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Abstract

Estimated size of database for UIDAI’s project[9] is 1.2 billion rows, larger than the

current largest fingerprint based biometric database. To simulate and analyze different

algorithm and methods that can be used to establish a complete UID system, a database

of similar size is required. Our motive is to generate large database of synthetic finger-

prints using parametric modeling of fingerprints [10][1][2] and querying this database us-

ing genuine and impostor query-fingerprints with fast and efficient near-neighbors search

methods in order to estimate query-time and accuracy of such system.

Like other biometric databases our synthetic fingerprint database also suffers curse

of dimensionality. Several different features associated with a fingerprint are represented

as vectors in high dimensional spaces. Since fingerprint databases are massive in size

and high-dimensional in nature, a really fast near-neighbors algorithm is required to find

most similar fingerprints. Approximation based near-neighbors search methods provide

time-accuracy trade-off. Storage and retrieval strategy adapted in this work is based on

such a well known method, Locality Sensitive Hashing [11].
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Chapter 1

Introduction

Fingerprints are most widely used biometric feature for identification and authentication.

There are several efficient methods for fingerprint recognition and continuous research is

going on to make it more accurate. All such methods are trained and tested with rela-

tively small databases. Using small databases for training makes the accuracy statistics

valid only for databases of similar size. So they can not be generalized for a large finger-

print database. Large fingerprint databases are not easily available due to public-security

issues. As alternative to original large fingerprint databases, synthetic large fingerprint

databases can be created using SFinGe[2] approach.

1.1 Synthetic Fingerprint Database

In our implementation of SFinGe algorithm we fixed several parameter for fingerprint

modeling after inspecting several real fingerprints (details in Section 2). There are only

few small databases of real fingerprints are available. So in-spite of Fingerprints gen-

erated by SFinGe approach being very realistic, an in-depth analysis is necessary to

understand if it can be a valid substitute for real fingerprints for analyzing fingerprint

recognition algorithms. For validation check, we have simulated fingerprint matching al-

gorithms over synthetic database and compare statistics of results, such as distributions

of matching scores and similarity-measures /distances, genuine/impostor-distributions,

1



Chapter 1. Introduction 2

FAR/FRR curves with those of simulation over real databases. These statistics were

used to ’tune’ our synthetic database to ensure its validity for analysis, training and

testing of matching algorithms.

We have generated large fingerprint database having 10 million fingerprints within

couple of weeks. For our work we have used database of 1 million fingerprints.

1.2 Fingerprint Recognition

Fingerprint recognition algorithms rely on specific features extracted from fingerprint

image. Few most frequently used features in fingerprint recognition systems are Finger-

Code[6] and Minutiae. There are several types of FingerCode features based on their

dimensionality. FingerCode feature, we are using in our work, is a 192 dimensional vec-

tor. We have referenced these as FC192. FingerCode is based on global characteristics

of fingerprints as texture and ridge curvature[3]. So this feature can be used to narrow

down the search space according to global characteristics of query fingerprint.

Fingerprint matching for the purpose of identification involves searching most similar

fingerprint in the database. It is a near-neighbors search problem which involves search-

ing the data-object nearest to query object, where all objects are represented as points

in high-dimensional feature space using Euclidean distance function. For our Fingerprint

database high dimensionality of feature space makes it difficult to locate nearest finger-

print. Several indexing methods as R-tree and KD-tree also do not perform well for high

dimension and they also suffer from high maintenance overhead [11].

It has been observed that for several cases getting the exact near neighbors is not

necessary[11]. Even an approximately chosen near neighbors will be sufficient to solve the

problem. In fact in high dimensional space the target point is much closer to the query

point than other points. In such a scenario an approximately chosen near neighbors can

work well with an accuracy similar to exact near neighbor.

Searching exact near neighbors requires more time than searching approximated near

neighbors because many of such algorithms include calculating distance of each point
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from query fingerprint. On the other hand hashing based approximate near neighbors

searching method, LSH, pre-processes all data points in a way such that when a query

point is given it returns the similar fingerprints quickly[12] (details in Section 4.1).



Chapter 2

Generation of Synthetic Fingerprint

Database

2.1 Knowing Fingerprints

A fingerprint impression represents outer layer of skin of a finger. At macroscopic level

fingerprint appears to be composed of several curved lines known as ridge lines. The

region between two adjacent ridges is called valley.

