Histogram-Based Solutions to
Diverse Database Estimation Problems

Yannis loannidis’
Viswanath Poosala
Computer Sciences Department, University of Wisconsin, Madison, Wi 53706
{yannis,poosalg@cs.wisc.edu

Abstract

Many current database systems use some form of histograms to approximate the frequency distribution
of values in the attributes of relations and based on them estimate some query result sizes and access plan
costs. In this paper, we overview the line of research on histograms that we have followed at the Univ.
of Wisconsin. Our goal has been to identify classes of histograms that combine three features in most
realistic cases: (i) they produce estimates with small errors, (ii) they are inexpensive to construct, use,
and maintain, and (iii) they can be used for many diverse estimation problems. Based on that goal, we
present several results, which eventually point towards a class of histograms that are practical, close to
optimal, and effective in estimating sizes of query results, frequency distributions of attribute values in
query results, and even costs of accesses using secondary indices.

1 Introduction

Database management systems (DBMSs) contain several modules that require estimates of the sizes of query re-
sults or of the costs of queries and query access plans. First, the query optimizer needs size estimates so that it
can plug them into cost formulas to estimate the costs of access plans. These cost estimates are then used to deter-
mine which plan is expected to be the cheapest to execute the corresponding query. Second, a sophisticated user
interface needs size and cost estimates to provide them as feedback to users before a query is actually executed,
as a way to detect errors in the query or misconceptions about the database.

Both size and cost estimations are usually based on statistics that are maintained in the database catalogs.
In many systems (e.g., DB2, Informix, Ingres, Sybase, Microsoft SQL Server), these statistics take the form of
histograms, which represent approximations of the frequency distributions of values in attributes of the database
relations. These approximations are then used to obtain the necessary estimates.

For the past few years, we have been working on identifying classes of histograms that are desirable for var-
ious estimation problems [IC93, 10a93, IP95]. In this paper, we provide an overview of several earlier and some
more recent results, which eventually point towards a class of histograms that are practical, close to optimal, and
effective in many estimation problems.

tPartially supported by the National Science Foundation under Grants IRI-9113736 and IRI-9157368 (PYI Award), by Lockheed as
part of an MDDS contract, and by grants from IBM, DEC, HP, AT&T, Informix, and Oracle
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2 Definitions

2.1 Frequency Distributions of Values

Given an attribute of a relation, tlieequency distribution of its valuas a set of pairs indicating, for each value

in the attribute’s domain, the number of tuples in the relation where the value appears. As an example, consider
the simple relatioOLYMPIANIn Table 1. The frequency distribution of the various values in its Department
attribute is shown in Table 2.

OLYMPIAN
Name | Salary Department |
Apollo 60K Energy
Aphrodite | 60K Domestic Affairs
A’t‘r's_ ggi DEefense | Department || Frequency
rtemis nergy
Athena 70K Education Generglel;/éart]rigemeﬁlt g
Demeter 60K Agriculture Education 1
Ermis 60K Commerce Domestic Affairs 5
Hefestus | 50K Energy Agriculture 1
Hera 90K | General Management C?)mmerce 1
Hestia 50K Domestic Affairs Justice 1
Poseidon| 80K Defense Energy 3
Pluto 80K Justice : TrT—
Zeus 100K | General Management Table 2: Frequency distribution

Table 1: The OLYMPIAN relation of Department

One can generalize the above and discuss frequency distributions of combinations of multiple attributes. For
example, the joint frequency distribution of the attributes Department and Salary would indicate the numbers
of tuples in the relation where each pair of Department-Salary values occurs. Multi-attribute joint frequency
distributions essentially capture the correlation between the values of the participating attributes. In principle,
such distributions (or their approximations) are required to calculate the size of any query that involves multiple
attributes from a single relation. In practice, however, DBMSs deal with frequency distributions of individual
attributes only, because considering all possible combinations of attributes is very expensive. This essentially
corresponds to what is known as thtribute value independence assumptiand although rarely true, it is
adopted by all current DBMSs. To simplify presentation, with few necessary exceptions, our description below
deals with single-attribute distributions only. Our results, however, hold for the general case.

