F8o Parallel Databases Chapter 17

around. Our description of parallelization of operations is based loosely on this
model,

Parallel query-optimization techniques are described by Lu et al. [1991],
Hong and Stonebraker [1991], Ganguly et al. [1992], Lanzelotte et al. [1993], and
Hasan and Motwani [1995),

TR

i
:
;
?

CHAPTER

18

DISTRIBUTED
DATABASES

In Chapter 16, we discussed the basic structure ol distributed systems. Unlike
parallel systems, in which the processors are tightly coupled and constitule a
single database svstem. a distributed database system consists of loosely coupled
sites that share no physical components. Furthermore, the dintabase systems thal
run on each site may have a substantial degree of mutual independence.

Each site may participate in the execution of transactions that aceess data
one site, ar several sites. The main difference between centralized and distribused
database svstems is that, in the former, the data reside in one single location,
whereas in the latter, the data reside in several locations. This distribution ol data
is the cause of many difficulties in transaction processing and query processing,
In this chapter. we address these difficulties.

We start with the guestion of how to store data in a distribuled database,
in Section 18.1. In Section 18.2, we consider issues of network transparency and
of naming of data ilems. Several technigues have been developed for processing
queries in a distributed database: they are examined in Section 8.3,

The next few sections address transaction processing. The basic model and
problems caused by different kinds of failures are examined in Section 18.4, Com-
mit protocols designed to provide atomic transaction commit, in spite of these
problems, are described in Section 18.5. Recovery issues related to selecting new
coordinators when a site designated as a coordinator fails are considercd in Sec-
tion 18.6, Concurrency control in distributed systems is examined in Section |87
the issue of handling deadlocks is dealt with in Section 184,

In recent years, the need has arisen for accessing and updating data from a
variety of preexisting dalabases, which differ in their hardware and software envi-

587

e

588 Distributed Databases Chapter 18

ronments, and in the schemas under which data are stored. A multidatabase system
is a software layer that enables such a heterogeneous collection of databases to be
treated like a homogeneous distributed database. Section 18.9 deals with query-
processing and transaction-processing issues related to multidatabase systems.

18.1 Distributed Data Storage

Consider a relation r that is to be stored in the database. There are several ap-
proaches to storing this relation in the distributed database:

* Replication. The system maintains several identical replicas (copies) of the
relation. Each replica is stored at a different site, resulting in data replication.
The alternative to replication is to store only one copy of relation r,

 Fragmentation. The relation is partitioned into several fragments. Each frag-
ment 15 stored at a different site.

= Replication and fragmentation. The relation is partitioned into several frag-
ments, The system maintains several replicas of each fragment.

In the following subsections, we elaborate on each of these techniques.

18.1.1 Data Replication

If relation r is replicated, a copy of relation r is stored in fwo or more sites. In the
most extreme case, we have fll replication. in which a copy is stored in every
site in the system.

There are a number of advantages and disadvantages to replication.

» Availability. If ome of the sites containing relation » fails, then the relation r
can be found in another site. Thus, the system can continue o process queries
involving r. despite the failure of one site,
Increased parallelism. In the case where the majority of accesses to the
relation r result in only the reading of the relation, then several sites can
process queries involving r in parallel. The more replicas of r there are, the
greater the chance that the needed data will be found in the site where the
transaction is exccuting. Hence, data replication minimizes movement of data
between sites,

* Increased overhead on update. The system must ensure that all replicas of a
relation » are consistent; otherwise. erroneous computations may result. Thus,
whenever r is updated. the update must be propagated to all sites containing
replicas. The result is increased overhead, For example, in a banking system,
where account information is replicated in various sites, it is necessary (o
ensure that the balance in a particular account agrees in all sites.

In general, replication enhances the performance of read operations and in-
creases the availability of data to read-only transactions. However, update trans-
actions incur greater overhead. Controlling concurrent updates by several transac-
tions to replicated data is more complex than is using the centralized approach to

ke Ll

T A UL £ A A T T 2 A

Section 18.1 Distributed Data Storage 589

concurrency control that we saw in Chapter 14, We can simplify the management
of 1'ep]iuus'0f relation r by choosing one of them as !he pr':'n.rmj' copy r;rf % Ilﬂor
example, in a banking system, an account can be u:_:sncmlcd with the site in w‘rfu:h
the account has been opened. Similarly, in an airline-reservation sysiem, ﬂl.ghl
can he associated with the site at which the flight originates. We shall examine
the options for distributed concurrency control in Section 18.7.

18.1.2 Data Fragmentation

If relation r is fragmented, » is divided into a number of ﬂ';;_:;mrn{.-: FEe Pz P
These fragments contain sufficient information to allow reconstruction of the orig-
inal relation r. As we shall see, this reconstruction can la_};_c.phn:: ih_mug_'h the
application of either the union operation or a sru.:::i:u_l lype of join operation nfn |l1!_~
various fragments. There are two different schemes for _h-ugmen_l ing a mlallmn. -"th]'-.
izontal fragmentation and vertical fragmentation. Horizomtal fragmentation .H.!‘:I‘JIlh
the relation by assigning each tuple of r fo one or more fragments. Vm_'ucul 1_| ag-
mentation splits the relation by decomposing the scheme R uf_rul:nmn rin a
special way that we shall discuss. These two schemes can be applied successively
to the same relation. resulting in a number of different fragments. Note that some
information may appear in several fragments. .)

We discuss the various ways for fragmenting a relation in Sections 8.1 2.1
to 18.1.2.3. We shall illustrate these approaches by fragmenting the relation ac-
count. with schema

Accotit-selema = (branch-name, aocouii-monber, Balance)

The relation account (Acconmi-schiema) is shown in Figure 18.1,

18.1.2.1 Horizontal Fragmentation

The relation r is partitioned into a number of suhsels. rFp, 2.y _1::_11:1'- |1||:h:l wl
relation r must belong to at least one of the fragments, so that the original relation
can be reconstructed, i needed. . -

A fragment can be defined as a selection on the global relation r. That is,
we use a predicate Py oto construct fragment v as follows:

v = ap (rl

I| branch-name | drcount-number |I halunee

Hillside [A-305 S00
Hillside A-226 36
Valleyview A-1T77 5
Yalleyview A-402 H{HHH]
Hillside A-1355 62
Valleyview A-4DR 1123
Valleyview | A-639 750

Figurz 18,1 Sample account relation.

590 Distributed Databases Chapter 18

| branch-name | aeconni-nnmber | balance |

Hillside A-305 00
Hillside A-226 336
Hillside- A-155 62

aoconnt g

[branch-name | account-nimiber | halance |

Valleyview A-177 205
Valleyview A-402 10000
Valleyview A-408 1123
WValleyview A-639 750

GCCCERE 2

Figure 18.2 Horizontal fragmentation of relation aceouni.

We obtain the reconstruction of the relation r by taking the union of all fragments;
that is,
o= 1 U rr U.“U Py

As an illustration. suppose that the relation r is the aceount relation of Fig-
ure 18.1. This relation can be divided into n different fragments, each of which
consists of twples of accounts belonging to a particular branch. 1f the banking sys-
tern has only two branches—Hillside and Valleyview—then there are two different
fragments:

ACCOIT] = Thranel=mame = “Hillsida™ {anﬂount}
ACCOUNE = Ty gueit=name = “Valleyview™ laceomit)

These two fragments are shown in Figure 18.2. Fragmeni accounty is stored in
the Hillside site. Fragment accouni; is stored in the Valleyview site.

In cur example, the fragments are disjoint. By changing the selection pred-
icates used to construct the fragments, we can have a particular tuple of r appear
in more than one of the #;. This form of data replication is discussed further at
the end of this section,

18.1.2.2 Vertical Fragmentation
In its simplest form, vertical fragmentation is the same as decomposition (see
Chapter 7). Vertical fragmentation of r[R) involves the definition of several subsets
of attributes By, R;, ... R, of the schema R such that

R =R UR: U..UR,

Each fragment r; of r is defined by

rpo= Tlp {r)

Section 18.1 Distributed Data Storage 591
| branch-name | accouni-number | cusiomer-name | balance |
Hillside A-305 Lowiman 00
Hillside A-226 Camp 336
Valleyview A-177 Camp 205
Valleyview A-402 Kahn 10000
Hillside A-155 Kahn 62
WValleyview A-408 Kahn 1123
Valleyview A-63G Green TS0

Figure 18.3 Sample deposic relation,

The fragmentation should be done such that we can reconstruct relation r from
the fragments by taking the natural join

r=rp MoK,

One way of ensuring that the relation » can be reconstructed is to include
the primary-key altributes of R in each of the K;. More generally, any superkey
can be used. It is often convenient to add a special attribute, called o tugple-id. 10
the schema R. The tuple-id value of a twple is a unique value, used to distinguish
the tuple from all other tuples. The tuple-id attribute thus serves as a candidate
key for the augmented schema, and 15 included in each of the R;s. The physical
or logical address for a tuple can be used as a tuple-id, since each tuple has a
unigue address.

* To illustrate vertical [ragmentation, we consider for our bank database an
aliernative database design that includes the schema’

Depasit-schema = (branch-name account-number, customer-name, balance)

Figure 18.3 shows the deposit relation for our example. In Figure 18.4,
we show the relation deposit’; the deposit relation of Figure 18.3 with tuple-ids

[hrnndf-uauw | account-number | customer-name | balance | tuple-id |

Hillside A-305 Lowman S00 1
Hillside A-226 Camp 336 2
Valleyview A-177 Camp 205 3
Valleyview A-402 Kahn 10000 4
Hillside A-155 Kahn 2 5
Valleyview A-408 Kahn 1123 6
Valleyview A-639 Green 750 7

Figure 184 The deposit relation of Figure [8.3 with wple-ids,

T Although the highly normalized database design that we use elsewhere in this text can be vertically
fragmented, such fragmentation is not particularly useful. Vertical fragmentation is more meaningful
for a schema such as the one we use here,

592 Distributed Databases Chapter 18§

hranch-name l CHFIOIMEr-naiie | ruple-id |

Hillside Lowman 1
Hillside Camp 2
Valleyview Camp 3
Vallevview Kahn 4
Hillside Kahn 3
WValleyview Kahn 6
WValleyview Green 7
depastty
| account-rumber Lfmfmrcf | tuple-id
A-305 500 1
A-226 336 2
A-177 205 3
A-402 10000 4
A-155 62 5
A-408 1123 f
A-G39 750 7
depersit

Figure 18.5 Vertical fragmentation of relation deposir.

added. Figure 18.5 shows a vertical decomposition of the schema Deposit-schema
L {ruple-id) into

Deposit-schema-1 = (branch-name, customer-name, tuple-id}
Depasit-schema-2 = (account-nimber, balance. tuple-id)

The two relations shown in Figure 18.5 resull from computing

depasity = nl’.‘leﬂr-xu-.'-:.l’rrma-l':':f'-’f"“-”-'rr]
dfP”‘-ﬂ'f}_ = Il Depusit=schema=2 (‘EEPUJ"” r]

To reconstruct the original deposit relation from the fragments. we com-
pute
nl’):'."nlx.l'l".h:nl-lr.'l‘ﬂu L_f,fe’-lf}r},jf.fi 4 E!'CFI:’JST-Q)

Mote that the expression
deposity M deposita

is a special form of natural join. The join attribute is fuple-id. Although the
ruple-id attribute facilitates the implementation of vertical partitioning. it must
not be visible to users, since it is an internal artifact of the implementation, and
violates data independence — which is one of the main virtues of the relational

moddel,

PETTTT——

Section 18.2 MNetwork Transparency 593

18.1.2.3 Mixed Fragmentation

The relation » is divided into a number of fragment relations ry, ry. ..., ¢, Each
fragment is olMained as the result of application of either the horizontal-fragmenta-
tion or vertical-fragmentation scheme on relation r, or on a fragment of r that was
obtained previously.

As an illustration, suppose that the relation r is the deposit relation of
Figure 18.3. This relation is divided initially into the fragments deposin and
depasity, as defined previously, We can now further divide ragment deposing,
using the horizontal-fragmentation scheme, into the following two fragments:

dfpﬂ-'i”m = hranch=name = "Hillside” (d'-"Ff?-'F”t}
depositihy = Opranch-name = "Valleyview"” (dEPOSIT]

Thus. relation r is divided into three fragments: deposity,, deposityy, and deposit,
Each of these fragments may reside in a different site.