Figure 2.1: Macro-singularities and micro-singularities of a fingerprint

4



Chapter 2. Generation of Synthetic Fingerprint Database 5

Ridges lines generally run smoothly in parallel but at one or more areas they exhibit

special patterns such as high curvature and merging of ridge-flows from three directions.

Points where ridges have highest curvature are known as core points. Core point is the

point of maximum curvature on the inner-most curved ridge in the area of high curva-

ture. The points with confluent ridge-flows known as delta points [3]. These points,

cores and deltas, are called macro-singularities (Figure 2.1).

2.1.1 Global Features

Macro-singularities are important to identify global features, such as features based on

ridge-flow pattern of fingerprints. The ridge-line flow can be effectively described by a

structure called directional map. It is a matrix (Figure 2.2(a)) whose elements denote

the orientation of the tangent to the ridge lines at corresponding points of fingerprint

image .

The ridge line density can be represented using a density map (Figure 2.2(b)). The

local ridge frequency or density fx,y at point [x, y] is the number of ridges per unit

length along a hypothetical segment centered at [x, y] and orthogonal to the local ridge

orientation θx,y [3].

(a) Orientation map (b) Density map (c) Ridge pattern

Figure 2.2: Global features of fingerprint
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2.1.2 Local Features

Minutiae points are the irregularities and discontinuities in the ridge flow pattern.

The two most important types of irregularities are ridge endings or terminations and

ridge division or bifurcations (Figure 2.1). Ridge endings are the points where the

ridge curve terminates, and bifurcations are where a ridge splits from a ridge to two

ridges and creates a Y-junction. Minutiae points are also called micro-singularities

and these singularity points are local feature of fingerprints.

2.2 Fingerprints Classification

Fingerprints are usually partitioned into five main classes (Figure 2.3) according to the

presence and position of their macro-singularities [3].

Arch in this type fingerprints do not have any macro singularity point.

Tented arch contains one pair of core and delta points. The axis of symmetry passes

through the delta point. Delta point may be replaced by a delta region in order to handle

error in calculating symmetry axis.

Left loop contains one pair of core and delta points. The delta point is on right side of

the axis of symmetry.

Right loop contains one pair of core and delta points. The delta point is on left

side of the axis of symmetry.

Whorl contains two pairs of core and delta points.
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(a) Arch (b) Tented arch (c) Left loop

(d) Right loop (e) Whorl

Figure 2.3: Generation of fingerprint impression

2.3 Fingerprints Generation

SFinGe is a method for generating synthetic fingerprints on the basis of mathematical

models that describe the main features of real fingerprints. It is only available application

for synthetic fingerprint generation and it is very popular in biometric community.

We have implemented SFinGe method with an aim to generate large fingerprint

database. The synthetic images are randomly generated according to given parameters

based on fingerprint features. The approach is able to generate very realistic fingerprints,

which can be useful for performance evaluation and testing of fingerprint-based systems.

The basic approach of SFinGe (Figure 2.4) method includes:

1 Generation of a directional map and density map separately. These features are

combined to obtain a fingerprint pattern using a specific filtering procedure.

2 Generation of fingerprint shape (mask). Master-fingerprint is finally made more

realistic by masking it with fingerprint-shape and adding fingerprint specific noises.
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Figure 2.4: The SFinGe approach

Step 2 can be applied several times separately on the fingerprint generated in first

step to generate different impression of same fingerprint.

2.3.1 Generation of master fingerprint

A master fingerprint is a synthetic fingerprint with unique ridge-flow pattern without

any noise. Different parameters used in generation process are described in following

subsections.

Orientation field

Sherlock and Monroe [4] proposed a Zero-pole Model for orientation field estimation that

allows a directional map (Figure 2.5) to be calculated from the position of the core and

delta points only.

