
EÆcient Discovery of Concise

Association Rules from Large

Databases

A Thesis

Submitted for the Degree of

Doctor of Philosophy

in the Faculty of Engineering

By

Vikram Pudi

Supercomputer Education and Research Centre

INDIAN INSTITUTE OF SCIENCE

BANGALORE { 560 012, INDIA

April 2003

Abstract

Association rules are interesting correlations among attributes in a database. These rules

have many applications in areas ranging from e-commerce to sports to census analysis

to medical diagnosis. The discovery of association rules is an extremely computationally

expensive task and it is therefore imperative to have fast scalable algorithms for mining

these rules. In this thesis, we present eÆcient techniques for discovering association rules

from large databases and for removing redundancy from these rules so as to improve the

quality of output. We also handle growing databases.

Speci�cally, we present three new algorithms: (1) ARMOR: This algorithm discovers

association rules from databases and requires at most two database scans. We empirically

show its performance to be within a factor of two of an unachievable lower bound. (2)

g-ARMOR: This is an extension to ARMOR that is designed to remove redundancy from

association rules during the mining process. This is especially important because the

number of association rules generated in typical mining operations runs into the tens

of thousands. g-ARMOR results in an orders of magnitude reduction in the number of

rules thereby making the mining output comprehensible to end users. (3) DELTA: This

algorithm incrementally mines evolving databases. It utilizes previous mining results to

eÆciently mine the current database after it has been updated with fresh data. It also

handles situations where the mining speci�cations over the current database di�er from

those used over the original database, a common occurrence in practice.

i

Abstract ii

Publications

� \Quantifying the Utility of the Past in Mining Large Databases"

V. Pudi and J. Haritsa

Information Systems, Elsevier Science Ltd., July 2000

� \How Good are Association-Rule Mining Algorithms?" (poster)

V. Pudi and J. Haritsa

Proc. of Intl. Conf. on Data Engineering (ICDE)

San Jose, California, USA, February 2002

� \On the EÆciency of Association-rule Mining Algorithms"

V. Pudi and J. Haritsa

Proc. of Paci�c-Asia Conf. on Knowledge Discovery and Data Mining (PAKDD)

Taipei, Taiwan, May 2002

� \Generalized Closed Itemsets: A Technique for Improving the Conciseness of Rule

Covers" (poster)

V. Pudi and J. Haritsa Proc. of Intl. Conf. on Data Engineering (ICDE)

Bangalore, India, March 2003

� \Reducing Rule Covers with Deterministic Error Bounds"

V. Pudi and J. Haritsa

Proc. of Paci�c-Asia Conf. on Knowledge Discovery and Data Mining (PAKDD)

Seoul, South Korea, May 2003

Acknowledgements

I would like to thank everyone who was instrumental in the creation of this work. In

particular, I am deeply grateful to my research supervisor Prof. Jayant Haritsa, whose

guidance is truly professional, whose enthusiasm is contagious and who is always ready

to extend a helpful hand in times of need.

I am indebted to my friends who made my stay in the institute pleasant: Manjusha,

Srikanta, Maya, Suresha, Kumaran, Nisha, Anurag, Prabodh and others. Surekha has

been a great source of inspiration and support for me. Finally, I thank my parents and

brother for their love and support that no amount of thanks can suÆce.

iii

Contents

Abstract i

Acknowledgements iii

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Motivation . 1

1.2 Data Mining . 3

1.3 Association Rule Mining . 6

1.3.1 Problem Description . 6

1.3.2 Extensions . 8

1.4 Thesis Contributions . 9

1.4.1 Issue 1: EÆciency of Algorithms . 10

1.4.2 Issue 2: Conciseness of Results . 11

1.4.3 Issue 3: Re-mining . 13

1.4.4 Overall Architecture . 14

1.5 Organization . 15

2 Methodology and Scope 16

2.1 Database and System Characteristics . 16

2.2 Pattern Characteristics . 17

iv

Contents v

2.2.1 Boolean Association Rules . 18

2.2.2 Negative Border . 18

2.2.3 g-Closed Itemsets . 19

2.2.4 Pattern Length . 19

2.3 Mining Algorithms Input/Output . 20

2.3.1 First-Time Mining . 20

2.3.2 Redundancy Removal . 20

2.3.3 Incremental Mining . 21

2.4 Implementation Complexity and Platforms 21

2.5 Notation . 21

3 Related Work 23

3.1 EÆciency of Algorithms . 23

3.2 Conciseness of Results . 26

3.2.1 Post-Mining Rule Pruning Schemes 27

3.2.2 Pruning During Mining . 28

3.3 Incremental Algorithms . 30

3.3.1 The FUP Algorithm . 30

3.3.2 The Borders Algorithm . 31

3.3.3 The TBAR Algorithm . 31

3.3.4 Other Algorithms . 32

3.4 Other Issues . 33

3.4.1 Interestingness Measures . 33

3.4.2 Backend . 34

3.4.3 Privacy . 35

4 EÆciency of Mining Algorithms 37

4.1 Introduction . 37

4.1.1 Organization . 39

4.2 The Oracle Algorithm . 40

Contents vi

4.2.1 The Mechanics of Oracle . 40

4.2.2 Rationale for the Oracle Design . 44

4.3 Performance Study . 47

4.3.1 Experimental Results for Current Mining Algorithms 48

4.4 The ARMOR Algorithm . 51

4.4.1 First Pass . 53

4.4.2 Second Pass . 53

4.5 Candidate Generation in ARMOR . 54

4.5.1 Candidate Removal During Second Pass 57

4.6 Memory Utilization in ARMOR . 57

4.7 Experimental Results for ARMOR . 59

4.7.1 Experiment 3: Performance of ARMOR 59

4.7.2 Experiment 4: Memory Utilization in ARMOR 60

4.7.3 Experiment 5: Real Datasets . 61

4.7.4 Discussion of Experimental Results 62

4.8 Conclusions . 63

5 Conciseness of Mining Results 65

5.1 Introduction . 65

5.1.1 Organization . 68

5.2 Closed Itemsets . 68

5.2.1 Background . 68

5.2.2 Exact Equality of Supports . 69

5.2.3 Propagation of Openness . 69

5.2.4 Equal Support Pruning . 70

5.2.5 Generating Closed Itemsets . 70

5.3 Generalized Closed Itemsets . 71

5.3.1 Generalized Openness Propagation 72

5.3.2 Approximation Error Accumulation 73

5.3.3 Problem Formulation . 74

Contents vii

5.4 Rule Generation . 76

5.5 Incorporation in Levelwise Algorithms . 77

5.5.1 The Design of g-Apriori . 77

5.5.2 The Mechanics of g-Apriori . 78

5.5.3 Proof of Correctness . 79

5.6 Incorporation in Two Pass Algorithms . 79

5.6.1 The ARMOR Algorithm . 80

5.6.2 Details of Incorporation . 80

5.7 Performance Study . 83

5.7.1 Output Size Reduction . 84

5.7.2 Response Time Reduction . 87

5.7.3 Response Times of g-ARMOR . 87

5.7.4 Scale-up Experiment . 88

5.8 Conclusions . 88

6 Incremental Mining 95

6.1 Introduction . 95

6.1.1 The State-of-the-Art . 96

6.1.2 Contributions . 97

6.1.3 Organization . 99

6.2 The DELTA Algorithm . 99

6.2.1 The Mechanics of DELTA . 100

6.2.2 Generating Hierarchical Association Rules 104

6.2.3 Rationale for the DELTA Design 106

6.3 Multi-Support Incremental Mining in DELTA 108

6.3.1 Stronger Support Threshold . 108

6.3.2 Weaker Support Threshold . 109

6.4 Integrating ARMOR & g-ARMOR with DELTA 112

6.4.1 Multi-Tolerance Incremental Mining 113

6.5 Performance Study . 114

Contents viii

6.5.1 Baseline Algorithms . 114

6.5.2 Database Generation . 115

6.5.3 Itemset Data Structures . 117

6.5.4 Overview of Experiments . 117

6.6 Experimental Results . 118

6.6.1 Experiment 1: Flat / Equi-support / Identical Distribution 118

6.6.2 Experiment 2: Flat / Equi-support / Skewed Distribution 120

6.6.3 Experiment 3: Flat / Multi-Support / Identical Distribution . . . 121

6.6.4 Experiment 4: Flat / Multi-Support / Skewed Distribution 122

6.6.5 Experiment 5: Hierarchical / Equi-support / Identical Distribution 122

6.6.6 Experiment 6: Hierarchical / Equi-support / Skewed Distribution . 123

6.6.7 Experiment 7: Hierarchical / Multi-support / Identical Distribution123

6.6.8 Experiment 8: Hierarchical / Multi-support / Skewed Distribution 124

6.7 Conclusions . 125

7 Conclusions and Future Research 136

7.1 Summary of Contributions . 136

7.1.1 Issue 1: EÆciency of Algorithms . 136

7.1.2 Issue 2: Conciseness of Results . 137

7.1.3 Issue 3: Re-mining . 137

7.1.4 Overall Architecture . 138

7.2 Future Work . 139

References 141

List of Figures

1.1 Architecture for BAR-mining . 15

2.1 Comparison of Data Layouts . 17

2.2 Complete Itemset Lattice for Items fA,B,C,Dg 19

4.1 Counting Singletons and Pairs in Oracle 41

4.2 DAG Structure Containing Power Set of fA,B,C,Dg 42

4.3 The Oracle Algorithm . 43

4.4 Updating Counts . 43

4.5 Intersection . 43

4.6 Performance of Current Algorithms (Large Databases) 49

4.7 Performance of Current Algorithms (Small Databases) 50

4.8 The ARMOR Algorithm . 51

4.9 Expanding a Promoted Border . 55

4.10 Updating Counts . 56

4.11 Performance of ARMOR (Synthetic Datasets) 59

4.12 Memory Utilization in ARMOR . 60

4.13 Performance of Armor (Real Datasets) 61

5.1 The g-Apriori Algorithm . 90

5.2 Pruning Non-generators from Gk . 90

5.3 Propagate Pruned Value to Supersets 90

5.4 Output Size Reduction . 91

ix

List of Figures x

5.5 Response Time Reduction . 92

5.6 Response Times of g-ARMOR . 93

5.7 Scale-up Experiment . 94

6.1 The DELTA Incremental Mining Algorithm 101

6.2 DELTA for Weaker Support Threshold (DeltaLow) 127

6.3 Flat / Equi-support / Identical Distribution 128

6.4 Flat / Equi-support / Skewed Distribution 129

6.5 Flat / Multi-Support / Identical Distribution [Previous Support

= 0.5%] . 130

6.6 Flat / Multi-Support / Skewed Distribution [Previous Support

= 0.5%] . 131

6.7 Hierarchical / Equi-support / Identical Distribution 132

6.8 Hierarchical / Equi-support / Skewed Distribution 133

6.9 Hierarchical / Multi-support / Identical Distribution [Previous

Support = 1.5%] . 134

6.10 Hierarchical / Multi-support / Skewed Distribution [Previous

Support = 1.5%] . 135

7.1 Architecture for BAR-mining . 139

List of Tables

2.1 Notation . 22

4.1 Notation (from Table 2.1) . 39

4.2 Parameter Table . 47

4.3 Worst-case EÆciency of ARMOR w.r.t Oracle 60

5.1 Notation (from Table 2.1) . 67

5.2 Database Characteristics . 83

5.3 Output Size . 85

6.1 Notation (from Table 2.1) . 100

6.2 Parameter Table . 115

6.3 Taxonomy Parameter Table . 116

xi

Chapter 1

Introduction

1.1 Motivation

Consider a supermarket with a large collection of items. Typical business decisions that

the management of the supermarket has to make include what to put on sale, how to

design the store layout, what promotional strategies to consider, etc. Analysis of past

sales data is a commonly used approach in order to improve the quality of such decisions.

Until recently, however, only global data about the cumulative sales during some time

period (a day, a week, a month, etc.) was available on the computer. Progress in bar-

code technology has made it possible to store the so called basket data that stores items

purchased on a per-transaction basis. Basket data type transactions do not necessarily

consist of items bought together at the same point of time. It may consist of items bought

by a customer over a period of time. Examples include monthly purchases by members

of a book club or a music club.

Several organizations have collected massive amounts of such data. These data sets

are usually stored on tertiary storage and are slowly migrating to database systems.

Discovering associations between items, also known as association rules, enables such

organizations to make informed business decisions. An example of such an association

rule is: \30% of transactions that contain Surf washing powder and Rin detergent bar

also contain Comfort fabric softener; 2% of all transactions contain all three of these

1

Chapter 1. Introduction 2

items together". The antecedent of this rule consists of Surf and Rin and the consequent

consists of Comfort alone. Here 90% is called the con�dence of the rule, and 2% the

support of the rule. Both the antecedent and consequent may contain multiple items.

Given a market-basket database, it is desirable to �nd association rules that have

high con�dence and support (i.e. those satisfying a user-speci�ed minimum con�dence

and minimum support). The con�dence measure represents the strength of a rule or its

likelihood of being true. The support of a rule represents its statistical signi�cance (a rule

with very low support is not statistically signi�cant) and its applicability (a rule with high

support is applicable in many transactions). Finding such association rules is valuable for

many applications:

1. Cross marketing: Refers to suggesting customers to buy additional products based

on those that they have already purchased.

2. Attached mailing: Refers to promotional o�ers that are attached to mails sent on a

direct marketing campaign of some particular product.

3. Catalog design: Catalog pages that contain description of some product could, in ad-

dition, contain information regarding other products that are frequently purchased

along with it.

4. Add-on sales: Refers to selling multiple products together at discounted rates.

5. Store layout: Items that are frequently purchased together could be placed near each

other in the store so that customers would tend not to overlook them. Alternatively,

they may be placed far away from each other, so that customers may pick up other

items on the way.

Other Applications: Besides super-market basket analysis, association rule discovery

has been applied in numerous other areas such as e-commerce, sports, analysis of census

data and medical diagnosis. For example, in immunology it is often required to test a

patient for sensitivity to various allergens. These tests are expensive and patients usually

Chapter 1. Introduction 3

have incomplete knowledge of possible allergens. Association rules such as \allergy to latex

rubber usually co-occurs with allergies to banana and tomato" would be very valuable in

deciding what allergens to test for.

The discovery of association rules is a computationally expensive task. Further, market

basket databases are typically very large. It is therefore imperative to have fast scalable

techniques for mining them. In this thesis, we present eÆcient techniques for discovering

association rules from large databases and for removing redundancy from these rules so

as to improve the quality of output. We also handle growing databases.

1.2 Data Mining

Association rule discovery is part of a larger �eld of study called data mining { a �eld

that consists of techniques to automatically �nd interesting patterns and trends in large

collections of data. In this Section, we provide a brief introduction to the broad area of

data mining that has been extracted and summarized from [HK01].

Human capabilities of both generating and collecting data have been increasing rapidly

in the last several decades. Contributing factors include the computerization of many

business, scienti�c and government transactions, and advances in data collection tools

ranging from scanned text and image platforms to satellite remote sensing systems. In

addition, popular use of the World Wide Web as a global information system has
ooded

us with a tremendous amount of data and information. This explosive growth in stored

data has generated an urgent need for new techniques and automated tools that can

intelligently assist us in transforming the vast amounts of data into useful information

and knowledge.

Knowledge Discovery in Databases (KDD) is the automated extraction of novel, un-

derstandable and potentially useful patterns implicitly stored in large databases, data

warehouses and other massive information repositories. KDD is a multi-disciplinary �eld,

drawing work from areas including database technology, arti�cial intelligence, machine

learning, neural networks, statistics, pattern recognition, information retrieval, high-

performance computing and data visualization.

Chapter 1. Introduction 4

Data mining is an essential step in the process of knowledge discovery in databases,

in which intelligent methods are applied in order to extract patterns. Other steps in the

knowledge discovery process include pre-mining tasks such as data cleaning (removing

noise and inconsistent data) and data integration (bringing data from multiple sources

to a single location and into a common format), as well as post-mining tasks such as

pattern evaluation (identifying the truly interesting patterns representing knowledge) and

knowledge presentation (presenting the discovered rules using visualization and knowledge

representation techniques).

Many types of \interesting patterns" have been identi�ed in the research literature

and association rules constitute one such type. Data mining tasks to �nd these various

patterns include:

1. Characterization: Data characterization is a summarization of the general charac-

teristics or features of a user-speci�ed target class of data. For example, the user

may like to characterize software products whose sales increased by 10% in the last

year. The output of data characterization can be presented in various forms such

as pie charts, bar charts, multidimensional tables and data cubes.

2. Discrimination: Data discrimination is a comparison of the general features of a

user-speci�ed target class data objects with the general features of objects from one

or a set of (user-speci�ed) contrasting classes. For example, the user may like to

compare the general features of software products whose sales increased by 10% in

the last year with those whose sales decreased by at least 30% during the same

period.

3. Association Analysis: Association analysis is the discovery of association rules show-

ing attribute-value conditions that occur frequently together in a given set of data.

Association analysis is widely used for market basket or transaction data analysis

and forms the subject matter of this thesis.

4. Classi�cation and Regression: Classi�cation is the process of �nding a set of models

that describe and distinguish data classes or concepts, for the purpose of being able

Chapter 1. Introduction 5

to use the model to predict the class of objects whose class label is unknown. The

derived model is based on the analysis of a set of training data. While classi�cation

predicts a categorical value, regression is applied if the �eld being predicted comes

from a real-valued domain. Common applications of classi�cation include credit

card fraud detection, insurance risk analysis, bank loan approval, etc.

5. Cluster Analysis: Objects in a database are clustered or grouped based on the princi-

ple of maximizing intraclass similarity and minimizing interclass similarity. Unlike

classi�cation which has prede�ned labels, clustering must in essence automatically

come up with the labels. Applications of clustering include demographic or market

segmentation for identifying common traits of groups of people, discovering new

types of stars in datasets of stellar objects, and so on.

6. Outlier Analysis: Outliers are data objects that do not comply with the general

behaviour or model of the data. Most data mining methods discard outliers as

noise or exceptions. However, in some applications such as fraud detection, the

analysis and mining of outliers is crucial.

7. Evolution Analysis: Data evolution analysis describes and models regularities or

trends for objects whose behaviour changes over time. Although this analysis may

include any of the above functionalities on time-related data, distinct features of

such an analysis include time-series data analysis, sequence or periodicity pattern

matching, and similarity-based data analysis.

In general, data mining tasks can be classi�ed into two categories: descriptive and predic-

tive. Descriptive mining tasks characterize general properties of the data in the database.

Examples include association rule discovery and clustering. On the other hand, predic-

tive mining tasks perform inference on the current data in order to make predictions.

Examples of predictive mining tasks include classi�cation and regression.

We add a remark here that apart from the applications mentioned in the previous

section, association rules have also been shown to be useful for classi�cation [LHM98] and

clustering [HKKM97] tasks. In [LHM98], association rules for each class in a classi�cation

Chapter 1. Introduction 6

model are mined separately and then used to predict the class of objects whose class label

is unknown. In [HKKM97], association rules are used to construct a hypergraph, and a

hypergraph partitioning algorithm is used to �nd clusters of related items. This knowledge

is then used to cluster the actual transactions in the database. These studies have shown

that association rule mining enables eÆcient classi�cation and clustering especially for

databases that are large (in terms of either the number of transactions or the number of

items).

1.3 Association Rule Mining

As has been explained earlier, association rule mining searches for interesting correlations

among items in a given data set. It was originally proposed almost a decade ago, in

[AIS93], and has since then attracted enormous attention in both academia and industry.

In this section, we provide a formal description of the association rule mining problem

along with an outline of the solution strategy and explain why the problem is technically

challenging. We also brie
y describe various extensions to the basic model that have been

proposed in the research literature.

1.3.1 Problem Description

The inputs to this model are I, a set of items sold by the store, and D, a database

of customer purchase transactions. In this context, an association rule is a (statistical)

implication of the form X �! Y , where X; Y � I and X \ Y = �. Given an itemset X

(i.e. a set of items), X � I, its tidset is de�ned as t(X) = set of tids of transactions that

contain X. The support of X is de�ned as support(X) = jt(X)j=jDj. The con�dence of

the rule X �! Y is given by jt(X [Y)j=jt(X)j, while its support is equal to support(X [

Y). The problem then, is to �nd all association rules whose con�dence is not less than

minconf and whose support is not less thanminsup whereminconf andminsup are user-

speci�ed parameters. Such rules are expected to be \interesting". Alternative measures

of interestingness of rules are discussed in Chapter 3.

Chapter 1. Introduction 7

Solution Strategy: It has been observed in [AIS93] that association rule mining can

be decomposed into two sub-tasks: (1) Find all frequent itemsets (i.e. itemsets whose

support is not less than minsup). Algorithms that discover frequent itemsets usually

follow the strategy of isolating itemsets that are potentially frequent (called candidate

itemsets) and then compute the number of their occurrences (also called counts) over

the database. The process of determining the counts of these itemsets is often referred

to as counting. (2) For each discovered frequent itemset Z, generate rules of the form

X �! (Z � X), 8X � Z and output those whose con�dence is not less than minconf .

The con�dence of any of these rules can be calculated as support(Z)=support(X). The

support of Z would be available from step 1 of the solution strategy since it is frequent.

Note that X, being a subset of Z, would also be frequent since it must be present in all

transactions that contain Z. Therefore, its support would also be available from step 1

of the solution strategy. This result, originally from [AIS93], is highlighted in the lemma

below.

Lemma 1 All subsets of a frequent itemset are also frequent.

Technical Challenges: In spite of the simplicity and elegance of the problem statement

of association rule mining, it is diÆcult to solve satisfactorily. The �rst sub-task described

above, which is to determine the frequent itemsets, is extremely computationally intensive

and has been the focus of most of the research e�orts on association rule mining. While the

computational complexity of the second sub-task in terms of response-time performance

is almost negligible in comparison, it has two major problems: (1) Rule quantity:

too many rules are usually generated, and (2) Rule quality: not all of the rules are

interesting. Both these problems are strongly related because approaches to identify

interesting rules would automatically mitigate the rule quantity problem since only the

interesting rules would be output.

Chapter 1. Introduction 8

1.3.2 Extensions

Rules generated by the basic association rule model discussed above are referred to as

boolean association rules in the mining literature since the only relevant information in

each database transaction is the presence or absence of an item. For brevity, we denote

boolean association rule mining as BAR-mining. Many kinds of rules have been proposed

in the research literature as extensions to BAR-mining. These include hierarchical, quan-

titative, categorical, cyclic, constrained and sequential rules. We brie
y describe each of

these extensions below:

1. Hierarchical Rules: It is possible to extract a semantically richer set of rules, called

hierarchical rules [SA95], from a transaction database if an is-a hierarchy over the

set of items in the database is provided. For example, given that sweaters and ski

jackets are both instances of winter wear, the rules output could contain a \pseudo-

item" called winter wear to denote \either sweater or ski jacket or both". An

example of a hierarchical rule would be: winter wear �! hiking boots.

2. Quantitative and Categorical Rules: Relational tables in most business and scienti�c

domains have richer attribute types than the boolean attributes considered in the

basic problem for transactional databases. Attributes can be quantitative (e.g.

age, income) or categorical (e.g. zip code, make of car). The problem of mining

association rules over such attributes in relational databases has been addressed in

[SA96]. An example of such a rule would be: (Age: 30: : :39) and (Married: Yes)

�! (NumCars: 2).

3. Cyclic Rules: These rules, proposed in [ORS98], are association rules that display

regular cyclic variation over time. For example, if we compute association rules

over monthly sales data, we may observe seasonal variation where certain rules are

true at approximately the same month each year. Discovering such rules and their

periodicities may reveal interesting information that can be used for prediction and

decision making.

Chapter 1. Introduction 9

4. Constrained Rules: In [NLHP98], the authors propose constrained rules as a means

of specifying constraints (including domain, class and SQL-style aggregate con-

straints) to be satis�ed by the antecedent and consequent of a mined association rule.

For example, the user may want to �nd associations between itemsets whose types

do not overlap, or associations from itemsets whose total price is under Rs.1,000 to

itemsets whose average price is at least Rs.10,000.

5. Sequential Rules: While standard boolean association rules �nd associations be-

tween items within a single transaction, sequential rules, proposed in [AS95], dis-

cover associations between items purchased at di�erent times. An example of such

a rule is: customers typically rent \Star Wars", then \Empire Strikes Back" and

then \Return of the Jedi".

BAR-mining is an important component in mining all of the above types of pat-

terns. Previous works on generating hierarchical, quantitative and categorical rules

(e.g. [SA95, SA96]) have shown that albeit requiring some preprocessing, these prob-

lems are �nally reducible to BAR-mining. For cyclic and constrained rules, the authors

in [ORS98, NLHP98], have integrated their techniques with existing BAR-mining al-

gorithms. In [AS95], the strategy recommended for mining sequential rules includes a

preprocessing stage that consists of standard BAR-mining. These examples, combined

with the fact that BAR-mining can be successfully applied for classi�cation and cluster-

ing tasks (refer Section 1.1) indicate that BAR-mining is an important \high-impact"

problem. Therefore, in this thesis we mainly focus on BAR-mining.

1.4 Thesis Contributions

Various issues arise in BAR-mining including the eÆciency of algorithms for the task, the

conciseness of results that are output by these algorithms and the re-mining of a database

after it has been updated with fresh data. Each of these issues are introduced below and

are addressed in this thesis.

Chapter 1. Introduction 10

1.4.1 Issue 1: EÆciency of Algorithms

Market basket databases are typically very large and BAR-mining is computationally in-

tensive due to the requirement of having to discover frequent itemsets in the data. It

is therefore imperative to have fast scalable algorithms for this task. After the initial

algorithms proposed in [AIS93, AS94], there have been a whole host of algorithms for ad-

dressing this problem (see Chapter 3). These algorithms have concentrated on improving

both I/O costs by reducing the number of passes over the transaction database, and CPU

costs by improving the eÆciency of itemset counting techniques.

While the above e�orts have certainly resulted in a variety of novel algorithms, each

in turn claiming to outperform its predecessors on a representative set of databases, no

logical end appears to be in sight. Therefore, in this thesis, we focus our attention on

the question of how much space remains for performance improvement over current BAR-

mining algorithms. The environment we consider, similar to the majority of the prior

art in the �eld, is one where the data mining system has a single processor and the

pattern lengths in the database are small enough that the frequent itemsets along with

intermediate results produced by mining algorithms can �t in main memory. The case of

longer patterns is discussed in Section 1.4.2.

Within the above framework, we make the following contributions (published in

[PH02a, PH02b]):

First, we introduce the notion of an \Oracle algorithm" that knows in advance

the identities of all frequent itemsets in the database and only needs to gather the ac-

tual supports of these itemsets to complete the mining process. Clearly, any practical

algorithm will have to do at least this much work in order to generate mining rules.

Thus, this \Oracle approach" permits us to clearly demarcate the maximal space avail-

able for performance improvement over the currently available algorithms by comparing

their performance against that of the Oracle. Further, it enables us to construct new

mining algorithms from a completely di�erent perspective, namely, as minimally-altered

derivatives of the Oracle.

Second, we present a carefully engineered implementation of Oracle that makes the

Chapter 1. Introduction 11

best choices of data structures and database organizations (w.r.t. the enumeration of

itemsets being counted). Our experimental results show that there is a considerable gap

in the performance between the Oracle and existing mining algorithms.

Finally, we present a new mining algorithm, called ARMOR (Association Rule Min-

ing based on ORacle), whose structure is derived by making minimal changes to the

Oracle, and is guaranteed to complete in two passes over the database. Although AR-

MOR is derived from the Oracle, it may be seen to share the positive features of a variety

of previous algorithms such as PARTITION [SON95], CARMA [Hid99], AS-CPA [LD98]

and VIPER [SHS+00]. Our empirical study shows that ARMOR performs within a factor

of two of the Oracle, over both real and synthetic databases for practical ranges of support

speci�cations.

1.4.2 Issue 2: Conciseness of Results

The number of association rules generated in typical mining operations could run into

the thousands, tens of thousands or even more. This makes it impractical for manual

examination of the mining output [LHM99]. While this is true for sparse datasets where

frequent itemsets are \short", it is often impractical to even generate all frequent itemsets

and their associated supports for dense datasets. For instance, if the length of frequent

itemsets grow beyond a mere thirty, the total number of frequent itemsets exceeds one

billion! This result is due to the fact that all subsets of a frequent itemset must also be

frequent (see Lemma 1).

In this thesis, we present techniques to reduce the output size of BAR-mining algo-

rithms by identifying and pruning \redundant" rules. For this, we propose the generalized

closed itemset framework (also referred to as g-closed itemset framework), published in

[PH03a, PH03b]. In our scheme, we do not output exact supports of frequent itemsets

{ however, the supports of frequent itemsets can be estimated within a deterministic,

user-speci�ed \tolerance" factor. We empirically show that after removing redundant

rules, our scheme results in exponentially fewer rules for most datasets and support spec-

i�cations than the total number of frequent itemsets, even by allowing for a very small

Chapter 1. Introduction 12

tolerance. Our experiments were run on a variety of databases, both real and synthetic

as well as sparse and dense, to con�rm that the scheme works across a broad spectrum of

database schemas and contents.

A side-e�ect of allowing for a tolerance in itemset supports is that the supports of some

\borderline" infrequent itemsets may be over-estimated causing them to be incorrectly

identi�ed as frequent. We feel that this is acceptable in most mining scenarios for tolerance

factors that are much less than the minimum support threshold. As such, by allowing for

the tolerance factor, the user has authorized the supports of these borderline itemsets to

be estimated above the minimum support. Finally, we ensure that no false negatives are

ever produced { all frequent itemsets are correctly identi�ed as frequent.

Our scheme can be used in one of two ways: (1) as a post-processing step of the mining

process, or (2) as an integrated solution. We show that our scheme can be integrated

into both levelwise algorithms as well as the more recent two-pass mining algorithms. We

chose the classical Apriori algorithm [AS94] as a representative of the levelwise algorithms

and the ARMOR algorithm [PH02b] (proposed in this thesis), as a representative of the

class of two-pass mining algorithms. Integration into Apriori yields a new algorithm, g-

Apriori and into ARMOR, yields g-ARMOR. Our experimental results show that these

integrations often result in a signi�cant reduction in response-time, especially for dense

datasets.

We note that integration of our scheme into two-pass mining algorithms is a novel and

important contribution because two-pass algorithms have several advantages over Apriori-

like levelwise algorithms. These include: (1) signi�cantly less I/O cost, (2) signi�cantly

better overall performance as shown in [P+01, PH02b], and (3) the ability to provide

approximate supports of frequent itemsets at the end of the �rst pass itself, as in [Hid99,

PH02b]. This ability is an essential requirement for mining data streams [MM02] as it is

infeasible to perform more than one pass over the complete stream.

Chapter 1. Introduction 13

1.4.3 Issue 3: Re-mining

In many business organizations, the historical database is dynamic in that it is periodically

updated with fresh data. For such environments, data mining is not a one-time operation

but a recurring activity, especially if the database has been signi�cantly updated since

the previous mining exercise. Repeated mining may also be required in order to evaluate

the e�ects of business strategies that have been implemented based on the results of the

previous mining. In an overall sense, mining is essentially an exploratory activity and

therefore, by its very nature, operates as a feedback process wherein each new mining is

guided by the results of the previous mining.

