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Abstract. Dataanalysisapplicationstypically aggrggatedataacrossmary dimensiondooking for anomalies
or unusualpatterns. The SQL aggregatefunctionsandthe GROUP BY operatorproducezero-dimensionabr

one-dimensionahggreates.Applicationsneedthe N-dimensionabeneralizatiorof theseoperators.This paper
definesthatoperatoy calledthe data cube or simply cube The cubeoperatorgeneralizeshe histogramcross-
takulation, roll-up, drill-down, and sub-totalconstructsound in mostreportwriters. The novelty is thatcubes
arerelations. Consequentlythe cubeoperatorcanbe imbeddedn morecomple non-proceduratlataanalysis
programs.Thecubeoperatotreatseachof the N aggreationattributesasadimensiorof N-space Theaggrejate
of a particularsetof attribute valuesis a point in this space. The setof pointsforms an N-dimensionalcube.
Superaggrgyatesarecomputecby aggregatingthe N-cubeto lower dimensionakpacesThis paper(1) explains
the cubeandroll-up operators(2) shavs how they fit in SQL, (3) explainshow userscandefinenew aggreyate
functionsfor cubesand(4) discusseefficient techniqueso computethe cube.Mary of thesefeaturesarebeing
addedo the SQL Standard.

Keywords: datacube,datamining, aggreyation,summarizationdatabaseanalysisquery
1. Intr oduction

Dataanalysisapplicationdook for unusuapatternsn data. They categyorizedatavaluesand
trends,extract statisticalinformation,andthencontrastone category with another There
arefour stepgto suchdataanalysis:

formulating a querythatextractsrelevantdatafrom alarge database,
extracting theaggrgateddatafrom thedatabasénto afile or table,

*An extendedabstracof this paperappearedn Grayetal. (1996).
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visualizing theresultsin a graphicalway, and
analyzing theresultsandformulatinga new query

Visualizationtools display datatrends, clusters,and differences. Someof the most
exciting work in visualizationfocuseson presentingnew graphicalmetaphorghatallow
peopleto discover datatrendsandanomaliesMarny of thesevisualizationranddataanalysis
toolsrepresenthe dataseasan N-dimensionakpace.Visualizationtoolsrendertwo and
three-dimensionaub-slabof this spaceas2D or 3D objects.

Colorandtime (motion)addtwo moredimensiongo thedisplaygiving the potentialfor
a 5D display A spreadsheetpplicationsuchasExcelis an exampleof a datavisualiza-
tion/analysigool thatis usedwidely. Dataanalysigoolsoftentry to identify a subspacef
the N-dimensionakpacewhich is “interesting” (e.qg.,discriminatingattributesof the data
set).

Thus, visualizationaswell asdataanalysistools do “dimensionalityreduction”, often
by summarizingdataalong the dimensionsthat are left out. For example,in trying to
analyzecar saleswe might focuson the role of model,yearandcolor of the carsin sale.
Thus,we ignorethe differencedetweertwo salesalongthe dimensionf dateof saleor
dealershifbut analyzethetotalssalefor carsby model,by yearandby color only. Along
with summarizatiorand dimensionalityreduction,dataanalysisapplicationsextensiely
useconstructsuchashistogramcross-tahlation, subtotalsyoll-up anddrill-down.

This paperexamineshow a relationalenginecan supportefficient extraction of infor-
mationfrom a SQL databas¢hatmatchegshe abore requirementsf the visualizationand
dataanalysis. We begin by discussingthe relevant featuresin StandardSQL and some
vendorspecificSQL extensions.Section2 discussesvhy GROUP BY fails to adequately
addressherequirementsThe CUBE andthe ROLLUP operatorareintroducedn Section3
andwe alsodiscusshow theseoperatorsovercomesomeof the shortcomingof GROUP
BY. Sectionst and5 discusshow we canaddressandcomputethe Cube.

T
]

Figurel. DataanalysigoolsfacilitatetheExtract-Msualize-Analyzéoop. Thecubeandroll-up operatorglong
with systemanduserdefinedaggr@atesarepartof the extractionprocess.
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Table1l.
Weat her
Altitude Temp. Pres.
Time (UCT) Latitude Longitude (m) (c) (mb)
96/6/1:1500 37:58:33N 122:45:28W 102 21 1009
Many morerows like the onesabore andbelov
96/6/7:1500 | 34:16:18N | 27:05:55W | 10 | 23 | 1024

1.1. Relationaland SQLdataextraction

How do traditionalrelationaldatabaseft into this multi-dimensionatlataanalysigicture?
How can2D flat files (SQL tables)modelan N-dimensionaproblem?Furthermorehow
do the relationalsystemssupportoperationsover N-dimensionakepresentationthatare
centralto visualizationanddataanalysisprograms?

We addresdwo issuedn this section. The answerto thefirst questionis thatrelational
systemanodel N-dimensionabataasa relationwith N-attribute domains. For example,
4-dimensional4D) earthtemperaturadatais typically representedby a Weat her table
(Tablel). Thefirstfour columnsepresenthefour dimensionsiatitude longitude altitude,
andtime. Additionalcolumnsepresentmeasurementtthe4D pointssuchastemperature,
pressurehumidity, andwind velocity. Eachindividual weathermeasuremeris recorded
asanew row of thistable. Oftenthesemeasuredaluesareaggrgatesover time (thehour)
or spacga measuremerdreacenteredn the point).

As mentionedn theintroduction visualizatioranddataanalysigoolsextensvely usedi-
mensionalityeductionaggreation)for bettercomprehensibilityOftendataalongtheother
dimensionghatarenotincludedin a“2-D” representatioaresummarizedia aggregation
in theform of histogram cross-tablation, subtotalsetc. In the SQL Standardyve depend
on aggreatefunctionsandthe GROUP BY operatorto supportaggreation.

