BITMAP INDEXES

E0 261

Jayant Haritsa

Computer Science and Automation

Indian Institute of Science

Low-Cardinality Domains

- e.g. in IISc: Gender, Program, Home state
- B-trees or hashing don't work well for lowcardinality domains, which are common in decision-support environments
- Intersecting lists of RIDS for satisfying conjunction of predicates is an expensive operation

Bitmap Index

Bitmap Index is defined on attribute A as a sequence of M bitmaps, where M is the number of distinct values of A, and record 'j' has a 1 in the bitmap corresponding to its value, and 0 otherwise – the length of each bitmap is equal to the relation's cardinality.

Grade Gender SRno name gender grade A+ABCD MF 112 Sachin 10000 M Α+ **Bit-vector:** 00001 115 Rishabh M \Box 1 bit for each 00010 possible value. F 119 Katrina 00001 10 113 **Ashwin** M \Box

Query: Male students with A+ grade derived by ANDing the Male and A+ bitvectors

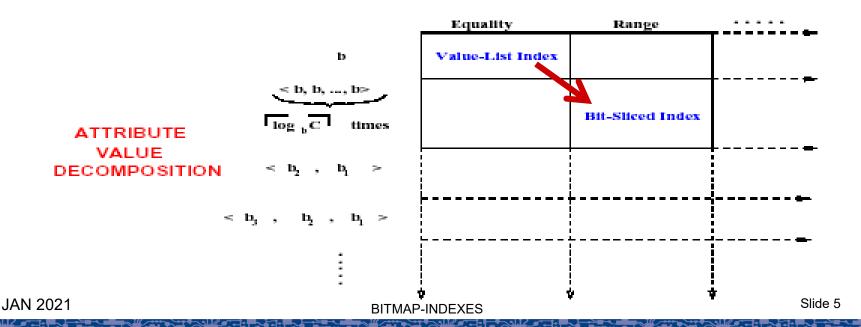
Features

- well suited for low cardinality columns
- utilizes bitwise operations like AND, OR, XOR,
 NOT which are efficiently supported by hardware
- uses small amount of space
- performs efficiently with columns involving scalar functions (e.g.,COUNT)
- many variations to reduce space requirement and improve query performance

Design Space

- Attribute Value Decomposition
 - Determines structure of index number and size of index component
- Index Encoding Scheme
 - Determines how index components are encoded

BITMAP ENCODING SCHEME



(1) Attribute Value Decomposition

- Given C, the attribute value cardinality, and a sequence of n numbers $\langle b_n, b_{n-1}, \dots, b_1 \rangle$, such that $C \leq \pi b_i$, attribute value A is decomposed into n digits $A_n A_{n-1} \dots A_1$ where A_i is a base- b_i digit
- Example C = 1000 and attribute value A = 256

<b _n , b _{n-1} ,, b ₁ >	Decomposition of A					
<1000>	256					
<50,20>	12 (20) + 16					
<32,32>	8 (32) + 0					
<5,20,10>	1(20)(10) + 5(10) + 6					

• Each $\langle b_n, b_{n-1}, \dots, b_1 \rangle$ base of index defines an n-component index.

AVD Details

- Consider an attribute value v and a sequence of (n-1) numbers $< b_{n-1}, \dots, b_1 >$ and define $b_n = \left\lceil \frac{C}{\prod_{i=1}^{n-1} b_i} \right\rceil$
- Then v can be decomposed into sequence of n digits <v_n, v_{n-1},...,v₁ > :

where $v_i = V_i \mod b_i$, $V_i = \left\lfloor \frac{V_i - 1}{b_{i-1}} \right\rfloor$ $1 < i \le n$, and each digit v_i is in the range $0 \le v_i < b_i$.

If b_n = b_{n-1} = = b₁ = b, base is called *uniform* and the index is called base-b.

JAN 2021 BITMAP-INDEXES Slide 7

(2) Bitmap Encoding Schemes

Two basic ways to encode a base b_i value x (i.e.,0≤ x< b_i) using b_i bits

Encoding	b_i -bit Representation for value x								
Scheme	$b_i - 1$	b_i-1 \cdots $x+1$ x $x-1$ \cdots 0							
Equality	0		0	1	0		0		
Range	1		1	1	0		0		

- Equality Encoded Bitmap E_i^x = { records with A_i = x }
- Range Encoded Bitmap R_i^x = { records with A_i ≤ x }
 - $R_i^{b_i-1}$ is not materialized since all its bits are set to 1.

