our study. Our choices are such that
they match those selected in the majority of the previous studies. For ease of reference,

we also describe at the end of this chapter, the notation used throughout this thesis.

2.1 Database and System Characteristics

Conceptually, a market-basket database is a two-dimensional matrix where the rows rep-
resent, individual customer purchase transactions and the columns represent the items
on sale. This matrix can be implemented in the following four different ways [SHS™00],

which are pictorially shown in Figure 2.1:

Item-vector (IV): The database is organized as a set of rows with each row storing a
transaction identifier (TID) and a bit-vector of 1’s and 0’s to represent for each of

the items on sale, its presence or absence, respectively, in the transaction.

Item-list (IL): This is similar to IV, except that each row stores an ordered list of item-

identifiers (IID), representing only the items actually purchased in the transaction.

Tid-vector (TV): The database is organized as a set of columns with each column

16
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storing an IID and a bit-vector of 1’s and 0’s to represent the presence or absence,

respectively, of the item in the set of customer transactions.

Tid-list (TL): This is similar to TV, except that each column stores an ordered list of

only the TIDs of the transactions in which the item was purchased.
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Figure 2.1: Comparison of Data Layouts

While a mining algorithm is free to dynamically change the database layout during the

mining process, we assume that the initial database is always provided in the horizontal

item-list (IL) format.

System Characteristics While there has been significant work in designing algorithms

for the parallel mining of association rules [AS96, HKK97, ZPOL97b, PZOLO1], in this

study we focus on single processor environments. We also assume that the available main

memory in the system is typically much smaller than the database size.

2.2 Pattern Characteristics

In this section, we describe the patterns that are output by the mining algorithms devel-

oped in this thesis.
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2.2.1 Boolean Association Rules

In most of this thesis, we restrict our attention to the problem of generating boolean
association rules where the only relevant information in each database transaction is the
presence or absence of an item. As mentioned in Chapter 1, BAR-mining is an important
component in mining other patterns such as hierarchical rules, quantitative rules, etc. In
order to illustrate this point, we include the incremental mining of hierarchical rules in

Chapter 6.

2.2.2 Negative Border

In designing algorithms in this thesis, we often utilize the concept of the negative bor-
der [Toi96] of a set of itemsets. Intuitively, the negative border consists of minimal
infrequent itemsets. More formally, the negative border N of a set of itemsets F' is de-
fined as follows: An itemset X belongs to N iff X € F but all subsets of X are in F.
Algorithms that mine the collection of frequent itemsets also typically generate the item-
sets in its negative border and their associated supports. The negative border information

is important in BAR-mining due to the following reasons:

e It has been shown in [MGKS97, MT97] that in certain restricted models of compu-
tation all the itemsets in the negative border have to be examined. In particular, it

was shown that:

Theorem 1 Any algorithm that computes the set of frequent itemsets and accesses
the data using only queries of the following form: “Is itemset X frequent?” must

use at least |N| such queries.

e The negative border information has been found to be especially useful in the design

of incremental mining algorithms [PH00, TT97, F+97].

Due to these reasons, we include the negative border as required output in all the algo-

rithms that we design in this thesis.
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2.2.3 g¢-Closed Itemsets

In Chapter 5, we introduce the concept of g-closed itemsets for removing redundancy
from mining results. The set of frequent g-closed itemsets is such that it is typically much
smaller than the set of all frequent itemsets. However, the identities and supports of all
frequent itemsets can be estimated from those of the frequent g-closed itemsets. The
discrepancy in estimation of supports is guaranteed to be within a user-specified tolerance

factor e.

2.2.4 Pattern Length

In this thesis, while designing algorithms to discover all frequent itemsets, the environment
we consider is of sparse databases where the pattern lengths in the database are small
enough that the frequent itemsets along with intermediate results can fit in main memory.
It is infeasible to consider longer patterns when mining all frequent itemsets because the

number of frequent itemsets grows exponentially with increasing pattern lengths.

Figure 2.2: Complete Itemset Lattice for Items {A,B,C,D}

Further, we consider only bottom-up approaches to enumerate the solution space consisting
of the lattice of all possible itemsets (see Figure 2.2 for an example of such a lattice).
When mining all frequent itemsets, there would be no particular advantage in counting
the support of an itemset X before counting the supports of its subsets. This is because
even if X is frequent, its subsets have to be counted anyway. An exception to this rule

would occur when there are itemsets that have supersets with ezactly equal supports. The
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number of such itemsets is likely to be small in sparse databases. However, we address this
issue in Chapter 5, where we introduce the g-closed itemset framework that is designed

to handle both sparse and dense databases.

2.3 Mining Algorithms Input/Output

In this section, we define the input and output of the algorithms that we develop in this
thesis. However, we do not impose the restrictions implied in these definitions to algo-
rithms that have been developed elsewhere. For example, although we require standard
first-time mining algorithms developed in this thesis to include the negative border of fre-
quent itemsets as part of the output, we recognize algorithms that have been developed

elsewhere that do not meet this requirement.

2.3.1 First-Time Mining

All standard first-time online mining algorithms in our study take as input the database
D in item-list (IL) format and the minimum support threshold minsup and produce
as output the set of frequent itemsets F' and its negative border N along with their
corresponding supports.

The Oracle algorithm for first-time mining, on the other hand, takes as input the
database D in item-list (IL) format, the set of frequent itemsets F' and its negative border

N, and produces as output the supports of itemsets in F'U N.

2.3.2 Redundancy Removal

The algorithms that we propose in this thesis to remove redundancy from the mining
results take as input the database D in item-list (IL) format, the minimum support
threshold minsup and the tolerance factor €, and produce as output the set of frequent

g-closed itemsets and its negative border along with their corresponding supports.
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2.3.3 Incremental Mining

Incremental mining algorithms take as input the original database DB, the increment
db (may consist of both insertions and deletions to DB), the original minimum support
threshold minsuppp, the new minimum support threshold minsupppua, the set of previ-
ous frequent itemsets Fpp, its negative border Nppg, and their associated supports. The
output is the updated versions of the frequent itemsets and their negative border, namely,
Fppuay and Nppugy along with their supports. In addition, the mining results for solely

the increment, namely, Fy, U Ny, are also output.

2.4 Implementation Complexity and Platforms

All mining algorithms that have been designed/evaluated in our work are implemented
in standard C++4. The code is highly portable and currently supports Linux, Solaris and
Irix. The entire source code written in our implementation spans 129 files and includes
42,048 lines of code. In addition to this, several programs were written using the Bash
and Perl scripting languages to automate many of the tasks in evaluating the mining
algorithms. These tasks include formatting of the input to the implemented algorithms,
timing their response times and using their output to generate graphs to compare their

performance.

2.5 Notation

For ease of exposition and reference, we will use the notation shown in Table 2.1 in the

remainder of this thesis.
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Frequent Itemset Mining Algorithms Input/Output

A Set of items in the database
D Database of customer purchase transactions
minsup User-specified minimum rule support
mancon f User-specified minimum rule support
F Set of frequent itemsets in D
N Negative border of F’
support(X) Support of itemset X
t(X) Tidset of itemset X
i(T) Set of items that are common to transactions in T
For Oracle, ARMOR and g-ARMOR Algorithms
PP, .. P, Set of n disjoint partitions of D
d No of transactions in partitions scanned so far
during algorithm execution ezcluding the current partition
dr No of transactions in partitions scanned so far
during algorithm execution including the current partition
g DAG structure to store candidates during algorithm execution
For g-Apriori and g-ARMOR Algorithms
c(X) Closed itemset corresponding to itemset X
g9(X) g-Closed itemset corresponding to itemset X
€ Tolerance factor
Cy, Set of candidate k-itemsets
Gy Set of frequent k-generators
G Set of all frequent generators produced so far

For the DELTA Algorithm

DB, db, DB Udb Previous, increment, and current database

MINSUPpPRB

MINSUP D BUdb

MINSUP

Previous Minimum Support Threshold
New Minimum Support Threshold
Minimum Support Threshold when minsuppp = minsupppudp

Fpp, Fg, Fppuay | Set of frequent itemsets in DB, db and DB U db
NppB, Nagy, Nppudr | Negative borders of Fpp, Fg and Fppua

Fknown

Nknown
Infrequent

Infrequentg

Set of known-frequent itemsets during algorithm execution:
Fppuay N (Fpp U Npp)

Negative border of Fipown

Set of known-infrequent itemsets during algorithm execution
Set of known-infrequent (within db) itemsets

during algorithm execution

Table 2.1: Notation



Chapter 3

Related Work

In this chapter, we review the published research related to our work in each of the three
issues described in the Introduction — namely, the efficiency of BAR-mining algorithms,

the conciseness of mining results and incremental mining.

3.1 Efficiency of Algorithms

There have been over thirty BAR-mining algorithms in the research literature. In this
section, we briefly review a representative set of the major algorithms proposed. As
mentioned in Chapter 2, we consider only bottom-up algorithms that were designed to

mine sparse databases.

1. AIS: The very first algorithm was AIS [AIS93]. It was proposed in [AIS93] in which
the problem of BAR-mining was introduced. This is a “multi-pass” algorithm in
which candidate itemsets are generated while scanning the database by extending
known-frequent itemsets with items from each transaction. An estimate of the
supports of these candidates is used to guide whether these candidates need to be
extended further to produce more candidates. It was later discovered in [AS94] that

AIS generates too many candidates and is thereby inefficient.

2. Apriori: The AIS algorithm was followed by the Apriori algorithm [AS94] that was

shown to perform better than AIS by an order of magnitude. The most important

23
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aspect of Apriori is to completely incorporate the subset frequency based pruning
optimization — that is, it does not process any itemset whose subset is known to
be infrequent. It utilizes a data structure called hashtree to store the counters of
candidate itemsets. The main drawback in this algorithm is that it performs n
passes over the database, where n is the length of the longest frequent itemset. In
the k' pass, the counts of candidate itemsets of length k (called k-itemsets) are
obtained. An other drawback is that Apriori follows a tuple-by-tuple approach —
that is, it updates counters of candidate itemsets after reading in each transaction
from the database. It hence suffers from the drawback that much redundant work
(traversal of the data structure holding the counters of itemsets) is performed after

each and every transaction.

3. Partition: The partitioning strategy was introduced in [SON95], wherein the
database is logically divided into a number of disjoint partitions. The Partition
algorithm requires at most two passes and is based on the observation that an item-
set can be globally frequent over the entire database iff it is locally frequent in at
least one partition. The counting strategy in this algorithm computes for each can-
didate itemset, a list of tids of transactions that contain the itemset. These lists
(also referred to as tid-lists) are computed separately for each partition and are used

for efficient counting.

4. Sampling: This algorithm, proposed in [Toi96] first mines a random sample of the
database to obtain itemsets that are frequent within the sample. These itemsets
could be considered as a representative of the actual frequent itemsets in applications
where approximate mining results are sufficient. In order to obtain accurate mining
results, this algorithm requires one or two scans over the entire database. The
Sampling algorithm too follows a tuple-by-tuple approach and hence, like Apriori,

suffers from the above mentioned drawback.

5. AS-CPA.: This is a variation of Partition proposed in [LD98] that makes use of the

cumulative count of each candidate to achieve an illusion of a “large partition”. At
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10.

any instant, it stores only the candidates that are frequent over their respective large
partitions. However, there are no details of data-structures or of tid-list computation

in [LDO3].

DIC: In DIC [BMUT97], candidates are generated and removed after every M
transactions where M is a parameter to the algorithm. Although it is a multi-pass
algorithm, it was shown to complete within two passes typically. It however, suffers

from the drawbacks of tuple-by-tuple approaches.

CARMA: This is a 2-pass algorithm proposed in [Hid99] that has the feature of
dynamically generating and removing candidates after each tuple of the database
is processed. Though a novel approach, the CARMA algorithm suffers from the
drawbacks of tuple-by-tuple approaches. It was shown in [Hid99] that while CARMA
did not perform consistently better than Apriori, its memory utilization was less by

an order of magnitude.

FP-growth: After a preprocessing scan over the database, this algorithm proposed
in [HPY00] constructs a condensed representation of the database called an FP-tree

and then performs mining over the FP-tree.

. MaxClique: While the above algorithms were primarily horizontal (tuple) based

approaches, the MaxClique [ZPOL97a] algorithm is designed to efficiently mine

databases that are available in a vertical layout.

VIPER: Unlike earlier vertical mining algorithm which were subject to various
restrictions on the underlying database size, shape, contents or the mining process,
the VIPER [SHS00] algorithm does not have any such restrictions. It includes
many optimizations to enable efficient processing and was shown to outperform

earlier vertical mining algorithms. It also scales well with the database size.

All the above-mentioned studies (except VIPER, as discussed below) have focussed on

evaluating the performance of mining algorithms with respect to their predecessors. In

particular, most of them compare against the classical Apriori online mining algorithm.
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With regard to evaluating the performance of mining algorithms with respect to ideal-
ized, offline algorithms, a preliminary step was taken in our work on incremental mining.
As mentioned in Chapter 1, this work was done prior to our work on the other two issues
addressed in this thesis, but is presented in the end due to pedagogical reasons. In this
work, we compared the DELTA algorithm against the oracle version of Apriori suitably
modified for incremental mining. We refer to this algorithm as Apriori-Oracle. It differs
very much from the Oracle algorithm used in this thesis to evaluate the performance of
first-time mining algorithms in the following significant aspects: (1) The Apriori-Oracle
primarily used the hashtree data structure [AS94] whereas Oracle primarily uses the DAG
structure (as defined in Chapter 4). (2) The Apriori-Oracle does counting with a tuple-
by-tuple approach, while Oracle follows a partitioning approach. (3) Finally, no proofs of
optimality are associated with the Apriori-Oracle. Another version of the Apriori-Oracle

was later used in [SHS*00] for comparison with VIPER.

3.2 Conciseness of Results

The algorithms discussed in the previous section were designed to address the first sub-
task of BAR-mining, which is to generate frequent itemsets. In this section, we review
various approaches to solving the problems associated with the second sub-task, which is to
generate rules from the discovered frequent itemsets. As discussed earlier, these problems
are: (1) Rule quantity: too many rules are usually generated, and (2) Rule quality:
not all of the rules are interesting. Both these problems are strongly related because
approaches to identify interesting rules would automatically mitigate the rule quantity
problem since only the interesting rules would be output. Here, we discuss related work
that primarily addresses the problem of rule quantity. Techniques that primarily address

the problem of rule quality are discussed in Section 3.4.1.
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3.2.1 Post-Mining Rule Pruning Schemes

A number of techniques to discover “redundancy” in association rules have been proposed
that are post-mining rule analysis schemes. That is, they are to be applied after frequent
itemsets have been mined using a standard BAR-mining algorithm (like those discussed
in the previous section).

The concept of association rule covers was proposed in [TKR™95]. In this context, a
cover is a subset of the original set of rules such that for each tuple in the database there is
an applicable rule in the cover. Rules that are not in the cover are considered redundant
and are pruned. In this framework, a rule X — Y “covers” all rules that contain a
superset of X in the antecedent. These latter rules are therefore pruned. A drawback of
this approach is that if these pruned rules have significantly different confidence compared
to the rule that covers them, then clearly, information is lost.

In [AY98], a rule is considered redundant w.r.t another rule, if it is possible to derive
gust the identity of the redundant rule from the latter. Note that we do not need to be
able to derive the support and confidence of the redundant rule. Clearly, information can
be lost in this approach because the support and confidence of the pruned redundant rule
could be significantly different from what is expected by analyzing the non-redundant
rules. Another rule pruning technique was presented in [BAG99| using the concept of
improvement, which is the difference between the confidence of a rule and the confidence
of any proper sub-rule! with the same consequent. Those rules that do not meet a user-
specified minimum improvement threshold are pruned.

The work in [DLI8] introduces the notion of the neighbourhood of a rule. It then de-
fines the interestingness of a rule based on certain parameters of its neighbourhood such
as the average confidence in the neighbourhood, the density of rules, etc. In [LHM99], the
authors used the standard x? test to prune insignificant rules. A general pruning tech-
nique was presented in [SLR99] consisting of several pruning rules to identify and remove
redundant itemsets. These rules are applicable for many different types of patterns such

as associations and implications and for various statistical measures such as confidence,

TA rule Q is a sub-rule of another rule P iff P contains all the items present in Q.
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support, interest, etc.

A limitation of the above-mentioned studies is that their techniques to discover re-
dundancy are to be applied after frequent itemsets have been mined using a standard
BAR-mining algorithm. These approaches are therefore inefficient and sometimes even
infeasible because the number of frequent itemsets could be very large, especially for dense

databases.

3.2.2 Pruning During Mining

Techniques to prune rules during the frequent itemset discovery phase itself have been
proposed and are discussed below.

In [KMR"94], the authors propose an approach to allow the user to specify what
rules are required using templates. The system then retrieves those rules that match
these templates. A related scheme in [SVA97] enables users to specify constraints to be
satisfied by the mined rules. A more comprehensive scheme was proposed in [NLHP98]| to
enable users to specify a larger variety of constraints (including domain, class and SQL-
style aggregate constraints) to be satisfied by the antecedent and consequent of a mined
association rule.

Another approach that has been considered in the mining literature for reducing the
size of mining output is to mine only the mazimal frequent itemsets [Bay98, LK98, AAP98,
GZ01]. A frequent itemset is called maximal if it is not a subset of any other frequent
itemset. The motivation for this approach is that all subsets of a maximal frequent itemset
are frequent and hence might be considered redundant. A drawback of these approaches
is that maximal itemsets cannot be used directly for rule generation, since support of
subsets is required for confidence computation. While an extra database scan could be

made to gather these supports, we revert to the problem of many redundant rules.

Closed Itemset Based Techniques

Alternative techniques for pruning uninteresting rules based on the closed itemset frame-

work [ZH02, PBTL99] have been previously presented in [Zak00, TPBL00, CS02, BBROO,



CHAPTER 3. RELATED WORK 29

BB00]. These techniques have a tighter requirement for redundancy: A rule is redundant
only if its identity and support can be derived from another “non-redundant” rule. There-
fore, in this framework, no information is lost by pruning because both the identities and
supports of all frequent itemsets can be regenerated completely from the frequent closed
itemsets, which is a subset of the frequent itemsets. However, as we will show in this
thesis, the usefulness of the basic closed itemset framework depends on the presence of
frequent itemsets that have supersets with exactly the same support. This means that
even minor changes in the database can result in a significant increase in the number of
frequent closed itemsets.

In this thesis, we too follow the tighter approach for a rule to be considered redun-
dant. However, as mentioned in Chapter 1, we relax the requirement of deriving exact
supports — instead, it is sufficient if the supports can be estimated within a deterministic
user-specified tolerance factor. This strategy of relaxing the requirement of deriving exact
supports has also been considered in [BBR00, BB00]. In [BBRO00], the authors develop
the notion of freesets along with an algorithm called MINEX to mine them. The bound
on approximation error in the freesets approach increases linearly with itemset length in
contrast to the constant bound featured in our approach. In [BB00], the authors do not
provide any bounds on approximation error. Further, the focus in [BBR00, BB00] is only
on highly correlated, i.e. “dense” data sets, whereas we show that our techniques can be
profitably applied even on sparse data sets. Another difference is that our technique to
mine g-closed itemsets bypasses the additional processing that is required in the MINEX
algorithm to test for “freeness”. Finally, there was no attempt in [BBR00, BB00] to incor-
porate their scheme into two-pass mining algorithms, which as mentioned in Chapter 1,
is essential for mining data streams.

One of the algorithms proposed in this thesis for mining frequent g-closed itemsets,
g-Apriori, is based on the classical Apriori algorithm. We note that there was another al-
gorithm called A-Close for mining frequent closed itemsets that was also based on Apriori.
It first mines what are known as the “generators” of frequent closed itemsets and then

makes an additional database scan to determine the closed itemsets from their respective
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generators. Our algorithm significantly differs from A-Close (even for the zero tolerance

case) in that it does not require the additional database scan to mine closed itemsets.
We note that the approaches based on the closed itemset concept, including the tech-

niques in this thesis, are complementary to the other approaches for rule pruning and can

be combined with them to perhaps achieve even better results.

3.3 Incremental Algorithms

In this section, we provide an overview of the algorithms that have been developed over

the last few years for incremental BAR-mining.

3.3.1 The FUP Algorithm

The FUP (Fast UPdate) algorithm [CHNW96, CLK97, CVB96] represents the first work
in the area of incremental mining. It operates on an iterative basis and in each iteration
makes a complete scan of the current database. In each scan, the increment is processed
first and the results obtained are used to guide the mining of the original database DB.
An important point to note about the FUP algorithm is that it requires k& passes over the
entire database, where k is the cardinality of the longest large itemset. Further, it does
not generate the mining results for solely the increment.

In the first pass over the increment, all the 1-itemsets are considered as candidates.
At the end of this pass, the complete supports of the candidates that happen to be also
large in DB are known. Those which have the minimum support are retained in LPBY%,
Among the other candidates, only those which were large in db can become large overall
due to Theorem 12 (Section 6.2). Hence they are identified and the previous database DB
is scanned to obtain their overall supports, thus obtaining the set of all large 1-itemsets.
The candidates for the next pass are calculated using the AprioriGen function, and the
process repeats in this manner until all the large itemsets have been identified.

After FUP, algorithms that utilized the negative border information were proposed

independently in [FT97] and [T*97] with the goal of achieving more efficiency in the
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incremental mining process. In this approach, itemsets that were originally in the negative
border of the frequent itemsets and later become frequent after the database has been
updated are referred to as promoted borders. Algorithms that follow the negative border
approach typically compute what is known as the negative border closure. This consists
of all possible extensions of the promoted borders except those that have subsets known

to be infrequent. In the sequel, we will use Borders to refer to the algorithm in [F*97],

and TBAR to refer to the algorithm in [T*97].

3.3.2 The Borders Algorithm

The original Borders algorithm computes the entire negative border closure at one shot
and then makes a scan of the entire database to compute the counts of itemsets in the
closure. This could potentially result in a “candidate explosion” problem that is later
described in Section 6.2.3 of Chapter 6.