In the above context, it is attractive to consider the possibility of using the results of the

previous mining operations to minimize the amount of work done during each new mining

operation. That is, given a previously mined database DB and a subsequent increment

db to this database, to eÆciently mine db and DB[db. Mining db is necessary to evaluate

the e�ects of business strategies; whereas mining DB [db is necessary to maintain the

updated set of mining rules. This issue of \incremental" mining is also addressed in this

thesis. Practical applications where incremental mining techniques are especially useful

include data warehouses and web mining since these systems are constantly updated with

fresh data { on the web, for instance, about one million pages are added daily [GRRS99].

In this thesis, we present and evaluate an incremental mining algorithm calledDELTA

(Di�erential Evaluation of Large iTemset Algorithm), published in [PH00]. DELTA rep-

resents a practical algorithm that can be e�ectively utilized for real-world databases.

DELTA mines the frequent itemsets in both db as well as in DB [db and guarantees that

the entire mining process is completed in at most three passes over the increment and one

pass over the previous database. We expect that such bounds will be useful to businesses

for the proper scheduling of their mining operations.

DELTA can handle multi-support environments, where the minimum support speci�ed

by the user for the current database is not the same as for the previous database. It

requires only one additional pass over the current database to achieve this functionality.

By integrating optimizations previously proposed for �rst-time hierarchical mining

Chapter 1. Introduction 14

algorithms, the DELTA design has been extended to eÆciently handle incremental min-

ing of hierarchical association rules. This illustrates the point noted in Section 1.3.2

that extensions to the basic association rule model including hierarchical, categorical and

quantitative rules are �nally reducible to BAR-mining.

The performance of DELTA is evaluated on a variety of dynamic databases and com-

pared with that of Apriori and the previously proposed incremental mining algorithms for

boolean association rules. For hierarchical association rules, we compare DELTA against

the Cumulate �rst-time mining algorithm presented in [SA95]. All experiments are made

on databases that are signi�cantly larger than the entire main memory of the machine on

which the experiments were conducted. The e�ects of database skew are also modeled.

The results of our experiments show that DELTA can provide signi�cant improvements in

execution times over the previous algorithms in all these environments. Further, DELTA's

performance is comparatively robust with respect to database skew.

We also include in our evaluation suite the performance of an an Oracle that has

complete apriori knowledge of the identities of all the frequent itemsets both in the current

database as well as in the increment and only requires to �nd their respective counts. Our

experiments show that DELTA's eÆciency is close to that obtained by the oracle for many

of the workloads considered in our study. This shows that DELTA is able to extract most

of the potential for using the previous results in the incremental mining process.

A �nal remark: Our work on incremental mining presented in this thesis was actually

done prior to our work on the other two issues discussed above. However, for pedagogical

reasons, we present it in the end.

1.4.4 Overall Architecture

In summary, the overall architecture for BAR-mining that we advocate in this thesis is

shown in Figure 1.1. The user inputs the database and the following mining parameters {

minimum support, minimum con�dence and the tolerance factor for support approxima-

tion. The BAR-mining system performs the required processing by accessing the database

and �rst produces concise frequent itemsets and other intermediate results. These results

Chapter 1. Introduction 15

Concise Frequent Itemsets
+

Intermediate Results

Association Rules

USER

BAR−Mining System

First−Time Mining

Redundancy Removal

Incremental Mining
(Algorithm: DELTA)

(Algorithm: g−ARMOR)

(Algorithm: ARMOR)

DATABASE

Figure 1.1: Architecture for BAR-mining

are then used to form the association rules that are presented to the user. In this the-

sis, we present the ARMOR algorithm for �rst-time mining, followed by the g-ARMOR

algorithm which is an enhancement of ARMOR to remove redundancy from the output.

Finally, we present the DELTA algorithm to handle re-mining in an incremental fashion.

1.5 Organization

The remainder of this dissertation is organized in the following fashion: In Chapter 2,

we describe the overall methodology and scope of our work. Next, in Chapter 3, we

review the published research related to our work. In Chapter 4, we present the Oracle

approach using which we evaluate the performance of current BAR-mining algorithms.

In this chapter we also present and evaluate the ARMOR algorithm for BAR-mining.

Next, in Chapter 5 we present the g-closed itemset framework along with the g-Apriori

and g-ARMOR algorithms for mining frequent g-closed itemsets. The DELTA algorithm

for incremental mining is presented and evaluated in Chapter 6. Finally, Chapter 7

summarizes the main contributions of our study and outlines future avenues to explore.

Chapter 2

Methodology and Scope

The problem of BAR-mining has been described in the previous chapter. In this chapter,

we describe the overall methodology and scope of this thesis in terms of the database,

system and pattern characteristics considered in our study. Our choices are such that

they match those selected in the majority of the previous studies. For ease of reference,

we also describe at the end of this chapter, the notation used throughout this thesis.

2.1 Database and System Characteristics

Conceptually, a market-basket database is a two-dimensional matrix where the rows rep-

resent individual customer purchase transactions and the columns represent the items

on sale. This matrix can be implemented in the following four di�erent ways [SHS+00],

which are pictorially shown in Figure 2.1:

Item-vector (IV): The database is organized as a set of rows with each row storing a

transaction identi�er (TID) and a bit-vector of 1's and 0's to represent for each of

the items on sale, its presence or absence, respectively, in the transaction.

Item-list (IL): This is similar to IV, except that each row stores an ordered list of item-

identi�ers (IID), representing only the items actually purchased in the transaction.

Tid-vector (TV): The database is organized as a set of columns with each column

16

Chapter 2. Methodology and Scope 17

storing an IID and a bit-vector of 1's and 0's to represent the presence or absence,

respectively, of the item in the set of customer transactions.

Tid-list (TL): This is similar to TV, except that each column stores an ordered list of

only the TIDs of the transactions in which the item was purchased.

 1

 2

 3

 4

 TID

 1

 2

 3

 4

 TID

 1

 2

 3

 4

 TID ItemID

ItemIDs

 0

 0

 0

 0

 1

 0

 1

 1

 0

 1

 1

 0

 1

 0

 0

 1

 1 2 3 4 --

 1 2 3 4 5 ---

 1 0 1 0 0 ---

 0 1 0 0 0 ---

 0 1 1 0 0 ---

1 0 1 0 1 ---

ItemIDs

T I
 D

 s

 1

 3

 4

 2

 3

 1

 4

 1 2 3 4 --

ItemIDs

 2 8 15

 1 3 5 10

 1 3 7 9

 2 3 7 8 11

(a) Item-vector

(c) Tid-vector (d) Tid-list

(b) Item-list

Figure 2.1: Comparison of Data Layouts

While a mining algorithm is free to dynamically change the database layout during the

mining process, we assume that the initial database is always provided in the horizontal

item-list (IL) format.

System Characteristics While there has been signi�cant work in designing algorithms

for the parallel mining of association rules [AS96, HKK97, ZPOL97b, PZOL01], in this

study we focus on single processor environments. We also assume that the available main

memory in the system is typically much smaller than the database size.

2.2 Pattern Characteristics

In this section, we describe the patterns that are output by the mining algorithms devel-

oped in this thesis.

Chapter 2. Methodology and Scope 18

2.2.1 Boolean Association Rules

In most of this thesis, we restrict our attention to the problem of generating boolean

association rules where the only relevant information in each database transaction is the

presence or absence of an item. As mentioned in Chapter 1, BAR-mining is an important

component in mining other patterns such as hierarchical rules, quantitative rules, etc. In

order to illustrate this point, we include the incremental mining of hierarchical rules in

Chapter 6.

2.2.2 Negative Border

In designing algorithms in this thesis, we often utilize the concept of the negative bor-

der [Toi96] of a set of itemsets. Intuitively, the negative border consists of minimal

infrequent itemsets. More formally, the negative border N of a set of itemsets F is de-

�ned as follows: An itemset X belongs to N i� X 62 F but all subsets of X are in F .

Algorithms that mine the collection of frequent itemsets also typically generate the item-

sets in its negative border and their associated supports. The negative border information

is important in BAR-mining due to the following reasons:

� It has been shown in [MGKS97, MT97] that in certain restricted models of compu-

tation all the itemsets in the negative border have to be examined. In particular, it

was shown that:

Theorem 1 Any algorithm that computes the set of frequent itemsets and accesses

the data using only queries of the following form: \Is itemset X frequent?" must

use at least jN j such queries.

� The negative border information has been found to be especially useful in the design

of incremental mining algorithms [PH00, T+97, F+97].

Due to these reasons, we include the negative border as required output in all the algo-

rithms that we design in this thesis.

Chapter 2. Methodology and Scope 19

2.2.3 g-Closed Itemsets

In Chapter 5, we introduce the concept of g-closed itemsets for removing redundancy

from mining results. The set of frequent g-closed itemsets is such that it is typically much

smaller than the set of all frequent itemsets. However, the identities and supports of all

frequent itemsets can be estimated from those of the frequent g-closed itemsets. The

discrepancy in estimation of supports is guaranteed to be within a user-speci�ed tolerance

factor �.

2.2.4 Pattern Length

In this thesis, while designing algorithms to discover all frequent itemsets, the environment

we consider is of sparse databases where the pattern lengths in the database are small

enough that the frequent itemsets along with intermediate results can �t in main memory.

It is infeasible to consider longer patterns when mining all frequent itemsets because the

number of frequent itemsets grows exponentially with increasing pattern lengths.

B C

AB

D

AC AD BC BD CD

ABC ABD ACD BCD

ABCD

A

φ

Figure 2.2: Complete Itemset Lattice for Items fA,B,C,Dg

Further, we consider only bottom-up approaches to enumerate the solution space consisting

of the lattice of all possible itemsets (see Figure 2.2 for an example of such a lattice).

When mining all frequent itemsets, there would be no particular advantage in counting

the support of an itemset X before counting the supports of its subsets. This is because

even if X is frequent, its subsets have to be counted anyway. An exception to this rule

would occur when there are itemsets that have supersets with exactly equal supports. The

Chapter 2. Methodology and Scope 20

number of such itemsets is likely to be small in sparse databases. However, we address this

issue in Chapter 5, where we introduce the g-closed itemset framework that is designed

to handle both sparse and dense databases.

2.3 Mining Algorithms Input/Output

In this section, we de�ne the input and output of the algorithms that we develop in this

thesis. However, we do not impose the restrictions implied in these de�nitions to algo-

rithms that have been developed elsewhere. For example, although we require standard

�rst-time mining algorithms developed in this thesis to include the negative border of fre-

quent itemsets as part of the output, we recognize algorithms that have been developed

elsewhere that do not meet this requirement.

2.3.1 First-Time Mining

All standard �rst-time online mining algorithms in our study take as input the database

D in item-list (IL) format and the minimum support threshold minsup and produce

as output the set of frequent itemsets F and its negative border N along with their

corresponding supports.

The Oracle algorithm for �rst-time mining, on the other hand, takes as input the

database D in item-list (IL) format, the set of frequent itemsets F and its negative border

N , and produces as output the supports of itemsets in F [N .

2.3.2 Redundancy Removal

The algorithms that we propose in this thesis to remove redundancy from the mining

results take as input the database D in item-list (IL) format, the minimum support

threshold minsup and the tolerance factor �, and produce as output the set of frequent

g-closed itemsets and its negative border along with their corresponding supports.

Chapter 2. Methodology and Scope 21

2.3.3 Incremental Mining

Incremental mining algorithms take as input the original database DB, the increment

db (may consist of both insertions and deletions to DB), the original minimum support

threshold minsupDB, the new minimum support threshold minsupDB[db, the set of previ-

ous frequent itemsets FDB, its negative border NDB, and their associated supports. The

output is the updated versions of the frequent itemsets and their negative border, namely,

FDB[db and NDB[db along with their supports. In addition, the mining results for solely

the increment, namely, Fdb [Ndb, are also output.

2.4 Implementation Complexity and Platforms

All mining algorithms that have been designed/evaluated in our work are implemented

in standard C++. The code is highly portable and currently supports Linux, Solaris and

Irix. The entire source code written in our implementation spans 129 �les and includes

42,048 lines of code. In addition to this, several programs were written using the Bash

and Perl scripting languages to automate many of the tasks in evaluating the mining

algorithms. These tasks include formatting of the input to the implemented algorithms,

timing their response times and using their output to generate graphs to compare their

performance.

2.5 Notation

For ease of exposition and reference, we will use the notation shown in Table 2.1 in the

remainder of this thesis.

Chapter 2. Methodology and Scope 22

Frequent Itemset Mining Algorithms Input/Output

I Set of items in the database
D Database of customer purchase transactions
minsup User-speci�ed minimum rule support
minconf User-speci�ed minimum rule support
F Set of frequent itemsets in D
N Negative border of F
support(X) Support of itemset X
t(X) Tidset of itemset X
i(T) Set of items that are common to transactions in T

For Oracle, ARMOR and g-ARMOR Algorithms

P1; P2; :::; Pn Set of n disjoint partitions of D
d No of transactions in partitions scanned so far

during algorithm execution excluding the current partition
d+ No of transactions in partitions scanned so far

during algorithm execution including the current partition
G DAG structure to store candidates during algorithm execution

For g-Apriori and g-ARMOR Algorithms

c(X) Closed itemset corresponding to itemset X
g(X) g-Closed itemset corresponding to itemset X
� Tolerance factor
Ck Set of candidate k-itemsets
Gk Set of frequent k-generators
G Set of all frequent generators produced so far

For the DELTA Algorithm

DB, db, DB [db Previous, increment, and current database
minsupDB Previous Minimum Support Threshold
minsupDB[db New Minimum Support Threshold
minsup Minimum Support Threshold when minsupDB = minsupDB[db
FDB , Fdb, FDB[db Set of frequent itemsets in DB, db and DB [db

NDB, Ndb, NDB[db Negative borders of FDB , Fdb and FDB[db
Fknown Set of known-frequent itemsets during algorithm execution:

FDB[db \ (FDB [NDB)
Nknown Negative border of Fknown
Infrequent Set of known-infrequent itemsets during algorithm execution
Infrequentdb Set of known-infrequent (within db) itemsets

during algorithm execution

Table 2.1: Notation

Chapter 3

Related Work

In this chapter, we review the published research related to our work in each of the three

issues described in the Introduction { namely, the eÆciency of BAR-mining algorithms,

the conciseness of mining results and incremental mining.

3.1 EÆciency of Algorithms

There have been over thirty BAR-mining algorithms in the research literature. In this

section, we brie
y review a representative set of the major algorithms proposed. As

mentioned in Chapter 2, we consider only bottom-up algorithms that were designed to

mine sparse databases.

1. AIS: The very �rst algorithm was AIS [AIS93]. It was proposed in [AIS93] in which

the problem of BAR-mining was introduced. This is a \multi-pass" algorithm in

which candidate itemsets are generated while scanning the database by extending

known-frequent itemsets with items from each transaction. An estimate of the

supports of these candidates is used to guide whether these candidates need to be

extended further to produce more candidates. It was later discovered in [AS94] that

AIS generates too many candidates and is thereby ineÆcient.

2. Apriori: The AIS algorithm was followed by the Apriori algorithm [AS94] that was

shown to perform better than AIS by an order of magnitude. The most important

23

Chapter 3. Related Work 24

aspect of Apriori is to completely incorporate the subset frequency based pruning

optimization { that is, it does not process any itemset whose subset is known to

be infrequent. It utilizes a data structure called hashtree to store the counters of

candidate itemsets. The main drawback in this algorithm is that it performs n

passes over the database, where n is the length of the longest frequent itemset. In

the kth pass, the counts of candidate itemsets of length k (called k-itemsets) are

obtained. An other drawback is that Apriori follows a tuple-by-tuple approach {

that is, it updates counters of candidate itemsets after reading in each transaction

from the database. It hence su�ers from the drawback that much redundant work

(traversal of the data structure holding the counters of itemsets) is performed after

each and every transaction.

3. Partition: The partitioning strategy was introduced in [SON95], wherein the

database is logically divided into a number of disjoint partitions. The Partition

algorithm requires at most two passes and is based on the observation that an item-

set can be globally frequent over the entire database i� it is locally frequent in at

least one partition. The counting strategy in this algorithm computes for each can-

didate itemset, a list of tids of transactions that contain the itemset. These lists

(also referred to as tid-lists) are computed separately for each partition and are used

for eÆcient counting.

4. Sampling: This algorithm, proposed in [Toi96] �rst mines a random sample of the

database to obtain itemsets that are frequent within the sample. These itemsets

could be considered as a representative of the actual frequent itemsets in applications

where approximate mining results are suÆcient. In order to obtain accurate mining

results, this algorithm requires one or two scans over the entire database. The

Sampling algorithm too follows a tuple-by-tuple approach and hence, like Apriori,

su�ers from the above mentioned drawback.

5. AS-CPA: This is a variation of Partition proposed in [LD98] that makes use of the

cumulative count of each candidate to achieve an illusion of a \large partition". At

Chapter 3. Related Work 25

any instant, it stores only the candidates that are frequent over their respective large

partitions. However, there are no details of data-structures or of tid-list computation

in [LD98].

6. DIC: In DIC [BMUT97], candidates are generated and removed after every M

transactions where M is a parameter to the algorithm. Although it is a multi-pass

algorithm, it was shown to complete within two passes typically. It however, su�ers

from the drawbacks of tuple-by-tuple approaches.

7. CARMA: This is a 2-pass algorithm proposed in [Hid99] that has the feature of

dynamically generating and removing candidates after each tuple of the database

is processed. Though a novel approach, the CARMA algorithm su�ers from the

drawbacks of tuple-by-tuple approaches. It was shown in [Hid99] that while CARMA

did not perform consistently better than Apriori, its memory utilization was less by

an order of magnitude.

8. FP-growth: After a preprocessing scan over the database, this algorithm proposed

in [HPY00] constructs a condensed representation of the database called an FP-tree

and then performs mining over the FP-tree.

9. MaxClique: While the above algorithms were primarily horizontal (tuple) based

approaches, the MaxClique [ZPOL97a] algorithm is designed to eÆciently mine

databases that are available in a vertical layout.

10. VIPER: Unlike earlier vertical mining algorithm which were subject to various

restrictions on the underlying database size, shape, contents or the mining process,

the VIPER [SHS+00] algorithm does not have any such restrictions. It includes

many optimizations to enable eÆcient processing and was shown to outperform

earlier vertical mining algorithms. It also scales well with the database size.

All the above-mentioned studies (except VIPER, as discussed below) have focussed on

evaluating the performance of mining algorithms with respect to their predecessors. In

particular, most of them compare against the classical Apriori online mining algorithm.

Chapter 3. Related Work 26

With regard to evaluating the performance of mining algorithms with respect to ideal-

ized, o�ine algorithms, a preliminary step was taken in our work on incremental mining.

As mentioned in Chapter 1, this work was done prior to our work on the other two issues

addressed in this thesis, but is presented in the end due to pedagogical reasons. In this

work, we compared the DELTA algorithm against the oracle version of Apriori suitably

modi�ed for incremental mining. We refer to this algorithm as Apriori-Oracle. It di�ers

very much from the Oracle algorithm used in this thesis to evaluate the performance of

�rst-time mining algorithms in the following signi�cant aspects: (1) The Apriori-Oracle

primarily used the hashtree data structure [AS94] whereas Oracle primarily uses the DAG

structure (as de�ned in Chapter 4). (2) The Apriori-Oracle does counting with a tuple-

by-tuple approach, while Oracle follows a partitioning approach. (3) Finally, no proofs of

optimality are associated with the Apriori-Oracle. Another version of the Apriori-Oracle

was later used in [SHS+00] for comparison with VIPER.

3.2 Conciseness of Results

The algorithms discussed in the previous section were designed to address the �rst sub-

task of BAR-mining, which is to generate frequent itemsets. In this section, we review

various approaches to solving the problems associated with the second sub-task, which is to

generate rules from the discovered frequent itemsets. As discussed earlier, these problems

are: (1) Rule quantity: too many rules are usually generated, and (2) Rule quality:

not all of the rules are interesting. Both these problems are strongly related because

approaches to identify interesting rules would automatically mitigate the rule quantity

problem since only the interesting rules would be output. Here, we discuss related work

that primarily addresses the problem of rule quantity. Techniques that primarily address

the problem of rule quality are discussed in Section 3.4.1.

Chapter 3. Related Work 27

3.2.1 Post-Mining Rule Pruning Schemes

A number of techniques to discover \redundancy" in association rules have been proposed

that are post-mining rule analysis schemes. That is, they are to be applied after frequent

itemsets have been mined using a standard BAR-mining algorithm (like those discussed

in the previous section).

The concept of association rule covers was proposed in [TKR+95]. In this context, a

cover is a subset of the original set of rules such that for each tuple in the database there is

an applicable rule in the cover. Rules that are not in the cover are considered redundant

and are pruned. In this framework, a rule X �! Y \covers" all rules that contain a

superset of X in the antecedent. These latter rules are therefore pruned. A drawback of

this approach is that if these pruned rules have signi�cantly di�erent con�dence compared

to the rule that covers them, then clearly, information is lost.

In [AY98], a rule is considered redundant w.r.t another rule, if it is possible to derive

just the identity of the redundant rule from the latter. Note that we do not need to be

able to derive the support and con�dence of the redundant rule. Clearly, information can

be lost in this approach because the support and con�dence of the pruned redundant rule

could be signi�cantly di�erent from what is expected by analyzing the non-redundant

rules. Another rule pruning technique was presented in [BAG99] using the concept of

improvement, which is the di�erence between the con�dence of a rule and the con�dence

of any proper sub-rule1 with the same consequent. Those rules that do not meet a user-

speci�ed minimum improvement threshold are pruned.

The work in [DL98] introduces the notion of the neighbourhood of a rule. It then de-

�nes the interestingness of a rule based on certain parameters of its neighbourhood such

as the average con�dence in the neighbourhood, the density of rules, etc. In [LHM99], the

authors used the standard �2 test to prune insigni�cant rules. A general pruning tech-

nique was presented in [SLR99] consisting of several pruning rules to identify and remove

redundant itemsets. These rules are applicable for many di�erent types of patterns such

as associations and implications and for various statistical measures such as con�dence,

1A rule Q is a sub-rule of another rule P i� P contains all the items present in Q.

Chapter 3. Related Work 28

support, interest, etc.

A limitation of the above-mentioned studies is that their techniques to discover re-

dundancy are to be applied after frequent itemsets have been mined using a standard

BAR-mining algorithm. These approaches are therefore ineÆcient and sometimes even

infeasible because the number of frequent itemsets could be very large, especially for dense

databases.

3.2.2 Pruning During Mining

Techniques to prune rules during the frequent itemset discovery phase itself have been

proposed and are discussed below.

In [KMR+94], the authors propose an approach to allow the user to specify what

rules are required using templates. The system then retrieves those rules that match

these templates. A related scheme in [SVA97] enables users to specify constraints to be

satis�ed by the mined rules. A more comprehensive scheme was proposed in [NLHP98] to

enable users to specify a larger variety of constraints (including domain, class and SQL-

style aggregate constraints) to be satis�ed by the antecedent and consequent of a mined

association rule.

Another approach that has been considered in the mining literature for reducing the

size of mining output is to mine only themaximal frequent itemsets [Bay98, LK98, AAP98,

GZ01]. A frequent itemset is called maximal if it is not a subset of any other frequent

itemset. The motivation for this approach is that all subsets of a maximal frequent itemset

are frequent and hence might be considered redundant. A drawback of these approaches

is that maximal itemsets cannot be used directly for rule generation, since support of

subsets is required for con�dence computation. While an extra database scan could be

made to gather these supports, we revert to the problem of many redundant rules.

Closed Itemset Based Techniques

Alternative techniques for pruning uninteresting rules based on the closed itemset frame-

work [ZH02, PBTL99] have been previously presented in [Zak00, TPBL00, CS02, BBR00,

Chapter 3. Related Work 29

BB00]. These techniques have a tighter requirement for redundancy: A rule is redundant

only if its identity and support can be derived from another \non-redundant" rule. There-

fore, in this framework, no information is lost by pruning because both the identities and

supports of all frequent itemsets can be regenerated completely from the frequent closed

itemsets, which is a subset of the frequent itemsets. However, as we will show in this

thesis, the usefulness of the basic closed itemset framework depends on the presence of

frequent itemsets that have supersets with exactly the same support. This means that

even minor changes in the database can result in a signi�cant increase in the number of

frequent closed itemsets.

In this thesis, we too follow the tighter approach for a rule to be considered redun-

dant. However, as mentioned in Chapter 1, we relax the requirement of deriving exact

supports { instead, it is suÆcient if the supports can be estimated within a deterministic

user-speci�ed tolerance factor. This strategy of relaxing the requirement of deriving exact

supports has also been considered in [BBR00, BB00]. In [BBR00], the authors develop

the notion of freesets along with an algorithm called MINEX to mine them. The bound

on approximation error in the freesets approach increases linearly with itemset length in

contrast to the constant bound featured in our approach. In [BB00], the authors do not

provide any bounds on approximation error. Further, the focus in [BBR00, BB00] is only

on highly correlated, i.e. \dense" data sets, whereas we show that our techniques can be

pro�tably applied even on sparse data sets. Another di�erence is that our technique to

mine g-closed itemsets bypasses the additional processing that is required in the MINEX

algorithm to test for \freeness". Finally, there was no attempt in [BBR00, BB00] to incor-

porate their scheme into two-pass mining algorithms, which as mentioned in Chapter 1,

is essential for mining data streams.

One of the algorithms proposed in this thesis for mining frequent g-closed itemsets,

g-Apriori, is based on the classical Apriori algorithm. We note that there was another al-

gorithm called A-Close for mining frequent closed itemsets that was also based on Apriori.

It �rst mines what are known as the \generators" of frequent closed itemsets and then

makes an additional database scan to determine the closed itemsets from their respective

Chapter 3. Related Work 30

generators. Our algorithm signi�cantly di�ers from A-Close (even for the zero tolerance

case) in that it does not require the additional database scan to mine closed itemsets.

We note that the approaches based on the closed itemset concept, including the tech-

niques in this thesis, are complementary to the other approaches for rule pruning and can

be combined with them to perhaps achieve even better results.

3.3 Incremental Algorithms

In this section, we provide an overview of the algorithms that have been developed over

the last few years for incremental BAR-mining.

3.3.1 The FUP Algorithm

The FUP (Fast UPdate) algorithm [CHNW96, CLK97, CVB96] represents the �rst work

in the area of incremental mining. It operates on an iterative basis and in each iteration

makes a complete scan of the current database. In each scan, the increment is processed

�rst and the results obtained are used to guide the mining of the original database DB.

An important point to note about the FUP algorithm is that it requires k passes over the

entire database, where k is the cardinality of the longest large itemset. Further, it does

not generate the mining results for solely the increment.

In the �rst pass over the increment, all the 1-itemsets are considered as candidates.

At the end of this pass, the complete supports of the candidates that happen to be also

large in DB are known. Those which have the minimum support are retained in LDB[db.

Among the other candidates, only those which were large in db can become large overall

due to Theorem 12 (Section 6.2). Hence they are identi�ed and the previous database DB

is scanned to obtain their overall supports, thus obtaining the set of all large 1-itemsets.

The candidates for the next pass are calculated using the AprioriGen function, and the

process repeats in this manner until all the large itemsets have been identi�ed.

After FUP, algorithms that utilized the negative border information were proposed

independently in [F+97] and [T+97] with the goal of achieving more eÆciency in the

Chapter 3. Related Work 31

incremental mining process. In this approach, itemsets that were originally in the negative

border of the frequent itemsets and later become frequent after the database has been

updated are referred to as promoted borders. Algorithms that follow the negative border

approach typically compute what is known as the negative border closure. This consists

of all possible extensions of the promoted borders except those that have subsets known

to be infrequent. In the sequel, we will use Borders to refer to the algorithm in [F+97],

and TBAR to refer to the algorithm in [T+97].

3.3.2 The Borders Algorithm

The original Borders algorithm computes the entire negative border closure at one shot

and then makes a scan of the entire database to compute the counts of itemsets in the

closure. This could potentially result in a \candidate explosion" problem that is later

described in Section 6.2.3 of Chapter 6.

A new version of the Borders algorithm was proposed in [AFLM99]. This version

goes to the other extreme of the closure computation, and makes one scan of the entire

database for each \layer" of the negative border closure. As mentioned in Section 6.2.3 of

Chapter 6, this strategy could result in a signi�cant increase in the number of database

passes, and may therefore be problematic for large databases.

A variant of the new algorithm was proposed to handle multi-support mining. The

applicability of this algorithm, however, is limited to the very special case of zero-size

increments, that is, where the database has not changed at all between the previous and

the current mining.

Finally, like FUP, Borders also does not generate the mining results for solely the

increment.

3.3.3 The TBAR Algorithm

The TBAR algorithm initially completely mines the increment db by applying the Apriori

algorithm. We expect this strategy to be ineÆcient for large increments since the previous

mining results are not used at all in this mining process.

Chapter 3. Related Work 32

Next, it adopts an approach similar to Borders in that it computes the entire negative

border closure at one shot. However, since the results of mining the increment are available

at this time, this information could be used to prune more candidates from the closure

{ after computing each level of the closure, itemsets that are infrequent in the increment

are excluded from further candidate generation. Therefore, unlike Borders, the candidate

explosion problem is unlikely to occur. However, even with this pruning, there are likely

to be too many unnecessary candidates in TBAR, especially for skewed increments since

it relies solely on the increment for its pruning.

3.3.4 Other Algorithms

It was brie
y mentioned in [Hid99] that CARMA, a �rst-time mining algorithm could

be also applied for incremental mining. Although the algorithm is a novel and eÆcient

approach for �rst-time mining, we note that it su�ers from the following drawbacks when

applied to incremental mining: (1) It does not maintain negative border information and

hence will need to access the original database DB if there are any locally large itemsets in

the increment, even though these itemsets may not be globally large. (2) The shrinking

support intervals which CARMA maintains for candidate itemsets are not likely to be

tight for itemsets that become potentially large while processing the increment. This is

because the number of occurrences of such itemsets in DB will be unknown and could be

as much as supmin � jDBj.

An incremental mining algorithm, called MLUp, for updating \multi-level" associ-

ation rules over a taxonomy hierarchy was presented in [CVB96]. While MLUp's goal

is super�cially similar to the incremental hierarchical mining discussed in this thesis, it

has the following major di�erences: Firstly, a di�erent minimum support threshold is

used for each level of the hierarchy. Secondly, MLUp restricts its attention to deriving

intra-level rules, that is, rules within each level. In contrast, our focus in this thesis is on

the formulation given in [SA95] where there is only one minimum support threshold and

inter-level rules form part of the output.

Chapter 3. Related Work 33

3.4 Other Issues

In this section, we discuss those issues, which although not directly related to out work,

are nevertheless relevant to BAR-mining.

3.4.1 Interestingness Measures

In the original formulation of the BAR-mining problem, con�dence and support are two of

the interestingness measures proposed. The con�dence of a rule represents its likelihood of

being true whereas the support of a rule represents its statistical signi�cance. Support also

measures the applicability of a rule since a rule with high support would be applicable in a

large number of transactions. It was subsequently shown in [BMUT97] that the con�dence

measure is often misleading in practical situations. For example, if a rule states that \90%

of researchers drink co�ee" and minconf = 85%, it might seem to imply a strong positive

correlation between being a researcher and drinking co�ee. However, if further analysis

shows that 95% of all people drink co�ee, it would indicate that there is actually a negative

correlation between being a researcher and drinking co�ee.