In this model, core is considered as zero, and delta is considered as pole in the complex

plane and orientation at any point z in complex plane is given by:

o(z) =

[
o0 +

1

2

(
n∑
j=1

arg(z − zdj)−
m∑
j=1

arg(z − zcj)

)]

where zcj is jth core-singularity and zdj is jth delta-singularity in complex plane and

o0 is a constant.
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Figure 2.5: Orientation field using Sherlock and Monroe model

Vizcaya and Gerhardt [5] proposed a variant of the Sherlock and Monro model that

introduces modification in orientation field and adds more degrees of freedom to cope

with the variations in orientation field for different fingerprint. The orientation θ at each

point z is calculated as

θ =
1

2

[
nd∑
i=1

gdsi(arg(z − dsi))−
nl∑
i=1

gcsi(arg(z − csi))

]
where functions gk(α), defined for different delta and core singularity k ∈ {ds1, ds2, ...., dsnd

, cs1, cs2, ...., csnl
},

are piecewise linear functions for local correction of the orientation field with respect to

the value given by the Sherlock and Monroe model.

Each function gk(α) is defined by the set of values {gk(αi)|i = 0, 1, 2, .., L− 1} where

each value is the amount of correction of the orientation image at a given angle.

gk(α) = gk(αi) +
α− αi
2π/L

(gk(αi+1)− gk(αi))

for αi ≤ α ≤ αi+1, αi = −π + 2πi
L



Chapter 2. Generation of Synthetic Fingerprint Database 10

(a) Orientation field correction

(b) Different fingerprints with different modification in Sherlock and
Monroe orientation field

Figure 2.6: Orientation field modification
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Mapping from interval [αi , αi+1] to [gk(αi) , gk(αi+1)] using a linear interpolation func-

tion entirely depends on k, where k is a specific singularity present in fingerprint. So

modification for any interval must be defined separately for different singularity points.

Since fingerprint classes are defined on the basis of position and number of singularities,

we will have to define separate piecewise linear functions for every class depending upon

singularity present in that class.

From the analysis of real fingerprints it is found that L = 8 is a reasonable value[5].

Problem is to find out gk(αi) for αi (i ∈ {0, 1, ....7}) for each fingerprint class and for

each singularity k present in that class. Values gk(αi) are also called control points, as

these values guide the whole modification.

In our generation process in place of using fixed value gk(αi) we have fixed a range

of [g′
k(αi) , g′′

k(αi)] for every αi in order to keep orientation more randomized for every

fingerprint class. We have fixed these ranges after analysis of real fingerprints of different

fingerprint classes. An example of correction functions for core-point singularity of right

loop is given in Figure 2.6 shows the modification in orientation field using correction

parameters.

Density map

The local ridge density fx,y at point (x, y) is the number of ridges per unit length along a

hypothetical line segment centered at (x, y) and orthogonal to the local ridge orientation

θx,y [3].

Analyzing real fingerprint images, it is observed [2] that quite often, in the areas

above the upper most loop and below the bottom most delta, the ridge density is lower

and the ridges are thicker in these areas.

We are using density maps which are based on the thickness of the ridges. Generating

a density map of size 400x275 requires 600 milliseconds. It is one of the costlier parts in

whole generation process . To speed up our generation process we have generated 2000

random density maps (Figure 2.7) before-hand. During generation process we have used

a random combination of two or three density maps. This way we are able to generate
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Figure 2.7: Density maps

total 2000C2 +2000 C3 different density-maps.

Ridge generation : Filtering

Initial image is created by randomly placing few black points into a white image as noise.

By iteratively enhancing this initial image through Gabour filters [1][4], ridge pattern

are created. For every filtering pass each point is filtered using a different Gabour filter

based on density and orientation values at that point (Figure 2.8(b)). Iteratively applying

striped filters to random images will produce striped images. This method generates very

realistic minutiae at random positions because of different densities at different point.

Due to change in orientation of filter, real-like ridge patterns are generated (Figure

2.8(a)).

For filtering an image with Gabour filter, filter has to be calculated on each point of

image. At any point, Gabour filter used to filter that point depends on orientation and

density value at that point. Calculating filter for every pixel is costly. We have used

fixed number of discrete values for orientation and density map to reduce total number

of different Gabour filter and a matrix for Gabour filters can be calculated before-hand.