A new version of the Borders algorithm was proposed in [AFLM99]. This version
goes to the other extreme of the closure computation, and makes one scan of the entire
database for each “layer” of the negative border closure. As mentioned in Section 6.2.3 of
Chapter 6, this strategy could result in a significant increase in the number of database
passes, and may therefore be problematic for large databases.

A variant of the new algorithm was proposed to handle multi-support mining. The
applicability of this algorithm, however, is limited to the very special case of zero-size
increments, that is, where the database has not changed at all between the previous and
the current mining.

Finally, like FUP, Borders also does not generate the mining results for solely the

increment.

3.3.3 The TBAR Algorithm

The TBAR algorithm initially completely mines the increment db by applying the Apriori
algorithm. We expect this strategy to be inefficient for large increments since the previous

mining results are not used at all in this mining process.
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Next, it adopts an approach similar to Borders in that it computes the entire negative
border closure at one shot. However, since the results of mining the increment are available
at this time, this information could be used to prune more candidates from the closure
— after computing each level of the closure, itemsets that are infrequent in the increment
are excluded from further candidate generation. Therefore, unlike Borders, the candidate
explosion problem is unlikely to occur. However, even with this pruning, there are likely
to be too many unnecessary candidates in TBAR, especially for skewed increments since

it relies solely on the increment for its pruning.

3.3.4 Other Algorithms

It was briefly mentioned in [Hid99] that CARMA, a first-time mining algorithm could
be also applied for incremental mining. Although the algorithm is a novel and efficient
approach for first-time mining, we note that it suffers from the following drawbacks when
applied to incremental mining: (1) It does not maintain negative border information and
hence will need to access the original database D B if there are any locally large itemsets in
the increment, even though these itemsets may not be globally large. (2) The shrinking
support intervals which CARMA maintains for candidate itemsets are not likely to be
tight for itemsets that become potentially large while processing the increment. This is
because the number of occurrences of such itemsets in DB will be unknown and could be
as much as supy, * |DB].

An incremental mining algorithm, called MLUp, for updating “multi-level” associ-
ation rules over a taxonomy hierarchy was presented in [CVB96]. While MLUp’s goal
is superficially similar to the incremental hierarchical mining discussed in this thesis, it
has the following major differences: Firstly, a different minimum support threshold is
used for each level of the hierarchy. Secondly, MLUp restricts its attention to deriving
intra-level rules, that is, rules within each level. In contrast, our focus in this thesis is on
the formulation given in [SA95] where there is only one minimum support threshold and

inter-level rules form part of the output.
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3.4 Other Issues

In this section, we discuss those issues, which although not directly related to out work,

are nevertheless relevant to BAR-mining.

3.4.1 Interestingness Measures

In the original formulation of the BAR-mining problem, confidence and support are two of
the interestingness measures proposed. The confidence of a rule represents its likelihood of
being true whereas the support of a rule represents its statistical significance. Support also
measures the applicability of a rule since a rule with high support would be applicable in a
large number of transactions. It was subsequently shown in [BMUT97] that the confidence
measure is often misleading in practical situations. For example, if a rule states that “90%
of researchers drink coffee” and minconf = 85%, it might seem to imply a strong positive
correlation between being a researcher and drinking coffee. However, if further analysis
shows that 95% of all people drink coffee, it would indicate that there is actually a negative
correlation between being a researcher and drinking coffee.

The above point motivated additional measures for identifying interesting rules in-
cluding conviction [BMUTI7] and interest [BMS97]. If P(X) represents the probability
of occurance of itemset X in the database, the conviction of a rule X — Y is given
by P(X)P(=Y)/P(X,~Y) whereas its interest is given by P(X,Y)/P(X)P(Y). Rules
with high conviction are referred to as implication rules. Although these interestingness
measures improved the quality of mining output, it was observed in [BMUT97] that the
number of rules generated were still too many.

A novel scheme was proposed in [CSD98] that departs considerably from the BAR-
mining norm in that it does not rely on the minimum support threshold. In this scheme,
an itemset is considered uninteresting if the correlation between the items contained in
it can be estimated given correlations of its subsets, and correlations at earlier points
in time. For example, even a very frequent itemset would be considered uninteresting if
its support does not vary appreciably over time. As might be expected, the algorithms

to solve this problem are quite complex — quadratic time w.r.t the number of database
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transactions. However, the authors in [CSD98| provide various heuristics to obtain an
almost linear-time complexity. Further, they make the observation that techniques based

on the minimum support threshold can be integrated with their scheme.

3.4.2 Backend

Our implementations of mining algorithms utilize a file system backend similar to most
available research prototypes for BAR-mining. More specifically, our transaction data is
stored in binary files that contain sequences of transactions. The format of each transac-
tion is a quadruple: (1) An integer representing the transaction id (tid), (2) An integer
representing the customer id, (3) the number of items purchased by the customer, and
(4) integers representing the the actual items purchased.

While the above backend suffices for our purposes of algorithmic performance eval-
uation, there has been some work on integrating BAR-mining with relational database
backends [STA98, RCIC99, NT99]. The most comprehensive of these works, [STA98], eval-
uates various alternative ways of integrating the classical Apriori algorithm with RDBMS
backends. These alternatives include: loose-coupling through a SQL cursor interface; en-
capsulation of a mining algorithm in a stored procedure; caching the data to a file system
on-the-fly and mining; tight-coupling using primarily user-defined functions and SQL im-
plementations for processing in the DBMS. Their evaluation shows that the Cache-Mine
option is superior to other alternatives from a response-time performance perspective.

A related issue of interest is the mining of associations across many databases. In
real life, large collections of data may be organized in the form of a set of relations
which is partitioned into several databases. These databases may hold interesting inter-
database associations such as “89% of employees having a salary in the range (Rs. 15,000
— Rs. 25,000) own cars of type Maruti-800”. Sophisticated algorithms for finding such

inter-database associations are presented in [SAM99].
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3.4.3 Privacy

The knowledge models produced through data mining techniques are only as good as the
accuracy of their input data. One source of data inaccuracy is when users deliberately
provide wrong information. This is especially common with regard to customers who are
asked to provide personal information on Web forms to e-commerce service providers.
The compulsion for doing so may be the (perhaps well-founded) worry that the requested
information may be misused by the service provider to harass the customer. As a case
in point, consider a pharmaceutical company that asks clients to disclose the diseases
they have suffered from in order to investigate the correlations in their occurrences — for
example, “Adult females with malarial infections are also prone to contract tuberculosis”.
While the company may be acquiring the data solely for genuine data mining purposes
that would eventually reflect itself in better service to the client, at the same time the
client might worry that if her medical records are either inadvertently or deliberately
disclosed, it may adversely affect her employment opportunities.

Recently, there has been much interest in the data mining community on investigating
whether customers can be encouraged to provide correct information by ensuring that the
mining process cannot, with any reasonable degree of certainty, violate their privacy. At
the same time, the mining process should be as accurate as possible in terms of its results.
The difficulty lies in the fact that these two metrics: privacy and accuracy, are typically
contradictory in nature, with the consequence that improving one usually incurs a cost
in the other.

The first work on privacy-preserving mining appeared in [AS00], which investigated
this issue in the context of classification rule mining. An approach of value distortion,
wherein a random value is added to each original value, was taken in this work. They
presented two algorithms, ByClass and Local, which knowing the distribution of the ran-
dom values, attempt to reconstruct the original distribution within some acceptable error
bound. The privacy attained is quantified by the “fuzziness” provided by the system,
that is, for a given level of confidence, the size of the interval that is expected to hold the

original true value. A followup of this work in [AA01] showed that the privacy estimates
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of [AS00] were overstated since they did not account for the additional knowledge that
the miner obtains from the reconstructed aggregate distribution. An alternative privacy
formulation that takes such “side-information” into account was presented.

With regard to privacy in association rule mining, there have been a number of papers
that have appeared over the last year [SVC01, ABE*99, DVEBO01, SVE02, VC02, KC02,
EGSA02]. The focus in [SVC01, ABET99, DVEBO01, SVE02] is to prevent sensitive rules
from being inferred by the miner — they achieve this by either altering some of the entries
in the true database or by replacing some of the entries with NULL values.

In [LP02, VC02, KCO02|, the problem considered is that of obtaining data mining
results across a distributed set of sites with each site only willing to share data mining
results, but not the source data. While [LP02] addresses this problem in the context
of decision tree classisfiers, [VC02, KC02] address it in the context of association rules.
[LP02] model it as a problem of secure multi-party computation and proposes a solution
that demands very few rounds of communication and is efficient with regards to network
bandwidth consumption. In [VC02], they consider data that is vertically partitioned, that
is, different columns of the database reside on different sites, while [KC02], consider the

complementary situation where the data is horizontally partitioned across the sites.



Chapter 4

Efficiency of Mining Algorithms

4.1 Introduction

The problem of efficiently mining frequent itemsets from large historical “market-basket”
databases was introduced almost a decade ago, in [AIS93]. Since then, a whole host of al-
gorithms for addressing this problem have been proposed [AIS93, AS94, SON95, PCY95b,
HKK97, Hid99, HPY00, SHS*00, AAPO1]. The latest include FP-growth [HPY00], which
utilizes a prefix-tree structure for compactly representing and processing pattern infor-
mation, and VIPER, [SHST00], which organizes and processes the database on a vertical
(column) basis as opposed to the more traditional horizontal (row) basis.

While the above efforts have certainly resulted in a variety of novel algorithms, each
in turn claiming to outperform its predecessors on a representative set of databases, no
logical end appears to be in sight. Therefore, in this chapter, we focus our attention on the
question of how much space remains for performance improvement over current frequent
itemset mining algorithms. As discussed in Chapter 2, the environment we consider,
similar to the majority of the prior art in the field, is one where the data mining system
has a single processor and the pattern lengths in the database are small enough that the
frequent itemsets along with intermediate results produced by mining algorithms can fit
in main memory. That is, we restrict our attention to the class of sequential bottom-up

mining algorithms to mine sparse databases.

37
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Within the above framework, we make the following contributions:

First, we introduce the notion of an “Oracle algorithm” that knows in advance the
identities of all frequent itemsets in the database and only needs to gather the actual
supports of these itemsets to complete the mining process. Clearly, any practical algo-
rithm will have to do at least this much work in order to generate mining rules. Thus,
this “Oracle approach” permits us to clearly demarcate the maximal space available for
performance improvement over the currently available algorithms. Further, it enables us
to construct new mining algorithms from a completely different perspective, namely, as
manimally-altered derivatives of the Oracle.

Second, we present a carefully engineered implementation of Oracle that makes the
best choices of data structures and database organizations (w.r.t. the enumeration of
itemsets being counted). Our experimental results show that there is a considerable gap
in the performance between the Oracle and existing mining algorithms.

Third, we present a new mining algorithm, called ARMOR (Association Rule Mining
based on ORacle), whose structure is derived by making minimal changes to the Oracle,
and is guaranteed to complete in two passes over the database. Although ARMOR is
derived from the Oracle, it may be seen to share the positive features of a variety of
previous algorithms such as PARTITION [SON95], CARMA [Hid99], AS-CPA [LD98] and
VIPER [SHST00]. Our empirical study shows that ARMOR performs within a factor of
two of the Oracle, over a variety of databases and practical ranges of support specifications.

Finally, an important feature of our experiments is that they include workloads where
the database is large enough that the working set of the database cannot be completely
stored in memory. This situation may be expected to frequently arise in data mining
applications since they are typically executed on huge historical databases. However, pre-
vious performance studies have been largely conducted on databases that completely fit
wn main memory. For example, the standard experiment is one that has only 100K tuples
with an average tuple width of 50 bytes — this fits easily in current memories that are
typically in the hundreds of megabytes. Therefore, the ability of these algorithms to scale

with database size, an important requirement for mining applications, has not been con-
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clusively shown. In [SHST00], the authors had demonstrated that this was an important
issue and that algorithms that worked very well for memory-resident databases did not
necessarily perform as well in disk-resident databases. Consistent with that observation,
here too we conduct experiments with such large disk-resident databases.

A fallout of this approach is that we find algorithms such as FP-growth, despite having
an attractive design, to perform rather poorly in practice.

For ease of exposition, we will use the notation shown in Table 2.1 of Chapter 2 in
the remainder of this chapter. The relevant part of this table has been reproduced in

Table 4.1 for convenience.

D Database of customer purchase transactions

Minsup User-specified minimum rule support

F Set of frequent itemsets in D

N Set of itemsets in the negative border of F'

Py, P, ..., P, | Set of n disjoint partitions of D

d No of transactions in partitions scanned so far during algorithm execution
excluding the current partition

d* No of transactions in partitions scanned so far during algorithm execution
including the current partition

g DAG structure to store candidates during algorithm execution

Table 4.1: Notation (from Table 2.1)

4.1.1 Organization

The remainder of this chapter is organized as follows: The design of the Oracle algorithm
is described in Section 4.2 and is used to evaluate the performance of current algorithms
in Section 4.3. Our new ARMOR algorithm is presented in Section 4.4. The details of
candidate generation in ARMOR are discussed in Section 4.5, while its main memory
requirements are discussed in Section 4.6. The performance of ARMOR is evaluated in

Section 4.7. Finally, in Section 4.8, we summarize the conclusions of our study.
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4.2 The Oracle Algorithm

In this section we present the Oracle algorithm which, as mentioned in the Introduction,
“magically” knows in advance the identities of all frequent itemsets in the database and
only needs to gather the actual supports of these itemsets. Clearly, any practical algorithm
will have to do at least this much work in order to generate mining rules. Oracle takes
as input the database, D, the set of frequent itemsets, F', and its corresponding negative
border, N, and outputs the supports of these itemsets by making one scan over the
database. While the initial database layout is in the item-list (IL) format, the Oracle
algorithm uses different formats during the course of its execution for efficient processing.
We first describe the mechanics of the Oracle algorithm below and then move on to discuss

the rationale behind its design choices in Section 4.2.2.

4.2.1 The Mechanics of Oracle

For ease of exposition, we first present the manner in which Oracle computes the supports
of 1-itemsets and 2-itemsets and then move on to longer itemsets. Note, however, that
the algorithm actually performs all these computations concurrently in one scan over the

database.

Counting Singletons and Pairs

Data-Structure Description The counters of singletons (1-itemsets) are maintained
in a 1-dimensional lookup array, A;, and that of pairs (2-itemsets), in a lower triangular
2-dimensional lookup array, A, (Similar arrays are also used in Apriori [AS94, SA95] for
its first two passes.) The ith entry in the array 4; contains two fields: (1) count, the

th

counter for the itemset X corresponding to the item, and (2) index, the number of

frequent itemsets prior to X in A, if X is frequent; null, otherwise.

Algorithm Description The ArrayCount function shown in Figure 4.1 takes as inputs,
a transaction T along with A; and A,, and updates the counters of these arrays over 7. In

the ArrayCount function, the individual items in the transaction 7" are enumerated (lines
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ArrayCount (T, Ay, A2)

Input: Transaction T, Array for 1-itemsets A;, Array for 2-itemsets As
Output: Arrays A; and A with their counts updated over T

L. Itemset 7/ = null; // to store frequent items from 7" in IL format
2. for each item ¢ in transaction T’

3. A [i.id).count + +;

4. if A,[i.id].index # null

5. append i to T7

6. for j = 1 to |T/| // enumerate 2-itemsets

7. for k = j + 1 to |T/|

8. indexy = Ai[T'[j].id].index /] row index

9. indexs = Ai[T/[k].id].index // column index

10. Aslindezy, indexs] + +;

Figure 4.1: Counting Singletons and Pairs in Oracle

2-5) and for each item, its corresponding count in A; is incremented (line 3). During
this process, the frequent items in 7" are stored in a separate itemset 7/ in Item-list (IL)
format (line 5). We then enumerate all pairs of items contained in 77 (lines 6-10) and

increment the counters of the corresponding 2-itemsets in A, (lines 8-10).

Counting k-itemsets, k£ > 2

Data-Structure Description Itemsets in F'U N of length greater than 2 and their
related information (counters, etc.) are stored in a DAG structure G, which is pictorially
shown in Figure 4.2 for a database with items {A, B, C, D}. Although singletons and
pairs are stored in lookup arrays, as mentioned before, for expository ease, we assume
that they too are stored in G in the remainder of this discussion.

Each itemset is stored in a separate node of G and is linked to the first two (in
a lexicographic ordering) of its subsets. We use the terms “mother” and “father” of an
itemset to refer to the (lexicographically) smaller subset and the (lexicographically) larger
subset, respectively. E.g., {A, B} and {A, C} are the mother and father respectively of
{A, B, C}. For each itemset X in G, we also store with it links to those supersets of X
for which X is a mother. We call this list of links as childset.

Since each itemset is stored in a separate node in the DAG, we use the terms “itemset”
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—=  mother

--= father

Figure 4.2: DAG Structure Containing Power Set of {A,B,C,D}

and “node” interchangeably in the remainder of this discussion. Also, we use G to denote

the set of itemsets that are stored in the DAG structure G.

Algorithm Description We use a partitioning scheme [SON95] wherein the database
is logically divided into n disjoint horizontal partitions P, P, ..., P,. In this scheme,
itemsets being counted are enumerated only at the end of each partition and not after
every tuple. Each partition is as large as can fit in available main memory. For ease of
exposition, we assume that the partitions are equi-sized. However, we hasten to add that
the technique is easily extendible to arbitrary partition sizes.

The pseudo-code of Oracle is shown in Figure 4.3 and operates as follows: The Read-
NextPartition function (line 3) reads tuples from the next partition and simultaneously
creates tid-lists (within that partition) of singleton itemsets in G. Note that this con-
version of the database from the item-list (IL) format to the tid-list (TL) format is an
on-the-fly operation and does not change the complexity of Oracle by more than a (small)
constant factor. Next, the Update function (line 5) is applied on each singleton in G. This
function takes a node M in G as input and updates the counts of all descendants of M to
reflect their counts over the current partition. The count of any itemset within a partition
is equal to the length of its corresponding tidlist (within that partition). The tidlist of

an itemset can be obtained as the intersection of the tidlists of its mother and father and
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Oracle (D, G)

Input: Database D, Itemsets to be Counted G = FUN
Output: Itemsets in G with Supports

n = Number of Partitions

fori=1ton

1.

2
3.
4.
Y

ReadNextPartition(P;, G);
for each singleton X in G
Update(X);

Figure 4.3: The Oracle Algorithm

Update (M)
Input: DAG Node M
Output: M and its Descendents with Counts Updated
B = convert M.tidlist to Tid-vector format
// B is statically allocated
for each node X in M.childset

1.

SOtk W

X.tidlist = Intersect(B, X.father.tidlist);
X.count += | X tidlist|

for each node X in M.childset

Update(X);

Figure 4.4: Updating Counts

1.

AN ol N

Intersect (B, T')

Input: Tid-vector B, Tid-list T’
Output: BNT

Tid-list result = ¢

for each tid in T

offset = tid+1— (tid of first transaction in current partition)
if Bloffset] = 1 then
result = result U tid

return result

Figure 4.5: Intersection
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this process is started off using the tidlists of frequent 1-itemsets. The exact details of
tidlist computation are discussed later.

We now describe the manner in which the itemsets in G are enumerated after reading
in a new partition. The set of links, Uyscg M.childset, induce a spanning tree of G (e.g.
consider only the solid edges in Figure 4.2). We perform a depth first search on this
spanning tree to enumerate all its itemsets. When a node in the tree is visited, we
compute the tidlists of all its children. This ensures that when an itemset is visited, the
tidlists of its mother and father have already been computed.

The above processing is captured in the function Update whose pseudo-code is shown
in Figure 4.4. Here, the tidlist of a given node M is first converted to the tid-vector (TV)
format (line 1) discussed in Section 2.1. Then, tidlists of all children of M are computed
(lines 2—4) after which the same children are visited in a depth first search (lines 5-6).

The mechanics of tidlist computation, as promised earlier, are given in Figure 4.5.
The Intersect function shown here takes as input a tid-vector B and a tid-list T'. Each tid
in 7" is added to the result if Bloffset] is 1 (lines 2-5) where offset is defined in line 3 and

represents the position of the transaction 7' relative to the current partition.

4.2.2 Rationale for the Oracle Design

Having described the mechanics of the Oracle design, we now move on to providing
the rationale for its construction. We show that it is optimal in two respects: (1) It
enumerates only those itemsets in G that need to be enumerated, and (2) The enumeration
is performed in the most efficient way possible. The following theorem shows that there

is no wasted enumeration of itemsets in Oracle in typical mining scenarios.

Theorem 2 If the size of each partition is large enough that every itemset in F'U N of
length greater than 2 is present at least once in it, then the only itemsets being enumerated

in the Oracle algorithm are those whose counts need to be incremented in that partition.

Proof: The first observation is that all l-itemsets must be in either ' or IN. Hence

every occurrence of a l-itemset in the entire database needs to be accounted for in the
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final output. Oracle does no more than this as it enumerates each singleton in every
transaction only once (lines 2-5 in Figure 4.1).

The 2-itemsets that are enumerated (lines 6-10 in Figure 4.1) are all guaranteed to be
either in F' or in IV since only combinations of frequent 1-itemsets are considered. Hence
there is no wasted work in enumerating them.

If each partition is large enough that every itemset in F' U N of length greater than
2 is present at least once in it, then it is necessary to increment the counts of all these
itemsets over that partition. This is precisely what is done in Oracle. Also, note that by
the definition of depth first search, each node in the DAG is visited only once. Hence, it
follows that there is no wasted enumeration of itemsets in Oracle. —

The assumption in Theorem 2 that every itemset in F'U N of length greater than 2
is present at least once in each partition would typically hold on large partitions. Even if
this does not strictly hold, the Oracle algorithm degrades gracefully in that: If there are m
itemsets that are not present in some partition, then the amount of wasted enumeration
is only m.

We now move on to the second part of our proof, namely, to show that the data-
structures used in the Oracle algorithm are the most efficient for the range of operations

required in Oracle.
Theorem 3 The cost of enumerating each itemset in Oracle is ©(1).

Proof: Since the counts of singletons and pairs are stored in direct lookup arrays, the
cost of finding the counters of an arbitrary singleton or pair is ©(1).