18.1.3 Data Replication and Fragmentation

The techniques described in Sections 18.1.1 and 18.1.2 for data replication and
data fragmentation can be applied successively to the same relation, That is,
a fragment can be replicated, replicas of fragments can be fragmented lurther,
and so on. For cxample, consider a distributed system consisting of sites 5.
81, ..., S10. We can fragment deposit into depositia, deposity, and deposits,
and, for example, store a copy of deposity, at sites Sy, S3, and 57, a copy of
deposity, at sites §7 and S1p; and a copy of deposity at sites 52, Sg, and S,

18.2 Network Transparency

In Section 18.1, we saw that a relation r can be stored in a variety of ways in a
distributed database system. It is essential that the system minimize the degree to
which 2 user needs to be aware of how a relation is stored. As we shall see, a
system can hide the details of the distribution of data in the network, We call this
hiding network transparency, and define it as the degree to which system users
can remain unaware of the details of how and where the data items are stored in
a distributed system,
We shall consider the issues of transparency from the points of view of

Maming of data items

Replication of data items
Fragmentation of data irems

o Location of fragments and replicas

18.2.1 Naming of Data Items

Data items—such as relations. fragments, and replicas =— must have unigue names,
This property is easy to ensure in a centralized database. In a distributed database,

554 Distributed Databases Chapter 18

however, we must lake care to ensure that two sites do not use the same name
for distinet data items.

One solution to this problem is o require all names o be registered in a
central name server. The name server helps to ensure that the same name does not
get used for different data items. We can also use the name server to locate a data
item, given the name of the item. This approach, however, suffers from two major
disadvantages. First. the name server may become a performance hottleneck when
data items are located via their names, resulting in poor performance. Second, if
the name server crashes, it may not be possible for any site in the distributed
system to continue to run,

An alternative approach is to require that each site prefix its own site identi-
fier to any name that it generates. This approach ensures that no two sites generate
the same name (since each site has a unigue identifier). Furthermore, no central
contrel is required, This solution. however, [ails to achieve network transparency,
since site identifiers are attached to names. Thus, the account relation might be
referred to as sitel 7.acconnt, rather than as simply accotnt.

To overcome this problem. the database system can create a set of alternative
names or aliases for data items. A user may thus refer to data items by simple
names that are translated by the system 1o complete names. The mapping of aliases
to the real names can be stored at each site. With aliases, the user can be unaware
of the physical location of a data item. Furthermore, the user will be unaffected if
the databaze administrator decides to move a data item from one site 1o another.

Each replica of a data item and each fragment of a data item must also have
a umique name. [t is important that the system be able to determine those replicas
that are replicas of the same data item and those fragments that are fragments of
the same data item. We adopt the convention of postfixing 17, “2", . .., "
to fragmenis of a data item, and “.r17, "2, . ., “au” o replicas, Thus

sitelT.aceawnt f3.r2

-

refers to replica 2 of fragment 3 of account, and tells us that this item was
generated by site 17,

It is undesirable to expect users to refer 1o a specific replica of a data item,
Instead. the system should determine which replica to reference on a read request,
and should update all replicas on a write request. We can ensure that it does so
by maintaining a catalog table. which the system uses to determine all replicas
for the data item,

Similarly, a vser should not be required to know how a data item is frag-
mented. As we observed earlier, vertical fragments may contain ruple-ids, Hor-
izontal fragments may involve complicated selection predicates. Therefore, a
distributed database system should allow requests to be staled in terms of the
unfragmented data ilems. This requirement presents no major difficulty, since it
is always possible 1o reconstruct the original data item from its fragments. How-
ever, it may be inefficient to reconstruct data from fragmenis. Returning to our
horizontal fragmentation of acconnt, consider the query

Thraneh-mame = “Hillside™ {dfecedih !:}

e b o

e L

Yo —

Section 18.2 Metwork Transparency 595

if mamie appears in the alias table
then expression = map {name)
else expression = nane:

function wiap (1)
if n appears in the replica table
then result ;= name of a replica of »;
if n appears in the fragment table
then begin)
result »= expression to construct frapment;
for each »" in resndd do begin
replace ' in result with map (n').
end
end
return resull:

Figure 18.6 Name-translation algorithm.

We could answer this query using only the account; fragment. However, frag-
mentation transparency requires that the user not be aware of the exislencc_uf
fragments account and accountz, If we reconstruct qeconn! prior Lo processing
the query, we obtain the expression

hranch-name ="Hillsige™ (@ocounty U aecouiniz)

The optimization of this expression is left to the query optimizer (see Section 18.3).

Figure 18.6 shows the complete translation scheme for a given data-item
name. To illustrate the operation of the scheme, we consider a user located in
the Hillside branch (site §,). This user uses the alias local-account Tor the local
fragment accountfl of the account relation. When this user references local-
account, the query-processing subsystem looks up local-account in the alias table.
and replaces local-account with Slacconni fl. 1t is possible that §aecomn /! is
replicated. If so, the system must consult the replica table in order to choose
a replica. This replica could itself be fragmented, requiring examination of the
fragmentation table. In most cases, only one or two tables must be consulted.
However, the name-translation scheme of Figure 18.6 is sulficiently general to
deal with any combination of successive replication and fragmentation of relations.

18.2.2 Transparency and Updates

Providing transparency for users that update the database is somewhat more dif-
ficult than is providing transparency for readers. The main problems are ensuring
that all replicas of a data item are updated. and that all affected fragments are
updated.

In its full generality, the update problem for replicated and fragmented data
is related to the problem of view maintenance—that is. to the problem of keep-

5% Distributed DPatabases Chapter 18

ing materialized views up-to-date when the database relations are updated (Sec-
tion 2,71}, Consider our example of the acconns relation. and the insertion of the
tuple

(“Walleyview”, A-733, 600

If ccconnt is fragmented horizontally, there is a predicate P; associated with the ith
tragment. We apply P to the wple (“Valleyview™, A-T33, 600) to test whether
that tuple must be inserted in the fth fragment. Using our example of account
being fragmented into

QUCONTI) = Gargucheranre = "Hillside™ {laccount)
ACCOUNE = Opranch-name = "Valleyview” (GCCOUNRT)

the tuple would be inserted into gccounss.

MNow consider a vertical fragmentation of deposit into deposity and deposits.
The tuple (“Valleyview™. A-733, “JTones”, 600) must be split into two fragments:
one to be inserted into deposity, and one to be inserted into deposi.

IT an update is made to 2 replicated relation, the update must be applied
to all replicas. This requirement presents a problem if there is concurrent access
to the relation. since it is possible that one replica will be updated earlier than
another. We consider this problem in Section 8.7,

18.3 Distributed Query Processing

In Chapter 12, we saw that there is a variety of methods for computing the answer
toa guery, We examined several techniques for choosing a strategy for processing
a yuery that minimize the amount of time that it takes to compute the answer. For
centralized systems, the primary criterion for measuring the cost of a particular
strategy 15 the number of disk accesses. In a distributed system, we must take into
account several other matters, including

o The cost of daia transmission over the network
e The potential gain in performance from having several sites process parts of
the query in parallel

The relative cost of data transfer over the network and data transfer to and from
disk varies widely depending on the type of network and on the speed of the
disks. Thus, in general, we cannot focus solely on disk costs or on network costs.
Rather, we must find a good tradeoff between the two,

18.3.1 Query Transformation

Let us consider an extremely simple query: “Find all the tuples in the acconnt
relation.” Although the query is simple — indeed. trivial—processing of this query
is mot trivial, since the account relation may be fragmented, replicated, or both, as
we saw in Section 181, IF the account relation is replicated. we have a choice of
replica to make, If no replicas are fragmented, we choose the replica for which the

T T e e Y TR T A T

=

Section 18.3 Distributed Query Processing 597

transmission cost is lowest. However, if a replica is fragmented. the choice is not
50 easy to make, since we need to compute several joins or unions to reconstruct
the account relation. In this case, the number of strategies for our simple example
may be large. Query optimization by exhaustive enumeration of all alternative
strategies may not be practical in such situations,

Fragmentation transparency implies that a user may write a query such as

Thranch-nance = “Hillside™ {CCGunL)
Since acconnt is defined as
aceoenty U dcoountia
the expression that results from the name translation scheme is
Thranch-rame ="Hillside™ {@cconnfy U accanii;)

Using the query-optimization techniques of Chapter 12, we can simplify the pre-
ceding expression automatically. The result is the expression

Tiyranci-naeme = "Hillside™ (accomnmiy) Y Teeanel-neme =“Hillside" (ecaunia)

which includes two subexpressions. The first involves only account;, and thus
can be evaluated at the Hillside site. The second involves only aceonats, and thus
can be evaluated at the Valleyview site,

There is a further optimization that can be made in evaluating

Thraneh=nama ="Hillside™ {GCCHET)
Since acconnt; has only tuples pertaining 1o the Hillside branch, we can eliminate
the selection operation. In evaluating
Ohranch-name ="Hillside™ (@CCOUNT)
we can apply the definition of the account; fragment to obtain
Theanch-name ="Hillside” (Theanci-name ="Valleyview" (HCCOUNTY)

This expression is the empty set, regardless of the contents of the aeconnt relation.
Thus, our final strategy is for the Hillside site to return weconnt as the
result of the query.

18.3.2 Simple Join Processing

As we saw in Chapter 12, a major aspect of the selection of a query-processing
strategy is choosing a join strategy. Consider the following relational-algebra ex-
Pression:
account W depositor M hranch

Assume that the three relations are neither replicated nor fragmented. and that
account is stored at site S|, depositor at 52, and branch at 8. Let §; denote the
site at which the query was issued. The system needs to produce the result at site
5. Among the possible strategies lor processing this query are the following:

508 Distributed Databases Chapter 18

 Ship copies of all three relations to site 5;. Using the techniques of Chapter
12, choose a strategy for processing the entire query locally at site 5.

» Ship a copy of the accounr relation to site Sz, and compute tempy = acconnt
4 depositor at 5z. Ship rempy from 5; to §3, and compute tempz = temp; M
Bravch at 8. Ship the result fempz to 5;.

» Devise strategies similar to the previous one, with the roles of §, 52, &
exchanged.

No one strategy is always the best one. Among the factors that must be considered
are the volume of data being shipped, the cost of transmitting a block of data
between a pair of sites, and the relative speed of processing at each site. Consider
the first two strategies listed. If we ship all three relations to 5;. and indices exist
on these relations, we may need to recreate these indices at 8;. This recreation of
indices entails extra processing overhead and extra disk accesses. However, the
second strategy has the disadvantage that a potentially large relation {customer M
account) must be shipped from §3 to §3. This relation repeats the address data for
a customer once for each account that the customer has. Thus, the second sirategy
may tesult in extra network transmission, as compared with the first strategy.

18.3.3 Semijoin Strategy

Suppose that we wish to evaluate the expression ry M ry, where r| and ry are
stored at sites S; and §3, respectively. Let the schemas of r; and r; be £ and
R5. Suppose that we wish 1o obtain the result at §;. If there are many tuples of
3 that do not join with any tuple of ry, then shipping rz to 5§ entails shipping
tuples that fail to contribute to the result. It is desirable to remove such tuples
before shipping data to 5y, particularly if network costs are high.

A strategy can be implemented as follows:

1. Compute temp) + [g, g, (n) at 5y

2. Ship tempn from 5 to 5;.

3. Compute femp; + ry M fempy at §a.

4. Ship temp: from 5; to §y.

5. Compute #; # femyprz at 5. The resulting relation is the same as rp M ra.

Before considering the efficiency of this strategy, let us verify (hat the strategy
computes the correct answer. In step 3, rempz has the result of r; M Tlg, q g, (7).
In step 5, we compute

ry Wora MW g ng, (ry)

Since join is associative and commutative, we can rewrite this expression as
(ry M Mgnag () Mo

Since ry ™M Tlg,rgy (1) = ry, the expression is, indeed, equal to ry ™ r,.
This strategy is particularly advantageous when relatively few tuples of r;
contribute to the join. This situation is likely to occur if ry is the result of a

o

bk £ i b i e e i i

Section 15.4 Distributed Transaction Model 599

relational-algebra expression involving selection. In such a case. remp; may have
significantly fewer tuples than r;, The cost savings of the strategy result from
having to ship only rempz, rather than all of ra, to §. Additional cost is incurred
in shipping femp; to S5 I a sufficiently small fraction of tuples in r; contribute
to the join, the overhead of shipping temp; will be dominated by the savings of
shipping only a fraction of the tuples in ra.