We have used a set of 18000 Gabour filters in our generation process for 100 different

density values and 180 different orientations.
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(a) Master fingerprint with orientation field and density map

(b) A sample Gabour Filter-bank

Figure 2.8: Generation of master fingerprint

2.3.2 Generating realistic fingerprints impression using fingerprint-

specific noise

For each fingerprint impression (Figure 2.9(e)) to be generated from a given master

fingerprint, following steps are performed sequentially[4][7]:

Distortion

Due to different placement and non-orthogonal pressure of finger on sensor surface, dif-

ferent skin deformations (Figure 2.9(b)) are introduced in different impressions of same

finger. A mathematical model was given in[1][8] to generate this deformation.

Noise generation

We have divided fingerprint noise in two parts:
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• Fixed noise : It is the noise (Figure 2.9(a)) that we have associated with irregu-

larity of the ridges, sweat pores and rough texture of fingerprint surface, which are

fixed for a fingerprint.

• Random noise : This noise (Figure 2.9(c)) depends on environmental factor such

as non uniform contact and pressure of fingerprint on the surface of capturing

device.

Fingerprint mask

Depending on the finger size, position, and pressure against the fingerprint capturing de-

vice, acquired fingerprint images have different shapes (Figure 2.9(d)). A simple method

for the fingerprint area has been introduced in [5]. It defines a model to define external

shape or fingerprint-mask, based on four elliptical arcs and a rectangle.

(a) Fixed Noise (b) Distortion (c) Random Noise

(d) Mask (e) Impression

Figure 2.9: Generation of fingerprint impression
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2.3.3 Validation of synthetic fingerprints

We have simulated minutiae based matching algorithms over real fingerprint database

and synthetically generated fingerprint database. After analyzing the impostor-distribution

for real (Figure 2.10(a)) and synthetic (Figure 2.10(b)) fingerprint databases it was found

that distribution of synthetic fingerprints and real fingerprints are same in feature space.

We have also analyzed the distribution of distances among synthetic and real fingerprints

(Figure 2.10(c)). We found it similar to the impostor-distribution of real database and

synthetic database. It means not only their distributions are same but they are also

homogeneously located in feature space.

(a) Distributions of scores for real fingerprints (b) Distributions of scores for synthetic fingerprints

(c) Distributions of scores between real and syn-
thetic fingerprints

Figure 2.10: Distributions of genuine and impostor scores for different databases
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We have also studied FAR and FAR curves for synthetic fingerprints databases and

real fingerprint databases. Their accuracy indicators as CER (Common Error Rate) ,

zeroFAR (Zero False Acceptance Rate), zeroFRR (Zero False Rejection Rate) are almost

the same (Figures 2.11(a) anf 2.11(b)). Performance of our synthetic database is similar

to real fingerprint databases and it can be used to calculate accuracy estimates.

(a) FAR curves for different databases

(b) FRR curves for different databases

Figure 2.11: FAR and FRR curves for different databases
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2.3.4 Generation Speed

Apart from generating very realistic fingerprint, using parameters determined by ana-

lyzing real fingerprints, our main effort invested in synthetic fingerprint generation was

to speed up the generation process. The implementation of actual SFinGe algorithm

by its authors is available for trail. The fastest generated fingerprint using trail version

of SFinGe takes more than 3 seconds to be generated. Our implementation on average

takes 400 millisecond to generate a fingerprint impression and 300 milliseconds to add

distortion-noise to it. It was claimed in [3] that full version of SFinGe can generate

a database of 100,000 fingerprints (10,000 fingers, 10 impressions per finger), using 10

3GHz PCs in a network, in less than 2 Hr. Estimated time for generating same amount

of fingerprint with similar hardware scenario using our implementation is 1 Hr.
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Fingerprint Feature

3.1 FingerCode

We have used FingerCode[6] to measure similarity between any two fingerprints. In

this approach a circular area from fingerprint is taken as region of interest centered at

core point. This circular disk is divided in to several tracks and tracks are divided in

to several sectors. The ROI is filtered with eight different Gabour filters. Standard

deviation of gray values in all sectors for each of eight filtered images are computed.

Final feature vector is consist of standard deviation in all sectors of each of the filtered

image. Matching-score is calculated using Euclidean distance between the corresponding

FingerCode.

Figure 3.1: FingerCode

18
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We are using 3 tracks, each having 8 sectors, totaling 24 sectors for each of the filtered

image; it results in 192 dimensional feature vector i.e. FC192 (Figure 3.1).

