DATA CUBES

E0 261

Jayant Haritsa

Computer Science and Automation

Indian Institute of Science

Introduction

- Increasingly, organizations are analyzing historical data to identify useful patterns and support business strategies.
- Emphasis is on complex, interactive, exploratory analysis of very large datasets created by integrating data from across all parts of an enterprise; data is fairly static.
 - Contrast such On-Line Analytic Processing
 (OLAP) with traditional On-line Transaction
 Processing (OLTP): mostly long queries, instead
 of short update Xacts.

Overview

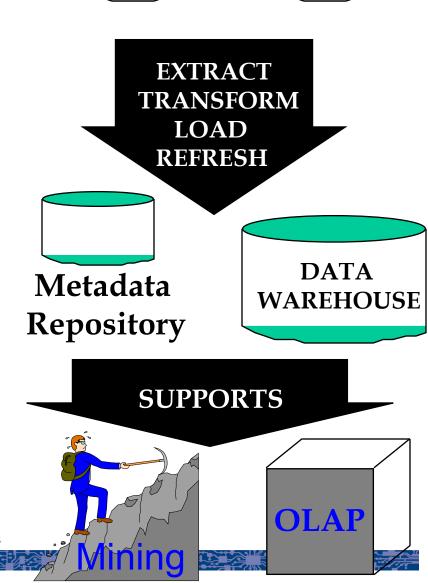
- Data Warehousing: Consolidate data from many sources in one large repository
 - Loading, periodic synchronization of replicas.
 - Semantic integration.

OLAP:

- Complex SQL queries and views.
- Queries based on spreadsheet-style operations and "multidimensional" view of data.
- Interactive and "online" queries.
- Note that Data Warehouses form the substrate on which Data Mining can be carried out.

Data Warehousing

- EXTERNAL DATA SOURCES
- Integrated data spanning long time periods, often augmented with summary information.
- Several terabytes to petabytes common.
- Interactive response times expected for complex queries; ad-hoc updates uncommon.



AUG 2017

DATA CUBES

Warehousing Issues

- Semantic Integration: When getting data from multiple sources, must eliminate mismatches, e.g., different currencies, schemas.
- Heterogeneous Sources: Must access data from a variety of source formats and repositories.
- Load, Refresh, Purge: Must load data, periodically refresh it, and purge too-old data.
- Metadata Management: Must keep track of source, loading time, and other information for all data in the warehouse.

Multidimensional Data Model

- Collection of numeric <u>measures</u>, which depend on a set of <u>dimensions</u>.
 - E.g., measure Sales,
 dimensions Product (pid), Location (locid), and Time (timeid).

Slice locid=1 is shown:

timeid _{es}				
	1	2	3	
#	2 5	8	15	locid
pid 12	30	20	50	
13	8	10	10	

jd	fi	<u> </u>	S
11	1	1	25
11	2	1	8
11	3	1	15
12	1	1	30
12	2	1	20
12	3	1	50
13	1	1	8
13	2	1	10
13	3	1	10
11	1	2	35
	•	Slid	e 6

AUG 2017

MOLAP vs ROLAP

- Multidimensional data can be stored physically in a (disk-resident, persistent) array; called MOLAP systems (covered in TIDS course)
 - Essbase
- Alternatively, can store as a relation; called ROLAP systems (today's paper)
 - Redbrick, Oracle

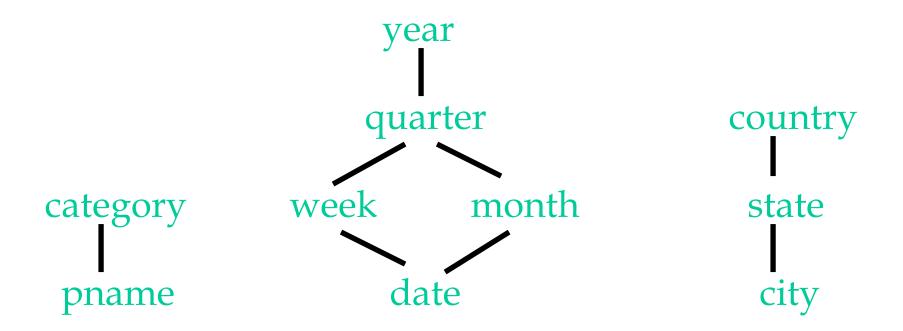
ROLAP Tables

- The main relation, which relates dimensions to a measure, is called the fact table.
 - Example: SALES(pid, timeid, locid, sales)
- Each dimension can have additional attributes and an associated dimension table.
 - Example: Products(pid, pname, category, price)
- Fact tables are much larger than dimensional tables. Their schema is {foreign keys of all dimension tables + all measure attributes}