This strategy is called a semijoin strategy, afier the semijoin operator of the
relational algebra, denoted . The semijoin of ry with rz, denoted ry = rq, is

I'Ix, (ry B ora)

Thus, r; = ra selects those tuples of) that contributed to #; M ry. In step 3,
temipn =1z W rp.

For joins of several relations, this strategy can be extended to a serics of
semijoin steps, A substantial body of theory has been developed regarding the
use of semijoins for query optimization. Some of this theory is referenced in the
bibliographic notes.

18.3.4 Join Strategies that Exploit Parallelism

Implementing intraoperation parallelism by redistributing tuples is generally not
considered viable in a distributed system, due to the small degree of parallelism
and the high cost of communication, However, interoperation parallelism. includ-
ing pipelined parallelism and independent parallelism (Section 17.6). can be useful
in a distributed system.

For example, consider a join of four relations:

FLM oy Mo Moy

where relation r; is stored at site 5. Assume that the result must be presented at
site §). There are many possible strategies for parallel evaluation; for example,
any of the strategies described in Section 17.6 may be vsed. In one such sirategy,
p is shipped to 5, and ry ™ r; computed at §;. At the same time, r3 is shipped
lo 84, and r; ™M ry computed at 5. Site §; can ship tuples of {r; M) to
51 as they are produced, rather than waiting for the entire join to he computed.
Similarly, 54 can ship tuples of (r1 ¥ rq) to §). Once tuples of {ry B rp) and
{ry M ry) amive at 5, the computation of {ry ™ r2) M {m M org) can begin,
with the pipelined join technique of Section 12.8.2.2. Thus. computation of the
final join result at §) can be done in parallel with the computation of (r; - r)
at 8, and with the computation of (ry 0 rq) at Sy,

18.4 Distributed Transaction Model

Access to the various data items in a distributed system is usvally accomplished
through transactions, which must preserve the ACID properties {(Section 13.1).
There are two types of transaction that we need o consider. The focal transac-
tions are those that access and update data in only one local database; the global

Al Distributed Databases Chapter 18§

transactions are those that access and update data in several local databases. En-
suring the ACID properties of the local transactions can be done in a manner
similar to that discussed in Chapters 13. 14, and 15. However, in the case of
global transactions, this task is much more complicated, since several sites may
be participating in cxecution. The failure of one of these sites, or the failure of a
communication link connecting these sites, may result in erroneous computations.

18.4.1 System Structure

Each site has its own local transaciion manager, whose function is to ensure
the ACID properties of those transactions that execute at that site. The various
transaction managers cooperate to execute global transactions. To undersiand how
such a manager can be implemented, we define an abstract model of a transaction
system. Each site of the system contains two subsystems:

e The transaction manager manages the execution of those transactions (or
subtransactions) that access data stored in a local site, Note that each such
transaction may be either a local transaction (that is, a transaction that executes
at only that site) or part of a global transaction (that is, a transaction that
executes al several sites).

s The transaction coordinator coordinates the execution of the various trans-
actions (both local and global} initiated at that site,

The overall svstem architecture is depicted in Figure 18,7,

The structure of a transaction manager is similar in many respects to the
structure used in the centralized-sysiem case. Each transaction manager is respon-
sible for

» Maintaining a log for recovery purposes
» Participating in an appropriate concurrency-control scheme to coordinate the
concurrent execution of the transactions executing at that site

rt:"l lran=aclion

- :::H g coordinator
iﬁx /// :ﬁ’ e
—

a4 o

L - T
@""ﬂ ™ (1ar, F transaction
N i nager
comyputer | compaler s

Figure 187 System architecture.

Section 18.4 Disteibuted Transaction Model 601

As we shall see, we need to modify both the recovery and concurrency schemes
to accommaodate the distribution of transactions.

The transaction coordinator subsystem is not needed in the centralized en-
vironment. since a transaction accesses data at only a single site. A transaction
coordinator, as its name implies, is responsible for coordinating the execution of
all the transactions initiated at that site. For each such transaction. the coordinator
is responsible for

» Starting the execution of the transaction

« Breaking the transaction into a number of suhtmm;acl'!onsa, and distributing
these subtransactions to the appropriate sites for execution

e Coordinating the termination of the transaction, which may result in the trans-
action being committed at all sites or aborted at all sites

18.4.2 System Failure Modes

A distributed system may suffer from the same types of failure that a centralized
system does (for example, software errors. hardware errors, or disk crashes). _’I here
are., however, additional types of failure with which we need to deal ina distributed
environment. The basic failure types are

Failure of a site

Loss of messages

Failure of a communication link
Metwaork partition

The loss or corruption of messages is always a possibility in a distributed
system. The system uses transmission-control protocols, such as TCPAP, to handle
such errors. Information about such protocols may be found in standard texibouks
on networking (see the bibliographic notes).

To understand the effect of failures of communication links, and of network
partition, we must first understand how sites in a distributed system are intercon-
nected, The sites in the system can be connected physically in a varicty of ways.
Some of the most common configurations are depicted in Figure 18.8.

Each configuration has advantages and disadvantages. The configurations
can be compared with one another, based on the following criteria:

« Installation cost. The cost of physically linking the sites in the system -

o Communication cost. The cost in time and money 1o send a message from
site A to site B

s Availability. The degree to which duta can be accessed despite the failure of
some links or sites

The various topologies are depicted in Figure 18.8 as graphs whose ugdes
correspond to sites. An edge from node A to node corresponds to a direct

o012 Distributed Databases Chapter 18

D

partially connected network

®

tree structured network star network

ring network

Figure 18.8 Network topology.

communication link between the two sites. In a fully connected network, each
site is directly connected to every other site. However, the number of links grows
as the square of the number of sites, resulting in a huge installation cost. Therefore,
fully connected networks are impractical in any large system.

" Ina partially connected nefwork, direct links exist between some—butl not
all—pairs of sites. Hence. the installation cost of such a configuration is lower than
that of the fullv connected network. However, if two sites A and B are not directly
connected, messages from one to the other must be rowfed through a sequence of
communication links, This requirement results in a higher communication cost.

If a communication link fails, messages that would have been transmitted
across the link must be rerouted. In some cases. it is possible to find another route
through the network, so that the messages are able to reach their destination.
In other cases. a failure may result in there being no connection between some
pairs of sites. A system is partitioned if it has been split into two (or more)

EAT——

Section 18.4 Distributed Transaction Model 603

subsystems, called partitions, that lack any connection between them. Note that,
under this definition, a subsystem may consist of a single node.

The different partially connected network types shown in Figure 18,8 have
different failure characteristics and installation and communication costs, Instal-
lation and communication costs are relatively low for a tree-structured network.
However, the failure of a single link in a tree-structured network can result in
the network becoming partitioned. In a ring network. at least two hinks must fail
for partition to occur. Thus, the ring network has a higher degree of availability
than does a tree structured network, However, the communication cost s high,
since a message may have to cross a large number of links. In a star network,
the failure of a single link results in a network partition, but one of the partitions
has only a single site. Such a partition can be treated as a single-site failure. The
star network also has a low communication cost, since each site is al most two
links away from every other site. However, the failure of the central sile results
in every site in the system becoming disconnected.

18.4.3 Robustness

For a distributed system to be robust, it must detecr failures. recemfigare the
system 50 that computation may continue, and recever when a processor or a link
i5 repaired.

The different types of failures are handled in different ways. Message loss
is handled by retransmission. Repeaied retransmission of a message across a link,
without receipt of an acknowledgment, is vsually a symptom of a link failure.
The network usually attempts to find an alternative route for the message. Failure
to find such a route is usvally a symptom of network partition.

It is generally not possible, however, to differentiate clearly between site
failure and network partition. The system can usually detect that a failure has
occurred. but it may not be able to identify the type of failure. For example,
suppose that site §; is not able to communicate with §;. It could be that §; has
failed. However, another possibility is that the link between §; and 5 has failed,
resulting in network partition,

Suppose that site &y has discovered that a failure has oceurred, [mwst then
initiate a procedure that will allow the system 1o reconlipure, and o contie with
the normal mode of operation.

o If replicated data are stored at the failed site, the catalog should be updated
so that queries do not reference the copy at the failed site. '

o [If transactions were active al the failed site at the time of the failure. these
transactions should be aborted. It is desirable to abort such transactions prompt-
ly, since they may hold locks on data at sites that are still active.

o If the failed site is a central server for some subsystem. an efection must be
held to determine the new server (see Section [R.6.2), Examples ol veniral
servers include a name server, a concurrency coordinator, or a global deadlock
detector.

64 Distributed Databases Chapter 18

Since it is, in general, not possible to distinguish between network link failures
and site failures, any reconfiguration scheme must be designed to work commectly
in case of a partilioning of the network. In particular, the following situations
must be avoided:

= Two or more central servers are elected in distinct partitions.
¢ More than one partition updates a replicated data item.

Reintegration of a repaired site or link into the system also requires care.
When a failed sile recovers, it must initiate a procedure to update its system
tables to reflect changes made while it was down, If the site had replicas of any
data items. it must obtain the current values of these data items and ensure that it
receives all future updates. Reintegration of a site is more complicated than it may
seem Lo be at first glance. since there may be updates 1o the data ilems processed
during the time that the sile is recovering. An easy solution is temporarily to halt
the entire system while the failed site rejoins it. In most applications, however,
such a temporary halt is unacceptably disruptive, Techniques have been developed
to allow failed sites (o reintegrate while allowing concurrent updates to data items.
If a failed link recovers, two or more partitions can be rejoined. Since a partitioning
of the network limits the allowable operations by some or all sites, it is desirable
to inform all sites promptly of the recovery of the link. See the bibliographic notes
for more information on recovery in distributed systems.

18.5 Commit Protocols

If we are o ensure atomicity, all the sites in which a transaction T executed must
agree on the final outcome of the execution. T musi either commit at all sites, or
it must abort at all sites. To ensure this property, the transaction coordinator of T
must execute a comimit p?'().fr?:'ﬁ.r.

Among the simplest and most widely used commit protocols is the reo-phase
comimit protocol (2PC), which is described in Section 18.5.1. An altermative 1s the
ihree-phase commit protocol (3PC), which aveids certain disadvantages of the 2PC
protocol but adds to complexity and overhead. The 3PC protocol is described in
Section 18.3.2,

158.5.1 Two-Phase Commil

Let T be a transaction initiated at site 5;, and let the transaction coordinator at §;
be ;.
18.5.1.1 The Commit Protocol

When T completes its execution—that is. when all the sites at which T has executed
inform C; that T has completed—C; starts the 2PC protocol.

¢ Phase 1. ¢ adds the record =prepare 7= to the log, and forces the log
onto stable storage. It then sends a prepare T message (o all sites at which T

Section 18.5 Commit Protocals 605
b 8

executed. On receiving such a message, the transaction manager at that site
determines whether it is willing to commit its portion of T. If the answer is
no. it adds a record <ne T> to the log, and then responds by .\cndmlg an
abort T message to C;. If the answer is yes, it adds a record -cl'.reudlf T>to
the log. and forces the log (with all the log records cm_'rcsimmlmg 1o 'l onto
stable storage. The transaction manager then replies with o ready T message
to C;.

o Phase 2. When C; receives responses to the prepare T messige from all the
sites. or when a prespecified interval of time has elapsed 5||1+:c_|h1:_;:-rvpnrc
T message was sent out, O can determine whc[hc_:r 1|1LI‘ transaction " cun hc.
committed or aborted. Transaction T can be committed il C 1'+:cu~n-a,?4'.1l a ready
T message from all the participating sites. Oiherwise, L|'u|1.~ar.'w}i.m1 T must be
aborled. Depending on the verdict, either a l_f:&:l:ll'L' —eommit T= or a record
<abort T> is added to the log and the log is forced onto stable slorage. At
this point, the fate of the transaction has been sealed. Following this point. the
coordinator sends either a commit T or an abort T message to all participaling
sites, When a site receives that message, it records the message in the log.