2.2 Histograms

Below we define histograms in a way that is more general than is common in query optimization. Specifically, a
histogramof some attribute is an approximation of the frequency distribution of its values obtained as follows:
the (attribute value,frequency) pairs of the distribution are partitionecbintizets the frequency of each value

in a bucket is approximated by the average of the frequencies of all values in the bucket; and the set of values
in a bucket is usually approximated in some compact fashion as well. Note that, although it is uncommon in
database histograms, in principle, the ranges of attribute values grouped in two buckets could overlap. Also note
that a histogram with a single bucket generates the same approximate frequency for all attribute values. Such a
histogram is callettivial and corresponds to making theiform distribution assumptioover the entire attribute
domain.
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Histogram H1 Histogram H2 Histogram H3
Frequency| Approximate|| Frequency| Approximate| Frequency| Approximate
Department in Bucket Frequency|| in Bucket Frequency|| in Bucket Frequency
Agriculture 1 1.50 1 1.33 11 1.43
Commerce 1.50 1.33 1] 1.43
Defense 1.50 1.33 2] 1.43
Domestic Affairs 1.50 2 2.50 H 1.43
Education 1 1.75 1.33 1] 1.43
Energy 3 1.75 3 2.50 3 3.00
General Manageme 2 1.75 1.33 2] 1.43
Justice r” 1 1.75 1 1.33 1 1.43

Table 3: Three types of histograms for the Department attribute

Continuing on with the example of tf@LYMPIANrelation, Table 3 presents three different histograms on
the Department attribute, all with two buckets. For each histogram, it first shows which frequencies are grouped
in the same bucket by enclosing them in the same shape (box or circle), and then shows the resulting approximate
frequencies, i.e., the averages of all frequencies enclosed by identical shapes.

There are various classes of histograms that systems use or researchers have proposed for estimation. Most
of the earlier prototypes, and still some of the commercial DBMSs, use trivial histograms, i.e., make the uniform
distribution assumption [SAC79]. That assumption, however, rarely holds in real data and estimates based on
it usually have large errors [Chr84, IC91]. Excluding trivial ones, the histograms that are typically used by sys-
tems belong to the class efui-widthhistograms, first discussed for database query optimization in Kooi's thesis
[Koo80] (under the nameariable-counthistograms). In such a histogram, there is no overlap among the ranges
of attribute values associated with its buckets, and the size of the range (or the number) of values in each bucket is
the same, independent of the value frequencies. Since these histograms store much more information than trivial
histograms (they typically have 10-20 buckets), their estimations are most often better. Histogram H1 above is
equi-width, since the first bucket contains four values in the range A-D and the second bucket also contains four
values in the range E-J.

Although we are not aware of any system that currently uses histograms in any other class than those men-
tioned above, several more advanced classes have been proposed and are worth discussing. In Kooi's thesis
[Koo80], the reverse of equi-width histograms was also introduced (under thevaaiaigle-rangehistograms).

In such a histogram, the sum of the frequencies of the attribute values associated with each bucket is the same,
independent of the size of the range (or the number) of these values. Piatetsky-Shapiro and Connell gave this
class of histograms the name that is currently used most @ftgridepthor equi-height. Their extensive study

showed that equi-depth histograms have a much lower worst-case and average error for a variety of selection
gueries than equi-width histograms [PSC84]. Muralikrishna and DeWitt [MD88] extended the above work for
multidimensional histograms that are appropriate for multi-attribute selection queries. As mentioned above, our
line of work has focused on identifying optimal histograms (those with the least error in their estimates) and has
introduced serial and end-biased histograms, discussed in detail below.