The above point motivated additional measures for identifying interesting rules in-

cluding conviction [BMUT97] and interest [BMS97]. If P (X) represents the probability

of occurance of itemset X in the database, the conviction of a rule X �! Y is given

by P (X)P (:Y)=P (X;:Y) whereas its interest is given by P (X; Y)=P (X)P (Y). Rules

with high conviction are referred to as implication rules. Although these interestingness

measures improved the quality of mining output, it was observed in [BMUT97] that the

number of rules generated were still too many.

A novel scheme was proposed in [CSD98] that departs considerably from the BAR-

mining norm in that it does not rely on the minimum support threshold. In this scheme,

an itemset is considered uninteresting if the correlation between the items contained in

it can be estimated given correlations of its subsets, and correlations at earlier points

in time. For example, even a very frequent itemset would be considered uninteresting if

its support does not vary appreciably over time. As might be expected, the algorithms

to solve this problem are quite complex { quadratic time w.r.t the number of database

Chapter 3. Related Work 34

transactions. However, the authors in [CSD98] provide various heuristics to obtain an

almost linear-time complexity. Further, they make the observation that techniques based

on the minimum support threshold can be integrated with their scheme.

3.4.2 Backend

Our implementations of mining algorithms utilize a �le system backend similar to most

available research prototypes for BAR-mining. More speci�cally, our transaction data is

stored in binary �les that contain sequences of transactions. The format of each transac-

tion is a quadruple: (1) An integer representing the transaction id (tid), (2) An integer

representing the customer id, (3) the number of items purchased by the customer, and

(4) integers representing the the actual items purchased.

While the above backend suÆces for our purposes of algorithmic performance eval-

uation, there has been some work on integrating BAR-mining with relational database

backends [STA98, RCIC99, NT99]. The most comprehensive of these works, [STA98], eval-

uates various alternative ways of integrating the classical Apriori algorithm with RDBMS

backends. These alternatives include: loose-coupling through a SQL cursor interface; en-

capsulation of a mining algorithm in a stored procedure; caching the data to a �le system

on-the-
y and mining; tight-coupling using primarily user-de�ned functions and SQL im-

plementations for processing in the DBMS. Their evaluation shows that the Cache-Mine

option is superior to other alternatives from a response-time performance perspective.

A related issue of interest is the mining of associations across many databases. In

real life, large collections of data may be organized in the form of a set of relations

which is partitioned into several databases. These databases may hold interesting inter-

database associations such as \89% of employees having a salary in the range (Rs. 15,000

{ Rs. 25,000) own cars of type Maruti-800". Sophisticated algorithms for �nding such

inter-database associations are presented in [SAM99].

Chapter 3. Related Work 35

3.4.3 Privacy

The knowledge models produced through data mining techniques are only as good as the

accuracy of their input data. One source of data inaccuracy is when users deliberately

provide wrong information. This is especially common with regard to customers who are

asked to provide personal information on Web forms to e-commerce service providers.

The compulsion for doing so may be the (perhaps well-founded) worry that the requested

information may be misused by the service provider to harass the customer. As a case

in point, consider a pharmaceutical company that asks clients to disclose the diseases

they have su�ered from in order to investigate the correlations in their occurrences { for

example, \Adult females with malarial infections are also prone to contract tuberculosis".

While the company may be acquiring the data solely for genuine data mining purposes

that would eventually re
ect itself in better service to the client, at the same time the

client might worry that if her medical records are either inadvertently or deliberately

disclosed, it may adversely a�ect her employment opportunities.

Recently, there has been much interest in the data mining community on investigating

whether customers can be encouraged to provide correct information by ensuring that the

mining process cannot, with any reasonable degree of certainty, violate their privacy. At

the same time, the mining process should be as accurate as possible in terms of its results.

The diÆculty lies in the fact that these two metrics: privacy and accuracy, are typically

contradictory in nature, with the consequence that improving one usually incurs a cost

in the other.

The �rst work on privacy-preserving mining appeared in [AS00], which investigated

this issue in the context of classi�cation rule mining. An approach of value distortion,

wherein a random value is added to each original value, was taken in this work. They

presented two algorithms, ByClass and Local, which knowing the distribution of the ran-

dom values, attempt to reconstruct the original distribution within some acceptable error

bound. The privacy attained is quanti�ed by the \fuzziness" provided by the system,

that is, for a given level of con�dence, the size of the interval that is expected to hold the

original true value. A followup of this work in [AA01] showed that the privacy estimates

Chapter 3. Related Work 36

of [AS00] were overstated since they did not account for the additional knowledge that

the miner obtains from the reconstructed aggregate distribution. An alternative privacy

formulation that takes such \side-information" into account was presented.

With regard to privacy in association rule mining, there have been a number of papers

that have appeared over the last year [SVC01, ABE+99, DVEB01, SVE02, VC02, KC02,

EGSA02]. The focus in [SVC01, ABE+99, DVEB01, SVE02] is to prevent sensitive rules

from being inferred by the miner { they achieve this by either altering some of the entries

in the true database or by replacing some of the entries with NULL values.

In [LP02, VC02, KC02], the problem considered is that of obtaining data mining

results across a distributed set of sites with each site only willing to share data mining

results, but not the source data. While [LP02] addresses this problem in the context

of decision tree classis�ers, [VC02, KC02] address it in the context of association rules.

[LP02] model it as a problem of secure multi-party computation and proposes a solution

that demands very few rounds of communication and is eÆcient with regards to network

bandwidth consumption. In [VC02], they consider data that is vertically partitioned, that

is, di�erent columns of the database reside on di�erent sites, while [KC02], consider the

complementary situation where the data is horizontally partitioned across the sites.

Chapter 4

EÆciency of Mining Algorithms

4.1 Introduction

The problem of eÆciently mining frequent itemsets from large historical \market-basket"

databases was introduced almost a decade ago, in [AIS93]. Since then, a whole host of al-

gorithms for addressing this problem have been proposed [AIS93, AS94, SON95, PCY95b,

HKK97, Hid99, HPY00, SHS+00, AAP01]. The latest include FP-growth [HPY00], which

utilizes a pre�x-tree structure for compactly representing and processing pattern infor-

mation, and VIPER [SHS+00], which organizes and processes the database on a vertical

(column) basis as opposed to the more traditional horizontal (row) basis.

While the above e�orts have certainly resulted in a variety of novel algorithms, each

in turn claiming to outperform its predecessors on a representative set of databases, no

logical end appears to be in sight. Therefore, in this chapter, we focus our attention on the

question of how much space remains for performance improvement over current frequent

itemset mining algorithms. As discussed in Chapter 2, the environment we consider,

similar to the majority of the prior art in the �eld, is one where the data mining system

has a single processor and the pattern lengths in the database are small enough that the

frequent itemsets along with intermediate results produced by mining algorithms can �t

in main memory. That is, we restrict our attention to the class of sequential bottom-up

mining algorithms to mine sparse databases.

37

Chapter 4. Efficiency of Mining Algorithms 38

Within the above framework, we make the following contributions:

First, we introduce the notion of an \Oracle algorithm" that knows in advance the

identities of all frequent itemsets in the database and only needs to gather the actual

supports of these itemsets to complete the mining process. Clearly, any practical algo-

rithm will have to do at least this much work in order to generate mining rules. Thus,

this \Oracle approach" permits us to clearly demarcate the maximal space available for

performance improvement over the currently available algorithms. Further, it enables us

to construct new mining algorithms from a completely di�erent perspective, namely, as

minimally-altered derivatives of the Oracle.

Second, we present a carefully engineered implementation of Oracle that makes the

best choices of data structures and database organizations (w.r.t. the enumeration of

itemsets being counted). Our experimental results show that there is a considerable gap

in the performance between the Oracle and existing mining algorithms.

Third, we present a new mining algorithm, calledARMOR (Association Rule Mining

based on ORacle), whose structure is derived by making minimal changes to the Oracle,

and is guaranteed to complete in two passes over the database. Although ARMOR is

derived from the Oracle, it may be seen to share the positive features of a variety of

previous algorithms such as PARTITION [SON95], CARMA [Hid99], AS-CPA [LD98] and

VIPER [SHS+00]. Our empirical study shows that ARMOR performs within a factor of

two of the Oracle, over a variety of databases and practical ranges of support speci�cations.

Finally, an important feature of our experiments is that they include workloads where

the database is large enough that the working set of the database cannot be completely

stored in memory. This situation may be expected to frequently arise in data mining

applications since they are typically executed on huge historical databases. However, pre-

vious performance studies have been largely conducted on databases that completely �t

in main memory. For example, the standard experiment is one that has only 100K tuples

with an average tuple width of 50 bytes { this �ts easily in current memories that are

typically in the hundreds of megabytes. Therefore, the ability of these algorithms to scale

with database size, an important requirement for mining applications, has not been con-

Chapter 4. Efficiency of Mining Algorithms 39

clusively shown. In [SHS+00], the authors had demonstrated that this was an important

issue and that algorithms that worked very well for memory-resident databases did not

necessarily perform as well in disk-resident databases. Consistent with that observation,

here too we conduct experiments with such large disk-resident databases.

A fallout of this approach is that we �nd algorithms such as FP-growth, despite having

an attractive design, to perform rather poorly in practice.

For ease of exposition, we will use the notation shown in Table 2.1 of Chapter 2 in

the remainder of this chapter. The relevant part of this table has been reproduced in

Table 4.1 for convenience.

D Database of customer purchase transactions
minsup User-speci�ed minimum rule support
F Set of frequent itemsets in D
N Set of itemsets in the negative border of F
P1; P2; :::; Pn Set of n disjoint partitions of D
d No of transactions in partitions scanned so far during algorithm execution

excluding the current partition
d+ No of transactions in partitions scanned so far during algorithm execution

including the current partition
G DAG structure to store candidates during algorithm execution

Table 4.1: Notation (from Table 2.1)

4.1.1 Organization

The remainder of this chapter is organized as follows: The design of the Oracle algorithm

is described in Section 4.2 and is used to evaluate the performance of current algorithms

in Section 4.3. Our new ARMOR algorithm is presented in Section 4.4. The details of

candidate generation in ARMOR are discussed in Section 4.5, while its main memory

requirements are discussed in Section 4.6. The performance of ARMOR is evaluated in

Section 4.7. Finally, in Section 4.8, we summarize the conclusions of our study.

Chapter 4. Efficiency of Mining Algorithms 40

4.2 The Oracle Algorithm

In this section we present the Oracle algorithm which, as mentioned in the Introduction,

\magically" knows in advance the identities of all frequent itemsets in the database and

only needs to gather the actual supports of these itemsets. Clearly, any practical algorithm

will have to do at least this much work in order to generate mining rules. Oracle takes

as input the database, D, the set of frequent itemsets, F , and its corresponding negative

border, N , and outputs the supports of these itemsets by making one scan over the

database. While the initial database layout is in the item-list (IL) format, the Oracle

algorithm uses di�erent formats during the course of its execution for eÆcient processing.

We �rst describe the mechanics of the Oracle algorithm below and then move on to discuss

the rationale behind its design choices in Section 4.2.2.

4.2.1 The Mechanics of Oracle

For ease of exposition, we �rst present the manner in which Oracle computes the supports

of 1-itemsets and 2-itemsets and then move on to longer itemsets. Note, however, that

the algorithm actually performs all these computations concurrently in one scan over the

database.

Counting Singletons and Pairs

Data-Structure Description The counters of singletons (1-itemsets) are maintained

in a 1-dimensional lookup array, A1, and that of pairs (2-itemsets), in a lower triangular

2-dimensional lookup array, A2 (Similar arrays are also used in Apriori [AS94, SA95] for

its �rst two passes.) The kth entry in the array A1 contains two �elds: (1) count, the

counter for the itemset X corresponding to the kth item, and (2) index, the number of

frequent itemsets prior to X in A1, if X is frequent; null, otherwise.

Algorithm Description The ArrayCount function shown in Figure 4.1 takes as inputs,

a transaction T along with A1 and A2, and updates the counters of these arrays over T . In

the ArrayCount function, the individual items in the transaction T are enumerated (lines

Chapter 4. Efficiency of Mining Algorithms 41

ArrayCount (T;A1;A2)
Input: Transaction T , Array for 1-itemsets A1, Array for 2-itemsets A2

Output: Arrays A1 and A2 with their counts updated over T
1. Itemset T f = null; // to store frequent items from T in IL format
2. for each item i in transaction T

3. A1[i:id]:count ++;
4. if A1[i:id]:index 6= null

5. append i to T f

6. for j = 1 to jT f j // enumerate 2-itemsets
7. for k = j + 1 to jT f j
8. index1 = A1[T

f [j]:id]:index // row index
9. index2 = A1[T

f [k]:id]:index // column index
10. A2[index1; index2] + +;

Figure 4.1: Counting Singletons and Pairs in Oracle

2{5) and for each item, its corresponding count in A1 is incremented (line 3). During

this process, the frequent items in T are stored in a separate itemset T f in Item-list (IL)

format (line 5). We then enumerate all pairs of items contained in T f (lines 6{10) and

increment the counters of the corresponding 2-itemsets in A2 (lines 8{10).

Counting k-itemsets, k > 2

Data-Structure Description Itemsets in F [N of length greater than 2 and their

related information (counters, etc.) are stored in a DAG structure G, which is pictorially

shown in Figure 4.2 for a database with items fA, B, C, Dg. Although singletons and

pairs are stored in lookup arrays, as mentioned before, for expository ease, we assume

that they too are stored in G in the remainder of this discussion.

Each itemset is stored in a separate node of G and is linked to the �rst two (in

a lexicographic ordering) of its subsets. We use the terms \mother" and \father" of an

itemset to refer to the (lexicographically) smaller subset and the (lexicographically) larger

subset, respectively. E.g., fA, Bg and fA, Cg are the mother and father respectively of

fA, B, Cg. For each itemset X in G, we also store with it links to those supersets of X

for which X is a mother. We call this list of links as childset.

Since each itemset is stored in a separate node in the DAG, we use the terms \itemset"

Chapter 4. Efficiency of Mining Algorithms 42

father

mother

B C

AB

D

AC AD BC BD CD

ABC ABD ACD BCD

ABCD

A

Figure 4.2: DAG Structure Containing Power Set of fA,B,C,Dg

and \node" interchangeably in the remainder of this discussion. Also, we use G to denote

the set of itemsets that are stored in the DAG structure G.

Algorithm Description We use a partitioning scheme [SON95] wherein the database

is logically divided into n disjoint horizontal partitions P1; P2; :::; Pn. In this scheme,

itemsets being counted are enumerated only at the end of each partition and not after

every tuple. Each partition is as large as can �t in available main memory. For ease of

exposition, we assume that the partitions are equi-sized. However, we hasten to add that

the technique is easily extendible to arbitrary partition sizes.

The pseudo-code of Oracle is shown in Figure 4.3 and operates as follows: The Read-

NextPartition function (line 3) reads tuples from the next partition and simultaneously

creates tid-lists (within that partition) of singleton itemsets in G. Note that this con-

version of the database from the item-list (IL) format to the tid-list (TL) format is an

on-the-
y operation and does not change the complexity of Oracle by more than a (small)

constant factor. Next, the Update function (line 5) is applied on each singleton in G. This

function takes a node M in G as input and updates the counts of all descendants of M to

re
ect their counts over the current partition. The count of any itemset within a partition

is equal to the length of its corresponding tidlist (within that partition). The tidlist of

an itemset can be obtained as the intersection of the tidlists of its mother and father and

Chapter 4. Efficiency of Mining Algorithms 43

Oracle (D, G)
Input: Database D, Itemsets to be Counted G = F [N
Output: Itemsets in G with Supports
1. n = Number of Partitions
2. for i = 1 to n
3. ReadNextPartition(Pi, G);
4. for each singleton X in G
5. Update(X);

Figure 4.3: The Oracle Algorithm

Update (M)
Input: DAG Node M
Output: M and its Descendents with Counts Updated
1. B = convert M:tidlist to Tid-vector format

// B is statically allocated
2. for each node X in M:childset

3. X:tidlist = Intersect(B, X:father:tidlist);
4. X:count += jX:tidlistj
5. for each node X in M:childset

6. Update(X);

Figure 4.4: Updating Counts

Intersect (B, T)
Input: Tid-vector B, Tid-list T
Output: B \ T

1. Tid-list result = �

2. for each tid in T

3. o�set = tid+1� (tid of �rst transaction in current partition)
4. if B[o�set] = 1 then

5. result = result [tid

6. return result

Figure 4.5: Intersection

Chapter 4. Efficiency of Mining Algorithms 44

this process is started o� using the tidlists of frequent 1-itemsets. The exact details of

tidlist computation are discussed later.

We now describe the manner in which the itemsets in G are enumerated after reading

in a new partition. The set of links,
S
M2GM:childset, induce a spanning tree of G (e.g.

consider only the solid edges in Figure 4.2). We perform a depth �rst search on this

spanning tree to enumerate all its itemsets. When a node in the tree is visited, we

compute the tidlists of all its children. This ensures that when an itemset is visited, the

tidlists of its mother and father have already been computed.

The above processing is captured in the function Update whose pseudo-code is shown

in Figure 4.4. Here, the tidlist of a given node M is �rst converted to the tid-vector (TV)

format (line 1) discussed in Section 2.1. Then, tidlists of all children of M are computed

(lines 2{4) after which the same children are visited in a depth �rst search (lines 5{6).

The mechanics of tidlist computation, as promised earlier, are given in Figure 4.5.

The Intersect function shown here takes as input a tid-vector B and a tid-list T . Each tid

in T is added to the result if B[o�set] is 1 (lines 2{5) where o�set is de�ned in line 3 and

represents the position of the transaction T relative to the current partition.

4.2.2 Rationale for the Oracle Design

Having described the mechanics of the Oracle design, we now move on to providing

the rationale for its construction. We show that it is optimal in two respects: (1) It

enumerates only those itemsets in G that need to be enumerated, and (2) The enumeration

is performed in the most eÆcient way possible. The following theorem shows that there

is no wasted enumeration of itemsets in Oracle in typical mining scenarios.

Theorem 2 If the size of each partition is large enough that every itemset in F [N of

length greater than 2 is present at least once in it, then the only itemsets being enumerated

in the Oracle algorithm are those whose counts need to be incremented in that partition.

Proof: The �rst observation is that all 1-itemsets must be in either F or N . Hence

every occurrence of a 1-itemset in the entire database needs to be accounted for in the

Chapter 4. Efficiency of Mining Algorithms 45

�nal output. Oracle does no more than this as it enumerates each singleton in every

transaction only once (lines 2{5 in Figure 4.1).

The 2-itemsets that are enumerated (lines 6{10 in Figure 4.1) are all guaranteed to be

either in F or in N since only combinations of frequent 1-itemsets are considered. Hence

there is no wasted work in enumerating them.

If each partition is large enough that every itemset in F [N of length greater than

2 is present at least once in it, then it is necessary to increment the counts of all these

itemsets over that partition. This is precisely what is done in Oracle. Also, note that by

the de�nition of depth �rst search, each node in the DAG is visited only once. Hence, it

follows that there is no wasted enumeration of itemsets in Oracle.

The assumption in Theorem 2 that every itemset in F [N of length greater than 2

is present at least once in each partition would typically hold on large partitions. Even if

this does not strictly hold, the Oracle algorithm degrades gracefully in that: If there arem

itemsets that are not present in some partition, then the amount of wasted enumeration

is only m.

We now move on to the second part of our proof, namely, to show that the data-

structures used in the Oracle algorithm are the most eÆcient for the range of operations

required in Oracle.

Theorem 3 The cost of enumerating each itemset in Oracle is �(1).

Proof: Since the counts of singletons and pairs are stored in direct lookup arrays, the

cost of �nding the counters of an arbitrary singleton or pair is �(1).

For an itemset X such that jXj � 2, the cost of enumerating its children is

�(jX:childsetj) since links to all nodes in X:childset are available in the node containing

X. Amortizing this cost over all the children results in �(1) cost per child. Also, X

has direct pointers to its mother and father. Hence the cost of �nding them in order to

compute the tid-list of X is �(1).

Since the only operations done in Oracle in each visit to a node during the depth �rst

search are to compute the tidlists of each of its children, the amortized cost incurred for

enumerating each node is �(1).

Chapter 4. Efficiency of Mining Algorithms 46

We assume that the underlying computing model is a unit cost RAM [CR73]. In

this model, operations such as accessing an arbitrary element in an array and following a

pointer have unit cost and cannot therefore be improved upon. Since the costs involved in

the above proof are of array lookups and following pointers, the constant factor involved

in the �(1) expression is tight.

While Oracle is optimal in most respects as described above, we note that there may

remain some scope for improvement in the details of tidlist computation. That is, the

Intersect function (Figure 4.5) which computes the intersection of a tid-vector B and a

tid-list T requires �(jT j) operations. B itself was originally constructed from a tid-list,

although this cost is amortized over many calls to the Intersect function. We plan to

investigate in our future work whether the intersection of two sets can, in general, be

computed more eÆciently { for example, using di�sets, a novel and interesting approach

suggested in [ZG01]. The di�set of an itemset X is the set-di�erence of the tid-list of

X from that of its mother. Di�sets can be easily incorporated in Oracle { only the

Update function in Figure 4.4 of Section 4.2 is to be changed to compute di�sets instead

of tidlists by following the techniques suggested in [ZG01]. We found that incorporating

di�sets in Oracle did not yield a signi�cant performance gain. This was because of two

reasons { (1) Our experiments were run on sparse data on which the bene�t of di�sets

is moderate [ZG01]. (2) The cost of �nding the di�erence of two sets A and B is O(2�

(jAj + jBj)) while the intersection of a tid-list T with a tid-vector in Oracle is �(jT j)

operations.

Advantages of Partitioning Schemes

Oracle, as discussed above, uses a partitioning scheme. An alternative commonly used in

current association rule mining algorithms, especially in hashtree [AS94] based schemes, is

to use a tuple-by-tuple approach. A problem with the tuple-by-tuple approach, however,

is that there is considerable wasted enumeration of itemsets. The core operation in these

algorithms is to determine all candidates that are subsets of the current transaction. Given

that a frequent itemset X is present in the current transaction, we need to determine

Chapter 4. Efficiency of Mining Algorithms 47

all candidates that are immediate supersets of X and are also present in the current

transaction. In order to achieve this, it is often necessary to enumerate and check for

the presence of many more candidates than those that are actually present in the current

transaction.

4.3 Performance Study

In the previous section, we have described the Oracle algorithm. In order to assess the

performance of current mining algorithms with respect to the Oracle algorithm, we have

chosen VIPER [SHS+00] and FP-growth [HPY00], among the latest in the suite of online

mining algorithms. For completeness and as a reference point, we have also included the

classical Apriori in our evaluation suite.

Our experiments cover a range of database and mining workloads, and include the

typical and extreme cases considered in previous studies { the only di�erence is that we

also consider database sizes that are signi�cantly larger than the available main memory.

The performance metric in all the experiments is the total execution time taken by the

mining operation.

The databases used in our experiments were synthetically generated using the tech-

nique described in [AS94] and attempt to mimic the customer purchase behavior seen in

retailing environments. The parameters used in the synthetic generator and their default

values are described in Table 4.2. In particular, we consider databases with parameters

T10.I4, T20.I12 and T40.I8 with 10 million tuples in each of them.

Parameter Meaning Default Values

N Number of items 1000
T Mean transaction length 10, 20, 40
L Number of potentially frequent itemsets 2000
I Mean length of potentially frequent itemsets 4, 8, 12
D Number of transactions in the database 10M

Table 4.2: Parameter Table

We set the rule support threshold values to as low as was feasible with the available

Chapter 4. Efficiency of Mining Algorithms 48

main memory. At these low support values the number of frequent itemsets exceeded

twenty �ve thousand! Beyond this, we felt that the number of rules generated would be

enormous and the purpose of mining { to �nd interesting patterns { would not be served.

In particular, we set the rule support threshold values for the T10.I4, T20.I12 and T40.I8

databases to the ranges (0.1%{2%), (0.4%{2%) and (1.15%{5%), respectively.

Our experiments were conducted on a 700-MHz Pentium III workstation running Red

Hat Linux 6.2, con�gured with a 512 MB main memory and a local 18 GB SCSI 10000

rpm disk. For the T10.I4, T20.I12 and T40.I8 databases, the associated database sizes

were approximately 500MB, 900MB and 1.7 GB, respectively. All the algorithms in our

evaluation suite are written in C++. We implemented a basic version of the FP-growth

algorithm wherein we assume that the entire FP-tree data structure �ts in main memory.

Finally, the partition size in Oracle was �xed to be 20K tuples.

4.3.1 Experimental Results for Current Mining Algorithms

We now report on our experimental results. We conducted two experiments to evaluate the

performance of current mining algorithms with respect to the Oracle. Our �rst experiment

was run on large (10M tuples) databases, while our second experiment was run on small

(100K tuples) databases.

Experiment 1: Performance of Current Algorithms

In our �rst experiment, we evaluated the performance of Apriori, VIPER and Oracle

algorithms for the T10.I4, T20.I12 and T40.I8 databases each containing 10M transactions

and these results are shown in Figures 4.6a{c. The x-axis in these graphs represent the

support threshold values while the y-axis represents the response times of the algorithms

being evaluated.

In these graphs, we see that the response times of all algorithms increase exponentially

as the support threshold is reduced. This is only to be expected since the number of

itemsets in the output, F [N , increases exponentially with decrease in the support

threshold.

Chapter 4. Efficiency of Mining Algorithms 49

0

1000

2000

3000

4000

5000

6000

7000

0 0.5 1 1.5 2

T
im

e
 (

s
e
c
o
n
d
s
)

Support (as a %)

(a) T10.I4.D10M

Oracle
Apriori
VIPER

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 0.5 1 1.5 2

T
im

e
 (

s
e
c
o
n
d
s
)

Support (as a %)

(b) T20.I12.D10M

Oracle
Apriori
VIPER

0

5000

10000

15000

20000

25000

0 1 2 3 4 5

T
im

e
 (

s
e
c
o
n
d
s
)

Support (as a %)

(c) T40.I8.D10M

Oracle
Apriori
VIPER

Figure 4.6: Performance of Current Algorithms (Large Databases)

We also see that there is a considerable gap in the performance of both Apriori and

VIPER with respect to Oracle. For example, in Figure 4.6a, at a support threshold

of 0.1%, the response time of VIPER is more than 6 times that of Oracle whereas the

response time of Apriori is more than 26 times!

In this experiment, we could not evaluate the performance of FP-growth because it

did not complete in any of our runs on large databases due to its heavy and database

size dependent utilization of main memory. The reason for this is that FP-growth stores

the database itself in a condensed representation in a data structure called FP-tree. In

[HPY00], the authors brie
y discuss the issue of constructing disk-resident FP-trees. We

however, did not take this into account in our implementation. We return to this issue

later in Section 4.3.1.

Experiment 2: Small Databases

Since, as mentioned above, it was not possible for us to evaluate the performance of FP-

growth on large databases due to its heavy utilization of main memory, we evaluated the

performance of FP-growth and other current algorithms on small databases consisting of

100K transactions. The results of this experiment are shown in Figures 4.7a{c, which

correspond to the T10.I4, T20.I12 and T40.I8 databases, respectively.

In these graphs, we �rst see there continues to be a considerable gap in the performance

Chapter 4. Efficiency of Mining Algorithms 50

0

10

20

30

40

50

60

70

0 0.5 1 1.5 2

T
im

e
 (

s
e
c
o
n
d
s
)

Support (as a %)

(a) T10.I4.D100K

Oracle
Apriori
VIPER

FP-growth

0

20

40

60

80

100

120

140

160

180

0 0.5 1 1.5 2

T
im

e
 (

s
e
c
o
n
d
s
)

Support (as a %)

(b) T20.I12.D100K

Oracle
Apriori
VIPER

FP-growth

0

50

100

150

200

250

300

350

400

450

0 1 2 3 4 5

T
im

e
 (

s
e
c
o
n
d
s
)

Support (as a %)

(c) T40.I8.D100K

Oracle
Apriori
VIPER

FP-growth

Figure 4.7: Performance of Current Algorithms (Small Databases)

of current mining algorithms with respect to Oracle. For example, for the T40.I8 database,

the response time of FP-growth is more than 8 times that of Oracle for the entire support

threshold range.

Second, although FP-growth does well at low supports, its performance is worse than

Apriori for high supports. These results are inconsistent with those shown in [HPY00]

where it was shown that FP-growth consistently performs better than Apriori for the entire

support range. While this could possibly be due to di�erences between our respective

implementations of FP-growth and/or Apriori, we feel that there are logical reasons for

this behaviour as explained below.

At high supports Apriori typically performs only two passes over the data since with

these supports there are usually no frequent itemsets of length greater than two. In these

cases, the �rst pass of Apriori is identical to the preprocessing pass in FP-growth in which

all frequent singletons are obtained. The second pass of Apriori is quite eÆcient since

the counts of candidate 2-itemsets are maintained in a 2-dimensional lookup array. FP-

growth, on the other hand, constructs an FP-tree during the second pass. The FP-tree

is updated on a tuple-by-tuple basis. Each node in the FP-tree contains an item-name

�eld. A critical operation during FP-tree construction is to �nd the child of a node given

a key item-name. If these keys are stored in lookup-arrays, the memory requirements of

FP-tree would be still worse. The alternative is to use an indexing data structure such as

Chapter 4. Efficiency of Mining Algorithms 51

a red-black tree or a skip-list that requires O(log n) time to perform the �nd operation,

but this would make the FP-tree construction slow. Even assuming that the cost of FP-

tree construction is equal to the second pass of Apriori, FP-growth still needs to mine the

FP-tree. Hence FP-growth �nally loses out at high supports.

4.4 The ARMOR Algorithm

ARMOR (D, I;minsup)
Input: Database D, Set of Items I, Minimum Support minsup

Output: F [N with Supports
1. n = Number of Partitions

//|{ First Pass |{
2. G = I // candidate set (in a DAG)
3. for i = 1 to n
4. ReadNextPartition(Pi, G);
5. for each singleton X in G
6. X:count += jX:tidlistj
7. Update1(X, minsup);

//|{ Second Pass |{
8. RemoveSmall(G, minsup);
9. OutputFinished(G, minsup);
10. for i = 1 to n
11. if (all candidates in G have been output)
12. exit

13. ReadNextPartition(Pi, G);
14. for each singleton X in G
15. Update2(X, minsup);

Figure 4.8: The ARMOR Algorithm

In the previous section, our experimental results have shown that there is a consider-

able gap in the performance between the Oracle and existing mining algorithms. We now

move on to describe our new mining algorithm, ARMOR (Association Rule Mining based

on ORacle). In this section, we overview the main features and the
ow of execution of

ARMOR { the details of candidate generation are deferred to the following section.

The guiding principle in our design of the ARMOR algorithm is that we consciously

Chapter 4. Efficiency of Mining Algorithms 52

make an attempt to determine the minimal amount of change to Oracle required to result

in an online algorithm. This is in marked contrast to the earlier approaches which designed

new algorithms by trying to address the limitations of previous online algorithms. That is,

we approach the association rule mining problem from a completely di�erent perspective.