For an itemset X such that |X| > 2, the cost of enumerating its children is
O(| X .childset|) since links to all nodes in X.childset are available in the node containing
X. Amortizing this cost over all the children results in ©(1) cost per child. Also, X
has direct pointers to its mother and father. Hence the cost of finding them in order to
compute the tid-list of X is ©(1).

Since the only operations done in Oracle in each visit to a node during the depth first
search are to compute the tidlists of each of its children, the amortized cost incurred for

enumerating each node is O(1). —
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We assume that the underlying computing model is a unit cost RAM [CR73]. In
this model, operations such as accessing an arbitrary element in an array and following a
pointer have unit cost and cannot therefore be improved upon. Since the costs involved in
the above proof are of array lookups and following pointers, the constant factor involved

in the ©(1) expression is tight.

While Oracle is optimal in most respects as described above, we note that there may
remain some scope for improvement in the details of tidlist computation. That is, the
Intersect function (Figure 4.5) which computes the intersection of a tid-vector B and a
tid-list 7" requires O(|T'|) operations. B itself was originally constructed from a tid-list,
although this cost is amortized over many calls to the Intersect function. We plan to
investigate in our future work whether the intersection of two sets can, in general, be
computed more efficiently — for example, using diffsets, a novel and interesting approach
suggested in [ZGO1]. The diffset of an itemset X is the set-difference of the tid-list of
X from that of its mother. Diffsets can be easily incorporated in Oracle — only the
Update function in Figure 4.4 of Section 4.2 is to be changed to compute diffsets instead
of tidlists by following the techniques suggested in [ZG01]. We found that incorporating
diffsets in Oracle did not yield a significant performance gain. This was because of two
reasons — (1) Our experiments were run on sparse data on which the benefit of diffsets
is moderate [ZGO1]. (2) The cost of finding the difference of two sets A and B is O(2 x
(|A] + |B])) while the intersection of a tid-list 7" with a tid-vector in Oracle is O(|T|)

operations.

Advantages of Partitioning Schemes

Oracle, as discussed above, uses a partitioning scheme. An alternative commonly used in
current association rule mining algorithms, especially in hashtree [AS94] based schemes, is
to use a tuple-by-tuple approach. A problem with the tuple-by-tuple approach, however,
is that there is considerable wasted enumeration of itemsets. The core operation in these
algorithms is to determine all candidates that are subsets of the current transaction. Given

that a frequent itemset X is present in the current transaction, we need to determine
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all candidates that are immediate supersets of X and are also present in the current
transaction. In order to achieve this, it is often necessary to enumerate and check for
the presence of many more candidates than those that are actually present in the current

transaction.

4.3 Performance Study

In the previous section, we have described the Oracle algorithm. In order to assess the
performance of current mining algorithms with respect to the Oracle algorithm, we have
chosen VIPER [SHST00] and FP-growth [HPY00], among the latest in the suite of online
mining algorithms. For completeness and as a reference point, we have also included the
classical Apriori in our evaluation suite.

Our experiments cover a range of database and mining workloads, and include the
typical and extreme cases considered in previous studies — the only difference is that we
also consider database sizes that are significantly larger than the available main memory.
The performance metric in all the experiments is the total execution time taken by the
mining operation.

The databases used in our experiments were synthetically generated using the tech-
nique described in [AS94] and attempt to mimic the customer purchase behavior seen in
retailing environments. The parameters used in the synthetic generator and their default
values are described in Table 4.2. In particular, we consider databases with parameters

T10.14, T20.112 and T40.I8 with 10 million tuples in each of them.

Parameter | Meaning Default Values
N Number of items 1000
T Mean transaction length 10, 20, 40
L Number of potentially frequent itemsets 2000
1 Mean length of potentially frequent itemsets | 4, 8, 12
D Number of transactions in the database 10M

Table 4.2: Parameter Table

We set the rule support threshold values to as low as was feasible with the available
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main memory. At these low support values the number of frequent itemsets exceeded
twenty five thousand! Beyond this, we felt that the number of rules generated would be
enormous and the purpose of mining — to find interesting patterns — would not be served.
In particular, we set the rule support threshold values for the T10.14, T20.112 and T40.18
databases to the ranges (0.1%2%), (0.4%—2%) and (1.15%5%), respectively.

Our experiments were conducted on a 700-MHz Pentium IIT workstation running Red
Hat Linux 6.2, configured with a 512 MB main memory and a local 18 GB SCSI 10000
rpm disk. For the T10.14, T20.112 and T40.I8 databases, the associated database sizes
were approximately 500MB, 900MB and 1.7 GB, respectively. All the algorithms in our
evaluation suite are written in C++. We implemented a basic version of the FP-growth
algorithm wherein we assume that the entire FP-tree data structure fits in main memory.

Finally, the partition size in Oracle was fixed to be 20K tuples.

4.3.1 Experimental Results for Current Mining Algorithms

We now report on our experimental results. We conducted two experiments to evaluate the
performance of current mining algorithms with respect to the Oracle. Our first experiment
was run on large (10M tuples) databases, while our second experiment was run on small

(100K tuples) databases.

Experiment 1: Performance of Current Algorithms

In our first experiment, we evaluated the performance of Apriori, VIPER and Oracle
algorithms for the T10.14, T20.112 and T40.18 databases each containing 10M transactions
and these results are shown in Figures 4.6a—c. The x-axis in these graphs represent the
support threshold values while the y-axis represents the response times of the algorithms
being evaluated.

In these graphs, we see that the response times of all algorithms increase exponentially
as the support threshold is reduced. This is only to be expected since the number of
itemsets in the output, F' U N, increases exponentially with decrease in the support

threshold.



CHAPTER 4. EFFICIENCY OF MINING ALGORITHMS 49

(8) T10.4.D10M (b) T20.112.D10M (¢) T40J8.D10M
7000 T T T 18000 T T 25000 T T T T
Oracle —— Oracle —— + Oracle ——
600 b+ Aprigri | 16000 1 Apriri -+ 1 Apior —+—
| VIPER --%-- } VIPER --%-- i VIPER --%--
\ 14000 | | |1 a0 1
5000 ;
g : g 12000 £ g
0 g X € 15000 F
g 4000 S 10000 : 9
8 8 ‘ 8
b ~ 8000 [ >
QE, 3000 QE, “E’ 10000
F 0 ' £ 6000 P 1 F .
4 4000 1 swlb i \
0o, 200 o 1 A
0 e e 0 R e P 0 1 1 1"—»»-?
1 15 2 0 05 1 15 2 0 1 2 3 4 5
Support (as a %) Support (as a %) Support (as a %)

Figure 4.6: Performance of Current Algorithms (Large Databases)

We also see that there is a considerable gap in the performance of both Apriori and
VIPER with respect to Oracle. For example, in Figure 4.6a, at a support threshold
of 0.1%, the response time of VIPER is more than 6 times that of Oracle whereas the
response time of Apriori is more than 26 times!

In this experiment, we could not evaluate the performance of FP-growth because it
did not complete in any of our runs on large databases due to its heavy and database
size dependent utilization of main memory. The reason for this is that FP-growth stores
the database itself in a condensed representation in a data structure called FP-tree. In
[HPYO00], the authors briefly discuss the issue of constructing disk-resident FP-trees. We
however, did not take this into account in our implementation. We return to this issue

later in Section 4.3.1.

Experiment 2: Small Databases

Since, as mentioned above, it was not possible for us to evaluate the performance of FP-
growth on large databases due to its heavy utilization of main memory, we evaluated the
performance of FP-growth and other current algorithms on small databases consisting of
100K transactions. The results of this experiment are shown in Figures 4.7a—c, which
correspond to the T10.14, T20.112 and T40.I8 databases, respectively.

In these graphs, we first see there continues to be a considerable gap in the performance
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Figure 4.7: Performance of Current Algorithms (Small Databases)

of current mining algorithms with respect to Oracle. For example, for the T40.I8 database,
the response time of FP-growth is more than 8 times that of Oracle for the entire support
threshold range.

Second, although FP-growth does well at low supports, its performance is worse than
Apriori for high supports. These results are inconsistent with those shown in [HPY00]
where it was shown that FP-growth consistently performs better than Apriori for the entire
support range. While this could possibly be due to differences between our respective
implementations of FP-growth and/or Apriori, we feel that there are logical reasons for
this behaviour as explained below.

At high supports Apriori typically performs only two passes over the data since with
these supports there are usually no frequent itemsets of length greater than two. In these
cases, the first pass of Apriori is identical to the preprocessing pass in FP-growth in which
all frequent singletons are obtained. The second pass of Apriori is quite efficient since
the counts of candidate 2-itemsets are maintained in a 2-dimensional lookup array. FP-
growth, on the other hand, constructs an FP-tree during the second pass. The FP-tree
is updated on a tuple-by-tuple basis. Each node in the FP-tree contains an item-name
field. A critical operation during FP-tree construction is to find the child of a node given
a key item-name. If these keys are stored in lookup-arrays, the memory requirements of

FP-tree would be still worse. The alternative is to use an indexing data structure such as
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a red-black tree or a skip-list that requires O(log n) time to perform the find operation,
but this would make the FP-tree construction slow. Even assuming that the cost of FP-
tree construction is equal to the second pass of Apriori, FP-growth still needs to mine the

FP-tree. Hence FP-growth finally loses out at high supports.

4.4 The ARMOR Algorithm

ARMOR (D, I, minsup)
Input: Database D, Set of Items I, Minimum Support minsup
Output: FU N with Supports
1. n = Number of Partitions
//— First Pass —
2. Gg=1 // candidate set (in a DAG)
3. fori=1ton
4. ReadNextPartition(P;, G);
5. for each singleton X in G
6. X.count += | X .tidlist|
7. Updatel(X, minsup);
//— Second Pass —
8. RemoveSmall(G, minsup);
9. OutputFinished(G, minsup);
10. fori=1ton
11. if (all candidates in G have been output)
12. exit
13. ReadNextPartition(FP;, G);
14. for each singleton X in G
15. Update2(X, minsup);

Figure 4.8: The ARMOR Algorithm

In the previous section, our experimental results have shown that there is a consider-
able gap in the performance between the Oracle and existing mining algorithms. We now
move on to describe our new mining algorithm, ARMOR (Association Rule Mining based
on ORacle). In this section, we overview the main features and the flow of execution of
ARMOR - the details of candidate generation are deferred to the following section.

The guiding principle in our design of the ARMOR algorithm is that we consciously
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make an attempt to determine the minimal amount of change to Oracle required to result
in an online algorithm. This is in marked contrast to the earlier approaches which designed
new algorithms by trying to address the limitations of previous online algorithms. That is,
we approach the association rule mining problem from a completely different perspective.

In ARMOR, as in Oracle, the database is conceptually partitioned into n disjoint
blocks Py, P, ..., P,. At most two passes are made over the database. In the first pass
we form a set of candidate itemsets, G, that is guaranteed to be a superset of the set of
frequent itemsets. During the first pass, the counts of candidates in G are determined
over each partition in exactly the same way as in Oracle by maintaining the candidates
in a DAG structure. The 1-itemsets and 2-itemsets are stored in lookup arrays as in
Oracle. But unlike in Oracle, candidates are inserted and removed from G at the end
of each partition. Generation and removal of candidates is done simultaneously while
computing counts. The details of candidate generation and removal during the first pass
are described in Section 4.5. For ease of exposition we assume in the remainder of this
section that all candidates (including 1-itemsets and 2-itemsets) are stored in the DAG.

Along with each candidate X, we also store the following three integers as in the
CARMA algorithm [Hid99]: (1) X.count : the number of occurrences of X since X was
last inserted in G. (2) X.firstPartition : the index of the partition at which X was
inserted in G. (3) X.maxMissed : upper bound on the number of occurrences of X
before X was inserted in G. X.firstPartition and X.maxMissed are computed when X
is inserted into G in a manner identical to CARMA.

While the CARMA algorithm works on a tuple-by-tuple basis, we have adapted the
semantics of these fields to suit the partitioning approach. If the database scanned so
far is d (refer Table 2.1), then the support of any candidate X in G will lie in the
range [X.count/|d|, (X.maxMissed + X.count)/|d|] [Hid99]. These bounds are denoted
by minSupport(X) and maxSupport(X), respectively. We define an itemset X to be d-
frequent if minSupport(X) > minsup. Unlike in the CARMA algorithm where only d-
frequent itemsets are stored at any stage, the DAG structure in ARMOR contains other

candidates, including the negative border of the d-frequent itemsets, to ensure efficient
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candidate generation. The details are given in Section 4.5.

At the end of the first pass, the candidate set G is pruned to include only d-frequent
itemsets and their negative border. The counts of itemsets in G over the entire database
are determined during the second pass. The counting process is again identical to that of
Oracle. No new candidates are generated during the second pass. However, candidates
may be removed. The details of candidate removal in the second pass is deferred to
Section 4.5.1.

The pseudo-code of ARMOR is shown in Figure 4.8 and is explained below.

4.4.1 First Pass

At the beginning of the first pass, the set of candidate itemsets G is initialized to the set
of singleton itemsets (line 2). The ReadNextPartition function (line 4) reads tuples from
the next partition and simultaneously creates tid-lists of singleton itemsets in G.

After reading in the entire partition, the Updatel function (details in Section 4.5) is
applied on each singleton in G (lines 5-7). It increments the counts of existing candidates
by their corresponding counts in the current partition. It is also responsible for generation
and removal of candidates.

At the end of the first pass, G contains a superset of the set of frequent itemsets.
For a candidate in G that has been inserted at partition P;, its count over the partitions

Pj, ..., P, will be available.

4.4.2 Second Pass

At the beginning of the second pass, candidates in G that are neither d-frequent nor part
of the current negative border are removed from G (line 8). For candidates that have been
inserted in G at the first partition, their counts over the entire database will be available.
These itemsets with their counts are output (line 9). The OutputFinished function also
performs the following task: If it outputs an itemset X and X has no supersets left in G,
X is removed from G.

During the second pass, the ReadNextPartition function (line 13) reads tuples from the
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next partition and creates tid-lists of singleton itemsets in G. After reading in the entire
partition, the Update2 function (details in Section 4.5.1) is applied on each singleton in
G (lines 14-15). Finally, before reading in the next partition we check to see if there are

any more candidates. If not, the mining process terminates.

4.5 Candidate Generation in ARMOR

ARMOR utilizes a technique from incremental mining algorithms [PH00, TT97, F+97]
in order to generate candidates efficiently. These algorithms are designed to efficiently
derive the current mining output by utilizing previous mining results when a database has
been updated with an increment. ARMOR treats the database scanned so far, d, as the
“original database” and the current partition being processed as the “increment”. Let d*
denote the portion of the database scanned so far including the current partition being
processed (see Table 2.1 in Chapter 2). Let F'¢ and F" be the sets of frequent itemsets
over d and d*, respectively, and N? and N 4% he their corresponding negative borders. In

this context, it is shown in [T*97] that:

Theorem 4 If X is an itemset that is not in F% but is in F*", then there must be some

subset x of X which was in N¢ and is now in Fit.

The itemsets that move from N% to F?  are called promoted borders. The above
Theorem then means that the only candidates that need to be generated are those that
are supersets of the promoted borders. We use the term ezpanding a promoted border P
to denote the process of generating the required supersets of P.

We present now a technique for efficiently expanding a promoted border. Our tech-
nique is captured in the Expand function presented in Figure 4.9, the inputs to which are
P, the promoted border to be expanded and G, the current set of candidates. The Expand
function is similar to the AprioriGen function [AS94] since the siblings of P are exactly
those itemsets in G that differ from P in the last item. However, the Expand function and
its usage differs from AprioriGen in that: (1) It is applied dynamically whenever a candi-

date that was in the negative border becomes d-frequent; (2) It is applied to individual
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itemsets, whereas the AprioriGen function is applied to sets of itemsets; (3) It performs
a parent based pruning optimization unlike AprioriGen which enumerates all immediate

subsets of a candidate in order to prune it.

Expand (P, G)
Input: Promoted Border P, DAG G
for each sibling X of P in G
if (X is d-frequent) then
S=PUX // new candidate
Insert S into G as a child of P

Figure 4.9: Expanding a Promoted Border

At first glance, it may appear surprising that we do not consider the same pruning
strategy as of AprioriGen in Expand. The reason we do not do so is because it results
in significant overheads due to the dynamic and incremental manner in which candidate
generation occurs in Expand. We illustrate this with the following example: Consider
the situation in which the itemsets {U, V'} and {U, W} are d-frequent but {V, W} is not.
Then {U,V, W} will not be in G if Apriori-type pruning were incorporated in Expand. If
{V, W} also becomes d-frequent, then {U, V, W} will need to be added to G. But {V, W}
cannot be combined with another itemset that differs only in the last item to produce
{U,V,W}. This means that if we incorporate Apriori-type pruning, the Expand function
needs to combine {V, W} with itemsets that differ from it in any one item.

From the above discussion, it is clear that incorporating Apriori-type pruning in the
Expand function, results in significant cost for two reasons: (1) It requires a separate
traversal of the DAG structure to find all itemsets that differ from a given itemset in any
one item. (2) All immediate subsets of a given itemset need to be searched for in the
DAG.

Without Apriori-type pruning, in the above example, {U,V, W} would have already
been in G regardless of whether {V, W} is d-frequent or not since it would not have been
pruned due to the absence of {V,W}. Therefore, when {V, W} becomes d-frequent, it is

not necessary to regenerate {U, V, W}.
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Due to the above reasons we do not incorporate Apriori-type pruning in ARMOR.
Instead, a candidate is automatically pruned if one of its parents is not d-frequent since
it would not even be generated in the first place. Our experiments (Section 4.7) showed
that the number of additional candidates generated in ARMOR compared to Apriori’s
|FFU N| candidates was marginal — the worst case being about ten percent more.

The Expand function is incorporated into ARMOR by calling it from the Updatel
function that is invoked for each partition scanned during the first pass. The Updatel

function is presented in Figure 4.10 and is explained below.

Updatel (M, minsup)
Input: DAG Node M, Minimum Support minsup
Output: M and its Descendents Updated
1. B = convert M.tidlist to Tid-vector format
// B is statically allocated
2. for each node X in M.childset
3. X.tidlist = Intersect(B, X.father.tidlist);
4. X.count += | X.tidlist|
5. for each node X in M .childset
6. if maxSupport(X) < minsup then
7. if | X.childset| > 0 // already expanded
8. remove all supersets of X reachable from X in G
9. else
10. if | X.childset| =0 // not yet expanded
11. Expand(X);
12. for each node X in M.childset
13. Updatel(X);

Figure 4.10: Updating Counts

The manner in which the counts of candidates are computed in Updatel is exactly
the same as that in Update (described in Section 4.2). The extra processing in Updatel
is only to generate and remove candidates dynamically. This is done in one enumeration
of all children of a given node M (lines 5-11). For each child X that is enumerated, if it
has supersets but is not d-frequent, then we remove all supersets of X that are reachable
from X in the DAG (lines 6-8). Note that X itself is not removed since it could be part

of the current negative border. On the other hand, if X is d-frequent and has not yet



CHAPTER 4. EFFICIENCY OF MINING ALGORITHMS 57

been expanded, then it is now expanded by calling the Expand function (lines 10-11).

4.5.1 Candidate Removal During Second Pass

A candidate X is removed during the second pass whenever the following two conditions
are satisfied: (1) The count of X over the entire database is available, which becomes true
when X. firstPartition is the next partition to be processed; and (2) X has no supersets
in G.

We now describe the Update2 function (called from ARMOR in Figure 4.8), which is
responsible for removing candidates as described above. The Update2 function increments
the counts of existing candidates by their corresponding counts in the current partition
in a manner identical to that of the Update function of Oracle (described in Section 4.2).
It differs from Update only in that it also outputs candidates whose counts over the entire
database are known. If it outputs an itemset X and X has no supersets left in G, X is

removed from G.

4.6 Memory Utilization in ARMOR

In the design and implementation of ARMOR, we have opted for speed in most decisions
that involve a space-speed tradeoff. Therefore, the main memory utilization in ARMOR
is certainly more as compared to algorithms such as Apriori. However, in the following
discussion, we show that the memory usage of ARMOR is well within the reaches of
current machine configurations. This is also experimentally confirmed in the next section.

The main memory consumption of ARMOR comes from the following sources: (1)
The 1-d and 2-d arrays for storing counters of singletons and pairs, respectively; (2) The
DAG structure for storing counters of longer itemsets, including tidlists of those itemsets,
and (3) The current partition.

The total number of entries in the 1-d and 2-d arrays and in the DAG structure
corresponds to the number of candidates in ARMOR, which as we have discussed in

Section 4.5, is only marginally more than |F' U N|. For the moment, if we disregard
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the space occupied by tidlists of itemsets, then the amortized amount of space taken by
each candidate is a small constant (about 10 integers for the dag and 1 integer for the
arrays). E.g., if there are 1 million candidates in the dag and 10 million in the array,
the space required is about 80MB. Since the environment we consider is one where the
pattern lengths are small, the number of candidates will typically be comparable to or
well within the available main memory. [XD99] discusses alternative approaches when
this assumption does not hold.

Regarding the space occupied by tidlists of itemsets, note that ARMOR only needs
to store tidlists of d-frequent itemsets. The number of d-frequent itemsets is of the same
order as the number of frequent itemsets, |F'|. The total space occupied by tidlists while
processing partition P; is then bounded by |F| x |P;| integers. E.g., if |F| = 5K and
|P;] = 20K, then the space occupied by tidlists is bounded by about 400MB. We assume
|F'| to be in the range of a few thousands at most because otherwise the total number
of rules generated would be enormous and the purpose of mining would not be served.
Note that the above bound is very pessimistic. Typically, the lengths of tidlists are much
smaller than the partition size, especially as the itemset length increases.

Main memory consumed by the current partition is small compared to the above two
factors. E.g., If each transaction occupies 1KB, a partition of size 20K would require only
20MB of memory. Even in these extreme examples, the total memory consumption of
ARMOR is 500MB, which is acceptable on current machines.

Therefore, in general we do not expect memory to be an issue for mining market-
basket databases using ARMOR. Further, even if it does happen to be an issue, it is easy
to modify ARMOR to free space allocated to tidlists at the expense of time: M.tidlist
can be freed after line 3 in the Update function shown in Figure 4.4.