Equality Encoded Base <3,3> Index

	$\pi_A(R)$
1	3
2	2
3	1
4	2
5	8
6	2
7	2
8	0
9	7
10	5
11	6
12	4

183+0
0%3+2
0×3+1
0%3+2
2%3+2
□ 3+2

2::3+1
1::3+2
2%3+0
1%3+1

B_2^2	B_2^1	B_2^0
0	1	0
0	0	1
0	0	1
0	0	1
1	0	0
0	0	1
0	0	1
0	0	1
1	0	0
0	1	0
1	0	0
0	1	0

B_1^2	B_1^1	B_{1}^{0}
0	0	1
1	0	0
0	1	0
1	0	0
1	0	0
1	0	0
1	0	0
0	0	1
0	1	0
1	0	0
0	0	1
0	1	0

Range Encoded Base <3,3> Index

$\pi_A(R)$						
1	3					
2	2					
3	1					
4	2					
5	8					
6	2					
7	2					
8	0					
9	7					
10	5					
11	6					
12	4					
	an an					

1%3+0
0%3+2
0≈3+1
0×3+2
2×3+2
0≈3+2
0%3+2
©% 3 +0
2%3+1
1%3+2
283+0
183+1

B_2^1	B_2^0
1	0
1	1
1	1
1	1
0	0
1	1
1	1
1	1
0	0
1	0
0	0
1	0

B_1^1	$B_{ m I}^0$
1	1
0	0
1	0
0	0
0	0
0	0
0	0
1	1
1	0
0	0
1	1
1	0

Evaluation Algorithm for Selection Queries on Range-Encoded Bitmaps

- RangeEval [SIGMOD97]
 - Evaluates each range predicate by computing two bitmaps
 - The B_{EQ} bitmap
 - Either B_{GT} or B_{LT}
- RangeEval-Opt (this paper):
 - avoids the intermediate equality predicate B_{EQ} evaluation by evaluating each range predicate in term of only \leq .

```
• A < V == A \le V-1 A > V == ! (A \le V) A \ge V == ! (A \le V-1)
```

- Working with only one bitmap B which
 - reduces number bitmap operations by 50%
 - one less bitmap scan for range predicate evaluation

Algorithm: RangeEval

- $B_{LT} = B_{LT} \vee (B_{EQ} \wedge B_i^{m-1})$
- $B_{GT} = B_{GT} \vee (B_{EQ} \wedge \overline{B_{i}^{v_i}})$
- $B_{EQ} = B_{EQ} \wedge (B_i^{v_i} \oplus B_i^{v_i-1})$

```
Algorithm RangeEval
B_{GT} = B_{LT} = B_0:
B_{EQ}=B_{nn};
let v = v_n v_{n-1} \dots v_1;
for i = n downto 1 do
        if (v_i > 0) then
             B_{LT} = B_{LT} \vee (B_{EQ} \wedge B_i^{v_i-1});
             if (v_i < b_i - 1) then
                  B_{GT} = B_{GT} \vee (B_{EQ} \wedge B_{\varepsilon}^{v_i});
                  B_{EQ} = B_{EQ} \wedge (B_i^{v_i} \oplus B_i^{v_i-1});
             else
                  B_{EQ} = B_{EQ} \wedge B_i^{b_i - 2};
        else
             B_{GT} = B_{GT} \vee (B_{EQ} \wedge B_i^0);
             B_{EQ} \equiv B_{EQ} \wedge B_i^0;
B_{NE} = \overline{B_{EO}} \wedge B_{nn};
B_{LE} = B_{LT} \vee B_{EQ}; B_{GE} = B_{GT} \vee B_{EQ};
return B_{op};
```