The SQL standardIS 9075InternationalStandad for Databasd_anguaje SQL, 1992)
providesfive functionsto aggreyatethe valuesin atable: COUNT(), SUMO), M NQO),
MAX () , andAVG( ). Forexample theaverageof all measuretemperaturets expressea@s:

SELECT AVG(Tenp)
FROM Weat her ;

In addition, SQL allows aggreyationover distinctvalues. The following querycounts
thedistinctnumberof reportingtimesin theWeat her table:

SELECT  COUNT (DI STI NCT Ti nme)
FROM Weat her ;

Aggregatefunctionsreturnasinglevalue. Usingthe GROUP BY constructSQL canalso
createa table of mary aggreyatevaluesindexed by a setof attributes. For example,the
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Grouping Values Agogragate Values

Figure2. TheGROUP BY relationaloperatomartitionsatableinto groups.Eachgroupis thenaggregatedby a
function. Theaggregationfunction summarizesomecolumnof groupsreturninga valuefor eachgroup.

following queryreportsthe averagetemperaturdor eachreportingtime andaltitude:

SELECT Tine, Altitude, AVG(Tenp)
FROM Weat her
GROUP BYTine, Altitude;

GROUP BY is anunusualrelationaloperator: It partitionsthe relationinto disjoint tuple
setsandthenaggr@atesover eachsetasillustratedin figure 2.

SQLsaggr@ationfunctionsarewidely usedin databas@pplicationsThis popularityis
reflectedn the presencef aggreyatesin alargenumberof queriesin thedecision-support
benchmarkrPC-D (TheBentcimarkHandbookfor Databaseand TransactionProcessing
Systemsl993). The TPC-D querysethasone6D GROUP BY andthree3D GROUP BYs.
Oneandtwo dimensionalGROUP BYs arethemostcommon.Surprisingly aggreatesap-
peaiintheTPConline-transactioprocessingpenchmarkaswell (TPC-A,B andC). Table2
shaws how frequentlythedatabasandtransactiorprocessindpenchmarksiseaggreation
andGROUP BY. A detaileddescriptiorof thesebenchmarkss beyondthescopeof thepaper
(seg(Gray, 1991)and(TheBenthmarkHandbooKor DatabaseandTransactiorProcessing
Systemsl993).

Table2. SQLaggregjatesn standardenchmarks.

Benchmark Queries Aggregates GROUPBYs

TPC-A,B 1 0 0
TPC-C 18 4
TPC-D 16 27 15
Wisconsin 18 3 2
AS3AP 23 20
SetQuery 7 5

1.2. Extensionsn someSQLsystems

Beyondthefive standardaggregatefunctionsdefinedso far, mary SQL systemsaddsta-
tistical functions(median standardieviation, variance gtc.), physicalfunctions(centerof
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massangularmomentumetc.),financialanalysis(volatility, Alpha, Beta,etc.),andother
domain-specifiéunctions.

Somesystemsallow usersto add new aggreation functions. The Informix lllustra
systemfor example,allows usergo addaggreatefunctionsby addinga programwith the
following threecallbacksto the databassystem(DataBladeDevelopets Kit):

I ni t (¢handl e): Allocatesthe handleandinitializesthe aggreyatecomputation.

It er (¢handl e, val ue): Aggregatesthenext valueinto the currentaggreate.

val ue = Fi nal (&handl e): Computesandreturnstheresultingaggrgateby usingdata
saved in thehandle. This invocationdeallocateshe handle.

Considerimplementingthe Aver age () function. Thehandl e storesthecount and
the suminitialized to zer o. Whenpassed new non-nullvalue,l t er () incrementghe
countandaddghesumto thevalue. TheFi nal () calldeallocateshehand! e andreturns
sumdivided by count . IBM’s DB2 CommonSener (Chamberlin,1996) hasa similar
mechanismThis designhasbeenaddedo the Draft Proposedtandardor SQL (1997).

RedBrick systemspneof thelarger UNIX OLAP vendors,addssomeinterestingag-
gregatefunctionsthatenhancehe GROUP BY mechanisn{RISQLRefeenceGuide Red
Brick WarehouseV/PT, 1994):

Rank (expr essi on) : Returngheexpressionsankin thesetof all valuesof thisdomain
of thetable. If thereare N valuesin the column,andthis is the highestvalue,the rank
is N, if itisthelowestvaluetherankis 1.

N_ti | e(expressi on, n): Therangeof theexpressior(over all theinputvaluesof the
table)is computednddividedinton valuerangeof approximatelyequalpopulationThe
functionreturnsthe numberof therangecontainingthe expressiors value.If your bank
accountwas amongthelargest10%thenyourr ank (account .bal ance,10) would
return10. RedBrick providesjustN_ti | e (expr essi on,3).

Rati o_To_Tot al (expressi on): Sumsall the expressions.Thenfor eachinstance,
dividesthe expressiorinstanceby thetotal sum.

To give anexample thefollowing SQL statement

SELECT Percentile, M N(Tenp), MAX(Tenp)
FROMV Weat her

GROUP BY N_tile(Tenp,10) as Percentile
HAVI NG Percentile = 5;

returnsonerow giving the minimumandmaximumtemperaturesf the middle 10% of all
temperatures.
RedBrick alsooffersthreecumulative aggregateshatoperateon orderedables.

Cunul at i ve (expressi on): Sumsall valuessofar in an orderedist.

Runni ng_Sum(expr essi on,n): Sumsthemostrecentn valuesin anorderedist. The
initial n- 1 valuesareNULL.

Runni ng_Aver age (expr essi on,n): Averageshemostrecent valuesin anordered
list. Theinitial n- 1 valuesareNULL.
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Theseaggreatefunctionsareoptionallyreseteachtime agroupingvaluechangesn an
orderedselection.

2. Problemswith GROUP BY

Certaincommornformsof dataanalysisaredifficult with theseSQL aggreationconstructs.
As explainednext, threecommonproblemsare: (1) Histograms,(2) Roll-up Totalsand
Sub-Totalsfor drill-downs, (3) CrossTabulations.

ThestandardsQLGROUP BY operatodoesotallow adirectconstructiorof histograms
(aggreyationover computedcatagories). For example,for queriesbasedon theWeat her
table,it would be niceto be ableto grouptimesinto days,weeks,or months,andto group
locationsinto areaqe.g.,US, CanadaEurope,...).If aNati on () functionmapslatitude
and longitudeinto the nameof the country containingthat location, thenthe following
querywould give the daily maximumreportedemperaturdor eachnation.

SELECT day, nation, MAX(Tenp)
FROM Weat her
GROUP BY Day(Time) AS day,
Nat i on(Latitude, Longitude) AS nation;

SomeSQL systemssupporthistogramsdirectly but the standarddoesnot!. In standard
SQL, histogramsare computedindirectly from a table-\alued expressionwhich is then
aggrgated. The following statementdemonstrateshis SQL92 constructusing nested
queries.