2.3 Serial and End-biased Histograms

For many types of queries, an important role with respect to optimality is played by the ctasblhistograms

[IC93]. In those, the frequencies of the attribute values associated with each bucket are either all greater or all
less than the frequencies of the attribute values associated with any other bucket. That is, the buckets of a serial
histogram group frequencies that are close to each other with no interleaving. Histogram H1 in Table 3 is not
serial as frequencies 1 and 3 appear in one bucket and frequency 2 appears in the other, while histograms H2 and
H3 are.
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An important subclass of serial histograms is tha¢d-biasechistograms. In those, some number of the
highest frequencies and some number of the lowest frequencies in an attribute are explicitly and accurately main-
tained in separate individual buckets, and the remaining (middle) frequencies are all approximated together in a
single bucket. End-biased histograms are serial since their buckets group frequencies with no interleaving. His-
togram H3 in Table 3 is end-biased, since it accurately maintains the frequency of the Energy Department, while
averaging the frequencies of all others. One could define an intermediate class of histograms as well (subclass of
serial and superclass of end-biased), where the middle frequencies are partitioned into multiple buckets. These
histograms, however, have all the problems of serial histograms and not all of their advantages (both to be dis-
cussed later), and are therefore not interesting.

3 Histogram Effectiveness for Various Estimation Problems

In this section, we focus on four estimation problems. Each of the following subsections deals with one of these
problems, defines a desirable notion of optimality with respect to estimation errors, and then describes our results
regarding optimal or suboptimal but effective classes of histograms. All results assume that histograms maintain
the precise set of values associated with each bucket. We first introduce some notation regarding a histogram
with 3 buckets:

b; Thei-th bucket in the histogran, < ¢ < g (numbering is in no particular order).
n; The number of attribute values placed in budket
Vi The variance of the frequencies of the attribute values placed in biycket

3.1 Result Sizes of Arbitrary Equality Join and Selection Queries

Assume that for every attribute of every relation, a specific number of buckets has been prespecified for a his-
togram approximating its frequency distribution. Our goal is, for each attribute of interest of each relation, to
obtain a single histogram and use that in all queries where the attribute participates. This histogram may not be
optimal in every case, i.e., may not return the closest approximation to the result size of all queries applied on all
possible databases, but should be optimal “on the average”.

Working with this notion of optimality, our work [IC93, 10a93, IP95] has shown the following for tree, function-
free, equality join and selection queries:

e Among all histograms witl# buckets on some attribute, the one that minimizes

Z n; V; 3)

is optimal.
e Optimal histograms belong to the class of serial histograms.

¢ Within the restricted class of end-biased histograms, again the one that minimizes (3) is optimal.

3.2 Frequency Distributions of Attribute Values in Results of Equality Join Queries

In addition to the size of a query result, it is often necessary to obtain good estimates for the overall frequency
distribution of values in some of its attributes. This is useful in optimization of complex queries, because the
distribution of an intermediate result affects the result size and cost of the subsequent operation. It is also useful
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in data partitioning for parallel executions of joins, because a good estimate of the join result distribution helps
taking into account not only the input relations skew but the result skew as well. By partitioning the input relations
so that work is balanced among processors with respect to all skews, response time of a parallel join execution
can be reduced.

Working with the same notion of optimality as in Section 3.1, our work has shown the following for single
equality join queries:

e The same (serial) histograms that are optimal for query result size estimation (identified in Section 3.1) are
also optimal for the estimation of the frequency distributions in any attribute of these query results.

Thus, a single histogram can achieve optimality on multiple fronts.

