C-Store: A Column-oriented DBM S

Mike Stonebrakét Daniel J. Abadi Adam Batkirfi, Xuedong Cheh Mitch Cherniack,
Miguel Ferreird Edmond Lati Amerson Lif, Sam Madden Elizabeth O'Nei,
Pat O'Neil, Alex Rasifi, Nga Traf, Stan Zdonik

"MIT CSAIL *Brandeis University TUMass Boston *Brown University
Cambridge, MA Waltham, MA Boston, MA Providence, RI

in which periodically a bulk load of new data is
Abstract performed, followed by a relatively long perioda-hoc

This paper presents the design of a read-optimized dueries. Other read-mostly applications includetamsr
relational DBMS that contrasts sharply with most relationship management (CRM) systems, electronic
current systems, which are write-optimized. library ca_rd catalogs, and other ad-ho_c inquirytesys. In
Among the many differences in its design are: such environments, e_olumn storearchnectl_Jre, in which
storage of data by column rather than by row, the yalues for each single column_(pr attrlbu@) s_t.atpred
careful coding and packing of objects into storage Ccontiguously, should be more efficient. This eéiwcy
including main memory during query processing, has been.demonstrated in the warehouse marketplace
storing an overlapping collection of column- Products like Sybase IQ [FREN95, SYBAO4], Addamark

oriented projections, rather than the current tfre ~ [ADDAOA4], and KDB [KDBO04]. In this paper, we discuss
tables and indexes, a non-traditional the design of a column store called C-Store thatides a

implementation of transactions which includes high number of novel features relative to existing syste

availability and snapshot isolation for read-only With a column store architecture, a DBMS need only
transactions, and the extensive use of bitmap read the values of columns required for processigyen
indexes to complement B-tree structures. query, and can avoid bringing into memory irreledvan

We present preliminary performance data on a attributes. In warehouse environments where typica

subset of TPC-H and show that the system we are dueries _involve aggregates performed over largebeusn
building, C-Store, is substantially faster than ©f data items, a column store has a sizeable pesioce

popular commercial products. Hence, the advantage. However, there are several other major
architecture looks very encouraging. distinctions that can be drawn between an architedhat
is read-optimized and one that is write-optimized.
1. Introduction Current relational DBMSs were designed to pad

attributes to byte or word boundaries and to stataes in
their native data format. It was thought that @swoo
expensive to shift data values onto byte or word
boundaries in main memory for processing. However,
CPUs are getting faster at a much greater rate dirsn
andwidth is increasing. Hence, it makes senseatie
PU cycles, which are abundant, for disk bandwidth,
which is not. This tradeoff appears especiallyfitable in
a read-mostly environment.
There are two ways a column store can use CPUgycle
to save disk bandwidth. First, it can code dataneints
into a more compact form. For example, if onet@gisg

Most major DBMS vendors implement record-oriented
storage systems, where the attributes of a reaortuple)
are placed contiguously in storage. With thosy store
architecture, a single disk write suffices to pafihof the
fields of a single record out to disk. Hence, high
performance writes are achieved, and we call a DBM
with a row store architecture \&rite-optimizedsystem.
These are especially effective on OLTP-style appibns.

In contrast, systems oriented toward ad-hoc qugryin
of large amounts of data should te&ad-optimized Data
warehouses represent one class of read-optimizgdrey

Permission to copy without fee all or part of tmmterial is granted an attribute that is a CUSt,Omers_’ Sta'Fe of resiéetien US
provided that the copies are not made or distributier direct ~ States can be coded into six bits, whereas the two-
commercial advantage, the VLDB copyright notice #mel title of the ~ character abbreviation requires 16 bits and a bkria
publication and its date appear, and notice is giteat copying is by |ength character string for the name of the statpires

permission of the Very Large Data Base Endowme&ntcopy otherwise, .
or to republish, requires a fee and/or special pission from the many more. Second, one shoudeénsepackvalues in

Endowment storage. For example, in a column store it is
Proceedings of the 31% VL DB Conference, straightforward to pack N values, each K bits lontp N
Trondheim, Norway, 2005 * K bits. The coding and compressibility advantagé a

553

column store over a row store have been previouslHowever, there is no requirement that one storetiphel
pointed out in [FREN95]. Of course, it is alsoidasle to copies in the exact same way. C-Store allows realin
have the DBMS query executor operate on the corspdes objects to be stored in different sort orders pmimg
representation whenever possible to avoid the obfst higher retrieval performance in addition to high
decompression, at least until values need to bgepted availability. In general, storing overlapping pcjions
to an application. further improves performance, as long as redundascy
Commercial relational DBMSs store complete tuplescrafted so that all data can be accessed evereibbthe
of tabular data along with auxiliary B-tree indexes G sites fails. We call a system that tolerateaiufesk-
attributes in the table. Such indexes can phoienary, safe C-Store will be configurable to support a ramde
whereby the rows of the table are stored in asectos values of K.
sorted order on the specified attribute as possibte It is clearly essential to perform transactionatiaies,
secondary in which case no attempt is made to keep the@ven in a read-mostly environment. Warehouses bhave
underlying records in order on the indexed attebuSuch need to perform on-line updates to correct erréxs.well,
indexes are effective in an OLTP write-optimizedthere is an increasing push toward real-time warsbs,
environment but do not perform well in a read-ojtied where the delay to data visibility shrinks towaet@ The
world. In the latter case, other data structures a ultimate desire is on-line update to data warehause
advantageous, including bit map indexes [ONEI97dss Obviously, in read-mostly worlds like CRM, one need
table indexes [ORACO04], and materialized viewsperform general on-line updates.
[CERI91]. In a read-optimized DBMS one can explore There is a tension between providing updates and
storing data using only these read-optimized sirest optimizing data structures for reading. For examjph
and not support write-optimized ones at all. KDB and Addamark, columns of data are maintained in
Hence, C-Store physically stores a collection ofentry sequence order. This allows efficient insertof
columns, each sorted on some attribute(s). Grafps new data items, either in batch or transactionaltythe
columns sorted on the same attribute are refemedst end of the column. However, the cost is a less-tha
“projections”; the same column may exist in mukipl optimal retrieval structure, because most querykigads
projections, possibly sorted on a different attiiin each. will run faster with the data in some other order.
We expect that our aggressive compression techsiquédowever, storing columns in non-entry sequence will
will allow us to support many column sort-ordergheut make insertions very difficult and expensive.

