CHAPTER 7

Design Theory
for
Relational Databases

Our study of database scheme desien in Chapter 2 drew heavily on o1 intuition
vegarding wiiut was going on in tibe ‘real world,” and how that world could®
best be reflected by the database scheme. In most models, there is little more "~
to design than that; we must understand the options and their implications
regarding efficiency of implementation, as was discussed in Chapter 6, then rely
on skill and experience to create a good design.

In the relational model, it is possible to be somewhat more mechanical
in producing our design. We can manipulate our relation schemes (sets of at-
tributes heading the columns of the relation) according to a well-developed
theory, to produce a database scheme (collection of relation schemes) with cer-
tain desirable properties. In this chapter, we shall study some of the desirable
properties of relation schemes and consider several algorithms for obtaining a
database scheme with these properties,

Central to the desigu of da:2base schemes is the idea of a data dependency,
that is, a constraint on the possible relat;.: that can be the current instance of
a relation scheme. For example, if one ati..oute uniquely determines another, as
SNAME apparently determines SADDR. in relation SUPPLIERS of Figure 2.8,
we say there is a “functional dependency” of SADDR on SNAME, or “SNAME
functionally determines SADDR.”

In Section 7.2 we introduce fun~tional dependencies formally and in ihe
following section we learn how to “reason” about functional dependencies, that
is, to infer new dependencies from given ones. This ability to tell whether a
functional dependency does or does ns! heid in a scheine with a given collection
of dependencies is central to the sceneme-design process. In Section 7.4 we con-
sider lossless-join decompasitions, which ace scheme designs that preserve all
the information of a givew scicine. Che following section considers the preser-
vation of given dependencies in a gcheme design, whick is another devicabie

376

e

e e e i s

—] I
e a4

....-."f"'=1-u S,

¥

7.1 WHAT CONSTITUTES A BAD DATABASE DESIGN? 377

property that, intuitively, says that integrity constraints found in the original
design are also found in the new design.

Sections 7.6-7.8 study “normal forms,” the properties of relation schemes
that say there is no, or almost no, redundancy in the relation. We relate two
of these forms, Boyce-Codd normal form and third normal form, to the desir-
able properties of database schemes as a whole—lossless join and dependency
preservation—that were introduced in the previous sections.

Section 7.9 introduces multivalued dependencies, a more complex form of
dependency that, like functional dependencies, occurs frequently in practice.
The process of reasoning about multivalued and functional dependencies to-
gether is discussed in Section 7.9, and Section 7.10 shows how fourth normal
form eliminates the r=dundancy dne to multivalued dependencies that is ieft
by the earlier normal forms. We close the chapter with a discussion of more
coinplex forms of depender.cies ihat, while not bearing directly on the database

; design problem as described here, serve to unify the theory and to relate the

subject of dependencies to logical rules and datalog.

7.1 WHAT CONSTITUTES A BAD DATABASE DESIGN?

Before telling how to design a good database scheme, let us see why some
schemes might present problems. In particular let us suppose that we had
chosen, in Example 2.14, to combine the relations SUPPLIERS and SUPPLIES
of Figure 2.8 into one relation SUP_INFO, with scheme:

SUP_INFO(SNAME, SADDR, ITEM, PRICE)

that included all the information about suppliers. We can see several problems
with this scheme.

1. Redundancy. The address of the supplier is repeated once for each item
supplied.

2. Potential incousistency (update anomalies). As a consequence of the re-
dundancy, we could update the address fo: a suppiier in one tuple, while
leaving it fixed in another. Thus, we would not have a unique address for
each supplier as we feel intuitively we should.

3. Insertion anomalies. We cannot record i address for a supplier if that
supplier does not currently supply at ieast one item. We might put null
values in the ITEM and PRICE componenis of a tuple for that supplier,
but then, when we enter an item for that supplier, will we remember to
delete the tuple with the nulle? Worse, [TEM and SNAME together form
a key ior the relation, 2::d it might be impossible to look up tuples through
a primary index, if there were null values in the key field ITEM.

378 DESIGN THEORY FOR RELATIONAL DATABASES

4. Deletion anomalies. The inverse to problem (3) is that should we delete
all of the items supplied by one supplier, we unintentionally lose track of
the supplier’s address.

The reader should appreciate that the problems of redundancy and poten-
tial inconsistency are ones we have seen before and dealt with in other models.
In the network model, virtual fields were introduced for the purpose of eliminat-
ing redundancy and inconsistency. In the hierarchical model, we used virtual
record types for the same purpose. The object model encourages references to
objects to be made by pointers rather than by copying the object.

In the present example, all the above problems go away if we replace
SUP_INFO by the two relation schemes

SUPPLIERS(SNAME, SADDR)
SUPPLIES(SNAME, ITEM, PRICE)

as in Figure 2.8. Here, SUPPLIERS, gives the address for each supplier exactly
once; hence there is no redundancy. Moreover, we can enter an address for a
supplier even if it currently supplies no items.

Yet some questions remain. For example, there is a disadvantage to the
above decomposition; to find the addresses of suppliers of Brie, we must now
take a join, which is expensive, while with the single relation SUP_INFO we
could simply do a selection and projection. How do we determine that the above
replacement is beneficial? Are there other problems of the same four kinds
present in the two new relation schemes? How do we find a good replacement
for a bad relation scheme?

Dependencies and Redundancy

The balance of the chapter is devoted to answering these questions. Before
proceeding though, let us emphasize the relationship between dependencies and
redundancy. In general, a dependency is a statement that only a subset of all
possible relations are “legal,” i.e., only certain relations reflect a possible state
of the real world. If not all relations are possible, it stands to reason that there
will be some sort of redundancy in legal relations. That is to say, given the fact
that a relation R is legal, i.e., satisfies certain dependencies, and given certain
information about the current value of R, we should be able to deduce other
things about the current value of R.

In the case that the dependencies are functional, the form of the redun-
dancy is obvious. If, in our relation SUP_INFO we saw the two tuples:

SNAME SADDR ITEM PRICE
Acme 16 River St. Brie 3.49
Acme 77? Perrier 1.19

we may use the assumption that SNAME functionally determines SADDR to

ey VO
TRy

SNSTSESTOAA M Y)

7.2 FUNCTIONAL DEPENDENCIES 379

deduce that the 777 stands for “16 River St.” Thus, the functional depen-
dency makes all but the first SADDR field for a given supplier redundant; we
know what it is without seeing it. Conversely, suppose we did not believe the
functional dependency of SADDR on SNAME holds. Then there would be no
reason to believe that the 7?7 had any particular value, and that field would
not be redundant.

When we have more general kinds of dependencies than functional depen-
dencies, the form redundancy takes is less clear. However, in all cases, it appears
that the cause and cure of the redundancy go hand-in-hand. That is, the depen-
dency, such as that of SADDR on SNAME, not only causes the redundancy, but
it permits the decomposition of the SUP_INFO relation into the SUPPLIERS
and SUPPLIES relations in such a way that the original SUP_INFO relation
can be recovered from the SUPPLIERS and SUPPLIES relations. We shall

discuss these concepts more fully in Section 7.4.

7.2 FUNCTIONAL DEPENDENCIES

In Section 2.3 we saw that relations could be used to model the “real world”
in several ways; for example, each tuple of a relation could represent an entity
and its attributes or it could represent a relationship between entities. In many
cases, the known facts about the real world imply that not every finite set of
tuples could be the current value of some relation, even if the tuples were of
the right arity and had components chosen from the right domains. We can
distinguish two kinds of restrictions on relations:

1. Restrictions that depend on the semantics of domain elements. These
restrictions depend on understanding what components of tuples mean.
For example, no one is 60 feet tall, and no one with an employment history
going back 37 years has age 27. It is useful to have a DBMS check for such
implausible values, which probably arose because of an error when entering
or computing data. The next chapter covers the expression and use of this
sort of “integrity constraint.” Unfortunately, they tell us little or nothing
about the design of database schemes.

2. Restrictions on relations that depend only on the equality or inequality of
values. There are other constraints that do not depend on what value a
tuple has in any given component, but only on whether two tuples agree
in certain components. We shall discuss the most important of these con-
straints, called functional dependencies, in this section, but there are other
types of value-oblivious constraints that will be touched on in later sec-
tions. It is value-oblivious constraiuts that turn out to have the greatest
impact on the design of database schemes.

Let R(A,,...,A,) be a relation scheme, and let X and Y be subsets of

{A1,...,An}. We say X — Y, read “X functionally determines ¥” or “Y

380 DESIGN THEORY FOR RELATIONAL DATABASES

functionally depends on X if whatever relation r is the current value for R
it is not possible that r has two tuples that agree in the components for ali
attributes in the set X yet disagree in one or more components for attributes
in the set Y. Thus, the functional dependency of supplier address on supplier
name, discussed in Section 7.1, would be expressed

{SNAME} — {SADDR}

Notational Conventions

To remind the reader of the significance of the symbols we use, we adopt the
following conventions:

1. Capital letters near the beginning of the alphabet stand for single at-
tributes.

2. Capital letters near the end of the alphabet, U, V..., 2, generally stand
for sets of attributes, possibly singleton sets.

3. R is used to denote a relation scheme. We also name relations by their
schemes; e.g., a relation with attributes A, B, and C may be called ABC .

4. We use r for a relation, the current instance of scheme R. Note this con-
vention disagrees with the Prolog convention used in Chapter 3, where R
was used for the instance of a relation and r for a predicate, i.e., the name
of the relation.

5. Concatenation is used for union. Thus, A, --- A, is used to represent the
set of attributes {A4,,..., An}, and XY is shorthand for X U Y. Also, XA
g; Aﬁi}where X is a set of attributes and A a single attribute, stands for

U :

Significance of Functional Dependencies

Functional dependencies arise naturally in many ways. For example, if R repre-
sents an entity set whose attributes are Ay,...,Aqn, and X is a set of attributes
that forms a key for the entity set, then we may assert X — ¥ for any subset
Y of the attributes, even a set ¥ that has attributes in common with X. The
reason is that the tuples of each possible relation r represent entities, and en-
tities are identified by the value of attributes in the key. Therefore, two tuples
that agree on the attributes in X must represent the same entity and thus be
the same tuple.

Similarly, if relation R represents 2 many-one relationship from entity set
E) to entity set E,, and among the A;’s are attributes that form a key X for
E, and a key Y for E;, then X — ¥ would hold, and in fact, X functionally

! Unfortunately, there are cases where the natural s i i
) ¥y 5 ymbol for a single attribute, e.g., Z
for t‘s:p code” or R for “room” conflicts with these conventions, and the reader wﬁl be
reminded when we use a symbol in a nonstandard way.

7.2 FUNCTIONAL DEPENDENCIES 381

determines any set of attributes of R. However, ¥ — X would not hold unless
the relationship were one-to-one.

It should be emphasized that functional dependencies are statements about
all possible relations that could be the value of relation scheme B. We cannot
look at a particular relation r for scheme R and deduce what functional depen-
dencies hold for R. For example, if r is the empty set, then all dependencies
appear to hold, but they might not hold in general, as the value of the relation
denoted by R changes. We might, however, be able to look at a particular
relation for R and discover some dependencies that did not hold.

The only way to determine the functional dependencies that hold for re-

lation scheme R is to consider carefully what the attributes mean. In this
sense, dependencies are actually assertions about the real world; they cannot
be proved, but we might expect them to be enforced by a DBMS if told to do
so by the database designer. As we saw in Chapter 4, many relational systems
will enforce those functional dependencies that follow from the fact that a key
determines the other attributes of a relation.
Example 7.1: Let us consider some of the functional dependencies that we
expect to hold in the YVCB database of Example 2.14 (Figure 2.8). The most
basic dependencies are those that say a key determines all the attributes of the
relation scheme. Thus, in SUPPLIERS we get

SNAME — SADDR
and in SUPPLIES we get
SNAME ITEM — PRICE
In CUSTOMERS we have
CNAME — CADDR BALANCE
and similar functional dependencies hold in the other relations of Figure 2.8.
We can also observe many trivial dependencies, like
SNAME — SNAME
and some that are less trivial, such as
SNAME ITEM — SADDR PRICE

which is obtained by combining the dependencies from SUPPLIERS and SUP-
PLIES, and realizing that attribute SNAME represents the same concept (the
supplier name) in each relation. The reason we believe this functional de-
pendency holds is that given a supplier’s name and an item, we can uniquely
determine an address; we ignore the item and take the address of the supplier.
We can also determine a unique price, the price the given supplier charges for
the given item.

The reader should understand, however, that the above dependency, unlike
the others we have mentioned in this example, is not associated with a particular

382 DESIGN THEORY FOR RELATIONAL DATABASES

relation; it is rather something we deduce from our understanding about the
“semantics” of suppliers, items, addresses, and prices. We expect that this
dependency will have influence on any relation scheme in which some or all of
the attributes mentioned appear, but the nature of that influence, which we
discuss in Section 7.4, is often subtle.

On might wonder whether a dependency like

CADDR — CNAME

holds. Looking at the sample data of Figure 4.2(a), we do not find two tuples
that agree on the address but disagree on the name, simply because there are
no two tuples with the same address. However, in principle, there is nothing
that rules out the possibility that two customers have the same address, so we
must not assert this dependency, even though it appears to hold in the only
sample relation we have seen. []

Satisfaction of Dependencies

We say a relation r satisfies functional dependency X — Y if for every two
tuples u and v in r such that #[X] = v[X], it is also true that ulY] = v[Y).
Note that like every “if --. then” statement, it can be satisfied either by u[X]
differing from v[X] or by u[Y] agreeing with V[Y]. If r does not satisfy X — ¥
then r violates that dependency. '

If r is an instance of scheme R, and we have declared that X — Y holds
for R, then we expect that r will satisfy X — Y. However, if X — vV does not
hold for R in general, then r may coincidentally satisfy X — Y, or it might
violate X — Y.

7.3 REASONING ABOUT FUNCTIONAL DEPENDENCIES

Suppose R is a relation scheme and A, B, and C are some of its attributes.
Suppose also that the functional dependencies A — B and B — ¢ are known
to hold in R. We claim that 4 — C must also hold in R. In proof, suppose r is
a relation that satisfies A — B and B — C, but there are two tuples u and v
in r such that u and v agree in the component for A but disagree in C. Then
we must ask whether 4 and v agree on attribute B. If not, then r would violate
A — B. If they do agree on B, then since they disagree on C, r would violate
B — C. Hence r must satisfy 4 — C.

In general, let F be a set of functional dependencies for relation scheme R,
and let X — Y be a functional dependency. We say F logically implies X — Y,
written F =X = Y, if every relation r for R that satisfies the dependencies in
F also satisfies X — Y. We saw above that if ¥ contains 4 — B and B— C,
then A — C is logically implied by F. That is,

T

"1 =S r&.um - e

7.3 REASONING ABOUT FUNCTIONAL DEPENDENCIES 383

Closure of Dependency Sets

We define F*, the closure of F, to be the set of functional dependencies that
are logically implied by F; i.e.,

F+={X—,Y[F}=X—+Y}

Example 7.2: Let R = ABC and F = {A — B,B — C}. Then F* consists
of all those dependencies X — Y such that either

1. X contains A, e.g.,, ABC — AB, AB — BC,or A— C,

2. X contains B but not A, and ¥ does not contain A,eg.,BC—-B,B—C,
or B — §, and

3. X — Y is one of the three dependencies C — C, C — 0, or 0 — 0.

We shall discuss how to prove the above contention shortly. (]

Keys

When talking about entity sets we assumed that there was a key, a set of
attributes that uniquely determined an entity. There is an analogous concept for
relations with functional dependencies. If R is a relation scheme with attributes
Ay A;--- A, and functional dependencies F, and X is a subset of A Az --- A,
we say X is a key of R if:

1. X — AjA3---A, is in F*. That is, the dependency of all attributes on
the set of attributes X is given or follows logically from what is given, and

2. For no proper subset ¥ C X is ¥ — A;A,--- A, in F't.

We should observe that minimality, condition (2) above, was not present
when we talked of keys for entity sets in Section 2.2 or keys for files in Chapter
6. The reason is that without a formalism like functional dependencies, we can
not verify that a given set of attributes is minimal. The reader should be aware
that in this chapter the term “key” does imply minimality. Thus, the given key
for an entity set will only be a key for the relation representing that entity set
if the given key was minimal. Otherwise, one or more subsets of the key for the
entity set will serve as a key for the relation.

As there may be more than one key for a relation, we sometimes designate
one as the “primary key.” The primary key might serve as the file key when the
relation is implemented, for example. However, any key could be the primary
key if we desired. The term candidate key is sometimes used to denote any
minimal set of attributes that functionally determine all attributes, with the
term “key” reserved for one designated (“primary”) candidate key. We also use
the term superkey for any superset of a key. Remember that a key is a special

case of a superkey.

384 DESIGN THEORY FOR RELATIONAL DATABASES

_Example 7.3: For relation R and set of dependencies F' of Example 7.2 there
is only one key, A, since A — ABC is in F*, but for no set of attributes X
that does not contain A, is X — ABC true.

A more interesting example is the relation scheme R(CITY, ST, ZIP),
where ST stands for street address and ZIP for zip code. We expect tuple
(¢,8,2) in a relation for R only if city ¢ has a building with street address s,
and z is the zip code for that address in that city. It is assumed that the
nontrivial functional dependencies are: ‘

CITY ST — ZIP
ZIP — CITY

That is, the address (city and street) determines the zip code, and the zip code
determines the city, although not the street address. One can easily check that
{CITY, ST} and {ST, ZIP} are both keys. [J

Axioms for Functional Dependencies

To determine keys, and to understand logical implications among functional
dependencies in general, we need to compute F*+ from F, or at least, to tell,
given F and functional dependency X — Y, whether X — Y is in F*+. To do
so requires that we have inference rules telling how one or more dependencies
imply other dependencies. In fact, we can do more; we can provide a complete
set of inference rules, meaning that from a given set of dependencies F, the
rules allow us to deduce all the true dependencies, i.e., those in F*. Moreover,
the rules are sound, meaning that using them, we cannot deduce from F any
false dependency, i.e., a dependency that is not in F+.

The set of rules is often called Armstrong’s axioms, from Armstrong [1974],
although the particular rules we shall present differ from Armstrong’s. In what
follows we assume we are given a relation scheme with set of attributes U, the
universal set of attributes, and a set of functional dependencies F involving
only attributes in U. The inference rules are:

Al: Reflexivity. IfY C X CU, then X — Y is logically implied by F. This
rule gives the trivial dependencies, those that have a right side contained
in the left side. The trivial dependencies hold in every relation, which is
to say, the use of this rule depends only on 7, not on F.

A2: Augmentation. If X — Y holds, and Z is any subset of U, then XZ — Y Z.
Recall that X,Y, and Z are sets of attributes, and X Z is.conventional
s.horthand for XUZ. It is also important to remember that the given
dependency X — Y might be in F, or it might have been derived from
dependencies in F using the axioms we are in the process of describing.

A3: Transitivity. If X — Y and Y — Z hold, then X — Z holds.