RangeEval: <3,3> Example

$$b_2 = 3, b_1 = 3$$

Consider selection predicate A ≤ 5

$$\langle v_2, v_1 \rangle = \langle 1, 2 \rangle$$

= [1,0][0,0]

$$i= 2, v_2 = 1$$

$$B_{LT} V (B_{EQ} \Lambda B_i^{v_i-1}) = B_{LT}$$

$$0 \ V (1 \ \Lambda \ 0) = 0$$

$$0 \ V (1 \ \Lambda \ 1) = 1$$

$$0 \ V (1 \ \Lambda \ 1) = 1$$

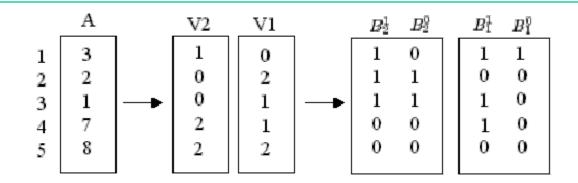
$$0 \ V (1 \ \Lambda \ 0) = 0$$

$$0 \ V (1 \ \Lambda \ 0) = 0$$

$$\mathsf{B}_{\mathsf{EQ}} \land (B_i^{v_i} \oplus B_i^{v_i-1}) = \mathsf{B}_{\mathsf{EQ}}$$

$$1 \wedge 0 = 0$$

RangeEval (Example continued)



Consider selection predicate A ≤ 5

$$\langle v_2, v_1 \rangle = \langle 1, 2 \rangle$$

= [1,0][0,0]

$$i=1, v_1=2$$

RangeEval-Opt

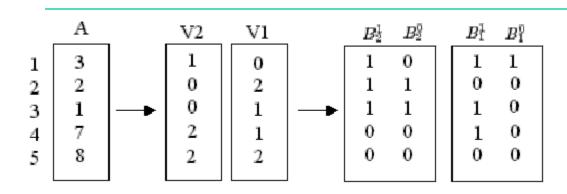
$$LE(v_{i}i) = \begin{cases} B_{i}^{v_{i}-1} \lor (B_{i}^{v_{i}} \land LE(v_{i}i-1)) & \text{if } 1 < i \leq n_{i} \\ B_{1}^{v_{1}} & \text{if } i = 1. \end{cases}$$

$$EQ(v_{1}i) = \begin{cases} (B_{i}^{v_{i}} \oplus B_{i}^{v_{i}-1}) \land EQ(v_{1}i-1) & \text{if } 1 < i \leq n_{1} \\ B_{1}^{v_{1}} \oplus B_{1}^{v_{1}-1} & \text{if } i = 1. \end{cases}$$

```
Algorithm RangeEval-Opt
B=B_1:
if (op \in \{<, >\}) then v = v - 1;
let v = v_n v_{n-1} \dots v_1;
if (op \in \{<,>,\leq,\geq\}) then
        if (v_1 < b_1 - 1) then B = B_1^{v_1};
        for i = 2 to n do
             if (v_i \neq b_i - 1) then B = B \wedge B_i^{v_i};
             if (v_i \neq 0) then B = B \vee B_i^{v_i-1};
else
        for i = 1 to n do
             if (v_i = 0) then B = B \wedge B_i^0;
             else if (v_i = b_i - 1) then B = B \wedge \overline{B_s^{b_i - 2}};
             else B = B \wedge (B_{\varepsilon}^{v_i} \oplus B_{\varepsilon}^{v_i-1});
if (op \in \{>, \geq, \neq\}) then
        return \overline{B} \wedge B_{nn}:
else
```

return $B \wedge B_{nm}$;

RangeEval-Opt (Example)



$$b_2 = 3, b_1 = 3$$

Consider selection predicate A ≤ 5

$$\langle v_2, v_1 \rangle = \langle 1, 2 \rangle$$

= [1,0][0,0]