an explosion in space. The existence of multigd-s C-Store approaches this dilemma from a fresh
orders opens opportunities for optimization. perspective. Specifically, we combine in a singkce of
Clearly, collections of off-the-shelf “blade” or rig” system software, both a read-optimized column sioick

computers will be the cheapest hardware architedtor an update/insert-oriented writeable store, conukebte a
computing and storage intensive applications sush auple moveras noted in Figure.l At the top level, there
DBMSs [DEWI92]. Hence, any new DBMS architectureis a small Writeable Store (WS) component, which is
should assume a grid environment in which there@re architected to support high performance inserts and
nodes (computers), each with private disk and pgiva updates. There is also a much larger componeletdcidie
memory. We propose to horizontally partition dateoas Read-optimized Store (RS), which is capable of
the disks of the various nodes in a “shared nothingsupporting very large amounts of information. RS the
architecture [STON86]. Grid computers in the nedufe name implies, is optimized for read and supporty en
may have tens to hundreds of nodes, and any neensys very restricted form of insert, namely the batchveraent
should be architected for grids of this size. @dirse, the of records from WS to RS, a task that is perforiaedhe
nodes of a grid computer may be physically co-ledair tuple mover of Figure 1.
divided into clusters of co-located nodes. Sinatablase
administrators are hard pressed to optimize a grid
environment, it is essential to allocate data $tmes to Writeable Store (WS)
grid nodes automatically. In addition, intra-query
parallelism is facilitated by horizontal partitioig of
stored data structures, and we follow the lead am@®a Tuple Move
[DEWIQQ] in implementing this construct.
Many warehouse systems (e.g. Walmart [WESTO0Q]) A 4
maintain two copies of their data because the odbst Read-optimized Store (RS)
recovery via DBMS log processing on a very large
(terabyte) data set is prohibitive. This optiorrésdered))
increasingly attractive by the declining cost pgtebof Figure 1. Architecture of C-Store

disks. A grid environment allows one to store suchof course, queries must access data in both storage

replicas on different processing nodes, therebypsting systems. Inserts are sent to WS, while deletes bis
a Tandem-style highly-available system [TANDB89].

554

marked in RS for later purging by the tuple mover. The rest of this paper is organized as follows |

Updates are implemented as an insert and a delete. Section 2 we present the data model implemente@-by

order to support a high-speed tuple mover, we use &tore. We explore in Section 3 the design of ti® R

variant of the LSM-tree concept [ONEI96], which portion of C-Store, followed in Section 4 by the WS

supports anerge outprocess that moves tuples from WS component. In Section 5 we consider the allocatib@-

to RS in bulk by an efficient method of merging emeld Store data structures to nodes in a grid, followegda

WS data objects with large RS blocks, resultingiinew presentation of C-Store updates and transactions in

copy of RS that is installed when the operation gletes. Section 6. Section 7 treats the tuple mover compoog
The architecture of Figure 1 must support transasti C-Store, and Section 8 presents the query optinaner

in an environment of many large ad-hoc queries,llsma executor. In Section 9 we present a comparisoic-of

update transactions, and perhaps continuous insertStore performance to that achieved by both a popula

Obviously, blindly supporting dynamic locking wiksult commercial row store and a popular commercial colum

in substantial read-write conflict and performancestore. On TPC-H style queries, C-Store is sigaifity

degradation due to blocking and deadlocks. faster than either alternate system. However, istnfue

Instead, we expect read-only queries to be run imoted that the performance comparison is not fully
historical mode. In this mode, the query selects acompleted; we have not fully integrated the WS tupde
timestamp, T, less than the one of the most regcentimover, whose overhead may be significant. Finally,
committed transactions, and the query is semalhtical Sections 10 and 11 discuss related previous wodkoain
guaranteed to produce the correct answer as ofptiint conclusions.

in history. Providing suclsnapshot isolatiofBERE95]

requires C-Store to timestamp data elements as dahey 2. DataModel

inserted and to have careful programming of thdime C-Store supports the standard relatiologfical data

system to ignore elements with timestamps later tha mode] where a database consists of a collection of dame
Lastly, most commercial optimizers and executoes artaples, each with a named collection of attributes

_row-oriented, obviously built for the prevalent retores (columns). As in most relational systems, attrisuger

in the marketplace. Since both RS and WS are avlum colections of attributes) in C-Store tables camnfoa

oriented, it makes sense to build a column-orienteqnique primary keyor be aforeign keythat references a

optimizer and executor. As will be seen, this wafe primary key in another table. The C-Store quenglage

looks nothing like the traditional designs prevaleday. is assumed to be SQL, with standard SQL semamiats

In this paper, we sketch the design of our updetablin c-Store is not physically stored using this t@gidata
column store, C-Store, that can simultaneously @ehi model. Whereas most row stores implement physical
very high performance on warehouse-style querieb angples directly and then add various indexes toedpe
achieve reasonable speed on OLTP-style transactiGRs gccess, C-Store implements onlyprojections

Store is a column-orienteq DBMS that is architected Specifically, a C-Store projection @choredon a given

reduce the number of disk accesses per query. Thggical table, T, and contains one or more attebifrom

innovative features of C-Store include: this table. In addition, a projection can contany

1. A hybrid architecture with a WS component optimizednumber of other attributes from other tables, agylas
for frequent insert and update and an RS componetthere is a sequence of nile(foreign key) relationships
optimized for query performance. from the anchor table to the table containing aribaite.

2. Redundant storage of elements of a table in several To form a projection, we project the attributes of
overlapping projections in different orders, sottha interest from T, retaining any duplicate rows, gedform
query can be solved using the most advantageoube appropriate sequence of value-based foreigrjeiag
projection. to obtain the attributes from the non-anchor taf)le(

3. Heavily compressed columns using one of severaHence, a projection has the same number of rowitsas
coding schemes. anchor table. Of course, much more elaborate giojes

4. A column-oriented optimizer and executor, with could be allowed, but we believe this simple schevile
different primitives than in a row-oriented system. meet our needs while ensuring high performance. We

5. High availability and improved performance throughnote that we use the term projection slightly défaly
K-safety using a sufficient number of overlappingthan is common practice, as we do not store the bas

projections. table(s) from which the projection is derived.
6. The use of snapshot isolation to avoid 2PC andihgck Name Age Dept Salary

for queries.

) . , Bob 25 Math 10K

It should be emphasized that while many of thegécso Bill 27 EECS 50K
have parallels with things that have been studied i Jill 24 Biology 80K
isolation in the past, it is their combination inreal
system that make C-Store interesting and unique. Table 1: Sample EMP data

555

We denote théh projection over tabléasti, followed indexes If T1 and T2 are two projections that cover a
by the names of the fields in the projection. iAtites tableT, a join index from the M segments Td to the N
from other tables are prepended with the name ef thsegments iff2 is logically a collection of M tables, one
logical table they come from. In this section, eemsider per segment, S, dfl consisting of rows of the form:
an example for the standard EMP(name, age, saapf) (s: SIDin
and DEPT(dname, floor) relations. Sample EMP data i
shown in Table 1. One possible set of projectiongiiese Here, an entry in the join index for a given tuphea

T2, k: Storage Key in Segment s)

tables could be as shown in Example 1. segment off 1 contains the segment ID and storage key of
EMP1 (name, age) the corresponding (joining) tuple iM2. Since all join
EMP2 (dept, age, DEPT.floor) indexes are between projections anchored at thee sam

EMP3 (name, salary)

DEPT1(dname, floor) table, this is always a one-to-one mapping. Aerahtive

view of a join index is that it take$l, sorted in some
Example 1. Possible projectionsfor EMP and DEPT order O, and logically resorts it into the orderp©T2.