Dimension Hierarchies

 For each dimension, the set of values can be organized in a hierarchy:

PRODUCT TIME LOCATION



OLAP Queries

- Influenced by SQL and by spreadsheets.
- A common operation is to aggregate a measure over one or more dimensions.
 - Find total sales.
 - Find total sales for each city, or for each state.
 - Find top five products ranked by total sales.
- Roll-up: Aggregating at different levels of a dimension hierarchy.
 - E.g., Given total sales by city, we can roll-up to get sales by state.

OLAP Queries (contd)

- Drill-down: The inverse of roll-up.
 - E.g., Given total sales by state, can drill-down to get total sales by city.
 - E.g., Can also drill-down on different dimension to get total sales by product for each state.
- Pivoting: Aggregation on selected dimensions.

E.g., Pivoting on Location and Time yields this <u>cross-tabulation</u>:

ear	uival	ent	to	"ro	tati	on"
 Gqt	ii v ai		LU	IO	lali	

	WB	UP	Total
1995	63	81	144
1996	38	107	145
1997	75	35	110
Total	176	223	339

AUG 2017 DATA CUBES

OLAP Queries (contd)

- Slicing: Equality selections on one or more dimensions.
- Dicing: Range selections on one or more dimensions.

Comparison with SQL Queries

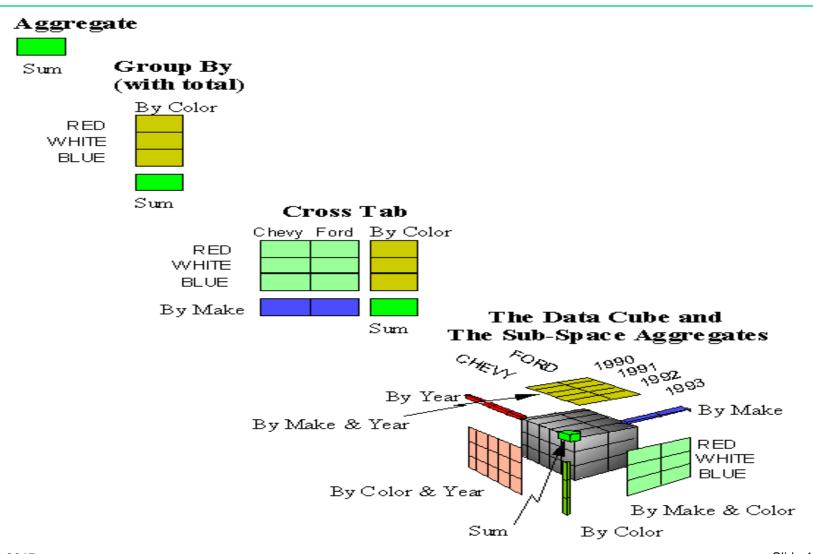
 The cross-tabulation obtained by pivoting can also be computed using a collection of SQL queries:

```
SELECT SUM(S.sales)
FROM Sales S, Times T, Locations L
WHERE S.timeid=T.timeid AND S.locid=L.locid
GROUP BY T.year, L.state
```

SELECT SUM(S.sales)
FROM Sales S, Times T
WHERE S.timeid=T.timeid
GROUP BY T.year

SELECT SUM(S.sales)
FROM Sales S, Location L
WHERE S.locid=L.locid
GROUP BY L.state