In ARMOR, as in Oracle, the database is conceptually partitioned into n disjoint

blocks P1; P2; :::; Pn. At most two passes are made over the database. In the �rst pass

we form a set of candidate itemsets, G, that is guaranteed to be a superset of the set of

frequent itemsets. During the �rst pass, the counts of candidates in G are determined

over each partition in exactly the same way as in Oracle by maintaining the candidates

in a DAG structure. The 1-itemsets and 2-itemsets are stored in lookup arrays as in

Oracle. But unlike in Oracle, candidates are inserted and removed from G at the end

of each partition. Generation and removal of candidates is done simultaneously while

computing counts. The details of candidate generation and removal during the �rst pass

are described in Section 4.5. For ease of exposition we assume in the remainder of this

section that all candidates (including 1-itemsets and 2-itemsets) are stored in the DAG.

Along with each candidate X, we also store the following three integers as in the

CARMA algorithm [Hid99]: (1) X:count : the number of occurrences of X since X was

last inserted in G. (2) X:firstPartition : the index of the partition at which X was

inserted in G. (3) X:maxMissed : upper bound on the number of occurrences of X

before X was inserted in G. X:firstPartition and X:maxMissed are computed when X

is inserted into G in a manner identical to CARMA.

While the CARMA algorithm works on a tuple-by-tuple basis, we have adapted the

semantics of these �elds to suit the partitioning approach. If the database scanned so

far is d (refer Table 2.1), then the support of any candidate X in G will lie in the

range [X:count=jdj; (X:maxMissed + X:count)=jdj] [Hid99]. These bounds are denoted

by minSupport(X) and maxSupport(X), respectively. We de�ne an itemset X to be d-

frequent if minSupport(X) � minsup. Unlike in the CARMA algorithm where only d-

frequent itemsets are stored at any stage, the DAG structure in ARMOR contains other

candidates, including the negative border of the d-frequent itemsets, to ensure eÆcient

Chapter 4. Efficiency of Mining Algorithms 53

candidate generation. The details are given in Section 4.5.

At the end of the �rst pass, the candidate set G is pruned to include only d-frequent

itemsets and their negative border. The counts of itemsets in G over the entire database

are determined during the second pass. The counting process is again identical to that of

Oracle. No new candidates are generated during the second pass. However, candidates

may be removed. The details of candidate removal in the second pass is deferred to

Section 4.5.1.

The pseudo-code of ARMOR is shown in Figure 4.8 and is explained below.

4.4.1 First Pass

At the beginning of the �rst pass, the set of candidate itemsets G is initialized to the set

of singleton itemsets (line 2). The ReadNextPartition function (line 4) reads tuples from

the next partition and simultaneously creates tid-lists of singleton itemsets in G.

After reading in the entire partition, the Update1 function (details in Section 4.5) is

applied on each singleton in G (lines 5{7). It increments the counts of existing candidates

by their corresponding counts in the current partition. It is also responsible for generation

and removal of candidates.

At the end of the �rst pass, G contains a superset of the set of frequent itemsets.

For a candidate in G that has been inserted at partition Pj, its count over the partitions

Pj; :::; Pn will be available.

4.4.2 Second Pass

At the beginning of the second pass, candidates in G that are neither d-frequent nor part

of the current negative border are removed from G (line 8). For candidates that have been

inserted in G at the �rst partition, their counts over the entire database will be available.

These itemsets with their counts are output (line 9). The OutputFinished function also

performs the following task: If it outputs an itemset X and X has no supersets left in G,

X is removed from G.

During the second pass, the ReadNextPartition function (line 13) reads tuples from the

Chapter 4. Efficiency of Mining Algorithms 54

next partition and creates tid-lists of singleton itemsets in G. After reading in the entire

partition, the Update2 function (details in Section 4.5.1) is applied on each singleton in

G (lines 14{15). Finally, before reading in the next partition we check to see if there are

any more candidates. If not, the mining process terminates.

4.5 Candidate Generation in ARMOR

ARMOR utilizes a technique from incremental mining algorithms [PH00, T+97, F+97]

in order to generate candidates eÆciently. These algorithms are designed to eÆciently

derive the current mining output by utilizing previous mining results when a database has

been updated with an increment. ARMOR treats the database scanned so far, d, as the

\original database" and the current partition being processed as the \increment". Let d+

denote the portion of the database scanned so far including the current partition being

processed (see Table 2.1 in Chapter 2). Let F d and F d+ be the sets of frequent itemsets

over d and d+, respectively, and Nd and Nd+ be their corresponding negative borders. In

this context, it is shown in [T+97] that:

Theorem 4 If X is an itemset that is not in F d but is in F d+, then there must be some

subset x of X which was in Nd and is now in F d+.

The itemsets that move from Nd to F d+ are called promoted borders. The above

Theorem then means that the only candidates that need to be generated are those that

are supersets of the promoted borders. We use the term expanding a promoted border P

to denote the process of generating the required supersets of P .

We present now a technique for eÆciently expanding a promoted border. Our tech-

nique is captured in the Expand function presented in Figure 4.9, the inputs to which are

P , the promoted border to be expanded and G, the current set of candidates. The Expand

function is similar to the AprioriGen function [AS94] since the siblings of P are exactly

those itemsets in G that di�er from P in the last item. However, the Expand function and

its usage di�ers from AprioriGen in that: (1) It is applied dynamically whenever a candi-

date that was in the negative border becomes d-frequent; (2) It is applied to individual

Chapter 4. Efficiency of Mining Algorithms 55

itemsets, whereas the AprioriGen function is applied to sets of itemsets; (3) It performs

a parent based pruning optimization unlike AprioriGen which enumerates all immediate

subsets of a candidate in order to prune it.

Expand (P , G)
Input: Promoted Border P , DAG G

for each sibling X of P in G
if (X is d-frequent) then

S = P [X // new candidate
Insert S into G as a child of P

Figure 4.9: Expanding a Promoted Border

At �rst glance, it may appear surprising that we do not consider the same pruning

strategy as of AprioriGen in Expand. The reason we do not do so is because it results

in signi�cant overheads due to the dynamic and incremental manner in which candidate

generation occurs in Expand. We illustrate this with the following example: Consider

the situation in which the itemsets fU; V g and fU;Wg are d-frequent but fV;Wg is not.

Then fU; V;Wg will not be in G if Apriori-type pruning were incorporated in Expand. If

fV;Wg also becomes d-frequent, then fU; V;Wg will need to be added to G. But fV;Wg

cannot be combined with another itemset that di�ers only in the last item to produce

fU; V;Wg. This means that if we incorporate Apriori-type pruning, the Expand function

needs to combine fV;Wg with itemsets that di�er from it in any one item.

From the above discussion, it is clear that incorporating Apriori-type pruning in the

Expand function, results in signi�cant cost for two reasons: (1) It requires a separate

traversal of the DAG structure to �nd all itemsets that di�er from a given itemset in any

one item. (2) All immediate subsets of a given itemset need to be searched for in the

DAG.

Without Apriori-type pruning, in the above example, fU; V;Wg would have already

been in G regardless of whether fV;Wg is d-frequent or not since it would not have been

pruned due to the absence of fV;Wg. Therefore, when fV;Wg becomes d-frequent, it is

not necessary to regenerate fU; V;Wg.

Chapter 4. Efficiency of Mining Algorithms 56

Due to the above reasons we do not incorporate Apriori-type pruning in ARMOR.

Instead, a candidate is automatically pruned if one of its parents is not d-frequent since

it would not even be generated in the �rst place. Our experiments (Section 4.7) showed

that the number of additional candidates generated in ARMOR compared to Apriori's

jF [N j candidates was marginal { the worst case being about ten percent more.

The Expand function is incorporated into ARMOR by calling it from the Update1

function that is invoked for each partition scanned during the �rst pass. The Update1

function is presented in Figure 4.10 and is explained below.

Update1 (M , minsup)
Input: DAG Node M , Minimum Support minsup

Output: M and its Descendents Updated
1. B = convert M:tidlist to Tid-vector format

// B is statically allocated
2. for each node X in M:childset

3. X:tidlist = Intersect(B, X:father:tidlist);
4. X:count += jX:tidlistj
5. for each node X in M .childset
6. if maxSupport(X) � minsup then

7. if jX:childsetj > 0 // already expanded
8. remove all supersets of X reachable from X in G
9. else

10. if jX:childsetj = 0 // not yet expanded
11. Expand(X);
12. for each node X in M:childset

13. Update1(X);

Figure 4.10: Updating Counts

The manner in which the counts of candidates are computed in Update1 is exactly

the same as that in Update (described in Section 4.2). The extra processing in Update1

is only to generate and remove candidates dynamically. This is done in one enumeration

of all children of a given node M (lines 5{11). For each child X that is enumerated, if it

has supersets but is not d-frequent, then we remove all supersets of X that are reachable

from X in the DAG (lines 6{8). Note that X itself is not removed since it could be part

of the current negative border. On the other hand, if X is d-frequent and has not yet

Chapter 4. Efficiency of Mining Algorithms 57

been expanded, then it is now expanded by calling the Expand function (lines 10{11).

4.5.1 Candidate Removal During Second Pass

A candidate X is removed during the second pass whenever the following two conditions

are satis�ed: (1) The count of X over the entire database is available, which becomes true

when X:firstPartition is the next partition to be processed; and (2) X has no supersets

in G.

We now describe the Update2 function (called from ARMOR in Figure 4.8), which is

responsible for removing candidates as described above. The Update2 function increments

the counts of existing candidates by their corresponding counts in the current partition

in a manner identical to that of the Update function of Oracle (described in Section 4.2).

It di�ers from Update only in that it also outputs candidates whose counts over the entire

database are known. If it outputs an itemset X and X has no supersets left in G, X is

removed from G.

4.6 Memory Utilization in ARMOR

In the design and implementation of ARMOR, we have opted for speed in most decisions

that involve a space-speed tradeo�. Therefore, the main memory utilization in ARMOR

is certainly more as compared to algorithms such as Apriori. However, in the following

discussion, we show that the memory usage of ARMOR is well within the reaches of

current machine con�gurations. This is also experimentally con�rmed in the next section.

The main memory consumption of ARMOR comes from the following sources: (1)

The 1-d and 2-d arrays for storing counters of singletons and pairs, respectively; (2) The

DAG structure for storing counters of longer itemsets, including tidlists of those itemsets,

and (3) The current partition.

The total number of entries in the 1-d and 2-d arrays and in the DAG structure

corresponds to the number of candidates in ARMOR, which as we have discussed in

Section 4.5, is only marginally more than jF [N j. For the moment, if we disregard

Chapter 4. Efficiency of Mining Algorithms 58

the space occupied by tidlists of itemsets, then the amortized amount of space taken by

each candidate is a small constant (about 10 integers for the dag and 1 integer for the

arrays). E.g., if there are 1 million candidates in the dag and 10 million in the array,

the space required is about 80MB. Since the environment we consider is one where the

pattern lengths are small, the number of candidates will typically be comparable to or

well within the available main memory. [XD99] discusses alternative approaches when

this assumption does not hold.

Regarding the space occupied by tidlists of itemsets, note that ARMOR only needs

to store tidlists of d-frequent itemsets. The number of d-frequent itemsets is of the same

order as the number of frequent itemsets, jF j. The total space occupied by tidlists while

processing partition Pi is then bounded by jF j � jPij integers. E.g., if jF j = 5K and

jPij = 20K, then the space occupied by tidlists is bounded by about 400MB. We assume

jF j to be in the range of a few thousands at most because otherwise the total number

of rules generated would be enormous and the purpose of mining would not be served.

Note that the above bound is very pessimistic. Typically, the lengths of tidlists are much

smaller than the partition size, especially as the itemset length increases.

Main memory consumed by the current partition is small compared to the above two

factors. E.g., If each transaction occupies 1KB, a partition of size 20K would require only

20MB of memory. Even in these extreme examples, the total memory consumption of

ARMOR is 500MB, which is acceptable on current machines.

Therefore, in general we do not expect memory to be an issue for mining market-

basket databases using ARMOR. Further, even if it does happen to be an issue, it is easy

to modify ARMOR to free space allocated to tidlists at the expense of time: M:tidlist

can be freed after line 3 in the Update function shown in Figure 4.4.

A �nal observation to be made from the above discussion is that the main memory

consumption of ARMOR is proportional to the size of the output and does not \explode"

as the input problem size increases.

Chapter 4. Efficiency of Mining Algorithms 59

4.7 Experimental Results for ARMOR

We evaluated the performance of ARMOR with respect to Oracle on a variety of databases

and support characteristics. We now report on our experimental results for the same

performance model described in Section 4.3. Since Apriori, FP-growth and VIPER have

already been compared against Oracle in Section 4.3.1, we do not repeat those observations

here, but focus on the performance of ARMOR w.r.t. that of Oracle. This lends to the

visual clarity of the graphs. We hasten to add that ARMOR does outperform the other

algorithms.

4.7.1 Experiment 3: Performance of ARMOR

0

50

100

150

200

250

300

350

400

0 0.5 1 1.5 2

T
im

e
 (

s
e

c
o

n
d

s
)

Support (as a %)

(a) T10.I4.D10M

Oracle
ARMOR

0

200

400

600

800

1000

1200

0 0.5 1 1.5 2

T
im

e
 (

s
e

c
o

n
d

s
)

Support (as a %)

(b) T20.I12.D10M

Oracle
ARMOR

0

500

1000

1500

2000

2500

3000

0 1 2 3 4 5

T
im

e
 (

s
e

c
o

n
d

s
)

Support (as a %)

(c) T40.I8.D10M

Oracle
ARMOR

Figure 4.11: Performance of ARMOR (Synthetic Datasets)

In this experiment, we evaluated the response time performance of the ARMOR and

Oracle algorithms for the T10.I4, T20.I12 and T40.I8 databases each containing 10M

transactions and these results are shown in Figures 4.11a{c.

In these graphs, we �rst see that ARMOR's performance is close to that of Oracle

for high supports. This is because of the following reasons: The density of the frequent

itemset distribution is sparse at high supports resulting in only a few frequent itemsets

with supports \close" tominsup. Hence, frequent itemsets are likely to be locally frequent

within most partitions. Even if they are not locally frequent in a few partitions, it is very

Chapter 4. Efficiency of Mining Algorithms 60

likely that they are still d-frequent over these partitions. Hence, their counters are updated

even over these partitions. Therefore, the complete counts of most candidates would be

available at the end of the �rst pass resulting in a \light and short" second pass. Hence,

it is expected that the performance of ARMOR will be close to that of Oracle for high

supports.

Since the frequent itemset distribution becomes dense at low supports, the above

argument does not hold in this support region. Hence we see that ARMOR's performance

relative to Oracle decreases at low supports. But, what is far more important is that

ARMOR consistently performs within a factor of two of Oracle. This is highlighted in

Table 4.3 where we show the ratios of the performance of ARMOR to that of Oracle for

the lowest support values considered for each of the databases.

Database minsup(%) ARMOR (seconds) Oracle (seconds) ARMOR/Oracle

T10.I4.D10M 0.1 371.44 226.99 1.63
T20.I12.D10M 0.4 1153.42 814.01 1.41
T40.I8.D10M 1.15 2703.64 2267.26 1.19

Table 4.3: Worst-case EÆciency of ARMOR w.r.t Oracle

4.7.2 Experiment 4: Memory Utilization in ARMOR

0

20

40

60

80

100

120

140

160

0 0.005 0.01 0.015 0.02

M
e
m

o
r
y
 U

s
e
d
 (

M
B

)

Support (as a %)

T10.I4.D10M

1K items
20K items

Figure 4.12: Memory Utilization in ARMOR

Chapter 4. Efficiency of Mining Algorithms 61

The previous experiments were conducted with the total number of items, N , being

set to 1K. In this experiment we set the value of N to 20K items for the T10.I4 database

{ this environment represents an extremely stressful situation for ARMOR with regard to

memory utilization due to the very large number of items. Figure 4.12 shows the memory

utilization of ARMOR as a function of support for the N = 1K and N = 20K cases. We

see that the main memory utilization of ARMOR scales well with the number of items.

For example, at the 0.1% support threshold, the memory consumption of ARMOR for

N = 1K items was 104MB while for N = 20K items, it was 143MB { an increase in less

than 38% for a 20 times increase in the number of items! The reason for this is that the

main memory utilization of ARMOR does not depend directly on the number of items,

but only on the size of the output, F [N , as discussed in Section 4.6.

4.7.3 Experiment 5: Real Datasets

0

1

2

3

4

5

6

7

8

9

0.06 0.07 0.08 0.09 0.1

T
im

e
 (

s
e

c
o

n
d

s
)

Support (as a %)

(a) BMS-WebView-1

Oracle
ARMOR

0

1

2

3

4

5

6

7

8

9

3 4 5 6 7 8 9 10

T
im

e
 (

s
e

c
o

n
d

s
)

Support (as a %)

(b) EachMovie

Oracle
ARMOR

Figure 4.13: Performance of Armor (Real Datasets)

Despite repeated e�orts, we were unable to obtain large real datasets that conform

to the sparse nature of market basket data since such data is not publicly available due

to proprietary reasons. The datasets in the UC Irvine public domain repository [BM98]

which are commonly used in data mining studies were not suitable for our purpose since

they are dense and have long patterns. We could however obtain two datasets { BMS-

WebView-1, a clickstream data from Blue Martini Software [ZKM01] and EachMovie, a

Chapter 4. Efficiency of Mining Algorithms 62

movie database from Compaq Equipment Corporation [com97], which we transformed to

the format of boolean market basket data. The resulting databases had 59,602 and 61,202

transactions respectively with 870 and 1648 distinct items.

We set the rule support threshold values for the BMS-WebView-1 and EachMovie

databases to the ranges (0.06%{0.1%) and (3%{10%), respectively. The results of these

experiments are shown in Figures 4.13a{b. We see in these graphs that the performance of

ARMOR continues to be within twice that of Oracle. The ratio of ARMOR's performance

to that of Oracle at the lowest support value of 0.06% for the BMS-WebView-1 database

was 1.83 whereas at the lowest support value of 3% for the EachMovie database it was

1.73.

4.7.4 Discussion of Experimental Results

We now explain the reasons as to why ARMOR should typically perform within a factor

of two of Oracle. First, we notice that the only di�erence between the single pass of

Oracle and the �rst pass of ARMOR is that ARMOR continuously generates and removes

candidates. Since the generation and removal of candidates in ARMOR is dynamic and

eÆcient, this does not result in a signi�cant additional cost for ARMOR.

Since candidates in ARMOR that are neither d-frequent nor part of the current neg-

ative border are continuously removed, any itemset that is locally frequent within a par-

tition, but not globally frequent in the entire database is likely to be removed from G

during the course of the �rst pass (unless it belongs to the current negative border).

Hence the resulting candidate set in ARMOR is a good approximation of the required

mining output. In fact, in our experiments, we found that in the worst case, the number

of candidates counted in ARMOR was only about ten percent more than the required

mining output.

The above two reasons indicate that the cost of the �rst pass of ARMOR is only

slightly more than that of (the single pass in) Oracle.

Next, we notice that the only di�erence between the second pass of ARMOR and (the

single pass in) Oracle is that in ARMOR, candidates are continuously removed. Hence

Chapter 4. Efficiency of Mining Algorithms 63

the number of itemsets being counted in ARMOR during the second pass quickly reduces

to much less than that of Oracle. Moreover, ARMOR does not necessarily perform a

complete scan over the database during the second pass since the second pass ends when

there are no more candidates. Due to these reasons, we would expect that the cost of the

second pass of ARMOR is usually less than that of (the single pass in) Oracle.

Since the cost of the �rst pass of ARMOR is usually only slightly more than that of

(the single pass in) Oracle and that of the second pass is usually less than that of (the

single pass in) Oracle, it follows that ARMOR will typically perform within a factor of

two of Oracle.

In summary, due to the above reasons, it appears unlikely for it to be possible to design

algorithms that substantially reduce either the number of database passes or the number

of candidates counted. These represent the primary bottlenecks in association rule mining.

Further, since ARMOR utilizes the same itemset counting technique of Oracle, further

overall improvement without domain knowledge seems extremely diÆcult. Finally, even

though we have not proved optimality of Oracle with respect to tidlist intersection, we

note that any smart intersection techniques that may be implemented in Oracle can also

be used in ARMOR.

4.8 Conclusions

A variety of novel algorithms have been proposed in the recent past for the eÆcient min-

ing of association rules, each in turn claiming to outperform its predecessors on a set of

standard databases. In this chapter, our approach was to quantify the algorithmic perfor-

mance of association rule mining algorithms with regard to an idealized, but practically

infeasible, \Oracle". The Oracle algorithm utilizes a partitioning strategy to determine

the supports of itemsets in the required output. It uses direct lookup arrays for counting

singletons and pairs and a DAG data-structure for counting longer itemsets. We have

shown that these choices are optimal in that only required itemsets are enumerated and

that the cost of enumerating each itemset is �(1). Our experimental results showed that

there was a substantial gap between the performance of current mining algorithms and

Chapter 4. Efficiency of Mining Algorithms 64

that of the Oracle.

We also presented a new online mining algorithm called ARMOR (Association Rule

Mining based on ORacle), that was constructed with minimal changes to Oracle to result

in an online algorithm. ARMOR utilizes a new method of candidate generation that is

dynamic and incremental and is guaranteed to complete in two passes over the database.

Our experimental results demonstrate that ARMOR performs within a factor of two of

Oracle.

Chapter 5

Conciseness of Mining Results

5.1 Introduction

The gigantic number of association rules generated in typical mining operations makes

it impractical for manual examination of the mining output [LHM99]. While this is true

for sparse datasets, it is often impractical to even generate all frequent itemsets and their

associated supports for dense datasets. For instance, if the length of frequent itemsets

grows beyond a mere thirty, the total number of frequent itemsets exceeds one billion!

Recent approaches (such as those described in Chapter 3) to handle the information

overload produced as mining output follow the strategy of pruning \uninteresting" rules.

These studies are based on the observation that, in practice, many rules have the same

predictive power as other rules with fewer items, making them redundant.

Among the earlier approaches, the closed itemset framework [Zak00, TPBL00] is at-

tractive in that both the identities and supports of all frequent itemsets can be derived

completely from the frequent closed itemsets, which is a subset of the frequent itemsets.

However, this framework, as shown in this chapter, su�ers from the drawback that its use-

fulness critically depends on the presence of frequent itemsets that have supersets with

exactly the same support. This means that even minor changes in the database can result

in a signi�cant increase in the number of frequent closed itemsets. For example, adding

a select 438 transactions to the 8,124 transaction mushroom dataset (from the UC Irvine

65

Chapter 5. Conciseness of Mining Results 66

Repository) caused the number of closed frequent itemsets at a support threshold of 20%

to increase from 1,390 to 15,541 { a factor of 11 times!

In this chapter we show that the number of redundant rules is far more than what

was previously estimated. We propose the generalized closed itemset framework (also

referred to as g-closed itemset framework) that builds upon the closed itemset framework

and overcomes its above mentioned limitation. In our scheme, the supports of frequent

itemsets can be estimated within a deterministic, user-speci�ed \tolerance" factor. Our

experimental results show that even by allowing for a very small tolerance, we produce

exponentially fewer rules for most datasets and support speci�cations than the closed

itemsets, which are themselves much fewer than the total number of frequent itemsets.

Our scheme is also more robust to the database contents. For the same mushroom

example mentioned above, the number of frequent g-closed itemsets only increased from

1,386 to 2243, for a tolerance of 0.05%. We feel that this tolerance factor is negligible

since it is 400 times smaller than the minimum support threshold of 20%.

In our scheme, it is possible to correctly estimate the identities of all frequent itemsets.

No false negatives are ever produced, although some \borderline" infrequent itemsets may

be incorrectly identi�ed as frequent. Borderline itemsets refers to those infrequent itemsets

that would become frequent if the support threshold were reduced by an amount equal to

the tolerance factor. We feel that this is acceptable in most mining scenarios for tolerance

factors that are much less than the minimum support threshold.

We provide theoretical arguments to show why the g-closed itemset scheme works and

substantiate these observations with experimental evidence. Our experiments were run

on a variety of databases, both real and synthetic as well as sparse and dense, to con�rm

that the scheme works across a broad spectrum of database schemas and contents. On

sparse datasets, hardly any pruning occurs when the closed itemset scheme is used. On

the other hand, the pruning achieved by our scheme is quite signi�cant even for these

datasets. On dense datasets, the pruning achieved by our scheme is much more dramatic

than that achieved by the closed itemset approach.

Our scheme can be used in one of two ways: (1) as a post-processing step of the

Chapter 5. Conciseness of Mining Results 67

mining process (like in [LHM99, DL98, SLR99, CS02, TK00]), or (2) as an integrated

solution (like in [ZH02, PBTL99]). We show that our scheme can be integrated into both

levelwise algorithms as well as the more recent two-pass mining algorithms. We chose the

classical Apriori algorithm [AS94] as a representative of the levelwise algorithms and the

ARMOR algorithm (presented in Chapter 4), as a representative of the class of two-pass

mining algorithms. Integration into Apriori yields a new algorithm, g-Apriori and into

ARMOR, yields g-ARMOR. Our experimental results show that these integrations often

result in a signi�cant reduction in response-time, especially for dense datasets.

We note that integration of our scheme into two-pass mining algorithms is a novel and

important contribution because two-pass algorithms have several advantages over Apriori-

like levelwise algorithms. These include: (1) signi�cantly less I/O cost, (2) signi�cantly

better overall performance as shown in [P+01, PH02b], and (3) the ability to provide

approximate supports of frequent itemsets at the end of the �rst pass itself, as in [Hid99,

PH02b]. This ability is an essential requirement for mining data streams [MM02] as it is

infeasible to perform more than one pass over the complete stream.

For ease of exposition, we will use the notation shown in Table 2.1 of Chapter 2 in

the remainder of this chapter. The relevant part of this table has been reproduced in

Table 5.1 for convenience.

I Set of items in the database
D Database of customer purchase transactions
minsup User-speci�ed minimum rule support
minconf User-speci�ed minimum rule support
support(X) Support of itemset X
t(X) Tidset of itemset X
i(T) Set of items that are common to transactions in T

c(X) Closed itemset corresponding to itemset X
g(X) g-Closed itemset corresponding to itemset X
� Tolerance factor
Ck Set of candidate k-itemsets
Gk Set of frequent k-generators
G Set of all frequent generators produced so far
G DAG structure to store candidates during g-ARMOR execution

Table 5.1: Notation (from Table 2.1)

Chapter 5. Conciseness of Mining Results 68

5.1.1 Organization

The remainder of this chapter is organized as follows: In Section 5.2 we review the concept

of closed itemsets and identify its limitations. In Section 5.3 we present the g-closed

itemset framework that overcomes these limitations. Then, in Section 5.4, we describe

the process of rule generation given the frequent g-closed itemsets. We incorporate the g-

closed itemset framework into the Apriori and ARMOR algorithms resulting in g-Apriori

and g-ARMOR in Sections 5.5 and 5.6, respectively. The performance of g-Apriori, g-

ARMOR and of the g-closed itemset framework is evaluated in Section 5.7. Finally, in

Section 5.8, we summarize the conclusions of our study.

5.2 Closed Itemsets

In this section we brie
y review the concept of closed itemsets [ZH02, PBTL99], identify

its limitations, and set the stage for extending it to remove these limitations.

5.2.1 Background

The tidset of an itemset, X, is de�ned as: t(X) = set of tuple identi�ers of transactions

that contain X. Similarly, the itemset of a tidset, T , is de�ned as: i(T) = set of items

that are common to all transactions in T . Then c(X) = i(t(X)) is a closure operator and

thereby satis�es the following properties: (1) Extension: X � c(X); (2) Monotonicity: if

X � Y , then c(X) � c(Y); (3) Idempotency: c(c(X)) = c(X).

De�nition 1 An itemset, X, is closed i� c(X) = X.

For ease of exposition, we will refer to itemsets that are not closed as open. For every

open itemset, Y , there exists a superset, c(Y), of Y that is closed. This follows from the

idempotency property above. c(Y) is called as the closure of Y and its support is equal

to the support of Y . The support of an itemset Y is given by support(Y) = jt(Y)j=jDj

where jDj is the number of database transactions.

Chapter 5. Conciseness of Mining Results 69

5.2.2 Exact Equality of Supports

The closed itemset framework is useful when the number of closed frequent itemsets is

signi�cantly less than the total number of frequent itemsets since the remaining open

frequent itemsets can be pruned. It is therefore desirable, in view of this framework, to

have a large number of open frequent itemsets. However, we opine that this restriction

is too stringent since, as proved below, an itemset can be open only if it has a superset

with exactly equal support.

Theorem 5 An itemset, X, is open i� it has a proper superset with equal support.

Proof: By de�nition, c(X) = i(t(X)) consists of those items that are present in all

transactions in which X is present. Hence, if X is open (i.e. c(X) 6= X), it means that

there is an item j =2 X that is present in all transactions in which X is present. This

implies that X has a proper superset, X [fjg, with exactly the same support.

Correspondingly, if X has a proper superset, Y , with exactly the same support, then

the items in Y � X are present in all transactions in which X is present. These items

would be present in the closure of X, but not in X. Hence, X is open.

The above result causes the closed itemset approach to be highly sensitive to the data

being mined. For example { as mentioned in Section 5.1, the addition of a small number

of transactions to the mushroom dataset caused the number of frequent closed itemsets

to increase by an order of magnitude.

5.2.3 Propagation of Openness

Despite the above drawback, if at all an itemset X, happens to be open then the following

theorem shows that many supersets of X will also be open. That is, the openness of an

itemset propagates up the itemset lattice. This property of openness propagation will

carry over to the g-closed itemset framework as will be shown in Section 5.3.

Theorem 6 If X and Y are itemsets such that Y � X and support(Y) = support(X),

then for every itemset Z : Z � X, support(Z) = support(Y [Z).

Chapter 5. Conciseness of Mining Results 70

Proof: Since Y � X and support(Y) = support(X), it is clear that Y is present in every

transaction that contains X. Further, since Z � X, X is present in every transaction

that contains Z. Hence, it follows that Y is present in every transaction that contains Z.

Therefore, support(Z) = support(Y [Z).

Combining this result with Theorem 5, it follows that if X is an open itemset having

a superset Y with equal support, then every itemset Z : Z � X
V
Z 6� Y is also open.

5.2.4 Equal Support Pruning

Theorem 6 suggests a general technique to incorporate in mining algorithms: If an itemset

X, has an immediate superset Y 1 with equal support, then prune Y and avoid generating

any candidates that are supersets of Y . The support of any of these pruned itemsets, say

W , will be identical to one of its subsets, (W � Y) [X. We refer to this technique as

equal support pruning.

In fact, the pruning technique adopted in the A-Close algorithm [PBTL99] for generat-

ing frequent closed itemsets is equivalent to the scheme outlined above. In this algorithm,

equal support pruning is combined with the classical Apriori-type subset-support based

pruning. The resulting unpruned itemsets are referred to as generators since they are

later used to generate the frequent closed itemsets. For any closed itemset Y , the shortest

itemset X for which c(X) = Y is referred to as the generator of Y .

5.2.5 Generating Closed Itemsets

We now present a simple technique to generate closed itemsets from their generators.