$$i=2, v_2=1$$

$$B_i^{v_i-1} \lor (B_i^{v_i} \land B) = B$$

$$0 \ V (1 \ \Lambda \ 1) = 1$$

1
$$V(1 \land 1) = 1$$

1
$$V(1 \land 1) = 1$$

$$0 \quad V(0 \quad \Lambda 1) = 0$$

$$0 \quad V(0 \quad \Lambda 1) = 0$$

Worst-case Analysis

Evaluation	Evaluation	Nu	Number of Bitmap Operations				Number of
Algorithm	Predicate	AND	OR	NOT	XOR	Total	Bitmap Scans
	$A \ge c$	2n	n+1	n	n	5n + 1	2n
	$A \le c$	2n	n+1	0	n	4n + 1	2n
RangeEval	A > c	2n	n	n	n	5n	2n
	A < c	2n	n	0	n	4n	2n
	A = c	n	0	0	n	2n	2n
	$A \neq c$	n	0	1	n	2n+1	2n
	$A \ge c$	n	n	7	0	2n + 1	2n - 1
	$A \leq c$	n	n	1	0	2n + 1	2n - 1
RangeEval-Opt	A > c	n	n	0	0	2n	2n - 1
	A < c	n	n	0	0	2n	2n - 1
	A = c	n	0	0	n	2n	2n
	$A \neq c$	n	0	1	n	2n+1	2n

For RangeEval Algorithm

$$\mathsf{B}_{\mathsf{LT}} = \mathsf{B}_{\mathsf{LT}} \, \mathsf{V} \, (\mathsf{B}_{\mathsf{EQ}} \, \mathsf{\Lambda} \, \mathit{B}^{\scriptscriptstyle \mathsf{N} \mid -\frac{1}{2}}_{\scriptscriptstyle 2})$$

$$B_{GT} = B_{GT} V(B_{EQ} \wedge \overline{B_{\tilde{i}}^{u_{\tilde{i}}}})$$

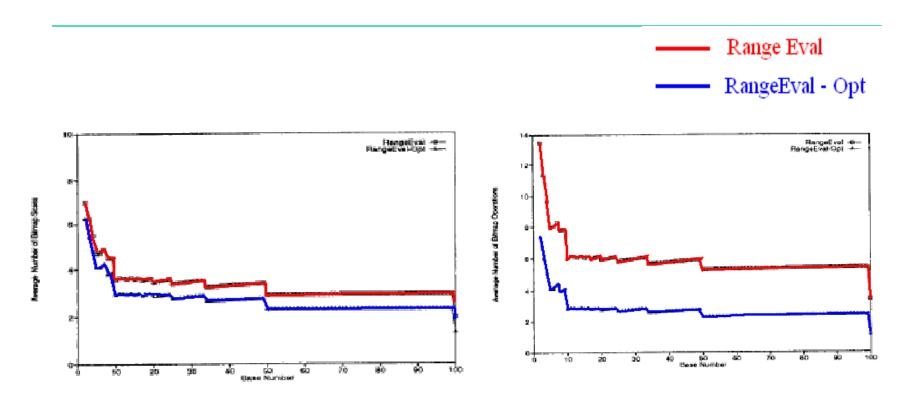
$$\mathsf{B}_{\mathsf{EQ}} = \mathsf{B}_{\mathsf{EQ}} \ \land \ (B_i^{\mathsf{e}_i} \oplus B_i^{\mathsf{e}_i - 1})$$

For RangeEval- Opt Algorithm

$$LE(v,i) = \left\{ \begin{array}{ll} B_i^{v_i-1} \vee (B_i^{v_i} \wedge LE(v,i-1)) & \text{ if } 1 < i \leq n, \\ B_1^{v_1} & \text{ if } i = 1. \end{array} \right.$$

$$EQ(v,i) = \left\{ \begin{array}{ll} (B_i^{v_i} \oplus B_i^{v_i-1}) \wedge EQ(v,i-1) & \text{if } 1 < i \leq n, \\ B_1^{v_1} \oplus B_1^{v_1-1} & \text{if } i = 1. \end{array} \right.$$

Experimental comparison



(a) Average Number of Bitmap Scans as a Function of (Uniform) Base Number.

(b) Average Number of Bitmap Operations as a Function of (Uniform) Base Number.