3-D CUBE Model



The CUBE Operator

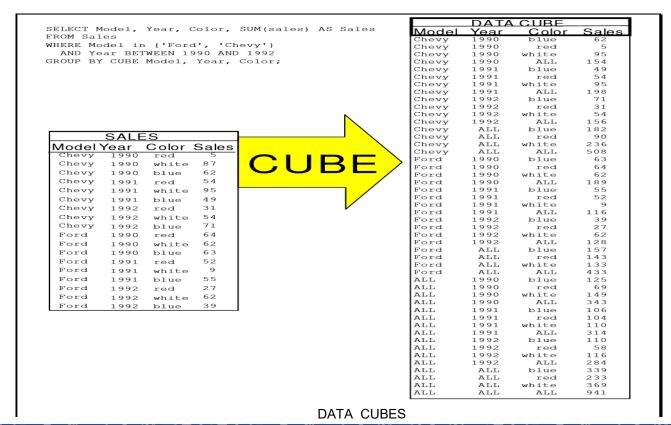
- Generalizing the previous example, if there are k dimensions, we have 2^k possible SQL GROUP BY queries that can be generated through pivoting on a subset of dimensions.
- CUBE pid, locid, timeid BY SUM Sales
 - Equivalent to rolling up Sales on all eight subsets of the set {pid, locid, timeid}; each roll-up corresponds to an SQL query of the form:

Lots of work on optimizing the CUBE operator!

SELECT SUM(S.sales)
FROM Sales S
GROUP BY grouping-list

CUBE TABLES

 Use "ALL" to represent the set over which aggregation is computed (Fig 4)



AUG 2017

Slide 16

Cube Operator (contd)

- Devised by Jim Gray et al
 - Jim Gray, a key architect of System R
 - IBM Almaden for several years, then with Tandem, then Digital, then Microsoft
 - Very practical orientation
 - Received Turing award in 1999!
 - Went missing on a boat trip off California coast in January 2007, no trace found ☺

Aggregation Hierarchy

GROUP BY <select list 3>
 ROLLUP <select list 2>
 CUBE <select list 1>

SELECT manufacturer, year, month, day, color, model, SUM (price) as revenue

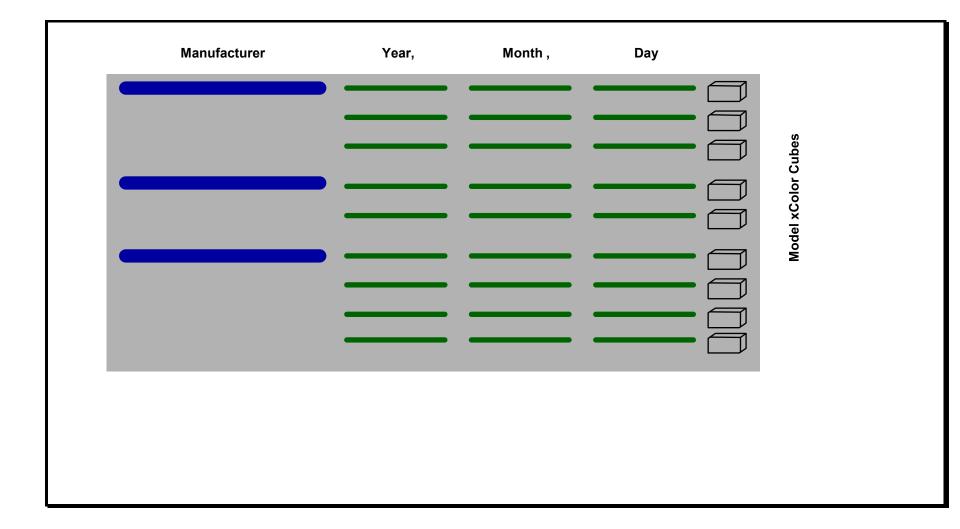
FROM Sales

GROUP BY Manufacturer

ROLLUP Year(Time) as Year, Month(Time) as Month, Day(Time) as Day,

CUBE Color, Model

Figure 5



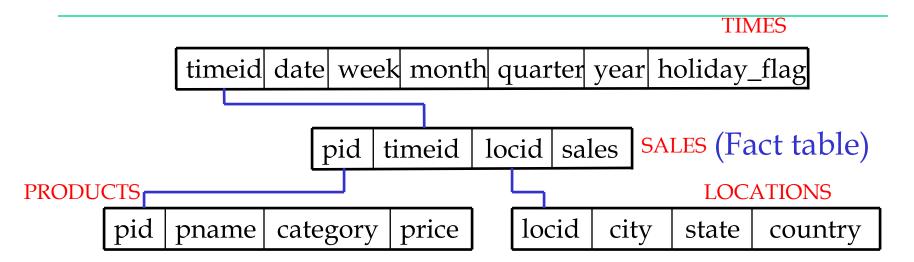
CUBE Research Issues

- Storage Structures for Cubes (ROLAP, MOLAP)
- Schemas for ROLAP Cube (Star, Snowflake)
- Index Structures for Cubes
- Level of Materialization of Cube (next paper)