This technique does not involve an additional database scan as is required in the A-Close

algorithm. Also, the technique will directly carry over to the g-closed itemset case. For

any closed itemset Y with generator X, the following theorem enables us to determine

Y �X using information that could be gathered while performing equal support pruning.

We refer to Y �X as X:pruned.

1An immediate superset of X is a superset of X with cardinality jX j + 1. Likewise, an immediate

subset of X is one with cardinality jX j � 1.

Chapter 5. Conciseness of Mining Results 71

Theorem 7 Let Y be a closed itemset and X � Y be the generator of Y . Then for each

item A in Y �X, X [fAg would be pruned by the equal support pruning technique. No

other immediate supersets of X would be pruned by the same technique.

Proof: Since X is the generator for Y , they have the same support. It follows that for

every item A in Y �X, X [fAg would have the same support as X. Hence it would be

pruned by the equal support pruning technique.

To prove the second part, assume that there is some immediate superset Z, of X,

Z 6� Y that is pruned using the equal support pruning technique. Then Z has the same

support as X and must therefore be present in every transaction that contains X. By

de�nition of closure, Z � Y . Hence proved by contradiction.

Therefore, in order to generate a closed itemset Y from its generator X, it is suÆcient

to compute X:pruned while performing equal support pruning. Note that if some subset

W of X had a proper subset V with equal support, then W would be pruned using the

equal support pruning technique. It would then be necessary to include all the items in

V:pruned in X:pruned. That is, the pruned value of any itemset needs to be propagated

to all its supersets.

5.3 Generalized Closed Itemsets

The closed itemset framework is attractive in that both the identities and supports of

all frequent itemsets can be derived completely from a smaller subset. But, in order to

provide this feature, the framework requires exact equality between the supports of some

critical itemsets, as discussed earlier. In this section, we introduce the generalized closed

itemset framework (also referred to as g-closed itemset framework) { a generalization

of the closed itemset framework that overcomes its limitation of exact support equality.

Relationship of our scheme to existing work was discussed in Section 3.2 of Chapter 3.

In order to achieve the above generalization, we need to marginally sacri�ce the abil-

ity to completely derive both identities and supports of frequent itemsets. We however

ensure the following: (1) The supports of all frequent itemsets can be derived within a

Chapter 5. Conciseness of Mining Results 72

deterministic, user-speci�ed \tolerance" factor. (2) The identities of all frequent itemsets

can be derived from the smaller set. However, some borderline infrequent itemsets may

be declared as frequent. (3) If the tolerance factor is �xed to be zero, the smaller set

becomes equal to the closed frequent itemsets.

5.3.1 Generalized Openness Propagation

The key concept in the g-closed itemset framework lies in that the openness propagation

property (Section 5.2.3) holds even if the supports of itemsets are only approximately equal

to those of their supersets. By approximate equality, we mean the following: The supports

of itemsets X and Y are approximately equal (denoted as support(X) � support(Y)) i�

they di�er by at most �, where � is a user-speci�ed \tolerance" factor. For brevity, we use

the term �-equality to denote approximate equality.

De�nition 2 The supports of itemsets X and Y are said to be approximately equal or

�-equal (denoted as support(X) � support(Y)) i� jsupport(X)� support(Y)j � �.

We refer to the allowable error in itemset counts as tolerance count. The term \toler-

ance" is reserved for the allowable error in itemset supports and is equal to the tolerance

count normalized by the database size. The generalized openness propagation property

is stated and proved as a corollary to the following theorem:

Theorem 8 If Y and Z are supersets of itemset X, then support(Z)�support(Y [Z) �

support(X)� support(Y).

Proof: Since Y � X, it is clear that Y is present in every transaction that contains X

except in at most jt(X)j � jt(Y)j transactions. Further, since Z � X, X is present in

every transaction that contains Z. Hence, it follows that Y is present in every transaction

that contains Z except in at most jt(X)j � jt(Y)j transactions. Therefore, support(Z)�

support(Y [Z) � support(X)� support(Y).

Corollary 1 If X and Y are itemsets such that Y � X and support(X) � support(Y),

then for every itemset Z : Z � X, support(Z) � support(Y [Z).

Chapter 5. Conciseness of Mining Results 73

Like Theorem 6, this result also suggests a general technique to incorporate into mining

algorithms, which we refer to as �-equal support pruning : If an itemsetX has an immediate

superset Y , with �-equal support, then prune Y and avoid generating any candidates that

are supersets of Y . The support of any of these pruned itemsets, say W , will be �-equal

to one of its subsets, (W � Y) [X.

By incorporating the above technique into mining algorithms, it is possible for us to

produce a relaxed version of the generators discussed in Section 5.2.3. We could then

apply the technique proposed in Section 5.2.5 to this relaxed version of the generators to

produce a relaxed version of the closed itemsets.

5.3.2 Approximation Error Accumulation

The question remains as to whether the relaxed version of the closed itemsets generated

above (in Section 5.3.1) serves our purpose { i.e., using these itemsets and their supports,

is it possible to determine the supports of all frequent itemsets at least approximately?

The answer, in general, is no due to the following reasons:

The generalized openness propagation property considers for any itemset X, only one

superset Y with �-equal support. If X has more than one superset (say Y1; Y2; : : : ; Yn)

with �-equal support then a naive interpretation of the generalized openness propagation

property would seem to indicate the following: Every itemset Z : Z � X
V
Z 6� Yk; k =

1: : :n, also has a proper superset Y1 [Y2 [� � � [Yn [Z with �-equal support. This would

be true in the exact closed itemset case because then the support of Y1 [Y2 [� � � [Yn [Z

would be exactly equal to that of Z. In the general case, this is not necessarily true.

However, we show in the following theorem that the di�erence between the supports of

Y1 [Y2 [� � � [Yn [Z and Z cannot be more than the sum of the di�erences between the

supports of each Yk; k = 1: : :n and X.

Theorem 9 If Y1; Y2; : : : ; Yn; Z are supersets of itemset X, then support(Z) �

support(
Sn
k=1 Yk [Z) �

Pn
k=1(support(X)� support(Yk)).

Proof: By induction on n. When n = 1 this reduces to Theorem 8. Let the theorem be

true for some n.

Chapter 5. Conciseness of Mining Results 74

Since Yn+1 � X, it is clear that Yn+1 is present in every transaction that contains X

except in at most jt(X)j � jt(Yn+1)j transactions. Further, since Z � X, X is present

in every transaction that contains Z. Hence, it follows that Yn+1 is present in every

transaction that contains Z except in at most jt(X)j � jt(Yn+1)j transactions.

Now, since the theorem is true for n according to the inductive step,
Sn
k=1 Yk is present

in every transaction that contains Z except in at most
Pn

k=1(jt(X)j�jt(Yk)j) transactions.

Combining the results in the above two paragraphs, it is clear that
Sn+1
k=1 Yk is present

in every transaction that contains Z except in at most
Pn+1

k=1(jt(X)j�jt(Yk)j) transactions.

Hence, support(Z)� support(
Sn+1
k=1 Yk [Z) �

Pn+1
k=1(support(X)� support(Yk)).

In our approach we solve the problem of approximation error accumulation by ensuring

that an itemset is pruned using the �-equal support pruning technique only if themaximum

possible cumulative error in approximation does not exceed the user-speci�ed tolerance �.

Whenever an itemset X, having more than one immediate superset Y1; Y2; : : : ; Yn, with

�-equal support is encountered, we prune each superset Yk only as long as the sum of the

di�erences between the supports of each pruned superset and X is within tolerance.

While performing the above procedure, at any stage, the sum of the di�erences between

the support counts of each pruned superset and X is denoted by X:debt. Recall from

Section 5.2.5 that these pruned supersets are included in X:pruned. Since X:pruned

needs to be propagated to all unpruned supersets of X, it becomes necessary to propagate

X:debt as well.

5.3.3 Problem Formulation

We now move on to providing a formal description of the g-closed itemset mining prob-

lem. This problem takes as input I, a set of items sold by the store, D, a database

of customer purchase transactions, minsup, the minimum support threshold and �, the

tolerance factor. It produces as output the set of all frequent g-closed itemsets.

g-closed itemsets are those that result by incorporating the �-equal support pruning

technique into mining algorithms, while ensuring that the approximation error does not

accumulate beyond the user-speci�ed tolerance. Note that the set of g-closed itemsets

Chapter 5. Conciseness of Mining Results 75

is not necessarily unique, but depends on the order in which pruning is performed. In

practice, however, the order of the number of frequent g-closed itemsets remains same

irrespective of the manner in which pruning is performed, and is usually much less than

the number of frequent itemsets. Clearly, the set of g-closed itemsets satis�es the following

properties:

1. If the tolerance factor is �xed to be zero, then it reduces to the set of \exact"

closed itemsets. This is because { (1) approximation errors don't accumulate by

de�nition, and (2) the generalized openness propagation property reduces to the

normal openness propagation property.

2. The supports of frequent itemsets can be derived within a deterministic user-

speci�ed tolerance factor. This is because { (1) approximation error accumulation

is checked by avoiding pruning of certain critical itemsets, and (2) generalized open-

ness propagation property ensures approximation error for supersets of generators

to be within the tolerance factor.

3. The identities of all frequent itemsets can be derived from the frequent g-closed

itemsets. This is possible if while performing equal support pruning, we ensure that

the support of an itemset is consistently approximated by the support of its subset.

Hence we would always over-estimate the supports of itemsets. Although this would

result in some borderline infrequent itemsets (whose support exceeds minsup � �)

being declared as frequent, it would ensure that there are no false negatives.

Similar to the exact closed itemset case, we have for every itemset X, a g-closed itemset

Y : Y � X whose support is �-equal to that of X. We refer to the g-closed itemset

corresponding to an itemset X as its g-closure and denote it as g(X).

Note that in the above problem formulation, we have applied the g-closed itemset

framework only w.r.t. the frequent itemsets and not to their negative border. The reason

for this is that any itemset in the negative border cannot have a subset or superset that is

also in the negative border. Since the g-closed itemset framework depends on the presence

Chapter 5. Conciseness of Mining Results 76

of itemsets that have supersets with �-equal support, it cannot be applied on the negative

border.

5.4 Rule Generation

In this section, we move on to describe the process of association rule generation given

the frequent g-closed itemsets and their associated supports. Recall that an association

rule is of the form X1 �! X2, where X1; X2 � I. Its support equals jt(X1 [X2)j, and

its con�dence equals jt(X1 [X2)j=jt(X1)j. We are interested in �nding all rules whose

support and con�dence are at least minsup and minconf , respectively.

Since the support of an itemset X is �-equal to the support of its g-closure, the rule

X1 �! X2 can be approximated by g(X1) �! g(X2). Let sup and conf be the support

and con�dence of the original rule, respectively. From the generalized rule, the support

of the original rule can be estimated to be within (sup � �; sup), by the de�nition of

approximate equality of supports and the nature of the g-closed itemset framework.

The following theorem shows that the con�dence of a rule (whose actual con�dence is

conf) can be estimated to be within (conf��; conf=�) where � is given by (1��=minsup).

It is clear that the approximation error becomes acceptable if the tolerance � is much less

than the minimum support. The tolerance � could be chosen by the user after allowing

for the approximation error in rule con�dences.

Theorem 10 Given the g-closed itemsets and their associated supports, the con�dence

conf , of a rule X1 �! X2 can be estimated to be within (conf � �; conf=�) where � is

given by (1� �=minsup).

Proof: We know conf = support(X1 [X2)=support(X1). Estimated con�dence is

support(g(X1 [X2))=support(g(X1)). Since the support of an itemset X can be esti-

mated within (support(X)� �; support(X)), the extremities in the estimated con�dence

are ((support(X1 [X2) � �)=support(X1) and support(X1 [X2)=(support(X1) � �)). It

can be shown by algebraic manipulation that since X1[X2 and X1 have supports at least

equal to minsup, the above range is subsumed by (conf � �; conf=�).

Chapter 5. Conciseness of Mining Results 77

From the above discussion, it is clear that it is suÆcient to consider rules only among

the frequent g-closed itemsets. Further, it has been shown in [Zak00, TPBL00] that it is

suÆcient to consider rules among adjacent frequent itemsets in the itemset lattice since

other rules can be inferred by transitivity. This result carries over even to the frequent

g-closed itemsets. Techniques to prune rules that have the same predictive power as other

rules with fewer items have also been presented in [Zak00, TPBL00]. These techniques

are complementary to the techniques proposed here and could be incorporated in them

to further reduce the size of rule covers.

5.5 Incorporation in Levelwise Algorithms

In the previous section we presented the g-closed itemset framework and the theory sup-

porting it. In this section we show that the framework can be integrated into levelwise

algorithms. We chose the classical Apriori algorithm as a representative of the levelwise

mining algorithms. The same techniques can be used to integrate the framework into other

levelwise algorithms such as VIPER and FP-growth, yielding corresponding improvements

in their output sizes and response times. Integration of our scheme into Apriori yields g-

Apriori, an algorithm for mining frequent g-closed itemsets. After describing the design of

the new algorithm in Section 5.5.1, we explain the details of its operation in Section 5.5.2.

Finally, in Section 5.5.3, we show that g-Apriori indeed generates the frequent g-closed

itemsets.

5.5.1 The Design of g-Apriori

The g-Apriori algorithm is obtained by combining the �-equal support pruning technique

described in Section 5.2.4 with the subset-based pruning of Apriori. This makes it similar

to the A-Close algorithm [PBTL99] for mining frequent closed itemsets. However, g-

Apriori signi�cantly di�ers from A-Close (even for the zero tolerance case) in that it does

not require an additional database scan to mine closed itemsets. This is achieved by

utilizing the technique described in Section 5.2.5.

Chapter 5. Conciseness of Mining Results 78

As discussed in Section 5.3.2, we incorporate techniques to check the accumulation

of approximation error in itemset supports. This is achieved in g-Apriori by maintain-

ing an extra �eld, debt, with each generator. This �eld stores the approximation error

that accumulates for each generator. Whenever the value in this �eld might exceed toler-

ance, g-Apriori avoids pruning of the corresponding generator, thereby ensuring that the

approximation error never exceeds tolerance.

5.5.2 The Mechanics of g-Apriori

The pseudo-code of the g-Apriori algorithm is shown in Figure 5.1 and works as follows:

The code between lines 1{9 of the algorithm, excluding lines 6 and 7, consists of the

classical Apriori algorithm. The SupportCount function (line 4) takes a set of itemsets as

input and determines their counts over the database by making one scan over it.

Every itemset X in Ck (the set of candidate k-itemsets), Gk (frequent k-generators)

and G (the frequent generators produced so far) has an associated counter, X:count, to

store its support count during algorithm execution. Every itemsetX in G has two �elds in

addition to its counter: (1) X:pruned (described in Section 5.2.5). (2) X:debt: an integer

value that is used to check the accumulation of approximation error in itemset supports.

The Prune function is applied on Gk (line 6) before the (k + 1)-candidates Ck+1 are

generated from it using AprioriGen (line 8). Its responsibility is to perform �-equal sup-

port pruning while ensuring that approximation error in the supports of itemsets is not

accumulated. The pseudo-code for this function is shown in Figure 5.2 and it performs

the following task: it removes any itemset X from Gk if X has a subset Y with �-equal

count, provided Y:debt remains within tolerance.

The code in lines 1{9, excluding line 7, is analogous to the A-Close algorithm [PBTL99]

for generating frequent closed itemsets. At the beginning of line 10, G would contain the

equivalent of the \generators" of the A-Close algorithm.

The PropagatePruned function is applied on Gk (line 7) and it ensures that the pruned

value of each itemset X in Gk is appended with the pruned values of each immediate

subset of X. The pseudo-code for this function is shown in Figure 5.3. The necessity for

Chapter 5. Conciseness of Mining Results 79

performing this function was explained in Section 5.2.5, where we showed that the pruned

value of an itemset should be propagated to all its supersets.

Finally, in lines 10{11, the g-closed itemsets are output.

5.5.3 Proof of Correctness

At zero tolerance, g-Apriori reduces to the A-Close algorithm { however, the �nal extra

database scan in A-Close is avoided using the technique described in Section 5.2.5. As

proved earlier, the new technique ensures that all closed frequent itemsets are enumerated.

Hence g-Apriori is correct at zero tolerance threshold.

As discussed in Section 5.3.3, g-closed itemsets are those that result by incorporating

the �-equal support pruning technique into mining algorithms, while ensuring that the

approximation error does not accumulate beyond the user-speci�ed tolerance. Since g-

Apriori incorporates �-equal support pruning into Apriori, it suÆces to prove that the

approximation error in itemset supports does not exceed the tolerance factor �.

As discussed in Section 5.3.2, g-Apriori keeps track of the approximation error that

accumulates for each generator, X, in a �eld named X:debt. g-Apriori then avoids pruning

of any generator when debt might exceed tolerance. This ensures that the approximation

error is always within the tolerance factor. Hence proved.

5.6 Incorporation in Two Pass Algorithms

In this section we show that the g-closed framework can be incorporated into two-pass

mining algorithms. As mentioned in the Introduction, this is a novel and important contri-

bution because two pass algorithms are typically much faster than level-wise algorithms

and also because they can be tweaked to work on data streams [MM02]. We selected

ARMOR (described in Chapter 4) as a representative of the class of two-pass mining

algorithms. Integration of the g-closed framework into ARMOR yields g-ARMOR, a two-

pass algorithm for mining frequent g-closed itemsets. In order to describe our strategy,

we �rst review the overall structure of ARMOR, focussing on those features that are

Chapter 5. Conciseness of Mining Results 80

necessary for the subsequent description.

5.6.1 The ARMOR Algorithm

In the ARMOR algorithm, the database is conceptually partitioned into disjoint blocks.

Data is read from disk and processed partition by partition. At most two passes are made

over the database.

In the �rst pass, the algorithm starts with the set of all 1-itemsets as candidates

(i.e. potentially frequent itemsets). After processing each partition, the set of candidates

(denoted as G) is updated { new candidates may be inserted and existing ones removed.

The algorithm ensures that at any stage, if d is the database scanned so far, then the

frequent itemsets within d (also called d-frequent itemsets) are available. The algorithm

also maintains the partial counts of these itemsets { the partial count of an itemset is its

count since it has been inserted into G.

In the second pass, complete counts of the candidates obtained at the end of the �rst

pass are determined. During this pass, there are no new insertions into G. However,

candidates that can no longer become frequent are removed at each stage.

5.6.2 Details of Incorporation

The rule that we follow in incorporating the g-closed framework into ARMOR is simple:

While processing a partition during the �rst pass, if we �nd the partial count of an itemset

X to be �-equal to that of its superset Y , then prune every proper superset of Y from G

while ensuring that the approximation error does not accumulate beyond the tolerance

limit. That is, whenever an itemset X, that has more than one immediate superset

Y1; Y2; : : : ; Yn, with �-equal partial count is encountered, we prune each superset Yk only

as long as the sum of the di�erences between the partial counts of each pruned superset

and X is within tolerance.

We now show that incorporating this rule in ARMOR yields valid results w.r.t the

g-closed framework. This is �rst shown for a restricted case after which the restrictions

are removed one by one. Consider the following three cases with increasing degree of

Chapter 5. Conciseness of Mining Results 81

complexity:

Case 1: During the �rst pass, itemset X and its superset Y are inserted into G after

processing the �rst partition itself and are never removed later. They consistently

have �-equal partial counts (w.r.t tolerance �) in every partition.

Case 2: Identical to case 1, except that itemsets X and Y may have been inserted

into G not necessarily after processing the �rst partition itself, but perhaps after

processing some later partition. It is also possible for X and Y to be removed from

G and reinserted later. They consistently have �-equal partial counts from the point

they were last inserted into G till the end of the pass.

Case 3: Identical to case 2, except that itemsets X and Y may not consistently have

�-equal partial counts.

Note that in all the above cases, we consider itemsets X and Y to have �-equal partial

counts only if they were both last inserted into G together. Otherwise, it is infeasible

to compare their partial counts as these counts would be over di�erent portions of the

database. This restriction is not likely to have much impact for small tolerances because

then X and Y are likely to have �-equal counts in every partition. It is therefore likely

that they would always be inserted into G together. Even if they are not, it would only

a�ect the performance and not the correctness of the algorithm.

Case 1

In Case 1, the partial counts of X and Y at the end of the �rst pass would be equal to

their complete counts. In this case, the rule reduces to �-equal support pruning while

ensuring that the approximation error doesn't exceed �.

Case 2

In Case 2, we know that the partial counts of X and Y are �-equal after they were last

inserted into G. If their partial counts are also �-equal before they are last inserted into

Chapter 5. Conciseness of Mining Results 82

G, then this case would reduce to Case 1. Let us consider the harder scenario when they

are not �-equal. This would be discovered while processing some partition Pi during the

second pass of ARMOR, when the complete counts of X and Y are being obtained. Recall

that we would have pruned all supersets of Y during the �rst pass because the partial

counts of X and Y were �-equal. All those supersets of Y now need to be regenerated

with appropriate partial counts.

The modi�cation to ARMOR that is required to regenerate these supersets is as fol-

lows: For every d-frequent itemset Z in G such that Z � X
V
Z 6� Y , insert a new

candidate Y [Z into G. The partial count of the new candidate should be set equal to

the partial count of Z. Note that in ARMOR, the partial counts of each Z and the cor-

responding new candidates would not yet have been updated over the current partition

Pi. It is clear that the partial counts of the new candidates at this stage, i.e. for the

partition preceding Pi, are accurate w.r.t tolerance � . Since their partial counts would be

updated individually over partition Pi and all later partitions, their partial counts would

be �-equal to their complete counts by the end of the second pass.

We have shown above that the complete counts of candidates obtained at the end

of the second pass of ARMOR are accurate w.r.t tolerance �. We now proceed to show

that there cannot be any frequent superset of Y that was not regenerated during the

second pass. It is clear that any frequent superset of Y , say W , would have a subset

(W �Y)[X that is also frequent. This subset would be available in G during the second

pass. Hence W would have been regenerated in ARMOR by forming the new candidate:

Y [[(W � Y) [X] as outlined in the previous paragraph.

Case 3

Moving over to Case 3, let us consider the following scenario: Itemsets X and Y are in

G during the �rst pass at the end of some partition Pi and have �-equal partial counts.

Then, after processing the partition immediately after Pi, say Pj, the partial counts of X

and Y are no longer �-equal. Since the supersets of Y would have been removed from G

earlier because the partial counts of X and Y were �-equal, they would now have to be

Chapter 5. Conciseness of Mining Results 83

regenerated. The modi�cation to ARMOR that is required to regenerate these supersets is

identical to that outlined for Case 2 above. Following the same reasoning as in Case 2, it is

clear that the partial counts of the regenerated supersets would be accurate w.r.t tolerance

� and also that there cannot be any d-frequent superset of Y that is not regenerated.

5.7 Performance Study

In the previous sections, we have described the g-closed itemset framework along with the

g-Apriori and g-ARMOR algorithms. We have conducted a detailed study to assess the

utility of the framework in reducing both the output size and the response time of mining

operations.

Our experiments cover a range of databases and mining workloads including the

real datasets from the UC Irvine Machine Learning Database Repository and synthetic

datasets from the IBM Almaden generator. These datasets are the same as those used

in [ZH02]. Our experiments also include the real dataset, BMS-WebView-1 [ZKM01]

from Blue Martini Software. This dataset originated from a dot-com company called

Gazelle.com, a legwear and legcare retailer and contains several months of clickstream

data. Table 5.2 shows the characteristics of the datasets used in our evaluation.

Database #Items Record Length #Records

BMS-WebView-1 497 2.5 59,602
chess 76 37 3,196
connect 130 43 67,557
mushroom 120 23 8,124
pumsb* 7117 50 49,046

T10I4D100K 1000 10 100K
T10I4D10M 1000 10 10M

Table 5.2: Database Characteristics

We conducted four sets of experiments: In Experiment 1, we measure the output size

reduction of the g-closed itemsets w.r.t frequent itemsets. In Experiment 2, we measure

the response time reduction of the g-Apriori algorithm w.r.t Apriori. In Experiment 3,

Chapter 5. Conciseness of Mining Results 84

we measure the response times of g-ARMOR and compare them with those of Apriori.

Finally, in Experiment 4, we studied how the performance of the implemented algorithms

scale with database size. All the algorithms were coded in C++ and the experiments were

conducted on a 700-MHz Pentium III workstation running Red Hat Linux 6.2, con�gured

with 512 MB main memory and a local 18 GB SCSI 10000 rpm disk.

The same data-structures (hashtrees [AS94]) and the same optimizations (using arrays

to store itemset counters in the �rst two database passes) were used in both g-Apriori

and Apriori to ensure that the experimental results are a good indication of the utility

of the g-closed itemset framework, and not of any di�erences in the structure of the two

algorithms.

We chose tolerance count values ranging from zero (corresponding to the exact closed

itemset case) to 1000. While higher values of tolerance are uninteresting in themselves,

their inclusion is useful in studying the e�ect of increasing tolerance on the output size.

5.7.1 Output Size Reduction

We now report on our experimental results. In our �rst experiment, we measure the

output size reduction as a percentage of the frequent itemsets that are pruned to result

in g-closed itemsets. The results of these experiments are shown in Figures 5.4a{f for the

various databases. The x-axis in these graphs represents the tolerance count values, while

the y-axis represents the percentage of frequent itemsets pruned. Each graph contains

two curves corresponding to two di�erent minimum support thresholds. We show only

two curves per graph to avoid visual clutter.

In these graphs, we �rst see that the pruning achieved due to the g-closed itemset

framework, in most cases, is signi�cant. For example, on the chess dataset (Figure 5.4b)

for a minimum support threshold of 80%, the percentage of pruned itemsets is only 38%

at zero tolerance (closed itemset case). For the same example, at a tolerance count

of 50 (corresponding to a maximum error of 1.5% in itemset supports), the percentage

of pruned itemsets increases to 97%! The exact pruning achieved for each database for

selected tolerance values is shown in Table 5.3, along with the number of frequent itemsets

Chapter 5. Conciseness of Mining Results 85

and frequent closed itemsets.

The pruning achieved is signi�cant even on the sparse datasets generated by the IBM

Almaden generator. For example, on the T10I4D100K dataset (Figure 5.4f) for a mini-

mum support threshold of 0.1%, the percentage of pruned itemsets is only 2.6% at zero

tolerance, whereas it increases to 41.5% at a tolerance count of 10 (corresponding to a

maximum error of 0.01% in itemset supports).

Database Support #Freq #Closed #g-Closed Tolerance

BMS-WebView-1 0.08% 10286 9427 8138 0.008%
BMS-WebView-1 0.06% 461521 75653 55198 0.008%

chess 80% 8227 5083 398 1.5%
chess 70% 48969 23991 2107 1.5%

connect 97% 487 284 46 0.7%
connect 90% 27127 3486 793 0.7%

mushroom 40% 565 140 113 1.2%
mushroom 20% 53583 1197 1059 1.2%

pumsb* 60% 167 68 63 0.2%
pumsb* 40% 27354 2610 1309 0.2%

T10I4D100K 0.5% 1073 1073 979 0.01%
T10I4D100K 0.1% 27532 26806 16104 0.01%

Table 5.3: Output Size

Next, we notice that in some cases such as for the mushroom dataset (Figure 5.4d),

the percentage of pruned itemsets increases only marginally with an increase in tolerance

since even at zero tolerance itself (corresponding to the closed itemset case), the pruning

is high. We hasten to add that at zero tolerance, the pruning depends critically on the

dataset contents. We demonstrate this by adding a select 438 transactions to the 8,124

transaction mushroom dataset. The selection was made so as to break exact equalities.

This caused the number of closed frequent itemsets at a minimum support threshold of

20% to increase from 1,390 to 15,541 { a factor of 11 times! The number of frequent

g-closed itemsets (at a tolerance count of 5) only increased from 1,386 to 2243.

An interesting trend that we noticed in all cases is that the percentage of pruned

itemsets increases dramatically at low tolerances and then plateaus as the tolerance is

increased further. This trend is signi�cant as it indicates that the maximum bene�t

Chapter 5. Conciseness of Mining Results 86

attainable using the g-closed itemset framework is obtained at low tolerances. The reason

for this trend is as follows:

As the length of an itemset, X, increases, the number of subsets that it has increases

exponentially. This means that the chance of one of the subsets being �-equal to one of

its subsets becomes exponentially high. Hence most of the long generators get pruned at

low tolerances itself. This accounts for the initial steep rise in the curve. Next, for very

short generators (e.g., 1-itemsets and 2-itemsets), the di�erence in their supports from

those of their supersets is typically large [ZG01]. Hence, most of these generators are not

pruned even at high tolerances. Finally, those generators that are in the middle range (e.g.

3-itemsets) will get pruned at a slow pace with regard to the increase in tolerance. This

accounts for the gradual upward slope in the curve after the initial exponential increase.

Another interesting trend that we notice in all cases is that the percentage of pruned

itemsets is more for lower minimum support thresholds. The reason for this behaviour is

that when the minimum support threshold is reduced, it is possible for longer itemsets

to become frequent. As discussed above, longer itemsets are more likely to be pruned,

thereby leading to more eÆcient pruning at lower minimum support thresholds. This

trend is signi�cant as it counteracts the exponential increase in output size of frequent

itemset mining algorithms with decreasing minimum support thresholds.

A �nal point: in Figure 5.4c, we see that for the connect database, the percentage

of pruned itemsets decreases marginally between tolerance counts of 500 and 1000. This

unintuitive behaviour arises due to the following reason: In order to ensure that approx-

imation error in itemset supports does not accumulate, not all itemsets having supersets

with �-equal supports are pruned. It is therefore possible that an itemset that was pruned

at a tolerance count of 500 may not be pruned at a tolerance count of 1000. If such

an itemset is short, then it may have many supersets that are not pruned as well. This

phenomenon could at times cause the number of pruned itemsets to decrease marginally

with an increase in tolerance.

Chapter 5. Conciseness of Mining Results 87

5.7.2 Response Time Reduction

In our second experiment, we measure the performance gain obtained from the g-closed

itemset framework. This is measured as the percentage reduction in response time of

g-Apriori over Apriori. The results of these experiments are shown in Figures 5.5a{f. The

x-axis in these graphs represents the tolerance count values, while the y-axis represents

the performance gain of g-Apriori over Apriori. As in Experiment 1, each graph contains

two curves corresponding to two di�erent minimum support thresholds.

In all these graphs, we see that the performance gain of g-Apriori over Apriori is

signi�cant. In fact, the curves follow the same trend as in Experiment 1. This is expected

because the bottleneck in Apriori (and other frequent itemsets mining algorithms) lies in

the counting of the supports of candidates. Hence any improvement in pruning would

result in a corresponding reduction in response-time.

5.7.3 Response Times of g-ARMOR

In our third experiment, we measure the response times of g-ARMOR and compare them

against those of Apriori. The results of these experiments are shown in Figures 5.6a{f.

The x-axis in these graphs represents the tolerance count values, while the y-axis (plotted

on a log-scale) represents the response times of g-ARMOR and Apriori in seconds. Each

graph contains two curves for each algorithm corresponding to two di�erent minimum

supports. The curves corresponding to Apriori are shown using a dashed line style.