7.3 REASONING ABOUT FUNCTIONAL DEPENDENCIES 385

Example 7.4: Consider the relation scheme ABCD with functional depen-
dencies A — C and B — D. We claim AB is a key for ABCD (in fact, it is
the only key). We can show AB is a superkey by the following steps:

A — C (given)

AB — ABC [augmentation of (1) by AB|

B — D (given)

ABC — ABCD [augmentation of (3) by ABC]

AB — ABCD [transitivity applied to (2) and (4)]

To show AB is a key, we must also show that neither A nor B by them-
selves functionally determine all the attributes. We could show that A is not a
superkey by exhibiting a relation that satisfies the given dependencies (1) and
(3) above, yet does not satisfy A — ABCD, and we could proceed similarly
for B. However, we shall shortly develop an algorithm that makes this test
mechanical, so we omit this step here. []

= kol e

Soundness of Armstrong’s Axioms

It is relatively easy to prove that Armstrong's axioms are sound; that is, they
lead only to true conclusions. It is rather more difficult to prove completeness,
that they can be used to make every valid inference about dependencies. We
shall tackle the soundness issue first.

Lemma 7.1: Armstrong’s axioms are sound. That is, if X — Y is deduced
from F using the axioms, then X — Y is true in any relation in which the
dependencies of F are true.

Proof: Al, the reflexivity axiom, is clearly sound. We cannot have a relation
r with two tuples that agree on X yet disagree on some subset of X. To prove
A2, augmentation, suppose we have a relation r that satisfies X — Y, yet there
are two tuples p and v that agree on the attributes of X Z but disagree on Y Z.
Since they cannot disagree on any attribute of Z, g and v must disagree on
some attribute in Y. But then p and v agree on X but disagree on Y, violating
our assumption that X — Y holds for r. The soundness of A3, the transitivity
axiom, is a simple extension of the argument given previously that A — B and
B — C imply A — C. We leave this part of the proof as an exercise. [J

Additional Inference Rules

There are several other inference rules that follow from Armstrong's axioms.
We state three of them in the next lemma. Since we have proved the soundness
of Al, A2, and A3, we are entitled to use them in the proof that follows.

Lemmaea 7.2:

a) The unionrule. {X =Y X - Z}X —-YZ.
b) The pseudotransitivity rule. {X =Y WY = Z} EWX — Z.

386 DESIGN THEORY FOR RELATIONAL DATABASES

¢) The decomposition rule. IfX Y holds, and Z C Y, then X — Z holds.

Proof:

a) We are gi_ven X =Y, 50 we may augment by X to infer X — XY, We
are a.lso given X — Z, 50 we may augment by ¥ to get XY — VZ. By
trfmsltmty, X = XY and XY - Y2 imply X - Y Z.

b) G'wen X — Y, we may augment by W to get WX — Wy. Since we are
given WY — Z, transitivity tells us WX — Z.

¢) Y — Z follows from reflexivity, so by the transitivity rule, X — Z. []

An important consequence of the union and decomposition rules is that if

Ay, ..., A, are a.zttnbum'., then X — 4, . -+, An holds if and only if X — 4

lvmlds_ for each 1. Thug, singleton right sides on functional dependencies arelr

sufﬁ.clent. W_e §ha.H discuss this matter in more detail when we take up the
subject of “minimal covers” for sets of functional dependencies.

Closures of Attribute Sets

glance whether a dependency X — Y follows from Fb 's axi
The next lemma tells how. N
Lemma 7.3: X — Y follows from a gi i i
given set of dependencies F using Arm-

strong’s axioms if and only if ¥ C X+- here, the cl e e
kel C : here, the closure of X is taken with
Pl;oof: Let Y = Ay --- A, for set of attributes Ay,..., A,, and suppose ¥ C
X*. By df:ﬁmtmn of X+, X — 4; is implied by Armstrong’s axioms for all ;.
By the union rule, Lemma 7.2(a), X = Y follows. .

Conversely, suppose X — ¥ follows from the axioms. For each i, X — A,
holds by the decomposition rule, Lemma 7.2(c), so ¥ C X+.] : :

Completeness of Armstrong’s Axioms

imply X — Y.

? Do not confuse closures i
of sets of dependencies with cl i
though the same notation is used for each. T e

7.3 REASONING ABOUT FUNCTIONAL DEPENDENCIES 387

Theorem 7.1: Armstrong’s axioms are sound and complete.

Proof: Soundness is Lemma 7.1, so we have to prove completeness. Let F
be a set of dependencies over attribute set U, and suppose X — Y cannot be
inferred from the axioms. Consider the relation r with the two tuples shown
in Figure 7.1. First we show that all dependencies in F are satisfied by r.
Intuitively, a dependency V — W violated by r allows us to “push out” X+
beyond the value that it rightfully has when given set of dependencies F.
Suppose V — W is in F but is not satisfied by r. Then V C X+, or else the
two tuples of r disagree on some attribute of V, and therefore, could not violate
V — W. Also, W cannot be a subset of X*, or V — W would be satisfied by
the relation r. Let 4 be an attribute of W not in X*. Since VC X*, X — V
follows from Armstrong’s axioms by Lemma 7.3. Dependency V — W is in F,
so by transitivity we have X — W. By reflexivity, W — A, so by transitivity
again, X — A follows from the axioms. But then, by definition of the closure,
Aisin X*, which we assumed not to be the case. We conclude by contradiction

that each V' — W in F is satisfied by r.

Attributes of X+t Other attributes
P — A

-~ ——— -~ N—

1 1 1 1 1 1
1 1 1] o o - 0

Figure 7.1 A relation r showing F does not logically imply X — Y.

Now we must show that X — Y is not satisfied by r. Suppose it is satisfied.
As X C X is obvious, it follows that Y C X*, else the two tuples of r agree on
X but disagree on Y. But then Lemma 7.3 tells us that X — Y can be inferred
from the axioms, which we assumed not to be the case. Therefore, X — Y
is not satisfied by r, even though each dependency in F is. We conclude that
whenever X — Y does not follow from F by Armstrong’s axioms, F does not
logically imply X — Y. That is, the axioms are complete. []

Theorem 7.1 has some interesting consequences. We defined X+ to be the
set of attributes A such that X — A followed from the given dependencies F
using the axioms. We now see that an equivalent definition of X+ is the set of
A such that F |= X -+ A Another consequence is that although we defined
F* to be the set of dependencies that were logically implied by F, we can also
take F'* to mean the set of dependencies that follow from F by Armstrong’s

axioms.

I I | | [[| [

388
DESIGN THEORY FOR RELATIONAL DATABASES

Computing Closures

It tu::ns out that _computing F* for a set of dependencies F is a time-consuming
.task in gez?eral, simply because the set of dependencies in F* can be lar ee
if F itself is small. Consider the set e

F={A—oB;,A-—-Bz,..,,A-—-Bﬂ}

T;en F* includes all of the dependencies A — Y, where Y is a subset of
{8, B?, .-+, Bp}. As there are 2" such sets ¥, we could not expect to list F+
conveniently, even for reasonably sized n.

3

written out. By Lemma 7.3 and the fact that Armstrong’s axioms are sound
and complete, we can tell whether X — Y is in p+ by computing X+ with
respect to F. A simple way to compute X+ is the following.

Algorithm 7.1: Computation of the Cl
Az osure of a Set of Attri i
spect to a Set of Functional Dependencies. el

INPUT: A finite set of attrib .)
s Dot ributes U, a set of functional dependencies F on U,

OUTPUT: X+, the closure of X with respect to F.

METHOD: We compute a i
5 p sequence of sets of attributes X(0), x(1) by the

1. X0 js x,
2. X% js X6 ynion the set i
i et of attributes A such that there i
dency Y - Z,in F, Ais in Z,and Y C x(0) e
. - 0) i
Since X = X c.... CX®c... C U, and U is finite, we must eventually

reach i such that X() = X(+1) Gince each XU+1)

- ¥ - 14 ls i
of X9 it follows that X() = x(+1) _ y(+2) _ ‘-FomTpll::(:j ;ﬂi};m Z:;ms
compute beyond X) once we discover X() = x(i+1) We can ‘(and shallr;epmfrz

that X* is X®) for this value of i. []
Example 7.5: Let F consist of the following eight dependencies:

AB-=C D— EG
C— A BE - C
BC—-D ©G-BD
ACD - B CE — AG

and let X = BD. To apply Algorithm 7.1, we let X(©)

I 1, =BD. Toc)
we look for dependt?nf:les that have a left side B,D, or BD. Ther(;aO::l::l; ‘::’ne
D = EG, so we adjoin E and G to X and make X) = BDEG. For 10’
w? ﬁl)ook for left sides contained in X(*) and find D — EG and BE — < Thus’
X' = BCDEG. Then, for X we look for left sides contained in B"C.DEG:

f l l l I ‘ | !

7.3 REASONING ABOUT FUNCTIONAL DEPENDENCIES 389

and find, in addition to the two previously found, C — A, BC — D, CG — BD,
and CE — AG. Thus X®) = ABCDEG, the set of all attributes. It therefore
comes as no surprise that X3 = X4 = ... Thus, (BD)* = ABCDEG. OJ

Now we must address ourselves to the problem of proving that Algorithm
7.1 is correct. It is easy to prove that every attribute placed in some X ()
belongs in X+, but harder to show that every attribute in X* is placed in
some X)

Theorem 7.2: Algorithm 7.1 correctly computes X +.

Proof: First we show by induction on j that if A is placed in XU) during
Algorithm 7.1, then A isin X *; i.e., if A is in the set X¥) returned by Algorithm
7.1, then A is in X*.

Basis: j = 0. Then A is in X, so by reflexivity, X — A.

Induction: Let j > 0 and assume that XU~1) consists only of attributes in
X*. Suppose A is placed in XU) because A isin Z, ¥ — Z is in F, and
Y C XU-1, Since Y € XU-1 weknow Y C X+ by the inductive hypothesis.
Thus, X — Y by Lemma 7.3. By transitivity, X — Y and ¥ — Z imply
X — Z. By reflexivity, Z — 4, so X — A by another application of the
transitivity rule. Thus, A isin Xt.

Now we prove the converse: if A is in X*, then A is in the set returned by
Algorithm 7.1. Suppose A is in X*, but A is not in that set X returned by
Algorithm 7.1. Notice that X} = X(+1) because that is the condition under
which Algorithm 7.1 produces an answer.

Consider a relation r similar to that of Figure 7.1; r has two tuples that
agree on the attributes of X¥) and disagree on all other attributes. We claim
r satisfies F'. If not, let U — V be a dependency in F that is violated by r.
Then U C X and V cannot be a subset of X), if the violation occurs (the
same argument was used in the proof of Theorem 7.1). Thus, X **?) cannot be
the same as X(*) as supposed.

Thus, relation r must also satisfy X — A. The reason is that A is assumed
to be in X+, and therefore, X — A follows from F by Armstrong's axioms.
Since these axioms are sound, any relation satisfying F satisfies X — A. But
the only way X — A could hold in r is if A4 is in X, for if not, then the two
tuples of r, which surely agree on X, would disagree on A and violate X — A.
We conclude that A is in the set X *) returned by Algorithm 7.1. (J

Equivalences Among Sets of Dependencies.
Let F and G be sets of dependencies. We say F and G are equivalent if

Fr =g
It is easy to test whether F and G are equivalent. For each dependency ¥ — Z

390 DESIGN THEORY FOR RELATIONAL DATABASES

in F, test whether Y — Z is in G* using Algorithm 7.1 to compute ¥+ with
respect to G and then checking whether 2 CY*. If some dependency ¥ — Z
in F is not in G, then surely F'* & G+, If every dependency in F is in G¥,
then every dependency V — W in F* is in G*, because a proof that V — W
is in G* can be formed by taking a proof that each ¥ — Zin Fisin G, and
following it by a proof from F that V — Wis in F+,

To test whether each dependency in G is also in F*, we proceed in an
analogous manner. Then F and G are equivalent if and only if every dependency
in Fis in G*, and every dependency in G is in F+.

Minimal Covers

We can find, for a given set of dependencies, an equivalent set with a number
of useful properties. A simple and important property is that the right sides of
dependencies be split into single attributes,

Lemma 7.4: Every set of functional dependencies F s equivalent to a set of
dependencies G in which no right side has more than one attribute.

Proof: Let G be the set of dependencies X — A such that for some X — v
inF,AisinY. Then X — A follows from X — v by the decomposition rule.
Thus G C Ft. But FcC G*, since if ¥ = 4, “+* An, then X — ¥ follows from
X = dycoi X — Ay using the union rule. Thus, F and G are equivalent. [J

It turns out to be useful, when we develop a design theory for database
schemes, to consider a stronger restriction on covers than that the right sides
have but one attribute. We say a set of dependencies F is minimal if:

i. Every right side of a dependency in F is a single attribute.

2. Forno X — Ain F is the set F — {X — A} equivalent to F.

3. FornoX — Ain F and Proper subset Z of X is F — {X — AU{Z — A}
equivalent to F.

Intuitively, (2) guarantees that no dependency in F is redundant. Inciden-
tally, it is easy to test whether X — A is redundant by computing X+ with
respect to F'— {X — A}. We leave this observation as an exercise.

if and only if 4 is in (X — {B})* when the closure is taken with respect to F.

As each right side has only one attribute by (1). surely no attribute on the
right is redundant. If G is a set of dependencies that is minimal in the above
sense, and G is equivalent to F, then we say G is a minimal cover for F.

Theorem 7.3: Every set of dependencies F has a minimal cover.

7.3 REASONING ABOUT FUNCTIONAL DEPENDENCIES 391

Proof: By Lemma 7.4, assume no right side in F has more than one attribu.}te.
We repeatedly search for violations of conditions (2)‘ [redundant dependencnf:s]
and (3) [redundant attributes in left sides], and modify the set of dependencies
accordingly. As each modification either deletes a dependency or deletes an at-
tribute in a dependency, the process cannot continue forever, and we eventually
reach a set of dependencies with no violations of (1), (2), or (3).

For condition (2), we consider each dependency X — ¥ in the current set
of dependencies F, and if F — {X — Y} is equivalent to F, then delete X — Y
from F. Note that considering dependencies in different orders_ may result in
the elimination of different sets of dependencies. For example, given the set F:

A— B A=C
B— A C— A
B—-C
we can eliminate both B — A and A — C, or we can eliminate B — C, but we
cannot eliminate all three. .
For condition (3), we consider each dependency A, ---Ay — B in the
current set F', and each attribute A; in its left side, in some order. If

F—*{Al---}lk—-’B}U{Al'-'A,'_.1A5+1-'-Ak'—*B}

is equivalent to F, then delete A; from the left side of Ay ---Ap — B. Again,
the order in which attributes are eliminated may affect the result. For example,
given
AB—-C A—B B—A

we can eliminate either A or B from AB — C, but we cannot eliminate them
both. ' H

We leave as an exercise the proof that it is sufficient first to eliminate all
violations of (3), then all violations of (2), but not vice versa. []

Example 7.6: Let us consider the dependency set F of ExamPle 7.5. If we
use the algorithm of Lemma 7.4 to split right sides we are left with:
AB - C D—-E CG— B
C— A D—G CG—D
BC —- D BE - C CE — A
ACD — B CE -G
— A is redundant, since it is implied by C — 4. CG — B is
Seﬁzgmif;since CG — D,C — A, and ACD — B imply CG — B. Then
no more dependencies are redundant. However, ACD — B can be replaced by
CD — B, since C — A is given, and therefore CD — B can be de(.luced f.:rom
ACD — B and C — A. Now, no further reduction by (2) or (3) is possible.
Thus, one minimal cover for F is that shown in Figure 7.2(:}). '
Another minimal cover, constructed from F by eliminating CE — A,

I | [I [| [(

392 DESIGN THEORY FOR RELATIONAL DATABASES

C'G.-* D, and ACD — B, is shown in Figure 7.2(b). Note that the two
minimal covers have different numbers of dependencies. [

AB - C AB - C
C— A C— A
BC - D BC - D
CD—- B D— E
D—- E D—-@G
DG BE - C
BE - C CG—-B
CG—-D CE—-G
CE—@G
(a) (b)

Figure 7.2 Two minimal covers.

7.4 LOSSLESS-JOIN DECOMPOSITION

The decom;?oaition of a relation scheme R = {A1,4,,..., Ap} is its replacement
by a collection p = {Ry, Ry, ..., Ry} of subsets of R such that

R=R1UR'¢U'-'UR1‘

There is no requirement that the R;’s be disjoint. One of the motivations
for ptarformlng a decomposition is that it may eliminate some of the problems
mentioned in Section 7.1.

Example 7.7: Let us reconsider the SUP_INFO relation scheme introduced in
Section 7.1, but as a shorthand, let the attributes be S (SNAME), A (SADDR)
I (ITEM), and P (PRICE). The functional dependencies we have assumed are’
S —»-A and ST — P. We mentioned in Section 7.1 that replacement of the
relation scheme SAIP by the two schemes SA and STP makes certain problems
go away. For example, in SATP we cannot store the address of a supplier unless
the supplier provides at least one item. In SA, there does not have to be an
item supplied to record an address for the supplier. [J

One might question whether all is as rosey as it looks, when we
SAIP by SA and SIP in Example 7.7. For example, suppose we have a r:?:é?gs
r as the current value of SAIP. If the database uses SA and SIP instead of
SAIP, we would naturally expect the current relation for these two relation
schemes to be the projection of r onto SA and SIP, that is rg4 = 74 (r) and
rsip = wsrp(r).

How do we know that rg4 and rsip contain the same information as r?
One way to tell is to check that r can be computed knowing only rg4 and rg;p.

I I [| [[[{

7.4 LOSSLESS-JOIN DECOMPOSITION 393

We claim that the only way to recover r is by taking the natural join of rga
and rgrp. The reason is that, as we shall prove in the next lemma, if we let
8 =754 PATsIp, then 754(3) = rga, and ws1p(s) = rsrp. If 5 # r, then given
r54 and rgrp there is no way to tell whether r or s was the original relation for
scheme SAIP. That is, if the natural join doesn't recover the original relation,
then there is no way whatsoever to recover it uniquely.

Lossless Joins

If R is a relation scheme decomposed into schemes Ry, Ra, ..., Rx, and D is a
set of dependencies, we say the decomposition has a lossless join (with respect
to D), or is a lossless-join decomposition (with respect to D) if for every relation
r for R satisfying D:

r=mg,(r)pang,(r)pa---pawpg,(r)

that is, every relation r is the natural join of its projections onto the R;’s. As
we saw, the lossless-join property is necessary if the decomposed relation is to
be recoverable from its decomposition.

Some basic facts about project-join mappings follow in Lemma 7.5. First
we introduce some notation. If p = (Ry, Ra,..., Rx) is a decomposition, then
m, is the mapping defined by m,(r) = pa’_ 7, (r). That is, m,(r) is the join
of the projections of r onto the relation schemes in p. Thus, the lossless join
condition with respect to a set of dependencies D can be expressed as: for all
r satisfying D, we have r = m,(r).