For retrieval of target fingerprint from databases corresponding to any query finger-

print we have used LSH technique. For storing fingerprints in database, their FC192

features are preprocessed with hashing technique used in LSH and these hash values are

stored along with every fingerprint in database.
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Near-Neighbors Search and Storage

Strategy

4.1 Near-Neighbors Search Strategy

The nearest neighbor problem includes, given a point set P of n objects search the near-

est point in P for given query point q. This problem generalizes to K-near neighbors,

if k points in P which are nearest to q are required as result and generalizes to R-near

neighbors, if all points within distance R from point q are required as result.

In approximation based near neighbors algorithm, a point is returned as result if its

distance from the query is at most c times the distance from the query to its nearest

neighbor, c is the approximation factor. It is known as c-approximate near neighbors

problem. This can also be generalized to c-approximate k-near neighbor problem and

c-approximate R-near neighbor problem.

An efficient approximation algorithm can be used to get exact near neighbors by

listing all approximate k-near neighbors or R-near neighbors for appropriate k or R and

selecting the nearest k neighbors or neighbors within radius R respectively [12]. The

same idea is being used in E2LSH, an application based on Locality Sensitive Hashing.

20



Chapter 4. Near-Neighbors Search and Storage Strategy 21

The original locality sensitive hashing scheme basically solves c-approximate R-near

neighbors problem. E2LSH uses basic LSH scheme to get all approximated near neighbors

and then drops the near neighbors whose distances from query points is more than R, in

order to solve randomize version of R-near neighbors problem. It is called (R, 1− δ)-near

neighbors problem. In this case each point p satisfying ||p − q|| ≤ R has to be reported

with a probability at least (1 − δ). δ is the probability that a R-near neighbor is not

reported.

4.1.1 Locality sensitive hashing

Locality-Sensitive Hashing[11] is main memory based algorithms for nearest neighbor

search. The main idea is to hash the points using several hashing functions to ensure

that for each hash function the probability of collision is much higher for points which

are close to each other than for those points which are far away[12][13]. The neighbors

of query points can be easily retrieved by determining the bucket containing query points.

Figure 4.1: Clustering using gi, i ∈ {1, 2, ...., L} as cluster identifiers
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The LSH relies on the locality sensitive hash functions[12]. A family H = {h : S →

U} is called locality sensitive if for any q, the function p(t) = PrH[h(q) = h(v) : ||q−v|| =

t] is strictly decreasing in t. That is, probability of collision of points q and v is decreasing

with distance between them.

The LSH scheme uses Cauchy or Gaussian distribution in order to define Locality

sensitive hash function[13][14]. Each function h(v) = Rd → Z maps a d − dimensional

vector v in to integer. Every hash function in this family is defined by

h = ba.v + b

w
c

. Where a is a d-dimensional vector with entries chosen independently from a Cauchy

or Gaussian distribution and b is a real number chosen uniformly from the range [0, w].

It was suggested in [13] that w = 4 value provides good result.

Probability of collision for given hash functions, for points which are nearer in d-

dimensional space is higher than the probability of collision among points which are far

apart. To amplify this effect several such projections functions are used in E2LSH to

increase the gap between probabilities of collision for nearer points and distantly located

points.

A function g is defined[12] comprising of K different locality sensitive hash function

as

g =< h1, h2, ....hK >

g : Rd → Zk

All points for which vector < h1, h2, ....hK > is similar are in neighborhood in d-

dimensional space with a high probability and they define a cluster which is identified

by its cluster-id given by vector < h1(v), h2(v), ....hK(v) > for any point v in that cluster.
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In order to ensure retrieval of all required near neighbors, L such functions are used.

G =< g1, g2, ....gL >

For every gi, i ∈ {1, 2, ...., L}, all points are clustered according to projection function

gi =< hi1, h
i
2, ..h

i
K > separately (Figure 4.1).

Every data-point is associated with L different clusters. The near neighbor output is

the union of all L clusters associated with query point.

4.2 Storage

For each random projection function gi : Rd → ZK , clusters are created and maintained

separately. Clusters are identified by a K-dimensional vector, cluster − idi given by

< hi1, h
i
2, ..h

i
K >

For the sake of simplicity and to speed up the retrieval of near neighbors, this K-

dimensional id corresponding to each cluster is converted in to a single control-value

cv using a separate hash function hcv. For this such a hash function is used which en-

sures that two different K-dimensional ids corresponding to different clusters do not get

hashed to same control value.

