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Abstract.



Data
�

analysisapplicationstypically aggregatedataacrossmany dimensionslooking for anomalies
or unusualpatterns. The SQL aggregatefunctionsand the GROUP BY operatorproducezero-dimensionalor
one-dimensionalaggregates.Applicationsneedthe N

�
-dimensionalgeneralizationof theseoperators.This paper

definesthatoperator, calledthedata cubeor simply cube. Thecubeoperatorgeneralizesthehistogram,cross-
tab



ulation, roll-up, drill-down, andsub-totalconstructsfound in mostreportwriters. The novelty is that cubes

arerelations. Consequently, thecubeoperatorcanbe imbeddedin morecomplex non-proceduraldataanalysis
programs.� Thecubeoperatortreatseachof theN

�
aggregationattributesasadimensionof N

�
-space.Theaggregate

of a particularsetof attribute valuesis a point in this space.The setof pointsforms an N
�

-dimensionalcube.
Super-aggregatesarecomputedby aggregatingthe N

�
-cubeto lower dimensionalspaces.This paper(1) explains

the



cubeandroll-up operators,(2) shows how they fit in SQL, (3) explainshow userscandefinenew aggregate
functionsfor cubes,and(4) discussesefficient techniquesto computethecube.Many of thesefeaturesarebeing
addedto theSQLStandard.

Keywords: datacube,datamining,aggregation,summarization,database,analysis,query

1. Intr oduction

Dataanalysisapplicationslookfor unusualpatternsin data.They categorizedatavaluesand
trends,

�
extractstatisticalinformation,andthencontrastonecategory with another. There

are� four stepsto suchdataanalysis:

f
�
ormulating a� querythatextractsrelevantdatafrom a largedatabase,

extracting� the
�

aggregateddatafrom thedatabaseinto afile or table,

�
An

�
extendedabstractof thispaperappearedin Grayetal. (1996).
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visualizing� the
�

resultsin agraphicalway, and
analyzing� the

�
resultsandformulatinganew query.

V
�

isualizationtools display data trends,clusters,and differences. Someof the most
e� xciting work in visualizationfocuseson presentingnew graphicalmetaphorsthat allow
people� to discover datatrendsandanomalies.Many of thesevisualizationanddataanalysis
tools

�
representthedatasetasan N

�
-dimensionalspace.Visualizationtoolsrendertwo and

three-dimensional
�

sub-slabsof this spaceas2D or 3D objects.
Color
�

andtime(motion)addtwo moredimensionsto thedisplaygiving thepotentialfor
a� 5D display. A spreadsheetapplicationsuchasExcel is an exampleof a datavisualiza-
tion/analysis

�
tool thatis usedwidely. Dataanalysistoolsoftentry to identify asubspaceof

the
�

N
�

-dimensionalspacewhich is “interesting”(e.g.,discriminatingattributesof thedata
set).�

Thus,visualizationaswell asdataanalysistools do “dimensionalityreduction”,often
by

�
summarizingdataalong the dimensionsthat are left out. For example, in trying to

analyze� carsales,we might focuson therole of model,yearandcolor of thecarsin sale.
Thus,

�
we ignorethedifferencesbetweentwo salesalongthedimensionsof dateof saleor

dealership
 

but analyzethetotalssalefor carsby model,by yearandby color only. Along
with! summarizationanddimensionalityreduction,dataanalysisapplicationsextensively
use" constructssuchashistogram,cross-tabulation,subtotals,roll-up anddrill-down.

This paperexamineshow a relationalenginecansupportefficient extractionof infor-
mation# from a SQL databasethatmatchestheabove requirementsof thevisualizationand
data

 
analysis. We begin by discussingthe relevant featuresin StandardSQL andsome

v$ endor-specificSQL extensions.Section2 discusseswhy GROUP BY f
%
ails to adequately

address� therequirements.TheCUBE and� theROLLUP operators& areintroducedin Section3
and� we alsodiscusshow theseoperatorsovercomesomeof the shortcomingsof GROUP
BY. Sections4 and5 discusshow wecanaddressandcomputetheCube.

F
'

igure1. DataanalysistoolsfacilitatetheExtract-Visualize-Analyzeloop. Thecubeandroll-upoperatorsalong
with systemanduser-definedaggregatesarepartof theextractionprocess.
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Table1.

Weather

Altitude Temp. Pres.
Time (UCT) Latitude Longitude (m) (c) (mb)

96/6/1:1500 37:58:33N 122:45:28W 102 21 1009

Man
(

y morerows like theonesaboveandbelow

96/6/7:1500 34:16:18N 27:05:55W 10 23 1024

1.1. RelationalandSQLdataextraction

Ho
)

w do traditionalrelationaldatabasesfit into thismulti-dimensionaldataanalysispicture?
How can2D flat files (SQL tables)modelan N

�
-dimensionalproblem?Furthermore,how

do
 

the relationalsystemssupportoperationsover N
�

-dimensionalrepresentationsthat are
central* to visualizationanddataanalysisprograms?

W
+

e addresstwo issuesin this section.Theanswerto thefirst questionis thatrelational
systems� modelN

�
-dimensionaldataasa relationwith N

�
-attributedomains.For example,

4-dimensional
,

(4D) earthtemperaturedatais typically representedby a Weather table
�

(T
-

able1). Thefirst fourcolumnsrepresentthefourdimensions:latitude,longitude,altitude,
and� time. Additionalcolumnsrepresentmeasurementsatthe4Dpointssuchastemperature,
pressure,� humidity, andwind velocity. Eachindividual weathermeasurementis recorded
as� anew row of this table.Oftenthesemeasuredvaluesareaggregatesover time(thehour)
or& space(ameasurementareacenteredon thepoint).

Asmentionedin theintroduction,visualizationanddataanalysistoolsextensivelyusedi-
mensionality# reduction(aggregation)for bettercomprehensibility.Oftendataalongtheother
dimensions

 
thatarenot includedin a“2-D” representationaresummarizedvia aggregation

in
.

theform of histogram,cross-tabulation,subtotalsetc. In theSQL Standard,we depend
on& aggregatefunctionsandtheGROUP BY operator& to supportaggregation.

The
�

SQLstandard(IS
/

9075InternationalStandard for DatabaseLanguageSQL,0 1992)
pro� videsfive functionsto aggregatethe valuesin a table: COUNT 1 2 3 SUM 4 5 6 MIN 7 8 9
MAX : ; < and� AVG = > . Forexample,theaverageof all measuredtemperaturesisexpressedas:

SELECT AVG ? Temp @
FROM Weather A

In
B

addition,SQL allows aggregationover distinct values. The following querycounts
the

�
distinctnumberof reportingtimesin theWeather table:

�

SELECT COUNT C DISTINCT Time D
FROM Weather E

Aggre
F

gatefunctionsreturnasinglevalue.UsingtheGROUP BY construct,* SQLcanalso
create* a tableof many aggregatevaluesindexed by a setof attributes. For example,the
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F
'

igure 2. TheGROUP BY relationalG operatorpartitionsa tableinto groups.Eachgroupis thenaggregatedby a
function. Theaggregationfunctionsummarizessomecolumnof groupsreturningavaluefor eachgroup.

following queryreportstheaveragetemperaturefor eachreportingtimeandaltitude:

SELECT Time H Altitude I AVG J Temp K
FROM Weather
GROUP BY Time L Altitude M

GROUP BY is an unusualrelationaloperator: It partitionsthe relationinto disjoint tuple
sets� andthenaggregatesover eachsetasillustratedin figure2.