Lemma 7.5: Let R be a relation scheme, p = (R;,..., Ri) be any decomposi-
tion of R, and r be any relation for R. Define r; = ng, (r). Then

a) r Cmy(r).

b) If s =m,(r), then g, (s) = r;.

c) mpy(mpy(r)) = my(r).

Proof:

a) Let u be in r, and for each i, let y;=u[R;].> Then y; is in 7; for all i. By
definition of the natural join, u is in m,(r), since p agrees with y; on the
attributes of R; for all i.

b) Asr C s by (a), it follows that g, (r) C ng,(s). That is, r; C 7g,(s). To
show mg, (8) C r;, suppose for some particular ¢ that y; is in wg, (s). Then
there is some tuple p in s such that u[R;] = ;. As p is in s, there is some
v; in r; for each j such that u[R;] = v;. Thus, in particular, u[R;] is in r;.
But p[R;] = i, so p; is in r;, and therefore 7g, (s) C r;. We conclude that
Ti = TR, (3)

3 Recall that v[X] refers to the tuple » projected onto the set of attributes X.

394 DESIGN THEORY FOR, RELATIONAL DATABASES

¢} If s =my(r), then by (b), TR,(8) = ri. Thus m,(s) = >k r =m,(r). O
Let us observe that if for each i, r; is some relation for R;, and

s = Nf=1r.-

Ehen R, (f) is not necessarily equal to r;. The reason is that Ti; may contain
danglmg‘ tuples that do not match with anything when we take the join. For
ex_ample, if Ry = AB, R, = BC, r; = {a1b1}, and r, = {bie1,b2¢3}, then
g= {all,h]cl} and 7pc(s) = {bic1} # ry. However, in general, TR, (s) C r;, and
if the r;’s are each the Projection of some one relation r, then mp (3) =r;.
The ab_ility to stgre “dangling” tuples is an advantage of decomposition,
As we mentioned previously, this advantage must be balanced against the need
to compute more joins when We answer queries, if relation schemes are decom-

such as redundancy, described in Section 7.1, but not otherwise.

Testing Lossless Joins

It' turns out to be fairly easy to tell whether a decomposition has a lossless join
with respect to a set of functional dependencies.

Algorithm 7.2: Testing for a Lossless Join,

INPUT: A relation scheme R = Ay--- A, aset of functional dependencies F
and a decomposition p=(Ry,...,Ry). ,

OUTPUT: A decision whether p is a decomposition with a lossless join.

METHOD: We construct a table with n columns and k rows; column j corre-
sponds to att:rlbute Aj, and row i corresponds to relation scheme R;. In row ¢
and column j put the symbol a; if Ajisin R;. If not, put the symbol b;; there.

Repeatedly “consider” each of the dependencies X = Y in F, until no
more changes can be made to the table. Each time we “consider” X — ¥y

Y. When we equate two symbols, if one of them is a;, make the other be a;.
'If they are bi; and bi;, make them both bi; or both bij, as you wish. It is
Important to understand that when two symbols are equated, all occurrences of
those symbols in the table become the same; it is not sufficient to equate only
the occurrences involved in the violation of the dependency X — Y.

If after modifying the rows of the table as above, we discover that some

row has become qa; -- "@n, then the join is lossless. If not, the join i
et not, the join is lossy (not

7.4 LOSSLESS-JOIN DECOMPOSITION 395

Example 7.8: Let us consider the decomposition of SAIP into SA and SIP
as in Example 7.7. The dependencies are § — A and ST — P, and the initial

table is
S A i P
ay az bz by
ay by ay a4
Since S — A, and the two rows agree on S, we may equate their symbols for
A, making by; become a,. The resulting table is
S A I 2
ay az bz by
ay az az a4

Since some row, the second, has all a’s, the join is lossless.
For a more complicated example, let R = ABCDE s By = AD, R, = AB,
R3 = BE, Ry = CDE, and Ry = AE. Let the functional dependencies be:

A=-C DE - C
B—C CE— A
C—=D

The initial table is shown in Figure 7.3(a). We can apply A — C to equate
b13, bag, and bsz. Then we use B — C to equate these symbols with bs3; the
result is shown in Figure 7.3(b), where b;3 has been chosen as the representative
symbol. Now use C' — D to equate aq, bag, bas, and bsg; the resulting symbol
must be a;. Then DE — C enables us to equate b3 with a3, and CE — A
lets us equate by;, byy, and @;. The result is shown in Figure 7.3(c). Since the
middle row is all a’s, the decomposition has a lossless join. [J

It is interesting to note that one might assume Algorithm 7.2 could be
simplified by only equating symbols if one was an a;. The above example shows
this is not the case; if we do not begin by equating b3, bz, b33, and bs3, we can
never get a row of all a’s.

Theorem 7.4: Algorithm 7.2 correctly determines if a decomposition has a

lossless join.

Proof: Suppose the final table produced by Algorithm 7.2 does not have a
row of all a’s. We may view this table as a relation r for scheme R; the rows
are tuples, and the a;’s and bij's are distinct symbols, each chosen from the
domain of A;. Relation r satisfies the dependencies F, since Algorithm 7.2
modifies the table whenever a violation of the dependencies is found. We claim
that r # m,(r). Clearly r does not contain the tuple ajas - --a,. But for each
R;; there is a tuple y; in r, namely the tuple that is row i, such that i R
consists of all a’s. Thus, the join of the 7R, (r)’s contains the tuple with all a’s,
since that tuple agrees with y; for all i. We conclude that if the final table from

396 DESIGN THEORY FOR RELATIONAL DATABASES

A B C D E
ar b2 bz ag bys
a) az bas bay bas
bsy @z b3 by as

by b2 a3z ay as
a1 bsa bz bsy as
(a)

A B C D E
ay biz bis ay bys
a1 6y bz by by
b1 az bz bay as

by b2 ag ay as
ar bz bz bss ag
(b)

A B C D E
a; b2 ag ay b5
G1 a2 ag ay bas
ay az ag ay ag
ap bz a3 ey as
ap bs2 a3 ay aj

(c)

Figure 7.3 Applying Algorithm 7.2.

Algorithm 7.2 does not have a row with all a’s, then the decomposition p does

not have a lossless join; we have found a relation r for R such that my(r) #r.
. Conversely, suppose the final table has a row with all a’s. We can in general

view any table T' as shorthand for the domain relational calculus expression

{a182+-an | (3b11) -~ (3bgn) (R(w1) A - A R(wp))} (.1)

where w; is the ith row of T. When T is the initial table, formula (7.1) defines
the fupction m,. In proof, note m,(r) contains tuple a; - - a,, if and only if for
each ¢, r contains a tuple with a; in the jth component if 4 ; is an attribute of
R; and some arbitrary value, represented by bi;, in each of the other attributes.

Since we assume that any relation r for scheme R satisfies the dependerncies
F, we can infer that each of the transformations to the table performed by

.l Al T

7.4 LOSSLESS-JOIN DECOMPOSITION 397

Algorithm 7.2 changes the table (by identifying symbols) in a way that does
not affect the set of tuples produced by (7.1), as long as that expression changes
to mirror the changes to the table. The detailed proof of this claim is complex,
but the intuition should be clear: we are only identifying symbols if in (7.1)
applied to a relation R which satisfies F, those symbols could only be assigned
the same value anyway.

Since the final table contains a row with all a’s, the domain calculus ex-
pression for the final table is of the form:

{a1--an | (3b11) - (Gbgn) (R(ar---an) A=)}

Clearly the value of (7.2) applied to relation r for R, is a subset of r.
However, if r satisfies F, then the value of (7.2) is m,(r), and by Lemma
7.5(a), 7 € my(r). Thus, whenever r satisfies F, (7.2) computes exactly r, so
r = m,(r). That is to say, the decomposition p has a lossless join with respect
to F. 0

Algorithm 7.2 can be applied to decompositions into any number of relation
schemes. However, for decompositions into two schemes we can give a simpler
test, the subject of the next theorem. :

Theorem 7.5: If p = (Ry, R;) is a decomposition of R, and F is a set of
functional dependencies, then p has a lossless join with respect to F' if and
only if (Ry N Ry) — (Ry — Ra) or (R N R;) — (R; — R;). Note that these
dependencies need not be in the given set F'; it is sufficient that they be in Ft,

(7.2)

RN Ry Ri—R; Ry—R;

rowfor Ry, aa--ra aa---a bb---b
row for Ry aa---a bb---b aa---a

Figure 7.4 A general two row table.

Proof: The initial table used in an application of Algorithm 7.2 is shown in
Figure 7.4, although we have omitted the subscripts on a and b, which are
easily determined and immaterial anyway. It is easy to show by induction on
the number of symbols identified by Algorithm 7.2 that if the b in the column
for attribute A is changed to an a, then A is in (Ry N Ry)*. It is also easy to
show by induction on the number of steps needed to prove (R; N Rz) — Y by
Armstrong’s axioms, that any b’s in the columns for attributes in ¥ are changed
to a’s. Thus, the row for R; becomes all a's if and only if R, —R; C (RiNRy)™",
that is (R; N Ry) = (Rz — R,), and similarly, the row for Ry becomes all a’s if

and only if (R; N Ry) — (R — Ry). O

398 DESIGN THEORY FOR RELATIONAL DATABASES

Example 7.9: Suppose R = ABC and F = {A — B}. Then the de-
composition of R into AB and AC has a lossless join, since AB N AC — A,
AB—AC = B, and A — B holds. However, if we decompose R into R, = AB
and R; = BC, we discover that RyNR; =B, and B functionally determines
neither Ry — R,, which is A, nor Ry — R,, which is C. Thus, the decomposi-
tion AB and BC does not have a lossless join with respect to F' = {A — B},
as can be seen by considering the relation r — {alblcl,ﬂzb]CQ} for R. Then
mas(r) = {a1by, azb}, TBc(r) = {biey, byey)}, and

map(r) Mawpe(r) = {alblcl:aiblchaﬂhcl, azbycq}

which is a proper superset of r. []

7.5 DECOMPOSITIONS THAT PRESERVE DEPENDENCIES

We have seen that it is desirable for a decomposition to have the lossless-join
property, because it guarantees that any relation can be recovered from its
projections. Another important property of a decomposition of relation scheme
R into p = (Ry,..., Ry) is that the set of dependencies F for R be implied by
the projection of F onto the R;’s. Formally, the projection of F onto a set of
attributes Z, denoted 7z(F), is the set of dependencies X — ¥ in f+ such
that XY C Z. (Note that X — ¥ need not be in F; it need only be in)
We say decomposition P preserves a set of dependencies F if the union of all the
depel;dencies inng,(F), fori=1, 2,...,k logically implies all the dependencies
in F,

The reason it is desirable that P preserves F is that the dependencies in
F can be viewed as integrity constraints for the relation R. If the projected
dependencies do not imply F, then should we represent Rby p = (R,, ..., Ry),
we could find that the current value of the R;’s represented a relation R that
did not satisfy F, even if p had a lossless-join with respect to F. Alternatively,
every update to one of the R,’s would require a join to check that the constraints
were not violated.
Example 7.10: Let us reconsider the problem of Example 7.3, where we had
attributes CITY, ST, and ZIP, which we here abbreviate C, S, and Z. We
observed the dependencies CS - Zand Z = (. The decomposition of the
relation scheme CSZ into SZ and CZ has a lossless join, since

(82nCz) - (cZ - 52)

That is, Z — C. However, the projection of F = {CS — Z, Z — C} onto §Z
gives only the trivial dependencies (those that follow from reflexivity), while

4 To make sense of equations like these do not forget that A, Az -+ A, stands for the set
of attributes {Al, A, ... s An }

5 Note that the converse is always true; that is, F' always implies all its projections, and
therefore implies their union.

7.5 DECOMPOSITIONS THAT PRESERVE DEPENDENCIES

399

the projection onto CZ gives Z — € and the trivial dependencies. It can be
checked that Z — C and trivial dependencies do not imply CS — Z, so the
decomposition does not preserve dependencies. .

For example, the join of the two relations in Figure 7.5(a) and_(b) is the
relation of Figure 7.5(c). Figure 7.5(a) satisfies the trivial dependencies, as any
relation must. Figure 7.5(b) satisfies the trivial dependencies and the depen-
dency Z — C. However, their join in Figure 7.5(c) violates CS — Z. [J

s | z e | z
545 Tech Sq. | 02138 Cambridge, Mass. | 02138
545 Tech Sq. | 02139 Cambridge, Mass. | 02139
(a) (b)
c | S Z

Cambridge, Mass. l 545 Tech Sq. | 02138
Cambridge, Mass. | 545 Tech Sq. | 02139

(c)

Figure 7.5 A join violating a functional dependency.

We should note that a decomposition may have a lossless join with respect
to set of dependencies F, yet not preserve F. Example 7.10 gave one §u.ch
instance. Also, the decomposition could preserve F yet not have a lossless join.
For example, let F = {A — B, C — D}, R= ABCD, and p = (AB,CD).

Testing Preservation of Dependencies

In principle, it is easy to test whether a decomposition p= (_Rl, ..., Rg) pre-
serves a set of dependencies F. Just compute F* and project it onto all of the
Ry’s. Take the union of the resulting sets of dependencies, and test whether
this set is equivalent to F. .
However, in practice, just computing F'* is a formidable task, since the
number of dependencies it contains is often exponential in the si:.ce of F. There-
fore, it is fortunate that there is a way to test preservation without actually
computing F'*; this method takes time that is polynomial in the size of F.

Algorithm 7.3: Testing Preservation of Dependencies.

INPUT: A decomposition p = (Ry,...,Ry) and a set of functional dependencies

F,
OUTPUT: A decision whether p preserves F.

400 DESIGN THEORY FOR RELATIONAL DATABASES

METHOD: Define G to be UE_ 7z, (F). Note that we do not compute G; we
merely wish to see whether it is equivalent to F. To test whether G is equivalent
to F, we must consider each X — Y in F and determine whether X+, computed
with respect to G, contains ¥. The trick we use to compute X+ without having
G available is to consider repeatedly what the effect is of closing X with respect
to the projections of F' onto the various R;’s.

That is, define an R-operation on set of attributes Z with respect to a set
of dependencies F to be the replacement of Z by ZU((ZNR)*NR), the closure
being taken with respect to F. This operation adjoins to Z those attributes A4
such that (ZN R) — A is in 7z(F). Then we compute X* with respect to G
by starting with X, and repeatedly running through the list of R;’'s, performing
the R;-operation for each 7 in turn. If at some pass, none of the R;-operations
make any change in the current set of attributes, then we are done; the resulting
set is X More formally, the algorithm is:

Z = X
while changes to Z occur do
for i :=1 to k do
Z =7 ((ZnR.-)*’nR.-) /* closure wrt F */

If Y is a subset of the Z that results from executing the above steps, then
X —=YisinG*. Ifeach X — Y in F is thus found to be in G*, answer “yes,”
otherwise answer “no.” [J

Example 7.11: Consider set of attributes ABCD with decomposition
{AB, BC,CD}

and set of dependencies F = {A-B,B-C,C— D, D — A}. That is,
in F*, each attribute functionally determines all the others. We might first
imagine that when we project F onto AB, BC, and CD, we fail to get the
dependency D — A, but that intuition is wrong. When we project F, we really
project F* onto the relation schemes, so projecting onto AB we get not only
A — B, but also B — A. Similarly, we get C — B in wpe(F) and D — C
in mep(F), and these three dependencies logically imply D — A. Thus, we
should expect that Algorithm 7.3 will tell us that D — A follows logically from

G= map(F)U 7ec(F)U mep(F)

We start with Z = {D}. Applying the AB-operation does not help, since
{D}YU(({D} N {4, B})* n {4, B))

is just {D}. Similarly, the BC-operation does not change Z. However, when
we apply the C D-operation we get

7.6 NORMAL FORMS FOR RELATION SCHEMES 401

(D} U (({D} n{c, D})* n{c,D})
{P}u({D}* n{c,D})
{D}u({A, B,c,D} i {C, D})

= {C’ D}

Similarly, on the next pass, the BC-operation applied to the current Z = {C, D}
produces Z = {B,C, D}, and on the third pass, the AB-operation sets Z to
{A, B,C, D}, whereupon no more changes to Z are possible.

Thus, with respect to G, {D}* = {4, B,C, D}, which contains A, so we
conclude that G |= D — A. Since it is easy to check that the other members
of F' are in G* (in fact they are in G), we conclude that this decomposition
preserves the set of dependencies F. []

Theorem 7.6: Algorithm 7.3 correctly determines if X — Y is in G+.

Proof: Each time we add an attribute to Z, we are using a dependency in
G, so when the algorithm says “yes,” it must be correct. Conversely, suppose
X — Y isin G*. Then there is a sequence of steps whereby, using Algorithm
7.1 to take the closure of X with respect to G, we eventually include all the
attributes of Y. Each of these steps involves the application of a dependency in
G, and that dependency must be in 7R, (F) for some i, since G is the union of
these projections. Let one such dependency be U — V. An easy induction on
the number of dependencies applied in Algorithm 7.1 shows that eventually U
becomes a subset of Z, and then on the next pass the R;-operation will surely
cause all attributes of V to be added to Z if they are not already there. [J

i

7.6 NORMAL FORMS FOR RELATION SCHEMES

A number of different properties, or “normal forms” for relation schemes with
dependencies have been defined. The most significant of these are called “third
normal form” and “Boyce-Codd normal form.” Their purpose is to avoid the
problems of redundancy and anomalies discussed in Section 7.1.

Boyce-Codd Normal Form

The stronger of these normal forms is called Boyce-Codd. A relation scheme R
with dependencies F is said to be in Boyce-Codd normal form (BCNF) if when-
ever X — A holds in R, and A4 is not in X, then X is a superkey for R; that is,
X is a key or contains a key. Put another way, the only nontrivial dependencies
are those in which a key functionally determines one or more other attributes.
In principal, we must look for violating dependencies X — A not only among
the given dependencies, but among dependencies derived from them. However,
we leave as an exercise the fact that if there are no violations among the given
set I, and F' consists only of dependencies with single attributes on the right,
then there are no violations among any of the dependencies in F*.

[{

[I {
402 I DESIGN THEORY FOR RELATIONAL DATABASES

of attributes and of the other nontrivial sets (CZ, C, S, and Z). The scheme
CSZ with these dependencies is not in BCON y because Z — € holds in CSz,
yet Z is not a key of CSZ, nor does it contain a key. [J

Third Normal Form

In some C‘ll'CllIZflstanCES BCNF is too strong a condition, in the sense that it is not
poguble to bring a relation scheme into that form by decomposition, without
losing the ability to preserve dependencies. Third normal form provides most

Example 7.13: In the relation scheme CSZ of Example 7.12, all attributes
are prime, since given the dependencies CS — Z and Z — C, both CS and
SZ are keys.