SELECT day, nation, MAX(Tenp)

FROM (SELECT Day (Ti ne) AS day,
Nat i on(Latitude, Longitude) AS nation,
Tenp
FROM Weat her
) AS foo

GROUP BY day, nation;

A moreseriougproblem,andthemainfocusof this papeyrelateso roll-upsusingtotals
andsub-totaldor drill-down reports. Reportscommonlyaggr@atedataat a coarsdevel,
andthenat successiely finer levels. The carsalesreportin Table3 shavs the idea (this
and other examplesare basedon the salessummarydatain the tablein figure 4). Data
is aggrgyatedby Model, thenby Year thenby Color. Thereportshavs dataaggreyated
at threelevels. Going up the levelsis calledrolling-up the data. Going down is called
drilling-do wn into the data. Dataaggreyatedat eachdistinctlevel producesa sub-total.

Table3asuggestsreating2N aggreationcolumnsfor aroll-up of N elementsindeed,
ChrisDaterecommendshis approach(Date,1996). His designgives riseto Table3h.

The representatiomf Table 3ais not relationalbecausehe empty cells (presumably
NULL values)cannotform akey. RepresentatioBb is anelegantsolutionto this problem,
but we rejectedt becausé impliesenormousiumbersof domainsn theresultingtables.
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Table3a. SalesRoll Up by Model by Yearby Color.

Sales
by Model Sales
by Year by Model Sales
Model Year Color by Color by Year by Model

Chery 1994 Black 50
White 40

90
1995 Black 85
White 115

200

290

Table3b. SalesRoll-Up by Model by Yearby Color asrecommendedly Chris Date(Date,1996).

Sales
by Model Sales
Model Year Color Sales by Year by Model
Chery 1994 Black 50 90 290
Chery 1994 White 40 90 290
Chevy 1995 Black 85 200 290
Chery 1995 White 115 200 290

Table4. An Excelpivot tablerepresentationf Table3 with Ford salesdataincluded.

Year/Color
Sum 1994 1995
sales - 1994 —— 1995  Grand
Model Black White total Black White total total
Chevy 50 40 90 85 115 200 290
Ford 50 10 60 85 75 160 220
Grandtotal 100 50 150 170 190 360 510

We wereintimidatedby theprospecbf adding64 columnsto theansweisetof a6D TPCD
query Therepresentationf Table3bis alsonotconvenient—thenumberof columnsgrows
asthe power setof thenumberof aggrejatedattributes,creatingdifficult namingproblems
andvery long names.The approaclrecommendetby Dateis reminiscenbf pivot tables
foundin Excel (andnow all otherspreadsheetgMicrosoftExce| 1995),a populardata
analysisfeatureof Excef.

Table4 an alternatve representatiof Table 3a (with Ford Salesdataincluded)that
illustrateshow apivottablein Excelcanpresenthe Salesdataby Model, by Year andthen
by Color. Thepivot operatoitransposeaspreadsheetypically aggreyatingcellsbasedn
valuesin the cells. Ratherthanjust creatingcolumnsbasedon subset®f columnnames,
pivot createxolumnsbaseddn subset®f columnvalues Thisis amud largerset. If one
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pivots on two columnscontainingN and M values,the resultingpivot tablehasN x M
values.We cringeatthe prospecbf somary columnsandsuchobtusecolumnnames.

Ratherthanextendtheresulttableto have mary new columns,a moreconserative ap-
proachpreventstheexponentiagrowth of columnsby overloadingcolumnvalues.Theidea
istointroduceanALL value. TableSademonstratethisrelationalandmorecorvenientrep-
resentationThedummyvalue“ALL” hasbeenaddedofill in thesuperaggreationitems:

Table5ais notreally acompletelynew representationr operation.SinceTable5ais a
relation, it is not surprisingthatit canbe built usingstandardsQL. The SQL statemento
build this Sal esSummar y tablefrom theraw Sal es datais:

SELECT ‘ALL’, ‘ALL’, ‘ALL’, SUM Sal es)

FROM Sal es
WHERE Model = ‘Chevy’
UNI ON
SELECT Model , ‘ALL’, ‘ALL’, SUM Sal es)
FROM Sal es
WHERE Model = ‘Chevy’
GROUP BY Model
UNI ON
SELECT Mbdel , Year, ‘ALL’, SUM Sal es)
FROM Sal es
VWHERE Mbdel = ¢Chevy’
GROUP BY Mbdel , Year
UNI ON
SELECT Mbdel , Year, Col or, SUM Sal es)
FROM Sal es
WHERE Model = ‘Chevy’

GROUP BY Model , Year, Col or;

Thisis asimple3-dimensionaftoll-up. Aggregatingover N dimensiongequiresN such
unions.

Table5a Salessummary

Model Year Color Units
Chery 1994 Black 50
Chevy 1994 White 40
Chery 1994 ALL 90
Chery 1995 Black 85
Chevy 1995 White 115
Chevy 1995 ALL 200

Chevy ALL ALL 290
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Roll-up is asymmetric—noticéhat Table 5a aggregjatessalesby yearbut not by color.
Thesemissingrows areshovn in Table5h.

Table5b. Salessummaryrows missingform Table5ato converttheroll-up into acube.

Model Year Color Units

Chery ALL Black 135
Chevy ALL White 155

Theseadditionalrows could be capturedby addingthe following clauseto the SQL
statemenabove:

UNI ON

SELECT Model , ‘ALL’, Col or, SUM(Sal es)
FROM Sal es
WHERE Model = ‘Chevy’

GROUP BY Mddel , Col or;

The symmetricaggreationresultis a tablecalleda eross-tatulation, or erosstab for
short. Tablessaand5b aretherelationalform of thecrosstabsyut crosstalalatais routinely
displayedn the morecompactformatof Table6.

This crosstabis a two-dimensionabggreation. If otherautomobilemodelsareadded,
it becomes 3D aggreation. For example,datafor Ford productsaddsanadditionalcross
tabplane.

Thecross-tab-arrayepresentatio(iTablesaandb) is equivalentto therelationalrepre-
sentatiorusingthe ALL value. Bothgeneralizéo an N-dimensionatrosstah Mostreport
writers build in a cross-tabgeature,building the reportup from the underlyingtakular
datasuchasTable5. Seefor examplethe TRANSFORM PI VOT operatorof Microsoft Ac-
cess(MicrosoftAccesRelationalDatabaseManagementSystenfor Windows,Language
Refeence 1994).