SQL
N

’saggregationfunctionsarewidely usedin databaseapplications.Thispopularityis
reflectedin thepresenceof aggregatesin a largenumberof queriesin thedecision-support
benchmark

�
TPC-D(The

O
BenchmarkHandbookfor DatabaseandTransactionProcessing

Systems
P

,0 1993). TheTPC-Dquerysethasone6D GROUP BY and� three3D GROUP BYs.�
One

Q
andtwo dimensionalGROUP BYs� arethemostcommon.Surprisingly, aggregatesap-

pear� in theTPConline-transactionprocessingbenchmarksaswell (TPC-A,B andC).Table2
sho� wshow frequentlythedatabaseandtransactionprocessingbenchmarksuseaggregation
and� GROUP BY.A detaileddescriptionof thesebenchmarksisbeyondthescopeof thepaper
(see

-
(Gray, 1991)and(The

O
BenchmarkHandbookfor DatabaseandTransactionProcessing

Systems
P

,0 1993).

Table2. SQLaggregatesin standardbenchmarks.

Benchmark
R

Queries Aggregates GROUPBYs

TPC-A,B 1 0 0

TPC-C
S

18 4 0

TPC-D 16 27 15

W
T

isconsin 18 3 2

AS3
U
AP 23 20 2

SetQuery 7 5 1

1.2. Extensionsin someSQLsystems

Be
V

yond thefive standardaggregatefunctionsdefinedso far, many SQL systemsaddsta-
tistical

�
functions(median,standarddeviation,variance,etc.),physicalfunctions(centerof
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mass,angularmomentum,etc.),financialanalysis(volatility, Alpha,Beta,etc.),andother
domain-specific

 
functions.

Some
N

systemsallow usersto add new aggregation functions. The Informix Illustra
system,� for example,allowsusersto addaggregatefunctionsby addingaprogramwith the
following threecallbacksto thedatabasesystem(DataBladeDeveloper’sW Kit):

X

Init Y Z handle [ \ Allocatesthehandleandinitializestheaggregatecomputation.
Iter ] ^ handle _ value ` a Aggre

F
gatesthenext valueinto thecurrentaggregate.

value b Final
c d e

handle f g Computes
�

andreturnstheresultingaggregateby usingdata
sa� ved in thehandle.This invocationdeallocatesthehandle.

Consider
�

implementingtheAverage h i function. Thehandle stores� thecount and�
the

�
sum initialized

.
to zero. Whenpasseda new non-nullvalue,Iter j k increments

.
the

count* andaddsthesum to
�

thevalue.TheFinal l m call* deallocatesthehandle and� returns
sum di

 
vided by count. IBM’ s DB2 CommonServer (Chamberlin,1996)hasa similar

mechanism.Thisdesignhasbeenaddedto theDraft Proposedstandardfor SQL(1997).
RedBrick systems,oneof the largerUNIX OLAP vendors,addssomeinterestingag-

gren gatefunctionsthatenhancetheGROUP BY mechanism# (RISQL
o

ReferenceGuide, Red
Brick WarehouseVPT,0 1994):

Rank p expression q r Returnstheexpressionsrankin thesetof all valuesof thisdomain
of& thetable. If thereareN

�
v$ aluesin thecolumn,andthis is thehighestvalue,therank

is N
�

,0 if it is thelowestvaluetherankis 1.
N

s t
tile

u v
expression w n x y The

�
rangeof theexpression(over all theinputvaluesof the

table)
�

iscomputedanddividedinton v$ aluerangesof approximatelyequalpopulation.The
function
%

returnsthenumberof therangecontainingtheexpression’svalue.If yourbank
account� was amongthelargest10%thenyourrank z account { balance | 10 } w! ould
return10. RedBrick providesjustN~ tile � expression � 3 � .

Ratio
� �

To� Total � expression � � Sums
N

all theexpressions.Thenfor eachinstance,
di
 

videstheexpressioninstanceby thetotal sum.

To giveanexample,thefollowing SQLstatement

SELECT Percentile � MIN � Temp � � MAX � Temp �
FROM Weather
GROUP BY N� tile � Temp � 10 � as Percentile
HAVING Percentile � 5 �

returnsonerow giving theminimumandmaximumtemperaturesof themiddle10%of all
temperatures.

�
RedBrick alsooffersthreecumulati� veaggregatesthat

�
operateonorderedtables.

Cumulative � expression � � Sums
N

all valuessofar in an orderedlist.
Running

� �
Sum � expression � n � � Sums

N
themostrecentn v$ aluesin anorderedlist. The

initial
.

n-1 v$ aluesareNULL.
Running� Average � expression � n   ¡ Averagesthemostrecentn v$ aluesin anordered

list.
¢

Theinitial n-1 v$ aluesareNULL.
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Theseaggregatefunctionsareoptionallyreseteachtimeagroupingvaluechangesin an
ordered& selection.

2. Problemswith GROUP BY

Certain
�

commonformsof dataanalysisaredifficult with theseSQLaggregationconstructs.
As

F
explainednext, threecommonproblemsare: (1) Histograms,(2) Roll-up Totalsand

Sub-T
N

otalsfor drill-downs,(3) CrossTabulations.
The
�

standardSQLGROUP BYoperator& doesnotallow adirectconstructionof histograms
£

(aggre
-

gationover computedcategories).For example,for queriesbasedon theWeather
table,

�
it wouldbeniceto beableto grouptimesinto days,weeks,or months,andto group

locationsinto areas(e.g.,US,Canada,Europe,...).If aNation ¤ ¥ functionmapslatitude
and� longitudeinto the nameof the countrycontainingthat location, then the following
query¦ wouldgive thedaily maximumreportedtemperaturefor eachnation.

SELECT day § nation ¨ MAX © Temp ª
FROM Weather
GROUP BY Day « Time ¬ AS day ­

Nation ® Latitude ¯ Longitude ° AS nation ±
Some

N
SQL systemssupporthistogramsdirectly but the standarddoesnot1. In standard

SQL,
N

histogramsare computedindirectly from a table-valuedexpressionwhich is then
aggre� gated. The following statementdemonstratesthis SQL92 constructusing nested
queries.¦

SELECT day ² nation ³ MAX ´ Temp µ
FROM ¶ SELECT Day · Time ¸ AS day ¹

Nation º Latitude » Longitude ¼ AS nation ½
Temp

FROM Weather¾
AS foo

GROUP BY day ¿ nation À
A moreseriousproblem,andthemainfocusof thispaper, relatesto roll-upsusingtotals

and� sub-totalsfor drill-down reports.Reportscommonlyaggregatedataat a coarselevel,
and� thenat successively finer levels. Thecarsalesreportin Table3 shows the idea(this
and� otherexamplesarebasedon the salessummarydatain the table in figure 4). Data
is

.
aggregatedby Model, thenby Year, thenby Color. The reportshows dataaggregated

at� threelevels. Going up the levels is called rolling-up the
�

data. Going down is called
drilling-do

Á
wn into

.
thedata.Dataaggregatedateachdistinctlevel producesasub-total.