This way each cluster associated with projection function gi is identified by single

number cvi in place of a K-dimensional vector, and every data point has 1D control-value

cvi in place of K-dimensional id cluster − idi associated with each gi, i ∈ {1, 2, ...., L}

(Figure 4.2(a)).

In our storage scheme these L control-values cv1, cv2, ...., cvL corresponding to each

point are stored in a table in database (Figure 4.2(b)) and separate B-Tree index is

created on every control-value column.
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(a) Clustering using hcv(gi), i ∈ {1, 2, ...., L} as cluster
identifiers

(b) Database storage scheme using hcv(gi), i ∈
{1, 2, ...., L} as columns

Figure 4.2: Database storage scheme using LSH



Chapter 4. Near-Neighbors Search and Storage Strategy 25

Table schema:

uid(id : INTEGER, cv1 : NUMERIC,

cv2 : NUMERIC,

............,

cvL : NUMERIC )

For any query point q SQL query will be

SELECT id FROM uid WHERE cv1 = hcv(g1(q)) OR

cv2 = hcv(g2(q)) OR
............ OR

cvL = hcv(gL(q)) )

4.3 Selection of K and L

To use LSH scheme parameters K and L have to be specified. Given search radius R

and success probability (1− δ), E2LSH empirically calculates values of K and L.

Parameter L depends on the accuracy required i.e. (1 − δ). For higher accuracy

larger value of L is required which means more no of buckets are searched in order to get

near-neighbors. Higher value of K will take more time to compute random projection of

a given point. A larger value of K also means data points are being embedded in higher

dimension (K < d) for each random projection function gi : Rd → ZK , i ∈ {1, 2, ...., L}.

It will result in larger number of clusters with lesser points in each cluster. To ensure

given accuracy, larger value of L is required because of smaller size of clusters.

E2LSH is a main memory based solution to R-near neighbor problem. For each of

g1, g2, ....gL all points are hashed separately. E2LSH maintains separate hash-data struc-

ture for each of gi. It has to save L such data structures in memory. So apart from

accuracy, main criteria to decide K and L are memory and time.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.3: Success-rates for different query-sets
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Figure 4.4: Penetration-rates for different values of K and L

Figure 4.5: Values of K for different noise-levels

We are using projection scheme (hashing scheme) of E2LSH package, but with a dif-

ferent storage scheme. We are storing control-values associated with all data points in

to database. So main memory isn’t a restriction for us to decide values of K and L. In

fact we can go for any large value of L because L is major factor in deciding accuracy.

Since each of the control-value column can be searched independently, we can select an

appropriate L′ < L at query-time. This is more important because for different level of

noises we need different values of L′ to ensure required accuracy.

We are first calculating value of K empirically. Initially L is taken as a large value.
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We looked for such a value of K for which we get maximum accuracy with minimum

size of the near-neighbors result (penetration) for the given maximum acceptable level

of noise.

For this experiment we used a database of 10,000 synthetic fingerprints and 8 query-

sets, QNi, i ∈ {1, 2, ..., 8}, each having 1000 genuine query-fingerprints of different pre-

specified noise levels, Ni, i ∈ {1, 2, ..., 8}. For each query-set (Figure 4.3) we selected

highest value of K in maximum success rate region as KNi to ensure least possible pen-

etration because penetration rate reduces for higher value of K (Figure 4.4). For each

query-set QNi, i ∈ {1, 2, ..., 8}, we decided value of KNi, which represent optimal value

of K for a system where noise level Ni is considered to be maximum acceptable noise

(Figure 4.5).

Next we have created a large database uid N8 with one million fingerprints with

K = KN8 decided using query-set QN8 considering N8 as maximum acceptable noise

level. We fixed large value of L to be 500 due to the limit over the length of row in

postgres. But this is not a restriction over L as we can store each column separately

to store a really large L. We used same eight query-sets to calculate values of L′ for

different noise levels. Even though maximum acceptable noise level is fixed, we tried to

fix L′ for different noise level (noise levels less than N8) in order to save the efforts of

scanning irrelevant points. To decide L′ for a noise level we look for number of control-

value columns which are sufficient to scan in order to give maximum accuracy for that

particular noise level (Figure 4.6). Even this test can be run for higher noise level to see

how much more noise the system can handle easily, given it was specified to accept a

maximum noise of level N8.