Table6a. Chevy salescrosstah

Chevy 1994 1995  Total(ALL)
Black 50 85 135
White 40 115 155
Total (ALL) 90 200 290

Table6b. Fordsalescrosstah

Ford 1994 1995 Total (ALL)
Black 50 85 135
White 10 75 85

Total (ALL) 60 160 220
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Therepresentatioauggestedy Table5andunionedGROUP BYs“solve” theproblemof
representingggreatedatain arelationaldatamodel. Theproblemremainghatexpressing
roll-up, andcross-talquerieswith corventionalSQL is daunting. A six dimensioncross-
tab requiresa 64-way union of 64 differentGROUP BY operatordo build the underlying
representation.

Thereis anothervery importantreasonwhy it is inadequatéo useGROUP BYs. The
resultingrepresentationf aggreationis toocomplex to analyzefor optimization.Onmost
SQL systemshiswill resultin 64 scansof the data,64 sortsor hashesandalong wait.

3. CUBE and ROLLUP operators

Thegeneralizatiorof groupby, roll-up andcross-tabdeasseemsbvious: Figure3 shavs
the concepffor aggreationup to 3-dimensions.Thetraditional GROUP BY generateshe
N-dimensionatlatacubecore. The N — 1 lower-dimensionabhggreatesappearspoints,
lines, planes cubesor hypercubeshangingoff thedatacubecore.

The datacubeoperatorbuilds a table containingall theseaggreyatevalues. The total
aggregjateusingfunctionf () is representedsthetuple:

ALL, ALL, ALL,..., ALL, f (*)

Pointsin higherdimensionaplanesor cubeshave fewer ALL values.

Aggregats

sam  Group By
(vwrith total)
Cilliar

By Blake & Year

By Color & Year
By Maks & Coks
Sum By Culie

Figure 3. The CUBE operatoris the N-dimensionabeneralizatiorof simpleaggrgatefunctions. The 0D data
cubeis apoint. The 1D datacubeis aline with apoint. The2D datacubeis acrosstatulation,aplane,two lines,
andapoint. The 3D datacubeis a cubewith threeintersecting?D crosstabs.
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Figure4. A 3D datacube(right) built from thetableattheleft by the CUBE statemenatthetop of thefigure.

Creatinga datacuberequiresggeneratinghe power set(setof all subsetspf theaggrea-
tion columns. Sincethe CUBE is anaggreyationoperationjt makessenseo externalizeit
by overloadingthe SQL GROUP BY operator Infact,thecubeis arelationaloperatorwith
GROUPBY andROLL UP asdegyeneratdorms of the operator This canbe cornveniently
specifiedby overloadingthe SQL GROUP BY3.

Figure4 hasanexampleof thecubesyntax. To give anotherherefollows a statemento
aggreatethe setof temperaturebsenations:

SELECT day, nation, MAX(Tenp)
FROM Weat her
GROUP BY CUBE
Day (Ti me) AS day,
Country(Latitude, Longitude)
AS nation;

The semanticof the CUBE operatorarethatit first aggr@atesover all the <sel ect
|'i st > attributesin the GROUP BY clauseasin a standardGROUP BY. Then,it UNI ONs
in eachsuperaggreyateof theglobalcube—substitutingLL for theaggreationcolumns.
If thereare N attributesin the <sel ect | i st >, therewill be 2N — 1 superaggreate
values.If thecardinalityof the N attributesareCs, C,, ..., Cn thenthe cardinalityof the
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resultingcuberelationis IT(C; + 1). Theextravaluein eachdomainis ALL. For example,
the SALEStablehas2 x 3 x 3 = 18rows, while thederived datacubehas3 x 4 x 4 = 48
rows.

If theapplicationwantsonly aroll-up or drill-down report,similarto thedatain Table3a,
thefull cubeis overkill. Indeed,somepartsof the full cubemay be meaninglessif the
answeirsetis notis notnormalizedtheremaybefunctionaldependencieamongcolumns.
For example,a datefunctionally definesaweek,month,andyear Roll-upsby year week,
dayarecommon but a cubeon thesethreeattributeswould be meaningless.

The solutionis to offer ROLLUP in additionto CUBE. ROLLUP producegust the super
aggreates:

w1l ,v2 ,...,vn, fQO),
(vl ,v2 ,...,ALL, fQO),

(vl ,ALL,...,ALL, fQO),
(ALL,ALL,...,ALL, T O).

Cumulative aggreyates)ik e runningsumor runningaverage work especiallywell with
ROLLUP becausehe answersetis naturally sequential(linear) while the ful | dat a
cube is naturallynon-linear(multi-dimensional) ROLLUP and CUBE mustbe orderedfor
cumulatve operatorgo apply.

We investigatedetting the programmerspecify the exact list of superaggreatesbut
encountereccompleities relatedto collation, correlation,and expressions. We believe
ROLLUP andCUBE will senetheneedsf mostapplications.

3.1. TheGROUR CUBE,ROLLUP algebra

TheGROUP BY, ROLLUP, andCUBE operatordiaveaninterestingalgebra. TheCUBE of a
ROLLUP or GROUP BY is aCUBE. TheROLLUP of aGROUP BY isaROLLUP. Algebraically
this operatoralgebracanbe statedas:

CUBE(ROLLUP) = CUBE
ROLLUP(CROUP BY) = ROLLUP

Soit makessensedo arrangethe aggreyationoperatorsn the compoundorderwherethe
“most powerful” cubeoperatoratthe core,thenaroll-up of the cubesandthena groupby
of theroll-ups. Of course pnecanuseary subsebf thethreeoperators:

GROUP BY <select |ist>
ROLLUP <sel ect |ist>
CUBE <sel ect |ist>

Thefollowing SQL demonstratea compoundaggrejate. The “shape”of the answelis
diagrammedn figure5:
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Mo, Da

Manufacturer Year,

Model xCalar
cubes

Figure 5. Thecombinationof a GROUP BY on Manufacture, ROLLUP on year month,day, and CUBE on some
attributes. Theaggregatevaluesarethe contentsf the cube.