Table3asuggestscreating2N
Â

aggre� gationcolumnsfor a roll-up of N
�

elements.� Indeed,
Chris

�
Daterecommendsthisapproach(Date,1996).His designgives riseto Table3b.

The representationof Table 3a is not relationalbecausethe empty cells (presumably
NULL v$ alues),cannotform akey. Representation3b is anelegantsolutionto thisproblem,
b

�
ut we rejectedit becauseit impliesenormousnumbersof domainsin theresultingtables.
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Table3a. SalesRoll Up by Modelby Yearby Color.

Sales
by

Ã
Model Sales

by
Ã

Year by Model Sales
Model Year Color by Color by Year by Model

Chevy 1994 Black 50

White
T

40

90

1995 Black 85

White
T

115

200

290

Table3b. SalesRoll-Up by Modelby Yearby Colorasrecommendedby ChrisDate(Date,1996).

Sales
by

Ã
Model Sales

Model Year Color Sales by Year by Model

Chevy 1994 Black 50 90 290

Chevy 1994 White 40 90 290

Chevy 1995 Black 85 200 290

Chevy 1995 White 115 200 290

Table4. An Excelpivot tablerepresentationof Table3 with Fordsalesdataincluded.

Year/Color

1994 1995Sum
sales

Model
(

Black White
1994
total



Black White

1995
total


 Grand
total



Chevy 50 40 90 85 115 200 290
F

Ä
ord 50 10 60 85 75 160 220

Grandtotal 100 50 150 170 190 360 510

W
+

ewereintimidatedby theprospectof adding64columnsto theanswersetof a6D TPCD
query¦ . Therepresentationof Table3bisalsonotconvenient—thenumberof columnsgrows
as� thepowersetof thenumberof aggregatedattributes,creatingdifficult namingproblems
and� very long names.Theapproachrecommendedby Dateis reminiscentof pivot tables
found in Excel (andnow all otherspreadsheets)(MicrosoftExcel,0 1995),a populardata
analysis� featureof Excel2

Å
.

Table4 an alternative representationof Table3a (with Ford Salesdataincluded)that
illustrates

.
how apivot tablein ExcelcanpresenttheSalesdataby Model,by Year, andthen

by
�

Color. Thepivot operatortransposesaspreadsheet:typically aggregatingcellsbasedon
v$ aluesin thecells. Ratherthanjust creatingcolumnsbasedon subsetsof columnnames,
pi� vot createscolumnsbasedonsubsetsof columnvaluesÆ . This is amucÇ h lar

¢
gerset. If one
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pi� vots on two columnscontainingN
�

and� M v$ alues,the resultingpivot tablehasN
� È

M
v$ alues.Wecringeat theprospectof somany columnsandsuchobtusecolumnnames.

Ratherthanextendtheresulttableto have many new columns,a moreconservative ap-
proach� preventstheexponentialgrowthof columnsbyoverloadingcolumnvalues.Theidea
isto introduceanALL value.Table5ademonstratesthisrelationalandmoreconvenientrep-
resentation.É Thedummyvalue“ALL” hasbeenaddedto fill in thesuper-aggregationitems:

Table5ais not really a completelynew representationor operation.SinceTable5ais a
relation,É it is not surprisingthat it canbebuilt usingstandardSQL.TheSQL statementto
b

�
uild thisSalesSummary table

�
from theraw Sales data

 
is:

SELECT Ê ALL Ë Ì Í ALL Î Ï Ð ALL Ñ Ò SUM(Sales)
FROM Sales
WHERE Model Ó Ô Chevy Õ

UNION
SELECT Model Ö × ALL Ø Ù Ú ALL Û Ü SUM(Sales)

FROM Sales
WHERE Model Ý Þ Chevy ß
GROUP BY Model

UNION
SELECT Model à Year á â ALL ã ä SUM(Sales)

FROM Sales
WHERE Model å æ Chevy ç
GROUP BY Model è Year

UNION
SELECT Model é Year ê Color ë SUM(Sales)

FROM Sales
WHERE Model ì í Chevy î
GROUP BY Model ï Year ð Color ñ

This
�

is asimple3-dimensionalroll-up. Aggregatingover N
�

dimensions
 

requiresN
�

such�
unions."

Table5a. Salessummary.

Model
(

Year Color Units

Chevy 1994 Black 50

Chevy 1994 White 40

Chevy 1994 ALL
ò 90

Chevy 1995 Black 85

Chevy 1995 White 115

Chevy 1995 ALL
ò 200

Chevy ALL ALL 290
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Roll-up is asymmetric—noticethatTable5aaggregatessalesby yearbut not by color.
These

�
missingrowsareshown in Table5b.

Table5b. Salessummaryrowsmissingform Table5ato convert theroll-up into acube.

Model
(

Year Color Units

Chevy ALL Black
R

135

Chevy ALL White
T

155

Theseadditionalrows could be capturedby addingthe following clauseto the SQL
statement� above:

UNION
SELECT Model ó ô ALL õ ö Color ÷ SUM ø Sales ù

FROM Sales
WHERE Model ú û Chevy ü
GROUP BY Model ý Color þ

The
�

symmetricaggregationresultis a tablecalleda cr� oss-tabulation, o0 r cr� osstab for
%

short.� Tables5aand5baretherelationalformof thecrosstabs,but crosstabdatais routinely
displayed

 
in themorecompactformatof Table6.

This
�

crosstabis a two-dimensionalaggregation. If otherautomobilemodelsareadded,
it becomesa3D aggregation.For example,datafor Fordproductsaddsanadditionalcross
tab
�

plane.
Thecross-tab-arrayrepresentation(Tables6aandb) is equivalentto therelationalrepre-

sentation� usingtheALL v$ alue.Bothgeneralizeto anN
�

-dimensionalcrosstab. Mostreport
writers! build in a cross-tabsfeature,building the report up from the underlyingtabular
data

 
suchasTable5. Seefor exampletheTRANSFORM-PIVOT operator& of MicrosoftAc-

cess* (MicrosoftAccessRelationalDatabaseManagementSystemfor Windows,Language
Refer

o
ence,0 1994).

Table6a. Chevy salescrosstab.

Chevy 1994 1995 Total (ALL)

Black 50 85 135

White
T

40 115 155

Total (ALL) 90 200 290

Table6b. Fordsalescrosstab.