3.3 Result Sizes of Range Selection Queries

Unlike equality selection predicates, the result size of a range predicate depends on the frequencies of the at-
tribute values as well as the distribution of the values in the attribute’s domain. Based on our work, as well as
on some results from numerical analysis [dB78], we believe that a formal characterization of optimal histograms
is unlikely for this problem. Hence, we have focused mainly on the design and efficient construction of highly
accurate, but not necessarily optimal, histograms. This work is performed in collaboration with researchers from
IBM Almaden and so far has resulted in the following:

e Even if not optimal, the (serial) histograms that are optimal for the previous two estimation problems are
rather effective in estimating the result sizes of range queries as well. Although one would expect that
histograms grouping arbitrary attribute values in buckets would not perform well for range queries, the
fact that serial histograms approximate frequencies very well makes them reasonably accurate for these
queries as well.

e A new class of histograms that accurately maintain the high frequencies in the data is also very effective.
These histograms are similar to end-biased histograms, but permit more than one bucket to group muilti-
ple different frequencies so that each bucket covers a contiguous range of attribute values. They perform
particularly well for skewed distributions, which usually cause the highest errors in estimation.

For range selection queries, both types of histograms significantly improve upon the traditional equi-width and
equi-depth histograms as well as other statistical approximation techniques (e.g., [JC85]). Which of the two is
to be preferred is an issue that we are currently investigating experimentally.

3.4 1/0O Costs of Relation Accesses through Secondary Indices

All the preceding estimation problems require histograms on frequency distributions of attribute values. As men-
tioned earlier, in their general form, some of these problems deal with multi-dimensional (multi-attribute) fre-
guency distributions, which capture thagical correlation between the values of the participating attributes.
There is nothing to prevent us, however, from making one of the dimensions to be the pages of a relation, thus
capturing thephysicalcorrelation of the values in the remaining attribute(s) to these pages. For example, for
the two-dimensional case, we can talk about frequency distributions that represent the number of tuples with a
specific attribute value stored in a specific page, for all such value-page pairs. In other words, such distributions
capture the level of clustering of the data on disk, and can be used (in accurate or approximate form) in many
ways. One of their most interesting uses is in calculating the number of data pages accessed when scanning a re-
lation or processing a selection using an unclustered index. This depends heavily on the level of data clustering
on disk, as the latter (together with the buffer pool size) determines whether or not a page will be fetched more
than once.
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Given the fact that physical correlation distributions cannot be maintained accurately, we propose that they
are approximated by histograms, as done for logical correlation distributions. General questions on histogram
optimality and effectiveness are still part of our investigation. With respect to equality selection using a sec-
ondary index, however, one can show that cost calculation for such plans using physical correlation distributions
is isomorphic to query result size calculation using logical correlation distributions. This observation indicates
the potential of our approach.

4 Histogram Implementation

Based on the above analysis, the importance of serial histograms (and their subclass of end-biased histograms)
for several estimation problems becomes evident. Therefore, we turn our attention to how such histograms can be
implemented. In particular, there are four issues that we briefly discuss: how the relevant data is collected from
the database; how the buckets of the histogram are identified; how the histogram is stored in the database; and how
the histogram is used for estimation. The following discussion addresses only histograms of logical frequency
distributions. The exact same arguments, however, apply to histograms of physical frequency distributions as
well, which are useful for cost estimations (Section 3.4).

4.1 Data Collection
In principle, to construct a histogram on some attribute R.A, one has to first execute the query
selectA, Count (*) from R group by A

to capture its precise frequency distribution. In fact, multiple such queries are usually optimized and executed
together to construct multiple histograms, sharing the access to relation R. Processing the above query is very
efficient if an index exists on A. Otherwise, it may become expensive, especially when the number of different
values in A is high. Since statistics collection is an infrequent operation, this is usually acceptable. When not,
however, sampling can be employed to obtain an approximation of the frequency distribution [PSC84].

4.2 Bucket Identification

Given a frequency distribution, the next step in constructing a histogram for it is identification of buckets. Identi-
fying the optimal histogram among all serial ones takes exponential time in the number of buckets. On the other
hand, identifying the optimal end-biased histogram takes only slightly over linear time in the number of buck-
ets. Moreover, when constructing end-biased histograms where only high frequencies are picked for individual
buckets, sampling can be used to combine data collection and bucket identification. This results in a particu-
larly effective method with respect to both space and time. Something similar is done by DB2/MVS in order
to identify the 10 highest frequencies in each attribute, which are maintained in its catalogs [Wan92]. This ap-
proach will not work when the distribution has relatively many high frequencies and few small ones, in which
case low frequencies will be chosen for individual buckets, because there is no known efficient technique to iden-
tify the lowest frequencies in a distribution. Such distributions, however, are quite rare in practice (they are, in
some sense, the reverse of Zipf distributions), so we believe that the above sampling-based bucket identification
is rather effective.