Space/Time Cost Models

- Space(I)
 - number of bitmaps stored
- Time(I)
 - Expected number of bitmap scans for a selection query
 - queries in the query space Q are uniformly distributed, where $Q = \{ A \text{ op } v : \text{op} \in \{ \le, \ge, <, >, =, \neq \}, 0 \le v < C \}$
 - I/O and CPU are correlated, hence ignore CPU

Comparison of Encoding Schemes for Selection Queries

Theorem 5.1

For equality encoded Bitmap Index

$$Space(I) = \sum_{i=1}^{n} s_i$$
, where $s_i = \begin{cases} b_i & \text{if } b_i > 2, \\ 1 & \text{otherwise.} \end{cases}$

$$Time(I) = \frac{1}{3} \sum_{i=1}^{\infty} (2t_i + 1)$$
, where

$$t_{i} = \begin{cases} \frac{1}{b_{i}} \left(\left\lfloor \frac{b_{i}}{2} \right\rfloor^{2} + (b_{i} - 1) \left(\left\lceil \frac{b_{i}}{2} \right\rceil - \frac{b_{i}}{2} \right) \right) & \text{if } b_{i} > 2, \\ 1 & \text{otherwise.} \end{cases}$$

For range encoded Bitmap Index

$$Space(I) = \sum_{i=1}^{n} (b_i - 1)$$

$$Time(I) = 2(n - \sum_{i=1}^{n} \frac{1}{b_i} + \frac{1}{3}(\frac{1}{b_1} - 1))$$
 [with Range-Eval-Opt]

Proof of Time for Range Encoded Index with Range-Eval-Opt

Computed expected number of scans for r (range predicate) and e (equality predicate)

Range
$$i = 1$$
 $E_{r,1} = \left(1 - \frac{1}{b_1}\right)$ Line 5 of REO algo

$$i = 2 \rightarrow n$$
 $E_{r,i} = 1 * Pr(scan = 1) + 2 * Pr(scan = 2)$

Line 7 and 8 of REO algo

$$= 1\left(\frac{2}{b_i}\right) + 2\left(1 - \frac{2}{b_i}\right)$$
$$= 2\left(1 - \frac{1}{b_i}\right)$$

$$\therefore E_r = \sum_{i=1}^n E_{r,i} = 2 \left(n - \sum_{i=1}^n \frac{1}{b_i} \right) - \left(1 - \frac{1}{b_1} \right)$$

Slide 21 **JAN 2021** BITMAP-INDEXES

Proof (contd)

Equality
$$E_{e,i} = 1 * \frac{2}{b_i} + 2(1 - \frac{2}{b_i}) = 2\left(1 - \frac{1}{b_i}\right)$$

Lines 11-13 of REO algo

$$\therefore E_e = \sum_{i=1}^n E_{e,i} = 2 \left(n - \sum_{i=1}^n \frac{1}{b_i} \right)$$

$$=, \neq <, \leq, >, \geq$$

$$\downarrow \qquad \downarrow$$

Total Expected
$$\# = \frac{2}{6}E_e + \frac{4}{6}E_r$$

$$= 2 \left[n - \sum_{i=1}^{n} \frac{1}{b_i} + \frac{1}{3} \left(\frac{1}{b_1} - 1 \right) \right]$$

JAN 2021

Space Optimal Indexes

Theorem 6.1

The number of bitmaps in an n-component space-optimal index is given by n(b-2)+r, where | = | √√ | and r is the smallest positive integer such that b^r (b-1)^{n-r} ≥ C.

Index with base $(b-1, \dots, b-1, b, \dots, b)$ is an n-component space-optimal index.

2. The space-efficiency of space-optimal indexes is a non-decreasing function of the number of components.

Proof for Theorem 6.1

- Lemma 1 For any n-component range-encoded bitmap index I_n with attribute cardinality C, there exists another n-component range-encoded bitmap index I'_n with attribute cardinality C such that
 - Space(I_n) = Space(I'_n)
 - the difference between any two base numbers of I'n is at most one, and
 - the product of all the base numbers of I'_n is ≥ that of I_n

Proof:

- Let $\langle b_n, b_{n-1}, \dots, b_1 \rangle$ be the base of I_n .
- Let $b_{max} = max \{ b_i \}$, 1 ≤ i≤n $b_{min} = min \{ b_i \}$, 1 ≤ i≤n
- Consider the non-trivial case where b_{max} b_{min} ≥ 2.
- Let $b_p = b_{max}$ and $b_q = b_{min}$ for some $1 \le p$, $q \le n$.
- Define another n-component bitmap index I'_n with base $\langle b'_n, b'_{n-1}, \dots, b'_1 \rangle$, where

$$b_i' = \left\{ egin{array}{ll} b_p - 1 & ext{if } i = p_1 \ b_q + 1 & ext{if } i = q_1 \ b_i & ext{otherwise.} \end{array}
ight.$$