In the relation scheme ABCD with dependencies AB — C, B - D, and
BC — A, we can check that AB and BC are the only keys. Thus, A, B, and
C are prime, and D is nonprime. [] ,

A relation scheme R is in third normal form® (3NF) if whenever X — 4
holds in R and 4 is not in X, then either X is a superkey for R, or A is prime.
Notice that the definitions of Boyce-Codd and third normal forms are identical
except for the clause “or A4 is prime” that makes third normal form a weaker

Example 7.14: The relation scheme SAIP from Example 7.7, with dependen-
cies SI — P and § — A violates 3NF. A is a nonprime attribute, since the only
key is SI. Then § — A violates the 3NF condition, since .S is not a superkey.

However, the relation scheme CSZ from Example 7.12 is in 3NF. Since all

5 Yes Virginia, there is a first normal form and there is a second normal form, First
normal form merely states that the domain of each attribute is an elementary typé
rather than a set or a record structure, as fields in the object model (Sectioy 2).’7) can
be. Second normal form is only of historical interest and is mentioned in the exercises.

}

[| | [| [[
7.7 LOSSLESS-JOIN DECOMPOSITION INTO BONF 403

of its attributes are prime, no dependency could violate the conditions of third
normal form. [J

Motivation Behind Normal Forms

The purpose behind BCNF is to eliminate the redundancy that functional de-
pendencies are capable of causing. Suppose we have a relation scheme R in
BCNF, yet there is some redundancy that lets us predict the value of an at-
tribute by comparing two tuples and applying a functional dependency. That
is, we have two tuples that agree in set of attributes X and disagree in set of
attributes Y, while in the remaining attribute A, the value in one of the tuples,
lets us predict the value in the other. That is, the two tuples look like

X Y 4
T 1 a
r Y2 ?

Here, x, y,, and y, represent lists of values for the sets of attributes X and V.

If we can use a functional dependency to infer the value indicated by a
question mark, then that value must be a, and the dependency used must be
Z — A, for some Z C X, However, Z cannot be a superkey, because if it were,
then the two tuples above, which agree in Z, would be the same tuple. Thus, R
is not in BCNF, as supposed. We conclude that in a BCNF relation, no value
can be predicted from any other, using functional dependencies only. In Section
7.9 we shall see that there are other ways redundancy can arise, but these are
“invisible” as long as we consider functional dependencies to be the only way
the set of legal relations for a scheme can be defined.

Naturally, 3NF, being weaker than BCN F, cannot eliminate all redundancy.
The canonical example is the CSZ scheme of Example 7.12, which is in 3NF,
yet allows pairs of tuples like

¢ S "Z
c 3 z
? s oz

where we can deduce from the dependency Z — C that the unknown value is
c. Note that these tuples cannot violate the other dependency, CS — Z.

7.7 LOSSLESS-JOIN DECOMPOSITION INTO BCNF

We have now been introduced to the properties we desire for relation schemes:
BCNF or, failing that, 3NF. In Sections 7.4 and 7.5 we saw the two most
important properties of database schemes as a whole, the lossless-join and
dependency-preservation properties. Now we must attempt to put these ideas
together, that is, construct database schemes with the properties we desire for

404 DESIGN THEORY FOR RELATIONAL DATABASES

database schemes, and with each individual relation scherme having the proper-
ties we desire for relation schemes. :

It turns out that any relation scheme has a lossless join decomposition
into Boyce-Codd Normal Form, and it has a decomposition into 3NF that
h? a lossless join and is also dependency-preserving. However, there may be
n6 decomposition of a relation scheme into Boyce-Codd normal form that is
dependency-preserving. The C'SZ relation scheme is the canonical example. It
is not in BCNF because the dependency Z — C holds, yet if we decompose
CS52Z in any way such that C'SZ is not one of the schemes in the decomposition
then the dependency CS — Z is not implied by the projected dependencies. ,

Before giving the decomposition algorithm, we need the following property
of lossless-join decompositions.

Lemma 7.6: Suppose R is a relation scheme with functional dependencies F.
Let p=(Ry,...,R,) be a decomposition of R with a lossless join with respect
to F, and let o = (51,53) be a lossless-join decomposition of Ry with respect
to mg, (F). Then the decomposition of R into (81,52, Ry, ..., R,) also has a
lossless join with respect to F.

Proof: Suppose we take a relation r for R, and project it onto R, ... , R, to
get relations rq,...,r,, respectively. Then we project r; onto S) and S, to get
s1 and s3. The lossless-join property tells us we can join s, and s, to recover
fexactly 71, and we can then join ry,..., 7, to recover r. Since the natural join
Is an associative operation, by Theorem 2.1(a), the order in which we perform
the join doesn’t matter, so we recover r no matter in what order we take the
join of sy, 59,73,...,7. OJ

We can apply Lemma 7.6 to get a simple but time-consuming algorithm
to decompose a relation scheme R into BCNF. If we find a violation of BCNF
in R, say X — A, we decompose R into schemes R — A and XA. These are
both smaller than R, since X 4 could not be all attributes of R (then X would
surely be a superkey, and X — A would not violate BCNF). The join of R — A
and X A is lossless, by Theorem 7.5, because the intersection of the schemes
is X, and X - XA We compute the projections of the dependencies for R
onto R — A and XA, then apply this decomposition step recursively to these
schemes. Lemma 7.6 assures that the set of schemes we obtain by decomposing
until all the schemes are in BCNF will be a lossless-join decomposition.

_ The problem is that the projection of dependencies can take exponential
Flme in the size of the scheme R and the original set of dependencies. However
it turns out that there is a way to find some lossless-join decomposition intc;
BCNF relation schemes in time that is polynomial in the size of the given set of
dependencies and scheme. The technique will sometimes decompose a relation
that is already in BCNF, however. The next lemma gives some useful properties
of BCNF schemes.

7.7 LOSSLESS-JOIN DECOMPOSITION INTO BCNF 405

Lemma 7.7:

a) Every two-attribute scheme is in BCNF.

b) If R is not in BCNF, then we can find attributes 4 and B in R, such that
(R~ AB) — A. It may or may not be the case that (R — AB) — B as
well.

Proof: For part (a), let AB be the scheme. There are only two nontrivial

dependencies that can hold: A — B and B — A. If neither hold, then surely

there is no BCNF violation. If only 4 — B holds, then A is a key, so we do
not have a violation. If only B — A holds, then B is a key, and if both hold,
both A and B are keys, so there can never be a BCNF violation.

For (b), suppose there is a BCNF violation X — A in R. Then R must

have some other attribute B, not in X A, or else X is a superkey, and X — A

is not a violation. Thus, (R — AB) — A as desired. [J

Lemma 7.7 lets us look for BCNF violations in a scheme R with n attributes
by considering only the n(n—1)/2 pairs of attributes {A, B} and computing the
closure of R— AB with respect to the given dependencies F, by using Algorithm
7.1. As stated, that algorithm takes O(n®) time, but a carefully designed data
structure can make it run in time O(n); in any event, the time is polynomial in
the size of R. If for no A and B does (R — AB)™ contain either A or B, then
by Lemma 7.7(b) we know R is in BCNF.

It is important to realize that the converse of Lemma 7.7(b) is not true.
Possibly, R is in BCNF, and yet there is such a pair {4, B}. For example, if
R=ABC,and F = {C — A, C — B}, then R is in BCNF, yet R — AB = C,
and C does functionally determine A (and B as well).

Before proceeding to the algorithm for BCNF decomposition, we need one
more observation, about projections of dependencies. Specifically:

Lemma 7.8: If we have a set of dependencies F on R, and we project them
onto Ry C R to get Fy, and then project Fy onto R; C R, to get Fy, then

F2 =MR, (F)

That is, we could have assumed that F' was the set of dependencies for R;, even
though F' presumably mentions attributes not found in R;.
Proof: If XY C R;, then X — Y is in F7 if and only if it is in /3. (J

Lemma 7.8 has an important consequence. It says that if we decompose
relation schemes as in Lemma 7.6, then we never actually have to compute
the projected dependencies as we decompose. It is sufficient to work with the
given dependencies, taking closures of attribute sets by Algorithm 7.1 when we
need to, rather than computing whole projections of dependencies, which are
exponential in the number of attributes in the scheme. It is this observation.
together with Lemma 7.7(b), that allows us to take time that is polynomial in
the size of the given scheme and the given dependencies, and yet discover some

406 i DESIGN THEORY FOR RELATIONAL DATABASES

lossless-join/ BCNF decomposition of the given scheme.
Algorithm 7.4: Lossless Join Decomposition into Boyce-Codd Normal Form.
INPUT: Relation scheme R and functional dependencies F,

OUTPUT: A decomposition of R with a lossless join, such that every relation
scheme in the decomposition is in Boyce-Codd normal form with respect to the
projection of F onto that scheme. '

METHOD: The heart of the algorithm is to take relation scheme R, and decom-
pose it into two schemes. One will have set of attributes X A; it will be in
BCNF, and the dependency X — A will hold. The second will be R — A, so the
join of R — A with X A is lossless. We then apply the decomposition procedure
recursively, with R — A in place of R, until we come to a scheme that meets the
condition of Lemma 7.7(b); we know that scheme is in BCNF. Then, Lemma
7.6 assures us that this scheme plus the BCNF schemes generated at each step
of the recursion have a lossless join.

Z := R; /+* at all times, Z is the one scheme
of the decomposition that may not be in BCNF =/
repeat
decompose Z into Z — A and XA, where XA is in BCNF
and X — A; /» use the subroutine of Figure 7.6(b) */
add XA to the decomposition;
Z = Z—A;
until Z cannot be decomposed by Lemma 7.7(b);
add Z to the decomposition

(a) Main program.
if Z contains no A and B such that A is in (Z — AB)* then

/* remember all closures are taken with respect to F */
return that Z is in BCNF and cannot be decomposed

else begin
find one such 4 and B i
Y := Z-B;
while Y contains A and B such that (Y-AB)* — A do
Y :=Y-B;

return the decomposition Z — A and ey
/* Y here is XA in the main program */
end

(b) Decomposition subroutige.

Figure 7.6 Details of A]goritﬁm 7.4.

7.7 LOSSLESS-JOIN DECOMPOSITION INTO BCNF 407

The details of the algorithm are given in Figure 7.6. Figure 7.6(a) is the
main routine, which repeatedly decomposes the one scheme Z that we dcz 1.mt
know to be in BCNF; initially, Z is R. Figure 7.6(b) is the decomposition
proéedure that either determines Z cannot be decomposed, or decomposes Z
into Z — A and XA, where X — A. The set of attributes X A is selected by
starting with ¥ = Z, and repeatedly throwing out the attribute B, the one ‘_’f
the pair AB such that we found X — A, where X = ¥ — AB. Recall that it
does not matter whether X — B is true or not. [J

Example 7.15: Let us consider the relation scheme CTHRSG, where C =
course, T' = teacher, H = hour, R = room, § = student, and G = grade. The
functional dependencies F we assume are

C — T Each course has one teacher.
HR — C Only one course can meet in a room at one time.
HT — R A teacher can be in only one room at one time.
CS — G Each student has one grade in each course.
HS — R A student can be in only one room at one time.

Since Algorithm 7.4 does not specify the order in which pairs AB are
to be considered, we shall adopt the uniform strategy of preserving the order
CTHRSG for the attributes and trying the first attribute against the others,
in turn, then the second against the third through last, and so on.

We begin with the entire scheme, CTHRSG, and the first pair to considtfr
is CT. We find that (HRSG)* contains C; it also contains T, but that is
irrelevant. Thus, we begin the while-loop of Figure 7.6(b) with A=C, B =T,
and Y = CHRSG.

Now, we try the CH pair as {A, B}, but (RSG)* contains neither C' nor
H. We have better luck with the next pair, CR, because (HSG)* contains R.
Thus, we have A = R, B = C, and we set ¥ to HRSG, by throwing out B, as
usual. With ¥ = HRSG, we have no luck until we try pair RG, when we find
(HS)* contains R. Thus, we have A = R and B = G, whereupon Y is set to
HRS. -

At this point, no further attributes can be thrown out of)). because the test
of Lemma 7.7(b) fails for each pair. We may therefore decompose CTH RSG
into
1. HRS, which plays the role of XA, with X = HS and A = R, and
2. Z=CTHRSG — R, which is CTHSG.

We now work on Z = CTHSG in the main program. The list of pairs AB
that work and the remaining sets of attributes after throwing out B, is:

1. nCTHSG: A=T, B=H, leaves Y = CTSG.
2. InCTSG: A=T,B =S8, leaves Y = CTG.
3. InCTG: A=T,B =G, leaves Y = CT.

|
[; 1 | I I
408 DESIGN THEORY FOR RELATIONAL DATABASES

Surely, CT is in BCNF, by Lemma 7.7(a). We thus add C'T to our decompo-
sition. Attribute T plays the role of A4, so in the main program we eliminate
T and progress to the scheme Z = CH SG, which is still not in Boyce-Codd
normal form.

In CHSG, the first successful pair is A = G and B = i , which leaves
Y = CSG. No more pairs allow this scheme to be decomposed by Lemma
7.7(b), so we add CSG to the decomposition, and we apply the main program
to the scheme with A removed, that is, Z = CHS.

This scheme, we find, cannot be decomposed by Lemma 7.7(b), so it too is
in BCNF, and we are done. Notice that we get lossless joins at each stage, if we
combine the schemes in the reverse of the order in which they were found. That
is, CHS va CSG is lossless because of the dependency CS — G; CHSG va CT
is lossless because of the dependency C — T, and CTHSG s« HRS is lossless
because of HS — R. In each case, the required functional dependency is the
one of the form X — A that gets developed by the subroutine of Figure 7.6(h).
By Lemma 7.6, these lossless joins imply that the complete decomposition,
(HRS,CT,CSG,CHS) is lossless. [

Problems with Arbitrary BCNF Decompositions

In the decomposition of Example 7.15, the four relation schemes store the fol-
lowing kinds of information:

L. The location (room) of each student at each hour.

2. The teacher of each course.

3. Grades for students in courses, i.e., the students’ transcripts.
4. The schedule of courses and hours for each student.

This is not exactly what we might have designed had we attempted by hand to
find a lossless-join decomposition into BCNF. In particular, we cannot tell where
a course meets without joining the CHS and HRS relations, and even then we
could not find out if there were no students taking the course. We probably
would have chosen to replace HRS by C HR, which gives the allocation of rooms
by courses, rather than by students, and corresponds to the published schedule
of courses found at many schools. Unfortunately, the question of “merit” of
different decompositions is not one we can address theoretically. If one does
not have a particular scheme in mind, for which we can simply verify that it
has a lossless join and that each of its components is in BCNF, then one can
try picking AB pairs at random in Algorithm 7.4, in the hope that after a few
tries, one will get a decomposition that looks “natural.” »

Another problem with the chosen decomposition (one which is not fixed
by replacing HRS by CHR) is that some of the dependencies in F, specifically
TH — R and HR — C, are not preserved by the decomposition. That is, the
projection of F' onto HRS, CT, CSG, and CHS is the closure of the following

I | [{ I (({

7.8 DEPENDENCY-PRESERVING 3NF DECOMPOSITIONS 409

dependencies, as the reader may check.
CS—-G HS - R
C—-T HS - C
Note that the last of these, HS — C is in the projection of F onto CHS, but
is not a given dependency; the other three are members of F itself. These f?ur
dependencies do not imply TH — R or HR — C. For example, the relation
for CTHRSG shown below
¢ T H R 8§ G
ep i h r 8 0
i
t

[h r2 s g2
[h r s3 g3

satisfies neither TH — R nor HR — C, yet its projections onto HRS, CT,
CSG, and CHS satisfy all the projected dependencies.

Efficiency of BCNF Decomposition

We claim that Algorithm 7.4 takes time that is polyvnomial il{ n, which is the
length of the relation scheme R and the dependencies F', written _down. V\fe
already observed that computing closures with respect to F' takes time that is
polynomial in n; in fact O(n) time suffices if the proper data structur_es are
used. The subroutine of Figure 7.6(b) runs on a subset Z of the attributes,
which surely cannot be more than n attributes. Each time ‘thmugh the loop,
the set Y decreases in size, so at most n iterations are possﬂile. 'I‘h?.re are at
most n? pairs of attributes A and B, so the test for (¥ — AB) = Ais d(.)ne at
most n® times. Since this test takes polynomial time, and its time dominates
the time of the other parts of the loop body, we conclude that the algorithm of
igure 7.6(b) takes polynomial time.
Flgm"I‘he p(rir)lcipal cf;st.yof the main program of Figure 7.6(a) is the call‘to the
subroutine, and this call is made only once per iteration of the loop. ‘ Since Z
decreases in size going around the loop, at most n iterations are possible, and

the entire algorithm is thus polynomial.

7.8 DEPENDENCY-PRESERVING 3NF DECOMPOSITIONS

We saw from Examples 7.12 and 7.14 that it is not always possible to decompose
a relation scheme into BCNF and still preserve the dependenci-es. However, we
can always find a dependency-preserving decomposition into third normal form,
as the next algorithm and theorem show.

Algorithm 7.5: Dependency-Preserving Decomposition into Third Normal
Form. .
INPUT: Relation scheme R and set of functional dependencies F, which we
assume without loss of generality to be a minimal cover.

[[| I | | ' '
410 DESIGN THEORY FOR RELATIONAL DATABASES

olUTPUIA‘: A qepend?ncy-preserving decomposition of R such that each relation
scheme is in 3NF with respect to the projection of F onto that scheme.

METHOP: If there are any attributes of R not involved in any dependency
?f F, enther‘ on the left or right, then any such attribute can, in principle
orm a relatloq scl'leme .by itself, and we shall eliminate it from R.7 If one o:E
g:;l degende:clzs in F involves all the attributes of R, then output R itself

erwise, the decomposition p to be output consist ,
e p s of scheme X A for each

Example 7.16: Reconsider the relation scheme C'T
HRSG
whose dependencies have minimal cover F'- AR felf

C—T CS—- @G
HR - C HS - R
HT - R
orithm 7.5 yiel i
ﬁrl_gg_ Dm yields the set of relation schemes CT, CHR, THER, CSG, and

Theorem 7.7: Algorithm 7.5 viel -
-9 yields a depend = “2d
into third normal form. pendency-preserving decomposition

n(;]t' a siuperkey for YB, X must be a proper subset of Y. But then X — B
which is also X — 4, coPJd replace Y — B in the supposed minimal cover
contradicting the assumption that ¥ — B was part of the given minimal cover,

Case 22 A # B. Since Y is a.superkey for Y'B, there must be some Z C ¥

(éannc}; be in Z, because A 'is nonprime. Thus Z is a proper subset of ¥, yet
— B can replace ¥ — B in the supposedly minimal cover, again providing a
contradiction. [J ¢
- There is a modification to Algorithm 7.5 that avoids unnecessary decompo-
sition. If X — 4;,... X — A, are dependencies in a minimal cover, then we

" Sometimes it is desirable to h
i ave two or more attributes, say A and B, appear t i
:‘ ;elns:mnisc::me, even though thgre is no functional dependency involzgz the(;?t'?‘flzg
< tﬂ inl:.]:)gl’ucg : IE::;‘/I;]M!;{ t:glatm;shlﬂ between 4 and B. An idea of Bernstein (1976]
ints Y attribute 6 and functional dependency AB . i
association. After completing the design, attribute § is eliminged. S

e

[[[[[[[

7.8 DEPENDENCY-PRESERVING 3NF DECOMPOSITIONS 411

may use the one relation scheme XA, --- 4, in place of the n relation schemes
XAy,...,XAp. It is left as an exercise that the scheme X 4, - -- A, is in 3NF.