Ford 1994 1995 Total (ALL)

Black 50 85 135

White
T

10 75 85

Total (ALL) 60 160 220
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TherepresentationsuggestedbyTable5andunionedGROUP BYs� “solve” theproblemof
representingÉ aggregatedatain arelationaldatamodel.Theproblemremainsthatexpressing
roll-up, andcross-tabquerieswith conventionalSQL is daunting.A six dimensioncross-
tab

�
requiresa 64-way unionof 64 differentGROUP BY operators& to build theunderlying

representation.
There
�

is anothervery importantreasonwhy it is inadequateto useGROUPBYs. The
resultingrepresentationof aggregationis toocomplex toanalyzefor optimization.Onmost
SQL

N
systemsthiswill resultin 64scansof thedata,64sortsor hashes,anda longwait.

3.
ÿ

CUBE and ROLLUP operators

The
�

generalizationof groupby, roll-up andcross-tabideasseemsobvious: Figure3 shows
the

�
conceptfor aggregationup to 3-dimensions.ThetraditionalGROUP BY generatesn the

N
�

-dimensionaldatacubecor� e. TheN
� �

1 lower-dimensionalaggregatesappearaspoints,
lines,

¢
planes,cubes,or hyper-cubeshangingoff thedatacubecore.

The datacubeoperatorbuilds a tablecontainingall theseaggregatevalues. The total
aggre� gateusingfunctionf

� �
is

.
representedasthetuple:

ALL � ALL � ALL � � � � � ALL 	 f 
 � �
Pointsin higherdimensionalplanesor cubeshave fewerALL v$ alues.

F
'

igure 3. TheCUBE operatoris the N
�

-dimensionalgeneralizationof simpleaggregatefunctions.The0D data
cubeis apoint. The1D datacubeis a line with apoint. The2D datacubeis acrosstabulation,aplane,two lines,
andapoint. The3D datacubeis acubewith threeintersecting2D crosstabs.



           

P1:
�

RPS/ASH P2:RPS

DataMining andKnowledgeDiscovery KL411-02-Gray March5, 1997 16:21

DATA CUBE: A RELATIONAL AGGREGATION OPERATOR 39
�

F
'

igure4. A 3D datacube(right) built from thetableat theleft by theCUBE statementat thetopof thefigure.

Creating
�

adatacuberequiresgeneratingthepowerset(setof all subsets)of theaggrega-
tion

�
columns.SincetheCUBE is

.
anaggregationoperation,it makessenseto externalizeit

by
�

overloadingtheSQLGROUP BY operator& . In fact,thecubeis arelationaloperator, with
GR



OUPBY andROLL UP asdegenerateformsof theoperator. This canbeconveniently

specified� by overloadingtheSQLGROUP BY3
�
.

Figure
�

4 hasanexampleof thecubesyntax.To giveanother, herefollowsastatementto
aggre� gatethesetof temperatureobservations:

SELECT day � nation � MAX � Temp �
FROM Weather
GROUP BY CUBE

Day � Time � AS day �
Country � Latitude � Longitude �

AS nation �
The semanticsof the CUBE operator& are that it first aggregatesover all the � select

list� attrib� utesin theGROUP BY clause* asin a standardGROUP BY. Then,it UNIONs
in eachsuper-aggregateof theglobalcube—substitutingALL for theaggregationcolumns.
If

B
thereare N

�
attrib� utesin the � select list� ,0 therewill be 2N

�  
1 super-aggregate

v$ alues.If thecardinalityof the N
�

attrib� utesareC1 ! C2 " # # # " CN
� then

�
thecardinalityof the
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resultingcuberelationis $ % Ci & 1' . Theextravaluein eachdomainis ALL. For example,
the

�
SALEStablehas2 ( 3

� )
3

� *
18rows,while thederived datacubehas3 + 4

, ,
4

, -
48

,
rows.

If
B

theapplicationwantsonlyaroll-upordrill-down report,similarto thedatain Table3a,
the

�
full cubeis overkill. Indeed,somepartsof the full cubemay be meaningless.If the

answer� setis not is notnormalized,theremaybefunctionaldependenciesamongcolumns.
For example,adatefunctionallydefinesaweek,month,andyear. Roll-upsby year, week,
day

 
arecommon,but acubeon thesethreeattributeswouldbemeaningless.

The
�

solutionis to offer ROLLUP in
.

additionto CUBE. ROLLUP produces� just thesuper-
aggre� gates:

.
v1 / v2 0 1 1 1 0 vn 2 f 3 4 4 5

3 v1 6 v2 7 8 8 8 7 ALL 9 f : ; ; <
= = =

: v1 > ALL ? @ @ @ ? ALL A f B C C D
B ALL E ALL F G G G F ALL H f I J J K

Cumulati
�

ve aggregates,like runningsumor runningaverage,work especiallywell with
ROLLUP because

�
the answerset is naturally sequential(linear) while the full data

cube is naturallynon-linear(multi-dimensional).ROLLUP and� CUBE mustbeorderedfor
cumulati* veoperatorsto apply.

W
+

e investigatedletting the programmerspecify the exact list of super-aggregatesbut
encountered� complexities relatedto collation, correlation,and expressions.We believe
ROLLUP and� CUBE will! serve theneedsof mostapplications.

3.1.
L

TheGROUP, CUBE,ROLLUPalgebra

The
�

GROUP BY M ROLLUP,0 andCUBE operators& haveaninterestingalgebra.TheCUBE of& a
ROLLUP or& GROUP BY is aCUBE. TheROLLUP of& aGROUP BY is aROLLUP. Algebraically,
this

�
operatoralgebracanbestatedas:

CUBE N ROLLUP O P CUBE
ROLLUP Q GROUP BY R S ROLLUP

So
N

it makessenseto arrangetheaggregationoperatorsin thecompoundorderwherethe
“most powerful” cubeoperatorat thecore,thena roll-up of thecubesandthena groupby
of& theroll-ups. Of course,onecanuseany subsetof thethreeoperators:

GROUP BY T select listU
ROLLUP V select listW

CUBE X select listY
The
�

following SQL demonstratesa compoundaggregate.The“shape”of theansweris
diagrammed

 
in figure5:
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F
'

igure 5. Thecombinationof aGROUP BY on Manufacture,ROLLUP on year, month,day, andCUBE on some
attributes.Theaggregatevaluesarethecontentsof thecube.