In order to reconstruck from the segments 4fl, ...,
Tk it must be possible to find @ath through a set of join
indices that maps each attributeTointo some sort order
O'. A path is a collection of join indexes origimaiwith
a sort order specified by some projectidn, that passes
through zero or more intermediate join indices ands
with a projection sorted in order O For example, to be
able to reconstruct the EMP table from projectioms
Example 2, we need at least two join indices. & w
chooseage as a common sort order, we could build two

Tuples in a projection are stored column-wise. lenc
if there are K attributes in a projection, therdl Wwe K
data structures, each storing a single column, exch
which is sorted on the sarsert key The sort key can be
any column or columns in the projection. Tuplesain
projection are sorted on the key(s) in left to tigider.

We indicate the sort order of a projection by ajgjien
the sort key to the projection separated by acadrbar. A
possible ordering for the above projections woidd b

EMP1(name, age| age) indices that map EMP2 and EMP3 to the ordering of
EMP2(dept, age, DEPT floor| DEPT floor) EMP1. Alternatively, we could create a join indehat
EMP3(name, salary| salary) maps EMP2 to EMP3 and one that maps EMP3 to EMP1.

DEPT1(dname, floor]| floor . . R
(!) Figure 2 shows a simple example of a join index thaps

Example2: Projectionsin Example 1 with sort orders EMP3to EMP1 assuming a single segment (SID = 1) for

Lastly, every projection iBorizontally partitionednto each projection. For dexamr[])Ie, the (fjirst enz%;EMP?a
1 or moresegmentswhich are given assegment identifier (Bob, 10K) , correspon s_tc_) t. e second entnEwPl, an
Sid, where Sid > .0 C-Store supports only value-based thus the first entry of the join index has storagg 2.

partitioningon the sort key of a projectiorHence, each N,mEMPlge

segment of a given projection is associated witkeg it Jos _

rangeof the sort key for the projection. Moreover, Hat oo ;ﬁam '”dzy

of all key rangegpartitionsthe key space. 1 B
Clearly, to answer any SQL query in C-Store, there P 1 ?

must be aovering sebf projections for every table in the Name | Salary

database such that every column in every tabl®igd in Bob 10K

at least one projection. However, C-Store musb &le ST

able to reconstruct complete rows of tables frora th
collection of stored segments. To do this, it widled to
join segments from different projections, which we
accomplish usingtorage keyandjoin indexes

Figure2: A join index from EMP3to EM P1.
In practice, we expect to store each column in sdve
projections, thereby allowing us to maintain refaly few
Storage Keys. Each segment associates every datdo™" mo_llces. This is bepau_sg join indexes arey ver
expensive to store and maintain in the presencpadétes,

value of every column with a storage k&K. Values since each modification to a projection requiresrgyoin
from different columns in the same segment with: proJ q 2y

. . index that points into or out of it to be updatedazll.
matching storage keys belong to the same logical ro s ; .
. The segments of the projections in a databaselresid t
We refer to a row of a segment using the teecord or

tuple Storage kevs aneumbered 1. 2. 3 in RS and are connecting join indexes must be allocated to théoua
P rag Y P , nodes in a C-Store system. The C-Store administcaio
not physically stored, but are inferred from a &l

physical position in the column (see Secti®rbelow.) optionally specify that the tables in a databasstrbeK-

Storage keys are physically present in WS and argafe In this case, the loss of K nodes in the gritl still

represented as integers, larger than the largésten allow all tables in a database to be reconstru¢ied,
storage key for any segment in RS. despite the K failed sites, there must exist a Bogeset of

Join Indices. To reconstruct all of the records in a projections and a set of join indices that map dme

. . o - common sort order.) When a failure occurs, C-Store
table T from its various projections, C-Store ugeis simply continues with K-1 safety until the failurie

556

repaired and the node is brought back up to sp@éelare
currently working on fast algorithms to accomplibls.

Thus, the C-Store physical DBMS design problenois t
determine the collection of projections, segmesisit
keys, and join indices to create for the collectdtogical
tables in a database. This physical schema must Kiv
safety as well as the best overall performanceafgiven
training workload provided by the C-Store administrator,
subject to requiring no more than a gisspace budgeB.
Additionally, C-Store can be instructed to keepg of all
gueries to be used periodically as the trainingkéoad.
Because there are not enough skilled DBAs to garatp
we are writing an automatic schema design toomil&i
issues are addressed in [PAPAO4]

(2,000010010). Since each bitmap is sparse, ituis r
length encoded to save space. To efficiently fimali-th
value of a type 2-encoded column, we include ‘%tiffs
indexes”: B-trees that map positions in a columrthe
values contained in that column.

Type 3: Self-order, many distinct valueshe idea for
this scheme is to represent every value in thenaolas a
delta from the previous value in the column. Thigs,
example, a column consisting of values 1,4,7,7,8/4@ld
be represented by the sequence: 1,3,3,0,1,4, bathhe
first entry in the sequence is the first valueha tolumn,
and every subsequent entry is a delta from theiquev
value. Type-3 encoding is a block-oriented formttoé
compression scheme, such that the first entry afryev

We now turn to the representation of projectionsplock is a value in the column and its associatedage

segments, storage keys, and join indexes in C-Store
3. RS

RS is a read-optimized column store.
segment of any projection is broken into its cdostit
columns, and each column is stored in order ofsibw
key for the projection. The storage key for eaghie in
RS is the ordinal number of the record in the segme
This storage key is not stored but calculated aslee.

3.1 Encoding Schemes

Columns in the RS are compressed using one of
encodings. The encoding chosen for a column depend

its ordering (i.e., is the column ordered by values in that

column (self-order) or by corresponding values @me
other column in the same projection (foreign-ordand
the proportion oflistinct valuedt contains. We describe
these encodings below.

Type 1: Self-order, few distinct values A column
encoded using Type 1 encoding is represented by
sequence of triplegy, f, n)such thaw is a value stored in
the column.f is the position in the column whevefirst
appears, anah is the number of times appears in the
column.
positions 12-18, this is captured by the entry, 12, 7).
For columns that are self-ordered, this requires tiple
for each distinct value in the column. To suppmarch

For example, if a group of 4's appears in

key, and every subsequent value is a delta from the

previous value. This scheme is reminiscent of wag
VSAM codes B-tree index keys [VSAMO4]. Again, a

Hence anglensepack B-tree tree at the block-level can bel tse

index these coded objects.

Type 4: Foreign-order, many distinct valudéthere are a
large number of values, then it probably makes es¢as
leave the values unencoded.
investigating possible compression techniques fos t
situation. A densepack B-tree can still be used thar
indexing.

3.2 Join Indexes

Join indexes must be used to connect the various

projections anchored at the same table. As nadite a

join index is a collection of (sid, storage_key)rpa Each

of these two fields can be stored as normal columns

There are physical database design
concerning where to store join indexes, and we es$dr
these in the next section. In addition, join ine@xmust
iategrate RS and WS; hence, we revisit their desighe
next section as well.