In all these graphs, we see that the response times of g-ARMOR are over an order

of magnitude faster than Apriori. We also notice that the response times become faster

with an increase in tolerance count values. As in Experiment 2, this is expected because

more candidates are pruned at higher tolerances. The reduction in response time is not

as steep as in Experiment 2 due to the fact that g-ARMOR is much more eÆcient than

g-Apriori and hence less responsive to a change in the number of candidates.

We do not show the response times of ARMOR in these graphs since it ran out of

main memory for most of the datasets and support speci�cations used in our evaluation.

This was because most of these datasets were dense, whereas ARMOR, as described in

Chapter 5. Conciseness of Mining Results 88

Chapter 4, is designed only for sparse datasets and is memory intensive.

5.7.4 Scale-up Experiment

In our fourth (and �nal) experiment, we studied how the performance of the implemented

algorithms scale with database size. This experiment was conducted on the T10I4D10M

database that has 10 million records. The results of this experiment are shown in Fig-

ure 5.7. The x-axis in this graph represents the tolerance count values, while the y-axis

(plotted on a log-scale) represents the response times of g-ARMOR, g-Apriori and Apri-

ori in seconds. The graph contains two curves for each algorithm corresponding to two

di�erent minimum supports. The curves corresponding to Apriori are shown using a

dashed line style.

In this graph, we notice that while the absolute times of the algorithms vary from

the previous experiment, the shape of the curves remain the same. The performances

of all three algorithms { g-ARMOR, g-Apriori and Apriori are seen to be linear w.r.t.

database size. This behaviour of these algorithms is explained as follows: (1) The number

of database passes for each of these algorithms depends only on the density of patterns in

the database and not on the number of transactions. (2) The rate at which transactions

are processed in each pass depends only on the distribution from which the transactions

are derived, the number of candidate itemsets being counted and on the eÆciency of the

data-structure that holds the counters of candidates. It also does not depend on the

number of transactions in the database. Due to these two reasons, it is expected that the

response-time performances of the algorithms under study are linear w.r.t. database size.

5.8 Conclusions

In this chapter we proposed the generalized closed itemset framework (or g-closed itemset

framework) in order to manage the information overload produced as the output of fre-

quent itemset mining algorithms. This framework builds upon the original closed itemset

concept over which it provides an order of magnitude improvement. This is achieved by

Chapter 5. Conciseness of Mining Results 89

relaxing the requirement for exact equality between the supports of itemsets and their

supersets. Instead, our framework accepts that the supports of two itemsets are equal if

the di�erence between their supports is within a user-speci�ed tolerance factor.

We also presented two algorithms { g-Apriori (based on the classical levelwise Apriori

algorithm) and g-ARMOR (based on ARMOR, presented in Chapter 4) for mining the

frequent g-closed itemsets. g-Apriori utilizes a new method for generating frequent g-

closed itemsets from their generators. This new method avoids the costly additional pass

that was required in the A-Close algorithm for mining frequent closed itemsets. g-Apriori

is shown to perform signi�cantly better than Apriori solely because the frequent g-closed

itemsets are much fewer than the frequent itemsets. Finally, g-ARMOR was shown to

perform over an order of magnitude better than Apriori over all databases and support

speci�cations used in our experimental evaluation.

Chapter 5. Conciseness of Mining Results 90

g-Apriori (D, I;minsup; tol)

Input: Database D, Set of Items I, Minimum Support minsup, Toler-

ance Count tol

Output: Generalized Closed Itemsets

1. C1 = set of all 1-itemsets;

2. G = �;

3. for (k = 1; jCkj > 0; k ++)

4. SupportCount(Ck, D); // Count supports of Ck over D

5. Gk = Frequent itemsets in Ck

6. Prune(Gk, G, tol);

7. PropagatePruned(Gk, G, tol);

8. Ck+1 = AprioriGen(Gk);

9. G = G [Gk;

10. for each itemset X in G

11. Output (X [X:pruned, X:count);

Figure 5.1: The g-Apriori Algorithm

Prune (Gk, G, tol)

Input: Frequent k-itemsets Gk, Generators G, Tolerance Count tol

Output: Remove non-generators from Gk

1. for each itemset X in Gk

2. for each (jXj � 1)-subset Y of X, in G

3. debt = Y:count�X:count;

4. if (debt+ Y:debt � tol)

5. Gk = Gk � fXg

6. Y:pruned = Y:pruned [(X � Y)

7. Y:debt += debt

Figure 5.2: Pruning Non-generators from Gk

PropagatePruned (Gk, G, tol)

Input: Frequent k-itemsets Gk, Generators G, Tolerance Count tol

Output: Propagate pruned value to generators in Gk

1. for each itemset X in Gk

2. for each (jXj � 1)-subset Y of X, in G

3. if (X:debt + Y:debt � tol)

4. X:pruned = X:pruned [Y:pruned

5. X:debt+ = Y:debt

Figure 5.3: Propagate Pruned Value to Supersets

Chapter 5. Conciseness of Mining Results 91

0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000

%
 P

ru
n

e
d

Tolerance Count

(d) mushroom

40%
20%

0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000

%
 P

ru
n

e
d

Tolerance Count

(e) pumsb*

60%
40%

0

10

20

30

40

50

60

70

80

90

0 200 400 600 800 1000

%
 P

ru
n

e
d

Tolerance Count

(f) T10I4D100K

0.5%
0.1%

0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000

%
 P

ru
n
e
d

Tolerance Count

(a) BMS-WebView-1

0.08%
0.06%

0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000

%
 P

ru
n
e
d

Tolerance Count

(b) chess

80%
70%

0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000

%
 P

ru
n

e
d

Tolerance Count

(c) connect

97%
90%

Figure 5.4: Output Size Reduction

Chapter 5. Conciseness of Mining Results 92

0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000

P
e

rf
o

rm
a

n
c
e

 G
a

in
 (

%
)

Tolerance Count

(d) mushroom

40%
20%

0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000

P
e
rf

o
rm

a
n

c
e

 G
a

in
 (

%
)

Tolerance Count

(e) pumsb*

60%
40%

0

10

20

30

40

50

60

70

0 200 400 600 800 1000

P
e
rf

o
rm

a
n

c
e

 G
a

in
 (

%
)

Tolerance Count

(f) T10I4D100K

0.5%
0.1%

0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000

P
e
rf

o
rm

a
n
c
e
 G

a
in

 (
%

)

Tolerance Count

(a) BMS-WebView-1

0.08%
0.06%

0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000

P
e
rf

o
rm

a
n
c
e
 G

a
in

 (
%

)

Tolerance Count

(b) chess

80%
70%

0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000

P
e

rf
o

rm
a

n
c
e

 G
a

in
 (

%
)

Tolerance Count

(c) connect

97%
90%

Figure 5.5: Response Time Reduction

Chapter 5. Conciseness of Mining Results 93

0.1

1

10

100

1000

0 200 400 600 800 1000

R
e

s
p

o
n

s
e

 T
im

e
 (

s
e

c
o

n
d

s
)

Tolerance Count

(d) mushroom

Apriori 40%
g-ARMOR 40%

Apriori 20%
g-ARMOR 20%

1

10

100

1000

0 200 400 600 800 1000

R
e
s
p
o
n
s
e
 T

im
e

 (
s
e

c
o

n
d

s
)

Tolerance Count

(e) pumsb*

Apriori 60%
g-ARMOR 60%

Apriori 40%
g-ARMOR 40%

1

10

100

0 200 400 600 800 1000

R
e
s
p
o
n
s
e
 T

im
e

 (
s
e

c
o

n
d

s
)

Tolerance Count

(f) T10I4D100K

Apriori 0.5%
g-ARMOR 0.5%

Apriori 0.1%
g-ARMOR 0.1%

0.1

1

10

100

0 200 400 600 800 1000

R
e
s
p
o
n
s
e
 T

im
e
 (

s
e
c
o
n
d
s
)

Tolerance Count

(a) BMS-WebView-1

Apriori 0.08%
g-ARMOR 0.08%

Apriori 0.06%
g-ARMOR 0.06%

0.1

1

10

100

1000

0 200 400 600 800 1000

R
e
s
p
o
n
s
e
 T

im
e
 (

s
e
c
o
n
d
s
)

Tolerance Count

(b) chess

Apriori 80%
g-ARMOR 80%

Apriori 70%
g-ARMOR 70%

1

10

100

1000

10000

0 200 400 600 800 1000

R
e

s
p

o
n

s
e

 T
im

e
 (

s
e

c
o

n
d

s
)

Tolerance Count

(c) connect

Apriori 97%
g-ARMOR 97%

Apriori 90%
g-ARMOR 90%

Figure 5.6: Response Times of g-ARMOR

Chapter 5. Conciseness of Mining Results 94

100

1000

10000

0 200 400 600 800 1000

R
e

s
p

o
n

s
e

 T
im

e
 (

s
e

c
o

n
d

s
)

Tolerance Count (in 100’s)

T10I4D10M

Apriori 0.5%
g-ARMOR 0.5%

g-Apriori 0.5%
Apriori 0.1%

g-ARMOR 0.1%
g-Apriori 0.1%

Figure 5.7: Scale-up Experiment

Chapter 6

Incremental Mining

6.1 Introduction

In many business organizations, the historical database is dynamic in that it is periodically

updated with fresh data. For such environments, data mining is not a one-time operation

but a recurring activity, especially if the database has been signi�cantly updated since

the previous mining exercise. Repeated mining may also be required in order to evaluate

the e�ects of business strategies that have been implemented based on the results of the

previous mining. In an overall sense, mining is essentially an exploratory activity and

therefore, by its very nature, operates as a feedback process wherein each new mining is

guided by the results of the previous mining.

In the above context, it is attractive to consider the possibility of using the results of

the previous mining operations to minimize the amount of work done during each new

mining operation. That is, given a previously mined database DB and a subsequent

increment db to this database, to eÆciently mine db and DB [db. Mining db is necessary

to evaluate the e�ects of business strategies; whereas mining DB [db is necessary to

maintain the updated set of mining rules. Such \incremental" mining is the focus of this

chapter.

As mentioned in Chapter 1, our work on incremental mining presented in this thesis

was actually done prior to our work on the other two issues, namely, on the eÆciency

95

Chapter 6. Incremental Mining 96

of BAR-mining algorithms and on the conciseness of results. However, for pedagogical

reasons, we present it in the end.

6.1.1 The State-of-the-Art

The design of incremental mining algorithms for association rules has been considered

earlier in [AFLM99, CHNW96, CLK97, CVB96, F+97, T+97]. While these studies were

a welcome �rst step in addressing the problem of incremental mining, they also su�er

from a variety of limitations that make their design and evaluation unsatisfactory from

an \industrial-strength" perspective:

E�ect of Skew: The e�ect of temporal changes (i.e. skew) in the distribution of database

values betweenDB and db has not been considered. However, in practical databases,

we should typically expect to see skew for the following reasons: (a) inherent seasonal

uctuations in the business process, and/or (b) e�ects of business strategies that

have been put into place since the last mining. So, we expect that skew would be

the norm, rather than the exception.

As we will show later in this chapter, the performance of the algorithms presented

in [F+97, T+97] is sensitive to the skew factor. In fact, their sensitivity is to the

extent that, with signi�cant skew and substantial increments, they may do worse

than even the naive approach of completely ignoring the previous mining results

and applying Apriori from scratch on the entire current database.

Size of Database: The evaluations of the algorithms has been largely conducted on

databases and increments that are small relative to the available main memory. For

example, the standard experiment considered a database with 0.1 M tuples, with

each tuple occupying approximately 50 bytes, resulting in a total database size of

only 5 MB. For current machine con�gurations, this database would completely �t

into memory with plenty still left to spare. Therefore, the ability of the algorithms to

scale to the enormous disk-resident databases that are maintained by most business

organizations, has not been clearly established.

Chapter 6. Incremental Mining 97

Characterizing EÆciency: Apart from comparing their performance with that of Apri-

ori, no quantitative assessment has been made of the eÆciency of these algorithms

in terms of their distance from the optimal, which would be indicative of the scope,

if any, for further improvement in the design of incremental algorithms.

Incomplete Results: Almost all the algorithms fail to provide the mining results for

solely the increment, db. As mentioned before, these results are necessary to help

evaluate the e�ects of business strategies that have been put into place since the

previous mining.

Changing User Requirements: It is implicitly assumed that the minimum support

speci�ed by the user for the current database (DB [db) is the same as that used

for the previously mined database (DB). However, in practice, given mining's ex-

ploratory nature, we could expect user requirements to change with time, perhaps

resulting in di�erent minimum support levels across mining operations. Extend-

ing the algorithms to eÆciently handle such \multi-support" environments is not

straightforward.

6.1.2 Contributions

In this chapter, we present and evaluate an incremental mining algorithm called DELTA

(Di�erential Evaluation of Large iTemset Algorithm). The core of DELTA is similar to the

previous algorithms but it also incorporates important design alterations for addressing

their above-mentioned limitations. With these extensions, DELTA represents a practical

algorithm that can be e�ectively utilized for real-world databases. The main features of

the design and evaluation of DELTA are the following:

� DELTA guarantees that, for the entire mining process, at most three passes over the

increment and one pass over the previous database may be necessary. We expect

that such bounds will be useful to businesses for the proper scheduling of their

mining operations.

Chapter 6. Incremental Mining 98

� For the special case where the new results are a subset of the old results, and

therefore in principle requiring no processing over the previous database, DELTA

is optimal in that it requires only a single pass over the increment to complete the

mining process.

� For computing the negative border [Toi96] closure, a major performance-determining

factor in the incremental mining process, a new hybrid scheme that combines the

features of earlier approaches is implemented.

� DELTA provides complete mining results for both the entire current database as

well as solely the increment.

� DELTA can handle multi-support environments, requiring only one additional pass

over the current database to achieve this functionality.

� For the special case when the previous support threshold is so high that there are no

frequent itemsets over DB, DELTA reduces to a re-mining of the entire database.

� By carefully integrating optimizations previously proposed for �rst-time hierarchical

mining algorithms, the DELTA design has been extended to eÆciently handle in-

cremental mining of hierarchical association rules. As mentioned in Chapter 1, this

illustrates the point that extensions to the basic association rule model including

hierarchical, categorical and quantitative rules are �nally reducible to BAR-mining.

� The performance of DELTA is evaluated on a variety of dynamic databases and

compared with that of Apriori and the previously proposed incremental mining

algorithms for boolean association rules. For hierarchical association rules, we com-

pare DELTA against the Cumulate �rst-time mining algorithm presented in [SA95].

All experiments are made on databases that are signi�cantly larger than the entire

main memory of the machine on which the experiments were conducted. The e�ects

of database skew are also modeled.

The results of our experiments show that DELTA can provide signi�cant improve-

ments in execution times over the previous algorithms in all these environments.

Chapter 6. Incremental Mining 99

Further, DELTA's performance is comparatively robust with respect to database

skew.

� We also include in our evaluation suite the performance of an an Oracle that has

complete apriori knowledge of the identities of all the frequent itemsets (and their

associated negative border) both in the current database as well as in the increment

and only requires to �nd their respective counts. Like in Chapter 4, modeling the

Oracle's performance permits us to characterize the eÆciency of practical algorithms

in terms of their distance from the optimal.

Our experiments show that DELTA's eÆciency is close to that obtained by the Oracle

for many of the workloads considered in our study. This shows that DELTA is able

to extract most of the potential for using the previous results in the incremental

mining process.

6.1.3 Organization

The remainder of this chapter is organized as follows: The DELTA algorithm for both

boolean and hierarchical association rules is presented in Section 6.2 for the equi-support

environment. The algorithm is extended to handle the multi-support case in Section 6.3.

The performance model is described in Section 6.5 and the results of the experiments are

highlighted in Section 6.6. Finally, in Section 6.7, we present the conclusions of our study

and outline future research avenues.

6.2 The DELTA Algorithm

In this section, we present the design of the DELTA algorithm. For ease of exposition, we

�rst consider the \equi-support" case, and then in Section 6.3, we describe the extensions

required to handle the \multi-support" environment. In the following discussion and in

the remainder of this chapter, we use the notation given in Table 2.1 of Chapter 2. The

relevant part of this table has been reproduced in Table 6.1 for convenience. Also, we

Chapter 6. Incremental Mining 100

DB, db, DB [db Previous, increment, and current database
minsupDB Previous Minimum Support Threshold
minsupDB[db New Minimum Support Threshold
minsup Minimum Support Threshold when minsupDB = minsupDB[db
FDB, Fdb, FDB[db Set of frequent itemsets in DB, db and DB [db
NDB, Ndb, NDB[db Negative borders of FDB, Fdb and FDB[db
Fknown Set of known-frequent itemsets during algorithm execution:

FDB[db \ (FDB [NDB)
Nknown Negative border of Fknown
Infrequent Set of known-infrequent itemsets during algorithm execution
Infrequentdb Set of known-infrequent (within db) itemsets

during algorithm execution

Table 6.1: Notation (from Table 2.1)

use the terms \frequent", \infrequent", \count" and \support" with respect to the entire

database DB [db, unless otherwise mentioned.

The input to the incremental mining process consists of the set of previous frequent

itemsets FDB, its negative border NDB, and their associated supports. The output is the

updated versions of the inputs, namely, FDB[db and NDB[db along with their supports. In

addition, the mining results for solely the increment, namely, Fdb [Ndb, are also output.

6.2.1 The Mechanics of DELTA

The pseudo-code of the core DELTA algorithm for generating boolean association rules

is shown in Figure 6.1 { the extension to hierarchical association rules is presented in

Section 6.2.2. At most three passes over the increment and one pass over the previous

database are made, and we explain below the steps taken in each of these passes. After this

explanation of the mechanics of the algorithm, we discuss in Section 6.2.3 the rationale

behind the design choices.

First Pass over the Increment

In the �rst pass, the counts of itemsets in FDB and NDB are updated over the increment

db, using the function UpdateCounts (line 1 in Figure 6.1). By this, some itemsets in

Chapter 6. Incremental Mining 101

DELTA (DB; db; FDB; NDB; minsup)
Input: Previous Database DB, Increment db, Previous Frequent Itemsets FDB,

Previous Negative Border NDB, Minimum Support Threshold minsup
Output: Updated Set of Frequent Itemsets FDB[db, Updated Negative Border NDB[db

begin
1. UpdateCounts(db; FDB [NDB); // �rst pass over db
2. Fknown = GetFrequent(FDB [NDB; minsup � jDB [dbj);
3. Infrequent = (FDB [NDB)� Fknown // used later for pruning
4. if (FDB == Fknown)
5. return(FDB; NDB);

6. Nknown = NegBorder(Fknown);
7. if (Nknown � Infrequent)
8. get supports of itemsets in Nknown from Infrequent
9. return(Fknown; Nknown);

10. Nu = Nknown � Infrequent;
11. UpdateCounts(db;Nu); // second pass over db
12. C = GetFrequent(Nu; minsup � jdbj);
13. Infrequentdb = Nu � C // used later for pruning
14. if (jCj > 0)
15. C = C [Fknown
16. ResetCounts(C);
17. do // compute negative border closure
18. C = C [NegBorder(C);
19. C = C � (Infrequent [Infrequentdb) // prune
20. until C does not grow
21. C = C � (Fknown [Nu)
22. if (jCj > 0)
23. UpdateCounts(db; C); // third (and �nal) pass over db

24. ScanDB = GetFrequent(C [Nu; minsup � jdbj);
25. N 0 = NegBorder(Fknown [ScanDB)� Infrequent;
26. get supports of itemsets in N 0 from (C [Nu)
27. UpdateCounts(DB;N 0 [ScanDB); // �rst (and only) pass over DB
28. FDB[db = Fknown [GetFrequent(ScanDB;minsup � jDB [dbj);
29. NDB[db = NegBorder(FDB[db);
30. get supports of NDB[db from (Infrequent [N 0)
31. return(FDB[db; NDB[db);
end

Figure 6.1: The DELTA Incremental Mining Algorithm

Chapter 6. Incremental Mining 102

NDB may become frequent and some itemsets in FDB may become infrequent. Let the

resultant set of frequent itemsets be Fknown. These frequent itemsets are extracted using

the function GetFrequent (line 2). The remaining itemsets are put in Infrequent (line

3), and are later used for pruning candidates. The algorithm terminates if no itemsets

have moved from NDB to Fknown (lines 4{5). This is valid due to the following Theorem

presented in [T+97]:

Theorem 11 If X is an itemset that is not in FDB but is in FDB[db, then there must be

some subset x of X which was in NDB and is now in FDB[db.

Hence, for the special case where the new results are a subset of the old results,

and therefore in principle requiring no processing over the previous database, DELTA is

optimal in that it requires only a single pass over the increment to complete the mining

process.

Second Pass over the Increment

On the other hand, if some itemsets do move fromNDB to Fknown, then the negative border

Nknown of Fknown is computed (line 6), using the AprioriGen [AS94] function. Itemsets in

Nknown with unknown counts are stored in a set Nu (line 10). The remaining itemsets in

Nknown i.e. with known counts, are all infrequent. Therefore, the only itemsets that may

be frequent (and are not yet known to be so) are those in Nu and their extensions. If

there are no itemsets in Nu, the algorithm terminates (lines 7-9).

Now, any itemset inNu that is not locally frequent in db cannot be frequent inDB[db.

Further, none of its extensions can be frequent as well. This is based on the following

observation of [CHNW96]:1.

Theorem 12 An itemset can be present in FDB[db only if it is present in either FDB or

Fdb (or both).

1This observation applies only to the equi-support case

Chapter 6. Incremental Mining 103

Therefore, a second pass over the increment is made to �nd the counts within db of

Nu (line 11). Those itemsets that turn out to be infrequent in db are stored in a set called

Infrequentdb (line 13), which is later used for pruning candidates.

Third (and Final) Pass over the Increment

We then form all possible extensions of Fknown which could be in FDB[db [NDB[db and

store them in set C. This is done by computing the remaining layers of the negative

border closure of Fknown (lines 15{20). (We expect that the remaining layers can be

generated together since the number of 2-itemsets in Fknown is typically much smaller

than the overall number of all possible 2-itemset pairs.) At the start of this computation,

the counts of itemsets in C are reset to zero using the function ResetCounts (line 16).

Then, at every stage during the computation of the closure, those itemsets that are in

Infrequent and Infrequentdb are removed so that none of their extensions are generated

(line 19). After all the layers are generated, itemsets from Fknown and Nu are removed

from C since their counts within DB [db and db respectively, are already available (line

21). The third (and �nal) pass over db is then made to �nd the counts within db of the

remaining itemsets in C (line 23).

First (and Only) Pass over the Previous Database

Those itemsets of the closure which turn out to be locally frequent in db need to be

counted over DB as well to establish whether they are frequent overall. We refer to these

itemsets as ScanDB (line 24). Since the counts of NDB[db need to be computed as well,

we evaluate NegBorder(Fknown [ScanDB). From this the itemsets in Infrequent are

removed since their counts are already known. The counts of the remaining itemsets (i.e.

N 0 in line 25) are then found by making a pass over DB (line 27).

After the pass over DB, the frequent itemsets from ScanDB are gathered to form

FDB[db (line 28) and then its negative border NDB[db is computed (line 29). The counts

of NDB[db are obtained from Infrequent and N 0 (line 30). Thus we obtain the �nal set

of frequent itemsets FDB[db and its negative border NDB[db.

Chapter 6. Incremental Mining 104

Results for the Increment

Performing the above steps results in the generation of FDB[db and NDB[db along with

their supports. But, as mentioned earlier, we also need to generate the mining results

for solely the increment, namely, Fdb [Ndb. To achieve this, the following additional

processing is carried out during the above-mentioned passes:

After the �rst pass over the increment, we have the updated counts of all the itemsets

in FDB [NDB. Therefore, the counts of these itemsets with respect to the increment

alone is very easily determined by merely computing the di�erences between the updated

counts and the original counts. After this computation, the itemsets that turn out to be

frequent within db are gathered together and their negative border is computed.

If the counts within db of some itemsets in the negative border are unknown, these

counts are determined during the second pass over the increment. Subsequently, the

negative border closure of the resultant frequent itemsets (over db) is computed and the

counts within db of the itemsets in the closure are determined during the third pass over

the increment. Finally, the identities and counts within db of itemsets in Fdb [Ndb are

extracted from the closure.

In the above, note that a particular itemset could be a candidate for computing Fdb [

Ndb, as well as FDB[db[NDB[db. To ensure that there is no unnecessary duplicate counting,

all such common itemsets are identi�ed and two counters are maintained for each of them:

the �rst counter initially stores the itemset's support in DB, while the second stores the

support in db. After the support in db is computed, the �rst counter is incremented by

this value { it then re
ects the support in DB [db.

6.2.2 Generating Hierarchical Association Rules

The processing steps described in the previous sub-section are completely suÆcient to

deliver the desired mining outputs for boolean databases. We now move on to describing

how it is easily possible to extend the DELTA design to also handle the generation of

association rules for hierarchical databases.

The hierarchical rule mining problem is to �nd association rules between items at any

Chapter 6. Incremental Mining 105

level of a given taxonomy graph (is-a hierarchy). An obvious but ineÆcient solution to

this problem is to reduce it to a boolean mining context using the following strategy:

While reading each transaction from the database, dynamically create an \augmented"

transaction that also includes all the ancestors of all the items featured in the original

transaction. Now, any of the boolean mining algorithms can be applied on this augmented

database.

A set of optimizations to improve upon the above scheme were introduced in [SA95]

as part of the Cumulate (�rst-time) hierarchical mining algorithm. Interestingly, we have

found that these optimizations can be utilized for incremental mining as well, and in

particular, can be cleanly integrated in the core DELTA algorithm. In the remainder of

this sub-section, we describe the optimizations and their incorporation in DELTA.

Cumulate Optimizations

Cumulate's optimizations for eÆciently mining hierarchical databases are the following:

� Pre-computing ancestors. Rather than �nding the ancestors for each item by

traversing the taxonomy graph, the ancestors for each item are precomputed and

stored in an array.

� Filtering the ancestors added to transactions. While reading a transaction

from the database, it is not necessary to augment it with all ancestors of items in

that transaction. Only ancestors of items in the transaction that are also present in

some candidate itemset are added.

� Pruning itemsets containing an item and its ancestor. A candidate itemset

that contains both an item and its ancestor may be pruned. This is because it will

have exactly the same support as the itemset which doesn't contain that ancestor

and is therefore redundant.

Incorporation in DELTA

The above optimizations are incorporated in DELTA in the following manner:

Chapter 6. Incremental Mining 106

1. The �rst optimization is performed only in routines that access the database and

therefore do not a�ect the structure of the DELTA algorithm.

2. The second optimization is performed before each pass over the increment or pre-

vious database. Ancestors of items that are not part of any candidate are removed

from the arrays of ancestors that were precomputed during the �rst optimization.

3. The third optimization is performed only once and that is at the end of the �rst

pass over the increment. At this stage the identities of all potentially frequent 2-

itemsets (over DB [db) are known, and hence no further candidate 2-itemsets will

be generated. Among the potentially frequent 2-itemsets, those that contain an

item and its ancestor are pruned. It follows that candidates generated from the

remaining 2-itemsets will also have the same property, i.e. they will not contain an

item and its ancestor. Hence this optimization does not need to be applied again.

As a side-note, we add here that due to the generic nature of the above optimizations,

they could be incorporated into other frequent itemset generation algorithms such as

ARMOR, g-ARMOR and g-Apriori discussed in previous chapters.

6.2.3 Rationale for the DELTA Design

Having described the mechanics of the DELTA design, we now provide the rationale for

its construction:

Let Fknown be the set of frequent itemsets in FDB [NDB that survive the support

requirement after their counts have been updated over db, and Nknown be its negative

border. Now, if the counts of all the itemsets in Nknown are available, then the �nal

output is simply Fknown [Nknown. Otherwise, the only itemsets that may be frequent

(and are not yet known to be so) are those in Nknown with unknown counts and their

extensions { by virtue of Theorem 11. At this juncture, we can choose to do one of the

following:

Complete Closure: Generate the complete closure of the negative border, that is, all

extensions of the itemsets in Nknown with unknown counts. While generating the

Chapter 6. Incremental Mining 107

extensions, itemsets that are known to be infrequent may be removed so that none

of their extensions are generated. After the generation process is over, �nd the

counts of all the generated itemsets by performing one scan over DB [db. We now

have all the information necessary to �rst identify FDB[db, and then the associated

NDB[db.

Layered Closure: Instead of generating the entire closure at one shot, generate the

negative border \a layer at a time". After each layer is computed, update the

counts of the itemsets in the layer by performing a scan over DB [db. Use these

counts to prune the set of itemsets that will be used in the generation of the next

layer.

Hybrid Closure: A combination of the above two schemes, wherein the closure is ini-

tially generated a layer at a time, and after a certain number of layers are completed,

the remaining complete closure is computed. The number of layers upto which the

closure is generated in a layered manner is a design parameter.

The �rst scheme, Complete Closure, appears infeasible because it could generate a very

large number of candidates if the so-called \promoted borders" [F+97], that is, itemsets

that were in NDB but have now moved to FDB[db, contain more than a few 1-itemsets.

This is because if p1 is the number of 1-itemsets in the promoted borders, a lower bound

on the number of candidates is 2p1(jFknownj � p1). This arises out of the fact that every

combination of the p1 1-itemsets is a possible extension, and all of them can combine with

any other frequent itemset in Fknown to form candidates. Therefore, even for moderate

values of p1, the number of candidates generated could be extremely large.

The second strategy, Layered Closure, avoids the above candidate explosion problem

since it brings a pruning step into play after the computation of each layer. However, it

has its own performance problem in that it may require several passes over the database,

one per layer, and this could turn out to be very costly for large databases. Further, it

becomes impossible to provide bounds on the number of passes that would be required

for the mining process.

Chapter 6. Incremental Mining 108

Therefore, in DELTA, we adopt the third hybrid strategy, wherein an initial Layered

Closure approach is followed by a Complete Closure strategy. In particular, the Layered

Closure is used only for the �rst layer, and then the Complete Closure is brought into

play. This choice is based on the well-known observation that pruning typically has the

maximum impact for itemsets of length two { that is, the number of 2-itemsets that turn

out to be frequent is usually a small fraction of the possible 2-itemset candidates [PCY95a].

In contrast, the impact of pruning at higher itemset lengths is comparatively small.

To put it in a nutshell, the DELTA design endeavors to achieve a reasonable compro-

mise between the number of candidates counted and the number of database passes, since

these two factors represent the primary bottle-necks in association rule generation. That

our choice of compromise results in good performance is validated in the experimental

study described in Section 6.6.

6.3 Multi-Support Incremental Mining in DELTA

In the previous section, we considered incremental mining in the context of \equi-support"

environments. As mentioned in the Introduction, however, we would expect that user

requirements would typically change with time, resulting in di�erent minimum support

levels across mining operations. In DELTA, we address this issue which has not been

previously considered in the literature. We expect that this is an important value addition

given the inherent exploratory nature of mining.

For convenience, we break up the multi-support problem into two cases: Stronger,

where the current threshold is higher (i.e., minsupDB[db > minsupDB), and Weaker,

where the current threshold is lower (i.e., minsupDB[db < minsupDB). We now address

each of these cases separately:

6.3.1 Stronger Support Threshold

The stronger support case is handled almost exactly the same way as the equi-support

case, that is, as though the threshold has not changed. The only di�erence is that the

Chapter 6. Incremental Mining 109

following optimization is incorporated:

Initially, all itemsets which are not frequent w.r.t. minsupDB[db are removed from

FDB and the corresponding negative border is then calculated. The itemsets that are

removed are not discarded completely, but are retained separately since they may become

frequent after counting over the increment db. They may also be part of the computed

negative border closure (lines 15-20 in Figure 6.1). If so, then during the pass over DB

their counts are not measured since they are already known. If the counts of all the

itemsets in the closure are known, the pass over DB becomes unnecessary.