Decompositions into Third Normal Form with a Lossless Join and
Preservation of Dependencies

As seen, we can decompose any relation scheme R into a set of schemes

= (Rl:' 4 :Rk)
such that p has a lossless join and each R; is in BCNF (and therefore in 3NF),
We can also decompose R into ¢ = (Si,...,S,,) such that o preserves the set

of dependencies F, and each S; is in 3NF. Can we find a decomposition into
3NF that has both the lossless join and dependency-preservation properties?
We can, if we simply adjoin to ¢ a relation scheme X that is a key for R, as
the next theorem shows.
Theorem 7.8: Let o be the 3NF decomposition of R constructed by Algorithm
7.5, and let X be a key for R. Then 7 = o0 U {X} is a decomposition of R with
all relation schemes in 3NF; the decomposition preserves dependencies and has
the lossless join property.
Proof: It is easy to show that any 3NF violation in X implies that a proper
subset of X functionally determines X, and therefore R, so X would not be a
key in that case. Thus X, as well as the members of o, are in 3NF. Clearly 7
preserves dependencies, since ¢ does.

To show that 7 has a lossless join, apply the tabular test of Algorithm 7.2.
We can show that the row for X becomes all a’s, as follows. Consider the order
Ay, A, ..., Ag in which the attributes of R — X are added to X* in Algorithm
7.1. Surely all attributes are added eventually, since X is a key. We show by
induction on ¢ that the column corresponding to A; in the row for X is set to

a; in the test of Algorithm 7.2.
The basis, i = 0, is trivial. Assume the result for i — 1. Then A4; is added

to X* because of some given functional dependency ¥ — A;, where
¥ E XU{A;,....A,‘-l}

Then Y A; is in o, and the rows for Y A; and X agree on Y (they are all a’s)
after the columns of the X-row for A;,...,4;_; are made a's. Thus, these
rows are made to agree on A; during the execution of Algorithm 7.2. Since the
Y A;-row has a; there, so must the X-row, [J

Obviously, in some cases 7 is not the smallest set of relation schemes with
the properties of Theorem 7.8. We can throw out relation schemes in 7 one at
a time as long as the desired properties are preserved. Many different database
schemes may result, depending on the order in which we throw out schemes,
since eliminating one may preclude the elimination of others.

I [[I | | ([

412 DESIGN THEORY FOR RELATIONAL DATABASES

(CT,CHR,THR,CSG, HRS)

sufﬁces.‘}?lthough some proper subsets of this set of five relation schemes are
lossless join decompos:tu?ns, we can check that the projected dependencies for
any four of them do not imply the complete set of dependencies F. []

A Cautionary Word About Decompositions

Given tools like Algorithms 7.4 and 7.5, one is often tempted to “decompose
the heck” out of a relation scheme. It is important to remember that not ef:e
lossless-join decomposition step is beneficial, and some can be harmful. le
.mostbcommog mistake is to decompose a scheme that is already in BONF
ézitenggzgz; ‘n‘. happens to have a lossless-join decomposition that preserves
For example, we might have a relation giving information about employees
say I, the unique ID-number for employees, N, the employee’s name, D tht;
d'epa.rf,ment in which he works, and S, the salary. Since I is the only ke:;r in this
situation, we have I — A for each other attribute A. It is therefore possible
to decompose this scheme into IN, ID, and IS. This decomposition is easily

department, we would have to join IN va ID ba IS in the decomposed data-
base sch?me, yet we could answer the query without taking any Jjoins if we left
thf: relation scheme intact (and with an index on department, we could answer
this query quite efficiently). Further, the decomposed scheme requires that the
employee ID number be repeated in many places, although it is not, technicall

redundant. : "

7.9 MULTIVALUED DEPENDENCIES 413

7.9 MULTIVALUED DEPENDENCIES

In previous sections we have assumed that the only possible kind of data depen-
dency is functional. In fact there are many plausible kinds of dependencies, and
at least one other, the multivalued dependency, appears frequently in the “real
world.” Suppose we are given a relation scheme R, and X and Y are subsets
of R. Intuitively, we say that X — ¥, read “X multidetermines Y,” or “there
is a multivalued dependency of Y on X,” if given values for the attributes of
X there is a set of zero or more associated values for the attributes of Y, and
this set of ¥-values is not connected in any way to values of the attributes in
R-X-Y.

Formally, we say X — Y holds in R if whenever r is a relation for R, and
and v are two tuples in r, with u[X] = v[X] (that is, 4 and v agree on the
attributes of X), then r also contains tuples ¢ and 1), where

L ¢[X] = ¢[X] = p[X] = v[X].

2. ¢Y]=p[Y]and g[R-X -Y]=v[R—-X -Y].

3. yY[Y]=v[Y]and Y[R- X -Y]=p[R- X - Y] *

That is, we can exchange the Y-values of 4 and v to obtain two new tuples
¢ and ¥ that must also be in r. Note we did not assume that X and ¥ are
disjoint in the above definition.

Example 7.18: Let us reconsider the relation scheme CTHRSG introduced
in the previous section. In Figure 7.7 we see a possible relation for this relation
scheme. In this simple case there is only one course with two students, but we
see several salient facts that we would expect to hold in any relation for this
relation scheme. A course can meet for several hours, in different rooms each
time. Each student has a tuple for each class taken and each session of that
class. His grade for the class is repeated for each tuple.

C T H R 5 G
CS101 Deadwood M9 222 Weenie B+
CS101 Deadwood W9 333 Weenie B+
CS101 Deadwood F9 222 Weenie B+

CS101 Deadwood M9 222 Grind (G
CS8101 Deadwood W9 333 Grind ¢
CS101 Deadwood F9 222 Grind 0

Figure 7.7 A sample relation for scheme CTHRSG.

8 Note we could have eliminated clause (3). The existence of tuple v follows from the
existence of ¢ when we apply the definition with g and v interchanged.

e

Al ety

e <

| I I I I I [|

414 DESIGN THEORY FOR RELATIONAL DATABASES

Thus, we expect that in general the multivalued dependency C — HR
holds; that is, there is a set of hour-room pairs associated with each course and
disassociated from the other attributes. For example, in the formal definition
of a multivalued dependency we may take X — Y to be C' — HR and choose

= C5101 Deadwood M9 222 Weenie B+
v = CS101 Deadwood W9 333 Grind C

ie., p is the first tuple, and v the fifth, in Figure 7.7. Then we would expect
to be able to exchange u[H R] = (M9, 222) with v[HR] = (W9, 333) to get the
two tuples

¢ = CS101 Deadwood M9 292 Grind C
¥ = CS101 Deadwood W9 333 Weenie B+

A glance at Figure 7.7 affirms that ¢ and 9 are indeed in 7; they are the fourth
and second tuples, respectively.

It should be emphasized that ¢ —- HR holds not because it held in the
one relation of Figure 7.7. It holds because any course c, if it meets at hour
hi in room ry, with teacher t) and student s; who is getting grade g, and it
also meets at hour ks in room r2 with teacher ¢; and student s2 who is getting
grade gp, will also meet at hour hy in room r; with teacher tz and student s,
who is getting grade g,.

Note also that C — H does not hold, nor does C — R. In proof, consider
relation r of Figure 7.7 with tuples p and v as above. If ¢ — H held, we would
expect to find tuple

CS101 Deadwood M9 333 Grind C

in 7, which we do not. A similar observation about ¢ —— R can be made.
There are a number of other multivalued dependencies that hold, however, such
as C — SG and HR — SG. There are also trivial multivalued dependencies
like HR — R. We shall in fact prove that every functional dependency X — ¥
that holds implies that the multivalued dependency X —- Y holds as well. []

Axioms for Functional and Multivalued Dependencies

We shall now presen.t a sound and complete set of axioms for making inferences
about a set of functional and multivalued dependencies over a set of attributes
U. The first three are Armstrong’s axioms for functional dependencies only; we
repeat them here. '

Al: Reflexivity for functional dependencies. If Y C X CU,then X - Y.
A2: Augmentation for functional dependencies. If X — y holds, and Z C U/
then XZ — Y Z. o

A3: Transitivity for functional dependencies. {X - Y,V — Z lEX =z
The next three axioms apply to multivalued dependencies.

[[I | [[I [

7.9 MULTIVALUED DEPENDENCIES 415

A4: Complementation for multivalued dependencies.
(X >Y}EX+-(U-X-Y)

A5: Augmentation for multivalued dependencies. If X —— Y holds, and
V C W, then WX — VY.
A6: Transitivity for multivalued dependencies.

(XY, Y =2} =X (Z-Y)

It is worthwhile comparing A4-A6 with A1-A3. Axiom A4, the comple-
mentation rule, has no counterpart for functional dependencies. Axiom Al,
reflexivity, appears to have no counterpart for multivalued dependencies, but
the fact that X —— Y whenever Y C X, follows from Al and the rule (Ax-
iom A7, to be given) that if X — Y then X —— Y. A6 is more restrictive
than its counterpart transitivity axiom, A3. The more general statement, that
X Y andY — Z imply X — Z, is false. For instance, we saw in Exam-
ple 7.18 that C —- HR holds, and surely HR — H is true, yet C — H is
false. To compensate partially for the fact that A6 is weaker than A3, we use
a stronger version of A5 than the analogous augmentation axiom for functional
dependencies, A2. We could have replaced A2 by: X =Y and V C W imply
WX — VY, but for functional dependencies, this rule is easily proved from

Al, A2, and A3.
Our last two axioms relate functional and multivalued dependencies.

AT (X ->Y}EX Y.
A8: If X —= Y holds, Z C Y, and for some W disjoint from Y, we have
W — Z, then X — Z also holds.

Soundness and Completeness of the Axioms

We shall not give a proof that axioms A1-A8 are sound and complete. Rather,
we shall prove that some of the axioms are sound, that is, they follow from the
definitions of functional and multivalued dependencies, leaving the soundness
of the rest of the axioms, as well as a proof that any valid inference can be
made using the axioms (completeness of the axioms), for an exercise.

Let us begin by proving A6, the transitivity axiom for multivalued depen-
dencies. Suppose some relation r over set of attributes U/ satisfies X —— ¥ and
Y — Z, but viclates X — (Z — Y). Then there are tuples yu and v in r,
where u[X] = v[X], but the tuple ¢, where ¢[X] = u[X], $[Z — Y] = p[Z — Y],
and

U-X—(Z-Y)|=v[U-X-(Z-Y)]
is not in 7.° Since X — Y holds, it follows that the tuple ¢, where Y[X] =

9 Recall that we pointed out the definition of multivalued dependencies could require

[((

416 DESIGN THEORY FOR RELATIONAL DATABASES

#[X], ¢[Y] = v[Y], and
YU-X-Y]=plU-X-Y]

is in 7. Now 1 and v agree on Y, so since Y — Z, it follows that r has a tuple
w, where w[Y] = v[Y], w[Z] = ¢[Z), and

wlU-Y -Z]=v[U-Y - 2]

We claim that w[X] = u[X], since on attributes in Z 1 X » w agrees with
¥, which agrees with . On attributes of X — Z » w agrees with v, and v agrees
with p on X. We also claim that w[Z — Y] = u[Z - Y], since w agrees with
on Z ~Y, and ¢ agrees with yon Z ~ Y. Finally, we claim that w[V] = v[V],
where V=U-X-(Z-Y). In proof, surely w agrees with v on V — Z, and
by manipulating sets we can show V N Z = (YNZ)-X. But w agrees with
Y on Z, and v agrees with v on Y, so w agrees with » on ¥V N Z as well as on
V — Z. Therefore w agrees with v on V. If we look at the definition of ¢, we
now see that w = ¢. But we claimed that w is in T, 80 ¢ is in r, contrary to our
assumption. Thus X —— Z — Y holds after all, and we have proved A6.

Now let us prove A8. Suppose in contradiction that we have a relation r
inwhich X Y and W — 2 hold, where ZC Y, and WN Y is empty, but
X — Z does not hold. Then there are tuples v and # inr such that v[X] = u[X],
but ¥(Z] # p[Z]. By X — Y applied to v and U, there is a tuple ¢ in r, such
that ¢[X] = u[X] = v[X], ¢[Y] = u[Y], and ¢[U — X — Y| =oU-X-Y].
Since WNY is empty, ¢ and vagreeon W. As ZCY, ¢ and p agree on Z.
Since v and p disagree on Z, it follows that ¢ and v disagree on Z. But this
contradicts W — Z, since ¢ and v agree on W but disagree on Z. We conclude
that X — Z did not fail to hold, and we have verified rule AS.

The remainder of the proof of the following theorem is left as an exercise.

Theorem 7.9: (Beeri, Fagin, and Howard [1977]). Axioms A1-A8 are sound
and complete for functional and multivalued dependencies. That is, if D is a set
of functional and multivalued dependencies over a set of attributes U, and D+
is the set of functional and multivalued dependencies that follow logically from
D (i.e., every relation over U that satisfies D also satisfies the dependencies in
D*), then D* is exactly the set of dependencies that follow from D by A1-A8.
O

Additional Inference Rules for Multivalued Dependencies

There are a number of other rules that are useful for making inferences about
functional and multivalued dependencies. Of course, the union, decomposition,

only the existence of ¢, not the additional existence of ¥ as in the third clause of the
definition. Thus, the violation of a multivalued dependency can be stated as the absence
of ¢ (not ¢ or ¢) from the relation r.

417
7.9 MULTIVALUED DEPENDENCIES

and pseudotransitivity rules mentioned in Lemma 7.1 still apply to functional
dependencies. Some other rules are:

1. Union rule for multivalued dependencies.
(X =Y, X»Z}EX—YZ
2. Pseudotransitivity rule for multivalued dependencies.
{X =Y, WY - Z} EWX — (Z - WY)

3. Mixed pseudotransitivity rule. {X =Y , XY - Z} X - (Z-Y).
4. Decomposition rule for multivalued dependencies. If X —+ Y and X —— Z
hold, then X = (Y NZ), X = (Y - Z), and X — (Z —~Y) hold.

he proof that these rules are valid as an exercise; techniques similar
:Zeti:c?s\;e IESEdpfOl' A6 and AR above will suffice, or we can prove them from
axioms A1-AS8. -
‘We should note that the decomposition rule for multiva.h}ed dependencies is
weaker than the corresponding rule for functional dependencies. The lal..ter ru];
allows us to deduce immediately from X — ¥ that X — A for each attribute %
in Y. The rule for multivalued dependencies only allows us to c?nclude X —o: %
from X —— Y if we can find some Z such that X —— Z, and either ZNY =

orY —Z = A.

The Dependency Basis

However, the decomposition rule for multivalued dependencies, along with the

union ru’le, allows us to make the following statement about the sets ¥ such

that X — Y for a given X. Al
- is the set of all attributes, then we can partition iy

i?ggﬁr:ctghiiggi .-, ¥, such that if Z C U — X, then X — Z if and

only if Z is the union of some of the ¥;’s.

Proof: Start the partition of U — X with all of U — X in one b-lock. Suppose :;t;
some point we have partition Wy,...,W,, and X —— W; fori = l’i‘pifnnz
X — Z, and Z is not the union of some W;’s, replace each W; such that _.t_
and W; — Z are both nonempty by W; N Z and W; — Z. By the d?c'ompom ion
rule, X — (W; N Z) and X — (W; — Z). As we cannot partition a finite
set :)f attributes indefinitely, we shall eventually find that every Z suc‘i;ll th;l’;
X —— Z is the union of some blocks of the partition. By the union rule,
muitidetermines the union of any set of blocks. [J

We call the above sets Y1,. .., Yz constructed for X from a set: of functional
and multivalued dependencies D the dependency basis for X (with respect to

D).

[[[[[(({

418 DESIGN THEORY FOR RELATIONAL DATABASES

Example 7.19: In Example 7.18 we observed that ¢ —— HR. Thus, by the
complementation rule, C — T'SG. We also know that ¢ — 7. Thus, by
axiom A7, C — T. By the decomposition rule, C — SG. One can check
that no single attribute except T or C itself is multidetermined by C. Thus,
the dependency basis for C is {T, HR, SG}. Intuitively, associated with each
course are independent sets of teachers (there is only one), hour-room pairs that
tell when and where the course meets, and student-grade pairs, the roll for the
course. [] '

Closures of Functional and Multivalued Dependencies

Given a set of functional and multivalued dependencies D, we would like to
find the set D* of all functional and multivalued dependencies logically implied
by D. We can compute D* by starting with D and applying axioms Al-
A8 until no more new dependencies can be derived. However, this process
can take time that is exponential in the size of D. Often we only want to
know whether a particular dependency X — Y or X — ¥ follows from D.
For example, Theorem 7.11, below, requires such inferences to find lossless-join
decompositions of relation schemes in the presence of multivalued dependencies.
To test whether a multivalued dependency X —— ¥ holds, it suffices to
determine the dependency basis of X and see whether ¥ — X is the union
of some sets thereof. For example, referring to Example 7.19, we know that
C — CTSG, since TSG is the union of T and SG. Also, C — HRSG, but
C — T'H is false, since TH intersects block HR of the dependency basis, yet
TH does not include all of HR. In computing the dependency basis of X with
respect to D, a theorem of Beeri [1980] tells us it suffices to compute the basis
with respect to the set of multivalued dependencies M , where M consists of

1. All multivalued dependencies in D, and

2. For each functional dependency X — Y in D, the set of multivalued de-
pendencies X — A;,..., X — A,, where ¥ = Aj--- Ay, and each A; is
a single attribute.

Another theorem of Beeri [1980] gives us a way to extract the nontrivial
functional dependencies from the dependency basis computed according to the
set of multivalued dependencies M. It can be shown that if X does not include
A, then X — A holds if and only if

1. A is a singleton set of the dependency basis for X according to the set of
dependencies M, and

2. There is some set of attributes ¥, excluding A, such that ¥ — Z is one of
the given dependencies of D, and A is in Z.

Furthermore, Beeri [1980] gives the following polynomial time algorithm
for computing the dependency basis of X with respect to M. Note that while
Theorem 7.10 convinces us that the dependency basis exists, it does not tell us

| | [[

7.9 MULTIVALUED DEPENDENCIES 419

how to find the multivalued dependencies needed to apply the decomposition
rule.
Algorithm 7.6: Computing the Dependency Basis.
INPUT: A set of multivalued dependencies M over set of attributes U, and a set
XcU.
OUTPUT: The dependency basis for X with respect to M.
METHOD: We start with a collection of sets &, which eventually becomes t%’te
dependency basis we desire. Initially, S consists of only one set, U — X; that is,
S = {U — X}. Until no more changes can be made to S, look for dependencies
V — W in M and a set Y in S such that Y intersects W hl:lt not V. Replace
Y by YNW and Y — W in §. The final collection of sets & is the dependency
basis for X. [J

Since Algorithm 7.6 only causes sets in S to be split, and it Ferminates
when no more splitting can be done, it is straightforward the ?.lgonthm ta.}(es
time that is polynomial in the size of M and U. In fact, careful unplementatl_on
allows the algorithm to run in time proportional to the number of de]?endenc1es
in M times the cube of the number of attributes in U. A proc.of of this fact and
a proof of correctness for Algorithm 7.6 can be found in Beeri [1980].