•

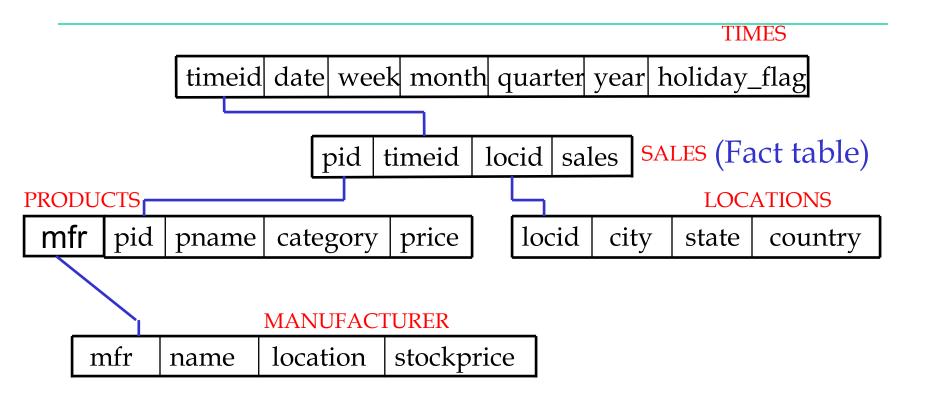
CUBE SCHEMAS

Star Schema



- Fact table in BCNF; dimension tables not normalized.
 - Dimension tables are small; updates/inserts/deletes are rare. So, anomalies less important than good query performance.
- Computing the join of all these relations is called a star join.

Snowflake Schema



 Dimension tables are also normalized to reduce redundancy.

CUBE INDEXES

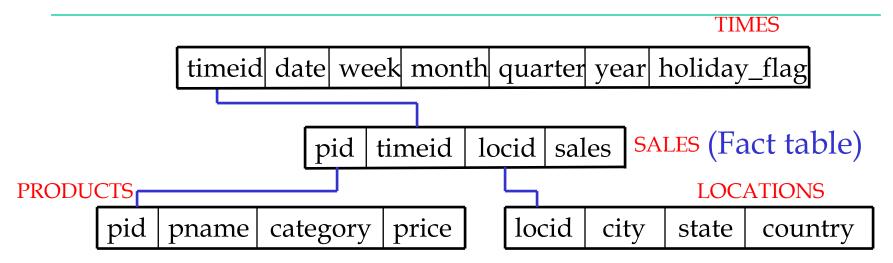
Indexes

- Joins are common between fact table and dimension tables
- Interactive response is expected, so indexes are required.
- Problems:
 - Space
 - maintenance is not a problem because readonly data

Join Indexes

- Consider the join of Sales, Products, Times, and Locations, possibly with additional selection conditions (e.g., country="India").
 - A join index can be constructed to speed up such joins. The index contains [p,t,l,s] if there are tuples p in Products, t in Times and I in Locations that satisfy the join (with sid) s in Sales.
 E.g. [Beer,March 9, Malleswaram, {2567,3089,156323}]
- Problem: Number of join indexes can grow rapidly.
 - A variant of the idea addresses this problem: For each column with an additional selection (e.g., country), build an index with [c,s] in it if a dimension table tuple with value c in the selection column joins with a Sales tuple with sid s; if indexes are bitmaps, called bitmapped join index.

Bitmapped Join Index



- Consider a query with conditions price=10 and country="India". Suppose tuple (with sid) s in Sales joins with a tuple p with price=10 and a tuple I with country ="India". There are two join indexes; one containing [10,s] and the other [India,s].
 - Intersecting these indexes tells us which tuples in Sales are in the join and satisfy the given selection.

Summary

- Decision support is an emerging, rapidly growing subarea of databases.
- Involves the creation of large, consolidated data repositories called data warehouses.
- Warehouses exploited using sophisticated analysis techniques: complex SQL queries and OLAP "multidimensional" queries (influenced by both SQL and spreadsheets).
- New techniques for database design, indexing, view maintenance, and interactive querying need to be supported.

END DATA CUBES

E0 261