6.3.2 Weaker Support Threshold

The weaker support case is much more diÆcult to handle since the FDB set now needs to be

expanded but the identities of these additional sets cannot be deduced from the increment

db. In particular, note that Theorem 12, which DELTA relied on for pruning candidates

in the equi-support case, no longer holds when the support threshold is lowered since we

cannot deduce that a candidate is infrequent over DB just because it is not present in

FDB [NDB.

However, it is easy to observe that the output required in the weaker threshold case

is a superset of what would be output had the support threshold not changed. This

observation suggests a strategy by which the DELTA algorithm is executed as though the

support threshold had not changed, while at the same time making suitable alterations to

handle the support threshold change.

In DELTA, the above strategy is incorporated by generating extra candidates (as

described below) based on the lowered support threshold. It is only for these candidates

that Theorem 12 does not hold. Hence, it is necessary to �nd their counts over the entire

database DB [db. This is done simultaneously while executing equi-support DELTA.

The pseudo-code for the complete algorithm is given as function DeltaLow in Fig-

ure 6.2, and is described in the remainder of this section. The important point to note here

is that the enhanced DELTA requires only one additional pass over the entire database

to produce the desired results.

Chapter 6. Incremental Mining 110

First Pass over the Increment

As in the equi-support case, the counts of itemsets in FDB and NDB are updated over

the increment db (line 1 in Figure 6.2). By this, some itemsets in NDB may become

frequent and some itemsets in FDB may become infrequent. Let the resultant set of

frequent itemsets (w.r.t. minsupDB[db) be Fknown. These frequent itemsets are extracted

using the function GetFrequent (line 2). Itemsets in the negative border of Fknown with

unknown counts are computed as NegBorder(Fknown) � (FDB [NDB). We refer to this

set as NBetween since these itemsets are likely to have supports between minsupDB and

minsupDB[db (line 3). For these itemsets, Theorem 12 does not hold due to the lowered

support threshold.

Remaining Passes of Equi-Support DELTA

The remaining passes of equi-support DELTA are executed for the previous support

minsupDB. A di�erence, however, is that the counts of itemsets in NBetween over

DB [db are simultaneously found (line 4).

Among the candidates generated during the remaining passes of equi-support DELTA,

some may already be present in NBetween. To ensure that there is no unnecessary

duplicate counting, all such common itemsets are identi�ed and only one copy of each is

retained during counting.

Additional Pass over the Entire Database

At the end of the above passes, the counts of all 1-itemsets and 2-itemsets of FDB[db [

NDB[db are available. The counts of 1-itemsets are available because FDB [NDB contains

all possible 1-itemsets [T+97], while the counts of all required 2-itemsets are available

because Fknown contains all frequent 1-itemsets in DB [db and NBetween contains the

immediate extensions of Fknown that are not already in (FDB [NDB). Therefore, it be-

comes possible to generate the negative border closure of all known frequent itemsets

without encountering the \candidate explosion" problem described for the Complete Clo-

sure approach in Section 6.2.3.

Chapter 6. Incremental Mining 111

Let F 0 be the set of all frequent itemsets whose counts are known (line 5), and let

Infrequent be the set of itemsets with known counts which are not in F 0 (line 6). If

the counts of the negative border of F 0 are already known, then the algorithm terminates

(lines 7{9). Otherwise, all the remaining extensions of F 0 that could become frequent

are determined by computing the negative border closure (lines 10{16). (As in the equi-

support case, we expect that the remaining layers of the closure can be generated together

since the number of 2-itemsets in F 0 is typically much smaller than the overall number

of all possible 2-itemset pairs.) The itemsets of the closure are counted over the entire

database (line 17), and the �nal set of frequent itemsets and its negative border are

determined (lines 18{20).

When minsupDB[db << minsupDB

We discuss here the behaviour of DELTA whenminsupDB[db ismuch less thanminsupDB.

We expect this case to be especially troublesome because the new mining results would

be a much larger set than the previous mining results. This means that the previous

mining results would not be very useful in determining the new results. To simplify the

discussion, let us consider the extreme case when minsupDB is so high that FDB = �. We

show that in this case, DELTA reduces to Apriori with the modi�cation that all database

scans of Apriori beyond the second pass are combined. Since, as discussed in Section 6.2.3,

the impact of pruning for itemsets of length greater than two is relatively small, it follows

that DELTA reduces to a re-mining of the entire database when the previous mining

results are not useful.

For the above scenario, DELTA �rst updates the counts of itemsets in NDB (which

consists of all possible 1-itemsets) over db (line 1 in Figure 6.2). This is equivalent to

(a part of) the �rst pass of Apriori. After the frequent 1-itemsets are obtained (line 2),

candidate 2-itemsets are generated (line 3). Next, the counts of these candidate 2-itemsets

over DB [db are found (line 4). Note that while performing line 4, some candidate 2-

itemsets may be generated; but these would be a subset of the candidates generated in line

3. Since these candidates are combined before their counts over DB [db are determined,

Chapter 6. Incremental Mining 112

no redundant work is done.

After gathering the frequent 2-itemsets (line 5), their negative border closure is com-

puted (lines 10{16) and the counts of itemsets in this closure over DB[db are determined

(line 17). This corresponds to combining all passes of Apriori beyond the second pass.

Finally, the frequent itemsets and negative border information is gathered and output

(lines 18{21).

6.4 Integrating ARMOR & g-ARMOR with DELTA

As mentioned earlier, our work on incremental mining was actually done prior to our work

on the other two issues addressed in this thesis. However, we have presented it in the

end for pedagogical reasons. In this Section, we provide a sketch of how the techniques

presented in earlier chapters can be integrated into the DELTA scheme.

Notice that the counting technique in DELTA has been abstracted using the func-

tion UpdateCounts. Hence, any eÆcient data-structure could be implemented to store

the counters of itemsets. For instance, we could use the counting scheme developed in

Chapter 4 for the Oracle and ARMOR algorithms that uses a DAG data-structure. The

only modi�cation that this would require to the DELTA scheme is that like in ARMOR

it would be necessary to compute and store the supports of marginally more candidates

than the frequent itemsets and its negative border. As mentioned in Chapter 4, the max-

imum number of additional candidates for all the databases and support speci�cations

considered in our empirical study was only about ten percent more.

With the above modi�cations in place, it is possible to integrate g-ARMOR with

DELTA in a manner similar to integrating the g-closed itemset framework into ARMOR.

The input to DELTA now contains only the frequent g-closed itemsets, its negative border

and the marginally additional candidates that would be generated by g-ARMOR (by

virtue of it being a generalization of ARMOR). During the execution of this modi�ed

DELTA, for any candidates X; Y where Y � X, if support(X) � support(Y), then prune

all supersets of Y . Alternatively, for any X; Y where Y � X, if support(X) � support(Y)

holds only upto some partition and then no longer holds, then regenerate all supersets of

Chapter 6. Incremental Mining 113

Y using the technique described in Section 5.6 of Chapter 5.

6.4.1 Multi-Tolerance Incremental Mining

In Section 6.3, we have extended the DELTA algorithm to handle multi-support environ-

ments, where the minimum support speci�ed by the user for the current database di�ers

from that speci�ed for the previous database. A related issue arises when the tolerance

threshold speci�ed by the user for the current database di�ers from that speci�ed for the

previous database. For convenience, similar to multi-support mining, we break up the

multi-tolerance problem into two cases: Stronger, where the current threshold is higher,

and Weaker, where the current threshold is lower. We now address each of these cases

separately:

Stronger Tolerance Threshold

The stronger tolerance case is handled almost exactly the same way as the equi-tolerance

case, that is, as though the threshold has not changed. The only di�erence is that the

following optimization is incorporated: Initially, for all available itemsets X; Y : Y � X,

if support(X) � support(Y) w.r.t. the new tolerance, then prune all supersets of Y .

Weaker Tolerance Threshold

The weaker tolerance case is much more diÆcult to handle since the previous mining re-

sults now need to be expanded but the supports of the additional required itemsets cannot

be estimated with the desired accuracy. In DELTA, this case is handled as follows: For

all available itemsets X; Y where Y � X, check if support(X) � support(Y) w.r.t. the

old tolerance and not w.r.t. the new tolerance. This indicates that supersets of Y had

been pruned in the previous mining using �-equal support pruning. Therefore, we now

regenerate all such supersets of Y using the technique described in Section 5.6 of Chap-

ter 5. However, we cannot estimate the supports of these itemsets even approximately

(w.r.t. the new tolerance) by utilizing the currently mined results. Hence, these supports

Chapter 6. Incremental Mining 114

are obtained by making a pass over DB after which, the processing continues as for the

equi-tolerance case.

6.5 Performance Study

In the previous sections, we presented the FUP,Borders andTBAR incremental mining

algorithms, apart from our new DELTA algorithm. To evaluate the relative performance

of these algorithms and to con�rm the claims that we have informally made about their

expected behavior, we conducted a series of experiments that covered a range of database

and mining workloads. The performance metric in these experiments is the total execution

time taken by the mining operation. (Note that, as mentioned in Section 3.3 of Chapter 3,

both FUP and Borders do not compute the mining results for solely the increment, and

hence their execution times do not include the additional processing required to generate

these results.)

6.5.1 Baseline Algorithms

We include the Apriori algorithm also in our evaluation suite to serve as a baseline

indicator of the performance that would be obtained by directly using a \�rst-time"

algorithm instead of an incremental mining algorithm. This helps to clearly identify the

utility of \knowing the past".

Further, as mentioned in the Introduction, it is extremely useful to put into perspective

how well the incremental algorithms make use of their \knowledge of the past", that is,

to characterize the eÆciency of the incremental algorithms. To achieve this objective,

we also evaluate the performance achieved by the Oracle algorithm, which \magically"

knows the identities of all the frequent itemsets (and the associated negative border) in the

current database and increment and only needs to gather their corresponding supports.

Note that this idealized incremental algorithm represents the absolute minimal amount

of processing that is necessary and therefore represents a lower bound2 on the (execution

2Within the framework of the data and storage structures used in our study.

Chapter 6. Incremental Mining 115

time) performance.

The Oracle algorithm operates as follows: For those itemsets in FDB[db [NDB[db

whose counts over DB are currently unknown, the algorithm �rst makes a pass over DB

and determines these counts. It then scans db to update the counts of all itemsets in

FDB[db [NDB[db. During the pass over db, it also determines the counts within db of

itemsets in Fdb[Ndb. Duplicate candidates are avoided by retaining only one copy of each

of them. So, in the worst case, it needs to make one pass over the previous database and

one pass over the increment.

For evaluating the performance of DELTA on hierarchical databases, we compared it

with Cumulate and Oracle as no previous incremental algorithms are available for com-

parison. We chose Cumulate among the algorithms proposed in [SA95] since it performed

the best on most of our workloads. The hierarchical databases were generated using the

same technique as in [SA95].

6.5.2 Database Generation

Parameter Meaning Values
N Number of items 1000
T Mean transaction length 10
P Number of potentially frequent itemsets 2000
I Mean length of potentially frequent itemsets 4
D Number of transactions in database DB 4 M (200 MB disk occupancy)
d Number of transactions in increment db 1%, 10%, 50%, 100% of D
S Skew of increment db (w.r.t. DB) Identical, Skewed
pis Prob. of changing frequent itemset identity 0.33 (for Skewed)
pit Prob. of changing item identity 0.50 (for Skewed)

Table 6.2: Parameter Table

The databases used in our experiments were synthetically generated using the tech-

nique described in [AS94] and attempt to mimic the customer purchase behavior seen in

retailing environments. The parameters used in the synthetic generator are described in

Table 6.2. These are similar to those used in [AS94] except that the size and skew of the

Chapter 6. Incremental Mining 116

Parameter Value
Number of roots 250
Number of levels 4
Fanout 5
Depth-ratio 1

Table 6.3: Taxonomy Parameter Table

increment are two additional parameters. Since the generator of [AS94] does not include

the concept of an increment, we have taken the following approach, similar to [CHNW96]:

The increment is produced by �rst generating the entire DB [db and then dividing it

into DB and db.

Additional parameters required for the taxonomy in our experiments on hierarchical

databases are shown in Table 6.3. The values of these parameters are identical to those

used in [SA95].

Data Skew Generation

The above method will produce data that is identically distributed in both DB and db.

However, as mentioned earlier, databases often exhibit temporal trends resulting in the

increment perhaps having a di�erent distribution than the previous database. That is,

there may be signi�cant changes in both the number and the identities of the frequent

itemsets between DB and db. To model this \skew" e�ect, we modi�ed the generator

in the following manner: After D transactions are produced by the generator, a certain

percentage of the potentially frequent itemsets are changed. A potentially frequent itemset

is changed as follows: First, with a probability determined by the parameter pis it is

decided whether the itemset has to be changed or not. If change is decided, each item in

the itemset is changed with a probability determined by the parameter pit. The item that

is used to replace the existing item is chosen uniformly from the set of those items that

are not already in the itemset. After the frequent itemsets are changed in this manner,

d number of transactions are produced with the new modi�ed set of potentially frequent

itemsets.

Chapter 6. Incremental Mining 117

6.5.3 Itemset Data Structures

In our implementation of the incremental mining algorithms, we generally use the hashtree

data-structure [AS94] as a container for itemsets. However, like in Chapter 4, the 2-

itemsets are not stored in hashtrees but instead in a 2-dimensional array which is indexed

by the frequent 1-itemsets. It has been reported (and also con�rmed in our study) that

adding this optimization results in a considerable improvement in performance. All the

algorithms in our study are implemented with this optimization.

6.5.4 Overview of Experiments

We conducted a variety of experiments to evaluate the relative performance of DELTA and

the other mining algorithms. Due to space limitations, we report only on a representative

set here. In particular, the results are presented for the workload parameter settings

shown in Table 6.2 for our experiments on non-hierarchical (boolean) databases.

The parameters settings used in our experiments on hierarchical databases are identical

except for the number of items (N) and the number of potentially frequent itemsets (P)

which were both set to 10000. The speci�c values of additional parameters required for

the taxonomy are shown in Table 6.3.

The experiments were conducted on an UltraSparc 170E workstation running Solaris

2.6 with 128 MB main memory and a 2 GB local SCSI disk. A range of rule support

threshold values between 0:33% and 2% were considered in our equi-support experiments.

The previous database size was always kept �xed at 4 million transactions. Along with

varying the support thresholds, we also varied the size of the increment db from 40,000

transactions to 4 million transactions, representing an increment-to-previous database ra-

tio that ranges from 1% to 100%. For our experiments on hierarchical databases, the

performance was measured only for supports between 0:75% and 2% since for lower sup-

ports, the running time of all the algorithms was in the range of several hours.

Two types of increment distributions are considered: Identical where both DB and

db have the same itemset distribution, and Skewed where the distributions are noticeably

di�erent. For the Skewed distribution for which results are reported in this chapter, the

Chapter 6. Incremental Mining 118

pis and pit parameters were set to 0.33 and 0.5 as mentioned in Table 6.2. With these

settings, at the 0.5 percent support threshold and a 10% increment, for example, there are

over 700 frequent itemsets in db which are not frequent in DB, and close to 500 frequent

itemsets in DB that are not frequent in db.

We also conducted experiments wherein the new minimum support threshold is di�er-

ent from that used in the previous mining. The previous threshold was set to 0.5% and

the new threshold was varied from 0.2% to 1.5%. Therefore, both the Stronger Threshold

and Weaker Threshold cases outlined in Section 6.2 are considered in these experiments.

6.6 Experimental Results

In this section, we report on the results of our experiments comparing the performance

of the various incremental mining algorithms for the dynamic basket database model

described in the previous section.

6.6.1 Experiment 1: Flat / Equi-support / Identical Distribu-

tion

Our �rst experiment considers the equi-support situation with identical distribution be-

tween DB and db on boolean databases. For this environment, the execution time perfor-

mance of all the mining algorithms is shown in Figures 6.3a{d for increment sizes ranging

from 1% to 100%.

Focusing �rst on FUP, we see in Figure 6.3 that for all the increment sizes and for all

the support factors, FUP performs better than or almost the same as Apriori. Moving

on to TBAR, we observe that it outperforms both Apriori and FUP at small increment

sizes and low supports. At high supports, however, it is slightly worse than Apriori due

to the overhead of maintaining the negative border information. As the increment size

increases, TBAR's performance becomes progressively degraded. This is explained as

follows: Firstly, TBAR updates the counts of itemsets in FDB [NDB over db { these

itemsets are precisely the same as the set of all candidates generated in running Apriori

Chapter 6. Incremental Mining 119

over DB. Secondly, it performs a complete Apriori-based mining over db. When j db j =

j DB j, the total cost of these two factors is the same as the total cost incurred by the

Apriori algorithm. However, TBAR �nally loses out because it needs to make a further

pass over DB.

Turning our attention to Borders, we �nd in Figure 6.3a, which corresponds to the 1

percent increment, that while for much of the support range its performance is similar

to that of FUP and TBAR, there is a sharp degradation in performance at a support of

0.75 percent. The reason for this is the \candidate explosion" problem described earlier

in Section 3.3. This was con�rmed by measuring the number of candidates for supports

of 1 percent and 0.75 percent { in the former case, it was a little over 1000 whereas in the

latter, it had jumped to over 30000!

The above candidate explosion problem is further intensi�ed when the increment size

is increased, to the extent that its performance is an order of magnitude worse than the

other algorithms { therefore we have not shown Borders performance in Figures 6.3b{d.

Finally, considering DELTA, we �nd that it signi�cantly outperforms all the other

algorithms at lower support thresholds for all the increment sizes. In fact, in this region,

the performance of DELTA almost coincides with that of Oracle. The reason for the

especially good performance here is the following { low support values result in tighter

values of k, the maximal frequent itemset size, leading to correspondingly more iterations

for FUP over the previous databaseDB, and for TBAR over the increment db. In contrast,

DELTA requires only three passes over the increment and one pass over the previous

database. Further, because of its pruning optimizations, the number of candidates to be

counted over the previous database DB is signi�cantly less as compared to TBAR { for

example, for a support threshold of 0.5 percent and a 50% increment (Figure 6.3c), it is

smaller by a factor of two.

We note that the marginal non-monotonic behavior in the curves of TBAR, Borders,

DELTA and Oracle at low increment sizes is due to the fact that only sometimes do

they need to access the original database DB and this is not a function of the minimum

support threshold.

Chapter 6. Incremental Mining 120

6.6.2 Experiment 2: Flat / Equi-support / Skewed Distribu-

tion

Our next experiment considers the Skewed workload environment, all other parameters

being the same as that of the previous experiment. The execution time performance of

the various algorithms for this case is shown in Figures 6.4a{d. We see here that the

e�ect of the skew is pronounced in the case of both TBAR and Borders, whereas the

other algorithms (including DELTA) are relatively una�ected.

The e�ect of skew is noticeable in the case of TBAR since it relies solely on the

increment to prune candidates from its computation of the closure and therefore many

unnecessary candidates are generated which later prove to be infrequent over the entire

database. Borders, on the other hand, is a�ected because the number of 1-itemsets that

are in the promoted border tends to increase when there is skew. For instance, for a

minimum support of 0.33% and an increment of 10%, there were nine 1-itemsets among

the promoted borders and the number of frequent itemsets was 4481, resulting in over 2

million candidates.

In contrast to the above, Apriori and FUP are not a�ected by skew since the candidates

that they generate in each pass are determined only by the overall frequent itemsets, and

not by the frequent itemsets of the increment.

DELTA is not as a�ected by skew as TBAR since it utilizes the complete negative

border information to prune away candidates. That is, all itemsets which are known to

be infrequent either overDB[db or over db are pruned away during closure generation, and

not merely those candidates which are infrequent over db. Hence, DELTA is relatively

stable with respect to data skew. As in the Identical distribution case, it can be seen

in Figures 6.4a{b that for small increment sizes, its performance almost coincides with

that of Oracle. It however degrades to some extent for large skewed increments because

of two reasons: (1) the number of itemsets in FDB � FDB[db increases, resulting in more

unnecessary candidates being updated over db, and (2) the number of itemsets in FDB[db�

FDB increases, resulting in more promoted borders followed by more candidates over DB.

Even in these latter cases it is seen to perform considerably better than other algorithms.

Chapter 6. Incremental Mining 121

For example, for a minimum support of 0.33% and an increment of 100%, its performance

is more than twice as good as that of TBAR.

6.6.3 Experiment 3: Flat / Multi-Support / Identical Distri-

bution

The previous experiments modeled equi-support environments. We now move on to con-

sidering multi-support environments. In these experiments, we compare the performance

of DELTA with that of Apriori and Oracle only since, as mentioned earlier, FUP, TBAR

and Borders do not handle the multi-support case.

In this experiment, we �xed the initial support to be 0.5% and the new support

was varied between 0.2% and 1.5%, thereby covering both the Weaker Threshold and

Stronger Threshold possibilities. For this environment, Figures 6.5a{d show the perfor-

mance of DELTA relative to that of Apriori for the databases where the distribution of

the increments is Identical to that of the previous database.

We note here that at either end of the support spectrum, DELTA performs very

similarly to Apriori whereas in the \middle band" it does noticeably better, especially for

moderate increment sizes (Figures 6.5a{b). In fact, the performance gain of DELTA is

maximum when the new minimum support threshold is the same as the previous threshold

and tapers o� when the support is changed in either direction. At very low support

thresholds, the number of frequent itemsets increases exponentially, and therefore the

number of candidates generated in the negative border closure in DELTA will be a few

more than the number of candidates generated in Apriori. Most of the candidates will

have support less than the previous minimum threshold, and hence all of them have to be

counted over the previous database. Therefore, the performance of DELTA approaches

that of Apriori in the low support region. In the high support region, on the other hand,

most of the candidates do not turn out to be frequent and hence both algorithms perform

almost the same amount of processing.

Chapter 6. Incremental Mining 122

6.6.4 Experiment 4: Flat / Multi-Support / Skewed Distribu-

tion

Our next experiment evaluates the same environment as that of the previous experiment,

except that the distribution of the increments is Skewed with respect to the original

database. The execution time performance for this case is shown in Figures 6.6a{d. We

see here that the relative performance of the algorithms is very similar to that seen for the

Identical workload environment. Further, as in the equi-support skewed case (Experiment

2), DELTA is stable with respect to skew since it uses information from both DB and

db to prune away candidates. Only when the increment size is 100% do we notice some

degradation in the performance of DELTA. However, it performs slightly better than

Apriori even for this large increment.

6.6.5 Experiment 5: Hierarchical / Equi-support / Identical

Distribution

The previous experiments were conducted on boolean databases. We now move on to

experiments conducted on hierarchical databases. In these experiments, we compare the

performance of DELTA with that of Cumulate and Oracle only since, as mentioned earlier,

no incremental algorithms are available for comparison. The execution time performance

of the various algorithms for this case is shown in Figures 6.7a{d. Note that the time

taken to complete mining is measured in hours here as compared to the minutes taken

in the previous experiments. The reason for this large increase is that the number of

frequent itemsets is much more (about 10{15 times) { this is because itemsets can be

formed both within and across levels of the item taxonomy graph.

For all support thresholds and database sizes, we �nd that DELTA signi�cantly out-

performs Cumulate, and is in fact very close to Oracle. We see that DELTA exhibits a

huge performance gain over Cumulate, upto as much as 9 times at the 1% increment and

0.75% support threshold, and as much as 3 times on average. In fact, the performance

of DELTA is seen to overlap with that of Oracle for small increments (Figures 6.7a{b).

Chapter 6. Incremental Mining 123

The reason for this is the number of candidates in DELTA over both db and DB were

only marginally more than that in Oracle. This is again because the set of frequent item-

sets with its negative border is relatively stable, and DELTA prunes away most of the

unnecessary candidates in its second pass over the increment.

6.6.6 Experiment 6: Hierarchical / Equi-support / Skewed

Distribution

Our next experiment considers the Skewed workload environment, all other parameters

being the same as that of the previous experiment. The execution time performance of

the various algorithms for this case is shown in Figures 6.8a{d.

As in the Identical distribution case, it can be seen in Figures 6.8a{b that for small

increment sizes, the performance of DELTA almost coincides with that of Oracle. The

stability of DELTA with regard to data skew is again attributed to the fact that all

itemsets that are known to be infrequent either over DB [db or over db are pruned

away during closure generation, and not merely those candidates which are infrequent

over db. The performance of DELTA however degrades to some extent for large skewed

increments. This is because of the same reasons as in the Flat/Equi-support/Skewed

Distribution case (Experiment 2): (1) the number of itemsets in FDB � FDB[db increases,

resulting in more unnecessary candidates being updated over db, and (2) the number of

itemsets in FDB[db�FDB increases, resulting in more promoted borders followed by more

candidates over DB. Even in these latter cases it is seen to perform considerably better

than Cumulate. For example, for a minimum support of 0.75% and an increment of 100%,

its performance is more than 35% as good as that of Cumulate.

6.6.7 Experiment 7: Hierarchical / Multi-support / Identical

Distribution

The previous two experiments modeled the equi-support environment for mining over

hierarchical databases. We now move on to considering multi-support environments over

Chapter 6. Incremental Mining 124

these databases.

In this experiment, we �xed the initial support to be 1.5% and the new support was

varied between 0.75% and 2.5%, thereby covering both the Weaker Threshold and Stronger

Threshold possibilities. For this environment, Figures 6.9a{d show the performance of

DELTA relative to that of Cumulate and Oracle for the databases where the distribution

of the increments is Identical to that of the previous database.

We note here that at either end of the support spectrum, DELTA performs very sim-

ilarly to Cumulate whereas in the \middle band" it does noticeably better, especially for

moderate increment sizes (Figures 6.9a{b). This is similar to the relationship between

DELTA and Apriori in the Flat/Multi-support/Identical Distribution case (Experiment

3). The performance gain of DELTA is maximum when the new minimum support thresh-

old is the same as the previous threshold and tapers o� when the support is changed in

either direction. At very low support thresholds, the number of frequent itemsets in-

creases exponentially, and therefore the number of candidates generated in the negative

border closure in DELTA will be a few more than the number of candidates generated

in Cumulate. Most of the candidates will have support less than the previous minimum

threshold, and hence all of them have to be counted over the previous database. There-

fore, the performance of DELTA approaches that of Cumulate in the low support region.

In the high support region, on the other hand, most of the candidates do not turn out to

be frequent and hence both algorithms perform almost the same amount of processing.

6.6.8 Experiment 8: Hierarchical / Multi-support / Skewed

Distribution

Our next experiment evaluates the same environment as that of the previous experiment,

except that the distribution of the increments is Skewed with respect to the original

database. The execution time performance for this case is shown in Figures 6.10a{d. We

see here that the relative performance of the algorithms is very similar to that seen for

the Identical workload environment. Further, as in the Hierarchical/Equi-support/Skewed

case (Experiment 6), DELTA is stable with respect to skew since it uses information from

Chapter 6. Incremental Mining 125

both DB and db to prune away candidates. Only for large increment sizes (Figures 6.10c{

d) do we notice some degradation in the performance of DELTA. However, it performs

slightly better than Cumulate even for these increments.

6.7 Conclusions

We considered the problem of incrementally mining association rules on market basket

databases that have been subjected to a signi�cant number of updates since their previous

mining exercise. Instead of mining the whole database again from scratch, we attempt to

use the previous mining results, that is, knowledge of the itemsets which are frequent in

the previous database, their negative border, and their associated supports, to eÆciently

identify the same information for the updated database.

We proposed a new algorithm called DELTA which is the result of a synthesis of

existing algorithms, designed to address each of their speci�c limitations. It guarantees

completion of mining in three passes over the increment and one pass over the previous

database. This compares favorably with previously proposed incremental algorithms like

FUP and TBAR wherein the number of passes is a function of the length of the longest

frequent itemset. Also, DELTA does not su�er from the candidate explosion problem

associated with the Borders algorithm owing to its better pruning strategy.

DELTA's design was extended to handle multi-support environments, an important

issue not previously addressed in the literature, at a cost of only one additional pass over

the current database.

Using a synthetic database generator, the performance of DELTA was compared

against that of FUP, TBAR and Borders, and also the two baseline algorithms, Apri-

ori and Oracle. Our experiments showed that for a variety of increment sizes, increment

distributions and support thresholds, DELTA performs signi�cantly better than the pre-

viously proposed incremental algorithms. In fact, for many workloads its performance

approached that of Oracle, which represents a lower bound on achievable performance,

indicating that DELTA is quite eÆcient in its candidate pruning process. Also, while the

TBAR and Borders algorithms were sensitive to skew in the data distribution, DELTA

Chapter 6. Incremental Mining 126

was comparatively robust.

In the special scenario where no pass over the previous database is required since the

new results are a subset of the previous results, DELTA's performance is optimal in that

it requires only one pass over the increment whereas all the other algorithms either are

unable to recognize the situation or require multiple passes over the increment.

Finally, DELTA was shown to be easily extendible to hierarchical association rules,

while maintaining its performance close to Oracle. No prior work exists on extending

incremental mining algorithms to handle hierarchical rules.

In summary, DELTA is a practical, robust and eÆcient incremental mining algorithm.

Chapter 6. Incremental Mining 127

DeltaLow (DB; db; FDB; NDB; minsupDB; minsupDB[db)
Input: Previous Database DB, Increment db, Previous Frequent Itemsets FDB,

Previous Negative Border NDB, Previous Minimum Support Threshold
minsupDB,

Present Minimum Support Threshold minsupDB[db
Output: Updated Set of Frequent Itemsets FDB[db, Updated Negative Border NDB[db

begin
1. UpdateCounts(db; FDB [NDB); // pass over db
2. Fknown = GetFrequent(FDB [NDB; minsupDB[db � jDB [dbj);
3. NBetween = NegBorder(F)� (FDB [NDB);

4. // perform lines 2{31 of DELTA for equi-support case using minsupDB with
// the following modi�cation: �nd the counts of itemsets in NBetween also
// over (DB [db). Let (F 0; N 0) be the output obtained by this process.