4. WS

In order to avoid writing two optimizers, WS is @ala
column store and implements the identical physical

DBMS design as RS. Hence, the same projections and
join indexes are present in WS. However, the g®ra

queries over values in such columns, Type l-encodegpresentation is drastically different because WISt be

columns have clustered B-tree indexes over theweva
fields. Since there are no online updates to R&.can
densepackhe index leaving no empty space.
with large disk blocks (e.g., 64-128K), the heiglfitthis
index can be kept small (e.g., 2 or less).

Type 2: Foreign-order, few distinct valuesA column
encoded using Type 2 encoding is represented by
sequence of tuplegy, b) such thatv is a value stored in
the column and is a bitmap indicating the positions in
which the value is stored. For example, givenlaroa of

efficiently updatable transactionally.
The storage key, SK, for each record is explicitly

Furtherstored in each WS segment. A unique SK is givesatth

insert of a logical tuple in a table T. The exemuengine
must ensure that this SK is recorded in each ptiojec
that stores data for the logical tuple. This Sknsinteger,
[Arger than the number of records in the largegmsat in
the database.

For simplicity and scalability, WS is horizontally
partitioned in the same way as RS. Hence, theaelis

integers 0,0,1,1,2,1,0,2,1, we can Type 2-encotedd mapping between RS segments and WS segmentsd,A (si

three pairs: (0, 110000100), (1, 001101001),

557

and

However, we are still

implications

storage_key) pair identifies a record in eithertioése with each other to assign storage keys, each node
containers. maintains a locally unique counter to which it apeits

Since we assume that WS is trivial in size relatwe local site id to generate a globally unique storags.
RS, we make no effort to compress data valuesadsive Keys in the WS will be consistent with RS storaggk
represent all data directly. Therefore, each jptwe uses because we set the initial value of this countebeéoone
B-tree indexing to maintain a logical sort-key arde larger than the largest key in RS.

Every column in a WS projection is represented as a We are building WS on top of BerkeleyDB [SLEEO04];
collection of pairs,(v, sk) such thatv is a value in the we use the B-tree structures in that package tpastipur
column andskis its corresponding storage key. Each pairdata structures. Hence, every insert to a praecgsults
is represented in a conventional B-tree on thergkfield. in a collection of physical inserts on differensklipages,
The sort key(s) of each projection is additionallyone per column per projection. To avoid poor
represented by pairs, sk)such thas is a sort key value performance, we plan to utilize a very large magrmory
andskis the storage key describing wharrst appears. buffer pool, made affordable by the plummeting qoet
Again, this structure is represented as a conveatiB- byte of primary storage. As such, we expect “HMS
tree on the sort key field(s). To perform searchgi®g data structures to be largely main memory resident.

the sort key, one uses the latter B-tree to fireldtorage C-Store’s processing of deletes is influenced by ou
keys of interest, and then uses the former cotlaadf B- locking strategy. Specifically, C-Store expects géar
trees to find the other fields in the record. numbers of ad-hoc queries with large read sets

Join indexes can now be fully described. Everyinterspersed with a smaller number of OLTP transast
projection is represented as a collection of paifs covering few records. If C-Store used conventional
segments, one in WS and one in RS. For each reécord locking, then substantial lock contention wouldelik be
the “sender,” we must store the sid and storagedfey observed, leading to very poor performance.
corresponding record in the “receiver.” It will beeful to Instead, in C-Store, we isolate read-only transasti
horizontally partition the join index in the samayas the using snapshot isolation Snapshot isolation works by
“sending” projection and then to co-locate join é’d allowing read-only transactions to access the da®las
partitions with the sending segment they are aasetti of some time in the recent past, before which we ca
with. In effect, each (sid, storage key) pair ianter to guarantee that there are no uncommitted transactibor

a record which can be in either the RS or WS. this reason, when using snapshot isolation, weadmeed
to set any locks. We call the most recent timéhan past
5. Storage Management at which snapshot isolation can run thigh water mark

The storage management issue is the allocation dHWM) and introduce a low-overhead mechanism for
segments to nodes in a grid system; C-Store wiflopm Keeping track of its value in our multi-site enviroent. If
this operation automatically usingstorage allocator It ~We let read-only transactions set their effectiveet
seems clear that all columns in a single segmena of arbitrarily, then we would have to support gendnale
projection should be co-located. As noted abow@) j travel, an onerously expensive task. Hence, tiseatso a
indexes should be co-located with their “sender’low water mark(LWM) which is the earliest effective

Using these constraints, we are working on arStrict two-phase locking, as described in Secfich
allocator. This system will perform initial allagan, as L ;
well as reallocation when load becomes unbalanddtk 6.1 Providing Snapshot | solation
details of this software are beyond the scopeiefgaper. The key problem in snapshot isolation is deternginin

Since everything is a column, storage is simply thewhich of the records in WS and RS should be visibla
persistence of a collection of columns. Our analys read-only transaction running at effective time ETo
shows that a raw device offers little benefit rigkatto provide snapshot isolation, we cannot perform ugmlat
today’s file systems. Hence, big columns (megad)ydee place. Instead, an update is turned into an iresedt a
stored in individual files in the underlying opéngt delete. Hence, a record is visible if it was itesgrefore

system. ET and deleted after ET. To make this determination
. without requiring a large space budget, we use seoar
6. Updatesand Transactions granularity “epochs,” to be described in Sectioh.B. as

An insert is represented as a collection of nevectsj the unit for timestamps. Hence, we maintairireertion
in WS, one per column per projection, plus the &egt Vector (IV) for each projection segment in WS, which
data structure. All inserts corresponding to aglgin Contains for each record the epoch in which themewas
logical record have the same storage key. Tokeage inserted. We program the tuple mover (described i
key is allocated at the site where the update dsived. ~ S€ction 7) to ensure that no records in RS wereries
To prevent C-Store nodes from needing to syncheonizfter the LWM. Hence, RS need not maintain anrticse

558

vector. In addition, we maintain deleted record vector oldest epoch in any DRV, and ensure that wrapping
(DRV) for each projection, which has one entry perepochs through zero does not overrun.

projection record, containing a O if the tuple ima$ been To deal with environments for which epochs cannot
deleted; otherwise, the entry contains the epochhiith effectively wrap, we have little choice but to egk the
the tuple was deleted. Since the DRV is very spars“wrap length” of epochs or the size of an epoch.