A site at which T executed can unconditionally abort T at any time pri_:}r
to its sending the message ready T to the :.:u-::rdingmr. Tllﬂ ready 7 message is.
in effect. a promise by a site to follow the coordinator’s order to l..:‘l}"'l‘ll‘.l'!.ﬂ. J' or
to abort T. The only means by which a site can make suc_h A promise is il !hc
needed information is stored in stable storage. Otherwise. if the site crashes after
sending ready T, it may be unable to make good on its prnmimf. -

Since unanimity is required to commit a transaction. the fale nl.] is l.xL‘.aI-]I.'.‘d
as s0on as at least one site responds abort T, Since the coordinator sile &os one
of the sites at which T executed, the coordinator can decide unifaterally to aborl T.
The final verdict regarding T is determined at the time that |I1_r: conrchinator writes
that verdict (commit or abort) to the log and forces thal vordict 1o stable slorage.
In some implementations of the 2PC protocal, a sile .ﬂemlsl an acknowledge T
message to the coordinator at the end of the second phu_.qv: ol the 1'.nrnllm-u1._ When
the coordinator receives the acknowledge T message from all the sites. n adds
the record <complete T= 1o the log.

18.5.1.2 Handling of Failures

We now examine in detail how the 2PC protocol responds to varions types of
failures.

s Failure of a participating site. I{ the coordinator €, detects that :n._.-;ih: !1:“:\-

failed. it takes the following actions. If the site fails before rc:q?nncim;: wilh

a ready T message to €, it is assumed to have |'mpumh;d wilh an ill](ll:l_

T message. If the sile fails afler the coordinator has |'|:L‘1:‘1~.-1:L1 the rugdy i

message {tom the site, the rest of the commit protocol is executed in the
normal fashion, ignoring the failure of the site. _ _

When a participating site S recovers from a failure., it m_u.l;L examine

its log to determine the fate of those transactions that were in the midst

i o i R L R e

ot Distributed Databases Chapter 18

of execution when the failure occurred. Let T be one such transaction. We

consider each of the possible cases:

s The log contains a =commit 7= record. In this case. the sile executes
redo(l),

o The log contains an <abort T= record. In this case, the sile execules
undo(T),

o The log contains a <ready T= record. In this case, the site must consult
Ci to determine the fate of T, If C; is up. it notifies 5; regarding whether
I committed or aborted. In the former case, it execotes redo(T); in the
latter case, it executes undotT), If C; is down, 5, must try to find the fate
of T from other sites. It does so by sending a query-status T message
to all the sites in the system. On receiving such a message, a site must
consult its log to determine whether T has executed there, and if T has.
whether T committed or aboried. It then notifies 5, about this outcome. If
no site has the appropriate information (that is, whether T commitied or
aborted). then §; can neither abort nor commit T. The decision concerning
T is postponed until 5 can oblain the needed information. Thus, §; must
periodically resend the query-status message to the other sites. It continues
to do so until a site recovers that contains the needed information, Note
that the site at which C; resides always has the needed information.

o The log contains no control records (abort, commit, ready) concerning T.
Thus, we know that §; failed before responding to the prepare T message
from ;. Since the failure of 5; precludes the sending of such a response,
by our algorithm C; must abort 7. Hence, 53 must execote undo(T).

» Failure of the coordinator, If the coordinator fails in the midst of the ex-
ecution of the commit protocol for transaction T, then the participating sites
must decide the fate of T. We shall see that, in certain cases. the participating
sites cannot decide whether o commit or abort T, and therefore these sites
must wait for the recovery of the failed coordinator.
= If an active site contains a <commit 7= record in its log, then T must be

committec,

= If an active site contains an <abort 7> record in its log, then T must he
aboited,

= If some active site docs wer contain a <ready T record in its log, then
the Taited coordinator C; cannot have decided to commit T, because a site
that does not have a <ready 7= record in its log cannot have sent a ready
T message to £, However, the coordinator may have decided to abort T,
but not to commit 7. Rather than wait for C; to recover. it is preferable to
abort T.

o If none of the preceding cases holds. then all active sites must have a
=ready T= record in their logs, but no additional control records (such
as =abort T= or <commit I'=). Since the coordinator has failed. it is
impossible to determine whether a decision has been made. and if one has,
what that decision is, until the coordinator recovers, Thus, the active sites
must wait for C; to recover. Since the fate of T remains in doubt, T may
continue to hold system resources. For example, if locking is used, T may

o

Section 18.5 Commit Protocols 607

hold locks on data at active sites, Such a situation is undesirable, because
it may be hours or days before C; is again active. During this time, other
transactions may be forced to wait for T. As a resull, data items may be
unavailable not only on the failed site (C}), but on active sites as well. This
situation is called the blocking problem, because T is hlocked pending the
recovery of site C;.

» Network partition. When a network partitions. two possibilities exist:

1. The coordinator and all its participants remain in one partition. In this case,
the failure has no effect on the commit protocol,

2. The coordinator and its participants belong 1o several partitions, From the
viewpoint of the sites in one of the partitions, it appears that the sites in
other partitions have failed. Sites that are not in the partition containing
the coordinator simply execute the protocol to deal with failure of the
coordinator. The coordinator and the sites that are in the same partition as
the coordinator follow the usual commit protocol, assuming that the sites
in the other partitions have failed,

Thus, the major disadvantage of the 2PC protocol is that coordinator failure may
result in blocking, where a decision either to commit or to aborl T° may have to
be postponed until C; recovers.

18.5.1.3 Recovery and Concurrency Control

When a failed site restarts, we can perform recovery using, for example, the
recovery algorithm described in Section 15.9. To deal with distributed commit
protocols (such as 2PC and 3PC), the recovery procedure must treat in-donbt
transactions specially: in-doubt transactions are transactions for which a =ready
T= log record is found. but neither a <commit T= log record. nor an <abort 1=
log record, is found. The recovering site must determine the commil—aborl status
of such transactions by contacting other sites, as described in Section 18.5.1.2.

If recovery is done as just described, however, normal transaction processing
at the site cannot begin until all in-doubt transactions have been committed or
rolled back. Finding the status of in-doubt transactions can be slow, since multiple
sites may have to be contacted. Further, if the coordimator has Failed, and ne other
site has information about the commit—abort status of an incomplete ransaction,
recovery polentially could become blocked if 2PC is used. As a resuli, the site
performing restart recovery may remain unusable for a long period.

To circumvent this problem, recovery algorithms typically provide support
for noting lock information in the log. (We are assuming here that locking is used
for concurrency control.) Instead of a <ready T= log record being written, a
<ready T, L= log record is written out, where L is a list of all locks held by the
transaction T when the log record is written. Al recovery time, after performance
of local recovery actions, for every in-doubi transaction T, all the locks noted in
the <ready T, L= log record (read from the log} are reacquired.

After lock reacquisition is complete for all in-doubt fransactions, transaction
processing can start at the site, even before the commit-abaort status of the in-doubt

608 Distributed Databases Chapter 15§

transactions is determined. The commit or rollback of in-doubt transactions is
performed concurrently with the execution of new transactions. Thus, site recovery
is faster, and never gets blocked, Note that new transactions that have a lock
conflict with any in-doubl transactions will be unable to make progress until the
conflicting in-doubt fransactions have been committed or rolled back.,

15.5.2 Three-Phase Commit

The 3PC protocol is designed to avoid the possibility of blocking in a restricted
case of possible failures, The version of the 3PC protocol that we describe requires
that

e Mo network partition can occur.

e Almost K participating sites can fail while the 3PC protocol is being executed
for a transaction. K is a parameter indicating the resiliency of the protocol to
site failures.

e At any point, at least & + 1 sites must be up.

The protocol achieves the nonblocking property by adding an extra phase in
which a preliminary decision is reached regarding the fate of T. The information
made available to the participating sites as a result of this preliminary decision
allows a decision to be made despite the failure of the coordinator,

18.5.2.1 The Commit Protocol

As before, let T be a transaction initiated at site 5, and let the transaction coor-
dinator at & be).

e Phase 1. This phase is identical to phase 1 of the 2PC protacol.

o Phase 2. If C; receives an abort T message from a participating site. or if
C; receives no response within a prespecitied interval from a participating
sile. then O decides to abort T. The aborl decision is implemented in the
same way as is the 2PC protocol. If C; receives a ready T message from
every parlicipating site, C; makes the preliminary decision to precommir T,
Frecommit differs from commit in that T may still be aborted eventually. The
precommit decision allows the coordinator to inform each participating site
that all participating sites are readv. C; adds a record <precommit 7= to
the log and forces the log onto stable storage. Then, C; sends a precommit
T message 1o all participating siles. When a site receives a message from the
coordinator {either abort T or precommit T), it records that message in its log,
forces this information to stable storage, and sends a message acknowledge
T o the coordinator,

= Phase 3, This phase 1s executed only if the decision in phase 2 was to precom-
mit. After the precommit ¥ messages are sent to all participating sites. the
coordinator must wait until it receives at least & acknowledge T messages.
Then, the coordinator reaches a commit decision. It adds a <commit T=

Section 18.5 Commit Protocoels o0t

record to its log, and forces the log to stable storage, Then, C; sends a com-
mit T message to all participating sites. When a site receives that message. it
records the information in its log.

Just as in the 2PC protocol, a site at which T executed can unconditionally
abort T at any time prior to sending the message ready T to the coordinator. The
ready T message is, in effect, a promise by a site to follow the coordinator's
order to commit T or to abort T, In contrast to the 2PC protocol, in which the
coordinator can unconditionally abort T at any time prior to sending the message
commit T, the precommit T message in the 3PC protocol is a promise by the
coordinator to follow the participant’s order to commit T.

Since phase 3 always leads to a commit decision, it may seem to be of little
use. The role of the third phase becomes apparent when we look at how the 3PC
protocol handles failures,

In some implementations of the 3PC protocol, a site sends a message ack T
to the coordinator upon receipt of the commit T message. (Note the use of ack
to distinguish this term from the acknowledge messages that were used in phase
2.} When the coordinator receives the ack T message from all sites. it adds the
record <complete T= to the log.

18.5.2.2 Handling of Failures

We now examine in detail how the 3PC protocol responds to various types of
failures,

s Failure of a participating site. I the coordinator C; detects that a site has
failed, the actions that it takes are similar to the actions taken in 2PC. I the
site fails before responding with a ready T message to C,, it is assumed to
have responded with an abort 7 message, Otherwise, the rest of the commit
protocol is executed in the normal fashion, ignoring the failure of the site.

When a participating site §; recovers from a failure, it must cxamine
its log to determine the fate of those transactions hat were in the midsl
of execution when the failure occurred, Let T be one such transaction. We
consider each of the possible cases:

o The log contains a <commit 7= record. In this case, the sile executes
redo(T).

= The log contains an <abort T= record. In this case, the site executes
undo{ 7).

o The log contains a <ready 7> record, but no <abort 7= ur < precommil
T= record. In this case, the site attempts to consult O to determine the
fate of T. If C; responds with a message that T aborted, the site execules
undo(T). If C; responds with a message precommit T, the site {as in
phase 2) records this information in its log. and resumes the protocol by
sending an acknowledge T message to the coordinator. 1F ¢ responds
with a message that T committed, the site executes redo(T}. In the event
that C; fails to respond within a prespecified interval. the site exccutes o
coordinator failure protocol (see next list entry).

6l Distributed Databasces Chapter 18

o The log contains a < precommit T record, but no <abort T= or <commit
T'= record. As before, the site consults C;. If C; responds that T aborted
or committed, the site execotes undo(T} or redo(T}, respectively. If O re-
sponds that T is stll in the precommit state. the site resumes the protocol
ar this point. If C fails to respond within a prescribed interval, the site
execules the coordinator-failure protocol.

+ Failure of the coordinator. When a participating site fails to receive a re-
sponse from the coordinator. for whatever reason. it executes the coordinator-
failure protocol. This protocol results in the selection of a new coordinator,
When the failed coordinator recovers, it does so in the role of a participating
site. It no longer acts as coordinator; rather, it must determine the decision
that has been reached by the new coordinator.

18.5.2.3 Coordinator-Failure Protocol

The coordinator-failure protocol is triggered by a participating site that fails to
receive a response from the coordinator within a prespecified imerval, Since we
assume no network partition, the only possible cause for this situation is the failure
of the coordinator.

1. The active participating sites select a new coordinator using an election
protocol (see Section 18.6).

2. The new coordinator, Ciew, sends a message to each participating site re-
questing the local status of T.

3. Each participating site, including Cpy. determines the local status of T:

o Committed. The log contains a =commit T record.

* Aborted. The log contains an <abort = record.

* Ready. The log contwins a <ready 7> record, bur contains no <abort
T= or =precommit 7> record.

¢ Precommitted. The log contains a <precommit 7= record, but containg
no <abort T= or <commit T= record.