SELECT Manufacturer Z Year [ Month \ Day ] Color ^ Model,0
SUM _ price ` AS Revenue

FROM Sales
GROUP BY Manufacturer a

ROLLUP Year b Time c AS Year d
Month e Time f AS Month g
Day h Time i AS Day j

CUBE Color k Model l

3.2.
L

A syntaxproposal

W
+

ith theseconceptsin place,thesyntacticextensionto SQL is fairly easilydefined.The
current* SQLGROUP BY syntax� is:

GROUP BYm n
column nameo p collate clauseq r s s s t

To supporthistogramsandotherfunction-valuedaggregations,we first extendtheGROUP
BY syntax� to:

GROUP BY u aggregation listvw
aggregation listx y y z{ | }

column name~ � � expression� ��
AS � correlation name� �� �
collate clause� �� � � � �

These
�

extensionsareindependentof theCUBE operator& . They remedysomepre-existing
problems� with GROUP BY. Many systemsalreadyallow theseextensions.
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No
�

w extendSQL’sGROUP BY operator:&
GROUP BY � � aggregation list� ��

ROLLUP � aggregation list� ��
CUBE � aggregation list� �

3.3.
�

A discussionof theALL value

Is theALL v$ aluereallyneeded?EachALL v$ aluereallyrepresentsaset—thesetover which
the

�
aggregatewas computed4

�
. In the Table5 SalesSummary data

 
cube,the respective

sets� are:

Model � ALL � ALL � Model   ¡ ¢ Chevy £ Ford¤
Year ¥ ALL ¦ ALL § Year ¨ © ª 1990 « 1991 ¬ 1992­
Color ® ALL ¯ ALL ° Color ± ² ³ red ´ white µ blue¶

In reality, wehavestumbledin to theworld of nestedrelations—relationscanbevalues.
This

�
is amajorstepfor relationalsystems.Thereis muchdebateonhow to proceed.In this

section,� webriefly discussthesemanticsof ALL in thecontext of SQL.Thisdesignmaybe
eased� by SQL3’s supportfor set-valuedvariablesanddomains.

W
+

e can interpreteachALL v$ alue as a context-sensitive token representingthe set it
represents.Thinkingof theALL v$ alueasthecorrespondingsetdefinesthesemanticsof the
relationalÉ operators(e.g.,equals and� IN).

X
A functionALL · ¸ generatesn thesetassociated

with! thisvalueasin theexamplesabove. ALL ¹ º applied� to any othervaluereturnsNULL.
The
�

introductionof ALL createssubstantialcomplexity. Wedonotaddit lightly—adding
it touchesmany aspectsof theSQL language.To namea few:

» ALL becomes
�

anew keyworddenotingthesetvalue.¼ ALL ½ NOT¾ ALLOWED is addedto the column definition syntaxand to the column
attrib� utesin thesystemcatalogs.¿ The
�

setinterpretationguidesthemeaningof therelationaloperatorsÀ Á Â INÃ .

Therearemoresuchrules,but thisgivesahint of theaddedcomplexity. Asan aside,to
be

�
consistent,if ALL representsÉ a setthentheothervaluesof thatdomainmustbetreated

as� singletonsetsin orderto haveuniformoperatorson thedomain.
It
B

is convenientto know whena columnvalueis anaggregate. Oneway to testthis is
to

�
applytheALL Ä Å functionto thevalueandtestfor a non-NULL v$ alue. This is souseful

that
�

we proposea BooleanfunctionGROUPING Æ Ç that,
�

given a selectlist element,returns
TRUE if theelementis anALL v$ alue,andFALSE otherwise.&

3.4.
�

AvoidingtheALL value

V
�

eteranSQL implementerswill be terrifiedof theALL value—like NULL, it will create
many specialcases.Furthermore,theproposalin Section3.3. requiresunderstandingof
sets� asvalues. If thegoal is to help reportwriter andGUI visualizationsoftware,thenit
may# besimplerto adoptthefollowing approach5

È
:
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É Use
Ê

theNULL v$ aluein placeof theALL v$ alue.Ë Do
Ì

not implementtheALL Í Î function.
%

Ï ImplementtheGROUPING Ð Ñ functionto discriminatebetweenNULL and� ALL.

In thisminimalistdesign,toolsanduserscansimulatetheALL v$ alueasby for example:

SELECT Model Ò Year Ó Color Ô SUM Õ sales Ö ×
GROUPING Ø Model Ù Ú
GROUPING Û Year Ü Ý
GROUPING Þ Color ß

FROM Sales
GROUP BY CUBE Model à Year á Color â

Where
+

ver theALL v$ alueappearedbefore,now thecorrespondingvaluewill beNULL in
.

the
data
 

field andTRUE in thecorrespondinggroupingfield. For example,theglobalsumof
figure

ã
4 will bethetuple:

ä
NULL å NULL æ NULL ç 941 è TRUE é TRUE ê TRUE ë

ratherÉ thanthetupleonewouldgetwith the“real” cubeoperator:

ì
ALL í ALL î ALL ï 941 ð ñ

Using
Ê

the limited interpretationof ALL as� above excludesexpressingsomemeaningful
queries¦ ( justastraditionalrelationalmodelmakesit hardtohandledisjunctiveinformation).
Ho

)
wever, theproposalmakesit possibleto expressresultsof CUBE as� a singlerelationin

the
�

currentframework of SQL.

3.5.
�

Decorations

The
�

next stepis to allow decor
ò

ations,0 columnsthatdonotappearin theGROUP BY b
�
ut that

are� functionallydependenton thegroupingcolumns.Considertheexample:

SELECT department ó name ô sum õ sales ö
FROM sales JOIN department USING ÷ departmentø number ù
GROUP BY sales ú departmentû number ü

Thedepartment ý name column* in theanswersetis notallowedin currentSQL,since
it

.
is neitheranaggregationcolumn(appearingin theGROUP BY list)

¢
nor is it anaggregate.

It is just thereto decoratetheanswersetwith thenameof thedepartment.Werecommend
the

�
rule that if

þ
a decoration column* (or columnvalue) is functionally dependenton the

aggre� gationcolumns,thenit maybeincludedin theSELECT answer� list.
Decoration’
Ì

s interactwith aggregatevalues. If theaggregatetuple functionallydefines
the

�
decorationvalue,thenthevalueappearsin theresultingtuple. Otherwisethedecoration
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field is NULL. For example,in thefollowing querythecontinent is not specifiedunless
nationÿ is.

SELECT day � nation � MAX �
Temp � �

continent � nation � AS continent
FROM Weather
GROUP BY CUBE

Day � Time � AS day 	
Country 
 Latitude � Longitude �

AS nation

The
�

querywouldproducethesampletuples:

Table7. DemonstratingdecorationsandALL.

day nation max 
 temp � continent

25 � 1 � 1995 USA 28 North America

ALL USA 37 North America

25 � 1 � 1995 ALL 41 NULL

ALL ALL 48 NULL

3.6.
�

Dimensionsstar, andsnowflakequeries

While
+

strictly not part of the CUBE and� ROLLUP operator& design,thereis an important
database

 
designconceptthatfacilitatestheuseof aggregationoperations.It is commonto

recordÉ eventsandactivities with a detailedrecordgiving all thedimensions
�

of& theevent.
For example,thesalesitem recordin figure6 givestheid of thebuyer, seller, theproduct
purchased,� theunitspurchased,theprice,thedateandthesalesoffice thatis creditedwith
the

�
sale.Thereareprobablymany moredimensionsaboutthissale,but thisexamplegives

the
�

idea.