(mostly zeros), it can be compactly coded usingype 2

algorithm described earlier. We store the DRVthe 6.2 L ocking-based Concurrency Control

WS, since it must be updatable. The runtime system Read-write transactions use strict two-phase lagkin
now consultV andDRVto make the visibility calculation for concurrency control [GRAY92]. Each site seisks
for each query on a record-by-record basis. on data objects that the runtime system reads tesyr
6.1.1 Maintaining the High Water Mark thereby implementing a distributed lock table asmost

distributed databases. Standard write-ahead Iggin
To maintain the HWM, we designate one site theemployed for recovery purposes; we use a NO-FORCE,

timestamp authority(TA) with the responsibility of STEAL policy [GRAY92] but differ from the traditicai
allocating timestamps to other sites. The ide@ idivide implementation of logging and locking in that weyolog
time into a number aépochswe define thepoch number UNDO records, performing REDO as described in $ecti
to be the number of epochs that have elapsed sice 6.3, and we do not use strict two-phase commitjdavg
beginning of time. We anticipate epochs beingtietly the PREPARE phase as described in Se@&iarl below.
long — e.g., many seconds each, but the exactidnrat Locking can, of course, result in deadlock. Wehes
may vary from deployment to deployment. We defim®@ deadlock via timeouts through the standard teclenigu
initial HWM to be epoch 0 and stattirrent epochat 1. aborting one of the deadlocked transactions.
Periodically, the TA decides to move the systenth® _ .
next epoch: it sendsend of epoctmessage to each site, 6-2.1 Distributed COMMIT Processing
each of which incrementsurrent epochfrom e to e+1, In C-Store, each transaction hasn@ster that is

thus causing new transactions that arrive to bewitim a responsible for assigning units of work correspogdo a
timestampe+1. Each site waits for all the transactionsyansaction to the appropriate sites and determinie
that began in epoah(or an earlier epoch) to complete and yjtimate commit state of each transaction. Thequa
then sends aepoch completenessage to the TA. Once (iffers from two-phase commit (2PC) in that no
the TA has receive@poch completenessages from all pREPARE messages are sent. When the master reeeives
sites for epocte, it sets the HWM to be, and sends this coOMMIT statement for the transaction, it waits Uit
value to each site. Figure 3 illustrates thiscpes. workers have completed all outstanding actions taed
After the TA has broadcast the new HWM with valuejssyes acommit(or abort) message to each site. Once a
e, read-only transactions can begin reading datan fro gjte has received a commit message, it can retebieeks
epoche or earlier and be assured that this data has begg|ated to the transaction and delete the UNDCfdoghe
committed. To allow users to refer to a particulgal- transaction. This protocol differs from 2PC beeatise
world time when their query should start, we mam@ master does not PREPARE the worker sites. Thismea
table mapping epoch numbers to times, and staquBey it is possible for a site the master has told towit to
as of the epoch nearest to the user-specified time. crash before writing any updates or log recordsteel to a
To avoid epoch numbers from growing without boundiransaction to stable storage. In such casedatleel site
and consuming extra space, we plan to “reclaim’cBpo || recover its state, which will reflect updatéem the

that are no longer needed. We will do this by piag” committed transaction, from other projections oheot
timestamps, allowing us to reuse old epoch numagfis sjtes in the system during recovery.

other protocols, e.g., TCP. In most warehouse]
applications, records are kept for a specific amhoafn 6.2.2 Transaction Rollback

time, say 2 years. Hence, we merely keep tracthef When a transaction is aborted by the user or the C-

Site Site Site TA time
T rie T8 O
T1 I
T2 I 13
T T6 Start
1 End of "epoch epoch
T4 I7 Epoch conpl et e a+1
5 | Epoch conpl ete
L Epoch conpl ete
New HWM e)

Figure 3. Illustration showing how the HWM selection algorithm works. Gray arrowsindicate messagesfrom the TA
tothesitesor viceversa. We can begin reading tupleswith timestamp e when all transactions from epoch e have
committed. Notethat although T4 is still executing when the HWM isincremented, read-only transactions will not
seeitsupdates becauseit isrunning in epoch e+1.

559

Store system, it is undone by scanning backwardben appropriate join indexes. As long as there is lection
UNDO log, which contains one entry for each logicalof segments that cover the key rangesnfthis technique
update to a segment. We use logical logging (#ES will restore Sr to the current HWM. Executing queued
[MOHA92]), since physical logging would result inamy updates will then complete the task.

log records, due to the nature of the data strastur WS. On the other hand, if there is no cover with thsirgel
property, then some of the tuplesSnhave already been
6.3 Recovery moved to RS on the remote site. Although we calh sti

As mentioned above, a crashed site recovers bguery the remote site, it is challenging to idgntihe
running a query (copying state) from other projmsi desired tuples without retrieving everything in R8d
Recall that C-Store maintains K-safety; i.e. sight differencing against the local RS segment, which is
projections and join indexes are maintained, sbKisites ~ Obviously an expensive operation.
can fail withint, the time to recover, and the system will ~ To efficiently handle this case, if it becomes coomm
be able to maintain transactional consistency. §hee W€ can force the tuple mover to log, for each tuple
three cases to consider. If the failed site saffaro data MOves, the storage key in RS that corresponds éo th
loss, then we can bring it up to date by executipdates ~Storage key and epoch number of the tuple befoveas
that will be queued for it elsewhere in the netwoBince ~moved from WS. This log can be truncated to the
we anticipate read-mostly environments, this rotifard ~ timestamp of the oldest tuple still in the WS ory ate,
operation should not be onerous. Hence, recowem f Since no tuples before that will ever need to lwevered.
the most common type of crash is straightforwarde T In this case, the recovering site can use a refiége
second case to consider is a catastrophic failunehw Se€gmentS plus the tuple mover log to solve the query
destroys both the RS and WS. In this case, we have above, even thougisimodS)comes aftetiasimodST)
choice but to reconstruct both segments from other ALT, we must also reconstruct the WS portion of any
projections and join indexes in the system. Théy on JOIN indexes that_ are stored Iocally, i.e. for _Nhﬁs‘r is a
needed functionality is the ability to retrieve diaxy data ~sender.” This merely entails querying remote
structures (IV, DRV) from remote sites. After rgstiion, ~T€Ceivers,” which can then compute the join in@exthey
the queued updates must be run as above. Thiectse 9generate tuples, transferring the WS partitionhef join
occurs if WS is damaged but RS is intact. SinceiRS index along with the recovered columns.
written only by the tuple mover, we expect it lepical_ly 7. TupleMover
escape damage. Hence, we discuss this commorircase
detail below. The job of the tuple mover is to move blocks oflésp

- . in a WS segment to the corresponding RS segment,
6.3.1 Efficiently Recovering the WS updating any join indexes in the process. It ofgsras a

Consider a WS segmer8y, of a projection with a sort background task looking fororthy segment pairs. When
key K and a key rangB on a recovering sitealong with it finds one, it performs merge-out proces$1OP on this
a collectionC of other projectionsM1, ..., Mbwhich (RS, WS) segment pair.
contain the sort key o®r. The tuple mover guarantees =~ MOP will find all records in the chosen WS segment
that each WS segmen§, contains all tuples with an With an insertion time at or before the LWM, ancrth
insertion timestamp later than some titagnmo,{S) which divides them into two groups:
represents the most recent insertion time of aogrcein @ ¢ Ones deleted at or before LWM. These are discarded
S’s corresponding RS segment. because the user cannot run queries as of a tirea wh

To recover, the recovering site first inspects gver they existed.
projection inC for a collection of columns that covers thes Ones that were not deleted, or deleted after LWM.