A final observation to be made from the above discussion is that the main memory
consumption of ARMOR is proportional to the size of the output and does not “explode”

as the input problem size increases.



CHAPTER 4. EFFICIENCY OF MINING ALGORITHMS 59

4.7 Experimental Results for ARMOR

We evaluated the performance of ARMOR with respect to Oracle on a variety of databases
and support characteristics. We now report on our experimental results for the same
performance model described in Section 4.3. Since Apriori, FP-growth and VIPER have
already been compared against Oracle in Section 4.3.1, we do not repeat those observations
here, but focus on the performance of ARMOR w.r.t. that of Oracle. This lends to the
visual clarity of the graphs. We hasten to add that ARMOR does outperform the other

algorithms.

4.7.1 Experiment 3: Performance of ARMOR

(a) T10.4.D10M (b) T20.12.010M (¢) T40.18.D10M

400 T T T 1200 T T T 3000 T T T T
Oracle —e— ' Oracle —e— Oracle —e—
ol ARMOR --u-- | | ARMOR ---- ' ARMOR ----

1000 - | 1 2500 A 1

o
b=
S
T
>
p=1
S
S
T

Time (seconds)
Y
=
=3
Time (seconds)
=
3
S
Time (seconds)
—
o
=
S

.
=3
S
T
—
=
S
S

o

p=3

S
T

20

o
o
=y

Support (as a %) Support (as a %) Support (as a %)

Figure 4.11: Performance of ARMOR (Synthetic Datasets)

In this experiment, we evaluated the response time performance of the ARMOR and
Oracle algorithms for the T10.14, T20.112 and T40.I8 databases each containing 10M
transactions and these results are shown in Figures 4.11a—c.

In these graphs, we first see that ARMOR’s performance is close to that of Oracle
for high supports. This is because of the following reasons: The density of the frequent
itemset distribution is sparse at high supports resulting in only a few frequent itemsets
with supports “close” to minsup. Hence, frequent itemsets are likely to be locally frequent

within most partitions. Even if they are not locally frequent in a few partitions, it is very
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likely that they are still d-frequent over these partitions. Hence, their counters are updated
even over these partitions. Therefore, the complete counts of most candidates would be
available at the end of the first pass resulting in a “light and short” second pass. Hence,

it is expected that the performance of ARMOR will be close to that of Oracle for high

supports.

Since the frequent itemset distribution becomes dense at low supports, the above
argument does not hold in this support region. Hence we see that ARMOR’s performance
relative to Oracle decreases at low supports. But, what is far more important is that
ARMOR consistently performs within a factor of two of Oracle. This is highlighted in
Table 4.3 where we show the ratios of the performance of ARMOR to that of Oracle for

the lowest support values considered for each of the databases.

Database minsup(%) | ARMOR (seconds) | Oracle (seconds) | ARMOR/Oracle
T10.14.D10M 0.1 371.44 226.99 1.63
T20.112.D10M 0.4 1153.42 814.01 1.41
T40.18.D10M 1.15 2703.64 2267.26 1.19

Table 4.3: Worst-case Efficiency of ARMOR w.r.t Oracle

4.7.2 Experiment 4: Memory Utilization in ARMOR
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Figure 4.12: Memory Utilization in ARMOR
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The previous experiments were conducted with the total number of items, N, being
set to 1K. In this experiment we set the value of N to 20K items for the T10.14 database
— this environment represents an extremely stressful situation for ARMOR with regard to
memory utilization due to the very large number of items. Figure 4.12 shows the memory
utilization of ARMOR as a function of support for the N = 1K and N = 20K cases. We
see that the main memory utilization of ARMOR scales well with the number of items.
For example, at the 0.1% support threshold, the memory consumption of ARMOR for
N = 1K items was 104MB while for N = 20K items, it was 143MB — an increase in less
than 38% for a 20 times increase in the number of items! The reason for this is that the
main memory utilization of ARMOR does not depend directly on the number of items,

but only on the size of the output, F'U N, as discussed in Section 4.6.

4.7.3 Experiment 5: Real Datasets
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Figure 4.13: Performance of Armor (Real Datasets)

Despite repeated efforts, we were unable to obtain large real datasets that conform
to the sparse nature of market basket data since such data is not publicly available due
to proprietary reasons. The datasets in the UC Irvine public domain repository [BM98|
which are commonly used in data mining studies were not suitable for our purpose since
they are dense and have long patterns. We could however obtain two datasets — BMS-

WebView-1, a clickstream data from Blue Martini Software [ZKMO01] and EachMovie, a
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movie database from Compaq Equipment Corporation [com97], which we transformed to
the format of boolean market basket data. The resulting databases had 59,602 and 61,202
transactions respectively with 870 and 1648 distinct items.

We set the rule support threshold values for the BMS-WebView-1 and EachMovie
databases to the ranges (0.06%-0.1%) and (3%—10%), respectively. The results of these
experiments are shown in Figures 4.13a-b. We see in these graphs that the performance of
ARMOR continues to be within twice that of Oracle. The ratio of ARMOR/’s performance
to that of Oracle at the lowest support value of 0.06% for the BMS-WebView-1 database
was 1.83 whereas at the lowest support value of 3% for the EachMovie database it was

1.73.

4.7.4 Discussion of Experimental Results

We now explain the reasons as to why ARMOR should typically perform within a factor
of two of Oracle. First, we notice that the only difference between the single pass of
Oracle and the first pass of ARMOR is that ARMOR continuously generates and removes
candidates. Since the generation and removal of candidates in ARMOR is dynamic and
efficient, this does not result in a significant additional cost for ARMOR.

Since candidates in ARMOR that are neither d-frequent nor part of the current neg-
ative border are continuously removed, any itemset that is locally frequent within a par-
tition, but not globally frequent in the entire database is likely to be removed from G
during the course of the first pass (unless it belongs to the current negative border).
Hence the resulting candidate set in ARMOR is a good approximation of the required
mining output. In fact, in our experiments, we found that in the worst case, the number
of candidates counted in ARMOR was only about ten percent more than the required
mining output.

The above two reasons indicate that the cost of the first pass of ARMOR is only
slightly more than that of (the single pass in) Oracle.

Next, we notice that the only difference between the second pass of ARMOR and (the

single pass in) Oracle is that in ARMOR, candidates are continuously removed. Hence
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the number of itemsets being counted in ARMOR during the second pass quickly reduces
to much less than that of Oracle. Moreover, ARMOR does not necessarily perform a
complete scan over the database during the second pass since the second pass ends when
there are no more candidates. Due to these reasons, we would expect that the cost of the
second pass of ARMOR is usually less than that of (the single pass in) Oracle.

Since the cost of the first pass of ARMOR is usually only slightly more than that of
(the single pass in) Oracle and that of the second pass is usually less than that of (the
single pass in) Oracle, it follows that ARMOR will typically perform within a factor of
two of Oracle.

In summary, due to the above reasons, it appears unlikely for it to be possible to design
algorithms that substantially reduce either the number of database passes or the number
of candidates counted. These represent the primary bottlenecks in association rule mining.
Further, since ARMOR utilizes the same itemset counting technique of Oracle, further
overall improvement without domain knowledge seems extremely difficult. Finally, even
though we have not proved optimality of Oracle with respect to tidlist intersection, we
note that any smart intersection techniques that may be implemented in Oracle can also

be used in ARMOR.

4.8 Conclusions

A variety of novel algorithms have been proposed in the recent past for the efficient min-
ing of association rules, each in turn claiming to outperform its predecessors on a set of
standard databases. In this chapter, our approach was to quantify the algorithmic perfor-
mance of association rule mining algorithms with regard to an idealized, but practically
infeasible, “Oracle”. The Oracle algorithm utilizes a partitioning strategy to determine
the supports of itemsets in the required output. It uses direct lookup arrays for counting
singletons and pairs and a DAG data-structure for counting longer itemsets. We have
shown that these choices are optimal in that only required itemsets are enumerated and
that the cost of enumerating each itemset is ©(1). Our experimental results showed that

there was a substantial gap between the performance of current mining algorithms and
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that of the Oracle.

We also presented a new online mining algorithm called ARMOR (Association Rule
Mining based on ORacle), that was constructed with minimal changes to Oracle to result
in an online algorithm. ARMOR utilizes a new method of candidate generation that is
dynamic and incremental and is guaranteed to complete in two passes over the database.
Our experimental results demonstrate that ARMOR performs within a factor of two of

Oracle.



Chapter 5

Conciseness of Mining Results

5.1 Introduction

The gigantic number of association rules generated in typical mining operations makes
it impractical for manual examination of the mining output [LHM99]. While this is true
for sparse datasets, it is often impractical to even generate all frequent itemsets and their
associated supports for dense datasets. For instance, if the length of frequent itemsets
grows beyond a mere thirty, the total number of frequent itemsets exceeds one billion!

Recent approaches (such as those described in Chapter 3) to handle the information
overload produced as mining output follow the strategy of pruning “uninteresting” rules.
These studies are based on the observation that, in practice, many rules have the same
predictive power as other rules with fewer items, making them redundant.

Among the earlier approaches, the closed itemset framework [Zak00, TPBLO0O0] is at-
tractive in that both the identities and supports of all frequent itemsets can be derived
completely from the frequent closed itemsets, which is a subset of the frequent itemsets.
However, this framework, as shown in this chapter, suffers from the drawback that its use-
fulness critically depends on the presence of frequent itemsets that have supersets with
exactly the same support. This means that even minor changes in the database can result
in a significant increase in the number of frequent closed itemsets. For example, adding

a select 438 transactions to the 8,124 transaction mushroom dataset (from the UC Irvine

65
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Repository) caused the number of closed frequent itemsets at a support threshold of 20%
to increase from 1,390 to 15,541 — a factor of 11 times!

In this chapter we show that the number of redundant rules is far more than what
was previously estimated. We propose the generalized closed itemset framework (also
referred to as g-closed itemset framework) that builds upon the closed itemset framework
and overcomes its above mentioned limitation. In our scheme, the supports of frequent
itemsets can be estimated within a deterministic, user-specified “tolerance” factor. Our
experimental results show that even by allowing for a very small tolerance, we produce
exponentially fewer rules for most datasets and support specifications than the closed
itemsets, which are themselves much fewer than the total number of frequent itemsets.

Our scheme is also more robust to the database contents. For the same mushroom
example mentioned above, the number of frequent g-closed itemsets only increased from
1,386 to 2243, for a tolerance of 0.05%. We feel that this tolerance factor is negligible
since it is 400 times smaller than the minimum support threshold of 20%.

In our scheme, it is possible to correctly estimate the identities of all frequent itemsets.
No false negatives are ever produced, although some “borderline” infrequent itemsets may
be incorrectly identified as frequent. Borderline itemsets refers to those infrequent itemsets
that would become frequent if the support threshold were reduced by an amount equal to
the tolerance factor. We feel that this is acceptable in most mining scenarios for tolerance
factors that are much less than the minimum support threshold.

We provide theoretical arguments to show why the g-closed itemset scheme works and
substantiate these observations with experimental evidence. Our experiments were run
on a variety of databases, both real and synthetic as well as sparse and dense, to confirm
that the scheme works across a broad spectrum of database schemas and contents. On
sparse datasets, hardly any pruning occurs when the closed itemset scheme is used. On
the other hand, the pruning achieved by our scheme is quite significant even for these
datasets. On dense datasets, the pruning achieved by our scheme is much more dramatic
than that achieved by the closed itemset approach.

Our scheme can be used in one of two ways: (1) as a post-processing step of the
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mining process (like in [LHM99, DL98, SLR99, CS02, TK00]), or (2) as an integrated
solution (like in [ZHO02, PBTL99]). We show that our scheme can be integrated into both
levelwise algorithms as well as the more recent two-pass mining algorithms. We chose the
classical Apriori algorithm [AS94] as a representative of the levelwise algorithms and the
ARMOR algorithm (presented in Chapter 4), as a representative of the class of two-pass
mining algorithms. Integration into Apriori yields a new algorithm, g-Apriori and into
ARMOR, yields g-ARMOR. Our experimental results show that these integrations often
result in a significant reduction in response-time, especially for dense datasets.

We note that integration of our scheme into two-pass mining algorithms is a novel and
important contribution because two-pass algorithms have several advantages over Apriori-
like levelwise algorithms. These include: (1) significantly less I/O cost, (2) significantly
better overall performance as shown in [PT01, PHO2b], and (3) the ability to provide
approximate supports of frequent itemsets at the end of the first pass itself, as in [Hid99,
PHO2b]. This ability is an essential requirement for mining data streams [MMO02] as it is
infeasible to perform more than one pass over the complete stream.

For ease of exposition, we will use the notation shown in Table 2.1 of Chapter 2 in
the remainder of this chapter. The relevant part of this table has been reproduced in

Table 5.1 for convenience.

A Set of items in the database

D Database of customer purchase transactions
minsup User-specified minimum rule support

mancon f User-specified minimum rule support

support(X) | Support of itemset X

t(X) Tidset of itemset X

i(T) Set of items that are common to transactions in T’
c(X) Closed itemset corresponding to itemset X

g9(X) g-Closed itemset corresponding to itemset X

€ Tolerance factor

C Set of candidate k-itemsets

G Set of frequent k-generators

G Set of all frequent generators produced so far

g DAG structure to store candidates during g-ARMOR execution

Table 5.1: Notation (from Table 2.1)
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5.1.1 Organization

The remainder of this chapter is organized as follows: In Section 5.2 we review the concept
of closed itemsets and identify its limitations. In Section 5.3 we present the g-closed
itemset framework that overcomes these limitations. Then, in Section 5.4, we describe
the process of rule generation given the frequent g-closed itemsets. We incorporate the g-
closed itemset framework into the Apriori and ARMOR algorithms resulting in g-Apriori
and g-ARMOR in Sections 5.5 and 5.6, respectively. The performance of g-Apriori, g-
ARMOR and of the g-closed itemset framework is evaluated in Section 5.7. Finally, in

Section 5.8, we summarize the conclusions of our study.

5.2 Closed Itemsets

In this section we briefly review the concept of closed itemsets [ZH02, PBTL99], identify

its limitations, and set the stage for extending it to remove these limitations.

5.2.1 Background

The tidset of an itemset, X, is defined as: #(X) = set of tuple identifiers of transactions
that contain X. Similarly, the itemset of a tidset, T, is defined as: i(T") = set of items
that are common to all transactions in 7. Then ¢(X) = i(¢(X)) is a closure operator and
thereby satisfies the following properties: (1) Extension: X C ¢(X); (2) Monotonicity: if
X CY, then ¢(X) C ¢(Y); (3) Idempotency: ¢(¢(X)) = e(X).

Definition 1 An itemset, X, is closed iff ¢(X) = X.

For ease of exposition, we will refer to itemsets that are not closed as open. For every
open itemset, Y, there exists a superset, ¢(Y'), of Y that is closed. This follows from the
idempotency property above. ¢(Y) is called as the closure of Y and its support is equal
to the support of Y. The support of an itemset Y is given by support(Y') = |t(Y)|/|D|

where |D| is the number of database transactions.
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5.2.2 Exact Equality of Supports

The closed itemset framework is useful when the number of closed frequent itemsets is
significantly less than the total number of frequent itemsets since the remaining open
frequent itemsets can be pruned. It is therefore desirable, in view of this framework, to
have a large number of open frequent itemsets. However, we opine that this restriction
is too stringent since, as proved below, an itemset can be open only if it has a superset

with ezactly equal support.
Theorem 5 An itemset, X, is open iff it has a proper superset with equal support.

Proof: By definition, ¢(X) = i(¢(X)) consists of those items that are present in all
transactions in which X is present. Hence, if X is open (i.e. ¢(X) # X), it means that
there is an item j ¢ X that is present in all transactions in which X is present. This
implies that X has a proper superset, X U {j}, with exactly the same support.
Correspondingly, if X has a proper superset, Y, with exactly the same support, then
the items in Y — X are present in all transactions in which X is present. These items
would be present in the closure of X, but not in X. Hence, X is open. O
The above result causes the closed itemset approach to be highly sensitive to the data
being mined. For example — as mentioned in Section 5.1, the addition of a small number
of transactions to the mushroom dataset caused the number of frequent closed itemsets

to increase by an order of magnitude.

5.2.3 Propagation of Openness

Despite the above drawback, if at all an itemset X, happens to be open then the following
theorem shows that many supersets of X will also be open. That is, the openness of an
itemset propagates up the itemset lattice. This property of openness propagation will

carry over to the g-closed itemset framework as will be shown in Section 5.3.

Theorem 6 If X and Y are itemsets such that Y O X and support(Y') = support(X),
then for every itemset Z : Z O X, support(Z) = support(Y U Z).
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Proof: Since Y O X and support(Y') = support(X), it is clear that Y is present in every
transaction that contains X. Further, since Z O X, X is present in every transaction
that contains Z. Hence, it follows that Y is present in every transaction that contains Z.
Therefore, support(Z) = support(Y U Z). -

Combining this result with Theorem 5, it follows that if X is an open itemset having

a superset Y with equal support, then every itemset 7 : Z O X A Z 2 Y is also open.

5.2.4 Equal Support Pruning

Theorem 6 suggests a general technique to incorporate in mining algorithms: If an itemset
X, has an immediate superset Y! with equal support, then prune Y and avoid generating
any candidates that are supersets of Y. The support of any of these pruned itemsets, say
W, will be identical to one of its subsets, (W — Y) U X. We refer to this technique as
equal support pruning.

In fact, the pruning technique adopted in the A-Close algorithm [PBTL99] for generat-
ing frequent closed itemsets is equivalent to the scheme outlined above. In this algorithm,
equal support pruning is combined with the classical Apriori-type subset-support based
pruning. The resulting unpruned itemsets are referred to as generators since they are
later used to generate the frequent closed itemsets. For any closed itemset Y, the shortest

itemset X for which ¢(X) =Y is referred to as the generator of Y.

5.2.5 Generating Closed Itemsets

We now present a simple technique to generate closed itemsets from their generators.
This technique does not involve an additional database scan as is required in the A-Close
algorithm. Also, the technique will directly carry over to the g-closed itemset case. For
any closed itemset Y with generator X, the following theorem enables us to determine
Y — X using information that could be gathered while performing equal support pruning.

We refer to Y — X as X.pruned.

'An immediate superset of X is a superset of X with cardinality |X| + 1. Likewise, an immediate
subset of X is one with cardinality |X| — 1.
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Theorem 7 Let'Y be a closed itemset and X CY be the generator of Y. Then for each
item A inY — X, X U{A} would be pruned by the equal support pruning technique. No

other immediate supersets of X would be pruned by the same technique.

Proof: Since X is the generator for Y, they have the same support. It follows that for
every item A in Y — X, X U{A} would have the same support as X. Hence it would be
pruned by the equal support pruning technique.

To prove the second part, assume that there is some immediate superset Z, of X,
Z ¢ Y that is pruned using the equal support pruning technique. Then Z has the same
support as X and must therefore be present in every transaction that contains X. By
definition of closure, Z C Y. Hence proved by contradiction. O

Therefore, in order to generate a closed itemset Y from its generator X, it is sufficient
to compute X.pruned while performing equal support pruning. Note that if some subset
W of X had a proper subset V' with equal support, then W would be pruned using the
equal support pruning technique. It would then be necessary to include all the items in
V.pruned in X.pruned. That is, the pruned value of any itemset needs to be propagated

to all its supersets.

5.3 Generalized Closed Itemsets

The closed itemset framework is attractive in that both the identities and supports of
all frequent itemsets can be derived completely from a smaller subset. But, in order to
provide this feature, the framework requires exact equality between the supports of some
critical itemsets, as discussed earlier. In this section, we introduce the generalized closed
itemset framework (also referred to as g-closed itemset framework) — a generalization
of the closed itemset framework that overcomes its limitation of exact support equality.
Relationship of our scheme to existing work was discussed in Section 3.2 of Chapter 3.
In order to achieve the above generalization, we need to marginally sacrifice the abil-
ity to completely derive both identities and supports of frequent itemsets. We however

ensure the following: (1) The supports of all frequent itemsets can be derived within a
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deterministic, user-specified “tolerance” factor. (2) The identities of all frequent itemsets
can be derived from the smaller set. However, some borderline infrequent itemsets may
be declared as frequent. (3) If the tolerance factor is fixed to be zero, the smaller set

becomes equal to the closed frequent itemsets.

5.3.1 Generalized Openness Propagation

The key concept in the g-closed itemset framework lies in that the openness propagation
property (Section 5.2.3) holds even if the supports of itemsets are only approzimately equal
to those of their supersets. By approximate equality, we mean the following: The supports
of itemsets X and Y are approximately equal (denoted as support(X) ~ support(Y)) iff
they differ by at most €, where € is a user-specified “tolerance” factor. For brevity, we use

the term e-equality to denote approximate equality.

Definition 2 The supports of itemsets X and Y are said to be approrimately equal or

e-equal (denoted as support(X) = support(Y)) iff |support(X) — support(Y)| < e.

We refer to the allowable error in itemset counts as tolerance count. The term “toler-
ance” is reserved for the allowable error in itemset supports and is equal to the tolerance
count normalized by the database size. The generalized openness propagation property

is stated and proved as a corollary to the following theorem:

Theorem 8 IfY and Z are supersets of itemset X, then support(Z) — support(Y UZ) <

support(X) — support(Y).

Proof: Since Y D X, it is clear that Y is present in every transaction that contains X
except in at most [t(X)| — [t(Y)| transactions. Further, since Z O X, X is present in
every transaction that contains Z. Hence, it follows that Y is present in every transaction
that contains Z except in at most |¢(X)| — |¢(Y)| transactions. Therefore, support(Z) —
support(Y U Z) < support(X) — support(Y). -

Corollary 1 If X and Y are itemsets such that Y O X and support(X) = support(Y),
then for every itemset Z : 7 O X, support(Z) ~ support(Y U Z).
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Like Theorem 6, this result also suggests a general technique to incorporate into mining
algorithms, which we refer to as e-equal support pruning: If an itemset X has an immediate
superset Y, with e-equal support, then prune Y and avoid generating any candidates that
are supersets of Y. The support of any of these pruned itemsets, say W, will be e-equal
to one of its subsets, (W —Y)U X.

