CUBE MATERIALIZATION

E0 261

Jayant Haritsa

Computer Science and Automation

Indian Institute of Science

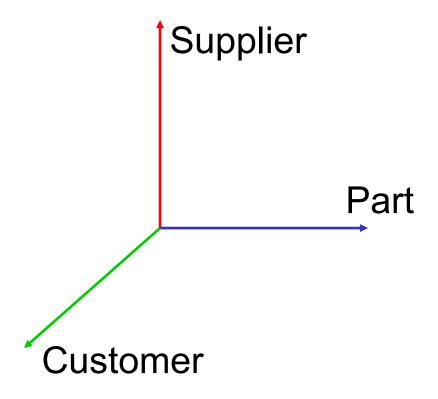
Views and Decision Support

- OLAP queries are typically aggregate queries.
 - Precomputation is essential for interactive response times.
 - The CUBE is in fact a collection of aggregate queries, and precomputation is especially important: lots of work on what is best to precompute given a limited amount of space to store precomputed results.
- Warehouses can be thought of as a collection of asynchronously replicated tables and periodically maintained views.

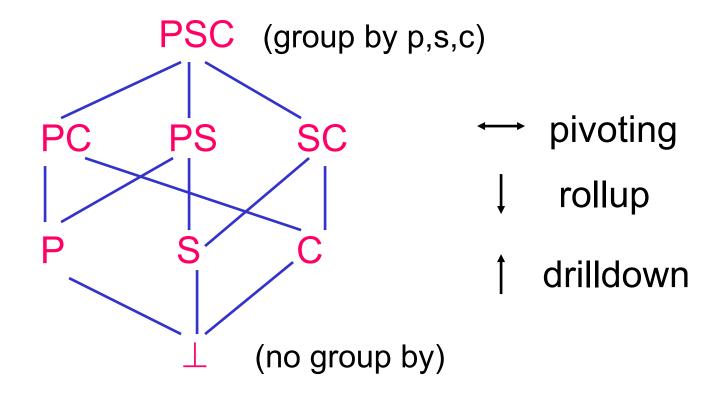
Issues in View Materialization

- What views should we materialize, and what indexes should we build on the precomputed results?
- Given a query and a set of materialized views, can we use the materialized views to answer the query?
- How frequently should we refresh materialized views to make them consistent with the underlying tables?
 (And how can we do this incrementally?)

TPC-D Example



View Lattice



• Given N dimensions, 2^N views in lattice

Materialization Options

- Materialize everything
 - minimum response time
 - space explosion
- Materialize nothing
 - maximum response time
 - zero space
- Materialize a carefully chosen subset and derive others from this subset
 - e.g. Any view can be derived from PSC
 - today's paper (received Best Paper award in Sigmod 96!)

Problem Formulation

- Given a view lattice and a constraint on the number of views that can be materialized, which choice will result in minimizing the average cost across all views?
- Assumptions:
 - All queries equi-probable
 - Query Cost ∝ number of rows examined
 - No indexes

Solutions:

- Optimization problem is NP-hard
 - Reduction from Set-Cover problem
 - Given a set X of n elements, a family F of subsets of X that cover X, what is the smallest number of subsets whose union is X?
- Therefore, heuristic-based approximate solutions are the only hope
 - greedy algorithm discussed in this paper

Greedy Algorithm

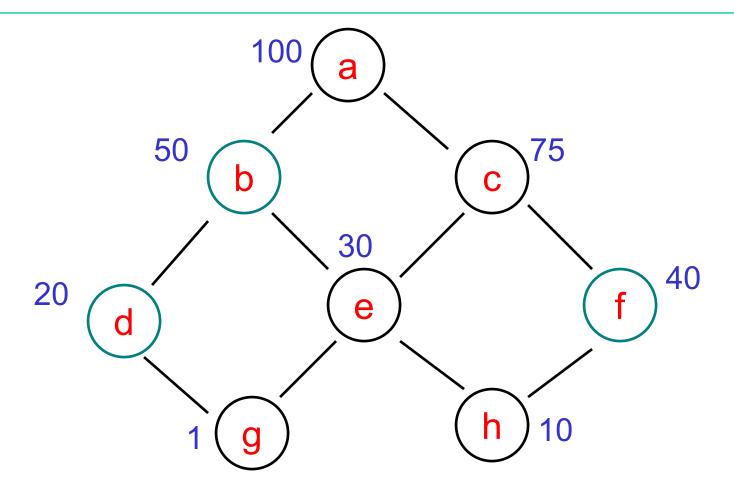
Given view lattice V, number of (interior)
 views k, and result to be stored in S