» Not ready. The Tog contains neither a <ready = nor an <abort 7=
record.

Each participating site sends its local status to Cpew.

4. Depending on the responses received. Cpew decides either to commit or abart

T, or o restart the 3PC protocol:

& If at least one site has local status = committed, then Cyey commits T.

» If at least one site has local status = aborted, then ., aborts T, (Note
that it is not possible for some site 1o have local status = committed
while another has local status = aborted.)

o Il no site has local status = aborted. and no site has local status =
committed, but at least one site has local status = precommitted, then
Crew tesumes the 3PC protocol by sending new precommit messages.

o Otherwise, Cpey, aborts T,

=

i e

T

TR,

Section 18.5 Commit Protocols 611

The coordinator-failure protocol allows the new coordinator 1o obtain knowledge
about the state of the failed coordinator, O,

If any active site has a <commit T= in its log, then C; must have decided
to commit T. If an active site has <precommit T= in iis log, then C; must have
reached a preliminary decision to precommit T, and that means that all sites,
including any that may have failed, have reached ready states. It is therefore safe
o commit T. However, Cpew does not commit T unilaterally: doing so would
create the same blocking problem, if Cpew fails, as in 2PC. It is for this reason
that phase 3 is resumed by Chew.

Consider the case where no active sile has received a preconumil message
from ;. We must consider three possibilities:

1. C; had decided to commit T prior 1o C; failing.
2. C; had decided to abort T prior to C; failing.
3. C; had not et decided the fate of T,

We shall show that the first of these alternatives is not possible, and that, therefore.
it is safe to abort T.

Suppose that C; had decided to commit 7. Then, at least K siles must have
decided to precommit T and have sent acknowledge messages to Cy. Since € has
failed, and we assume that at most K sites fail while the 3PC protocol is executed
for a transaction, al least one of the K sites must be active. and hence at least one
active site would inform Cyey that it has received a precommit message. Thus,
if no active site had received a precommil message. a commit decision certainly
could not have been reached by C;. Therefore. it is indeed safe to abort T It is
possible that C; had not decided to abort T, so it may sull he possible to cunpmil
T. However, detecting that C; had not decided to abort T would require waiting
for €; {or for some other failed site that had received a precommit message) o
recover. Hence, the protocol aborts T if no active site has received a precommt
message. _

In the preceding discussion, il more than K sites could fail while the 3PC
protocol is executed for a transaction, it may not be possible Tor the uulr'-'ivin;;
participants to determine the action taken by C; prior o Faling: this sifuation
would force blocking to occur until C; recovers. Although a large value for K s
hest Trom this standpaint. it forces a coordinator 10 wait for more responses before
deeiding 1o commit—thus delaying routine (Tailure-free) PrOCEss . _I-'unlwr, il
fewer than K participants (in addition 1o the coordinatory are active. 1t may nol
be possible for the coordinator to complete the commit protocol. resulting m
blocking. Thus, the choice of a value for K is crucial. as it determines the degree
to which the protocol avoids blocking.

Cur assumption of no network partitions is crucial o our discussion. As
mentioned earlier, it is, in general, impossible to differentiate hetween network
failure and site failure. Thus, network partitioning could lead to the election of two
new coordinators (cach of which helieves that all sites in partitions other than s
own have failed). The decisions of the two coordinators may not agree, resulting
in the transaction being committed in some sites while being aboried in others.

P TR T L T T

612 Distributed Databases Chapter 18

18.5.3 Comparison of Protocols

The 2PC protocol is widely used, despite its potential for blocking, The probability
of blocking occurring in practice is usvally sufficiently low that the extra cost of
the 3PC protocol is not justified. The valnerability of 3PC to link Failures is another
practical issue. This disadvantage can be overcome by network-level protocols,
but that selution adds overhead.

We can streamline both protocols to reduce the number of messages sent,
and to reduce the number of times that records must be forced to stable storage.
The 3PC protocol can be extended to allow more than K failures, provided that
not more than K sites fail before the new coordinator makes a commit decision,
The bibliographic notes contain references to several such technigues.

18.6 Coordinator Selection

Several of the algorithms that we have presented require the use of a coordinator.
If the coordinator fails because of a failure of the site at which it resides, the
syslem can continue execution onky by restarting a new coordinator on another
site. Tt can do so by maintaining a backup to the coordinator that is ready to assume
responsibility if the coordinator fails. Or, it can choose the new coordinator after
the coordinator has failed. The algorithms that determine where a new copy of
the coordinator should be restarted are called efection algorithms,

18.6.1 Backup Coordinators

A hackup coordinator is a site that. in addition to other tasks. maintains enough
information locally to allow it to assume the role of coordinator with minimal
disruption to the distributed system, All messages directed (o the coordinator are
received by both the coordinator and its backup. The backup coordinator executes
the same algorithms and maintains the same internal state information (such as,
for a concurrency coordinator, the lock table) as does the actual coordinator. The
only difference in function between the coordinator and its backup is that the
backup does not take any action that affects other sites. Such actions are left to
the actual coordinator,

In the event that the backup coordinator detects the failure of the actual
coordinator, it assumes the role of coordinator. Since the backup has all the in-
formation available to it that the failed coordinator had, processing can continue
without interruplion.

The prime advantage to the backup approach is the ability to continue pro-
cessing immediately. If a backup were not ready to assume the coordinator’s re-
sponsibility, a newly appointed coordinator would have to seek information from
all sites in the system so that it could execute the coordination tasks. Frequently,
the only source of some of the requisite information is the failed coordinator, In
this case, it may be necessary 1o abort several (or all) active transactions, and to
restart them under the control of the new coordinator,

Thus, the backup-coordinator approach avoids a substantial amount of delay
while the distributed system recovers from a coordinator failure. The disadvantage

TR

R

Section 18.7 Concurrency Control 613

15 the overhead of duplicate execution of the coordinator’s tasks, Furthermore, a

coordinator and s backup need to communicate regulinly o ensure that their

aclivities are synchronized.

In short, the backup-coordinator approach incurs overhead during normal
processing (o allow fast recovery from a coordinator failure, In Section 18,62,
we consider a lower-overhead recovery scheme that requires somewhat more ellon
to recover from a failure.

18.6.2 Election Algorithms

Election algorithms require that a unigue identification number be associated with
each active site in the system. For case of notation. we shall assume that the
identification number of site S is i, Also, to simplify our discussion, we assume
that the coordinator always resides at the site with the largest identification number,
The goal of an election algorithm is to choose a site for the new coordinator,
Hence, when a coordinator fails, the algorithm must elect the active site that has
the largest identification number, This number must be semt to cach active site in
the systern. In addition, the algorithm must provide a mechanism by which o site
recovering from a crash can identily the current coordinator.

The various election algorithms usually differ in terms of the network con-
figuration. In this section, we present one of these algorithms: the fally algorithm,

Suppose that site 5 sends a request that is not answered by the coordinator
within a prespecified time interval T. In this situation, it is assumed that the
coordinator has failed, and 5; tries to elect itsell as the site Tor the new coordinalor.

Site §; sends an election message 1o every site that has o higher dentili-
cation number. Site §; then waits, lor a time interval 1. for an answer from any
one of these siles, If it receives no response within Lime .00 asswmes that all
sites with numbers greater than @ have failed, and it elects el as the sie for
the new coordinator and sends a message 1o inform all active sites with iden-
tification numbers lower than ¢ that it is the site ot which the new coordinator
resides.

IT 5; does receive an answer, it begins a time interval 77, 1o receive o message
informing it that a site with a higher idemtification number has been elected, (Some
other site s electing itsell” coordinator, and should report the resulls within time
7.0 I no message is received within 77, then the site with a higher number is
assumed to have failed. and site §; restarts the algorithm.

After a falled site recovers, it immedintely begins exccution ol the same
algorithm, If there are no active sites with higher numbers, the recovered site
forces all sites with lower numbers 1o let it become the coordinatw site, even if
there is a currently active coordinator with a lower number. I is Tor this reason
that the algorithm is termed the bfly algorithm,

18.7 Concurrency Control

In this section. we show how some of the concurrency-control schemes discussed
earlier can be modified such that they can be used in a distributed environment,

=

T R

614 Distributed Databases Chapter 18

We assume that each site participates in the execution of a commil protocol to
ensure global transaction atomicity,

18.7.1 Locking Protocols

The various locking protocols described in Chapter 14 can be used in a distributed
environment. The only change that needs to be incorporated is in the way the lock
manager is implemented, We present several possible schemes that are applicable
to an environment where data can be replicated in several sites, As in Chapter 14,
we shall assume the existence of the shared and exclusive lock modes.

18.7.1.1 Single-Lock-Manager Approach

The svstem maintains a single lock manager that resides in a single chosen site—
say. §. All lock and unlock requests are made at site §;. When a transaction needs
to lock a data item, it sends a lock request to §;. The lock manager determines
whether the lock can be granted immediately. If the lock can be granted. the lock
manager sends a message to that effect to the site at which the lock request was
initiated. Otherwise, the request is delayed until it can be granted, at which time a
message is sent 1o the site at which the lock request was initiated. The transaction
can read the data item from any one of the sites at which a replica of the data
item resides. In the case of a write, all the sites where a replica of the data item
resides must be involved in the writing.
The scheme has the following advantages:

e Simple implementation. This scheme requires two messages for handling
lock requests, and one message for handling unlock requests.

« Simple deadlock handling. Since all lock and unlock requests are made at
one site, the deadlock-handling algorithms discussed in Chapter 14 can be
applied directly to this environment.

The disadvantages of the scheme include the following:

e Bottleneck. The site &; becomes a bottleneck, since all requests must be
processed there.

+ Yulnerahility. If the site §; fails, the concurrency controller is lost, Either
processing must stop, or a recovery scheme must be used so that a new site
can take over lock management from ;. as described in Section 18.6.

18.7.1.2 Multiple Coordinators

A compromise between the advantages and disadvantages just noted can be
achieved through a mudtiple-coordinator approach, in which the lock-manager
tunction is distributed over several sites,

Each lock manager administers the lock and unlock requests for a subset
of the data items, Each lock manager resides in a different site. This approach
reduces the degree to which the coordinator js a bottleneck, but it complicates

T T —— o ———

Section 18.7 Concurrency Control 615

deadlock handling, since the lock and unlock requests are not made at a single
sile.

18.7.1.3 Majority Protocol

In a majority protocol, each site maintains a local lock manager whose function is
to administer the lock and unlock requests for those data items that are stored in
that site. When a transaction wishes to lock data item 0, which is not replicated
and resides at site S;, a message is sent (o the lock manager at site §; requesting
a lock {in a particular lock mode). If data itlem @ is locked in an incompatible
mode, then the request is delayed until it can be granted. Once it hax determined
that the lock request can be granted, the lock manager sends o message back
to the initiator indicating that it has granted the lock request, The scheme has
the advantage of simple implementation. It requires two message transfers Tor
handling lock requests, and one message transfer for handling unlock requests.
However, deadlock handling is more complex. Since the lock and unlock requests
are no longer made at a single site, the various deadlock-handling algorithms
discussed in Chapter 14 must be modified. as we shall discuss in Section 18.8,

If dhata item 2 is replicated in # different sites. then a lock-request message
must be sent to more than one-half of the » sites in which @ is stored. Each lock
manager determines whether the lock can be granted immediately (as far as it is
concerned). As before, the response is delayed until the request can be granted.
The transaction does not operate on 2 until it has successfully obtained a lock on
a majority of the replicas of .

This scheme deals with replicated data in a decentralized manner, thus avoid-
ing the drawbacks of central control. However, when there is replication of data,
it suffers from the following disadvantages:

¢ Implementation. The majority protocol is more complicated w0 implement
than are the previous schemes, It requires 2(n/2 + 1) messages for handling
lock requests, and {(n/2 4 1) messages for handling unlock requests.

¢ Deadlock handling. Since the lock and unlock requesis are not made at one
site, the deadlock-handling algorithms must be modified (sec Section 158},
In addition, it is possible for a deadlock to occur even if only one data ilem
is being locked. As an illustration. consider a system with four sites and full
replication. Suppose that transactions Tp and Ty wish (o lock data tem () in
exclusive mode. Transaction T} may succeed in locking € at sites §) and Sy,
while transaction T; may succeed in locking (0 at sites 5 and Sy, Each then.
must wait to acquire the third lock: hence. a deadlock has occurred. Lockily,
wie can avold such deadlocks with relative ease. by requiring all sites to reguest
locks on the replicas of a data item in the same predetermined order,

18.7.1.4 Biased Protocol

The biased protocal is based on a model similar to that of the mujority protocol.
The difference is that requests for shared locks are given more favorable treatment
than requests [or exclusive locks. The system maintains a lock manager at cach

]
|
?
|‘
|

s o oo o

ar

616 Distributed Databases Chapter 15

site. Each manager manages the locks for all the data items stored at that sile.
Shared and exclusive locks are handled differently.