By incorporating the above technique into mining algorithms, it is possible for us to
produce a relaxed version of the generators discussed in Section 5.2.3. We could then
apply the technique proposed in Section 5.2.5 to this relaxed version of the generators to

produce a relaxed version of the closed itemsets.

5.3.2 Approximation Error Accumulation

The question remains as to whether the relaxed version of the closed itemsets generated
above (in Section 5.3.1) serves our purpose — i.e., using these itemsets and their supports,
is it possible to determine the supports of all frequent itemsets at least approximately?
The answer, in general, is no due to the following reasons:

The generalized openness propagation property considers for any itemset X, only one
superset Y with e-equal support. If X has more than one superset (say Y7,Y5,...,Y})
with e-equal support then a naive interpretation of the generalized openness propagation
property would seem to indicate the following: Every itemset Z : 7 D X AN Z 2 Vi, k =
1...n, also has a proper superset Y; UY>U---UY, UZ with e-equal support. This would
be true in the exact closed itemset case because then the support of YUY, U---UY,UZ
would be exactly equal to that of Z. In the general case, this is not necessarily true.
However, we show in the following theorem that the difference between the supports of
YiuY,U---UY, UZ and Z cannot be more than the sum of the differences between the

supports of each Y,k =1...n and X.

Theorem 9 If Y1,Y,,...,Y,, Z are supersets of itemset X, then support(Z) —
support(Up_y Yr U Z) < 37_ (support(X) — support(Yy)).

Proof: By induction on n. When n =1 this reduces to Theorem 8. Let the theorem be

true for some n.
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Since Y11 2 X, it is clear that Y, is present in every transaction that contains X
except in at most [t(X)| — |¢(Y,41)| transactions. Further, since Z O X, X is present
in every transaction that contains Z. Hence, it follows that Y, ., is present in every
transaction that contains Z except in at most |t(X)| — |¢(Y,41)| transactions.

Now, since the theorem is true for n according to the inductive step, U;_, Y% is present
in every transaction that contains Z except in at most > p_, (|t(X)|—|t(Y%)|) transactions.

Combining the results in the above two paragraphs, it is clear that J}Z] Y} is present
in every transaction that contains Z except in at most Y721 (|£(X)| — [#(Y)|) transactions.
Hence, support(Z) — support(Upt] Yy U Z) < S0 (support(X) — support(Yy)). ]

In our approach we solve the problem of approximation error accumulation by ensuring
that an itemset is pruned using the e-equal support pruning technique only if the mazimum
possible cumulative error in approximation does not exceed the user-specified tolerance e.
Whenever an itemset X, having more than one immediate superset Yi,Y5,...,Y,, with
e-equal support is encountered, we prune each superset Y; only as long as the sum of the
differences between the supports of each pruned superset and X is within tolerance.

While performing the above procedure, at any stage, the sum of the differences between
the support counts of each pruned superset and X is denoted by X.debt. Recall from

Section 5.2.5 that these pruned supersets are included in X.pruned. Since X.pruned

needs to be propagated to all unpruned supersets of X, it becomes necessary to propagate

X.debt as well.

5.3.3 Problem Formulation

We now move on to providing a formal description of the g-closed itemset mining prob-
lem. This problem takes as input Z, a set of items sold by the store, D, a database
of customer purchase transactions, minsup, the minimum support threshold and e, the
tolerance factor. It produces as output the set of all frequent g-closed itemsets.

g-closed itemsets are those that result by incorporating the e-equal support pruning
technique into mining algorithms, while ensuring that the approximation error does not

accumulate beyond the user-specified tolerance. Note that the set of g-closed itemsets
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is not necessarily unique, but depends on the order in which pruning is performed. In
practice, however, the order of the number of frequent g-closed itemsets remains same
irrespective of the manner in which pruning is performed, and is usually much less than
the number of frequent itemsets. Clearly, the set of g-closed itemsets satisfies the following

properties:

1. If the tolerance factor is fixed to be zero, then it reduces to the set of “exact”
closed itemsets. This is because — (1) approximation errors don’t accumulate by
definition, and (2) the generalized openness propagation property reduces to the

normal openness propagation property.

2. The supports of frequent itemsets can be derived within a deterministic user-
specified tolerance factor. This is because — (1) approximation error accumulation
is checked by avoiding pruning of certain critical itemsets, and (2) generalized open-
ness propagation property ensures approximation error for supersets of generators

to be within the tolerance factor.

3. The identities of all frequent itemsets can be derived from the frequent g-closed
itemsets. This is possible if while performing equal support pruning, we ensure that
the support of an itemset is consistently approximated by the support of its subset.
Hence we would always over-estimate the supports of itemsets. Although this would
result in some borderline infrequent itemsets (whose support exceeds minsup — )

being declared as frequent, it would ensure that there are no false negatives.

Similar to the exact closed itemset case, we have for every itemset X, a g-closed itemset
Y .Y DO X whose support is e-equal to that of X. We refer to the g-closed itemset
corresponding to an itemset X as its g-closure and denote it as g(X).

Note that in the above problem formulation, we have applied the g-closed itemset
framework only w.r.t. the frequent itemsets and not to their negative border. The reason
for this is that any itemset in the negative border cannot have a subset or superset that is

also in the negative border. Since the g-closed itemset framework depends on the presence
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of itemsets that have supersets with e-equal support, it cannot be applied on the negative

border.

5.4 Rule Generation

In this section, we move on to describe the process of association rule generation given
the frequent g-closed itemsets and their associated supports. Recall that an association
rule is of the form X; — X, where X, Xy C Z. Its support equals |£(X; U X5)|, and
its confidence equals |[t(X; U Xy)|/|t(X1)]. We are interested in finding all rules whose
support and confidence are at least minsup and minconf, respectively.

Since the support of an itemset X is e-equal to the support of its g-closure, the rule
X; — X, can be approximated by ¢g(X;) — ¢g(X3). Let sup and conf be the support
and confidence of the original rule, respectively. From the generalized rule, the support
of the original rule can be estimated to be within (sup — €, sup), by the definition of
approximate equality of supports and the nature of the g-closed itemset framework.

The following theorem shows that the confidence of a rule (whose actual confidence is
conf) can be estimated to be within (conf x X, conf/\) where A is given by (1—e/minsup).
It is clear that the approximation error becomes acceptable if the tolerance € is much less
than the minimum support. The tolerance € could be chosen by the user after allowing

for the approximation error in rule confidences.

Theorem 10 Given the g-closed itemsets and their associated supports, the confidence
conf, of a rule X1 — Xy can be estimated to be within (conf x X\, conf/\) where \ is

given by (1 — €/minsup).

Proof: We know conf = support(X; U X,)/support(X;). Estimated confidence is
support(g(X; U X3))/support(g(X1)). Since the support of an itemset X can be esti-
mated within (support(X) — €, support(X)), the extremities in the estimated confidence
are ((support(X; U Xy) — €)/support(X;) and support(X; U Xo)/(support(Xy) —€)). It
can be shown by algebraic manipulation that since X; U X5 and X have supports at least

equal to minsup, the above range is subsumed by (conf x A, conf /). ]
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From the above discussion, it is clear that it is sufficient to consider rules only among
the frequent g-closed itemsets. Further, it has been shown in [Zak00, TPBLO00] that it is
sufficient to consider rules among adjacent frequent itemsets in the itemset lattice since
other rules can be inferred by transitivity. This result carries over even to the frequent
g-closed itemsets. Techniques to prune rules that have the same predictive power as other
rules with fewer items have also been presented in [Zak00, TPBL00]. These techniques
are complementary to the techniques proposed here and could be incorporated in them

to further reduce the size of rule covers.

5.5 Incorporation in Levelwise Algorithms

In the previous section we presented the g-closed itemset framework and the theory sup-
porting it. In this section we show that the framework can be integrated into levelwise
algorithms. We chose the classical Apriori algorithm as a representative of the levelwise
mining algorithms. The same techniques can be used to integrate the framework into other
levelwise algorithms such as VIPER and FP-growth, yielding corresponding improvements
in their output sizes and response times. Integration of our scheme into Apriori yields g-
Apriori, an algorithm for mining frequent g-closed itemsets. After describing the design of
the new algorithm in Section 5.5.1, we explain the details of its operation in Section 5.5.2.
Finally, in Section 5.5.3, we show that g-Apriori indeed generates the frequent g-closed

itemsets.

5.5.1 The Design of g-Apriori

The g-Apriori algorithm is obtained by combining the e-equal support pruning technique
described in Section 5.2.4 with the subset-based pruning of Apriori. This makes it similar
to the A-Close algorithm [PBTL99| for mining frequent closed itemsets. However, g¢-
Apriori significantly differs from A-Close (even for the zero tolerance case) in that it does
not require an additional database scan to mine closed itemsets. This is achieved by

utilizing the technique described in Section 5.2.5.
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As discussed in Section 5.3.2, we incorporate techniques to check the accumulation
of approximation error in itemset supports. This is achieved in g-Apriori by maintain-
ing an extra field, debt, with each generator. This field stores the approximation error
that accumulates for each generator. Whenever the value in this field might exceed toler-
ance, g-Apriori avoids pruning of the corresponding generator, thereby ensuring that the

approximation error never exceeds tolerance.

5.5.2 The Mechanics of g-Apriori

The pseudo-code of the g-Apriori algorithm is shown in Figure 5.1 and works as follows:
The code between lines 1-9 of the algorithm, excluding lines 6 and 7, consists of the
classical Apriori algorithm. The SupportCount function (line 4) takes a set of itemsets as
input and determines their counts over the database by making one scan over it.

Every itemset X in C} (the set of candidate k-itemsets), G, (frequent k-generators)
and G (the frequent generators produced so far) has an associated counter, X.count, to
store its support count during algorithm execution. Every itemset X in G has two fields in
addition to its counter: (1) X.pruned (described in Section 5.2.5). (2) X.debt: an integer
value that is used to check the accumulation of approximation error in itemset supports.

The Prune function is applied on Gj (line 6) before the (k + 1)-candidates Cj, are
generated from it using AprioriGen (line 8). Its responsibility is to perform e-equal sup-
port pruning while ensuring that approximation error in the supports of itemsets is not
accumulated. The pseudo-code for this function is shown in Figure 5.2 and it performs
the following task: it removes any itemset X from Gy if X has a subset Y with e-equal
count, provided Y.debt remains within tolerance.

The code in lines 1-9, excluding line 7, is analogous to the A-Close algorithm [PBTL99]
for generating frequent closed itemsets. At the beginning of line 10, G would contain the
equivalent of the “generators” of the A-Close algorithm.

The PropagatePruned function is applied on Gy, (line 7) and it ensures that the pruned
value of each itemset X in G} is appended with the pruned values of each immediate

subset of X. The pseudo-code for this function is shown in Figure 5.3. The necessity for
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performing this function was explained in Section 5.2.5, where we showed that the pruned
value of an itemset should be propagated to all its supersets.

Finally, in lines 10-11, the g-closed itemsets are output.

5.5.3 Proof of Correctness

At zero tolerance, g-Apriori reduces to the A-Close algorithm — however, the final extra
database scan in A-Close is avoided using the technique described in Section 5.2.5. As
proved earlier, the new technique ensures that all closed frequent itemsets are enumerated.
Hence g-Apriori is correct at zero tolerance threshold.

As discussed in Section 5.3.3, g-closed itemsets are those that result by incorporating
the e-equal support pruning technique into mining algorithms, while ensuring that the
approximation error does not accumulate beyond the user-specified tolerance. Since g-
Apriori incorporates e-equal support pruning into Apriori, it suffices to prove that the
approximation error in itemset supports does not exceed the tolerance factor e.

As discussed in Section 5.3.2, g-Apriori keeps track of the approximation error that
accumulates for each generator, X, in a field named X.debt. g-Apriori then avoids pruning
of any generator when debt might exceed tolerance. This ensures that the approximation

error is always within the tolerance factor. Hence proved.

5.6 Incorporation in Two Pass Algorithms

In this section we show that the g-closed framework can be incorporated into two-pass
mining algorithms. As mentioned in the Introduction, this is a novel and important contri-
bution because two pass algorithms are typically much faster than level-wise algorithms
and also because they can be tweaked to work on data streams [MMO02]. We selected
ARMOR (described in Chapter 4) as a representative of the class of two-pass mining
algorithms. Integration of the g-closed framework into ARMOR yields ¢-ARMOR, a two-
pass algorithm for mining frequent g-closed itemsets. In order to describe our strategy,

we first review the overall structure of ARMOR, focussing on those features that are
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necessary for the subsequent description.

5.6.1 The ARMOR Algorithm

In the ARMOR algorithm, the database is conceptually partitioned into disjoint blocks.
Data is read from disk and processed partition by partition. At most two passes are made
over the database.

In the first pass, the algorithm starts with the set of all 1-itemsets as candidates
(i.e. potentially frequent itemsets). After processing each partition, the set of candidates
(denoted as G) is updated — new candidates may be inserted and existing ones removed.
The algorithm ensures that at any stage, if d is the database scanned so far, then the
frequent itemsets within d (also called d-frequent itemsets) are available. The algorithm
also maintains the partial counts of these itemsets — the partial count of an itemset is its
count since it has been inserted into G.

In the second pass, complete counts of the candidates obtained at the end of the first
pass are determined. During this pass, there are no new insertions into G. However,

candidates that can no longer become frequent are removed at each stage.

5.6.2 Details of Incorporation

The rule that we follow in incorporating the g-closed framework into ARMOR is simple:
While processing a partition during the first pass, if we find the partial count of an itemset
X to be e-equal to that of its superset Y, then prune every proper superset of Y from G
while ensuring that the approximation error does not accumulate beyond the tolerance
limit. That is, whenever an itemset X, that has more than one immediate superset
Y1,Y,, ..., Y, with e-equal partial count is encountered, we prune each superset Y, only
as long as the sum of the differences between the partial counts of each pruned superset
and X is within tolerance.

We now show that incorporating this rule in ARMOR yields valid results w.r.t the
g-closed framework. This is first shown for a restricted case after which the restrictions

are removed one by one. Consider the following three cases with increasing degree of
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complexity:

Case 1: During the first pass, itemset X and its superset Y are inserted into G after
processing the first partition itself and are never removed later. They consistently

have e-equal partial counts (w.r.t tolerance €) in every partition.

Case 2: Identical to case 1, except that itemsets X and Y may have been inserted
into G not necessarily after processing the first partition itself, but perhaps after
processing some later partition. It is also possible for X and Y to be removed from
G and reinserted later. They consistently have e-equal partial counts from the point

they were last inserted into G till the end of the pass.

Case 3: Identical to case 2, except that itemsets X and Y may not consistently have

e-equal partial counts.

Note that in all the above cases, we consider itemsets X and Y to have e-equal partial
counts only if they were both last inserted into G together. Otherwise, it is infeasible
to compare their partial counts as these counts would be over different portions of the
database. This restriction is not likely to have much impact for small tolerances because
then X and Y are likely to have e-equal counts in every partition. It is therefore likely
that they would always be inserted into G together. Even if they are not, it would only

affect the performance and not the correctness of the algorithm.

Case 1

In Case 1, the partial counts of X and Y at the end of the first pass would be equal to
their complete counts. In this case, the rule reduces to e-equal support pruning while

ensuring that the approximation error doesn’t exceed e.

Case 2

In Case 2, we know that the partial counts of X and Y are e-equal after they were last

inserted into G. If their partial counts are also e-equal before they are last inserted into
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G, then this case would reduce to Case 1. Let us consider the harder scenario when they
are not e-equal. This would be discovered while processing some partition P; during the
second pass of ARMOR, when the complete counts of X and Y are being obtained. Recall
that we would have pruned all supersets of Y during the first pass because the partial
counts of X and Y were e-equal. All those supersets of Y now need to be regenerated
with appropriate partial counts.

The modification to ARMOR that is required to regenerate these supersets is as fol-
lows: For every d-frequent itemset Z in G such that Z7 D X AZ 2 Y, insert a new
candidate Y U Z into G. The partial count of the new candidate should be set equal to
the partial count of Z. Note that in ARMOR, the partial counts of each Z and the cor-
responding new candidates would not yet have been updated over the current partition
P;. 1t is clear that the partial counts of the new candidates at this stage, i.e. for the
partition preceding P;, are accurate w.r.t tolerance € . Since their partial counts would be
updated individually over partition P; and all later partitions, their partial counts would
be e-equal to their complete counts by the end of the second pass.

We have shown above that the complete counts of candidates obtained at the end
of the second pass of ARMOR are accurate w.r.t tolerance e. We now proceed to show
that there cannot be any frequent superset of Y that was not regenerated during the
second pass. It is clear that any frequent superset of Y, say W, would have a subset
(W —Y)UX that is also frequent. This subset would be available in G during the second
pass. Hence W would have been regenerated in ARMOR by forming the new candidate:
Y U[(W —Y)U X] as outlined in the previous paragraph.

Case 3

Moving over to Case 3, let us consider the following scenario: Itemsets X and Y are in
G during the first pass at the end of some partition P; and have e-equal partial counts.
Then, after processing the partition immediately after P, say P;, the partial counts of X
and Y are no longer e-equal. Since the supersets of ¥ would have been removed from G

earlier because the partial counts of X and Y were e-equal, they would now have to be
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regenerated. The modification to ARMOR that is required to regenerate these supersets is
identical to that outlined for Case 2 above. Following the same reasoning as in Case 2, it is
clear that the partial counts of the regenerated supersets would be accurate w.r.t tolerance

€ and also that there cannot be any d-frequent superset of Y that is not regenerated.

5.7 Performance Study

In the previous sections, we have described the g-closed itemset framework along with the
g-Apriori and g-ARMOR algorithms. We have conducted a detailed study to assess the
utility of the framework in reducing both the output size and the response time of mining
operations.

Our experiments cover a range of databases and mining workloads including the
real datasets from the UC Irvine Machine Learning Database Repository and synthetic
datasets from the IBM Almaden generator. These datasets are the same as those used
in [ZHO02]. Our experiments also include the real dataset, BMS-WebView-1 [ZKMO01]
from Blue Martini Software. This dataset originated from a dot-com company called
Gazelle.com, a legwear and legcare retailer and contains several months of clickstream

data. Table 5.2 shows the characteristics of the datasets used in our evaluation.

Database #Items | Record Length | #Records
BMS-WebView-1 497 2.5 59,602
chess 76 37 3,196
connect 130 43 67,557
mushroom 120 23 8,124
pumsb* 7117 50 49,046
T1014D100K 1000 10 100K
T1014D10M 1000 10 10M

Table 5.2: Database Characteristics

We conducted four sets of experiments: In Experiment 1, we measure the output size
reduction of the g-closed itemsets w.r.t frequent itemsets. In Experiment 2, we measure

the response time reduction of the g-Apriori algorithm w.r.t Apriori. In Experiment 3,
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we measure the response times of g-ARMOR and compare them with those of Apriori.
Finally, in Experiment 4, we studied how the performance of the implemented algorithms
scale with database size. All the algorithms were coded in C++ and the experiments were
conducted on a 700-MHz Pentium III workstation running Red Hat Linux 6.2, configured
with 512 MB main memory and a local 18 GB SCSI 10000 rpm disk.

The same data-structures (hashtrees [AS94]) and the same optimizations (using arrays
to store itemset counters in the first two database passes) were used in both g-Apriori
and Apriori to ensure that the experimental results are a good indication of the utility
of the g-closed itemset framework, and not of any differences in the structure of the two
algorithms.

We chose tolerance count values ranging from zero (corresponding to the exact closed
itemset case) to 1000. While higher values of tolerance are uninteresting in themselves,

their inclusion is useful in studying the effect of increasing tolerance on the output size.

5.7.1 QOutput Size Reduction

We now report on our experimental results. In our first experiment, we measure the
output size reduction as a percentage of the frequent itemsets that are pruned to result
in g-closed itemsets. The results of these experiments are shown in Figures 5.4a—f for the
various databases. The x-axis in these graphs represents the tolerance count values, while
the y-axis represents the percentage of frequent itemsets pruned. Each graph contains
two curves corresponding to two different minimum support thresholds. We show only
two curves per graph to avoid visual clutter.

In these graphs, we first see that the pruning achieved due to the g-closed itemset
framework, in most cases, is significant. For example, on the chess dataset (Figure 5.4b)
for a minimum support threshold of 80%, the percentage of pruned itemsets is only 38%
at zero tolerance (closed itemset case). For the same example, at a tolerance count
of 50 (corresponding to a maximum error of 1.5% in itemset supports), the percentage
of pruned itemsets increases to 97%! The exact pruning achieved for each database for

selected tolerance values is shown in Table 5.3, along with the number of frequent itemsets



CHAPTER 5. CONCISENESS OF MINING RESULTS 85

and frequent closed itemsets.

The pruning achieved is significant even on the sparse datasets generated by the IBM
Almaden generator. For example, on the T10I4D100K dataset (Figure 5.4f) for a mini-
mum support threshold of 0.1%, the percentage of pruned itemsets is only 2.6% at zero
tolerance, whereas it increases to 41.5% at a tolerance count of 10 (corresponding to a

maximum error of 0.01% in itemset supports).

Database Support | #Freq | #Closed | #g-Closed | Tolerance
BMS-WebView-1 | 0.08% 10286 9427 8138 0.008%
BMS-WebView-1 | 0.06% | 461521 75653 55198 0.008%
chess 80% 8227 5083 398 1.5%
chess 70% 48969 23991 2107 1.5%
connect 97% 487 284 46 0.7%
connect 90% 27127 3486 793 0.7%
mushroom 40% 565 140 113 1.2%
mushroom 20% 53583 1197 1059 1.2%
pumsb* 60% 167 68 63 0.2%
pumsb* 40% 27354 2610 1309 0.2%
T1014D100K 0.5% 1073 1073 979 0.01%
T1014D100K 0.1% 27532 26806 16104 0.01%

Table 5.3: Output Size

Next, we notice that in some cases such as for the mushroom dataset (Figure 5.4d),
the percentage of pruned itemsets increases only marginally with an increase in tolerance
since even at zero tolerance itself (corresponding to the closed itemset case), the pruning
is high. We hasten to add that at zero tolerance, the pruning depends critically on the
dataset contents. We demonstrate this by adding a select 438 transactions to the 8,124
transaction mushroom dataset. The selection was made so as to break exact equalities.
This caused the number of closed frequent itemsets at a minimum support threshold of
20% to increase from 1,390 to 15,541 — a factor of 11 times! The number of frequent
g-closed itemsets (at a tolerance count of 5) only increased from 1,386 to 2243.