F
'

igure 6. A snowflake schemashowing thecorefact tableandsomeof themany aggregationgranularitiesof
the



coredimensions.
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Thereare side tablesthat for eachdimensionvalue give its attributes. For example,
the

�
SanFranciscosalesoffice is in the NorthernCaliforniaDistrict, the WesternRegion,

and� the US Geography. This fact would be storedin a dimensiontable for the Office6
�
.

The
�

dimensiontablemayalsohave decorationsdescribingotherattributesof thatOffice.
Thesedimensiontablesdefinea spectrumof aggregationgranularitiesfor thedimension.
Analysists

F
might want to cubevariousdimensionsandthenaggregateor roll-up thecube

up" atany or all of thesegranularities.
The
�

generalschemaof figure6 isso commonthatit hasbeengiven aname:asno� wflake
schema� . Simplerschemasthathaveasingledimensiontablefor eachdimensionarecalleda
star� schema. Queriesagainsttheseschemasarecalledsno� wflakequeriesand� star� queries
respectiÉ vely.

Thediagramof figure6 suggeststhatthegranularitiesform a purehierarchy. In reality,
the

�
granularitiestypically form a lattice. To take just a very simpleexample,daysnestin

weeks! but weeksdo not nestin monthsor quartersor years(someweeksarepartly in two
years).� Analystsoften think of datesin termsof weekdays,weekends,saledays,various
holidays(e.g.,Christmasandthe time leadingup to it). So a fuller granularitygraphof
figure

ã
6 would be quite complex. Fortunately, graphicaltools like pivot tableswith pull

do
 

wn lists of categorieshidemuchof this complexity from theanalyst.

4. Addr essingthe data cube

Section
N

5 discusseshow to computedatacubesand how userscan add new aggregate
operators.& This sectionconsidersextensionsto SQL syntaxto easilyaccesstheelements
of& adatacube—makingit recursiveandallowing aggregatesto referencesub-aggregates.

It is not clearwhereto draw the line betweenthe reporting-visualizationtool andthe
query¦ tool. Ideally, applicationdesignersshouldbeableto decidehow to split thefunction
between

�
the query systemand the visualizationtool. Given that perspective, the SQL

system� mustbeaTuring-completeprogrammingenvironment.
SQL3
N

definesa Turing-completeproceduralprogramminglanguage. So, anything is
possible.� But,many thingsarenoteasy. Ourtaskistomakesimpleandcommonthingseasy.

Themostcommonrequestis for percent-of-totalasanaggregatefunction. In SQL this
is computedasanestedSELECTSQLstatements.

SELECT Model � Year � Color � SUM � Sales � �
SUM � Sales � �

(SELECT SUM(Sales)
FROM Sales

WHERE Model IN {  Ford ! " # Chevy $ }
AND

%
Year BETWEEN 1990 AND 1992

)
FROM Sales
WHERE Model IN & ' Ford ( ) * Chevy + ,

AND Year BETWEEN 1990 AND 1992
GROUP BY CUBE Model - Year . Color /
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It seemsnaturalto allow theshorthandsyntaxto nametheglobalaggregate:

SELECT Model 0 Year 1 Color
SUM 2 Sales 3 AS total 4

SUM 5 Sales 6 7 total 8 ALL 9 ALL : ALL ;
FROM Sales
WHERE Model IN < = Ford > ? @ Chevy A B

AND Year BETWEEN 1990 AND 1992
GROUP BY CUBE Model C Year D Color E

Thisleadsintodeeperwater. Thenext stepisadesiretocomputetheinde
þ

xof& avalue—an
indication

.
of how farthevalueis from theexpectedvalue.In asetof N

�
v$ alues,oneexpects

each� item to contributeoneN
�

th
�

to thesum.Sothe1D index of asetof valuesis:

inde
þ

x F G i H I J i K L M j
N O

j
N P

If
B

thevaluesetis two dimensional,thiscommonlyusedfinancialfunctionis anightmare
of& indices. It is bestdescribedin a programminglanguage. The currentapproachto
selecting� afield valuefrom a2D cube w! ould readas:

SELECT v
FROM cube
WHERE row Q R i

AND column S T j
W

+
e recommendthesimplersyntax:

cube U v V W i X Y j Z
as� a shorthandfor the above selectionexpression. With this notationaddedto the SQL
programming� language,it shouldbe fairly easyto computesuper-super-aggregatesfrom
the

�
basecube.

5.
[

Computing cubesand roll-ups

CUBE and� ROLLUP generalizen aggregatesandGROUP BY,0 so all the technologyfor com-
puting� thoseresultsalsoapplyto computingthecoreof thecube(Graefe,1993).Thebasic
technique

�
for computinga ROLLUP is to sort the tableon the aggregatingattributesand

then
�

computethe aggregatefunctions(thereis a moredetaileddiscussionof the kind of
aggre� gatesin a moment.) If theROLLUP result is small enoughto fit in main memory,
it

.
canbecomputedby scanningthe input setandapplyingeachrecordto the in-memory

ROLLUP. A cubeis theunionof many rollups,sothenaivealgorithmcomputesthisunion.
As
F

Graefe(1993)pointsout, thebasictechniquesfor computingaggregatesare:

\ T
�
o minimizedatamovementandconsequentprocessingcost,computeaggregatesat the

lowestpossiblesystemlevel.
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] If possible,usearraysorhashingto organizetheaggregationcolumnsin memory, storing
one& aggregatevaluefor eacharrayor hashentry.^ If theaggregationvaluesarelargestrings,it maybewiseto keepahashedsymboltable
that
�

mapseachstring to an integersothat theaggregatevaluesaresmall. Whena new
v$ alueappears,it is assigneda new integer. With this organization,the valuesbecome
dense
 

andtheaggregatescanbestoredasan N
�

-dimensionalarray._ If thenumberof aggregatesis toolargeto fit in memory, usesortingor hybridhashingto
or& ganizethedataby valueandthenaggregatewith asequentialscanof thesorteddata.` If
B

thesourcedataspansmany disksor nodes,useparallelismto aggregateeachpartition
and� thencoalescetheseaggregates.

Some
N

innovation is neededto computethe a a ALL b b tuples
�

of thecubeandroll-up from
the

�
GROUP BY core.* TheALL v$ alueaddsoneextra valueto eachdimensionin theCUBE.

So,
N

an N
�

-dimensionalcubeof N
�

attrib� uteseachwith cardinalityCi ,0 will have c (C
d

i e 1)
v$ alues. If eachCi f 4 t

,
hen a 4D CUBE is

.
2.4 timeslarger thanthebaseGROUP BY. We

e� xpecttheCi to
�

belarge(tensor hundreds)sothattheCUBE will! beonly a little largerthan
the

�
GROUP BY. By comparison,an N

�
-dimensionalroll-up will addonlyg N recordsÉ to the

answer� set.
Thecubeoperatorallowsmany aggregatefunctionsin theaggregationlist of theGROUP

BY clause.* Assumein this discussionthat thereis a singleaggregatefunction F
h

()
-

being
computed* on an N

�
-dimensionalcube. Theextensionto computinga list of functionsis a

simple� generalization.
Figure 7 summarizeshow aggregatefunctionsare definedand implementedin many

systems.� It defineshow the databaseexecutionengineinitializes the aggregatefunction,
calls* theaggregatefunctionsfor eachnew valueandtheninvokestheaggregatefunctionto
getn thefinal value. More sophisticatedsystemsallow theaggregatefunction to declarea
computation* costsothatthequeryoptimizerknowstominimizecallstoexpensivefunctions.
Thisdesign(exceptfor thecostfunctions)is now partof theproposedSQLstandard.