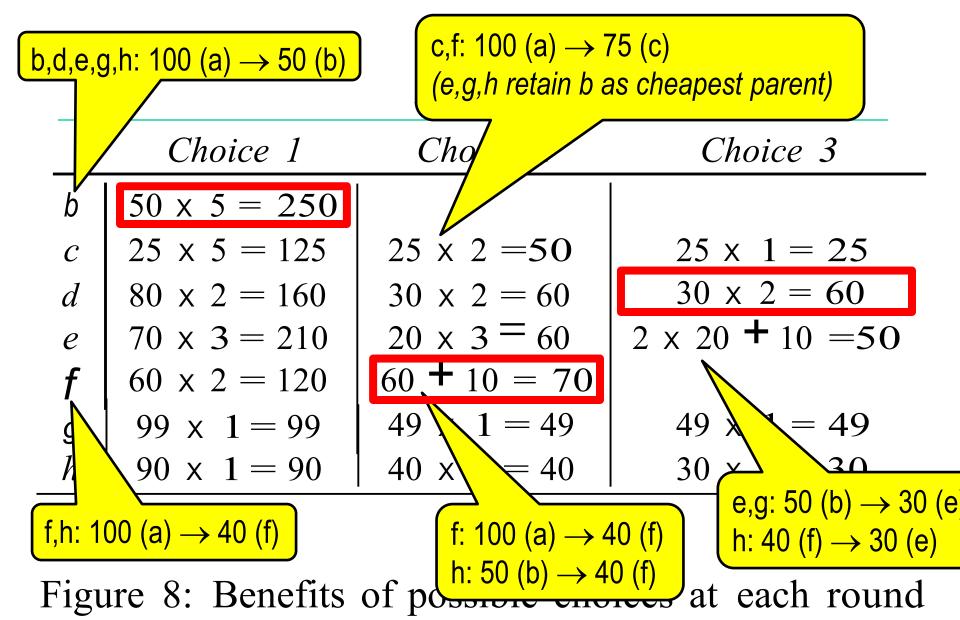
```
    S = {Top view}
        for i = 1 to k do
            do a full traversal of V – S
            select view v ∉ S such that
                 Benefit (v,S) is maximized
            S = S ∪ {v}
```

Benefit Computation B(v,S)

- For each $w \leq v$ (w derivable from v)
 - let u be the view of least cost in S such that w ≼ u .
 - since top view is in S, there must be at least one such view in S
 - if C(v) < C(u), then $B_w = C(u) C(v)$
 - Benefit to w of including v in set S
 - i.e. B_w = C(current_parent) C(new_candidate_parent)
 - otherwise, $B_w = 0$
- Then, B (v,S) = $\sum_{w \leq v} B_w$
 - overall benefit to all descendants, including itself, of v

Example 4.1





JAN 2017 CUBE VIEWS Slide 12

View Choices (k=3)

- Figure 8 in paper
- The greedy selection is b, f and d
- Cost reduces from 800 (100 * 8) to 420 which coincides with the optimal

TPC-D database

- Figure 11 gives a visual example of tradeoff
- After picking first five views (cp,ns,nt,c,p), almost the minimum possible total time, while total space is hardly more than the mandatory space used for just the top view.

Time-Space tradeoff

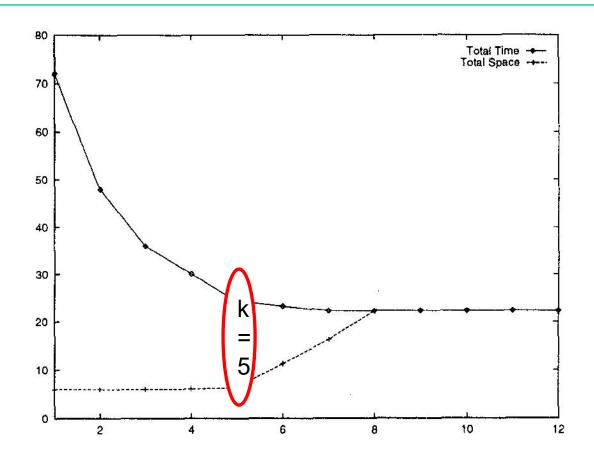


Figure 11: Time and Space versus number of views selected by the greedy algorithm