An interesting trend that we noticed in all cases is that the percentage of pruned
itemsets increases dramatically at low tolerances and then plateaus as the tolerance is

increased further. This trend is significant as it indicates that the maximum benefit
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attainable using the g-closed itemset framework is obtained at low tolerances. The reason
for this trend is as follows:

As the length of an itemset, X, increases, the number of subsets that it has increases
exponentially. This means that the chance of one of the subsets being e-equal to one of
its subsets becomes exponentially high. Hence most of the long generators get pruned at
low tolerances itself. This accounts for the initial steep rise in the curve. Next, for very
short generators (e.g., 1-itemsets and 2-itemsets), the difference in their supports from
those of their supersets is typically large [ZG01]. Hence, most of these generators are not
pruned even at high tolerances. Finally, those generators that are in the middle range (e.g.
3-itemsets) will get pruned at a slow pace with regard to the increase in tolerance. This
accounts for the gradual upward slope in the curve after the initial exponential increase.

Another interesting trend that we notice in all cases is that the percentage of pruned
itemsets is more for lower minimum support thresholds. The reason for this behaviour is
that when the minimum support threshold is reduced, it is possible for longer itemsets
to become frequent. As discussed above, longer itemsets are more likely to be pruned,
thereby leading to more efficient pruning at lower minimum support thresholds. This
trend is significant as it counteracts the exponential increase in output size of frequent
itemset mining algorithms with decreasing minimum support thresholds.

A final point: in Figure 5.4c, we see that for the connect database, the percentage
of pruned itemsets decreases marginally between tolerance counts of 500 and 1000. This
unintuitive behaviour arises due to the following reason: In order to ensure that approx-
imation error in itemset supports does not accumulate, not all itemsets having supersets
with e-equal supports are pruned. It is therefore possible that an itemset that was pruned
at a tolerance count of 500 may not be pruned at a tolerance count of 1000. If such
an itemset is short, then it may have many supersets that are not pruned as well. This
phenomenon could at times cause the number of pruned itemsets to decrease marginally

with an increase in tolerance.
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5.7.2 Response Time Reduction

In our second experiment, we measure the performance gain obtained from the g-closed
itemset framework. This is measured as the percentage reduction in response time of
g-Apriori over Apriori. The results of these experiments are shown in Figures 5.5a—f. The
x-axis in these graphs represents the tolerance count values, while the y-axis represents
the performance gain of g-Apriori over Apriori. As in Experiment 1, each graph contains
two curves corresponding to two different minimum support thresholds.

In all these graphs, we see that the performance gain of g-Apriori over Apriori is
significant. In fact, the curves follow the same trend as in Experiment 1. This is expected
because the bottleneck in Apriori (and other frequent itemsets mining algorithms) lies in
the counting of the supports of candidates. Hence any improvement in pruning would

result in a corresponding reduction in response-time.

5.7.3 Response Times of g-ARMOR

In our third experiment, we measure the response times of g-ARMOR and compare them
against those of Apriori. The results of these experiments are shown in Figures 5.6a—f.
The x-axis in these graphs represents the tolerance count values, while the y-axis (plotted
on a log-scale) represents the response times of g-ARMOR and Apriori in seconds. Each
graph contains two curves for each algorithm corresponding to two different minimum
supports. The curves corresponding to Apriori are shown using a dashed line style.

In all these graphs, we see that the response times of ¢-ARMOR are over an order
of magnitude faster than Apriori. We also notice that the response times become faster
with an increase in tolerance count values. As in Experiment 2, this is expected because
more candidates are pruned at higher tolerances. The reduction in response time is not
as steep as in Experiment 2 due to the fact that ¢-ARMOR is much more efficient than
g-Apriori and hence less responsive to a change in the number of candidates.

We do not show the response times of ARMOR in these graphs since it ran out of
main memory for most of the datasets and support specifications used in our evaluation.

This was because most of these datasets were dense, whereas ARMOR, as described in
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Chapter 4, is designed only for sparse datasets and is memory intensive.

5.7.4 Scale-up Experiment

In our fourth (and final) experiment, we studied how the performance of the implemented
algorithms scale with database size. This experiment was conducted on the T10I4D10M
database that has 10 million records. The results of this experiment are shown in Fig-
ure 5.7. The x-axis in this graph represents the tolerance count values, while the y-axis
(plotted on a log-scale) represents the response times of g-ARMOR, g-Apriori and Apri-
ori in seconds. The graph contains two curves for each algorithm corresponding to two
different minimum supports. The curves corresponding to Apriori are shown using a
dashed line style.

In this graph, we notice that while the absolute times of the algorithms vary from
the previous experiment, the shape of the curves remain the same. The performances
of all three algorithms — g-ARMOR, g-Apriori and Apriori are seen to be linear w.r.t.
database size. This behaviour of these algorithms is explained as follows: (1) The number
of database passes for each of these algorithms depends only on the density of patterns in
the database and not on the number of transactions. (2) The rate at which transactions
are processed in each pass depends only on the distribution from which the transactions
are derived, the number of candidate itemsets being counted and on the efficiency of the
data-structure that holds the counters of candidates. It also does not depend on the
number of transactions in the database. Due to these two reasons, it is expected that the

response-time performances of the algorithms under study are linear w.r.t. database size.

5.8 Conclusions

In this chapter we proposed the generalized closed itemset framework (or g-closed itemset
framework) in order to manage the information overload produced as the output of fre-
quent itemset mining algorithms. This framework builds upon the original closed itemset

concept over which it provides an order of magnitude improvement. This is achieved by
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relaxing the requirement for exact equality between the supports of itemsets and their
supersets. Instead, our framework accepts that the supports of two itemsets are equal if
the difference between their supports is within a user-specified tolerance factor.

We also presented two algorithms — g-Apriori (based on the classical levelwise Apriori
algorithm) and g-ARMOR (based on ARMOR, presented in Chapter 4) for mining the
frequent g-closed itemsets. g-Apriori utilizes a new method for generating frequent g-
closed itemsets from their generators. This new method avoids the costly additional pass
that was required in the A-Close algorithm for mining frequent closed itemsets. g-Apriori
is shown to perform significantly better than Apriori solely because the frequent g-closed
itemsets are much fewer than the frequent itemsets. Finally, g-ARMOR was shown to
perform over an order of magnitude better than Apriori over all databases and support

specifications used in our experimental evaluation.
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g-Apriori (D, I, minsup, tol)
Input: Database D, Set of Items I, Minimum Support minsup, Toler-
ance Count tol
Output: Generalized Closed Itemsets
C} = set of all 1-itemsets;
G = ¢
for (k=1;|Ck| > 0; K+ +)
SupportCount(Cy, D); // Count supports of Cy, over D
G} = Frequent itemsets in C},
Prune(Gy, G, tol);
PropagatePruned(Gy, G, tol);
Cr+1 = AprioriGen(Gy);
G = G UGkg;
10. for each itemset X in G
11. Output (X U X.pruned, X.count);

© ® NS T W N

Figure 5.1: The g-Apriori Algorithm

Prune (G, G, tol)
Input: Frequent k-itemsets Gy, Generators G, Tolerance Count tol
Output: Remove non-generators from Gy,
for each itemset X in Gy
for each (|X| — 1)-subset Y of X, in G
debt = Y.count — X.count;
if (debt + Y.debt < tol)
G = G — {X}
Y.pruned = Y.pruned U (X —Y)
Y.debt += debt

NS otk w e

Figure 5.2: Pruning Non-generators from Gj

PropagatePruned (Gy, G, tol)

Input: Frequent k-itemsets G, Generators G, Tolerance Count tol
Output: Propagate pruned value to generators in Gy,

1. for each itemset X in G},

2 for each (|X| — 1)-subset Y of X, in G

3 if (X.debt + Y.debt < tol)

4. X.pruned = X.pruned U Y.pruned

5 X.debt+ = Y.debt

Figure 5.3: Propagate Pruned Value to Supersets
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Chapter 6

Incremental Mining

6.1 Introduction

In many business organizations, the historical database is dynamic in that it is periodically
updated with fresh data. For such environments, data mining is not a one-time operation
but a recurring activity, especially if the database has been significantly updated since
the previous mining exercise. Repeated mining may also be required in order to evaluate
the effects of business strategies that have been implemented based on the results of the
previous mining. In an overall sense, mining is essentially an exploratory activity and
therefore, by its very nature, operates as a feedback process wherein each new mining is
guided by the results of the previous mining.

In the above context, it is attractive to consider the possibility of using the results of
the previous mining operations to minimize the amount of work done during each new
mining operation. That is, given a previously mined database DB and a subsequent
increment db to this database, to efficiently mine db and DB U db. Mining db is necessary
to evaluate the effects of business strategies; whereas mining DB U db is necessary to
maintain the updated set of mining rules. Such “incremental” mining is the focus of this
chapter.

As mentioned in Chapter 1, our work on incremental mining presented in this thesis

was actually done prior to our work on the other two issues, namely, on the efficiency
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of BAR-mining algorithms and on the conciseness of results. However, for pedagogical

reasons, we present it in the end.

6.1.1 The State-of-the-Art

The design of incremental mining algorithms for association rules has been considered
earlier in [AFLM99, CHNW96, CLK97, CVB96, F*97, T*97]. While these studies were
a welcome first step in addressing the problem of incremental mining, they also suffer
from a variety of limitations that make their design and evaluation unsatisfactory from

an “industrial-strength” perspective:

Effect of Skew: The effect of temporal changes (i.e. skew) in the distribution of database
values between DB and db has not been considered. However, in practical databases,
we should typically expect to see skew for the following reasons: (a) inherent seasonal
fluctuations in the business process, and/or (b) effects of business strategies that
have been put into place since the last mining. So, we expect that skew would be

the norm, rather than the exception.

As we will show later in this chapter, the performance of the algorithms presented
in [Ft97, T*97] is sensitive to the skew factor. In fact, their sensitivity is to the
extent that, with significant skew and substantial increments, they may do worse
than even the naive approach of completely ignoring the previous mining results

and applying Apriori from scratch on the entire current database.

Size of Database: The evaluations of the algorithms has been largely conducted on
databases and increments that are small relative to the available main memory. For
example, the standard experiment considered a database with 0.1 M tuples, with
each tuple occupying approximately 50 bytes, resulting in a total database size of
only 5 MB. For current machine configurations, this database would completely fit
into memory with plenty still left to spare. Therefore, the ability of the algorithms to
scale to the enormous disk-resident databases that are maintained by most business

organizations, has not been clearly established.
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Characterizing Efficiency: Apart from comparing their performance with that of Apri-
ori, no quantitative assessment has been made of the efficiency of these algorithms
in terms of their distance from the optimal, which would be indicative of the scope,

if any, for further improvement in the design of incremental algorithms.

Incomplete Results: Almost all the algorithms fail to provide the mining results for
solely the increment, db. As mentioned before, these results are necessary to help
evaluate the effects of business strategies that have been put into place since the

previous mining.

Changing User Requirements: It is implicitly assumed that the minimum support
specified by the user for the current database (DB U db) is the same as that used
for the previously mined database (DB). However, in practice, given mining’s ex-
ploratory nature, we could expect user requirements to change with time, perhaps
resulting in different minimum support levels across mining operations. Extend-
ing the algorithms to efficiently handle such “multi-support” environments is not

straightforward.

6.1.2 Contributions

In this chapter, we present and evaluate an incremental mining algorithm called DELTA
(Differential Evaluation of Large iTemset Algorithm). The core of DELTA is similar to the
previous algorithms but it also incorporates important design alterations for addressing
their above-mentioned limitations. With these extensions, DELTA represents a practical
algorithm that can be effectively utilized for real-world databases. The main features of

the design and evaluation of DELTA are the following:

e DELTA guarantees that, for the entire mining process, at most three passes over the
increment and one pass over the previous database may be necessary. We expect
that such bounds will be useful to businesses for the proper scheduling of their

mining operations.
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e For the special case where the new results are a subset of the old results, and
therefore in principle requiring no processing over the previous database, DELTA
is optimal in that it requires only a single pass over the increment to complete the

mining process.

e For computing the negative border [Toi96] closure, a major performance-determining
factor in the incremental mining process, a new hybrid scheme that combines the

features of earlier approaches is implemented.

e DELTA provides complete mining results for both the entire current database as

well as solely the increment.

e DELTA can handle multi-support environments, requiring only one additional pass

over the current database to achieve this functionality.

e For the special case when the previous support threshold is so high that there are no

frequent itemsets over DB, DELTA reduces to a re-mining of the entire database.

e By carefully integrating optimizations previously proposed for first-time hierarchical
mining algorithms, the DELTA design has been extended to efficiently handle in-
cremental mining of hierarchical association rules. As mentioned in Chapter 1, this
illustrates the point that extensions to the basic association rule model including

hierarchical, categorical and quantitative rules are finally reducible to BAR-mining.

e The performance of DELTA is evaluated on a variety of dynamic databases and
compared with that of Apriori and the previously proposed incremental mining
algorithms for boolean association rules. For hierarchical association rules, we com-
pare DELTA against the Cumulate first-time mining algorithm presented in [SA95].
All experiments are made on databases that are significantly larger than the entire
main memory of the machine on which the experiments were conducted. The effects

of database skew are also modeled.

The results of our experiments show that DELTA can provide significant improve-

ments in execution times over the previous algorithms in all these environments.
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Further, DELTA’s performance is comparatively robust with respect to database

skew.

e We also include in our evaluation suite the performance of an an Oracle that has
complete apriori knowledge of the identities of all the frequent itemsets (and their
associated negative border) both in the current database as well as in the increment
and only requires to find their respective counts. Like in Chapter 4, modeling the
Oracle’s performance permits us to characterize the efficiency of practical algorithms

in terms of their distance from the optimal.

Our experiments show that DELTA’s efficiency is close to that obtained by the Oracle
for many of the workloads considered in our study. This shows that DELTA is able
to extract most of the potential for using the previous results in the incremental

mining process.

6.1.3 Organization

The remainder of this chapter is organized as follows: The DELTA algorithm for both
boolean and hierarchical association rules is presented in Section 6.2 for the equi-support
environment. The algorithm is extended to handle the multi-support case in Section 6.3.
The performance model is described in Section 6.5 and the results of the experiments are
highlighted in Section 6.6. Finally, in Section 6.7, we present the conclusions of our study

and outline future research avenues.

6.2 The DELTA Algorithm

In this section, we present the design of the DELTA algorithm. For ease of exposition, we
first consider the “equi-support” case, and then in Section 6.3, we describe the extensions
required to handle the “multi-support” environment. In the following discussion and in
the remainder of this chapter, we use the notation given in Table 2.1 of Chapter 2. The

relevant part of this table has been reproduced in Table 6.1 for convenience. Also, we
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DB, db, DB U db | Previous, increment, and current database

minsuppp Previous Minimum Support Threshold
MANSUPpBUdb New Minimum Support Threshold
minsup Minimum Support Threshold when minsuppg = minsupppua

Fpp, Fa, Fppuay | Set of frequent itemsets in DB, db and DB U db
Npp, Nay, Nppuay | Negative borders of Fpg, Fy and Fppua

Frnown Set of known-frequent itemsets during algorithm execution:
Fppua N (Fpp U Npg)

Ninown Negative border of Fy,ouwn

Infrequent Set of known-infrequent itemsets during algorithm execution

Infrequentg, Set, of known-infrequent (within db) itemsets

during algorithm execution

Table 6.1: Notation (from Table 2.1)

use the terms “frequent”, “infrequent”, “count” and “support” with respect to the entire
database DB U db, unless otherwise mentioned.

The input to the incremental mining process consists of the set of previous frequent
itemsets Fpp, its negative border Nppg, and their associated supports. The output is the
updated versions of the inputs, namely, Fppugp and Npguag along with their supports. In

addition, the mining results for solely the increment, namely, Fy, U N, are also output.

6.2.1 The Mechanics of DELTA

The pseudo-code of the core DELTA algorithm for generating boolean association rules
is shown in Figure 6.1 — the extension to hierarchical association rules is presented in
Section 6.2.2. At most three passes over the increment and one pass over the previous
database are made, and we explain below the steps taken in each of these passes. After this
explanation of the mechanics of the algorithm, we discuss in Section 6.2.3 the rationale

behind the design choices.

First Pass over the Increment

In the first pass, the counts of itemsets in Fpg and Npp are updated over the increment

db, using the function UpdateCounts (line 1 in Figure 6.1). By this, some itemsets in
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DELTA (DB, db, Fpg, Npg, minsup)

Input

: Previous Database DB, Increment db, Previous Frequent Itemsets Fpp,

Previous Negative Border Npg, Minimum Support Threshold minsup

Output: Updated Set of Frequent Itemsets Fpgua, Updated Negative Border Nppuap

begin

end

UpdateCounts(db, Fpp U Npg);  // first pass over db
Frnown = GetFrequent(Fpp U Npg, minsup x |DB U db|);
Infrequent = (Fpg U Npg) — Frnown // used later for pruning
if (FDB == Fknown)

return(Fpg, Npp);

Ninown = NegBorder(Fknown);

if (Ngnown C Infrequent)
get supports of itemsets in Ni, o0, from Infrequent
return(Frnown, Nenown);

N" = Ngnown — Infrequent;
UpdateCounts(db, N*); ~ // second pass over db
C' = GetFrequent(N"™, minsup * |db|);
Infrequenty = N* —C // used later for pruning
if (|C| > 0)
¢c=Cu Fknown
ResetCounts(C);
do // compute negative border closure
C' = C U NegBorder(C);
C = C — (Infrequent U Infrequentg) // prune
until C' does not grow
C=0C- (FknownUNu)
if (|C| > 0)
UpdateCounts(db, C'); ~ // third (and final) pass over db

ScanDB = GetFrequent(C' U N*, minsup * |db|);
N' = NegBorder(Fypoun U ScanDB) — In frequent;
get supports of itemsets in N’ from (C'U N*)

UpdateCounts(DB, N' U ScanDB);  // first (and only) pass over DB

Fpauas = Frnown U GetFrequent(ScanD B, minsup * |DB U db|);
Nppua = NegBorder(Fppua);

get supports of Nppua from (Infrequent U N')
return(Fppuas, Nosud);

Figure 6.1: The DELTA Incremental Mining Algorithm
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Npp may become frequent and some itemsets in Fpp may become infrequent. Let the
resultant set of frequent itemsets be Fj,own. These frequent itemsets are extracted using
the function GetFrequent (line 2). The remaining itemsets are put in Infrequent (line
3), and are later used for pruning candidates. The algorithm terminates if no itemsets
have moved from Npp t0 Finown (lines 4-5). This is valid due to the following Theorem

presented in [T+97]:

Theorem 11 If X is an itemset that is not in Fpp but is in Fppua, then there must be

some subset x of X which was in Npg and is now in Fppya.

Hence, for the special case where the new results are a subset of the old results,
and therefore in principle requiring no processing over the previous database, DELTA is
optimal in that it requires only a single pass over the increment to complete the mining

process.

Second Pass over the Increment

On the other hand, if some itemsets do move from Npg t0 Fipnown, then the negative border
Ninown Of Finown is computed (line 6), using the AprioriGen [AS94] function. Itemsets in
Ninown With unknown counts are stored in a set N* (line 10). The remaining itemsets in
Ninown i-€. with known counts, are all infrequent. Therefore, the only itemsets that may
be frequent (and are not yet known to be so) are those in N* and their extensions. If
there are no itemsets in N, the algorithm terminates (lines 7-9).

Now, any itemset in N* that is not locally frequent in db cannot be frequent in D BUdb.
Further, none of its extensions can be frequent as well. This is based on the following

observation of [CHNW96]:'.

Theorem 12 An itemset can be present in Fppua only if it is present in either Fpp or

Fy, (or both).

! This observation applies only to the equi-support case
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Therefore, a second pass over the increment is made to find the counts within db of
N" (line 11). Those itemsets that turn out to be infrequent in db are stored in a set called

Infrequenty (line 13), which is later used for pruning candidates.

Third (and Final) Pass over the Increment

We then form all possible extensions of Fjpown Which could be in Fpgugp U Nppug and
store them in set C'. This is done by computing the remaining layers of the negative
border closure of Finoun (lines 15-20). (We expect that the remaining layers can be
generated together since the number of 2-itemsets in Fypown 1S typically much smaller
than the overall number of all possible 2-itemset pairs.) At the start of this computation,
the counts of itemsets in C' are reset to zero using the function ResetCounts (line 16).
Then, at every stage during the computation of the closure, those itemsets that are in
Infrequent and Infrequenty are removed so that none of their extensions are generated
(line 19). After all the layers are generated, itemsets from Fj,p, and N* are removed
from C' since their counts within DB U db and db respectively, are already available (line
21). The third (and final) pass over db is then made to find the counts within db of the

remaining itemsets in C' (line 23).

First (and Only) Pass over the Previous Database

Those itemsets of the closure which turn out to be locally frequent in db need to be
counted over DB as well to establish whether they are frequent overall. We refer to these
itemsets as ScanDB (line 24). Since the counts of Npp g need to be computed as well,
we evaluate NegBorder(Fypown U ScanDB). From this the itemsets in Infrequent are
removed since their counts are already known. The counts of the remaining itemsets (i.e.
N’ in line 25) are then found by making a pass over DB (line 27).