Lossless Joins

Algorithm 7.2 helps us determine when a decomposition of a relation scheme
R into (Ry,..., Ry) has a lossless join, on the assumption that the onl.y depen-
dencies to be satisfied by the relations for R are functional. That alg_orlthm can
be generalized to handle multivalued dependencies, as we shall see 1_n the‘ next
section. In the case of a decomposition of R into two schemes, there is a simple
test for a lossless join. .
Theorem 7.11: Let R be a relation scheme and p = (R;, Rz) a dfacomposv
tion of R. Let D be a set of functional and multivalued dependencies on the
attributes of R. Then p has a lossless join with respect to D if and only if

(R1 N Ry) = (B — Ry)
[or equivalently, by the complementation rule, (Ry N Ry) — (Rz — Ry)]-

Proof: Decomposition p has a lossless join if and only if for any relation _r
satisfying D, and any two tuples y and » in r, t.he tL.lple ¢ such that ¢[R1] =
p[R1] and ¢[R2] = v[Rg] is in r if it exist.s.. Tlllat is, ¢ is what we get by Jc.'tu:m.gf
the projection of u onto R; with the projection of v ?nto Rs. B.ut @ exists i
and only if u[Ry N Ra] = v[Ry N R,]. Thus, the condition that ¢ is always in r

is exactly the condition that
(Ry N Rg) = (R1 — Ry)

420 DESIGN THEORY FOR RELATIONAL DATABASES

or equivalently, (Ry N Hz) — (R; — Ry). O
Note that by axiom A7, Theorem 7.5 implies Theorem 7.11 when the only

dependencies are functional, but Theorem 7.5 says nothing at all if there are
multivalued dependencies that must be satisfied.

7.10 FOURTH NORMAL FORM

There is a generalization of Boyce-Codd normal form, called fourth normal
form, that applies to relation schemes with multivalued dependencies. Let R
be a relation scheme and D the set of dependencies applicable to R. We say
R is in fourth normal form (4NF) if whenever there is, in D*, a multivalued
dependency X —- Y, where Y is not a subset of X, and XY does not include
all the attributes of R, it is the case that X is a superkey of R. Note that
the definitions of “key” and “superkey” have not changed because multival-
ned dependencies are present; “superkey” still means a set of attributes that
functionally determines R.

Observe that if R is in 4NF, then it is in BCNF; i.e., 4NF is a stronger
condition than BCNF. In proof, suppose R is not in Boyce-Codd normal form,
because there is some functional dependency X — A, where X isnot a superkey,
and A is not in X. If XA = R, then surely X includes a key. Therefore X A
does not include all attributes. By A8, X — A implies X — A. Since X A =R
and A is not in X, X — A is a 4NF violation.

We can find a decomposition of R into p = (R, ..., Ry), such that phasa
lossless join with respect to D, and each R; is in 4NF, as follows. We start with
p consisting only of R, and we repeatedly decompose relation schemes when we
find a violation of 4NF, as in the discussion of the simple but time-consuming
decomposition algorithm for BCNF decomposition preceding Algorithm 7.4. If
there is a relation scheme S in p that is not in 4NF with respect to D projected
onto S,'° then there must be in S a dependency X —— ¥, where X is not
a superkey of S, Y is not empty or a subset of X, and XV # S. We may
assume X and Y are disjoint, since X — (Y — X) follows from X —— Y
using Al, A7, and the decomposition rule. Then replace § by §; = XV and
S = § - Y, which must be two relation schemes with fewer attributes than S.
By Theorem 7.11, since (5, N S;) —— (5, — S3), the join of S; and S, is lossless
with respect to mg(D), which we take in this section to be the set of functional
and multivalued dependencies that follow from D and involve only attributes
in the set S.

We leave it as an exercise the generalization of Lemma 7.6 to sets of func-
tional and multivalued dependencies; that is, the repeated decomposition as
above produces a set of relation schemes that has a lossless join with respect

10 We shall discuss later how to find the projection of a set of functional and multivalued
dependencies.

' | ' [[[

421
7.10 FOURTH NORMAL FORM

ining i] tes
to D. The only important detail remaining is to determine how one compu

ns(D), given R, D, and § C R. It is a theorem of Aho, Beeri, and Ullman
[1979) that ms(D) can be computed as follows.
+

51! gzrme::l::xe;’)—; Y in D+, if X C S, then X — (Y N S) holds;n 'S:
3. For each X — Y in D*,if X C S, then X —H_(YDS) hol stl)n d.educed
4. No other functional or multivalued dependencies for S may be

from the fact that D holds for R. . b
Example 7.20: Let us reinvestigate the C.'TH RSG relatlon_ s?herlrfov: in
duced in Example 7.15. We have several times noted the minima

c—-T 55— G
HR—C HS = R
HT — R

ncies. It turns out that one multivalued

h the above functional dependerllcies, al-
hat we would intuitively feel

for the pertinent functional depende.:
S —ﬁl I;R' Eflff:::!ere: gependencies &
lows us to derive all the multivalu oty C s SG.
We mﬁdicnwe st;:; t;}l;ﬁ%lg‘f,s:)h;;}? : C'I;"R S; the complementat'ion rule,
}’Idilalﬁ S(? W That is to say, given an hour and room, F‘here is an assz::;::sndgsi
of student-grade pairs, namely the students enrolled in thf: c:);::emurse. 5 =
that room and that hour, paired with the grades: they got in it el
reader is invited to explore further the set_of mlﬂtwaluedu]delaf:ln egnde i
from the given five functional dependencies and one multivalu D

To place relation scheme CTHRSG in ANF, we might start with

C — HR
which violates the 4NF conditions since

THRSG). We decompose CT '
l::;é‘:)‘;l Scheme CI)‘I R has key HR. The multivalued dependency C —— HR

:] i
does not violate fourth normal form for CHR, since the -left lamd r:ﬁil:, asllu:;
together include all the attributes of CHR. No other functmn: or m e
deiendency projected onto CHR violates 4NF, so we need not decomp

urther. . 2y
o fSu'::heis not the case for CTSG. The only key is C'S, yet we see the 11:;“21.’?11"?(1';
d dependency C — T', which follows from C — T. We theref‘ore spl i
Silxfi:o Cg"eand CSG. These are both in 4NF with respect to t(tg; Ercg;‘c i
i ! re 4 e |
jes, so we have obtained the decompos:f.lon p
EG;:;S;“;;:S ; lossless join and all relation schemes in fourth normal form.

i 1
C is not a superkey (SH is the only
HRSG into CHR and CTSG. The

11 Note that since X — ¥ NS is also in D, this rule is equivalent to the rule for projecting
ote tha =t

functional dependencies given earlier.

i
|

| | | | [([

422 DESIGN THEORY FOR RELATIONAL DATABASES

It is interesting to note that when we ignore the multivalued dependency
C —+ HR, the decomposition p does not necessarily have a lossless join, but
if we are allowed to use C — HR, it is easy to prove by Theorem 7.11 that
the join of these relations is lossless. As an exercise, the reader should find a
relation r for CTHRSG such that m,(r) # r, yet r satisfies all of the given
functional dependencies (but not C' —~ HR, of course). [J

Embedded Multivalued Dependencies

One further complication that enters when we try to decompose a relation
scheme R into 4NF is that there may be certain multivalued dependencies that
we expect to hold when we project any plausible relation r for R onto a subset
X C R, yet we do not expect these dependencies to hold in r itself. Such a
dependency is said to be embedded in R, and we must be alert, when writing
down all the constraints that we believe hold in relations r for R, not to ignore
an embedded multivalued dependency. Incidentally, embedded functional de-
pendencies never occur; it is easy to show that if ¥ — Z holds when relation
r over R is projected onto X, then ¥ — Z holds in r as well. The same is not
true for multivalued dependencies, as the following example shows.

Example 7.21: Suppose we have the attributes C (course), S (student), P
(prerequisite), and ¥ (year in which the student took the prerequisite). The
only nontrivial functional or multivalued dependency is SP — Y, so we may
decompose CSPY into CSP and SPY; the resulting schemes are apparently
in 4NF.

The multivalued dependency € — S does not hold. For example, we
might have in relation r for CSPY the tuples

C5402 Jones (CS311 1988
CS402 Smith CS401 1989

yet not find the tuple
CS5402 Jones (CS401 1989

Presumably Jones took CS401, since it is a prerequisite for CS402, but perhaps
he did not take it in 1989. Similarly, C —+ P does not hold in CSPY.

However, if we project any legal relation r for CSPY onto CSP, we would
expect C'—- S and, by the complementation rule, C — P to hold, provided
every student enrolled in a course is required to have taken each prerequisite for
the course at some time. Thus, C — S and C —— P are embedded multivalued
dependencies for CSP. As a consequence, CSP is really not in 4NF, and it
should be decomposed into C'S and CP. This replacement avoids repeating the
student name once for each prerequisite of a course in which he is enrolled.

It is interesting to observe that the decomposition p = (CS,CP, SPY) has
a lossless join if we acknowledge that C — S is an embedded dependency

| | [[| [[

423
7.11 GENERALIZED DEPENDENCIES

for CSP. For then, given any relation r for CSPY that satlsﬁis SPY‘::;
and the dependency C — S in CSP, we can prove that m,,(r)S; : il
could not prove this assuming only the fu.nctmnal dependency o embe;ided
reader is invited to find a relation r Es]at.isfymg SP — Y (but not the
dependency) such that my(r) # 7. .

’ We shall consider embedded multivalued depfandencies further ::i: tht.a e;lex;
section. Here let us introduce the standard notation for such u?e'I::? e(;nf;e .en_
relation r over relation scheme R satisfies the embedded mi ti . 1% S pthe
dency X — Y | Z if the multivalued dt.apendency X —+Y 15; s:.tl§b0tes):n e
relation mxuyuz(r), which is the projection of r onto Fhe set 0 attri ey foeg
tioned in the embedded dependency. Note that the::e.m no requnremlen n{;atior;
Y. and Z be disjoint, and by the union, decon‘lposmon, and comp ;T_, i
rules, X —- ¥ holds in mxyyuz(r) if and only if X — Z d;:;,d wX e ¥ |2
means the same as X — Z | Y. As an example, the em o ms
dependency from Example 7.21 is written C — S|PorC—+P|S.

7.11 GENERALIZED DEPENDENCIES

e ey mal g
functional and multivalu : : X s
demand such generality; probably, functional and mul.twa]ued dependenfx(;ls a:”
sufficient in practice.’> However, there are some key ideas, §uch as tl}lle C na; .
algorithm for inferring dependencies, ‘t.ha.t are bf:tter described in :ﬂ z rg:an i
context to which the ideas apply than in the s?ecxal case .of function $omed
valued dependencies. Thie idfeas associated with generalized gzﬁi?e:e:;u:gical
grﬁ?esur(’;?oril‘ll gzﬁges;),p;[;fg;%;m ;23& l;?'l?hirseiif:o;t’ }:c?:;pply to optimiza-
i i);'elofit:wp{::)gtfl;fn:iixg- and multivalued dependencies as Stgl::% o;nrilla:;
o L o B B the sty 0 Al of e
(s:;snibzlisfz:::ﬂ:zﬂeetf)inmultiva{ued depe[lxde;u;itg, “th‘;s; Ci's ;nt.::l:;rr t.:g:li ;};if
i i e, le = :
::Irliubsst::oTﬁ;nt;: iul:;:i:ﬁ::i dl;‘;xf;::g A — B says that whenever we see, In

i hat sa
12 Often, one observes inclusion dependencies, as well. These are mmmli":u::’]p;l’;?i'(:u]:13.1'1
= el appearing in one attribute of one relation must a.lsoda[.;pearthe RO Asiakise
attribute of some other relation. F'or e:argl:}?TW;‘:lvg‘g? ::ng)a};‘DERS tuple also appear
tomer name appearing in the RS ve a real

;:Bth: cCl;AOME field of the CUSTOMERS relation; i.e., each order must ha

i i i hanics
customer behind it. The desire to enforce inclusion dependencies explains the mec

i ints System
of insertion and deletion in the DBTG proposal (Section 5.3), and the constraints Sy

AcEs i “vi " (Section 6.11). As inclusion
ir of relations that are st.or_ed via set” (; 1 P
dRe:tlandeugi‘;aadga::ot influence the normalization process, their theory is mentio y

in the exercises.

424 DESIGN THEORY FOR RELATIONAL DATABASES

some rela_tion r, two tuples ab;c;d; and abacads, then by = by in those tuples
The multivalued dependency A — B says of the same two tuples that we must:
also see the tuple ab;cad, in r, which is a weaker assertion than saying by = b,
A convenient tabular form of such dependencies is shown in Figure 7.8 1 .

a b] C1 d]
a bg Cg dz

b1=b2

(a) The functional dependency 4 — B.

a b]_ (5] d]_
a bz Ca dz
a bl Cy dj

(b) The multivalued dependency 4 — B.

Figure 7.8 Dependencies in tabular notation,

The two dependencies of Figure 7.8 are diff i i
- : erent in the kind of conclu-
sion they_ allow us to draw. The functional dependency [Figure 7.8(a)] is called
an eqyabty—generatmg dependency, because its conclusion is that two symbols
must in fact represent the same symbol. The multivalued dependency [Figure
7.8(b)] is c:.a.lled a tuplggenerating dependency, because it allows us to infer
that a pa::txcula.r tuple is in the relation to which the dependency applies. In
the follom.ng pages, we wish to allow more than two tuples as hypotheses of
fiepgndiixcz&s, and we wish to allow various combinations of symbols appear-
ing in their components. The conclusions, though. will i i
i e g gh, will continue to be either
Define a generalized dependenc i
{ 'y over a relat h ==
e gy 1on scheme A, --- A, to be an

(1, .. -2 te)ft

where the t;’s are n-tuples of symbols, and { is either another n-tuple (in which
case we have a tuple-generating dependency) or an expression z = y, where
T and y are symbols appearing among the ti's (then we have an et,lualit -
geue-n‘atmg dependency). We call the #,’s the hypotheses and ¢ the conc]usio:;
Intuitively, the dependency means that for every relation in which we find the:
hypotheses, the conclusion holds. To see the hypothesis tuples, we may have
to rename some or all of the symbols used in the hypotheses ,t.o makey them
mat(}h the symbols used in the relation. Any renaming of symbols that is done
applies to the conclusion as well as the hypotheses, and of course it applies to

7.11 GENERALIZED DEPENDENCIES 425

all occurrences of a symbol. We shall give a more formal definition after some
examples and discussion.

Frequently we shall display these dependencies as in Figure 7.8, with the
hypotheses listed in rows above a line and the conclusion below. It is sometimes
useful as well to show the attributes to which the columns correspond, above a
line at the top. In all cases, we assume that the order of the attributes in the
relation scheme is fixed and understood.

Typed and Typeless Dependencies

Frequently, we find, as in Figure 7.8, that each symbol appearing in a generalized
dependency is associated with a unique column. Functional and multivalued
dependencies have this property, for example. Such dependencies are called
typed, because we can associate a “type,” i.e., an attribute, with each symbol.
Dependencies in which some symbol appears in more than one column are called

typeless.

Example 7.22: The second part of Example 7.8 showed that given a certain
collection of functional dependencies, the decomposition

(AD,AB,BE,CDE, AE)

is a lossless-join decomposition. What was really shown there was that
any relation that satisfies the functional dependencies A — C, B — C,
C —- D, DE — C, and CE — A must also satisfy the “join dependency”
1 (AD, AB, BE,CDE, AE). In general, a join dependency is a typed tuple-
generating dependency that says, about a relation r for scheme R, that if we
project r onto some set of schemes R, ..., R, then take the natural join of the
projections, the tuples we get are all in r. We use the notation ea (Ry, ..., i)
for this dependency.

We can write our example join dependency as in Figure 7.9. In that fig-
ure we use blanks to denote symbols that appear only once. The reader may
have noticed the similarity between the tabular representation of generalized
dependencies and the Query-by-Example notation of Sections 4.4 and 4.5; the
convention that a blank stands for a symbol that appears nowhere else is bor-
rowed from there.

In general, the join dependency < (Ry, ..., Ry), expressed in the tabular
notation, has one hypothesis row for each R;, and this row has the same symbol
as the conclusion row in the columns for the attributes in R;; elsewhere in that
row are symbols, each of which appears nowhere else. The justification is that
the join dependency says about a relation r that whenever we have a tuple,
such as the conclusion row, that agrees with some tuple p; of r in the attributes
of R; for i =1,2,...,k, then that tuple is itself in r. [J

|

[[| | | [[[

426 DESIGN THEORY FOR RELATIONAL DATABASES

A B C D E

a d
a b
b e
c d e
a e
a b c d e

Figure 7.9 A join dependency in tabular notation.

Full and Embedded Dependencies

We shall not require that a symbol appearing in the conclusion of a tuple-
generating dependency also appear in the hypotheses. A symbol of the con-
clusion appearing nowhere else is called unique. A generalized dependency is
called embedded if it has one or more unique symbols and full if it has no unique
symbols. This use of the term “embedded” generalizes our use of the term in
connection with multivalued dependencies. That is, if a multivalued depen-
dency is embedded within a set of attributes S, it must have unique symbols in
all the components not S.

Example 7.23: We could write the embedded multivalued dependency

C—S|P
of Example 7.21 as
ChLS el Y
cC & N
c 82 P2 I
€ 81 P2 U3

Notice that y; is a unique symbol. (J

As a general rule, we can write any embedded multivalued dependency
X —=Y | Z over aset of attributes U by writing two hypothesis rows that agree
in the columns for the attributes in X and disagree in all other attributes. The
conclusion agrees with both hypotheses on X, agrees with the first hypothesis
on Y, agrees with the second on the attributes in Z, and has a unique symbol
everywhere else.

The justification is that the embedded multivalued dependency
X—Y|Z

says that if we have two tuples y and v in relation r that project onto

I | | | [[| [

7.11 GENERALIZED DEPENDENCIES 427

XuYyuz

to give tuples p' and ¢/, and p'[X] = ¢/[X], then there is some tuple w in 7
that projects to w’' and satisfies '[X] = y/[X] = V[X], &'[Y] = ¢[Y], and
w'[Z] = V'[Z]. Notice that nothing at all is said about the value of w for
attributes in U — X —Y — Z. Clearly, we can express all the above in our
generalized dependency notation, where yu and v are the first and second hypo-
theses, and w is the conclusion. Since we can only conclude that the tuple w
has some values in the attributes U — X — Y — Z, but we cannot relate those
values to the values in g or v, we must use unique symbols in our conclusion.