Performance Profile

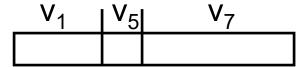
- $B_{greedy} / B_{opt} \ge 1 ((k 1)/k)^k k = 2$, ratio is 0.75
 - $-k \rightarrow \infty$, ratio is 1-1/e = 0.63
- Tight bound! (Figure 9)
- No better algorithm possible!
 - problem closed? no, randomized algorithms possible
- Special cases
 - Close to optimal if first view delivers most of the benefit
 - Equal to optimal if the benefit of each successive view is the same

Proof

- Let $v_1, v_2, ..., v_k$ be the views chosen in sequence by the greedy algorithm.
- Let a_i be the benefit achieved by choosing v_i $(w.r.t. v_1, ..., v_{i-1})$
- Similarly, let w₁, w₂, ..., w_k be the views chosen by optimal, and b_i be the benefit achieved by choosing w_i (w.r.t. w₁, ..., w_{i-1})
- Need to put an upper bound on the b's in terms of the a's

Proof

- Partition the improvement to an arbitrary view u effected by the v's and by the w's.
 - e.g. for view g, cost improved from 100 to 20. 50 came from b and 30 from d.



Optimal

Assign contribution of w_i's to v_j's: e.g., contribution of w₂ is wholly assigned to v₁;
 w₃ is divided among v₁, v₅, v₇; w₆ is not assigned;

Proof (contd)

- Define x_{ij} to be the sum over all views u in the lattice of the amount of the benefit b_i (from w_i) that is assigned to v_i.
- Then,
 - $-\sum_{i} X_{ij} \le a_{i}$ (total attribution cannot exceed complete value)

Also

- $\forall_i b_i \leq a_1$ (o.w. w_i would have been chosen instead of v_1 by greedy algorithm)
- $\forall_i b_i x_{i1} \le a_2$ (benefit of w_i minus that already assigned to v₁)
- ...
- $\forall_{i} b_{i} x_{i1} x_{i2} \dots x_{i,j-1} \le a_{j}$

JAN 2017 CUBE VIEWS Slide 19

Proof (contd)

• Summing each equation over i, and with the constraints that $\sum_i b_i = B$, $\sum_i a_i = A$, $\sum_i x_{ij} \le a_j$, we get

```
- B \leq ka<sub>1</sub>

- B \leq ka<sub>2</sub> + a<sub>1</sub>

- B \leq ka<sub>3</sub> + a<sub>1</sub> + a<sub>2</sub>

- ...

- B \leq ka<sub>k</sub> + a<sub>1</sub> + a<sub>2</sub> + ... + a<sub>k-1</sub>
```

The bounds give maximum value of B when all right sides are equal. That is ka_{i+1} - (k - 1) a_i = 0

Proof (contd)

- Therefore, a_i = (k/k-1) a_{i+1}
- For these values of a's,

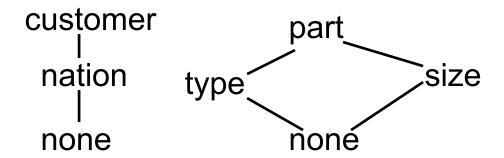
$$A = \sum_{i=0 \text{ to } k-1} (k/k-1)^i a_k$$

and from first (or any) inequality
$$B \le k (k/k-1)^{k-1} a_k$$

• Therefore, A/B $\geq 1 - ((k-1)/k)^k$ $\geq 1 - 1/e \text{ as } k \rightarrow \infty$

Dimension hierarchies

Each dimension has a hierarchy



- Equivalent to "multiplying" lattices
 - Example Figure 4: beautiful picture!

Hierarchy

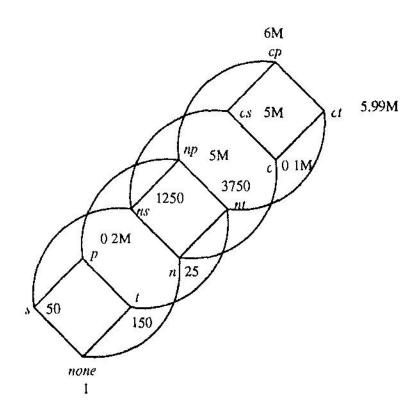


Figure 4: Combining two hierarchical dimensions

Alternative Problem Formulation

- Total Space is fixed, not number of views
- Means that Benefit per unit space needs to be computed.
- Performance guarantees still remain the same (ignoring boundary condition effects)

END CUBE MATERIALIZATION

E0 261