- Clearly, Space(I_n) = Space(I_n) and $b_p'' b_q' = (b_p 1)(b_q + 1) = b_p b_q + (b_p b_q) 1$ and $(b_p b_q) \ge 2$, leading to $\pi b_i' > \pi b_i$
- By a finite number of applications of the above base number adjustment to I_n, we will obtain an n-component bitmap index I'_n such that all the three properties hold.

JAN 2021 BITMAP-INDEXES Slide 25

Proof for Theorem 6.1 (contd)

Main Proof of (1):

For any n-component range encoded bitmap index with attribute cardinality C, its maximum base number must be at least equal to b, where $b = \lceil \sqrt[n]{r} \rceil$ because $(b-1)^n < C \le (b)^n$

Also by Lemma 1 it follows that
$$\{b-1,\dots,b-1,b-1,b,\dots,b\}$$

is an n-component space optimal index with attribute cardinality C.

Number of bitmaps =
$$(n-r) (b-2) + r (b-1)$$

= $n(b-2) + r$

Make r as small as possible, subject to b^{r} (b-1)^{n-r} \geq C.

Proof for Theorem 6.1 (contd)

2) The space-efficiency of space-optimal indexes is a non-decreasing function of the number of components.

Proof:

Let < b_n , b_{n-1} ,..., b_1 > be the base of an n-component space-optimal bitmap index I_n with attribute cardinality C, where $n < \lceil log_2(C) \rceil$

$$n < \lceil log_2(C) \rceil \Rightarrow \exists 1 \le p \le n \text{ such that } b_p > 2$$

Define an (n+1)-component bitmap index I_{n+1} with attribute cardinality C and

base
$$<$$
 b'_{n+1} , b'_{n} ,..., b'_{1} $>$ where

$$b_i^p = \left\{ egin{array}{ll} 2 & ext{if } i=n+1, \\ \left\lceil rac{b_p}{2}
ight
ceil & ext{if } i=p, \\ b_i & ext{otherwise.} \end{array}
ight.$$

$$\prod_{i=1}^{n+1} b_i' \ge C$$

$$\begin{aligned} &\mathsf{I}_{\mathsf{n+1}} \text{ is well-defined since } &\prod_{i=1}^{n+1} b_i' \geq C. \\ &\mathsf{Using Equation} & Space(I) &= &\sum_{i=1}^{n} (b_i - 1) \end{aligned}$$

$$\operatorname{Space}(I_{n}) - \operatorname{Space}(I_{n+1}) = b_{p} - 1 - \left\lceil \frac{b_{p}}{2} \right\rceil = \left\lfloor \frac{b_{p}}{2} \right\rfloor - 1 \ge 0 \text{ (since } b_{p} > 2).$$

It follows that an (n+1)-component space-optimal bitmap index is at least as spaceefficient as an n-component space-optimal bitmap index.

Slide 27 **JAN 2021** BITMAP-INDEXES

Time Optimal Indexes

3) The base of the n-component time-optimal index is $<2,...,2, \left\lceil \frac{C}{2^{n-1}} \right\rceil >$

Proof:

By the equation
$$Time(I) = 2(n - \sum_{i=1}^{n} \frac{1}{b_i} + \frac{1}{3}(\frac{1}{b_1} - 1))$$

Time(I_n) is minimized when $b_1 \ge b_i$, $1 < i \le n$, and the base numbers are as small

as possible (subject to the constraint $\prod_{i=1}^{n} b_i \ge C$).

Thus it follows that Time(I_n) is minimized when $b_i = 2$, $1 < i \le n$. leading to $b_1 = \begin{bmatrix} C \\ \hline 2n-1 \end{bmatrix}$

Time Optimal Indexes

4)The time-efficiency of time-optimal indexes is a non-increasing function of the number of components.