After the pass over DB, the frequent itemsets from ScanDB are gathered to form
Fppua (line 28) and then its negative border Nppyqg is computed (line 29). The counts
of Nppua are obtained from Infrequent and N’ (line 30). Thus we obtain the final set

of frequent itemsets Fppug and its negative border Nppgyap.
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Results for the Increment

Performing the above steps results in the generation of Fpp,g and Nppug along with
their supports. But, as mentioned earlier, we also need to generate the mining results
for solely the increment, namely, Fy U Ng. To achieve this, the following additional
processing is carried out during the above-mentioned passes:

After the first pass over the increment, we have the updated counts of all the itemsets
in Fpp U Npg. Therefore, the counts of these itemsets with respect to the increment
alone is very easily determined by merely computing the differences between the updated
counts and the original counts. After this computation, the itemsets that turn out to be
frequent within db are gathered together and their negative border is computed.

If the counts within db of some itemsets in the negative border are unknown, these
counts are determined during the second pass over the increment. Subsequently, the
negative border closure of the resultant frequent itemsets (over db) is computed and the
counts within db of the itemsets in the closure are determined during the third pass over
the increment. Finally, the identities and counts within db of itemsets in Fy, U Ng, are
extracted from the closure.

In the above, note that a particular itemset could be a candidate for computing F, U
Nay, as well as FippuasUNppuay- To ensure that there is no unnecessary duplicate counting,
all such common itemsets are identified and two counters are maintained for each of them:
the first counter initially stores the itemset’s support in DB, while the second stores the
support in db. After the support in db is computed, the first counter is incremented by
this value — it then reflects the support in DB U db.

6.2.2 Generating Hierarchical Association Rules

The processing steps described in the previous sub-section are completely sufficient to
deliver the desired mining outputs for boolean databases. We now move on to describing
how it is easily possible to extend the DELTA design to also handle the generation of
association rules for hierarchical databases.

The hierarchical rule mining problem is to find association rules between items at any
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level of a given taxonomy graph (is-a hierarchy). An obvious but inefficient solution to
this problem is to reduce it to a boolean mining context using the following strategy:
While reading each transaction from the database, dynamically create an “augmented”
transaction that also includes all the ancestors of all the items featured in the original
transaction. Now, any of the boolean mining algorithms can be applied on this augmented
database.

A set of optimizations to improve upon the above scheme were introduced in [SA95]
as part of the Cumulate (first-time) hierarchical mining algorithm. Interestingly, we have
found that these optimizations can be utilized for incremental mining as well, and in
particular, can be cleanly integrated in the core DELTA algorithm. In the remainder of

this sub-section, we describe the optimizations and their incorporation in DELTA.

Cumulate Optimizations

Cumulate’s optimizations for efficiently mining hierarchical databases are the following:

e Pre-computing ancestors. Rather than finding the ancestors for each item by
traversing the taxonomy graph, the ancestors for each item are precomputed and

stored in an array.

e Filtering the ancestors added to transactions. While reading a transaction
from the database, it is not necessary to augment it with all ancestors of items in
that transaction. Only ancestors of items in the transaction that are also present in

some candidate itemset are added.

e Pruning itemsets containing an item and its ancestor. A candidate itemset
that contains both an item and its ancestor may be pruned. This is because it will
have exactly the same support as the itemset which doesn’t contain that ancestor

and is therefore redundant.

Incorporation in DELTA

The above optimizations are incorporated in DELTA in the following manner:
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1. The first optimization is performed only in routines that access the database and

therefore do not affect the structure of the DELTA algorithm.

2. The second optimization is performed before each pass over the increment or pre-
vious database. Ancestors of items that are not part of any candidate are removed

from the arrays of ancestors that were precomputed during the first optimization.

3. The third optimization is performed only once and that is at the end of the first
pass over the increment. At this stage the identities of all potentially frequent 2-
itemsets (over DB U db) are known, and hence no further candidate 2-itemsets will
be generated. Among the potentially frequent 2-itemsets, those that contain an
item and its ancestor are pruned. It follows that candidates generated from the
remaining 2-itemsets will also have the same property, i.e. they will not contain an

item and its ancestor. Hence this optimization does not need to be applied again.

As a side-note, we add here that due to the generic nature of the above optimizations,

they could be incorporated into other frequent itemset generation algorithms such as

ARMOR, ¢g-ARMOR and g-Apriori discussed in previous chapters.

6.2.3 Rationale for the DELTA Design

Having described the mechanics of the DELTA design, we now provide the rationale for
its construction:

Let Fjnown be the set of frequent itemsets in Fpp U Npp that survive the support
requirement after their counts have been updated over db, and Ngp.wn, be its negative
border. Now, if the counts of all the itemsets in Ny, are available, then the final
output is simply Frnown U Nenown. Otherwise, the only itemsets that may be frequent
(and are not yet known to be so) are those in Ny, with unknown counts and their
extensions — by virtue of Theorem 11. At this juncture, we can choose to do one of the

following:

Complete Closure: Generate the complete closure of the negative border, that is, all

extensions of the itemsets in Ng,o0, With unknown counts. While generating the
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extensions, itemsets that are known to be infrequent may be removed so that none
of their extensions are generated. After the generation process is over, find the
counts of all the generated itemsets by performing one scan over DB U db. We now

have all the information necessary to first identify Fppua, and then the associated

NpBudb-

Layered Closure: Instead of generating the entire closure at one shot, generate the
negative border “a layer at a time”. After each layer is computed, update the
counts of the itemsets in the layer by performing a scan over DB U db. Use these
counts to prune the set of itemsets that will be used in the generation of the next

layer.

Hybrid Closure: A combination of the above two schemes, wherein the closure is ini-
tially generated a layer at a time, and after a certain number of layers are completed,
the remaining complete closure is computed. The number of layers upto which the

closure is generated in a layered manner is a design parameter.

The first scheme, Complete Closure, appears infeasible because it could generate a very
large number of candidates if the so-called “promoted borders” [FT97], that is, itemsets
that were in Npp but have now moved to Fppug, contain more than a few 1-itemsets.
This is because if p; is the number of 1-itemsets in the promoted borders, a lower bound
on the number of candidates is 27! (| Finown| — p1)- This arises out of the fact that every
combination of the p; 1-itemsets is a possible extension, and all of them can combine with
any other frequent itemset in Fj,0., to form candidates. Therefore, even for moderate
values of py, the number of candidates generated could be extremely large.

The second strategy, Layered Closure, avoids the above candidate explosion problem
since it brings a pruning step into play after the computation of each layer. However, it
has its own performance problem in that it may require several passes over the database,
one per layer, and this could turn out to be very costly for large databases. Further, it
becomes impossible to provide bounds on the number of passes that would be required

for the mining process.
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Therefore, in DELTA, we adopt the third hybrid strategy, wherein an initial Layered
Closure approach is followed by a Complete Closure strategy. In particular, the Layered
Closure is used only for the first layer, and then the Complete Closure is brought into
play. This choice is based on the well-known observation that pruning typically has the
maximum impact for itemsets of length two — that is, the number of 2-itemsets that turn
out to be frequent is usually a small fraction of the possible 2-itemset candidates [PCY95a].
In contrast, the impact of pruning at higher itemset lengths is comparatively small.

To put it in a nutshell, the DELTA design endeavors to achieve a reasonable compro-
mise between the number of candidates counted and the number of database passes, since
these two factors represent the primary bottle-necks in association rule generation. That
our choice of compromise results in good performance is validated in the experimental

study described in Section 6.6.

6.3 Multi-Support Incremental Mining in DELTA

In the previous section, we considered incremental mining in the context of “equi-support”
environments. As mentioned in the Introduction, however, we would expect that user
requirements would typically change with time, resulting in different minimum support
levels across mining operations. In DELTA, we address this issue which has not been
previously considered in the literature. We expect that this is an important value addition
given the inherent exploratory nature of mining.

For convenience, we break up the multi-support problem into two cases: Stronger,
where the current threshold is higher (i.e., minsupppusp > minsuppg), and Weaker,
where the current threshold is lower (i.e., minsupppugp < minsuppg). We now address

each of these cases separately:

6.3.1 Stronger Support Threshold

The stronger support case is handled almost exactly the same way as the equi-support

case, that is, as though the threshold has not changed. The only difference is that the
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following optimization is incorporated:

Initially, all itemsets which are not frequent w.r.t. minsupppua are removed from
Fpp and the corresponding negative border is then calculated. The itemsets that are
removed are not discarded completely, but are retained separately since they may become
frequent after counting over the increment db. They may also be part of the computed
negative border closure (lines 15-20 in Figure 6.1). If so, then during the pass over DB
their counts are not measured since they are already known. If the counts of all the

itemsets in the closure are known, the pass over DB becomes unnecessary.

6.3.2 Weaker Support Threshold

The weaker support case is much more difficult to handle since the Fpp set now needs to be
expanded but the identities of these additional sets cannot be deduced from the increment
db. In particular, note that Theorem 12, which DELTA relied on for pruning candidates
in the equi-support case, no longer holds when the support threshold is lowered since we
cannot deduce that a candidate is infrequent over DB just because it is not present in
Fpp U Npp.

However, it is easy to observe that the output required in the weaker threshold case
is a superset of what would be output had the support threshold not changed. This
observation suggests a strategy by which the DELTA algorithm is executed as though the
support threshold had not changed, while at the same time making suitable alterations to
handle the support threshold change.

In DELTA, the above strategy is incorporated by generating extra candidates (as
described below) based on the lowered support threshold. It is only for these candidates
that Theorem 12 does not hold. Hence, it is necessary to find their counts over the entire
database DB U db. This is done simultaneously while executing equi-support DELTA.

The pseudo-code for the complete algorithm is given as function DeltaLow in Fig-
ure 6.2, and is described in the remainder of this section. The important point to note here
is that the enhanced DELTA requires only one additional pass over the entire database

to produce the desired results.
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First Pass over the Increment

As in the equi-support case, the counts of itemsets in Fpp and Npp are updated over
the increment db (line 1 in Figure 6.2). By this, some itemsets in Npp may become
frequent and some itemsets in Fpp may become infrequent. Let the resultant set of
frequent itemsets (w.r.t. minsupppua) be Finown- These frequent itemsets are extracted
using the function GetFrequent (line 2). Itemsets in the negative border of Fi,oun with
unknown counts are computed as NegBorder(Fynown) — (Fpp U Npg). We refer to this
set, as [N Between since these itemsets are likely to have supports between minsuppp and
minsupppua (line 3). For these itemsets, Theorem 12 does not hold due to the lowered

support threshold.

Remaining Passes of Equi-Support DELTA

The remaining passes of equi-support DELTA are executed for the previous support
minsuppp. A difference, however, is that the counts of itemsets in N Between over
DB U db are simultaneously found (line 4).

Among the candidates generated during the remaining passes of equi-support DELTA,
some may already be present in N Between. To ensure that there is no unnecessary
duplicate counting, all such common itemsets are identified and only one copy of each is

retained during counting.

Additional Pass over the Entire Database

At the end of the above passes, the counts of all 1-itemsets and 2-itemsets of Fppug U
Nppuay are available. The counts of 1-itemsets are available because Fipg U Npp contains
all possible 1-itemsets [T197|, while the counts of all required 2-itemsets are available
because Fj,own contains all frequent 1-itemsets in DB U db and N Between contains the
immediate extensions of Fi,.un that are not already in (Fpg U Npp). Therefore, it be-
comes possible to generate the negative border closure of all known frequent itemsets
without encountering the “candidate explosion” problem described for the Complete Clo-

sure approach in Section 6.2.3.
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Let F' be the set of all frequent itemsets whose counts are known (line 5), and let
Infrequent be the set of itemsets with known counts which are not in F” (line 6). If
the counts of the negative border of F” are already known, then the algorithm terminates
(lines 7-9). Otherwise, all the remaining extensions of F’ that could become frequent
are determined by computing the negative border closure (lines 10-16). (As in the equi-
support case, we expect that the remaining layers of the closure can be generated together
since the number of 2-itemsets in F” is typically much smaller than the overall number
of all possible 2-itemset pairs.) The itemsets of the closure are counted over the entire
database (line 17), and the final set of frequent itemsets and its negative border are

determined (lines 18-20).

When minsupppua << minsuppp

We discuss here the behaviour of DELTA when minsuppguqg is much less than minsuppg.
We expect this case to be especially troublesome because the new mining results would
be a much larger set than the previous mining results. This means that the previous
mining results would not be very useful in determining the new results. To simplify the
discussion, let us consider the extreme case when minsupppg is so high that Fpg = ¢. We
show that in this case, DELTA reduces to Apriori with the modification that all database
scans of Apriori beyond the second pass are combined. Since, as discussed in Section 6.2.3,
the impact of pruning for itemsets of length greater than two is relatively small, it follows
that DELTA reduces to a re-mining of the entire database when the previous mining
results are not useful.

For the above scenario, DELTA first updates the counts of itemsets in Npp (which
consists of all possible 1-itemsets) over db (line 1 in Figure 6.2). This is equivalent to
(a part of) the first pass of Apriori. After the frequent 1-itemsets are obtained (line 2),
candidate 2-itemsets are generated (line 3). Next, the counts of these candidate 2-itemsets
over DB U db are found (line 4). Note that while performing line 4, some candidate 2-
itemsets may be generated; but these would be a subset of the candidates generated in line

3. Since these candidates are combined before their counts over DB U db are determined,
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no redundant work is done.

After gathering the frequent 2-itemsets (line 5), their negative border closure is com-
puted (lines 10-16) and the counts of itemsets in this closure over DB Udb are determined
(line 17). This corresponds to combining all passes of Apriori beyond the second pass.
Finally, the frequent itemsets and negative border information is gathered and output

(lines 18-21).

6.4 Integrating ARMOR & ¢-ARMOR with DELTA

As mentioned earlier, our work on incremental mining was actually done prior to our work
on the other two issues addressed in this thesis. However, we have presented it in the
end for pedagogical reasons. In this Section, we provide a sketch of how the techniques
presented in earlier chapters can be integrated into the DELTA scheme.

Notice that the counting technique in DELTA has been abstracted using the func-
tion UpdateCounts. Hence, any efficient data-structure could be implemented to store
the counters of itemsets. For instance, we could use the counting scheme developed in
Chapter 4 for the Oracle and ARMOR algorithms that uses a DAG data-structure. The
only modification that this would require to the DELTA scheme is that like in ARMOR
it would be necessary to compute and store the supports of marginally more candidates
than the frequent itemsets and its negative border. As mentioned in Chapter 4, the max-
imum number of additional candidates for all the databases and support specifications
considered in our empirical study was only about ten percent more.

With the above modifications in place, it is possible to integrate g¢-ARMOR with
DELTA in a manner similar to integrating the g-closed itemset framework into ARMOR.
The input to DELTA now contains only the frequent g-closed itemsets, its negative border
and the marginally additional candidates that would be generated by g-ARMOR (by
virtue of it being a generalization of ARMOR). During the execution of this modified
DELTA, for any candidates X,Y where Y D X, if support(X) = support(Y’), then prune
all supersets of Y. Alternatively, for any X,Y where Y D X if support(X) ~ support(Y)

holds only upto some partition and then no longer holds, then regenerate all supersets of
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Y using the technique described in Section 5.6 of Chapter 5.

6.4.1 Multi-Tolerance Incremental Mining

In Section 6.3, we have extended the DELTA algorithm to handle multi-support environ-
ments, where the minimum support specified by the user for the current database differs
from that specified for the previous database. A related issue arises when the tolerance
threshold specified by the user for the current database differs from that specified for the
previous database. For convenience, similar to multi-support mining, we break up the
multi-tolerance problem into two cases: Stronger, where the current threshold is higher,
and Weaker, where the current threshold is lower. We now address each of these cases

separately:

Stronger Tolerance Threshold

The stronger tolerance case is handled almost exactly the same way as the equi-tolerance
case, that is, as though the threshold has not changed. The only difference is that the
following optimization is incorporated: Initially, for all available itemsets X,Y : Y D X,

if support(X) ~ support(Y) w.r.t. the new tolerance, then prune all supersets of Y.

Weaker Tolerance Threshold

The weaker tolerance case is much more difficult to handle since the previous mining re-
sults now need to be expanded but the supports of the additional required itemsets cannot
be estimated with the desired accuracy. In DELTA, this case is handled as follows: For
all available itemsets X,Y where Y D X, check if support(X) ~ support(Y) w.r.t. the
old tolerance and not w.r.t. the new tolerance. This indicates that supersets of Y had
been pruned in the previous mining using e-equal support pruning. Therefore, we now
regenerate all such supersets of Y using the technique described in Section 5.6 of Chap-
ter 5. However, we cannot estimate the supports of these itemsets even approximately

(w.r.t. the new tolerance) by utilizing the currently mined results. Hence, these supports
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are obtained by making a pass over DB after which, the processing continues as for the

equi-tolerance case.

6.5 Performance Study

In the previous sections, we presented the FUP, Borders and TBAR incremental mining
algorithms, apart from our new DELTA algorithm. To evaluate the relative performance
of these algorithms and to confirm the claims that we have informally made about their
expected behavior, we conducted a series of experiments that covered a range of database
and mining workloads. The performance metric in these experiments is the total execution
time taken by the mining operation. (Note that, as mentioned in Section 3.3 of Chapter 3,
both FUP and Borders do not compute the mining results for solely the increment, and
hence their execution times do not include the additional processing required to generate

these results.)

6.5.1 Baseline Algorithms

We include the Apriori algorithm also in our evaluation suite to serve as a baseline
indicator of the performance that would be obtained by directly using a “first-time”
algorithm instead of an incremental mining algorithm. This helps to clearly identify the
utility of “knowing the past”.

Further, as mentioned in the Introduction, it is extremely useful to put into perspective
how well the incremental algorithms make use of their “knowledge of the past”, that is,
to characterize the efficiency of the incremental algorithms. To achieve this objective,
we also evaluate the performance achieved by the Oracle algorithm, which “magically”
knows the identities of all the frequent itemsets (and the associated negative border) in the
current database and increment and only needs to gather their corresponding supports.
Note that this idealized incremental algorithm represents the absolute minimal amount

of processing that is necessary and therefore represents a lower bound? on the (execution

2Within the framework of the data and storage structures used in our study.
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time) performance.

The Oracle algorithm operates as follows: For those itemsets in Fpguap U Nppuds
whose counts over DB are currently unknown, the algorithm first makes a pass over DB
and determines these counts. It then scans db to update the counts of all itemsets in
Fppuay U Nppuay- During the pass over db, it also determines the counts within db of
itemsets in Fy, U Ng. Duplicate candidates are avoided by retaining only one copy of each
of them. So, in the worst case, it needs to make one pass over the previous database and
one pass over the increment.

For evaluating the performance of DELTA on hierarchical databases, we compared it
with Cumulate and Oracle as no previous incremental algorithms are available for com-
parison. We chose Cumulate among the algorithms proposed in [SA95] since it performed
the best on most of our workloads. The hierarchical databases were generated using the

same technique as in [SA95].

6.5.2 Database Generation

Parameter | Meaning Values
N Number of items 1000
T Mean transaction length 10
P Number of potentially frequent itemsets 2000
1 Mean length of potentially frequent itemsets | 4
D Number of transactions in database DB 4 M (200 MB disk occupancy)
d Number of transactions in increment db 1%, 10%, 50%, 100% of D
S Skew of increment db (w.r.t. DB) Identical, Skewed
Dis Prob. of changing frequent itemset identity | 0.33 (for Skewed)
Pit Prob. of changing item identity 0.50 (for Skewed)

Table 6.2: Parameter Table

The databases used in our experiments were synthetically generated using the tech-
nique described in [AS94] and attempt to mimic the customer purchase behavior seen in
retailing environments. The parameters used in the synthetic generator are described in

Table 6.2. These are similar to those used in [AS94] except that the size and skew of the
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Parameter Value
Number of roots | 250
Number of levels
Fanout
Depth-ratio

— O

Table 6.3: Taxonomy Parameter Table

increment are two additional parameters. Since the generator of [AS94] does not include
the concept of an increment, we have taken the following approach, similar to [CHNW96]:
The increment is produced by first generating the entire DB U db and then dividing it
into DB and db.

Additional parameters required for the taxonomy in our experiments on hierarchical
databases are shown in Table 6.3. The values of these parameters are identical to those

used in [SA95].

Data Skew Generation

The above method will produce data that is identically distributed in both DB and db.
However, as mentioned earlier, databases often exhibit temporal trends resulting in the
increment perhaps having a different distribution than the previous database. That is,
there may be significant changes in both the number and the identities of the frequent
itemsets between DB and db. To model this “skew” effect, we modified the generator
in the following manner: After D transactions are produced by the generator, a certain
percentage of the potentially frequent itemsets are changed. A potentially frequent itemset
is changed as follows: First, with a probability determined by the parameter p;s it is
decided whether the itemset has to be changed or not. If change is decided, each item in
the itemset is changed with a probability determined by the parameter p;. The item that
is used to replace the existing item is chosen uniformly from the set of those items that
are not already in the itemset. After the frequent itemsets are changed in this manner,
d number of transactions are produced with the new modified set of potentially frequent

itemsets.
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6.5.3 Itemset Data Structures

In our implementation of the incremental mining algorithms, we generally use the hashtree
data-structure [AS94] as a container for itemsets. However, like in Chapter 4, the 2-
itemsets are not stored in hashtrees but instead in a 2-dimensional array which is indexed
by the frequent 1-itemsets. It has been reported (and also confirmed in our study) that
adding this optimization results in a considerable improvement in performance. All the

algorithms in our study are implemented with this optimization.

6.5.4 Overview of Experiments

We conducted a variety of experiments to evaluate the relative performance of DELTA and
the other mining algorithms. Due to space limitations, we report only on a representative
set here. In particular, the results are presented for the workload parameter settings
shown in Table 6.2 for our experiments on non-hierarchical (boolean) databases.

The parameters settings used in our experiments on hierarchical databases are identical
except for the number of items (V) and the number of potentially frequent itemsets (P)
which were both set to 10000. The specific values of additional parameters required for
the taxonomy are shown in Table 6.3.

The experiments were conducted on an UltraSparc 170E workstation running Solaris
2.6 with 128 MB main memory and a 2 GB local SCSI disk. A range of rule support
threshold values between 0.33% and 2% were considered in our equi-support experiments.