Similar analysis were done for noise level N4 (Figure 4.7) and N2 (Figure 4.8) to

determine L′.
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(a)

(b)

(c) (d)

Figure 4.6: Success-rates, values of L′ and penetration-rates for different noise levels and query-
time for noise level N8 using KN8
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(a)

(b)

(c) (d)

Figure 4.7: Success-rates, values of L′ and penetration-rates for different noise levels and query-
time for noise level N4 using KN4
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(a)

(b)

(c) (d)

Figure 4.8: Success-rates, values of L′ and penetration-rates for different noise levels and query-
time for noise level N2 using KN2
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4.4 Reducing Penetration Rate in LSH Scheme

Distribution of points across different buckets is not uniform. There are some very large

clusters created by LSH scheme. Since actual target point is very near to query point

compare to other irrelevant points, a large cluster will add more irrelevant points. To

observe the importance of these bulky clusters we ran some queries to analyze size of

different L clusters of a query.

Bulky clusters are neither associated with any special category of fingerprints nor they

are associated with any particular projection function i.e control-value column. Bulky

cluster mark their presence equally for both kind of query fingerprint, those for which

cluster-sizes are in general larger for different gi, and those for which cluster sizes for dif-

ferent gi is smaller. It can be concluded that these are not the bulky cluster only who play

major role in bringing target fingerprint in to selection. So these clusters can be removed.

Probability of a cluster containing target point depends on size of the cluster, so

removing bulky cluster means we are left with clusters with lower probability of point

in it. It will increase the required number of columns L’ to successfully search a query

point.

As we are using large value of L and practically used L′ is lesser than L so larger

cluster can be replaced by other cluster. This can be done by black-listing all bulky

clusters and ignoring them at query time and using other columns in place of them as

large choices for columns are available (L=500).

Removing bulky cluster will make penetration rate more predictable for a query

fingerprint labeled with noise.

Removing these clusters also decreases penetration rate (Figure 4.9) as every cluster

adds some irrelevant points and the size criteria restricts every cluster to add only limited

number or irrelevant points . Reduced penetration rate will result in reduced query-time

(Figure 4.10).
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(a) Success-rates using cluster-size less than µ+ 2σ

(b) Success-rates using cluster-size less than µ+ σ

(c) Penetration-rates for different cluster-size constraints

Figure 4.9: Success-rates and penetration-rates for KN8
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(a) Values of L′ and corresponding penetration-
rates for different noise levels

(b) Query time for noise level N8

Figure 4.10: Values of L′, penetration-rates and query-time for KN8
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(a) Success-rates using cluster-size less than µ+ 2σ

(b) Success-rates using cluster-size less than µ+ σ

(c) Penetration-rates for different cluster-size constraints

Figure 4.11: Success-rates and penetration-rates for KN4
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(a) Values of L′ and corresponding penetration-
rates for different noise levels

(b) Query time for noise level N4

Figure 4.12: Values of L′, penetration-rates and query-time for KN4
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(a) Success-rates using cluster-size less than µ+ 2σ

(b) Success-rates using cluster-size less than µ+ σ

(c) Penetration-rates for different cluster-size constraints

Figure 4.13: Success-rates and penetration-rates for KN2
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(a) Values of L′ and corresponding penetration-
rates for different noise levels

(b) Query time for noise level N2

Figure 4.14: Values of L′, penetration-rates and query-time for KN2
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Same experiment was done with databases uid N4 and uid N2 using K = KN4 and

K = KN2 respectively in order to look at the least possible penetration rate and query

time. Although for KN4 and KN2 the cluster sizes are itself small, but removing bulky

cluster can still decrease the penetration rates to great extent (Figures 4.11 and 4.13)

and reduced query times (Figures 4.12 and 4.14).