Proof:

By the equation
$$Time(I) = 2(n - \sum_{i=1}^{n} \frac{1}{b_i} + \frac{1}{3}(\frac{1}{b_1} - 1))$$
 and result (3)

- Time(
$$I_n^{\text{time}}$$
) = $n + \frac{1}{3}(1 - \frac{4}{b_{n,1}})$ where $b_{n,1} = \lceil \frac{C}{2^{n-1}} \rceil$.

- So Time
$$(I_{n+1}^{time})$$
 - Time (I_n^{time}) = $1 + \frac{4}{3b_{n,1}b_{n+1,1}}(b_{n+1,1} - b_{n,1})$

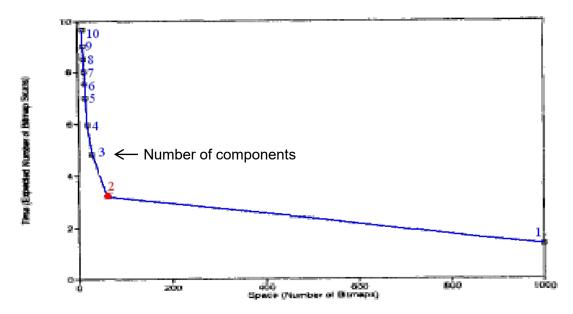
- Since
$$b_{n,1} \ge b_{n+1,1} \ge 2 \implies \text{Time}(I_{n+1}^{\text{time}}) \ge \text{Time}(I_n^{\text{time}})$$

Summary

- Space-optimal index is index with
 n = [log₂(C)] and all b = 2
- Time-optimal index is index with
 n = 1 and b = C

Bitmap Index with optimal Space-time Tradeoff (Knee)

- knee index
 - corresponds to the index with the best space-time tradeoff.
 - approximate knee of all index with knee of space-optimal indexes (Fig10)



Space-time tradeoff for space optimal indexes

 the knee of the space-time tradeoff graph for space-optimal indexes usually corresponds to a 2-component index

Theorem 7.1

• The base of the most time-efficient 2-component space-optimal index is given by < b_2 - δ , b_1 + δ >, where b_1 = $\lceil \sqrt{C} \rceil$ b_2 = $\left\lceil \frac{C}{b_1} \right\rceil$ and $\delta = \max\{0, \left\lceil \frac{b_2 - b_1 + \sqrt{(b_2 + b_1)^2 - 4C}}{2} \right\rceil\}.$

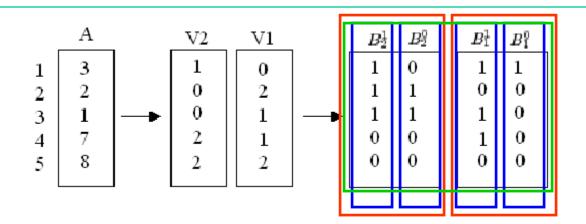
Proof:

Let I be a 2- component index with base $\langle b_2, b_1 \rangle$ as per above values. By Theorem 6.1, I is a 2-component space-optimal bitmap index. Time(I) is minimized if $b_1 \geq b_2$ because $Time(I) = 2(n - \sum_{i=1}^{n} \frac{1}{b_i} + \frac{1}{3}(\frac{1}{b_1} - 1))$

Also, by Theorem 8.1, Time (I) is minimized when b_2 is minimized \Rightarrow δ is largest non-negative integer value such that $(b_2 - \delta)^*(b_1 + \delta) \ge C$

IMPLEMENTATION

Bitmap Index storage schemes



- Bitmap-Level Storage (BS) Each bitmap is stored individually in a single bitmap file of N bits. Thus, the bitmap index is stored in n N-bit bitmap files.
- Component-Level Storage (CS) Each index component is stored individually in a row-major order in a single bitmap file of N * n_i bits,
 1≤ i ≤ k. Thus, the bitmap index is stored in k bitmap files.
- Index-Level Storage (IS) The entire index is stored in a row-major order in a single bitmap file of Nn bits.