key range K with each segment havingasimodS) < These are moved to RS.
tlastmovdST). If it succeeds, it can run a collection of gaeri MOP will create a new RS segment that we name RS'.
of the form: Then, it reads in blocks from columns of the RSnsex,
SELECT desi red_fi el ds, deletes any RS items with a value.m the DRV lass tor
i nsertion_epoch, equal to the LWM, and merges in column values from
del et i on_epoch WS. The merged data is then written out to the RSV
FROMrecovery_segment segment, which grows as the merge progresses. ©se m
WHERE insertion_ epoch >t jastmové ST) recent insertion time of a record in RS’ becomes th
AND i nsertion_epoch <= HW) .
AND del et i on_epoch = 0 segment’s newastmo\,eand is always less than or equ_al to
OR del etion_epoch >= LW the LWM. This old-master/new-master approach wél b
AND sort_key in K more efficient than an update-in-place strategycesi

essentially all data objects will move. Also, netithat
records receive new storage keys in RS', theredpyiniag

As long as the above queries return a storage 8#er iy index maintenance. Since RS items may also be

fields in the segment can be found by following

560

deleted, maintenance of the DRV is also mandatongce A C-Store query plan consists of a tree of the afoes

RS’ contains all the WS data and join indexes avdified listed above, with access methods at the leaves and

on RS, the system cuts over from RS to RS'. Tls& di iterators serving as the interface between condeuides.

space used by the old RS can now be freed. Each non-leaf plan node consumes the data prodwged
Periodically the timestamp authority sends outaohe its children via a modified version of the standéedator

site a new LWM epoch number. Hence, LWM “chases’interface [GRAE93] via calls of “get_next.” To newk

HWM, and the delta between them is chosen to mediattcommunication overhead (i.e., number of calls of

between the needs of users who want historicalsacaed “get _next”) between plan nodes, C-Store iteratetarn

the WS space constraints. 64K blocks from a single column. This approach press
. the benefit of using iterators (coupling data flavith
8. C-Store Query Execution control flow), while changing the granularity oftdalow

The query optimizer will accept a SQL query andto better match the column-based model.
construct a query plan of execution nodes. Ingbigion, S
we describe the nodes that can appear in a plarthamd 8.2 Query Optimization

the architecture of the optimizer itself. We plan to use a Selinger-style [SELI79] optimizer
dpl that uses cost-based estimation for plan constructiVe
8.1 Query Operatorsand Plan Format anticipate using a two-phase optimizer [HONG92jjriut

There are 10 node types and each accepts operandstide complexity of the plan search space. Note dgary
produces results of type projectioPréj), column optimization in this setting differs from traditiahquery
(Col), or bitstring Bits). A projection is simply a set of optimization in at least two respects: the needmwder_ _
columns with the same cardinality and ordering. acompressed representations of data and the degision

bitstring is a list of zeros and ones indicatingetiter the 20Ut when to mask a projection using a bitstring.

associated values are present in the record sibleseq b E-Store operztors dhave the capagllllty to c'JAperat'ﬁ gn
described. In addition, C-Store query operatacept oth compressed and uncompressed Input. As will be

- L : shown in Section 9, the ability to process compréstata
z:tdl)c a;ﬁz 5;2129?;;4;?2?;;&rzw’e:tt;”bme names is the key to the performance benefits of C-Storsn

Join indexes and bitstrinas are simoly special ¢ operator’'s execution cost (both in terms of 1/O and
9 >IMPly Spe 3 pe memory buffer requirements) is dependent on the
columns. Thus, they also can be included in ptmjes . :
. . compression type of the input. For exampleSedect
and used as inputs to operators where appropriate. over Type 2 data (foreign order/few values, stoasda
We briefly summarize each operator below. delta-eﬁgoded bitmaps \g/]vith one bitmap per ,valaﬂ)hna
1. Deconpress converts a compressed column to an 1aps, . PP)
. performed by reading only those bitmaps from disiose
uncompressed (Type 4) representation.

2. Sel ect is equivalent to the selection operator of values match the predicate (despite the columif it
- d P being sorted). However, operators that take Typata as

the relgtional glge_brao]{, put rather than produc_i.ng @ input require much larger memory buffer space (oage
restriction of its input, instead produces a BEr of memory for each possible value in the colummnth
representation of the result. any of the other three types of compression. Tthescost

3. Mask accepts abitstring B and projectiorCs, and model must be sensitive to the representationspftiand
restricts Cs by emitting only those values whose gytput columns.

corresponding bits iB are 1. The major optimizer decision is which set of
4. Project equivalent to the projection operator of projections to use for a given query. Obviousiyyill be
the relational algebrat. time consuming to construct a plan for each pad#yipi
5. Sort sorts all columns in a projection by some and then select the best one. Our focus will beroning
subset of those columns (thert columns). this search space. In addition, the optimizer noestide

6. Aggregation Qperators compute SQL-like Where in the plan to mask a projection accordingato
aggregates over a named column, and for each groupitstring. For example, in some cases it is dbfrdo
identified by the values in a projection. push theMask early in the plan (e.g, to avoid producing a
7. Concat combines one or more projections sorted inbitstring while performing selection over Type 2
the same order into a single projection compressed data) while in other cases it is bestetay

8. Pernute permutes a projection according to the masking until a point where it is possible to fead
ordering defined by a join index. bitstring to the next operator in the plan (e@QUNTY that

9. Joi n joins two projections according to a predicate can produce results solely by processing the tvigstr

that correlates them. .

10. Bitstring Operators BAnd produces the 9. Performance Comparison
bitwise AND of two bitstrings. BOr produces a bitwise At the present time, we have a storage engine lad t
OR. BNot produces the complement of a bitstring. executor for RS running. We have an early

561

implementation of the WS and tuple mover; howeteryt

absence of padding to word or block boundaries. The

are not at the point where we can run experiments ocolumn store requires 30% more space than C-Store.

them. Hence, our performance analysis is limitedetad-
only queries, and we are not yet in a positionefgort on

updates. Moreover, RS does not yet support segnuent
As such, we report single-sit
numbers. A more comprehensive performance stuly wiQ1l. Determine the total number of lineitems shipped for
be done once the other pieces of the system hase be

multiple grid nodes.

built.

Our benchmarking system is a 3.0 Ghz Pentium,

running RedHat Linux, with 2 Gbytes of memory ard 7
Gbytes of disk.

the gold standard, and we use a simplified versiothis

benchmark, which our current engine is capable of

running. Specifically, we implement thiemeitem, order,
andcustomer tables as follows:

CREATE TABLE LINEITEM (

L_ORDERKEY INTEGER NOT NULL,
L_PARTKEY INTEGER NOT NULL,
L_SUPPKEY INTEGER NOT NULL,
L_LINENUMBER INTEGER NOT NULL,
L_QUANTITY INTEGER NOT NULL,
L_EXTENDEDPRICE INTEGER NOT NULL,
L_RETURNFLAG CHAR(1) NOT NULL,
L_SHIPDATE INTEGER NOT NULL);

CREATE TABLE ORDERS (
O_ORDERKEY INTEGER NOT NULL,
O_CUSTKEY INTEGER NOT NULL,
O_ORDERDATHNTEGER NOT NULL);

CREATE TABLE CUSTOMER (
C_CUSTKEY INTEGER NOT NULL,
C_NATIONKEYINTEGER NOT NULL);

We chose columns of type INTEGER and CHAR(1) toQe.

simplify the implementation. The standard data tfoe
above table schema for TPC-H scale_10 totals 600000

line items (1.8GB), and was generated by the data

generator available from the TPC website.