SELECT Manuf acturer, Year, Month, Day, Col or, Model,

SUM(price) AS Revenue

FROM Sal es
GROUP BY Manuf acturer,
ROLLUP  Year (Ti mre) AS Year,
Mont h(Ti me) AS Mont h,
Day (Ti me) AS Day,
CUBE Col or , Model ;

3.2. Asyntaxproposal

With theseconceptsn place,the syntacticextensionto SQL is fairly easilydefined. The
currentSQL GROUP BY syntaxis:

GROUP BY
{<col um nane> [collate clause] ,...}

To supporthistogramsandotherfunction-valuedaggregations,we first extendthe GROUP
BY syntaxto:

GROUP BY <aggregation |ist>
<aggregation list> ::=
{ ( <colum name> | <expression> )
[ AS <correl ation name> ]
[ <collate clause> ]

et

Theseaxtensionsareindependentf the CUBE operator They remedysomepre-«isting
problemswith GROUP BY. Many systemsalreadyallow theseextensions.
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Now extendSQL's GROUP BY operator:

GROUP BY [ <aggregation list> ]
[ ROLLUP <aggregation list> ]
[ CUBE <aggregation list> ]

3.3. Adiscussiorofthe ALL value

IstheALL valuereallyneeded®EachALL valuereallyrepresenta set—thesetover which
the aggreyatewas computed. In the Table5 Sal esSunmary datacube,the respectie
setsare:

Mbdel .ALL = ALL(Model ) = {Chevy, Ford}
Year .ALL = ALL(Year) = {1990,1991,1992}
Col or .ALL = ALL(Col or) = {red,white,bl ue}

In reality, we have stumbledn to theworld of nestedrelations—relationsanbevalues.
Thisis amajorstepfor relationalsystems.Thereis muchdebateon how to proceed.n this
sectionwe briefly discusghesemantic®f ALL in the context of SQL. Thisdesignmaybe
easedy SQL3's supportfor set-\aluedvariablesanddomains.

We caninterpreteachALL value as a context-sensitve token representinghe setit
representsThinking of the ALL valueasthecorrespondingetdefineghesemantic®f the
relationaloperatorge.g.,equal s andl N). A functionALL () generatethe setassociated
with thisvalueasin theexamplesabove. ALL () appliedto ary othervaluereturnsNULL.

Theintroductionof ALL createsubstantiatompleity. Wedo notaddit lightly—adding
it toucheamary aspect®f the SQL language.To namea few:

e ALL becomes new keyword denotingthe setvalue.

e ALL [NOT] ALLOWED is addedto the column definition syntaxandto the column
attributesin the systemcatalogs.

e Thesetinterpretatiorguidesthe meaningof therelationaloperators{=, | N}.

Therearemoresuchrules,but this gives a hint of theaddedcompleity. As an aside to
beconsistentjf ALL represents setthenthe othervaluesof thatdomainmustbetreated
assingletonsetsin orderto have uniform operatorson the domain.

It is corvenientto know whena columnvalueis anaggr@ate. Oneway to testthis is
to applythe ALL () functionto thevalueandtestfor anonNULL value. Thisis souseful
thatwe proposea Booleanfunction GROUPI NG() that,given a selectlist elementreturns
TRUE if theelements anALL value,andFALSE otherwise.

3.4. AvoidingtheALL value

VeteranSQL implementerswill beterrified of the ALL value—like NULL, it will create
mary specialcases.Furthermorethe proposalin Section3.3. requiresunderstandingf

setsasvalues. If thegoalis to help reportwriter and GUI visualizationsoftware, thenit

may be simplerto adoptthe following approach:
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e UsetheNULL valuein placeof the ALL value.
e Do notimplementthe ALL () function.
e Implementthe GROUPI NG() functionto discriminatebetweerNULL andALL.

In this minimalistdesigntoolsanduserscansimulatethe ALL valueasby for example:

SELECT Mbdel ,Year ,Col or ,SUM(sal es),
GROUPI NG(Model ),
GROUPI NG(Year ),
GROUPI NG(Caol or )

FROM Sal es

GROUP BY CUBE Model , Year, Col or;

Wherever the ALL valueappearedbefore now thecorrespondingaluewill beNULL in the
datafield and TRUE in the correspondingroupingfield. For example,the global sumof
figure4 will bethetuple:

(NULL ,NULL,NULL,941,TRUE, TRUE, TRUE)
ratherthanthetuple onewould getwith the“real” cubeoperator:
(ALL, ALL, ALL, 941).

Usingthelimited interpretatiorof ALL asabove excludesexpressingsomemeaningful
querieq justastraditionalrelationaimodelmalesit hardto handledisjunctiveinformation).
However, the proposalmakesit possibleto expressresultsof CUBE asa singlerelationin
thecurrentframework of SQL.

3.5. Decomtions

Thenext stepis to allow decoations columnsthatdo notappeain theGROUP BY but that
arefunctionallydependenon the groupingcolumns.Considerthe example:

SELECT  departnent .nane, sum(sal es)
FROM sal es JO N departnent USI NG (depart nment _nunber)
GROUP BY sal es.depart nment _nunber ;

Thedepar t ment .nane columnin theanswersetis notallowedin currentSQL, since
it is neitheranaggre@ationcolumn(appearingn theGROUP BY list) noris it anaggreate.
It is justthereto decoratghe answersetwith the nameof the departmentWe recommend
the rule that if a decortion column (or columnvalue)is functionally dependenbn the
aggreationcolumns thenit maybeincludedin the SELECT answeltlist.

Decorations interactwith aggrejatevalues. If the aggreatetuple functionally defines
thedecoratiorvalue,thenthevalueappearn theresultingtuple. Otherwisehedecoration
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field is NULL. For example,in thefollowing querythecont i nent is notspecifiedunless
nationis.

SELECT day,nation,MAX(Tenp),
continent (nation) AS continent
FROM Weat her
GROUP BY CUBE
Day (Ti me) AS day,
Country(Latitude, Longitude)
AS nation

Thequerywould producethe sampletuples:

Table7. DemonstratinglecorationandALL.

day nation nmax (t enp) conti nent
25/1/1995 USA 28 North Anerica
ALL USA 37 North Anerica
25/1/1995 ALL 41 NULL

ALL ALL 48 NULL

3.6. Dimensionsstar, andsnowflale queries

While strictly not part of the CUBE and ROLLUP operatordesign,thereis an important
databaselesignconcepthatfacilitatesthe useof aggreationoperationslt is commonto

recordeventsandactiities with a detailedrecordgiving all thedimensions of the event.
For example,the salesitem recordin figure 6 givestheid of the buyer, seller the product
purchasedthe units purchasedthe price, the dateandthe salesoffice thatis creditedwith

thesale.Thereareprobablymary moredimensionsaboutthis sale but this examplegives
theidea.