The previous database size was always kept fixed at 4 million transactions. Along with
varying the support thresholds, we also varied the size of the increment db from 40,000
transactions to 4 million transactions, representing an increment-to-previous database ra-
tio that ranges from 1% to 100%. For our experiments on hierarchical databases, the
performance was measured only for supports between 0.75% and 2% since for lower sup-
ports, the running time of all the algorithms was in the range of several hours.

Two types of increment distributions are considered: Identical where both DB and
db have the same itemset distribution, and Skewed where the distributions are noticeably

different. For the Skewed distribution for which results are reported in this chapter, the
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pis and p;; parameters were set to 0.33 and 0.5 as mentioned in Table 6.2. With these
settings, at the 0.5 percent support threshold and a 10% increment, for example, there are
over 700 frequent itemsets in db which are not frequent in DB, and close to 500 frequent
itemsets in DB that are not frequent in db.

We also conducted experiments wherein the new minimum support threshold is differ-
ent from that used in the previous mining. The previous threshold was set to 0.5% and
the new threshold was varied from 0.2% to 1.5%. Therefore, both the Stronger Threshold

and Weaker Threshold cases outlined in Section 6.2 are considered in these experiments.

6.6 Experimental Results

In this section, we report on the results of our experiments comparing the performance
of the various incremental mining algorithms for the dynamic basket database model

described in the previous section.

6.6.1 Experiment 1: Flat / Equi-support / Identical Distribu-
tion

Our first experiment considers the equi-support situation with identical distribution be-
tween DB and db on boolean databases. For this environment, the execution time perfor-
mance of all the mining algorithms is shown in Figures 6.3a—d for increment sizes ranging
from 1% to 100%.

Focusing first on FUP, we see in Figure 6.3 that for all the increment sizes and for all
the support factors, FUP performs better than or almost the same as Apriori. Moving
on to TBAR, we observe that it outperforms both Apriori and FUP at small increment
sizes and low supports. At high supports, however, it is slightly worse than Apriori due
to the overhead of maintaining the negative border information. As the increment size
increases, TBAR’s performance becomes progressively degraded. This is explained as
follows: Firstly, TBAR updates the counts of itemsets in Fpg U Npp over db — these

itemsets are precisely the same as the set of all candidates generated in running Apriori
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over DB. Secondly, it performs a complete Apriori-based mining over db. When | db | =
| DB |, the total cost of these two factors is the same as the total cost incurred by the
Apriori algorithm. However, TBAR finally loses out because it needs to make a further
pass over DB.

Turning our attention to Borders, we find in Figure 6.3a, which corresponds to the 1
percent increment, that while for much of the support range its performance is similar
to that of FUP and TBAR, there is a sharp degradation in performance at a support of
0.75 percent. The reason for this is the “candidate explosion” problem described earlier
in Section 3.3. This was confirmed by measuring the number of candidates for supports
of 1 percent and 0.75 percent — in the former case, it was a little over 1000 whereas in the
latter, it had jumped to over 30000!

The above candidate explosion problem is further intensified when the increment size
is increased, to the extent that its performance is an order of magnitude worse than the
other algorithms — therefore we have not shown Borders performance in Figures 6.3b—d.

Finally, considering DELTA, we find that it significantly outperforms all the other
algorithms at lower support thresholds for all the increment sizes. In fact, in this region,
the performance of DELTA almost coincides with that of Oracle. The reason for the
especially good performance here is the following — low support values result in tighter
values of k, the maximal frequent itemset size, leading to correspondingly more iterations
for FUP over the previous database D B, and for TBAR over the increment db. In contrast,
DELTA requires only three passes over the increment and one pass over the previous
database. Further, because of its pruning optimizations, the number of candidates to be
counted over the previous database DB is significantly less as compared to TBAR — for
example, for a support threshold of 0.5 percent and a 50% increment (Figure 6.3c), it is
smaller by a factor of two.

We note that the marginal non-monotonic behavior in the curves of TBAR, Borders,
DELTA and Oracle at low increment sizes is due to the fact that only sometimes do
they need to access the original database DB and this is not a function of the minimum

support threshold.
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6.6.2 Experiment 2: Flat / Equi-support / Skewed Distribu-
tion

Our next experiment considers the Skewed workload environment, all other parameters
being the same as that of the previous experiment. The execution time performance of
the various algorithms for this case is shown in Figures 6.4a-d. We see here that the
effect of the skew is pronounced in the case of both TBAR and Borders, whereas the
other algorithms (including DELTA) are relatively unaffected.

The effect of skew is noticeable in the case of TBAR since it relies solely on the
increment to prune candidates from its computation of the closure and therefore many
unnecessary candidates are generated which later prove to be infrequent over the entire
database. Borders, on the other hand, is affected because the number of 1-itemsets that
are in the promoted border tends to increase when there is skew. For instance, for a
minimum support of 0.33% and an increment of 10%, there were nine 1-itemsets among
the promoted borders and the number of frequent itemsets was 4481, resulting in over 2
million candidates.

In contrast to the above, Apriori and FUP are not affected by skew since the candidates
that they generate in each pass are determined only by the overall frequent itemsets, and
not by the frequent itemsets of the increment.

DELTA is not as affected by skew as TBAR since it utilizes the complete negative
border information to prune away candidates. That is, all itemsets which are known to
be infrequent either over D BUdb or over db are pruned away during closure generation, and
not merely those candidates which are infrequent over db. Hence, DELTA is relatively
stable with respect to data skew. As in the Identical distribution case, it can be seen
in Figures 6.4a-b that for small increment sizes, its performance almost coincides with
that of Oracle. It however degrades to some extent for large skewed increments because
of two reasons: (1) the number of itemsets in Fpp — Fppug increases, resulting in more
unnecessary candidates being updated over db, and (2) the number of itemsets in Fpgya—
Fpp increases, resulting in more promoted borders followed by more candidates over DB.

Even in these latter cases it is seen to perform considerably better than other algorithms.
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For example, for a minimum support of 0.33% and an increment of 100%, its performance

is more than twice as good as that of TBAR.

6.6.3 Experiment 3: Flat / Multi-Support / Identical Distri-

bution

The previous experiments modeled equi-support environments. We now move on to con-
sidering multi-support environments. In these experiments, we compare the performance
of DELTA with that of Apriori and Oracle only since, as mentioned earlier, FUP, TBAR
and Borders do not handle the multi-support case.

In this experiment, we fixed the initial support to be 0.5% and the new support
was varied between 0.2% and 1.5%, thereby covering both the Weaker Threshold and
Stronger Threshold possibilities. For this environment, Figures 6.5a—d show the perfor-
mance of DELTA relative to that of Apriori for the databases where the distribution of
the increments is Identical to that of the previous database.

We note here that at either end of the support spectrum, DELTA performs very
similarly to Apriori whereas in the “middle band” it does noticeably better, especially for
moderate increment sizes (Figures 6.5a-b). In fact, the performance gain of DELTA is
maximum when the new minimum support threshold is the same as the previous threshold
and tapers off when the support is changed in either direction. At very low support
thresholds, the number of frequent itemsets increases exponentially, and therefore the
number of candidates generated in the negative border closure in DELTA will be a few
more than the number of candidates generated in Apriori. Most of the candidates will
have support less than the previous minimum threshold, and hence all of them have to be
counted over the previous database. Therefore, the performance of DELTA approaches
that of Apriori in the low support region. In the high support region, on the other hand,
most of the candidates do not turn out to be frequent and hence both algorithms perform

almost the same amount of processing.
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6.6.4 Experiment 4: Flat / Multi-Support / Skewed Distribu-
tion

Our next experiment evaluates the same environment as that of the previous experiment,
except that the distribution of the increments is Skewed with respect to the original
database. The execution time performance for this case is shown in Figures 6.6a-d. We
see here that the relative performance of the algorithms is very similar to that seen for the
Identical workload environment. Further, as in the equi-support skewed case (Experiment
2), DELTA is stable with respect to skew since it uses information from both DB and
db to prune away candidates. Only when the increment size is 100% do we notice some
degradation in the performance of DELTA. However, it performs slightly better than

Apriori even for this large increment.

6.6.5 Experiment 5: Hierarchical / Equi-support / Identical

Distribution

The previous experiments were conducted on boolean databases. We now move on to
experiments conducted on hierarchical databases. In these experiments, we compare the
performance of DELTA with that of Cumulate and Oracle only since, as mentioned earlier,
no incremental algorithms are available for comparison. The execution time performance
of the various algorithms for this case is shown in Figures 6.7a-d. Note that the time
taken to complete mining is measured in hours here as compared to the minutes taken
in the previous experiments. The reason for this large increase is that the number of
frequent itemsets is much more (about 10-15 times) — this is because itemsets can be
formed both within and across levels of the item taxonomy graph.

For all support thresholds and database sizes, we find that DELTA significantly out-
performs Cumulate, and is in fact very close to Oracle. We see that DELTA exhibits a
huge performance gain over Cumulate, upto as much as 9 times at the 1% increment and
0.75% support threshold, and as much as 3 times on average. In fact, the performance

of DELTA is seen to overlap with that of Oracle for small increments (Figures 6.7a-b).
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The reason for this is the number of candidates in DELTA over both db and DB were
only marginally more than that in Oracle. This is again because the set of frequent item-
sets with its negative border is relatively stable, and DELTA prunes away most of the

unnecessary candidates in its second pass over the increment.

6.6.6 Experiment 6: Hierarchical / Equi-support / Skewed

Distribution

Our next experiment considers the Skewed workload environment, all other parameters
being the same as that of the previous experiment. The execution time performance of
the various algorithms for this case is shown in Figures 6.8a—d.

As in the Identical distribution case, it can be seen in Figures 6.8a—b that for small
increment sizes, the performance of DELTA almost coincides with that of Oracle. The
stability of DELTA with regard to data skew is again attributed to the fact that all
itemsets that are known to be infrequent either over DB U db or over db are pruned
away during closure generation, and not merely those candidates which are infrequent
over db. The performance of DELTA however degrades to some extent for large skewed
increments. This is because of the same reasons as in the Flat/Equi-support/Skewed
Distribution case (Experiment 2): (1) the number of itemsets in Fpp — Fppua increases,
resulting in more unnecessary candidates being updated over db, and (2) the number of
itemsets in Fppug — Fpp increases, resulting in more promoted borders followed by more
candidates over DB. Even in these latter cases it is seen to perform considerably better
than Cumulate. For example, for a minimum support of 0.75% and an increment of 100%,

its performance is more than 35% as good as that of Cumulate.

6.6.7 Experiment 7: Hierarchical / Multi-support / Identical

Distribution

The previous two experiments modeled the equi-support environment for mining over

hierarchical databases. We now move on to considering multi-support environments over



CHAPTER 6. INCREMENTAL MINING 124

these databases.

In this experiment, we fixed the initial support to be 1.5% and the new support was
varied between 0.75% and 2.5%, thereby covering both the Weaker Threshold and Stronger
Threshold possibilities. For this environment, Figures 6.9a—d show the performance of
DELTA relative to that of Cumulate and Oracle for the databases where the distribution
of the increments is Identical to that of the previous database.

We note here that at either end of the support spectrum, DELTA performs very sim-
ilarly to Cumulate whereas in the “middle band” it does noticeably better, especially for
moderate increment sizes (Figures 6.9a—b). This is similar to the relationship between
DELTA and Apriori in the Flat/Multi-support/Identical Distribution case (Experiment
3). The performance gain of DELTA is maximum when the new minimum support thresh-
old is the same as the previous threshold and tapers off when the support is changed in
either direction. At very low support thresholds, the number of frequent itemsets in-
creases exponentially, and therefore the number of candidates generated in the negative
border closure in DELTA will be a few more than the number of candidates generated
in Cumulate. Most of the candidates will have support less than the previous minimum
threshold, and hence all of them have to be counted over the previous database. There-
fore, the performance of DELTA approaches that of Cumulate in the low support region.
In the high support region, on the other hand, most of the candidates do not turn out to

be frequent and hence both algorithms perform almost the same amount of processing.

6.6.8 Experiment 8:  Hierarchical / Multi-support / Skewed

Distribution

Our next experiment evaluates the same environment as that of the previous experiment,
except that the distribution of the increments is Skewed with respect to the original
database. The execution time performance for this case is shown in Figures 6.10a-d. We
see here that the relative performance of the algorithms is very similar to that seen for
the Identical workload environment. Further, as in the Hierarchical /Equi-support/Skewed

case (Experiment 6), DELTA is stable with respect to skew since it uses information from
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both DB and db to prune away candidates. Only for large increment sizes (Figures 6.10c—
d) do we notice some degradation in the performance of DELTA. However, it performs

slightly better than Cumulate even for these increments.

6.7 Conclusions

We considered the problem of incrementally mining association rules on market basket
databases that have been subjected to a significant number of updates since their previous
mining exercise. Instead of mining the whole database again from scratch, we attempt to
use the previous mining results, that is, knowledge of the itemsets which are frequent in
the previous database, their negative border, and their associated supports, to efficiently
identify the same information for the updated database.

We proposed a new algorithm called DELTA which is the result of a synthesis of
existing algorithms, designed to address each of their specific limitations. It guarantees
completion of mining in three passes over the increment and one pass over the previous
database. This compares favorably with previously proposed incremental algorithms like
FUP and TBAR wherein the number of passes is a function of the length of the longest
frequent itemset. Also, DELTA does not suffer from the candidate explosion problem
associated with the Borders algorithm owing to its better pruning strategy.

DELTA’s design was extended to handle multi-support environments, an important
issue not previously addressed in the literature, at a cost of only one additional pass over
the current database.

Using a synthetic database generator, the performance of DELTA was compared
against that of FUP, TBAR and Borders, and also the two baseline algorithms, Apri-
ori and Oracle. Our experiments showed that for a variety of increment sizes, increment
distributions and support thresholds, DELTA performs significantly better than the pre-
viously proposed incremental algorithms. In fact, for many workloads its performance
approached that of Oracle, which represents a lower bound on achievable performance,
indicating that DELTA is quite efficient in its candidate pruning process. Also, while the
TBAR and Borders algorithms were sensitive to skew in the data distribution, DELTA
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was comparatively robust.

In the special scenario where no pass over the previous database is required since the
new results are a subset of the previous results, DELTA’s performance is optimal in that
it requires only one pass over the increment whereas all the other algorithms either are
unable to recognize the situation or require multiple passes over the increment.

Finally, DELTA was shown to be easily extendible to hierarchical association rules,
while maintaining its performance close to Oracle. No prior work exists on extending
incremental mining algorithms to handle hierarchical rules.

In summary, DELTA is a practical, robust and efficient incremental mining algorithm.
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DeltaLow (DB, db, Fpg, Npp, minsupppg, minsupppud)
Input: Previous Database DB, Increment db, Previous Frequent Itemsets Fpp,

Previous Negative Border Npp, Previous Minimum Support Threshold

minsuppsg,
Present Minimum Support Threshold minsupppguap

Output: Updated Set of Frequent Itemsets Fpgus, Updated Negative Border Nppuap

begin

1. UpdateCounts(db, Fpp U Npg);  // pass over db

2. Frnown = GetFrequent(Fpp U Npg, minsupppua * |DB U db|);

3. N Between = NegBorder(F') — (Fpp U Npg);

4 // perform lines 2-31 of DELTA for equi-support case using minsuppp with

// the following modification: find the counts of itemsets in N Between also

// over (DB U db). Let (F', N') be the output obtained by this process.

5 F' = F'" U GetFrequent(N Between, minsupppua * | DB U dbl);
6. Infrequent = N'U (N Between — F');

7. if (NegBorder(F") C Infrequent)

8. get supports of itemsets in NegBorder(F") from Infrequent
9. return(F’, NegBorder(F"));

10. C =F

11. ResetCounts(C);

12. do // compute negative border closure

13. C' = C U NegBorder(C);

14. C = C — Infrequent // prune

15. until C' does not grow

16. C =C — (F'U Infrequent)

17. UpdateCounts(DB U db,C);  // additional pass over DB U db
18. Fppua = F' U GetFrequent(C, minsupppua * | DB U db|);

19. NDBUdb = NegBorder(FDBudb);

20. get supports of itemsets in Nppgug from (C'U Infrequent)
21.  return(Fppuam, Nosua);
end

Figure 6.2: DELTA for Weaker Support Threshold (DeltaLow)
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Chapter 7

Conclusions and Future Research

7.1 Summary of Contributions

In this thesis, we have investigated three issues in association rule mining — the efficiency
of algorithms, the conciseness of results and the problem of re-mining. We summarize our

contributions in each of these areas below.

7.1.1 Issue 1: Efficiency of Algorithms

A variety of novel algorithms have been proposed in the recent past for the efficient min-
ing of association rules, each in turn claiming to outperform its predecessors on a set of
standard databases. In this thesis, our approach was to quantify the algorithmic perfor-
mance of association rule mining algorithms with regard to an idealized, but practically
infeasible, “Oracle”. The Oracle algorithm utilizes a partitioning strategy to determine
the supports of itemsets in the required output. It uses direct lookup arrays for counting
singletons and pairs and a DAG data-structure for counting longer itemsets. We have
shown that these choices are optimal in that only required itemsets are enumerated and
that the cost of enumerating each itemset is ©(1). Our experimental results showed that
there was a substantial gap between the performance of current mining algorithms and
that of the Oracle.

We also presented a new online mining algorithm called ARMOR (Association Rule

136
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Mining based on ORacle), that was constructed with minimal changes to Oracle to result
in an online algorithm. ARMOR utilizes a new method of candidate generation that is
dynamic and incremental and is guaranteed to complete in two passes over the database.
Our experimental results demonstrate that ARMOR performs within a factor of two of

Oracle.

7.1.2 Issue 2: Conciseness of Results

In this thesis we proposed the generalized closed itemset framework (or g-closed itemset
framework) in order to manage the information overload produced as the output of fre-
quent itemset mining algorithms. This framework builds upon the original closed itemset
concept over which it provides an order of magnitude improvement. This is achieved by
relaxing the requirement for exact equality between the supports of itemsets and their
supersets. Instead, our framework accepts that the supports of two itemsets are equal if
the difference between their supports is within a user-specified tolerance factor.

We also presented two algorithms — g-Apriori (based on the classical levelwise Apriori
algorithm) and g-ARMOR (based on our ARMOR algorithm) for mining the frequent
g-closed itemsets. g-Apriori utilizes a new method for generating frequent g-closed item-
sets from their generators. This new method avoids the costly additional pass that was
required in the A-Close algorithm for mining frequent closed itemsets. g-Apriori is shown
to perform significantly better than Apriori solely because the frequent g-closed itemsets
are much fewer than the frequent itemsets. Finally, ;- ARMOR was shown to perform over
an order of magnitude better than Apriori over all databases and support specifications

used in our experimental evaluation.

7.1.3 Issue 3: Re-mining

We considered the problem of incrementally mining association rules on market basket
databases that have been subjected to a significant number of updates since their previous
mining exercise. Instead of mining the whole database again from scratch, we attempt to

use the previous mining results, that is, knowledge of the itemsets which are frequent in
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the previous database, their negative border, and their associated supports, to efficiently
identify the same information for the updated database.

We proposed a new algorithm called DELTA which is the result of a synthesis of
existing algorithms, designed to address each of their specific limitations. It guarantees
completion of mining in three passes over the increment and one pass over the previous
database. This compares favorably with previously proposed incremental algorithms like
FUP and TBAR wherein the number of passes is a function of the length of the longest
frequent itemset. Also, DELTA does not suffer from the candidate explosion problem
associated with the Borders algorithm owing to its better pruning strategy.

DELTA’s design was extended to handle multi-support environments, an important
issue not previously addressed in the literature, at a cost of only one additional pass
over the current database. DELTA was also shown to be easily extendible to hierarchical
association rules, while maintaining its performance close to Oracle. No prior work exists
on extending incremental mining algorithms to handle hierarchical rules.

We showed empirically that for a variety of increment sizes, increment distributions
and support thresholds, DELTA performs significantly better than the previously pro-
posed incremental algorithms — FUP, TBAR and Borders. In fact, for many workloads its
performance approached that of Oracle, which represents a lower bound on achievable per-
formance, indicating that DELTA is quite efficient in its candidate pruning process. Also,
while the TBAR and Borders algorithms were sensitive to skew in the data distribution,

DELTA was comparatively robust.

7.1.4 Overall Architecture

In this thesis, we have presented and evaluated three algorithms: ARMOR, ¢-ARMOR
and DELTA for efficiently discovering association rules, generating concise rule summaries
and maintaining discovered rules, respectively. In summary, the overall scheme for BAR-
mining that we advocate is shown in Figure 7.1. The user inputs the database and the
following mining parameters — minimum support, minimum confidence and the toler-

ance factor for support approximation. Next, the mining system applies the g-ARMOR
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BAR-Mining System

First—-Time Mining Q

(Algorithm: ARMOR)

USER Redundancy Removal | DATABASE
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+

Intermediate Results
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Association Rules j

Figure 7.1: Architecture for BAR-mining

algorithm to produce concise frequent itemsets, which are then used to form the asso-
ciation rule that are presented to the user. For future mining runs, the system applies
the DELTA algorithm, which utilizes previous mining results to efficiently re-mine the

updated database.

7.2 Future Work

The work that we have presented in this thesis can be extended in the following ways:

1. Backend: From the point of view of building a commercial package for BAR-
mining, our implementation of mining algorithms needs to be extended to handle
commercial database backends. Since BAR-mining algorithms require only sequen-

tial access to the database, this extension is conceptually straight-forward. Various
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alternative ways of integrating BAR-mining with relational database systems are

presented and evaluated in [STA98, RCIC99, NT99].

2. Frontend: The algorithms designed and evaluated in this thesis address the com-
putationally expensive step of BAR-mining, namely, to produce frequent itemsets.
A commercial BAR-mining system would need to utilize the output of this step to
produce association rules and present them to the end user using an intuitive and

appealing frontend.

3. Integration: In this thesis, we have provided techniques for efficiently discover-
ing association rules, generating concise rule summaries and maintaining discovered
rules. We have also provided a sketch of how these various techniques could be com-
bined into a single framework (in Section 6.4 of Chapter 6). It would be necessary
to implement this integrated framework for a commercial package that utilizes the

techniques presented in this thesis.
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