One reason for introducing the generalized dependency notation is that
it leads to a conceptually simple way to infer dependencies. The test works
for full dependencies of all sorts, although it may take exponential time, and
therefore, is not preferable to Algorithm 7.1 for inferring functional depen-
dencies from other functional dependencies, or to the method outlined before
Algorithm 7.6 (computation of the dependency basis) when only functional and
multivalued dependencies are concerned. When there are embedded dependen-
cies, the method may succeed in making the inference, but it may also give an
inconclusive result. There is in fact, no known algorithm for testing whether an
embedded dependency follows logically from others, even when the dependen-
cies are restricted to an apparently simple class, such as embedded multivalued

dependencies.

Generalized Dependencies and Horn Clauses

Notice the similarity between full, tuple-generating dependencies and datalog
rules. Since dependencies apply to single relations, the head and all the subgoals
of the body have the same predicate symbol, but any datalog rule with no
negation and only one predicate symbol can be thought of as a (typeless) tuple-
generating dependency. For example, the dependency of Figure 7.8(b) can be
written as a rule:

r(A,B1,C2,D2) :- r(A,B1,C1,D1) & r(A,B2,C2,D2).

We could even view a full equality-generating dependency as a rule with a
built-in predicate at the head, and we could make inferences with such rules as
with any logical rules. For example, Figure 7.8(a) would appear as

Bl = B2 :- r(A,B1,C1,D1) & r(A,B2,C2,D2).

However, we should be more careful interpreting embedded dependencies
as rules. If we blindly translated the embedded multivalued dependency of

Example 7.23 into a rule
r{C,81,P2,Y3) :- r(c,81,P1,Y1) & r(C,52,P2,Y2).

we would get a rule with a variable, Y3, that appears in the head but not in the

[| [| |

428 DESIGN THEORY FOR RELATIONAL DATABASES

body. The correct interpretation of such a rule is that, given values of C, S1,
and P2 that, together with values for the other variables of the body, satisfy
the subgoals of the body, the conclusion of the head is true for all values of Y3.
However, the meaning of the embedded dependency is that there exists some
value of Y3 that makes the head true for these values of C, S1, and P2.

Symbol Mappings

Before giving the inference test for generalized dependencies, we need to intro-
duce an important concept, the symbol mapping, which is a function h from
one set of symbols § to another set T’; that is, for each symbol a in S, h(a) is
a symbol in T. We allow h(a) and h(b) to be the same member of T, even if
a #b.

If p = ajaz---a, is a tuple whose symbols are in S, we may apply the
symbol mapping h to y and obtain the tuple A(u) = h(a;)h(as)--- h(a,). If
{i,...,ux} is a set of tuples whose symbols are in S, and {va,...,um} are
tuples whose symbols are in T', we say there is a symbol mapping from the first
set of tuples to the second if there is some h such that for all i = 1,2, .. =31k,
h(p;) is v; for some j. It is possible that two or more y;'s are mapped to the
same v;, and some v;'s may be the target of no ;.

Example 7.24: Let 4 = {abe, ade, fbe} and B = {zyz,wyz}. There are
several symbol mappings from A to B. One has h(a) = h(f) = z, h(h) =
h(d) = y, and h(c) = h(e) = z. Thus, h maps all three tuples in A to zyz.
Another symbol mapping has g(a) = z, 9(b) = g(d) = y, g(c) = g(e) = z, and
g(f) = w. Symbol mapping g sends abe and ade to zyz, but sends fbe to wyz.
O

Our most important use for symbol mappings is as maps between sets of
rows as in Example 7.24. The reader should observe a duality that holds in that
situation. We defined symbol mappings as functions on symbols, and when
applied to sets of rows, we added the requirement that the mapping applied
to each row of the first set is a row of the second set. Dually, we could have
defined mappings from rows to rows, and added the requirement that no symbol
be mapped by two different rows to different symbols. Thus, in Example 7.24,
we could not map abc to zyz and also map ade to wyz, because a would be
mapped to both z and w.

Formal Definition of Generalized Dependency

With the notion of a symbol mapping, we can formally define the meaning
of generalized dependencies. We say a relation r satisfies the tuple-generating
dependency (ty,...,t,)/t if whenever h is a symbol mapping from all the hypo-
theses {t;,...,¢,} to r, we can extend h to any unique symbols in ¢ in such
a way that h(t) is in r. We also say that r satisfies the equality-generating

7.11 GENERALIZED DEPENDENCIES

429

dependency (t;,...,t,)/a = b if whenever h is a symbol mapping from the
hypotheses to r, it must be that h(a) = h(b).
Example 7.25: Let d be the generalized dependency in Figure 7.10(a), and

let = be the relation of Figure 7.10(b). Notice that d is not the same as the
multivalued dependency A — B, since the symbol a3, which is a unique syfnbol
in Figure 7.10(a), would have to be a; instead. In fact, Figm:e 7.1_0(&) is an
example of a two-hypothesis tuple-generating dependency that is neither a full
nor embedded multivalued dependency; such dependencies were called subset
dependencies by Sagiv and Walecka [1982].

az b; cy
ay bg Ca

as b]_ Ca
(a) The dependency d.

c
2
4
2
4

- e o |

A
0
0
0
5

(b) The relation r.

Figure 7.10 A generalized dependency and a relation satisfying it.

To see that r satisfies d, let us consider a symbol mapping h and the tuples
of r to which each of the hypotheses of d could be mapped. Since the two
hypotheses agree in the A-column, and h(a,) can have only one_value. we know
that either both hypotheses are mapped to the last tuple of r [if h(a,) = 5], or
both are mapped among the first three tuples [if A(a;) = 0]. In the first case,
h maps by and by to 1 and ¢, and c; to 4. Then we can extend h to the‘ unique
symbol a; by defining h(a;) = 5. In that case, h(azbyc2) = 514, which is a
member of r, so we obtain no violation of d with mappings that have h(a;) = 5.

Now consider what happens if h(a;) = 0, so the only possible mappings
send the two hypotheses into the first three tuples of r. .Any such mapping I;
has h(b,) equal to either 1 or 3, and it has h(cz) equal to either .2 or‘4. In any o
the four combinations, there is a tuple in r that has that combination of values
in its B and C components. Thus, we can extend h to the unique symbol a2 by
setting h(az) = 5 if h(b;) = 1 and h(ez) = 4, and setting h(az) = 0 otherwise.

We have now considered all symbol mappings that map each of the hypo-
theses of d into a tuple of r, and have found that in each case, we can extend

present in r, Therefore, r satisfies d, []

Applying Dependencies to Relationg
Suppose we have an equality—generating dependency
d= (sl,...,sk)/a =b

and a.relation r= {m,...,n,,,}. We can apply d to r if we find a symbol
mapping & from {s;,...,sk} to {pl,...,ﬂm}. The effect of applying d to
using symbhol mapping k is to equate the symholg h(a) and h(b) wherever they
appear among the #;'s; either may replace the other.

§, create a pew symbol, one that appears nowhere else in 7, and extend by
defining h(e) to be that symbol, Of course, we create distinct symbols for each
of the unique symbols of s.

It may be possible, however, the unique symbols can all be replaced by
existing symbols of T 80 that h(s) becomes a member of r, [p that case, the
requirement that h(s) be in r is already satisfied, and we haye the option (which
we should take, because jt simplifies matters) of not changing r at all,

(abe, ade, fbe)ja = f

applied to the relation r = {zyz, wyz}. If we use the symbo) mapping g of
E:.cample 7.24, we find t.hat 9(a) = z and 9(f) = w. We apply the dependency
using this symbo] mapping, by equating z and W say we replace them both by
z. Then the effect on r of applying the dependency in this way is to change
nto {zyz}.
Suppose instead we had the tuple-generating dependency
(abe, ade, fbe)/abg

Then using the same symbo] mapping, we would adjoin to r 5 tuple whose first
two components were g(a) = z apgd 9(b) = y and whose third component wag
a new symbol, not appearing in r, Say u; that is, 5 becomes {zyz, wyz, ryu}.
However, we could replace by the existing symbo] Z, and the resylt would
be zyz, a tuple already in r, Thus, we haye the preferred option of leaving r

e

o
b

Bt T A o

However, if D has some embedded dependencies, it tells the truth if it answers
at all, but it may run on forever inconclus:vely. We call the process the chase,
because we “chase down” all the consequences of the dependencies D,

First suppose that dis a tuple—generating dependency (t1,..., tm)/t. We
begin with the relation r = {t,..: stm}. We then apply all of the dependencies
in D, in any order, repeatedly, until either

2. We discover in T & tuple that agrees with ¢ on all components except,
perhaps, those places where ¢ has a unique symbol.

However, when applying an equality—generating dependency, if one of the sym-
bols being equated appears in t, change the other symbol to that one.

In case (2) above, we conclude that D = d is trye. If (1) holds, but
not (2), then we say that D |= d is false. In fact, the resulting r will be a
counterexample. To see why, first notice that » satisfies all dependencies in D
(or else one of them could be applied).

Second, we must show that r does not satisfy d. In proof, note that as we
apply equaIity—generating dependencies to T, the symbols in the original rows
tiy...,tm may change, but there js always a symbol mapping h that sends each
symbol of the hypothesis rows to what that symbo] has become after these
equalities have been performed. Then h(t;) is in the final relation r for each

Now, let us consider the converse, why the implication holds whenever case
(2) applies. Recall the proof of Theorem 7.4, which is really a special case of

13 However, there is the problem that if some dependencies are embedded, the process
may not stop. In principle, it Eenerates an infinite relation, and that infinite relation
forms a counterexample, Unfortunately. with embedded dependencies we cannot tell,

as we work, whether the process will go on forever Or not, so the “test” is sometimes
inconclusive,

R o

—————

1 [l ! ' ' : '
432 DESIGN THEORY FOR RELATIONAL DATABASES

our present claim. That is, Algorithm 7.2, the lossless join test, can now be
seen as a use of the chase process to test whether F = j, where J is the join
dependency made from the decomposition to which Algorithm 7.2 is applied,
that ispa (Ry,.. ., Ry). As in Theorem 7.4, we can see the relation r used in the
chase as saying that certain tuples are in a hypothetical relation that satisfies
D.

Initially, these tuples are the hypotheses {t1,...,tm} of the dependency
being tested. Each time we apply a dependency, we are making an inference
about other tuples that must be in this hypothetical relation (if we use a tuple-
generating dependency), or about two symbols that must be equal (if we use
an equality—generating dependency). Thus, each application is a valid inference
from D, and if we infer the presence of t, that too is valid, i.e., we have shown
that any relation containing ¢;,... ¢, also contains ¢ (or a tuple that agrees
with ¢ on nonunique symbols).

However, the dependency d says more than that a relation that contains the
exact tuples {¢,,..., tm } also contains . It says that if any relation whatsoever
contains the tuples formed by some symbol mapping h of the #;’s, then h can be
extended to the unique symbols of ¢, and h(t) will also be in the relation. We

of dependencies in D during the chase. That is, start with {h(t,),.. .. h(tm)}
and apply the same sequence of dependencies from D by composing the symbol
mapping used to apply each dependency, with the symbol mapping h, to get
another symbol mapping. The result will be the image, under A, of the sequence
of changes made to the original relation r = {¢,,... LA

We must also explain how to test, using the chase process, whether an
equality—generating dependency (t,,... ytm)/a = b follows from a set of depen-
dencies D. Follow the same process, but end and say yes if we ever equate
the symbols a and b, say no as for tuple-generating dependencies, if we can
make no more changes to r, yet we have not equated @ and b. The validity
of the inferences follows in essentially the same way as for tupl -generating
dependencies.

We can sum up our claim in the following theorem.

Theorem 7.12: The chase process applied to a set of full generalized de-
pendencies D and a (possibly embedded) generalized dependency d determines
correctly whether D = 4.

Proof: Above, we argued informally why the procedure, if it makes an answer
at all, answers correctly. We shall not g0 into further detail; Maier, Mendelzon,
and Sagiv [1979] contains a complete proof of the result.

We must, however, show that if D has only fuli dependencies, then the
process is an algorithm; that is. it always halts. The observation is a simple
one. When we apply a full dependency, we introduce no new symbols. Thus,

l i i ' '

7.11 GENERALIZED DEPENDENCIES 433

the relation r only has tuples composed of the original symbols of the hypothi‘:*
ses of d. But there are only a finite number of such symbols, and t.h(.ar.efore T is
always a subset of some finite set. We have only to rule out the p_osmbxhty t.h-at. r
exhibits an oscillatory behavior; that is, it assumes after successive applications
of dependencies, a sequence of values
T1:,72;: 3Ty =T1,Tg -+

Tuple-generating dependencies always make the size of = increase, Wh{le
equality-generating dependencies either leave the size the.sa.me or decrease it.
Thus, the cycle must contain at least one equality-generating depe_ndency. But
here, an equality of symbols permanently reduces the number of dl!fﬁt&l’lﬁ sym-
bols, since only the application of an embedded dependency coulfi increase the
number of different symbols in r, and D was assumed to con!:am full depen-
dencies only. Thus no cycle could involve an equality-generating clep‘endency
and full tuple-generating dependencies only, proving that no cy({le exls.ts. We
conclude that either we reach a condition where no change to r is possible, or
we discover that the conclusion of d is in r. []

Tay b] ca d
ar by ¢ dy

ag b ¢ dy
() A—C|D

Figure 7.11 Example dependencies.

Example 7.27: Example 7.8 was really an application of the chase algorithm
to make the inferences {§ — A, SI — P} |= b4 (SA, SIP) and

[[[[{ [[[

434 DESIGN THEORY FOR RELATIONAL DATABASES

{A—»C,B—~C,C—D,DE~C,CE— A} =
i (AD, AB, BE,CDE, AE)

As another example, we can show that over the set of attributes ABCD
{A—B|C,B-D}EA—-—C|D

We can write the three dependencies involved in tabular notation, as in Figure
i

We begin with the hypotheses of Figure 7.11(c), as shown in Figure 7.12(a).
We can apply the dependency of Figure 7.11(a) by using the symbol mapping
h(ay) = aq, h(b1) = bs, h(c1) = cg, h(d1) = dz, h(bs) = by, h(cz2) = cs, and
h(d3) = dg. This mapping sends the two hypothesis rows of Figure 7.11(a) to
the two rows of Figure 7.12(a), in the opposite order. If we extend h to map ds
to a new symbol, say dg, then we can infer that the tuple asbsesdg is in 7, as
shown in Figure 7.12(b). Then, we can apply the dependency of Figure 7.11(b),
using a symbol mapping that the reader can deduce, to map the two hypotheses
of Figure 7.11(b) to the second and third rows of Figure 7.12(b) and prove that
d7 = dg. The substitution of d7 for dg is reflected in Figure 7.12(c). The third
tuple in Figure 7.12(c) agrees with the conclusion of Figure 7.11(c), except in
the B-column, where the latter has a unique symbol, bs. We conclude that the
inference is valid. (]

ay bq Cs da
ag bs ¢ dy
(a) Initial relation.

ay 64 Cs ds
ag bs cs d;
a4 bs C5 dg

(b) After applying Figure 7.11(a).

a4 b,; Cs ds
ag bs cg dy
a4 b5 Cs d7

(c) After applying Figure 7.11(b).

Figure 7.12 Sequence of relations constructed by the chase.

EXERCISES 435

EXERCISES

7.1: Suppose we have a database for an investment firm, consisting of the follow-
ing attributes: B (broker), O (office of a broker), I (investor), S (stock), @
(quantity of stock owned by an investor), and D (dividend paid by a stock),
with the following functional dependencies: § — D, I — B, IS — @, and
B — 0.

a) Find a key for the relation scheme R = BOSQID.

b) How many keys does relation scheme R have? Prove your answer.

¢) Find a lossless join decomposition of R into Boyce-Codd normal form.

d) Find a decomposition of R into third normal form, having a lossless
join and preserving dependencies.

7.2: Suppose we choose to represent the relation scheme R of Exercise 7.1 by
the two schemes ISQD and IB0O. What redundancies and anomalies do
you forsee?

7.3: Suppose we instead represent R by SD, IB, 1SQ, and BO. Does this
decomposition have a lossless join?

7.4: Suppose we represent R of Exercise 7.1 by ISQ, IB, SD, and IS0O. Find
minimal covers for the dependencies (from Exercise 7.1) projected onto
each of these relation schemes. Find a minimal cover for the union of the
projected dependencies. Does this decomposition preserve dependencies?

7.5: In the database of Exercise 7.1, replace the functional dependency S — D
by the multivalued dependency S —— D. That is, D now represents the
dividend “history” of the stock.

a) Find the dependency basis of I.
b) Find the dependency basis of BS
¢) Find a fourth normal form decomposition of R.

7.6: Consider a database of ship voyages with the following attributes: S (ship
name), T (type of ship), V (voyage identifier), C (cargo carried by ong
ship on one voyage), P (port), and D (day). We assume that a voyage
consists of a sequence of events where one ship picks up a single cargo,
and delivers it to a sequence of ports. A ship can visit only one port in a
single day. Thus, the following functional dependencies may be assumed:
S — T,V — 8C, and SD — PV.

a) Find a lossless-join decomposition into BCNF.
b) Find a lossless-join, dependency-preserving decomposition into 3NF.
xc) Explain why there is no lossless-join, dependency-preserving BNCF
decomposition for this database.

436 DESIGN THEORY FOR RELATIONAL DATABASES

7.7: Let U be a set of attributes and D a set of dependencies (of any type) on
the attributes of UU. Define SAT(D) to be the set of relations r over U such
that r satisfies each dependency in D. Show the following.

a) SAT(D; UD,) = SaT(D,) N SAT(D;).
b) If D, logically implies all the dependencies in D,, then
SAT(D1) 2 SAT(D,)
7.8: Complete the proof of Lemma 7.1; i.e., show that the transitivity axiom
for functional dependencies is sound,
7.9: Complete the proof of Theorem 7.2 by showing statement (*):
If X1 € X, then X € X for all ;
7.10: Let F be a set of functional dependencies.
a) Show that X — A in F is redundant if and only if X+ contains A,

when the closure is computed with respect to F' — {X — 4},

b) Show that attribute B in the left side X of a functional dependency
X — A is redundant if and only if A is in (X — {B})*, when the
closure is taken with respect to F.

437
EXERCISES

b) If we apply first (i) until no longer possible, the.:n. apply (i) until no
longer possible, we do not necessarily reach a minimal cover.

7.14: A relation scheme R is said to be in second normal form if whenever X — A

is a dependency that holds in R, and A is not in X, then either'A is prime
or X is not a proper subset of any key (the possibility that X is neither a
subset nor a superset of any key is not ruled out by second flormal form).
Show that the relation scheme SAIP from Example 7.14 violates second
normal form.

7.15: Show that if a relation scheme is in third normal form, then it is in second

normal form.