ALL

Figure 6. A snonflake schemashaving the corefacttable andsomeof the mary aggreationgranularitiesof
the coredimensions.
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Thereare side tablesthat for eachdimensionvalue give its attributes. For example,
the SanFranciscosalesoffice is in the NorthernCalifornia District, the WesternRegion,
andthe US Geography This fact would be storedin a dimensiontable for the Office®.
The dimensiontable may alsohave decorationglescribingotherattributesof that Office.
Thesedimensiontablesdefinea spectrumof aggregationgranularitiesfor the dimension.
Analysistsmight wantto cubevariousdimensionsaandthenaggreateor roll-up the cube
upatary or all of thesegranularities.

Thegenerakchemaf figure6 is so commornthatit hasbeengiven aname:asnowflake
schema Simplerschemathathave asingledimensiortablefor eachdimensiorarecalleda
star schema Queriesagainstheseschemasrecalledsnonflake queriesandstar queries
respectiely.

Thediagramof figure 6 suggestshatthe granularitieform a purehierarchy In reality,
the granularitiesypically form a lattice. To take just a very simpleexample,daysnestin
weeksbut weeksdo not nestin monthsor quartersor years(someweeksarepartly in two
years). Analystsoftenthink of datesin termsof weekdaysweelends,saledays,various
holidays(e.g.,Christmasandthe time leadingup to it). Soa fuller granularitygraphof
figure 6 would be quite complex. Fortunately graphicaltools like pivot tableswith pull
down lists of categyorieshide muchof this compleity from theanalyst.

4. Addressingthe data cube

Section5 discussedhiow to computedatacubesand how userscanadd nev aggreate
operators.This sectionconsidersextensiongo SQL syntaxto easilyaccesghe elements
of adatacube—makingt recursve andallowing aggreatesto referencesub-aggrgates.

It is not clearwhereto draw the line betweenthe reporting-visualizatiortool andthe
querytool. Ideally, applicationdesignershouldbeableto decidehow to split thefunction
betweenthe query systemand the visualizationtool. Given that perspectie, the SQL
systemmustbe a Turing-completgprogrammingervironment.

SQL3 definesa Turing-completeproceduralprogramminglanguage. So, arything is
possible But, mary thingsarenoteasy Ourtaskis to make simpleandcommorthingseasy

The mostcommonrequests for percent-of-totahsan aggreatefunction. In SQL this
is computedasa nestedSELECTSQL statements.

SELECT Model ,Year ,Col or ,SUM(Sal es),
SUM(Sal es)/
( SELECT SUM Sal es)
FROM Sal es
WHERE Mbdel |IN {‘Ford’,‘Chevy’}
AND Year BETVEEN 1990 AND 1992
)
FROM  Sal es
WHERE Model IN { ‘Ford’, ‘Chevy’ }
AND Year BETWEEN 1990 AND 1992
GROUP BY CUBE Mbdel , Year, Col or;
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It seemsaturalto allow the shorthandsyntaxto namethe globalaggreyate:

SELECT Mbdel , Year, Col or
SUM(Sal es) AS total,
SUM(Sal es) / total (ALL,ALL,ALL)
FROM Sal es
VWHERE Model IN {‘Ford’, ‘Chevy’}
AND Year BETWEEN 1990 AND 1992
GROUP BY CUBE Mbdel , Year, Col or;

Thisleadsinto deepewater Thenext stepis adesireto computeheindex of avalue—an
indicationof how farthevalueis from theexpectedvalue. In asetof N values,oneexpects
eachitemto contritute oneNth to thesum. Sothe 1D index of a setof valuesis:

index(vi) = vi/(Zjvj)

If thevaluesetis two dimensionalthis commonlyusedfinancialfunctionis anightmare
of indices. It is bestdescribedin a programminglanguage. The currentapproachto
selectinga field valuefrom a 2D cube would readas:

SELECT v
FROM cube
VWHERE row = i

AND col um |

We recommendhe simplersyntax:
cube.v(:i, :j)

asa shorthandor the abore selectionexpression. With this notationaddedto the SQL
programminglanguageijt shouldbe fairly easyto computesupersuperaggrgatesfrom
thebasecube.

5. Computing cubesand roll-ups

CUBE andROLLUP generalizeaggreyatesand GROUP BY, <o all the technologyfor com-
putingthoseresultsalsoapplyto computingthe coreof the cube(Graefe, 1993). Thebasic
techniquefor computinga ROLLUP is to sort the table on the aggreating attributesand
thencomputethe aggreatefunctions(thereis a more detaileddiscussiorof the kind of
aggregjatesin a moment.) If the ROLLUP resultis small enoughto fit in main memory
it canbe computedby scanninghe input setandapplyingeachrecordto the in-memory
ROLLUP. A cubeis theunionof mary rollups,sothe naive algorithmcomputeghis union.
As Graefe(1993)pointsout, the basictechniquesor computingaggr@atesare:

e To minimize datamovementandconsequenprocessingost,computeaggregatesat the
lowestpossiblesystemlevel.
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¢ If possibleysearraysor hashingo organizetheaggreationcolumnsn memory storing
oneaggrejatevaluefor eacharrayor hashentry,

o If theaggreyationvaluesarelargestrings,it maybewiseto keepa hashedsymboltable
thatmapseachstring to aninteger sothatthe aggrejatevaluesaresmall. Whena new
valueappearsit is assigneda new integer. With this organization,the valuesbecome
denseandthe aggr@atescanbe storedasan N-dimensionahrray

e If thenumberof aggrgatess toolargeto fit in memory usesortingor hybrid hashingo
organizethedataby valueandthenaggreyatewith a sequentiakcanof the sorteddata.

e If thesourcedataspanamary disksor nodesuseparallelismto aggreyateeachpartition
andthencoalesceheseaggreates.