We tested three systems and gave each of them a

storage budget of 2.7 GB (roughly 1.5 times the data
size) for all data plus indices. The three systerase C-

Store as described above and two popular commercial

relational DBMS systems, one that implements astore
and another that implements a column store. i lodt
these systems, we turned off locking and loggirye

Again, C-Store can store a redundant schema irsjesse
because of superior compression and absence oiingadd
We ran the following seven queries on easiesn:

each day after day D.
SELECT |_shipdate, COUNT (*)
FROM lineitem
WHERE |_shipdate > D
GROUP BY |_shipdate

Q2. Determine the total number of lineitems shipped for
In the decision support (warehouse) market TPC-H is

each supplier on day D.
SELECT |_suppkey, COUNT (*)
FROM lineitem
WHERE |_shipdate = D
GROUP BY I_suppkey

Q3.
each supplier after day D.
SELECT |_suppkey, COUNT (*)
FROM lineitem
WHERE |_shipdate > D
GROUP BY |_suppkey
For every day after D, determine the latest dhip

of all items ordered on that day
SELECT o_orderdate, MAX (I_shipdate)
FROM lineitem, orders
WHERE |_orderkey = o_orderkey AND
o_orderdate > D
GROUP BY o_orderdate

For each supplier, determine the latest shipdatarof

Q4.

Q5.

item from an order that was made on some date, D.

SELECT I_suppkey, MAX (I_shipdate)
FROM lineitem, orders
WHERE |_orderkey = o_orderkey AND
o_orderdate = D
GROUP BY |_suppkey
For each supplier, determine the latest shipddtan
item from an order made after some date, D
SELECT I_suppkey, MAX (I_shipdate)
FROM lineitem, orders
WHERE |_orderkey = o_orderkey AND
o_orderdate > D
GROUP BY I_suppkey
Return a list of identifiers for all nations repeded
by customers along with their total lost revenue fo
the parts they have returnedThis is a simplified
version of query 10 (Q10) of TPC-H.
SELECT c_nationkey, sum(l_extendedprice)
FROM lineitem, orders, customers
WHERE |_orderkey=0_orderkey AND

Q7.

Determine the total number of lineitems shipped for

designed the schemas for the three systems in atavay

achieve the best possible performance given thereabo

storage budget. The row-store was unable to operat
within the space constraint so we gave it 4.5 GBEclvis
what it needed to store its tables plus indicebe actual
disk usage numbers are shown below.

C-Store Row Store Column Store

1.987 GB 4.480 GB 2.650 GB
Obviously, C-Store uses 40% of the space of the row

store, even though it uses redundancy and the e s
does not. The main reasons are C-Store compregsin

o_custkey=c_custkey AND
|_returnflag='"R’
GROUP BY c_nationkey

We constructed schemas for each of the three sgdteah
best matched our seven-query workload. These sthem
were tuned individually for the capabilities of bac
system. For C-Store, we used the following schema:

D1: (I_orderkey, |_partkey, |_suppkey,
I_linenumber, |_quantity,
|_extendedprice, |_returnflag, |_shipdate
| I_shipdate, I_suppkey)

562

D2: (o_orderdate, |_shipdate, |_suppkey | Query C-Store Row Store Column
o_orderdate, |_suppkey) St
D3: (o_orderdate, o_custkey, o_orderkey | ore
o_orderdate) Q1 0.03 0.22 2.34
D4: (I_returnflag, |_extendedprice, Q2 0.36 0.81 0.83
c_nationkey | I_returnflag) - - -
D5: (c_custkey, c_nationkey | c_custkey) Q3 4.90 49.38 29.10
D2 and D4 are materialized (join) views. D3 and D5 Q4 2.09 21.76 22.23
are added for completeness since we don’t use imemy Q5 0.31 0.70 0.63
of the seven queries. They are included so thatave Q6 8.50 47.38 25.46
answer arbitrary queries on this schema as isftuéhe Q7 2.54 18.47 6.28

product schemas. As can be seen, the performance gap closes, libeat
On the commercial row-store DBMS, we used thesame time, the amount of storage needed by the two

common relational schema given above with a calect commercial systems grows quite large.

of system-specific tuning parameters. We also used In summary, for this seven query benchmark, C-Store

system-specific tuning parameters for the commkrciais on average 164 times faster than the commeraia

column-store DBMS. Although we believe we chosestore and 21 times faster than the commercial colum

good values for the commercial systems, obviousky, store in the space-constrained case. For the ofse

cannot guarantee they are optimal. unconstrained space, C-Store is 6.4 times faster the
The following table indicates the performance that commercial row-store, but the row-store takes G$irthe

observed. All measurements are in seconds anthlkeea space. C-Store is on average 16.5 times faster iz

on a dedicated machine. commercial column-store, but the column-store nexui

Query C-Store Row Store Column 1.83 times the space.
Store Of course, this performance data is very prelimjina
Q1 0.03 6.80 224 Once we get WS running and write a tuple moverwilie
Q2 0.36 1.09 0.83 be in a better position to do an exhaustive \stud
Q3 4.90 93.26 29.54
Q4 2.09 722.90 22.23 10. Related Work
Q5 0.31 116.56 0.93 One of the thrusts in the warehouse market is in
Q6 8.50 652.90 32.83 maintaining so-called “data cubes.” This work deftem
Q7 254 265.80 33.24 Essbase by Arbor software in the early 1990’s, tiias

As can be seen, C-Store is much faster than eithéffective at “slicing and dicing” large data sets
commercial product. The main reasons are: [GRAY97]. Efficiently building and maintaining spiic

« Column representation- avoids reads of unused adgregates on stored data sets_has been wideliectud
attributes (same as competing column store). [KOTI99, ZHAO97]. Precomputation of such aggregates
« Storing overlapping projections, rather than theolen @S Well as more general materialized views [STAUSE]
table — allows storage of multiple orderings of a column®SPecially effective when a prespecified set ofrigseis

as appropriate. run at regular intervals. On the other hand, whien

« Better compression of dataallows more orderings in workload cannot be anticipated in advance, itficdilt to

the same space.

* Query

operators

operate

current processors.

on compressed
representation- mitigates the storage barrier problem of

decide what to precompute. C-Store is aimed dytat
this latter problem.

Including two differently architected DBMSs in a
single system has been studied before in data mirro

JRAMAOZ]. However, the goal of data mirrors was to

achieve better query performance than could beeaeHi

by either of the two underlying systems alone in a
warehouse environment. In contrast, our goal is to
simultaneously achieve good performance on update
workloads and ad-hoc queries. Consequently, CeStor

In order to give the other systems every possibl
advantage, we tried running them with the mateneali
views that correspond to the projections we usdd @
Store. This time, the systems used space as ®I(@w
Store numbers, which did not change, are included a

reference): differs dramatically from a data mirror in its dgsi
Storing data via columns has been implemented in
C-Store Row Store Column Store several systems, including Sybase 1Q, Addamark,bBub
1.987 GB 11.900 GB 4.090 GB [COPESS8], Monet [BONCO04], and KDB. Of these, Monet

)) is probably closest to C-Store in design philosophy
follows: sequence and do not have our hybrid architecturedao
they have our model of overlapping materialized
projections.