7.16: Consider the relation scheme with attributes § (store), D (department),

I (item), and M (manager), with functional dependencies ST — D and
SD — M.

a) Find all keys for SDIM. .
b) Show that SDIM is in second normal form but not third normal form.

* 7.17: Give an O(n) algorithm for computing X+, where X is a set of at most n

attributes, with respect to a set of functional dependencies that require no

more than n characters, when written down.

-+ 7.18: Complete the proof of Theorem 7.5 by providing a formal proof that in the
row for Ry, an a is entered if and only if B; N Ry — A.

* 7.11: Show that singleton left sides are insufficient for functional dependencies.
That is, show there is some functional dependency that is not equivalent
to any set of functional dependencies {4, - B, ... +Ax — By}, where the
A’s and B’s are single attributes.

t g [b ;.1 - (: 1 t th mma]-5 by S]:l()wmg that l! { c 8 then

left and right sides (call them SAFD’s). That is:
a) Give a set of axioms for SAFD’s; show that your axioms are sound
and complete.

b) Give an algorithm for deciding whether a set of SAFD’s implies an-
other SAFD.

¢) Give an algorithm to test whether two sets of SAFD's are equivalent.
d) SAFD’s look like a familiar mathematical model. Which?

* 7.13: In Theorem 7.3 we used two transformations on sets of functional depen-
dencies to obtain a minimal cover:

i) Eliminate a redundant dependency.
t1) Eliminate a redundant attribute from a left side.

Show the following:

a) If we first apply (7%) until no more applications are possible and then

apply (i) until no more applications are possible, we always obtain a
minimal cover,

7R, (1) C 7R, (3)

7.20: In Example 7.10 we contended that Z — C does not imply CS — Z. Prove

this contention.

7.21: At the end of Section 7.5 it was claimed that p = '(AB, CD) was a .depen;l-
ency-preserving, but not lossless-join decom.pomt'mn of ABCD, given the
dependencies A — B and C — D. Verify this claim.

7.22: Let F={AB—C, A— D, BD — C}.

a) Find a minimal cover for F.

b) Give a 3NF, dependency-preserving decomposition of ABCD i‘nto only
two schemes (with respect to the set of functional dependencies F).

¢) What are the projected dependencies for each of your schemes?

d) Does your answer to (a) have a lossless join? If not, howl could you
modify the database scheme to have a lossless join and still preserve

dependencies?

438

7223

7.24:

728:

7.26:

7.27:

* 7.28:

* 7.29:

DESIGN THEORY FOR RELATIONAL DATABASES

Let = {AB - C, A— B}.

a) Find a minimal cover for F.

b) When (a) was given on an exam at a large western university, more
than half the class answered G = {4 — B, B — C}. Show that
answer is wrong by giving a relation that satisfies # but violates G.

Suppose we are given relation scheme ABCD with functional dependencies

f{A—- B, B-C A D, D — C}. Let p be the decomposition

(AB,AC,BD).

a) Find the projected dependencies for each of the relation schemes of p.

b) Does p have a lossless join with respect to the given dependencies?

¢) Does p preserve the given dependencies?

Show that (4B, ACD, BCD,) is not a lossless-join decomposition of ABCD
with respect to the functional dependencies {A-C, D~ C, BD — A}

Consider the relation scheme ABCD with dependencies
F={A-B, B-C, D — B}
We wish to find a lossless-join decomposition into BCNE.
a) Suppose we choose, as our first step, to decompose ABCD into ACD
and BD. What are the projected dependencies in these two schemes?
b) Are these schemes in BNCF? If not, what further decomposition is
necessary?
For different sets of assumed dependencies, the decomposition
p=(AB,BC,CD)

may or may not have a lossless join. For each of the following sets of
dependencies, either prove the join is lossless or give a counterexample
relation to show it is not.

a) {A- B, B—C}.

b) {B-C, C— D).

c) {B—C}.

At most how many passes does Algorithm 7.3 (the test for dependency-

preservation) need if F is a set of n functional dependencies over m at-

tributes (an order-of-magnitude estimate is sufficient).

Let F be a set of functional dependencies with singleton right sides,

a) Show that if a relation scheme R has a BCNF violation X — A,
where X — A is in F'*, then there is some ¥ — B in F itself such
that ¥ — B is a BCNF violation for R.

b) Show the same for third normal form.

EXERCISES 439

* 7.33:

* 7.34:

7.35:

* 7.36:

* 7.37:

7.38:

: Show the following observation, which is needed in Theorem 7.8. If R is a

relation scheme, and X C R is a key for R with respect to set of functional
dependencies F, then X cannot have a 3NF violation with respect to the
set of dependencies mx (F).

: Prove that there is no such thing as an “embedded functional dependency.”

That is, if S C R, and X — Y holds in 75(R), then X — Y holds in R.

: Complete the proof of Theorem 7.9 by showing that axioms A1-A8 are

sound and complete. Hint: The completeness proof follows Theorem 7.1.
To find a counterexample relation for X — Y, we generally need more
than a two-tuple relation as was used for functional dependencies; the
relation could have 2° tuples, if b is the number of blocks in the dependency

basis for X.

Verify the union, pseudotransitivity, and decomposition rules for multival-
ued dependencies.

Verify the contention in Example 7.21, that there is a relation r satisfying

SP — Y, such that mos(r) &< mep(r) 0a mspy (r) # r. Check that your
relation does not satisfy C — S | P.

Given the dependencies {4 — B, C — B}, what other nontrivial multi-

valued and functional dependencies hold over the set of attributes ABC?

Prove that in ABCD we can infer A — D from {A—+ B, A—-C}in

each of the following ways.

a) Directly from the definitions of functional and multivalued dependen-
cies.

b) From axioms A1-A8.

¢) By converting to generalized dependencies and “chasing.”

Near the beginning of Section 7.10 we claimed that we could pfoject. a set

of multivalued and functional dependencies D onto a set of attributes S by

the following rules (somewhat restated).

i) X —Yisinng(D)ifand only if XY C S and X — Y isin D*.

i) X — Y isin ws(D) if and only if X C S, and there is some multi-
valued dependency X — Z in D¥, such that Y = Zn S.

Prove this contention.

Show that the decomposition (CHR, CT, CSG) obtained in Example ?.20
is not lossless with respect the the given functional dependencies only; i.e.,
the multivalued dependency C —— HR is essential to prove the lossless

join.

440 DESIGN THEORY FOR RELATIONAL DATABASES

7.39: Use the chase algorithm to tell whether the following inferences are valid
over the set of attributes ABCD.
a) {A+—B A—-C}EA—D
b) {A+~B|C,B—+C|D}A—-C|D
c) {A—B|C,A-D}EA—-C|D
#xd) {A—+—B|C,A—+—C|D}EA—B|D
* 7.40: Show that no collection of tuple-generating dependencies can imply an
equality-generating dependency.

7.41: State an algorithm to determine, given a collection of functional, (full)
multivalued, and (full) join dependencies, whether a given decomposition
has a lossless join.

7.42: Show that the multivalued dependency X —— Y over the set of attributes
U is equivalent to the join dependency o< (XY, X Z), where Z = U - X —Y.
Hint: Write both as generalized dependencies.

7.43: What symbol mapping explains the application of Figure 7.11(b) to Figure
7.12(b) to deduce Figure 7.12(c)?

* 7.44: Show that Theorem 7.11, stated for functional and multivalued dependen-
cies, really holds for arbitrary generalized dependencies. That is, (R;, Ry)
has a lossless join with respect to a set of generalized dependencies D if
and only if (R; N Ry;) — (R; — Ra).

* 7.45: Show that if decomposition p = (Ry,...,Rx) has a lossless join with
respect to a set of generalized dependencies D, then the decomposition
(Ry,...,Rg,S) also has a lossless join with respect to D, where S is an
arbitrary relation scheme over the same set of attributes as p.

* 7.46 Show that it is N'P-hard (N'P-complete or harder—see Garey and Johnson
[1979]) to determine:

a) Given a relation scheme R and a set of functional dependencies F' on
the attributes of R, whether R has a key of size k or less with respect

to F? CNE
b) Given R and F as in (a), and given a subset S C R, is S in %-N—GF
with respect to F'7
c) Whether a given set of multivalued dependencies implies a given join
dependency.

* 7.47: A unary inclusion dependency A C B, where A and B are attributes (per-
haps from different relations) says that in any legal values of the relation(s),
every value that appears in the column for 4 also appears in the column
for B. Show that the following axioms
i) AC Aforall A.

ii) If AC Band BCC then ACC.

BIBLIOGRAPHIC NOTES 441

Are sound and complete for unary inclusion dependencies.

* 7.48: Suppose for some even n we have attributes A;,..., A,. Also suppose that

A; C A4, for odd i, that is, i = 1,3,...,n — 1. Finally, suppose that for

i=23,5,...,n—1 we have A; — A;_;, and we have A; — A,,.

a) Show that if relations are assumed to be finite, then all the above
dependencies can be reversed; that is,

Ay C Ay, Ay — A3, Ay C As, Ay — Asy... Aq C Apy, An — Ay

b) Show that there are infinite relations for which (a) does not hold; that
is, they satisfy all the given dependencies but not of their reverses.

* 7.49 Show that if D is a set of functional dependencies only, then a relation R
is in BCNF with respect to D if and only if R is in 4NF with respect to D.

= 7.50 Show that if X — Ay,..., X — A, are functional dependencies in a mini-
mal cover, then the scheme X A, --- A, is in 3NF.

BIBLIOGRAPHIC NOTES

Maier [1983] is a text devoted to relational database theory, and provides a
more detailed treatment of many of the subjects covered in this chapter. Fagin
and Vardi [1986] and Vardi [1988] are surveys giving additional details in the
area of dependency theory. Beeri, Bernstein, and Goodman [1978] is an early
survey of the theory that provided the motivation for the area.

Functional Dependencies

Functional dependencies were introduced by Codd [1970]. Axioms for func-
tional dependencies were first given by Armstrong [1974]; the particular set of
axioms used here (called “Armstrong’s axioms”) is actually from Beeri, Fagin,
and Howard [1977]. Algorithm 7.1, the computation of the closure of a set of
attributes, is from Bernstein [1976].

Lossless-Join Decomposition

Algorithm 7.2, the lossless join test for schemes with functional dependencies,
is from Aho, Beeri, and Ullman [1979]. The special case of the join of two
relations, Theorem 7.5, was shown in the “if” direction by Heath [1971] and
Delobel and Casey [1972] and in the opposite direction by Rissanen [1977].

Liu and Demers [1980] provide a more efficient lossless join test for schemes
with functional dependencies. Testing lossless joins is equivalent to inferring a
join dependency, so the remarks below about inference of generalized depen-
dencies are relevant to lossless-join testing.

442 DESIGN THEORY FOR RELATIONAL DATABASES

Dependency-Preserving Decomposition

Algorithm 7.3, the test for preservation of dependencies, is by Beeri and Hon-
eyman [1981].

The paper by Ginsburg and Zaiddan [1982] points out that when projected,
functional dependencies imply certain other dependencies, which happen to
be equality-generating, generalized dependencies, but are not themselves func-
tional. As a result, when we discuss projected dependencies, we must be very
careful to establish the class of dependencies about which we speak.

Graham and Yannakakis [1984] discuss “independence,” a condition on a
decomposition that allows satisfaction of dependencies to be checked in the
individual relations of a decomposition.

Gottlob [1987] gives an algorithm to compute a cover for mr(F) directly
from F’; that is, it is not necessary to compute F'* first. However, the algorithm
is not guaranteed to run in polynomial time.

Normal Forms and Decomposition

Third normal form is defined in Codd [1970] and Boyce-Codd normal form in
Codd [1972a]. The definitions of first and second normal forms are also found
in these papers.

The dependency-preserving decomposition into third normal form, Algo-
rithm 7.5, is from Bernstein [1976], although he uses a “synthetic” approach,
designing a scheme without starting with a universal relation. Theorem 7.3,
the minimal cover theorem used in Algorithm 7.5, is also from Bernstein (1976];
more restrictive forms of cover are found in Maier [1980, 1983].

The lossless-join decomposition into BCNF given in Algorithm 7.4 is from
Tsou and Fischer [1982). Theorem 7.8, giving a 3NF decomposition with a
lossless join and dependency preservation, is from Biskup, Dayal, and Bernstein
(1979]. A related result appears in Osborn [1977].

The equivalence problem for decompositions of a given relation was solved
by Beeri, Mendelzon, Sagiv, and Ullman [1981]. Ling, Tompa, and Kameda
(1981] generalize the notion of third normal form to account for redundancies
across several different relation schemes.

Schkolnick and Sorenson [1981] consider the positive and negative conse-
quences of normalizing relation schemes. ;

Additional Properties of Decompositions

The problem of adequacy of a decomposition has been considered from sev-
eral points of view. Arora and Carlson [1978] regard the lossless-join and
dependency-preservation conditions as a notion of adequacy, while Rissanen
[1977] defines a decomposition to have independent components if there is a
one-to-one correspondence between relations for the universal scheme that sat-

BIBLIOGRAFPHIC NOTES 443

isfy the dependencies, and projections of relations that satisfy the projected
dependencies. Maier, Mendelzon, Sadri, and Ullman [1980] show .t.hat. these
notions are equivalent for functional dependencies, but not for multivalued de-
pendencies. :

Honeyman [1983] offers an appropriate definition for what it means for a
decomposition (database scheme) to satisfy a functional dependency. Grah‘am,
Mendelzon, and Vardi [1986] discuss the extension of this question to generalized

dependencies.

Recognizing Normalized Relations

Osborn [1979)] gives a polynomial-time algorithm to tell whether ?.given relati(;il
scheme R is in BCNF, with respect to a given set of dependencies F over R_.
In contrast, Jou and Fischer [1983] show that telling whether R is in third
normal form with respect to F is N'P-complete.

Multivalued Dependencies

ivalued dependencies were discovered independently by Fagin [1977], Delo-
:i?ﬁ;?g, and I;aniolo (1976] (see also Zaniolo and Melkanoff [.1981]), although
the earliest manifestation of the concept is in Delobel’s thesis in 1973. .

The axioms for muitivalued dependencies are from Beeri, Fa_gm, and
Howard [1977]. The independence of subsets of these axioms was considered by
Mendelzon [1979], while Biskup [1980] shows that if one does not assume a fixed
set of attributes, then this set minus the complementation axiom forms a §ound
and complete set. Lien [1979] develops axioms for multivalued dependencies on
the assumption that null values are permitted. .

Sagiv et al. [1981] show the equivalence of multivalued dep'e.ndency t.hem"y
to a fragment of propositional calculus, thus providing a convenient notation in
which to reason about such dependencies. . !

The dependency basis and Algorithm 7.6 are from Bee_n [1980]. Hagihara
et al. [1979] give a more efficient test whether a given multivalued dependency
is implied by others, and Galil [1982] gives an even faster way to compute the

ency basis.
depell:'l?nbegded multivalued dependencies were considered by Fagin [1977], De-
lobel [1978] and Tanaka, Kambayashi, and Yajima [1979].

More Normal Forms

Fourth normal form was introduced in Fagin [1977]. In Fagin [19?1] we find an
“ultimate” normal form theorem; it is possible to decompose relation schemes so

is I ise 7.46(b). The latter
14 The reader should not be confused between this result and Exercise :
indicates that telling whether a relation scheme R is in BCNF given a set of functional

dependencies, defined on a superset of R, is N'P-complete.

ﬁ
|
i
{

s e, e

444 DESIGN THEORY FOR RELATIONAL DATABASES

that the only dependencies remaining are functional dependencies of a nonkey
attribute on a key and constraints that reflect the limited sizes of domains for
attributes.

Join Dependencies

Join dependencies were first formalized by Rissanen [1979]. The condition on
relations corresponding to a join dependency on their schemes was considered
by Nicolas [1978] and Mendelzon and Maier [1979].

A sound and complete axiomatization for a class slightly more general than
Join dependencies is found in Sciore [1982].

Generalized Dependencies

The notion of generalized dependencies was discovered independently several
times; it appears in Beeri and Vardi [1981], Paredaens and Janssens (1981], and
Sadri and Ullman [1981].

A somewhat more general class, called implicational dependencies in Fagin
[1982] and algebraic dependencies in Yannakakis and Papadimitriou [1980], has
also been investigated.

Implications of Generalized Dependencies

The “chase” as an algorithm for inferring dependencies has its roots in the
lossless join test of Aho, Beeri, and Ullman [1979]. The term “chase,” and its
first application to the inference of dependencies, is found in Maier, Mendelzon,
and Sagiv [1979]. Its application to generalized dependencies is from Beeri and
Vardi [1984b).

The undecidability of implication for generalized tuple-generating depen-
dencies was shown independently by Vardi [1984] and Gurevich and Lewis
[1982]. Key results leading to the undecidability proof were contained in earlier
papers by Beeri and Vardi [1981] and Chandra, Lewis, and Makowsky [1981].

Axiomatization of Generalized Dependencies

Several sound and complete axiom systems for generalized dependencies are
found in Beeri and Vardi [1984a] and Sadri and Ullman [1981]. Yannakakis and
Papadimitriou [1980] gives an axiom system for algebraic dependencies.

Inclusion Dependencies

Inclusion dependencies were studied by Casanova, Fagin, and Papadimitriou
[1982] and Mitchell [1983]. Kanellakis, Cosmadakis, and Vardi [1983] discuss
the important special case of unary inclusion dependencies (see Exercise 4.47),
where the domain of a single attribute is declared to be a subset of another
single attribute.

BIBLIOGRAPHIC NOTES 445

Notes on Exercises

Exercise 7.13 (on the order of reductions to produce a minimal cover) is from
Maier [1980]. Exercise 7.17 (efficient computation of the closure of a set of
attributes) is from Bernstein [1976], although the problem is actually equivalent
to the problem of telling whether a context-free grammar generates the empty
string.

Exercise 7.32, the soundness and completeness of axioms A1-A8 for func-
tional and multivalued dependencies, is proved in Beeri, Fagin, and Howard
[1977]. The algorithm for projecting functional and multivalued dependencies,
Exercise 7.37, was proved correct in Aho, Beeri, and Ullman [1979].

Exercise 7.46(a), the N'P-completeness of telling whether a relation scheme
has a key of given size, is by Lucchesi and Osborn [1978]; part (b), telling
whether a relation scheme is in BNCF, is from Beeri and Bernstein [1979], and
part (c), inferring a join dependency from multivalued dependencies, is from
Fischer and Tsou [1983].

Exercise 7.48 is from Kanellakis, Cosmadakis, and Vardi [1983]; it is the key
portion of a polynomial-time algorithm for making inferences of dependencies
when given a set of functional dependencies and unary inclusion dependencies.

>) -

B - I ' - B . LT | . B .- S
L] 1 " " L]
.= 1 . - |I i -

L]

-rhllJ..-.j:L .-J[; ti'__-.-...l

‘!i:g[-ni.. h- _in.. -ﬂ-r"'lh

R

|