Someinnovationis neededo computethe “ALL » tuplesof the cubeandroll-up from
the GROUP BY core. The ALL valueaddsoneextra valueto eachdimensionin the CUBE.
So,an N-dimensionakubeof N attributeseachwith cardinalityC;, will have I(C; + 1)
values. If eachC; = 4 then a 4D CUBE is 2.4 timeslargerthanthe baseGROUP BY. We
expecttheC; to belarge(tensor hundredsyothatthe CUBE will beonly alittle largerthan
the GROUP BY. By comparisonan N-dimensionakoll-up will addenly N recordsto the
answerset.

The cubeoperatomallows mary aggrejatefunctionsin theaggreationlist of the GROUP
BY clause. Assumein this discussiorthatthereis a singleaggregatefunction F() being
computedon an N-dimensionakube. The extensionto computinga list of functionsis a
simplegeneralization.

Figure 7 summarizeshow aggreyatefunctionsare definedand implementedn mary
systems.It defineshow the databasexecutionengineinitializes the aggrgatefunction,
callstheaggreyatefunctionsfor eachnew valueandtheninvokes theaggreatefunctionto
getthefinal value. More sophisticategystemsallow the aggr@atefunctionto declarea
computatiorcostsothatthequeryoptimizerknowsto minimizecallsto expensvefunctions.
This design(exceptfor the costfunctions)is now partof the proposedQL standard.

The simplestalgorithmto computethe cubeis to allocatea handlefor eachcubecell.
Whenanew tuple: (X1, Xo, ..., Xn, v) arrives,thel t er (handl e, v) functionis called
2N times—oncefor eachhandleof eachcell of the cube matchingthis value. The 2N
comedrom thefactthateachcoordinatecaneitherbex; or ALL. Whenall theinputtuples

8
) e
\i4

Figure7. Systendefinedanduserdefinedaggrgatefunctionsareinitialized with astart()call thatallocatesand
initializesascratchpadell to computetheaggrgate. Subsequentithenext() call is invoked for eachvalueto be
aggregyated.Finally, theend()call computeghe aggreatefrom the scratchpadalues,deallocateshe scratchpad
andreturnstheresult.
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have beencomputedthe systeminvokes thef i nal (&handl e) functionfor eachof the
I1(C; + 1) nodesn thecube.Call thisthe2N-algorithm. Thereis acorrespondingrderN
algorithmfor roll-up.

If thebaseablehascardinalityT, the2N-algorithminvokesthel t er () functionT x 2N
times. It is oftenfasterto computehesuperaggrgyatesrom thecoreGROUP BY, reducing
thenumberof callsby approximatelyafactorof T. It isoftenpossibleo computehecube
fromthecoreor from intermediateesultsonly M timeslargerthanthecore. Thefollowing
trichotomycharacterizethe optionsin computingsuperaggreates.

Consideraggregatingatwo dimensionabetof values( X [i=1,..., I; j=1, ..., J}.
Aggregatefunctionscanbe classifiednto threecategories:

Distrib utive: Aggregatefunction F() is distributive if thereis a function G() suchthat
F({Xijh=G{F({Xijli=1,....,I)|j=1,...3}). COUNTO), MNO, MXQ,
SUMQ) areall distributive. In fact, F =G for all but COUNT(). G = SUM() for the
COUNT () function. Onceorderis imposed the cumulatve aggr@atefunctionsalsofit
in the distributive class.

Algebraic: Aggregatefunction F () is algebraidf thereis an M-tuplevaluedfunctionG()
andafunctionH () suchthatF ({X; ;) = H{G({X;j [i =1,....IH | j=1,..., J}).
Average() standardieviation, MaxN(), MinN(), centerof_mass(Jareall algebraic.For
Average the function G() recordsthe sumandcountof the subset. The H () function
addsthesetwo componentsand then dividesto producethe global average. Similar
techniquesapplyto finding the N largestvalues the centerof massof groupof objects,
andotheralgebraicfunctions. The key to algebraicfunctionsis thata fixed sizeresult
(an M-tuple) cansummarizehe sub-aggrgation.

Holistic: Aggregatefunction F() is holistic if thereis no constantboundon the size of
the storageneededo describea sub-aggrgate. Thatis, thereis no constantM, such
that an M-tuple characterizeshe computationF({X; ; | i = 1,...,I}). Median(),
MostFrequent(Jalsocalledthe Mode()), and Rank()arecommonexamplesof holistic
functions.

We know of no moreefficientway of computingsuperaggreatesof holistic functions
thanthe 2N-algorithmusingthe standardGROUP BY techniques.We will not say more
aboutcubesof holistic functions.

Cubesof distributive functionsarerelatively easyto compute. Given that the coreis
representedsan N-dimensionahrrayin memory eachdimensiorhaving sizeC; + 1, the
N — 1 dimensionaklabscanbe computedby projecting(aggreating) one dimensionof
the core.For examplethe following computatioraggreatesthefirst dimension.

CUBE(ALL, X, ..., XN) = F({CUBE('I', X2, ..., XN) | i= 1,... Cj_})

N suchcomputationsomputethe N — 1 dimensionakuperaggreates. The distributive
natureof thefunction F () allows aggre@ateso beaggr@ated.The next stepis to compute
the next lower dimension—ar{...ALL,...,ALL...) case.Thinkingin termsof the crosstab,
onehasa choiceof computingthe resultby aggreatingthe lower row, or aggreatingthe
right column(aggreate(ALL, ) or (*, ALL)). Eitherapproactwill give the sameanswer
Thealgorithmwill be mostefficientif it aggr@atesthe smallerof thetwo (pick the* with
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thesmallestC;). In thisway, thesuperaggrgatesanbecomputediroppingonedimension
atatime.

Algebraicaggregyatesaremoredifficult to computethandistributive aggrejates.Recall
thatan algebraicaggreyatesaves its computationn a handleandproducesa resultin the
end—attheFi nal () call. Aver age () for examplemaintainsthe countandsumvalues
in its handle.The superaggrgjateneedgheseintermediateesultsratherthanjust the raw
sub-aggrgate. An algebraicaggrgatemustmaintaina handle(M-tuple)for eachelement
of the cube (this is a standardpart of the group-byoperation). Whenthe core GROUP
BY operationcompletesthe CUBE algorithm passeghe setof handlesto eachN — 1
dimensionakuperaggraate. Whenthis is donethe handleof thesesuperaggrgatesare
passedo the supersuperaggrgates,andsoon until the (ALL, ALL,...,ALL) aggr@ate
hasbeencomputed.This approachrequiresa new call for distributive aggreyates:

I ter _super (&handl e, &handl e)

which folds the sub-aggrgateon theright into the superaggrgjateon the left. Thesame
orderingidea(aggreyateon the smallestist) appliesat eachhigheraggreationlevel.