Experimental Setup

- Dataset 1 :
 - Small attribute cardinality

- Dataset 2 :
 - Large attribute cardinality

The data compression code used is from library zlib library

Compression Comparison

Base of	Size of I under BS	Compressibility of Storage Scheme (%)		
Index I	(in bytes)	cBS	cCS	cIS
< 50 >	36, 757, 448	77.6	27.2	27.2
< 5, 10 >	9,751,976	84.1	58.8	70.1
< 2,5,5 >	6,751,368	89.1	67.5	86.3
< 2, 3, 3, 3 >	5, 251, 064	93.2	82.9	99.2
< 2, 2, 2, 2, 4 >	5,251,064	94.0	93.3	98.7
< 2, 2, 2, 2, 2, 2 >	4,500,912	98.4	98.4	99.2

(a) Data Set 1

Base of	Size of I under BS	Compressibility of Storage Scheme (%)		
Index I	(in bytes)	cBS	cCS	cIS
< 2406 >	450,937,500	76.2	2.2	2.2
< 43,56 >	18, 187, 500	77.6	26.3	28.8
< 11, 13, 17 >	7, 125, 000	80.7	40.9	48.8
< 5, 7, 7, 10 >	4,687,500	84.2	60.5	76.8
< 4, 5, 5, 5, 5 >	3,562,500	87.7	67.2	87.6
< 3, 3, 3, 3, 5, 6 >	3, 187, 500	89.7	75.1	93.0

(b) Data Set 2

Performance Comparison

cCS-indexes are most space-efficient

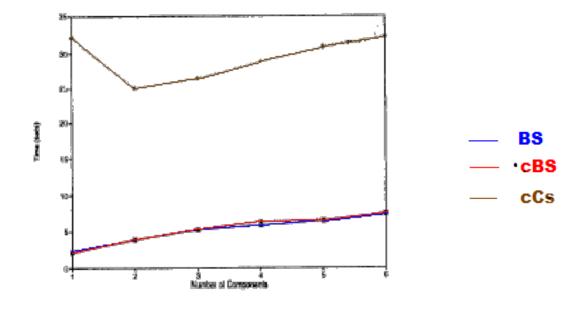
 cBS-indexes are most time-efficient since no additional baggage has to be carried/decompressed

Efficiency Metrics

- Space Metric
 - Total space of all its bitmaps (in MBytes)

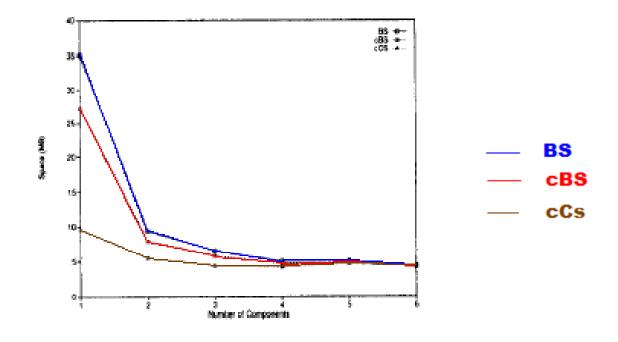
- Time Metric
 - Average predicate evaluation time (in seconds)
 - The time to read the bitmaps
 - The time for in-memory bitmap decompression (for compressed bitmap)
 - The time for bitmap operations

Experimental Results (a)



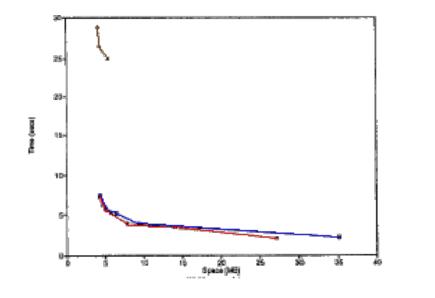
Time Vs Number of components

Experimental Results (b)



Space Vs Number of components

Experimental Results (c)



— BS — cBS

— cCs

Time Vs Space

Conclusions

 This paper gives the general framework to study the design space of bitmap indexes for selection queries and examines several space-time tradeoff issues.

- Range-encoded bitmap indexes offer, in most cases, better space-time tradeoff than equality-encoded bitmap indexes.
- cBS-indexes are most time efficient and cCS-indexes are most space efficient. But BS, cBS-indexes have comparable space time tradeoff which is better than that of cCS

END BITMAP INDEXES

E0 261