» Shared locks. When a transaction needs to lock data item Q. it simply requests
a lock on (7 from the lock manager at one site that contains a replica of (.

o Exclusive locks. When a transaction needs to lock data item @, it requests a
lock on O from the lock manager at all sites that contain a replica of Q.

As before, the response to the request is delayed until it can be granted.

The biased scheme has the advantage of imposing less overhead on read
operations than does the majority protocol. This savings is especially significant
in common cases in which the frequency of read is much greater than the fre-
quency of write. However. the additional overhead on writes is a disadvantage.
Furthermore, the biased protocol shares the majority protocol’s disadvantage of
complexity in handling deadlock,

18.7.1.5 Primary Copy

In the case of data replication. we can choose one of the replicas as the primary
copy. Thus, for each data item . the primary copy of Q must reside in precisely
one site. which we call the primary site of Q.

When a transaction needs to lock a data item @, it requests a lock at the
primary site of (. As before, the response o the request is delayed until it can
be granted.

Thus, the primary copy enables concurrency control for replicated data to be
handled in a manner similar to that for unreplicated data, This similarity allows for
a simple implementation. However. if the primary site of { fails. (0 is inaccessible.
even though other sites containing a replica may be accessible.

18.7.2 Timestamping

The principal idea behind the timestamping scheme discussed in Section M'Z. is
that each transaction is given a nmigue limestamp that the system uses in deciding
the serialization order. Our first task. then, in generalizing the centralized scheme
to a distributed scheme is W develop a scheme for generating unigue tmestamps.
Then. vur previous protocols can be applied directly to the nonreplicated environ-
ment.

There are two primary methods for generating unique limestamps, one cen-
tralized and one distributed. Tn the centralized scheme. a single site is chosen for
distributing the timestamps. The site can use a logical counter or ils own local
clock for this purpose. .

In the distributed scheme. each site penerates a unigue local timestamp using
either a logical counter or the Jocal clock. We obtain the unique global timestamp
by concatenating the unique local timestamp with the site identifier. which also
must be unique (Figure 18.9). The order of concatenation is important! W::- use the
site identifier in the least significant position 1o ensure that the global tmestamps

T

TH T

Section 15.8 Deadiock Handling 617
local unique site
timesiamp identificr

g

olobil unigue
wlentifier

Figure 18.9 Generation of unique limestinps.

generated in one site are not always greater than those generated in another sile.
Compare this technique for generating unique timestamps with the one that we
presented earlier for generating unigue names,

We may still have a problem if one site generates local timestamps ot a rate
faster than that of the other sites. In such a case, the fast site’s logical counter
will be larger than that of other sites. Therefore. all timestamps generated by
the fast site will be larger than those generated by other sites. Whut we need
is a mechanism lo ensure that local timestamps are generated Tairly across the
system. We define within each site §; a logical clock (L)), which generates the
unigue local timestamp. The logical clock can be implemented as a counter that is
incremented after a new local timestamp is generated. To ensure that the various
logical clocks are synchronized, we require that a site §; advance its logical clock
whenever a transaction T; with timestamp <xy>= visits that site and v is grealer
than the current value of LC;, In this case. site §; advances its logical clock 1o
the value x + 1.

If the system clock is used to generate timestamps, then timestamps are
assigned fairly, provided that no site has a system clock that runs fast or slow.
Since clocks may not be perfectly accurate, a technique similar 1o that used [or
logical clocks must be used to ensure that no clock gets far ahead of or behind
another clock.

18.8 Deadlock Handling

The deadlock-prevention and deadlock-detection algorithms presented in Chapter
14 can be used in a distributed system, provided that modifications are made. For
cxample, we can use the tree protocol by defining a global tree among the sysiem
data items. Similarly, the timestamp-ordering approach could be directly applied
to a distributed environment, as we saw in Section 18.7.2.

Deadlock prevention may result in unnecessary waiting and rollback. Fur-’
thermore, certain deadlock-prevention techniques may require more sites 1o be
involved in the execution of a transaction than would otherwise be the case.

If we allow deadlocks to occur and rely on deadlock detection, the main
problem in a distributed system is deciding how to maintain the wait-for graph.
Common techniques for dealing with this issue require that cach site keep a loca!
wail-for graph. The nodes of the graph correspond to all the transactions (local as
well as nonlocal) that are currently either holding or requesting any of the items lo-
cal to that site. For example. Figure 18.10 depicts a system consisting of two sites,

T T T T T A R N] T T T

AT BT T

smCn ot o

el

B g e

st e v i L

1% Distributed Databases Chapter 18

;;@ \
)

site 5y site 5,

Figure 18.10 Local wait-for graphs.

each maintaining its local wait-for graph. Note that iransm;tiﬂn?'. T; and T3 appear
in both graphs, indicating that the transactions have requested items at both sites.

These local wait-for graphs are constructed in the usual manner for local
{ransactions and data items. When a transaction T; on site 5| needs a resource
in site 5. a request message is sent by T; to site 57, If the resource is hrgld by
transaction 7;. an edge T, — T; is inserted in the local wait-for graph of site 5s.

Clearly. if any local wait-for graph has a cycle. deadlock has occurred.
On the other hand. the fact that there are no cycles in any of the local wail-for
graphs does not mean that there are no deadlocks. To il]uslratc_tl1iﬁ |'.lI'1J1:I|L‘I'II],
we consider the local wait-for graphs of Figure 18.10. Each wait-for graph is
acvelic: nevertheless. a deadlock exists in the system because the wnion of the
Jocal wait-for graphs contains a cycle. This graph is shown in Fig}nrf:]5.1 l

Several common schemes for organizing the wait-for graph i a distributed
system are described in Sections 18.8.1 and 15.8.2.

18.8.1 Centralized Approach

In the ceniralized approach. a global wait-for graph (union of all the local graphs'!
is constructed and maintained in a single site: the deadlock-detection coordinator.
Since there is communication delay in the system. we must distinguish between
twao types of wait-for graphs, The real graph describes the real t-u_t ulnknnwn state
of the sysiem at any instance in time, as would be seen by an omniscient ub_ﬁcrver.
The constricted graph is an approximation generated by the controller during the
execution of the controller’s algorithm. Obviously. the constructed graph must be
generated such that, whenever the detection algorithm is invoked. the reported
results are correct in the sense that. if a deadlock exists. it is reported promptly.
and if the system reports a deadlock. it is indeed in a deadlock state.

@O
T

L

Figure 18.11 Global wait-for graph for Figure 15.10.

T

Section 14,8 Deadlock Handling 619

conpedinie

Figure 18.12 False cycles in the global wait-for graph.

The global wait-for graph can be constructed wnder these conditions:

o Whenever a new edge is inserted in or remaoved Trom one of the Jocal wal-lor
eraphs,

e Perindicallv, when a number of changes have occurred in o local wait-Tor
graph.

o Whenever the coordinator needs to invoke the cyele-detection algorithm,

When the deadlock-detection algorithm is invoked. the coordinator searches
its global graph. If a cyele is found. a victim is selected 1o be rolled hack, The
coordinater must notify all the sites that a particular transaction has been selected
as victim. The sites, in turn. roll back the victim transaction.

We note that this scheme may produce unnecessary rollbacks. as o result of
one of the following:

o False cveles may exist in the global wait-for graph, As an illustration, con-
sider a snapshot of the system represented by the local wait-lor grapls of
Figure 18.12. Suppose that T releases the resource that it is holding in site
8. tesulting in the deletion of the edge Ty — 7% in &), Transaction 75 then
requests a resource held by T at site 57, resulting in the addition of the edge
T; = Tiin 5. If the insert T; — 73 message from 5> arrives before thé
remove 7| — T> message from 5y, the coordinator may discover the false
cycle Ty — 15 — Ty after the insert (but before the remove). Deadlock
recovery may be initisted, although no deadlock has oceurred.

Note that the preceding example could not occur under two-phase lock-
ing. Indeed, the likelihood of false cyeles is usnally sufficiently low that False
cycles do not cause a serious performance problem.

o Unnecessary rollbacks may also result when a deadfock has indeed occurred
and a victim has been picked, while one of the transactions was ahored Tor

620 Distributed Databases Chapter 18

-
@ @& ©

it & site 55

Figure 18,13 Local wait-for graphs,

reasons unrelated to the deadlock. For example. suppose that site 5| in Fig-
ure 18,10 decides to abort T7, At the same time, the coordinator has discovered
a cycle, and has picked Ta as a victim. Both T3 and T3 are now rolled back,
although only T; needed to be rolled back.

18.8.2 Fully Distributed Approach

In the fully diseributed deadlock-detection algorithm, all controllers share equally
the responsibility for detecting deadlock. In this scheme, every site constructs a
wait-for graph that represents a part of the total graph, depending on the dynamic
behavior of the system, The idea is that, if a deadlock exists, a cycle will appear
in (at least) one of the partial graphs. We present one such algorithm that involves
construction of partial graphs in every sile.

Each site maintains its own local wait-for graph. A local wait-for graph
differs from the wait-for graph described previously in that we add one additional
node T, to the graph. T, represents transactions that are external to the local site,
Anarc T; — T exists in the graph if T; is waiting for a data item in another
site that is being held by ary transaction. Similarly, an arc T, — T; exists in
the graph if a transaction at another site is waiting 1o acquire a resource currently
being held by T; in this local site,

As an illustration. consider the two local wait-for graphs of Figure 18.10.
The addition of the node T, in both graphs results in the local wait-for graphs
shown in Figure 18.13.

If a local wait-for graph contains a cycle that does not involve node Tey. then
the system is in a deadlock state. However. the existence of a cycle involving Ty
implies that there is a pessibilite of a deadlock. To ascertain whether a deadlock
really exists, we must invoke a distributed deadlock detection algorithm.

Suppose that site S; contains in its local wait-for graph a cycle involving
node T.,. This cycle must be of the form

Ty = Ty — Iy, — = Tp, = T

which indicates that transaction Ty in §; is waiting to acquire a data item in
some other site — say, §;. On discovering this cycle, sile Si sends to site §; a
deadlock-detection message containing information about that cycle.

When site §; receives this deadlock-detection message, it updates its local
wait-for graph with the new information ihat it has obtained. Next, it searches

e

e s

i

Section 18.8 Deadiock Handling 621

site &y

Figure 18,14 Local wait-for graph,

the newly constructed wait-for graph for a cycle not involving Te.. 17 one exists,
a deadlock is found, and an appropriate recovery scheme is invoked. I a cycle
involving Tyy is discovered, then §; transmits a deadlock-detection message to
the appropriate site — say, S;. Site 8, in return, repeats the previous procedure.
Thus, after a finite number of rounds, if a deadlock exists. it 1s discovered: i no
deadlock exists, the deadlock-detection computation halts,

As an illustration, consider the local wait-for graphs of Figure 18,13, Sup-
pose that site 5 discovers the cycle

Ta = T = T3 = Ty

Since T3 is waiting to acquire a dala item in site 5;, a deadlock-detection message
describing that cycle is transmitted from site &) to site 52 When site §; receives
this message, it updates its local wait-for graph, obtaining the wait-for graph of
Figure 18.14. This graph contains the cycle

Ty - T3 = Ty — T

which does not include node T, Therefore. the system is in a deadlock state., and
an appropriate recovery scheme must be invoked.

Mote that the owtcome would be the same if site 5 discovered the cyele
first in its local wait-for graph, and sent the deadlock-detection message o site
51. In the worst case, both sites discover the cycle at aboul the same time, and
two deadlock-detection messages are sent: one by 5y to S;, and another by §; 1o
8. This unnecessary message transfer adds 1o overhead in updating the 1wo local
wait-for graphs and searching for cycles in both graphs.