Interestinglythedistributive, algebraicandholistic taxonomyis very usefulin comput-
ing aggreyatedor paralleldatabassystemsin thosesystemsaggrejatesarecomputedor
eachpartitionof adatabasén parallel. Thentheresultsof theseparallelcomputationsre
combined.Thecombinatiorstepis verysimilarto thelogicandmechanisnusedn figure8.

If the datacubedoesnot fit into memory array techniquesdo not work. Ratherone
musteitherpartitionthe cubewith ahashfunctionor sortit. Thesearestandardechniques
for computingthe GROUP BY. The superaggregatesarelikely to be ordersof magnitude
smallerthanthe core,sothey areverylikely to fit in memory Sortingis especiallycorve-
nientfor ROLLUP sincethe useroftenwantsthe answersetin a sortedorder—so the sort
mustbe doneanyway.

It is possiblethatthe coreof the cubeis sparse In thatcase pnly the non-nullelements
of thecoreandof thesuperaggregjatesshouldberepresentedThis suggests hashingor a
B-treebe usedasthe indexing scheméfor aggreyationvalues(Methodand Appartatusfor
Storingand Retrieving Multi-DimensionalDatain ComputefMemory 1994).

6. Maintaining cubesand roll-ups

SQL Sener 6.5 hassupportedhe CUBE and ROLLUP operatorsor abouta year now.
We have beensurprisedhat somecustomersisetheseoperatordo computeandstorethe
cube.Thesecustomershendefinetriggersontheunderlyingtablessothatwhenthetables
changethe cubeis dynamicallyupdated.

This of courseraisesthe question:how canoneincrementallycompute(userdefined)
aggreatefunctionsafter the cubehasbeenmaterialized?Harinaraynet al. (1996)have
interestingideason pre-computinga sub-cubeof the cube assumingall functionsare
holistic. Ourview isthatusersavoid holistic functionsby usingapproximatiortechniques.
Most functionswe seein practiceare distributive or algebraic. For example, medians
and quartilesare approximatedusing statisticaltechniquesratherthan being computed
exactly.
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Figure8. (Top)computingthecubewith a minimalnumberof callsto aggreyationfunctions. If theaggreation
operatoris algebraicor distributive, thenit is possibleto computethe coreof the cubeasusual. (Middle) then,
the higher dimensionsof the cubeare computedby calling the superiterator function passingthe lower-level
scratch-pads(Bottom) oncean N-dimensionakpacehasbeencomputedthe operationrepeatdo computethe
N — 1 dimensionakpace.Thisrepeatantil N = 0.

The discussiorof distributive, algebraic,andholistic functionsin the previous section
was completelyfocusedon SELECT statementsnot on UPDATE, INSERT, or DELETE
statements.

Surprisingly the issuesof maintaininga cubeare quite differentfrom computingit in
the first place. To give a simple example: it is easyto computethe maximumvaluein
a cube—maxis a distributive function. It is alsoeasyto propagatensertsinto a “max”
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N-dimensionatube.Whenarecordis insertednto thebasetable,justvisit the2N super
aggrgatesof this recordin the cubeandtake the maxof the currentandnew value. This
computationcanbe shortened—ithe new value“loses” onecompetition thenit will lose
in all lower dimensions.Now supposea deleteor updatechangeghe largestvaluein the
basetable. Then2N elementsf the cubemustbe recomputed The recomputatiomeeds
to find theglobalmaximum. This seemgo requirea recomputatiorof theentirecube. So,
maxis adistributive for SELECT andl NSERT, but it is holistic for DELETE.

Thissimpleexamplesuggestshatthereareorthogonahierarchiegor SELECT, | NSERT,
andDEL ETE functions(updatds justdeleteplusinsert). If afunctionis algebraidor insert,
update anddelete(count()andsum()aresucha functions),thenit is easyto maintainthe
cube. If the functionis distributive for insert,update anddelete thenby maintainingthe
scratchpad$or eachcell of the cube,it is fairly inexpensve to maintainthe cube. If the
functionis delete-holistidasmaxis) thenit is expensve to maintainthecube.Thesddeas
desere morestudy

7. Summary

Thecubeoperatorgeneralizesindunifiesseveralcommonandpopularconcepts:

aggreates,

groupby,

histograms,
roll-upsanddrill-downsand,
crosstabs.

Thecubeoperatoiis basednarelationalrepresentationf aggreatedatausingthe ALL
valueto denotethe setover which eachaggreationis computed.In certaincasest makes
sensdo restrictthe cubeoperatorto just aroll-up aggreationfor drill-down reports.

Thedatacubeis easyto computefor awide classof functions(distributive andalgebraic
functions). SQLs basicsetof five aggrgatefunctionsneedscarefulextensionto include
functionssuchasrank, N _tile, cumulatve, andpercenibf total to easetypical datamining
operationsTheseareeasilyaddedo SQLby supportinguserdefinedaggrejates. Theseex-
tensiongequireanew superaggregatemechanisnto allow efficientcomputatiorof cubes.
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Notes

1. Thesecriticismsledto aproposato includethesefeaturesn thedraft SQL standardISO/IECDBL:MCI-006,
1996).
2. It seemdikely thatarelationalpivot operatowill appeain databassystemsn thenearfuture.
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3. An earlierversionof this paper(Gray et al., 1996) andthe Microsoft SQL Sener 6.5 productimplemented
a slightly differentsyntax. They sufiix the GROUP BY clausewith a ROLLUP or CUBE modifier The SQL
Standard®ody choseaninfix notationsothatGROUP BY andROLLUP andCUBE could be mixedin asingle
statementTheimproved syntaxis describechere.

4. Thisis distinctfrom sayingthatALL representsneof thememberof theset.

. Thisis thesyntaxandapproactusedby Microsoft's SQL Sener (version6.5).

6. Databas@ormalizatiorrules(Date,1995)would recommendhatthe CaliforniaDistrict bestoredonce rather
thanstoringit oncefor eachOffice. Sotheremightbeanoffice, district, andregion tables ratherthanonebig
denormalizedable. Queryuserdfind it convenientto usethe denormalizedable.

(4]
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