4.5 Dropping Irrelevant Near-neighbors

LSH gives approximated near neighbors search result by projecting data-points and query

point in to lower dimension space. This result includes many neighbors which were in

fact far apart in original high dimensional space, but they were selected as near neigh-

bors of query point on the basis of their projection in lower dimension space by LSH

scheme. E2LSH package returns R-near neighbors from approximated near neighbors by

removing all neighbors which are at a distance more than radius R.

(a) Distribution of genuine score for noise levels N2, N4,
N8

(b) FRR curve for noise levels N2, N4, N8

Figure 4.15: Genuine distributions and FRR curves for different noise levels

In our near-neighbors search approach we have used tzeroFRR as search radius to drop

irrelevant near-neighbors. For any sample query set of genuine fingerprints, tzeroFRR is

distance threshold corresponding to FRR = 0. It ensures that no genuine fingerprint in
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Figure 4.16: tzeroFRR for noise levels N2, N4 and N8

that sample will be rejected if we use tzeroFRR as search radius. Genuine distributions

and FRR curves for different noise levels are shown in Figures 4.15(a) and 4.15(b) re-

spectively. We observed that FRR curve changes with noise levels but for a fix noise

level FRR curve does not depend on sample size. tzeroFRR found to be almost constant

for different sample sizes.

We fixed tN2
zeroFRR, tN4

zeroFRR and tN8
zeroFRR as search radius for noise levels N2,N4 and

N8 respectively (Figure 4.16). We dropped all neighbors outside search radius specified.

It reduced numbers of near-neighbors for brute force search using more accurate finger-

print matching algorithms such as minutiae-matching.

Figure 4.17 shows reduced near-neighbors and time taken in calculating distances of

all approximated near neighbors with query point in d-dimension for databases uid N8,

uid N4 and uid N2.
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(a) For database uid N8

(b) For database uid N4

(c) For database uid N2

Figure 4.17: Reduced near-neighbors and time taken in distance calculation
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Conclusion

Although LSH is very efficient in searching approximated near-neighbors but there is no

restriction over the size of result. We have reduced the penetration rates to a large extent

by removing bulky cluster and providing large choices of clusters. It has reduced time

taken in near-neighbors search.

We also experimented with several small databases to observe the behavior of LSH

scheme with increase in size. It is observed that with increase in size of database, total

number of clusters and average cluster-size both increase sub-linearly. Since penetration

rate depends only on the sizes of individual clusters, approximated near-neighbor result

size also increases sub-linearly with database size.

For scheme used for N8, cluster size increases faster than increase in number of av-

erage cluster (Figures 5.1(a)), while in lsh schemes used for N4 and N2, cluster size

increases slower than increase in number of average cluster (Figures 5.2(a)). So approx-

imated near-neighbor result size increases faster in LSH scheme for N8 than N4 or N2.

Which means penetration rates decreases faster for lsh scheme for N4 and N2 than in

N8 (Figures 5.1(b) and 5.2(b)).

42
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(a) Cluster-sizes for KN8

(b) Average number of clusters for KN8

Figure 5.1: Growth in size and count of clusters for KN8
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(a) Cluster-sizes for KN4

(b) Average number of clusters for KN4

Figure 5.2: Growth in size and count of clusters for KN4
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Our fingerprint recognition based experiments were simulated on 1 million finger-

prints. Using a single dedicated machine, approximated near-neighbors can be obtained

in around 1 second for noise level N4 for database of size 1 million. So if we deploy

1000 such systems, we can perform a near-neighbor search for a database of size 1 billion

within one second.

In our LSH based storage and querying strategy, query can by divided over several

computing units. So search query can be divided both vertically and horizontally.

In vertical division of fingerprint query, each column cvi can be searched individually.

In a single column there are duplicated values, fingerprints having duplicate values

in any column are supposed to be in neighborhood. Each unique value in any column

is independent of other unique values. Besides that, all the fingerprints in our database

is properly labeled with Henry classes. So for horizontal division of fingerprint query,

every column can be divided based on unique values in that columns and Henry classes.

Searching approximated near neighbors for a fingerprint with noise N8 takes on aver-

age 10 seconds. We ran vertically divided queries separately for each column. Searching

for approximated near neighbors using a single column takes on average 300 millisec-

onds for fingerprint of noise level N8 (Figure 4.10). So even for higher noise levels

approximated near-neighbors result can be given within 1 second using more number of

machines.
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