To reduce message trallic, we assign o each transaction T; a unigue iden-
tifier. which we denote by {0 (T;). When site §; discovers that its local wait-lor
graph contains a cycle involving node Ty of the form

Tox = Ty = Ty = o = Ty = T
it will send a deadlock-detection message to another site only if
(DT, = 1D {Tg,)

Otherwise, site Sp continues ils normal execution, leaving the burden of initiating
the deadlock-detection algorithm o some other site.

622 Dhstributed Databases Chapter 15

Consider again the waii-for graphs maintained at sites §; and 5; in Fig-
ure 18.13. Suppose that

ID(M) <= 10Ty < ID(Ty) = ID(Ty

Assume that both sites discover these local cycles at about the same time, The
cvcle in site § is of the form

TE": T2 .'Il s T:'- = Tﬂ.

Since fD{T3) = [D(Ty), site 5§ does not send a deadlock-detection message

to site 5i.
The cycle in sile 5z 15 of the form

Ty = T = Ty = T = Ty

Since [0 Ty = FD(T5). site §; does send a deadlock-detection message to
site 5;. On receiving the message, §; updates its local wait-for graph. searches
for a cycle in the graph, and discovers that the system is in a deadlock state.

18.9 Muitidatabase Systems

In recent years, new database applications have been developed that require data
from a variety of preexisting databases located m a heterogeneous collection of
hardware and software environments. Manipulation of information located in a
heterogeneous database requires an additional software layer on top of existing
database systems. This software layer is called a multidatabase system. The lo-
cal database systems may employ different logical models and data-definition
and data-manipulation languages, and may differ in their concurrency-control and
transaction-management mechanisms, A multidutabase system creates the illusion
of logical database integration without requiring physical database integration.

Full integration of existing systems into a homogeneous distributed database—
the kind of distributed environment we have considered up to this point-is often
difficult or impossible:

1. Technical difficulties. The investment in application programs based on
existing database systemns may be huge, and the cost of converting these
applications may he prohibitive,

2. Organizational difficulties. Even if integration is technically possible, it
may not be politically possible, due to the existing database systems be-
longing to different corporations or organizations.

In the second case, it is important for a multidatabase system to allow the local
database systems to retain a high degree of artonomy over the local database and
transactions running against that data.

For these reasons, multidatabase systems offer significant advantages that
outweigh their overhead. In this section, we provide an overview of the challenges
faced in constructing a multidatabase environment from the standpoints of data
definition and transaction management,

Section 18.9 Multidatabase Systems 623

18.9.1 Unified View of Data

Each local DBMS may use a different data model. That is, some may employ
moedern data models, such as the relational model, whereas others may cmploy
older data models, such as the network model (see Appendix A) or the hierarchical
mode] {see Appendix B).

since the mulidatabase system is supposed to provide the illusion of a
single, integrated database system, a common data model must be used, The
natural choice is the relational model, with SQL as the common query fanguage.
Indeed, there are several systems available today that allow SQL querics 1o a
nonrelational DBMS,

Another difficulty is the provision of a common conceptual schemi. Each
local DBMS provides its own conceplual schema. The multidatabase sysiein must
integrate these separate schemas into one common schema, Schema inlegration is
a complicated task, mainly due to the semaniic heterogeneily,

Schema integration 15 not simply straightforward translation between data-
definition languages. The same attribule names may appear in differem local
DBMSs but with different meanings. The data types used in onc system may
not be supported by other systems, and translation between types may not be
simple. Even for identical data types, problems may arvise due to the physical rep-
resentation of data. One system may use ASCIL another EBCIIC, Floating-point
representations may differ. Integers may be represented in fg-emdian or finle-
endian form. At the semantic level, an integer value lor length may be inches
in one system and millimeters in another, thus creating an awkward sitoation in
which equality of integers is only an approximate notion {as is always the case
for floating-point numbers), The same name may appear in different Tinguages in
different systems. For example, a system based in the United Stales may reler to
the city “Cologne,” whereas one in Germany refers to ir as “Kiln"™,

All these seemingly minor distinctions must be properly recorded in the
common global conceptual schema. Translation functions must be provided, In-
dices must be annotated for system-dependent behavior (for example. the sort
order of nonalphanumeric characters is not the same in ASCII as in EBCDIC). As
we noted earlier, the allernative of converting each database 1o a common format
may not be feasible without obseleting existing application programs.

Under these circumstances, query processing is complex. Query aptimization
at the global level is difficult. The usual solution is to rely on only local-level
optimization.

18.9.2 Transaction Management

A multidalabase system supports two types of transactions:

1. Local transactions. These transactions are executed by each local DBMS,
outside of the multidatabase system’s control,

1. Global transactions. These transactions are executed under the multidata-
base system’s control,

624 Distributed Databases Chapter 18

The muliidatabase svstem is aware of the fact that local transactions may run at
the local sites, but it is not aware of what specific transactions are being execuled.
or of what data they may access.

Ensuring the local autonomy of each DBMS requires making no changes (o
the local DBEMS software. A DBMS at one sife thus is not able (o communicate
directly with a DBMS at any other sites to synchronize the execution of a global
transaction aclive at several sites,

Since the multidatabase system has no control over the execution of local
transactions, each local DBMS must use a concurrency-control scheme (for exam-
ple, two-phase locking or timestamping) to ensure that its schedule is serializable.
In addition. in case of locking, the local DBMS must be able to guard against the
possibility of local deadlocks.

The guarantee of local serializability is not sufficient to ensure global seri-
alizability. As an illustration, consider two global transactions Ty and 7. each of
which accesses and updaies two data items, A and B. located at sites §; and 57,
respectivelv. Suppose that the local schedules are scrializable. It is still possihle
to have a situation where, at site 5y, T2 Tollows Ty, whereas, at 5z, T [ollows T3,
resulting in a nonserializable global schedule. Indeed, even if there is no concur-
rency among global transactions (that is, a global transaction is submitied only
after the previous one commits or aborts), local serializability is not sufficient to
ensure global serializability (see Exercise 18.20).

There are many protocols for ensuring consistency despite concurrent exe-
cution of global and local transactions in multidatabase systems. Some are based
on imposing sufficient conditions to ensure global serializability. Others ensure
onlv a form of consistency weaker than serializability, but achieve this consis-
tency by less restrictive means. We consider one of the latter schemes: fwa-fevel
seriglizabifity. Section 2004 describes further approaches o consistency withoul
serializability: other approaches are cited in the bibliographic notes.

18.9.2.1 Two-Level Serializability

Two-level serializability (2L5R) ensures serializability at two levels of the system:

e Each local DEMS ensures local serializability among its local transaclions,
including those that are part of & global transaction.

o The multidatabase system ensures serializability among the global transactions
alone — ignoring the orderings induced by local transactions.

Each of these serializability levels is simple to enforce. Local systems already
offer guarantees of serializability: thus, the first requirement is easy to achieve.
The second requirement applies to only a projection of the global schedule in
which local transactions do not appear. Thus, the MBDS can ensure the second
requirement using standard concurrency-control techniques (the precise choice of
technique does not matter).

The two requirements of 2L5R are not sulficient to ensure global serializ-
ability. However, under the 2L5R-based approach. we adopt a requirement weaker

Section 18.9 Multidatabase Systems 625

than serializability, called strong correctness:

1. Preservation of consistency as specified by a set of consistency consiraints
2. Guarantee that the set of data items read by each transaction is consistent

It can be shown that certain restrictions on transaction behavior, combined with
2LSR, are sufficient to ensure strong correctness (although not necessarily o ensure
serializability). We list several of these restrictions.

In each of the protocols, we distinguish between loced and global data. Local
data items belong to a particular site and are under the sole control of that site,
Note that there cannot be any consistency constraints between local data items at
distinct sites. Global data items belong to the multidatabase system, and, though
they may be stored at a local site. are under the control of the multidatabase sysicm.

The global-read protocol allows global transactions o read, but not (o up-
date, local data items, while disallowing all access to global data by local transac-
tions. The global-read protocol ensures strong correctness if all the following hold:

1. Local transactions access only local data items.

2. Global transactions may access global data items, and may read local data
items (although they must not write local data items).

3. There are no consistency constrainis between local and global data items.

The focal-read protocol prants local transactions read access 1o global data,
but disallows all access to local data by global transactions. In this protocol, we
need to introduce the notion of a valwe dependency. A transaction has a value
dependency if the value that it writes to a data item at one site depends on a valoe
that it read for a data item on another site,

The local-read protocol ensures strong correctness if all the following hold:

—

Local transactions may access local data items, and may read global data
items stored at the site (although they must not write global data items).

2. Global transactions access only global data items.
3. No transaction may have a value dependency.

The global-read-write/local-read protocol is the most generous in terms of
data access of the protocols that we have considered. It allows global transactions
to read and write local data, and allows local transactions to read global data.
However, it imposes both the value-dependency condition of the local-read proio-
col, and the condition from the global-read protocol that there he no consistency
constraints between local and global data.

The global-read—writeflocal-read protocol ensures sirong correctness il all
of the following hold:

1. Local transactions may access local daia items. and may read global data
items stored at the site (although they must not write global data items),

626 Distributed Databases Chapter 18

2. Global transactions may access global data items as well as local data items
ithat is, they may read and write all data).

3. There are no consistency constraints between local and global data items.
4. No transaction may have a value dependency.

18.9.2.2 Ensoring Global Serializability

Early multidatabase systems restricted global transactions to be read only, They
thus avoided the possibility of global transactions introducing inconsistency to the
data, but were not sufficiently restrictive to ensure global serializability. We leave
it to the reader to demonstrate that it is indeed possible to get such global sched-
ules. and to develop a scheme o ensure global serializability (Exercise 18.21).

There are a number of general schemes to ensure global serializability in
an environment where update as well read-only transactions can execute, Several
of these schemes are based on the idea of a ticker, A special data item called a
ticket is created in each local DBMS, Every global transaction that accesses data
al a site must write the ticket at that site. This requirement ensures that global
transactions conflict directly at every site they visit. Furthermore. the global trans-
action manager can control the order in which global transactions are serialized,
by contrelling the order in which the tickets are accessed. References to such
schemes appear in the bibliographic notes.

If we want to ensure global serializability in an environment where no direct
local conflicts are generated in each sile. some assumptions must be made about
the schedules allowed by the local DBMSs. For example, if the local schedules are
such that the commit order and serialization order are always identical. we can
ensure sentahizability by controlling only the order in which transactions commit.

The problem with schemes that ensure global serializability is that they may
restrict concurrency unduly, They are particularly likely to do so because most
transactions submit SQL statements to the underlying DBMS. rather than submitting
idividual read, write, cominit. and abort steps. Although it is still possible to
ensure global serializability under this assumption. the level of concurrency may be
such that other schemes, such as the two-level serializability technique discussed
previously, arg attractive alternatives.

18.10 Summary

A distributed database system consists of a collection of siles, cach of which
maintains a local database system. Each sile is able to process local transactions:
those transactions that access data in only that single site. In addition, a sile may
participate in the execution of global transactions: those transactions that access
dala in several sites. The execution of global transactions requires communication
among the sites,

There are several reasons for building distributed database systems, including
sharing of data. reliability and availability, and speedup of query processing. How-
ever, along with these advantages come several disadvantages, including higher
software-develonment cost. ereater notential for hues, and incressed nroceccine

S R T iy

ot

i e e g

I

T——

Section 15.10 Summary 627

overhead. The primary disadvantage of distributed database systems is the added
complexity required 1o ensure proper coordination among the sites,

There are several issues involved in storing a velation in the distribuicd
database, including replication and fragmentation. 1045 essential that the system
minimize the degree 1o which a user needs to be aware of how a relation is stored,

A-distributed system may suffer from the swme types of failure that can
afflict a centralized system. There are, however. additional Failures with which we
need to deal in a distributed environment, including the failure of a site, the Failure
of a link. loss of a message, and network partition. Each of these problems needs
to be considered in the design of a distributed recovery scheme. If the system
is 1o be robust, therefore, it must detect any of these failures. reconfigure itsell
such that computation may continue, and recover when a processor or a link is
repaired.

If we are to ensure atomicity, all the sites in which a ransaction T’ exccuted
must agree on the final ouwtcome of the exccution. T either commits at all siles
or aborts at all sites. To ensure this property, the transaction coordinator of T
must execute a commit protocol. The most widely used commit protocol is the
two-phase commit protocol.