5. F 0 = F 0 [GetFrequent(NBetween;minsupDB[db � jDB [dbj);
6. Infrequent = N 0 [(NBetween� F 0);
7. if (NegBorder(F 0) � Infrequent)
8. get supports of itemsets in NegBorder(F 0) from Infrequent
9. return(F 0, NegBorder(F 0));

10. C = F 0;
11. ResetCounts(C);
12. do // compute negative border closure
13. C = C [NegBorder(C);
14. C = C � Infrequent // prune
15. until C does not grow
16. C = C � (F 0 [Infrequent)
17. UpdateCounts(DB [db; C); // additional pass over DB [db
18. FDB[db = F 0 [GetFrequent(C;minsupDB[db � jDB [dbj);
19. NDB[db = NegBorder(FDB[db);
20. get supports of itemsets in NDB[db from (C [Infrequent)
21. return(FDB[db; NDB[db);
end

Figure 6.2: DELTA for Weaker Support Threshold (DeltaLow)

Chapter 6. Incremental Mining 128

0

500

1000

1500

2000

2500

3000

3500

0 0.5 1 1.5 2

T
im

e
 (

s
e

c
o

n
d

s
)

Support (as a %)

(c) T10.I4.D4M, 50% increment

Apriori
FUP

TBAR
DELTA
Oracle

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 0.5 1 1.5 2

T
im

e
 (

s
e

c
o

n
d

s
)

Support (as a %)

(d) T10.I4.D4M, 100% increment

Apriori
FUP

TBAR
DELTA
Oracle

0

500

1000

1500

2000

2500

0 0.5 1 1.5 2

T
im

e
 (

s
e
c
o
n
d
s
)

Support (as a %)

(a) T10.I4.D4M, 1% increment

Apriori
FUP

TBAR
Borders
DELTA
Oracle

0

500

1000

1500

2000

2500

0 0.5 1 1.5 2

T
im

e
 (

s
e
c
o
n
d
s
)

Support (as a %)

(b) T10.I4.D4M, 10% increment

Apriori
FUP

TBAR
DELTA
Oracle

Figure 6.3: Flat / Equi-support / Identical Distribution

Chapter 6. Incremental Mining 129

0

500

1000

1500

2000

2500

3000

0 0.5 1 1.5 2

T
im

e
 (

s
e

c
o

n
d

s
)

Support (as a %)

(c) T10.I4.D4M, 50% increment

Apriori
FUP

TBAR
DELTA
Oracle

0

1000

2000

3000

4000

5000

0 0.5 1 1.5 2

T
im

e
 (

s
e

c
o

n
d

s
)

Support (as a %)

(d) T10.I4.D4M, 100% increment

Apriori
FUP

TBAR
DELTA
Oracle

0

500

1000

1500

2000

2500

0 0.5 1 1.5 2

T
im

e
 (

s
e
c
o
n
d
s
)

Support (as a %)

(a) T10.I4.D4M, 1% increment

Apriori
FUP

TBAR
Borders
DELTA
Oracle

0

500

1000

1500

2000

2500

0 0.5 1 1.5 2

T
im

e
 (

s
e
c
o
n
d
s
)

Support (as a %)

(b) T10.I4.D4M, 10% increment

Apriori
FUP

TBAR
DELTA
Oracle

Figure 6.4: Flat / Equi-support / Skewed Distribution

Chapter 6. Incremental Mining 130

0

1000

2000

3000

4000

5000

6000

0 0.2 0.4 0.6 0.8 1 1.2 1.4

T
im

e
 (

s
e

c
o

n
d

s
)

Support (as a %)

(c) T10.I4.D4M, 50% increment

Apriori
DELTA
Oracle

0

1000

2000

3000

4000

5000

6000

7000

8000

0 0.2 0.4 0.6 0.8 1 1.2 1.4

T
im

e
 (

s
e

c
o

n
d

s
)

Support (as a %)

(d) T10.I4.D4M, 100% increment

Apriori
DELTA
Oracle

0

500

1000

1500

2000

2500

3000

3500

4000

0 0.2 0.4 0.6 0.8 1 1.2 1.4

T
im

e
 (

s
e
c
o
n
d
s
)

Support (as a %)

(a) T10.I4.D4M, 1% increment

Apriori
DELTA
Oracle

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 0.2 0.4 0.6 0.8 1 1.2 1.4

T
im

e
 (

s
e
c
o
n
d
s
)

Support (as a %)

(b) T10.I4.D4M, 10% increment

Apriori
DELTA
Oracle

Figure 6.5: Flat / Multi-Support / Identical Distribution [Previous Support =
0.5%]

Chapter 6. Incremental Mining 131

0

1000

2000

3000

4000

5000

6000

0 0.2 0.4 0.6 0.8 1 1.2 1.4

T
im

e
 (

s
e

c
o

n
d

s
)

Support (as a %)

(c) T10.I4.D4M, 50% increment

Apriori
DELTA
Oracle

0

1000

2000

3000

4000

5000

6000

7000

8000

0 0.2 0.4 0.6 0.8 1 1.2 1.4

T
im

e
 (

s
e

c
o

n
d

s
)

Support (as a %)

(d) T10.I4.D4M, 100% increment

Apriori
DELTA
Oracle

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 0.2 0.4 0.6 0.8 1 1.2 1.4

T
im

e
 (

s
e
c
o
n
d
s
)

Support (as a %)

(a) T10.I4.D4M, 1% increment

Apriori
DELTA
Oracle

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 0.2 0.4 0.6 0.8 1 1.2 1.4

T
im

e
 (

s
e
c
o
n
d
s
)

Support (as a %)

(b) T10.I4.D4M, 10% increment

Apriori
DELTA
Oracle

Figure 6.6: Flat / Multi-Support / Skewed Distribution [Previous Support =
0.5%]

Chapter 6. Incremental Mining 132

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0.5 1 1.5 2

T
im

e
 (

s
e

c
o

n
d

s
)

Support (as a %)

(c) T10.I4.D4M, 50% increment

Cumulate
DELTA
Oracle

0

5000

10000

15000

20000

25000

0.5 1 1.5 2

T
im

e
 (

s
e

c
o

n
d

s
)

Support (as a %)

(d) T10.I4.D4M, 100% increment

Cumulate
DELTA
Oracle

0

2000

4000

6000

8000

10000

12000

0.5 1 1.5 2

T
im

e
 (

s
e
c
o
n
d
s
)

Support (as a %)

(a) T10.I4.D4M, 1% increment

Cumulate
DELTA
Oracle

0

2000

4000

6000

8000

10000

12000

14000

0.5 1 1.5 2

T
im

e
 (

s
e
c
o
n
d
s
)

Support (as a %)

(b) T10.I4.D4M, 10% increment

Cumulate
DELTA
Oracle

Figure 6.7: Hierarchical / Equi-support / Identical Distribution

Chapter 6. Incremental Mining 133

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0.5 1 1.5 2

T
im

e
 (

s
e

c
o

n
d

s
)

Support (as a %)

(c) T10.I4.D4M, 50% increment

Cumulate
DELTA
Oracle

0

4000

8000

12000

16000

20000

24000

0.5 1 1.5 2

T
im

e
 (

s
e

c
o

n
d

s
)

Support (as a %)

(d) T10.I4.D4M, 100% increment

Cumulate
DELTA
Oracle

0

2000

4000

6000

8000

10000

12000

14000

0.5 1 1.5 2

T
im

e
 (

s
e
c
o
n
d
s
)

Support (as a %)

(a) T10.I4.D4M, 1% increment

Cumulate
DELTA
Oracle

0

2000

4000

6000

8000

10000

12000

14000

0.5 1 1.5 2

T
im

e
 (

s
e
c
o
n
d
s
)

Support (as a %)

(b) T10.I4.D4M, 10% increment

Cumulate
DELTA
Oracle

Figure 6.8: Hierarchical / Equi-support / Skewed Distribution

Chapter 6. Incremental Mining 134

0

4000

8000

12000

16000

20000

0.5 1 1.5 2 2.5

T
im

e
 (

s
e

c
o

n
d

s
)

Support (as a %)

(c) T10.I4.D4M, 50% increment

Cumulate
DELTA
Oracle

0

5000

10000

15000

20000

25000

30000

0.5 1 1.5 2 2.5

T
im

e
 (

s
e

c
o

n
d

s
)

Support (as a %)

(d) T10.I4.D4M, 100% increment

Cumulate
DELTA
Oracle

0

2000

4000

6000

8000

10000

12000

0.5 1 1.5 2 2.5

T
im

e
 (

s
e
c
o
n
d
s
)

Support (as a %)

(a) T10.I4.D4M, 1% increment

Cumulate
DELTA
Oracle

0

2000

4000

6000

8000

10000

12000

14000

0.5 1 1.5 2 2.5

T
im

e
 (

s
e
c
o
n
d
s
)

Support (as a %)

(b) T10.I4.D4M, 10% increment

Cumulate
DELTA
Oracle

Figure 6.9: Hierarchical / Multi-support / Identical Distribution [Previous Sup-
port = 1.5%]

Chapter 6. Incremental Mining 135

0

4000

8000

12000

16000

20000

0.5 1 1.5 2 2.5

T
im

e
 (

s
e

c
o

n
d

s
)

Support (as a %)

(c) T10.I4.D4M, 50% increment

Cumulate
DELTA
Oracle

0

5000

10000

15000

20000

25000

0.5 1 1.5 2 2.5

T
im

e
 (

s
e

c
o

n
d

s
)

Support (as a %)

(d) T10.I4.D4M, 100% increment

Cumulate
DELTA
Oracle

0

2000

4000

6000

8000

10000

12000

0.5 1 1.5 2 2.5

T
im

e
 (

s
e
c
o
n
d
s
)

Support (as a %)

(a) T10.I4.D4M, 1% increment

Cumulate
DELTA
Oracle

0

2000

4000

6000

8000

10000

12000

0.5 1 1.5 2 2.5

T
im

e
 (

s
e
c
o
n
d
s
)

Support (as a %)

(b) T10.I4.D4M, 10% increment

Cumulate
DELTA
Oracle

Figure 6.10: Hierarchical / Multi-support / Skewed Distribution [Previous Sup-
port = 1.5%]

Chapter 7

Conclusions and Future Research

7.1 Summary of Contributions

In this thesis, we have investigated three issues in association rule mining { the eÆciency

of algorithms, the conciseness of results and the problem of re-mining. We summarize our

contributions in each of these areas below.

7.1.1 Issue 1: EÆciency of Algorithms

A variety of novel algorithms have been proposed in the recent past for the eÆcient min-

ing of association rules, each in turn claiming to outperform its predecessors on a set of

standard databases. In this thesis, our approach was to quantify the algorithmic perfor-

mance of association rule mining algorithms with regard to an idealized, but practically

infeasible, \Oracle". The Oracle algorithm utilizes a partitioning strategy to determine

the supports of itemsets in the required output. It uses direct lookup arrays for counting

singletons and pairs and a DAG data-structure for counting longer itemsets. We have

shown that these choices are optimal in that only required itemsets are enumerated and

that the cost of enumerating each itemset is �(1). Our experimental results showed that

there was a substantial gap between the performance of current mining algorithms and

that of the Oracle.

We also presented a new online mining algorithm called ARMOR (Association Rule

136

Chapter 7. Conclusions and Future Research 137

Mining based on ORacle), that was constructed with minimal changes to Oracle to result

in an online algorithm. ARMOR utilizes a new method of candidate generation that is

dynamic and incremental and is guaranteed to complete in two passes over the database.

Our experimental results demonstrate that ARMOR performs within a factor of two of

Oracle.

7.1.2 Issue 2: Conciseness of Results

In this thesis we proposed the generalized closed itemset framework (or g-closed itemset

framework) in order to manage the information overload produced as the output of fre-

quent itemset mining algorithms. This framework builds upon the original closed itemset

concept over which it provides an order of magnitude improvement. This is achieved by

relaxing the requirement for exact equality between the supports of itemsets and their

supersets. Instead, our framework accepts that the supports of two itemsets are equal if

the di�erence between their supports is within a user-speci�ed tolerance factor.

We also presented two algorithms { g-Apriori (based on the classical levelwise Apriori

algorithm) and g-ARMOR (based on our ARMOR algorithm) for mining the frequent

g-closed itemsets. g-Apriori utilizes a new method for generating frequent g-closed item-

sets from their generators. This new method avoids the costly additional pass that was

required in the A-Close algorithm for mining frequent closed itemsets. g-Apriori is shown

to perform signi�cantly better than Apriori solely because the frequent g-closed itemsets

are much fewer than the frequent itemsets. Finally, g-ARMOR was shown to perform over

an order of magnitude better than Apriori over all databases and support speci�cations

used in our experimental evaluation.

7.1.3 Issue 3: Re-mining

We considered the problem of incrementally mining association rules on market basket

databases that have been subjected to a signi�cant number of updates since their previous

mining exercise. Instead of mining the whole database again from scratch, we attempt to

use the previous mining results, that is, knowledge of the itemsets which are frequent in

Chapter 7. Conclusions and Future Research 138

the previous database, their negative border, and their associated supports, to eÆciently

identify the same information for the updated database.

We proposed a new algorithm called DELTA which is the result of a synthesis of

existing algorithms, designed to address each of their speci�c limitations. It guarantees

completion of mining in three passes over the increment and one pass over the previous

database. This compares favorably with previously proposed incremental algorithms like

FUP and TBAR wherein the number of passes is a function of the length of the longest

frequent itemset. Also, DELTA does not su�er from the candidate explosion problem

associated with the Borders algorithm owing to its better pruning strategy.

DELTA's design was extended to handle multi-support environments, an important

issue not previously addressed in the literature, at a cost of only one additional pass

over the current database. DELTA was also shown to be easily extendible to hierarchical

association rules, while maintaining its performance close to Oracle. No prior work exists

on extending incremental mining algorithms to handle hierarchical rules.

We showed empirically that for a variety of increment sizes, increment distributions

and support thresholds, DELTA performs signi�cantly better than the previously pro-

posed incremental algorithms { FUP, TBAR and Borders. In fact, for many workloads its

performance approached that of Oracle, which represents a lower bound on achievable per-

formance, indicating that DELTA is quite eÆcient in its candidate pruning process. Also,

while the TBAR and Borders algorithms were sensitive to skew in the data distribution,

DELTA was comparatively robust.

7.1.4 Overall Architecture

In this thesis, we have presented and evaluated three algorithms: ARMOR, g-ARMOR

and DELTA for eÆciently discovering association rules, generating concise rule summaries

and maintaining discovered rules, respectively. In summary, the overall scheme for BAR-

mining that we advocate is shown in Figure 7.1. The user inputs the database and the

following mining parameters { minimum support, minimum con�dence and the toler-

ance factor for support approximation. Next, the mining system applies the g-ARMOR

Chapter 7. Conclusions and Future Research 139

Concise Frequent Itemsets
+

Intermediate Results

Association Rules

USER

BAR−Mining System

First−Time Mining

Redundancy Removal

Incremental Mining
(Algorithm: DELTA)

(Algorithm: g−ARMOR)

(Algorithm: ARMOR)

DATABASE

Figure 7.1: Architecture for BAR-mining

algorithm to produce concise frequent itemsets, which are then used to form the asso-

ciation rule that are presented to the user. For future mining runs, the system applies

the DELTA algorithm, which utilizes previous mining results to eÆciently re-mine the

updated database.

7.2 Future Work

The work that we have presented in this thesis can be extended in the following ways:

1. Backend: From the point of view of building a commercial package for BAR-

mining, our implementation of mining algorithms needs to be extended to handle

commercial database backends. Since BAR-mining algorithms require only sequen-

tial access to the database, this extension is conceptually straight-forward. Various

Chapter 7. Conclusions and Future Research 140

alternative ways of integrating BAR-mining with relational database systems are

presented and evaluated in [STA98, RCIC99, NT99].

2. Frontend: The algorithms designed and evaluated in this thesis address the com-

putationally expensive step of BAR-mining, namely, to produce frequent itemsets.

A commercial BAR-mining system would need to utilize the output of this step to

produce association rules and present them to the end user using an intuitive and

appealing frontend.

3. Integration: In this thesis, we have provided techniques for eÆciently discover-

ing association rules, generating concise rule summaries and maintaining discovered

rules. We have also provided a sketch of how these various techniques could be com-

bined into a single framework (in Section 6.4 of Chapter 6). It would be necessary

to implement this integrated framework for a commercial package that utilizes the

techniques presented in this thesis.

References

[AA01] D. Agrawal and C. C. Aggarwal. On the design and quanti�cation of privacy

preserving data mining algorithms. In Proc. of ACM Principles of Database

Systems (PODS), 2001.

[AAP98] R. C. Agarwal, C. C. Aggarwal, and V. V. V. Prasad. Depth �rst generation

of long patterns. In Proc. of ACM SIGMOD Intl. Conf. on Management of

Data, June 1998.

[AAP01] R. C. Agarwal, C. C. Aggarwal, and V. V. V. Prasad. A tree projection algo-

rithm for generation of frequent itemsets. Parallel and Distributed Computing,

March 2001.

[ABE+99] M. Atallah, E. Bertino, A. Elmagarmid, M. Ibrahim, and V. Verykios. Dis-

closure limitation of sensitive rules. In Proc. of IEEE Knowledge and Data

Engineering Exchange Workshop, November 1999.

[AFLM99] Y. Aumann, R. Feldman, O. Lipsttat, and H. Mannila. Borders: An eÆ-

cient algorithm for association generation in dynamic databases. Journal of

Intelligent Information Systems, pages 61{73, April 1999.

[AIS93] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between

sets of items in large databases. In Proc. of ACM SIGMOD Intl. Conf. on

Management of Data, May 1993.

[AS94] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In

Proc. of Intl. Conf. on Very Large Databases (VLDB), September 1994.

141

References 142

[AS95] R. Agrawal and R. Srikant. Mining sequential patterns. In Proc. of Intl.

Conf. on Data Engineering (ICDE), March 1995.

[AS96] R. Agrawal and J. C. Shafer. Parallel mining of association rules. IEEE

Transactions on Knowledge and Data Eng., December 1996.

[AS00] R. Agrawal and R. Srikant. Privacy-preserving data mining. In Proc. of ACM

SIGMOD Intl. Conf. on Management of Data, May 2000.

[AY98] C. C. Aggarwal and P. S. Yu. Online generation of association rules. In Proc.

of Intl. Conf. on Data Engineering (ICDE), February 1998.

[BAG99] R. J. Bayardo, R. Agrawal, and D. Gunopulos. Constraint-based rule mining

in large, dense databases. In Proc. of Intl. Conf. on Data Engineering (ICDE),

February 1999.

[Bay98] R. J. Bayardo. EÆciently mining long patterns from databases. In Proc. of

ACM SIGMOD Intl. Conf. on Management of Data, June 1998.

[BB00] J-F. Boulicaut and A. Bykowski. Frequent closures as a concise representa-

tion for binary data mining. In Proc. of Paci�c-Asia Conf. on Knowledge

Discovery and Data Mining (PAKDD), April 2000.

[BBR00] J-F. Boulicaut, A. Bykowski, and C. Rigotti. Approximation of frequency

queries by means of free-sets. In Proc. of European Conf. on Principles and

Practice of Knowledge Discovery in Databases (PKDD), September 2000.

[BM98] C. L. Blake and C. J. Merz. UCI repository of machine learning databases.

http://www.ics.uci.edu/�mlearn/MLRepository. html, 1998.

[BMS97] S. Brin, R. Motwani, and C. Silverstein. Beyond market baskets: Generalizing

association rules to correlations. In Proc. of ACM SIGMOD Intl. Conf. on

Management of Data, May 1997.

References 143

[BMUT97] S. Brin, R. Motwani, J. Ullman, and S. Tsur. Dynamic itemset counting and

implication rules for market basket data. In Proc. of ACM SIGMOD Intl.

Conf. on Management of Data, May 1997.

[CHNW96] D. Cheung, J. Han, V. Ng, and C. Wong. Maintenance of discovered associ-

ation rules in large databases: An incremental updating technique. In Proc.

of Intl. Conf. on Data Engineering (ICDE), February 1996.

[CLK97] D. Cheung, S. Lee, and B. Kao. A general incremental technique for maintain-

ing discovered association rules. In Proc. of Intl. Conf. on Database Systems

for Advanced Applications (DASFAA), April 1997.

[com97] Eachmovie collaborative �ltering data set.

http://www.research.compaq.com/SRC/eachmovie/, 1997.

[CR73] S. Cook and R. Reckhow. Time bounded random access machines. Computer

and System Sciences, 7, 1973.

[CS02] L. Cristofor and D. Simovici. Generating an informative cover for association

rules. Technical report, University of Massachusetts at Boston, 2002.

[CSD98] S. Chakrabarti, S. Sarawagi, and B. Dom. Mining surprising patterns using

temporal description length. In Proc. of Intl. Conf. on Very Large Databases

(VLDB), September 1998.

[CVB96] D. Cheung, T. Vincent, and W. Benjamin. Maintenance of discovered knowl-

edge: A case in multi-level association rules. In Proc. of Intl. Conf. on Knowl-

edge Discovery and Data Mining (KDD), August 1996.

[DL98] G. Dong and J. Li. Interestingness of discovered association rules in terms

of neighborhood-based unexpectedness. In Proc. of Paci�c-Asia Conf. on

Knowledge Discovery and Data Mining (PAKDD), 1998.

References 144

[DVEB01] E. Dasseni, V. Verykios, A. Elmagarmid, and E. Bertino. Hiding association

rules by using con�dence and support. In Proc. of Intl. Information Hiding

Workshop, April 2001.

[EGSA02] A. Ev�mievski, J. Gehrke, R. Srikant, and R. Agrawal. Privacy preserving

mining of association rules. In Proc. of Intl. Conf. on Knowledge Discovery

and Data Mining (KDD), 2002.

[F+97] R. Feldman et al. EÆcient algorithms for discovering frequent sets in in-

cremental databases. In Proc. of SIGMOD Workshop on Research Issues in

Data Mining and Knowledge Discovery, May 1997.

[GRRS99] M. Garofalakis, S. Ramaswamy, R. Rastogi, and K. Shim. Of crawlers, por-

tals, mice, and men: Is there more to mining the web? In Proc. of ACM

SIGMOD Intl. Conf. on Management of Data, May 1999.

[GZ01] K. Gouda and M. J. Zaki. EÆciently mining maximal frequent itemsets. In

Proc. of Intl. Conf. on Data Mining (ICDM), November 2001.

[Hid99] C. Hidber. Online association rule mining. In Proc. of ACM SIGMOD Intl.

Conf. on Management of Data, June 1999.

[HK01] J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan

Kaufmann, 2001.

[HKK97] E-H. Han, G. Karypis, and V. Kumar. Scalable parallel data mining for

association rules. In Proc. of ACM SIGMOD Intl. Conf. on Management of

Data, May 1997.

[HKKM97] E. Han, G. Karypis, V. Kumar, and B. Mobasher. Clustering based on asso-

ciation rule hypergraphs. In Workshop on Research Issues on Data Mining

and Knowledge Discovery, August 1997.

References 145

[HPY00] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate

generation. In Proc. of ACM SIGMOD Intl. Conf. on Management of Data,

May 2000.

[KC02] M. Kantarcioglu and C. Clifton. Privacy-preserving distributed mining of

association rules on horizontally partitioned data. In Proc. of ACM SIGMOD

Workshop on Research Issues in Data Mining and Knowledge Discovery, 2002.

[KMR+94] M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivonen, and A. I. Verkamo.

Finding interesting rules from large sets of discovered association rules. In

Proc. of Intl. Conf. on Information and Knowledge Management (CIKM),

November 1994.

[LD98] J. Lin and M. H. Dunham. Mining association rules: Anti-skew algorithms.

In Proc. of Intl. Conf. on Data Engineering (ICDE), 1998.

[LHM98] B. Liu, W. Hsu, and Y. Ma. Integrating classi�cation and association rule

mining. In Proc. of Intl. Conf. on Knowledge Discovery and Data Mining

(KDD), August 1998.

[LHM99] B. Liu, W. Hsu, and Y. Ma. Pruning and summarizing the discovered associ-

ation rules. In Proc. of Intl. Conf. on Knowledge Discovery and Data Mining

(KDD), August 1999.

[LK98] D. Lin and Z. M. Kedem. Pincer-search: A new algorithm for discovering

the maximum frequent set. In Proc. of Intl. Conf. on Extending Database

Technology, March 1998.

[LP02] Y. Lindell and B. Pinkas. Privacy preserving data mining. Journal of Cryp-

tology, 15(3):177{206, 2002.

[MGKS97] H. Mannila, D. Gunopulos, R. Khardon, and S. Saluja. Data mining, hy-

pergraph transversals, and machine learning. In Proc. of ACM Principles of

Database Systems (PODS), 1997.

References 146

[MM02] G. Manku and R. Motwani. Approximate frequency counts over streaming

data. In Proc. of Intl. Conf. on Very Large Databases (VLDB), August 2002.

[MT97] H. Mannila and H. Toivonen. Levelwise search and borders of theories in

knowledge discovery. Technical report, University of Helsinki, 1997.

[NLHP98] R. T. Ng, L. V. S. Lakshmanan, J. Han, and A. Pang. Exploratory mining

and pruning optimizations of constrained association rules. In Proc. of ACM

SIGMOD Intl. Conf. on Management of Data, June 1998.

[NT99] S. Nestorov and S. Tsur. Integrating data mining with relational dbms: A

tightly-coupled approach. In Intl. Workshop on Next Generation Information

Technologies and Systems, July 1999.

[ORS98] B. Ozden, S. Ramaswamy, and A. Silberschatz. Cyclic association rules. In

Proc. of Intl. Conf. on Data Engineering (ICDE), February 1998.

[P+01] J. Pei et al. H-mine: Hyper-structure mining of frequent patterns in large

databases. In Proc. of Intl. Conf. on Data Mining (ICDM), December 2001.

[PBTL99] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent

closed itemsets for association rules. In Proc. of Intl. Conf. on Database

Theory (ICDT), January 1999.

[PCY95a] J. Park, M. Chen, and P. S. Yu. An e�ective hash-based algorithm for mining

association rules. In Proc. of ACM SIGMOD Intl. Conf. on Management of

Data, May 1995.

[PCY95b] J. S. Park, M. Chen, and P. S. Yu. An e�ective hash-based algorithm for min-

ing association rules. In Proc. of ACM SIGMOD Intl. Conf. on Management

of Data, November 1995.

[PH00] V. Pudi and J. Haritsa. Quantifying the utility of the past in mining large

databases. Information Systems, July 2000.

References 147

[PH02a] V. Pudi and J. Haritsa. How good are association-rule mining algorithms?

In Proc. of Intl. Conf. on Data Engineering (ICDE), February 2002.

[PH02b] V. Pudi and J. Haritsa. On the eÆciency of association-rule mining algo-

rithms. In Proc. of Paci�c-Asia Conf. on Knowledge Discovery and Data

Mining (PAKDD), May 2002.

[PH03a] V. Pudi and J. Haritsa. Generalized closed itemsets: A technique for improv-

ing the conciseness of rule covers. In Proc. of Intl. Conf. on Data Engineering

(ICDE), March 2003.

[PH03b] V. Pudi and J. Haritsa. Reducing rule covers with deterministic error bounds.

In Proc. of Paci�c-Asia Conf. on Knowledge Discovery and Data Mining

(PAKDD), May 2003.

[PZOL01] S. Parthasarathy, M. J. Zaki, M. Ogihara, and W. Li. Parallel data mining

for association rules on shared-memory systems. Knowledge and Information

Systems, February 2001.

[RCIC99] K. Rajamani, A. Cox, B. Iyer, and A. Chada. EÆcient mining for association

rules with relational database systems. In Proc. of Intl. Database Engineering

and Applications Symposium (IDEAS), August 1999.

[SA95] R. Srikant and R. Agrawal. Mining generalized association rules. In Proc. of

Intl. Conf. on Very Large Databases (VLDB), September 1995.

[SA96] R. Srikant and R. Agrawal. Mining quantitative association rules in large

relational tables. In Proc. of ACM SIGMOD Intl. Conf. on Management of

Data, June 1996.

[SAM99] D. K. Subramanian, V. S. Ananthanarayana, and M. N. Murty. Generation

of inter-database association rules based on semantic networks. Technical

Report IISc-CSA-1999-6, CSA, Indian Institute of Science, 1999.

References 148

[SHS+00] P. Shenoy, J. Haritsa, S. Sudarshan, G. Bhalotia, M. Bawa, and D. Shah.

Turbo-charging vertical mining of large databases. In Proc. of ACM SIGMOD

Intl. Conf. on Management of Data, May 2000.

[SLR99] D. Shah, L. V. S. Lakshmanan, and K. Ramamritham. Interestingness and

pruning of mined patterns. In Workshop on Research Issues on Data Mining

and Knowledge Discovery, 1999.

[SON95] A. Savasere, E. Omiecinski, and S. Navathe. An eÆcient algorithm for mining

association rules in large databases. In Proc. of Intl. Conf. on Very Large

Databases (VLDB), 1995.

[STA98] S. Sarawagi, S. Thomas, and R. Agrawal. Integrating association rule mining

with relational database systems: Alternatives and implications. In Proc. of

ACM SIGMOD Intl. Conf. on Management of Data, June 1998.

[SVA97] R. Srikant, Q. Vu, and R. Agrawal. Mining association rules with item con-

straints. In Proc. of Intl. Conf. on Knowledge Discovery and Data Mining

(KDD), August 1997.

[SVC01] Y. Saygin, V. Verykios, and C. Clifton. Using unknowns to prevent discovery

of association rules. In ACM SIGMOD Record, 2001.

[SVE02] Y. Saygin, V. Verykios, and A. Elmagarmid. Privacy preserving association

rule mining. In Research Issues in Data Engineering (RIDE), February 2002.

[T+97] S. Thomas et al. An eÆcient algorithm for the incremental updation of

association rules in large databases. In Proc. of Intl. Conf. on Knowledge

Discovery and Data Mining (KDD), August 1997.

[TK00] P-N. Tan and V. Kumar. Interestingness measures for association patterns :

A perspective. Technical report, University of Minnesota, 2000.

[TKR+95] H. Toivonen, M. Klemettinen, P. Ronkainen, K. Hatonen, and H. Mannila.

Pruning and grouping discovered association rules. In ECML-95 Workshop

References 149

on Statistics, Machine Learning and Knowledge Discovery in Databases, April

1995.

[Toi96] H. Toivonen. Sampling large databases for association rules. In Proc. of Intl.

Conf. on Very Large Databases (VLDB), 1996.

[TPBL00] R. Taouil, N. Pasquier, Y. Bastide, and L. Lakhal. Mining basis for association

rules using closed sets. In Proc. of Intl. Conf. on Data Engineering (ICDE),

February 2000.

[VC02] J. Vaidya and C. Clifton. Privacy preserving association rule mining in ver-

tically partitioned data. In Proc. of Intl. Conf. on Knowledge Discovery and

Data Mining (KDD), 2002.

[XD99] Y. Xiao and M. H. Dunham. Considering main memory in mining association

rules. In Proc. of Intl. Conf. on Data Warehousing and Knowledge Discovery

(DAWAK), 1999.

[Zak00] M. J. Zaki. Generating non-redundant association rules. In Proc. of Intl.

Conf. on Knowledge Discovery and Data Mining (KDD), August 2000.

[ZG01] M. J. Zaki and K. Gouda. Fast vertical mining using di�sets. Technical

Report 01-1, Rensselaer Polytechnic Institute, 2001.

[ZH02] M. J. Zaki and C. Hsiao. Charm: An eÆcient algorithm for closed itemset

mining. In Proc. of SIAM Intl. Conf. on Data Mining, 2002.

[ZKM01] Z. Zheng, R. Kohavi, and L. Mason. Real world performance of association

rule algorithms. In Proc. of Intl. Conf. on Knowledge Discovery and Data

Mining (KDD), August 2001.

[ZPOL97a] M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. New algorithms for fast

discovery of association rules. In Proc. of Intl. Conf. on Knowledge Discovery

and Data Mining (KDD), August 1997.

References 150

[ZPOL97b] M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. Parallel algorithms for

discovery of association rules. Data Mining and Knowledge Discovery: An

International Journal (DMKD), December 1997.