The
�

simplestalgorithmto computethe cubeis to allocatea handlefor eachcubecell.
When

+
a new tuple: i xj

1 k xj
2 l m m m l xj

N
� n o p arri� ves,theIter q handle r v s functionis called

2
t N

�
times—once
�

for eachhandleof eachcell of the cubematchingthis value. The 2N
�

comes* from thefactthateachcoordinatecaneitherbexj
i or& ALL. Whenall theinput tuples

Figure7. Systemdefinedanduserdefinedaggregatefunctionsareinitializedwith astart()call thatallocatesand
initializesascratchpadcell to computetheaggregate.Subsequently, thenext() call is invoked for eachvalueto be
aggregated.Finally, theend()call computestheaggregatefrom thescratchpadvalues,deallocatesthescratchpad
andreturnstheresult.
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have beencomputed,thesysteminvokes thefinal u v handle w function for eachof thex
(C

d
i y 1)

z
nodesÿ in thecube.Call thisthe2

{ N
|

-algorithm} . Thereis acorrespondingorder-N
�

algorithm� for roll-up.
If
B

thebasetablehascardinalityT
~

,0 the2N
�

-algorithm� in
.

vokestheIter � � function
%

T
~ �

2
t N

�
times.

�
It isoftenfastertocomputethesuper-aggregatesfromthecoreGROUP BY,0 reducing

the
�

numberof callsby approximatelyafactorof T
~

. It isoftenpossibleto computethecube
from thecoreor from intermediateresultsonly M times

�
largerthanthecore.Thefollowing

trichotomy
�

characterizestheoptionsin computingsuper-aggregates.
Consider
�

aggregatingatwodimensionalsetof values� X
�

i j � i
þ �

1 � � � � � I
/ �

j
� �

1 � � � � � J
� �

.
Aggregatefunctionscanbeclassifiedinto threecategories:

Distrib utive: Aggregatefunction F � � is distributive if thereis a function G
� � �

such� that
F
h � �

X
�

i � j
N � � � G

� � �
F

h � �
X

�
i � j

N   i
þ ¡

1 ¢ £ £ £ ¢ I
/ ¤ ¥ ¦

j
� §

1 ¨ © © © J
� ª «

. COUNT ¬ ­ ® MIN ¯ ° ± MAX ² ³ ´
SUM µ ¶ are� all distributive. In fact, F · G

�
for all but COUNT ¸ ¹ . G

� º
SUM » ¼ for the

COUNT ½ ¾ function.
%

Onceorderis imposed,thecumulative aggregatefunctionsalsofit
in
.

thedistributiveclass.
Algebraic: AggregatefunctionF ¿ À is algebraicif thereis anM-tuplevaluedfunctionG

� Á Â
and� afunctionH

Ã Ä Å
such� thatF

h Æ Ç
X

�
i È j

N É Ê Ë H
Ã Ì Í

G
� Î Ï

X
�

i Ð j
N Ñ i

þ Ò
1 Ó Ô Ô Ô Ó I

/ Õ Ö ×
j

� Ø
1 Ù Ú Ú Ú Ù J

� Û Ü
.

Average(),standarddeviation,MaxN(), MinN(), centerof& mass()areall algebraic.For
A
F

verage,the function G
� Ý Þ

recordsÉ thesumandcountof thesubset.The H
Ã ß à

function
%

adds� thesetwo componentsand then divides to producethe global average. Similar
techniques
�

applyto finding the N
�

lar
¢

gestvalues,thecenterof massof groupof objects,
and� otheralgebraicfunctions. Thekey to algebraicfunctionsis thata fixed sizeresult
(an
-

M
á

-tuple)cansummarizethesub-aggregation.
Holistic:

â
Aggre

F
gatefunction F

h ã ä
is

.
holistic if thereis no constantboundon the sizeof

the
�

storageneededto describea sub-aggregate. That is, thereis no constantM ,0 such
that
�

an M
á

-tuple characterizesthe computationF
h å æ

X
�

i ç j
N è i

þ é
1 ê ë ë ë ê I

/ ì í
. Median(),

MostFrequent()(alsocalledtheMode()),andRank()arecommonexamplesof holistic
functions.
%

W
+

e know of no moreefficient way of computingsuper-aggregatesof holistic functions
than

�
the 2N

�
-algorithmusingthe standardGROUP BY techniques.

�
We will not saymore

about� cubesof holistic functions.
Cubes
�

of distributive functionsarerelatively easyto compute. Given that the core is
representedasanN

�
-dimensionalarrayin memory, eachdimensionhaving sizeCi î 1, the

N
� ï

1 dimensionalslabscanbecomputedby projecting(aggregating)onedimensionof
the

�
core.For examplethefollowing computationaggregatesthefirst dimension.

CUBE ð ALL ñ xj
2 ò ó ó ó ò xj

N
� ô õ F ö ÷ CUBE ø iù ú

xû
2 ü ý ý ý ü xû

N
� þ ÿ i

ù �
1 � � � � C1

� � �

N
�

such� computationscomputethe N
� �

1 dimensionalsuper-aggregates.Thedistributive
natureof thefunction F()

	
allowsaggregatesto beaggregated.Thenext stepis to compute

the
�

next lower dimension—an(...ALL,...,
 ALL...) case.Thinking in termsof thecrosstab,
one� hasa choiceof computingtheresultby aggregatingthelower row, or aggregatingthe
right� column(aggregate(ALL,
 
 ) o

�
r ( � ,
 ALL)).

�
Eitherapproachwill give thesameanswer.

Thealgorithmwill bemostefficient if it aggregatesthesmallerof thetwo (pick the � with�
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the
�

smallestCi ).
�

In thisway, thesuper-aggregatescanbecomputeddroppingonedimension
at� a time.

Algebraicaggregatesaremoredifficult to computethandistributive aggregates.Recall
that

�
analgebraicaggregatesaves its computationin a handleandproducesa resultin the

end—at� theFinal � � call.� Average � � for examplemaintainsthecountandsumvalues
in

�
its handle.Thesuper-aggregateneedstheseintermediateresultsratherthanjust theraw

sub-aggre� gate.An algebraicaggregatemustmaintainahandle(M-tuple)for eachelement
of� the cube(this is a standardpart of the group-byoperation). When the coreGROUP
BY operation� completes,the CUBE algorithm passesthe set of handlesto eachN

� �
1

dimensional
�

super-aggregate.Whenthis is donethehandlesof thesesuper-aggregatesare
passed� to the super-superaggregates,andso on until the (ALL,
 ALL,
 � � � ,
 ALL)

�
aggregate

hasbeencomputed.Thisapproachrequiresanew call for distributiveaggregates:

Iter� super  ! handle " # handle $
which� folds thesub-aggregateon theright into thesuperaggregateon the left. Thesame
ordering� idea(aggregateon thesmallestlist) appliesateachhigheraggregationlevel.