563

Similarly, storing tables using an inverted orgatiozn [COPESS]
is well known. Here, every attribute is storedngssome [DEWISO]
sort of indexing, and record identifiers are usedfihd
corresponding attributes in other columns. C-Suwses
this sort of organization in WS but extends théngecture [DEWI9OZ]

with RS and a tuple mover.
There has been substantial work on using compresseghgenos
data in databases; Roth and Van Horn [ROTH93] deovi

an excellent summary of many of the techniqueshhae [GRAE91]
been developed. Our coding schemes are similsorite

of these techniques, all of which are derived f@rong |graE93]
history of work on the topic in the broader field o
computer science [WITT87]. Our observation thaisit [GRAY92]
possible to operate directly on compressed datebbar [GRAY97]
made before [GRAE91, WESMOO0].

Lastly, materialized views, shapshot isolation,
transaction management, and high availability hale® [HONG92]
been extensively studied. The contribution of Gr&tis

. ; L . KDB04]
an innovative combination of these techniques thajkxoTigg
simultaneously provides improved performance, kesaf
efficient retrieval, and high performance transasi

[MOHA92]

11. Conclusions

This paper has presented the design of C-Store, [RNEI9]
radical departure from the architecture of curi@BMSs.

Unlike current commercial systems, it is aimed ke t |onglg7)
“read-mostly” DBMS market. The innovative
contributions embodied in C-Store include: [ORACO4]

* A column store representation, with an associated
query execution engine.

» A hybrid architecture that allows transactions on aPAPA04]
column store.

* A focus on economizing the storage representation ojramaoz]
disk, by coding data values and dense-packingake d

» A data model consisting of overlapping projectiafs
tables, unlike the standard fare of tables, seagnda
indexes, and projections.

* A design optimized for a shared nothing machineSLEEO4
environment. _ _ {STAU%]]

« Distributed transactions without a redo log or two

[ROTHO3]

[SELI79]

phase commit. [STONSE6]
« Efficient snapshot isolation.
[SYBAO4]
Acknowledgements and References [TAND89]
We would like to thank David DeWitt for his helpful
[VSAMO4]

feedback and ideas.

This work was supported by the National SciencdESMO0]
Foundation under NSF Grant numbers 11S-0086057 and
[1S-0325525. [WESTOO0]

[ADDAO4]
[BERE95]

http://www.addamark.com/products/sls.htm

Hal Berenson et al. A Critique of ANSI S@blation
Levels. InProceedings of SIGMO[1995.

Peter Boncz et. al.. MonetDB/X100: Hypspelining
Query Executionln Proceedings CIDR 2004

S. Ceri and J. Widom. Deriving ProductiRuales for
Incremental View Maintenance. YAL.DB, 1991.

[WITT87]

[ZHAO97]
[BONC04]

[CERI91]

564

George Copeland et. al. Data PlacemeBtibba.In
Proceedings SIGMOD 1988.

David Dewitt et. al. The GAMMA Database coiéne
Project. IEEE Transactions on Knowledge and Data
Engineering 2(1), March, 1990.

David Dewitt and Jim Gray. Parallel Datsle Systems:
The Future of High Performance Database Processing.
Communications of the ACNI992.

Clark D. French. One Size Fits All Databarchitectures
Do Not Work for DSS. IrProceedings of SIGMO[1995.
Goetz Graefe, Leonard D. Shapiro. Data passion and
Database Performance.Pnoceedings of the Symposium
on Applied Computingl991.

G. Graefe. Query Evaluation TechniquesLfarge
DatabasesComputing Survey25(2), 1993.

Jim Gray and Andreas Reut&ransaction Processing
Concepts and Techniqyédorgan Kaufman, 1992.

Gray et al. DataCube: A Relational Aggréga Operator
Generalizing Group-By, Cross-Tab, and Sub-Tofadga
Mining and Knowledge Discover§(1), 1997.

Wei Hong and Michael Stonebraker. Exjihg Inter-
operator Parallelism in XPRS. 81GMOD, 1992.
http://www.kx.com/products/database.php

Yannis Kaotidis, Nick Roussopoulos. DynaMat Dynamic
View Management System for Data Warehouses. In
Proceedings of SIGMQO[1999.

C. Mohan et. al: ARIES: A Transactiond®eery Method
Supporting Fine-granularity Locking and Partial IBatks
Using Write-ahead Loggind.ODS,March 1992.

Patrick O'Neil, Edward Cheng, Dieter Gaokli and
Elizabeth O'Neil, The Log-Structured Merge-TrAeta
Informatica33, June 1996.

P. O'Neil and D. Quass. Improved QueryfBenance
with Variant Indexes, IfProceedings of SIGMOM997.
Oracle CorporationOracle 9i Database for Data
Warehousing and Business Intelligendéhite Paper.
http://www.oracle.com/solutions/
business_intelligence/Oracle9idw_bwp.

Stratos Papadomanolakis and Anastassafsiki.
AutoPart: Automating Schema Design for Large Sdfient
Databases Using Data PartitioningS8DBM 2004.
Ravishankar Ramamurthy, David Dewitt. Qi:3A Case
for Fractured Mirrors. IfProceedings of VLDE2002.
Mark A. Roth, Scott J. Van Horn: Datab&wmmpression.
SIGMOD Recor®2(3). 1993.

Patricia Selinger, Morton Astrahan, Don@ldamberlain,
Raymond Lorie, Thomas Price. Access Path Selettian
Relational Database. Proceedings of SIGMOML979.
http://lwww.sleepycat.com/docs/

Martin Staudt, Matthias Jarke. Incrememiintenance of
Externally Materialized Views. INLDB, 1996.

Michael Stonebraker. The Case for SharethiNg. In
Database Engineerin®(1), 1986.
http://iwww.sybase.com/products/databasessrsybaseiq
Tandem Database Group: NonStop SQL, A ihsted
High Performance, High Availability Implementatioh
SQL. In Proceedingsf HPTPS 1989.
http://www.redbooks.ibm.com/redbooks.nsf/0/8280tsE3d
3997bf85256cbd007e4a96?0penDocument

Till Westmann, Donald Kossmann, Sven HainGuido
Moerkotte. The Implementation and Performance of
Compressed Databas€&GMOD Record®9(3), 2000.
Paul Westermaiata Warehousing: Using the Wal-Mart
Model Morgan-Kaufmann Publishers , 2000.

I. Witten, R. Neal, and J. Cleary. Arithti,ecoding for
data compressioitomm. of the ACMB0(6), June 1987.
Y. Zhao, P. Deshpande, and J. NaughtonAfmay-Based
Algorithm for Simultaneous Multidimensional Aggregs.
In Proceedings of SIGMO[1997.