The two-phase commit protocol may lead to blocking: a situation in which
the fate of a transaction cannot be determined until a failed site {the coordinator)
recovers. To avoid blocking, we can use the three-phase commit profocal,

The various concurrency-control schemes that can be used in a centralized
system can be modified for use in a distributed environment. [n the case of Tocking
protocols, the only change that needs to be incorporated is in the way that the
lock manager is implemented. There is a variety of different approaches here. One
or more central coordinators may be used. I, instead, a distributed approach is
taken, replicated data must be treated specially. Protocols for handling replicated
data include the majority, biased, and primary-copy protocols. In the case of
timestamping and validation schemes. the only needed chunge is 1o develop a
mechanism for generating unique global timestamps. We can develop one by
either concatenating a local timestamp with the site identification or advancing
local clocks whenever a message arrives with a larger timestamp.

The primary method for dealing with deadlocks in a distributed environment
is deadlock detection. The main problem is deciding how to maintain the wait-for
graph. Different methods for organizing the wait-for graph include a centralized
approach, a hierarchical approach, and a Tully distributed approach.

Some of the distributed algorithms require the vse of o coordinator, 11 the
coordinator fails owing to the failure of the site at which it resides. the system can
continue execution only hy restarting a new copy of the comdinalor on soeme other
site, It can do so by maintaining a backup to the coordinator that is ready o assume
responsibility if the coordinator ails. Another approach is o choose the new
coordinator afier the coordimator has failed. The algorithms that detenmine where
a new copy of the coordinator should be restarted are called clection algorithms,

A multidatabase system provides an environment in which new database ap-
plications can access data from a variety of preexisting databases located in various
heterogeneous hardware and software enviromnents, The local datubase systems

4

018 Dhstribuied Databases Chapter 18

may employ different logical models and dara-definition and data-manipulation
languages, and may differ in their concurrency-control and transachion-manage-
ment mechanisms, A multidatabase system creates the illusion of logical database
integration, without requiring physical database integration.

Exercises

18.1. Discuss the relative advantages of centralized and distributed databases.

18.2. Explain how the following differ: fragmentation transparency, replication
transparency, and location transparency.

18.3. How might a distributed database designed for a local-area network differ
from one designed for a wide-area network?

18.4. When is it useful to have replication or fragmentation of data? Explain
VOur answer.

i8.5, Explain the notions of transparency and autonomy. Why are these notions
desirable from a human-factors standpoint?

18.6. Consider a relation that is fragmented horizontally by plani-number:

emplovee (name, address, salary, plani-number)

Assume that each fragment has two replicas: one stored at the New York
site, and one stored locally at the plant site. Describe a good processing
strategy for the following queries entered at the San Jose siie.
ia) Find all employees at the Boca plant,
(h) Find the average salary of all employees.
iy Find the highest-paid employee at each of the following sites: Toronto,
Edmonton, Yancouver, Montreal,
() Find the lowest-paid employee in the company.
18.7. Consider the relations
emplovee (name, address, salary, plant-nunthery
machine (machine-number, type, plant-nimber)

Assume that the emplovee relation is fragmented horizontally by plani-

nwmber, and that each fragment is stored locally al its corresponding plant

site. Assume that the maehine relation is stored in its entirety at the Armonk

site. Describe a good strategy for processing each of the following queries.

() Find all employees at the plant that contains machine number 1130

(b} Find all employees at plants that contain machines whose type is “mill-
ing machine.”

(¢} Find all machines at the Almaden plant,

(el) Find employee B machine.

For each of the strategies of Exercise 18.7, state how vour choice of a

strategy depends on:

(@) The site at which the query was entered

(b) The site at which the result is desired

18.8

Exercises 62%

18.9. Compute r rc 5 for the following relations:

r [ATB]C] s [CID]E]
1J72T3 3[4]5
415|6 3|6 |8
11214 213 |2
3132 14 |1
81917 L }2 |3
18.10. Is r; = r; mecessarily equal to r; = r;? Under what conditions does
ki ¥ = r; o hold?
18.11. To build a robust distributed system, you must know what kinds of failures
can oceur,

(@) List possible types of failure in a distributed system.
{# Which items in your list from part a are also applicable to a centralized
system?

18.12. Consider a failure that occurs during 2PC for a transaction. For each pos-
sible failure that you listed in Exercise 18.11a. explain how 2PC ensures
transaction atomicity despite the failure,

18.13. Repeat Exercise 18.12 for 3PC.

18.14. List those types of failure that 3PC cannot handle. Describe how failures
of these types could be handled by lower-level protocols.

18.15. Consider a distributed deadlock-detection algorithm in which the sites are
organized in a hierarchy. Each site checks for deadlocks local 1o the site,
and for global deadlocks that involve descendant sites in the hierarchy.
Give a detailed description of this algorithm. Argue thal the algorthin
detects all deadlocks. Compare the relative merits of this hicrarchical
scheme with those of the centralized scheme and of the fully distributed
scheme.

18.16. Consider a distributed system with two sites, A and B. Can site A distin-
guish among the following?

e 8 pgoes down.

o The link between A and B goes down.

w B is extremely overloaded and response time is TN} times longer than
normal.

What implications does your answer have for recovery in disinbuted sys-

tems?

18.17. If we apply a distributed version of the multiple-granularity protocol of
Chapter 14 to a distributed database, the site responsible for the root of
the DAG may become a bottlencck. Suppose we modify that protocol as
Ffollows:

e Only intention-mode locks are allowed on the root,
e All transactions are given all possible intention-mode locks on the root
automatically,

630 Dhstributed Databases Chapter 18

Show that these modifications alleviate this problem without allowing any
nonserializable schedules.

18.18. Discuss the advantages and disadvantages of the two methods that we
presented in Section 18.7.2 for generating globally unique timestamps.

18.19. Censider the following deadlock-detection algorithm. When transaction
Ti. at site 8|, requests a resource from T;. at site §3. a request mes-
sage with timestamp # is sent. The edge (T;, T;.) is inserted in the
local wait-for of §). The edge (T;. T;.n) is inserted in the local wait-
for graph of S only if T; has received the request message and can-
not immediately grant the requested resource. A request from T; to T;
in the same site is handled in the usual manner; no timestamps are as-
sociated with the edge (T;, T;). A central coordinator invokes the de-
tection algorithm by sending an initiating message to each site in the
system.

On receiving this message, a site sends its local wait-for graph to the
coordinator. Note that such a graph contains all the local information that
the site has about the state of the real graph. The wait-for graph reflects
an instantaneous state of the site, but it is not synchronized with respect
to any other sile.

When the controller has received a reply from each site, it constructs
a graph as follows:

The graph contains a vertex for every transaction in the system.
The graph has an edge (T;, T;) if anid only if
= There is an edge (T}, T;) in one of the wait-for graphs.
o Anedge (T, T;, n) (for some n} appears in more than one wait-for
graph.

Show that, if there is a cycle in the constructed graph, then the system is
in a deadlock state, and that, if there is no cycle in the constructed graph,
then the system was not in a deadlock state when the execution of the
algorithm began,

18.20. Consider a multidatabase svstem in which it is guaranteed that at most one
global transaction is active at any time, and every local site ensures local
seriglizability.

(@) Suggest ways in which the multidatabase svstem can ensure that there
is at most one active global transaction at any time.

{h) Show by example that it is possible for a nonserializable global sched-
ule to result despite the assumplions.

18,21 Consider a multidatabase system in which every local site ensures local
serializability, and all global transactions are read-only.
(@) Show by example that nonserializable executions may result in such a
systen.
{f) Show how you could use ticket scheme to ensure global serializa-
hility.

Bihliographic Notes 631

Bibliographic Notes

Computer networks are discussed in Tanenbaum [1996] and Halsall [1992], A
survey paper discussing major issues concerning distributed database systems has
been written by Rothnie and Goodman [1977]. Texthook discussions are offered
by Bray [1982]. Date [1983], Ceri and Pelagaiti [19584], and Ozsu and Valduries
[1991].

Distributed query processing is discussed in Wong [1%77], Epstein et al.
[1978]. Hevner and Yao [1979], Epstein and Stoncbraker [1980], Apers et al,
[1983], Ceri and Pelagatti [1983], and Wong [1983]. Selinger and Adiba | 1980].
and Daniels et al. [1982], discuss the approach to distributed query processing
taken by R* (a distributed version of System R). Mackert and Lohman [1986]
provide a performance evaluation of query-processing algorithms in R®. The per-
formance tesults also serve o validate the cost model vsed in the B¥ query
optimizer. Theoretical results conceming semijoins are presented by Bernstein
and Chiu [1981]. Chiu and Ho [1980]. Bernstein and Goodman [1981h], and
Kambayashi et al. [1982].

The implementation of the transaction concept in a distributed database are
presented by Gray [1981], Traiger et al. [1982], Spector and Schwarz | [983],
and Eppinger et al. [1991], The 2PC protocol was developed by Lampson and
Sturgis [1976], and by Gray [1978]. The three-phase commit protocol is from
Skeen [1981]. Mohan and Lindsay [1983] discuss two modified versions of 2PC,
called presime commnit and presume abort. that reduce the overhead of 2PC by
defining default assumptions regarding the fate of transactions,

The bully algorithm presented in Section TR6.2 s from Garcia-Moli
[1982]. Distributed clock synchronization is discussed in Lamport [1978],

Papers covering distributed concurrency control are offered by Rosenkraniz
et al. [1978]. Bernstein et ab, [1978, 1980a], Menasce et al. [1980], Bernstein and
Goodman [1980a. 1981a, 1982], and Garcia-Moling and Wiederhold [1982], The
transaction manager of B* is described in Mohan et al. [19386].

Concurrency control for replicated data that is based on the concept of
voting is presented by Gifford [1979] and Thomas [1979, Validation techniques
for distributed concurrency-control schemes are described by Schlageter [1981],
Ceri and Owicki [1983], and Bassiouni [1988]. Discussions concerning semantic-
based transaction-management technigues are offered by Garcia-Molina [1983],
and by Kumar and Stonebraker [1988], Recently, the problem of concurrent update
to replicated data has re-emerged as an important research issue in the context of
data warehouses. Problems in this environment are discussed in Gray et al. [1996].

Attar et al. [1984] discuss the use of transactions in distributed recovery
in database svstems with replicated data. A survey of technigques for recovery in
distributed database systems is presented by Kohler [1981].

Distributed deadlock-detection algorithms are presented by Gray [1978],
Roscnkrantz et al. [1978]. Menasce and Muntz | 1979]. Gligor and Shattuck | 1980],
Chandy and Misra [1982], and Chandy et al. [1983]. Knapp [1987] surveys the
distributed deadlock-detection literature. The algorithm presented in Section 18.8.2
comes from Obermark [1982]. Exercise 15,09 is from Stuarl et al. [1984].

632 Distributed Databases Chapter 18

Transaction processing in multidatabase systems is discussed in Breitbart
[1990], Breitbart ef al. [1991. 1992], Soparkar et al. [1991]. and Mehroira et al.
[1992a, 1992Dh]. The ticket scheme is presented in Georgakopoulos et al. [1994].
2L5R is introduced in Mehrotra et al, [1991]. An earlier approach, called gueasi-
serializability, is presented in Du and Elmagarmid [1989].

CHAPTER
19

SPECIAL TOPICS

In eatlier chapters, we covered the basic principles of database design and imple-
mentation. In this and subsequent chapters, we briefly cover a number of special
topics in the area of database systems. In Chapter 200, we discuss advanced transac-
tion processing schemes. In Chapter 21, we consider new applications of databise
systems, and the challenges that they pose 1o database system design. The biblio-
graphic notes at the end of these chapters provide references for cach topic: they
can serve as a starting point for detailed study.

19.1 Security and Integrity

The data stored in the database need to be protected from unauthorized access.
malicious destruction or alteration, and accidental introduction of inconsistency. In
Chapter 6, we saw how integrity constraints can be specified. In Chapter 7, we saw
how databases can be designed to facilitate checking of integrily constraints. I
Chapters 13, 14, and 15, we saw how to preserve integrily despite Tailures, vrashes,
and potential anomalies from concurrent processing. In Chapters 17 and 18, we
saw how to preserve integrity in parallel and distributed systems. Until now, we
have considered only how to prevent the accidental loss of data integrity. In this
section, we examine the ways in which data may be misused or intentionally made
inconsistent. We then present mechanisms 1o guard against such occurrences,

19.1.1 Security and Integrity Violations

Misuse of the database can be categorized as being either intentional (malicious)
or accidental. Accidental loss of data consistency may result from

» Crashes during transaction processing

	scan-1
	scan-2
	scan-3