Interestingly
%

, thedistributive, algebraic,andholistic taxonomyis veryusefulin comput-
ingaggregatesfor paralleldatabasesystems.In thosesystems,aggregatesarecomputedfor
each� partitionof a databasein parallel.Thentheresultsof theseparallelcomputationsare
combined.� Thecombinationstepisverysimilarto thelogicandmechanismusedin figure8.

If
%

the datacubedoesnot fit into memory, array techniquesdo not work. Ratherone
musteitherpartitionthecubewith ahashfunctionor sortit. Thesearestandardtechniques
for computingtheGROUP BY. Thesuper-aggregatesarelikely to beordersof magnitude
smaller� thanthecore,sothey arevery likely to fit in memory. Sortingis especiallyconve-
nient for ROLLUP since� theuseroftenwantstheanswersetin a sortedorder—sothesort
must& bedoneanyway.

It is possiblethatthecoreof thecubeis sparse.In thatcase,only thenon-nullelements
of� thecoreandof thesuper-aggregatesshouldberepresented.Thissuggestsahashingor a
B-treebeusedastheindexing schemefor aggregationvalues(MethodandApparatusfor
Storing

'
andRetrievingMulti-DimensionalData in ComputerMemory,
 1994).

6.
(

Maintaining cubesand roll-ups

SQL
)

Server 6.5 hassupportedthe CUBE andROLLUP operatorsfor abouta yearnow.
W

*
e have beensurprisedthatsomecustomersusetheseoperatorsto computeandstorethe

cube.� Thesecustomersthendefinetriggersontheunderlyingtablessothatwhenthetables
change,� thecubeis dynamicallyupdated.

This of courseraisesthe question:how canoneincrementallycompute(user-defined)
aggre� gatefunctionsafter the cubehasbeenmaterialized?Harinaraynet al. (1996)have
interestingideason pre-computinga sub-cubesof the cubeassumingall functionsare
holistic.

+
Ourview isthatusersavoid holistic functionsby usingapproximationtechniques.

Most functionswe seein practiceare distributive or algebraic. For example,medians
and� quartilesare approximatedusing statisticaltechniquesrather than being computed
e� xactly.
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F
.

igure8. (Top)computingthecubewith aminimalnumberof callsto aggregationfunctions.If theaggregation
operatoris algebraicor distributive, thenit is possibleto computethecoreof thecubeasusual. (Middle) then,
the

/
higherdimensionsof the cubearecomputedby calling the super-iterator function passingthe lower-level

scratch-pads.(Bottom)oncean N
0

-dimensionalspacehasbeencomputed,theoperationrepeatsto computethe
N

0 1
1 dimensionalspace.This repeatsuntil N

0 2
0.

The
3

discussionof distributive, algebraic,andholistic functionsin the previous section
w� as completelyfocusedon SELECTstatements,not on UPDATE, INSERT, or DELETE
statements.�

Surprisingly
)

, the issuesof maintaininga cubearequite differentfrom computingit in
the

�
first place. To give a simpleexample: it is easyto computethe maximumvalue in

a� cube—maxis a distributive function. It is alsoeasyto propagateinsertsinto a “max”
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,

N
�

-dimensionalcube.Whenarecordis insertedinto thebasetable,justvisit the2N
�

super� -
aggre� gatesof this recordin thecubeandtake themaxof thecurrentandnew value. This
computation� canbeshortened—ifthenew value“loses” onecompetition,thenit will lose
in

�
all lower dimensions.Now supposea deleteor updatechangesthe largestvaluein the

base
4

table. Then2N
5

elements� of thecubemustberecomputed.Therecomputationneeds
to

�
find theglobalmaximum.Thisseemsto requirearecomputationof theentirecube.So,

maxis adistributive for SELECT and� INSERT,
 but it is holistic for DELETE.
This
3

simpleexamplesuggeststhatthereareorthogonalhierarchiesforSELECT,
 INSERT,

and� DELETE functions

6
(updateis justdeleteplusinsert). If afunctionisalgebraicfor insert,

update,7 anddelete(count()andsum()aresucha functions),thenit is easyto maintainthe
cube.� If thefunction is distributive for insert,update,anddelete,thenby maintainingthe
scratchpads� for eachcell of thecube,it is fairly inexpensive to maintainthecube. If the
function

6
is delete-holistic(asmaxis) thenit is expensiveto maintainthecube.Theseideas

deserv
�

emorestudy.

7. Summary

Thecubeoperatorgeneralizesandunifiesseveralcommonandpopularconcepts:

aggre� gates,
group8 by,
histograms,
roll-ups� anddrill-downsand,
cross� tabs.

The
3

cubeoperatoris basedonarelationalrepresentationof aggregatedatausingtheALL
v9 alueto denotethesetover whicheachaggregationis computed.In certaincasesit makes
sense� to restrictthecubeoperatorto justa roll-up aggregationfor drill-down reports.

Thedatacubeis easyto computefor awideclassof functions(distributiveandalgebraic
functions). SQL’s basicsetof five aggregatefunctionsneedscarefulextensionto include
functions

6
suchasrank,N

�
tile,

�
cumulative, andpercentof total to easetypicaldatamining

operations.� TheseareeasilyaddedtoSQLbysupportinguser-definedaggregates.Theseex-
tensions

�
requireanew super-aggregatemechanismto allow efficientcomputationof cubes.
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Notes
<

1. Thesecriticismsledto aproposalto includethesefeaturesin thedraftSQLstandard(ISO/IECDBL:MCI-006,
1996).

2. It seemslikely thata relationalpivot operatorwill appearin databasesystemsin thenearfuture.
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3. An earlierversionof this paper(Gray et al., 1996)andthe Microsoft SQL Server 6.5 productimplemented
a slightly differentsyntax. They suffix theGROUP BY clausewith a ROLLUP or CUBE modifier. The SQL
Standardsbodychoseaninfix notationsothatGROUP BY andROLLUP andCUBE couldbemixedin a single
statement.Theimproved syntaxis describedhere.

4.
=

This is distinctfrom sayingthatALL representsoneof themembersof theset.
5. This is thesyntaxandapproachusedby Microsoft’s SQLServer (version6.5).
6. Databasenormalizationrules(Date,1995)wouldrecommendthattheCaliforniaDistrict bestoredonce,rather

than
/

storingit oncefor eachOffice. Sotheremightbeanoffice,district,andregion tables,ratherthanonebig
denormalizedtable.Queryusersfind it convenientto usethedenormalizedtable.
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