4.3 Histogram Storage

The problem of storing a histogram (on an individual attribute) is essentially that of storing a two-column re-
lation; one column for attribute values and one for frequencies. Unlike equi-width and equi-depth histograms,
serial histograms are hard to manage because they group arbitrary attribute values into buckets. Since there is
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usually no order-correlation between attribute values and their frequencies, storage of serial histograms essen-
tially requires an index that will lead to the approximate frequency of every individual attribute value. If we
generalize to histograms on combinations of attributes, then multi-dimensional indices become necessary, e.g.,
Grid-Files [NHS84], further increasing the complexity of histogram management.

On the other hand, end-biased histograms require very little storage and no index. One must only store the
attribute values in the individual buckets and their corresponding frequencies. Since all the remaining attribute
values belong in a single bucket, they do not have to be stored explicitly; only their average frequency is enough.
When searching the histogram for the frequency of a value, if the value is not among those explicitly stored, it is
assumed to be in the other bucket. The storage and retrieval efficiency gains compared to serial histograms are
significant.

4.4 Histogram Usage

In principle, the frequency distribution of a single attribute may be viewed as a vector, that of a pair of attributes
as a two-dimensional matrix, and so on. Based on that abstraction, we have shown that query result sizes, query
result distributions, and all other quantities mentioned above can be obtained by multiplication of the appropri-
ate matrices [l0a93]. Since histograms are approximations of frequency distributions, they can also be thought
of as vectors and matrices. Therefore, abstractly, estimation implies multiplying histograms in a linear algebra
fashion. For general serial histograms, this essentially translates into joins, and is clearly impractical. For end-
biased histograms, however, no real matrix multiplication algorithms or joins need to be invoked; more direct
combinations of the simple structures used to hold the histograms are both sufficient and efficient.

5 Histogram Comparison

As shown above, the difference in construction costs between the serial and end-biased histograms is dramatic.
Serial histograms are exponential in the number of buckets, whereas end-biased histograms are almost linear.
Moreover, there is high complexity in the storage and usage of serial histograms. Finally, in several experiments,
we have observed that most often the errors in the estimates based on end-biased histograms are not too far off
from the corresponding (optimal) errors based on serial histograms. Examples of such comparisons are shown in
Figures 1 and 2 [IP95]. These illustrate the relative accuracy’s of serial, end-biased, and traditional histograms
in estimating the result size of a query joining a relation with itself. In Figure 1, the estimation error is plotted as

a function of the number of available buckets, while in Figure 2, it is plotted as a function of the skew in the join
attribute (captured by the parameter of the Zipf distribution). Clearly, the serial and end-biased histograms are
significantly better than the others. Moreover, the end-biased histograms perform almost as well as the serial ones.
Thus, as a compromise between optimality and practicality, we suggest that the optimal end-biased histograms
should be used in real systems.

6 Histogram Weaknesses

As alast note, we would like to point out that there are some cases where serial and end-biased histograms will ei-
ther provide really poor estimates or become very large and unmanageable. First, by their very nature, histograms
make the following assumption:

Uniform Frequency Assumption: All attribute values in a bucket are assumed to have the same fre-
quency.

Clearly, this assumption will not fare well and will cause large errors if most of the attribute values occur with
vastly different frequencies. Second, especially serial histograms have been presented as maintaining the pre-
cise set of attribute values associated with each bucket. As mentioned earlier, although this approach usually
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z=1, M=80 (Join result size: Max=4237541, Min=318246) M=80, Number of buckets=5
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Figure 1: Error as a function of the number of buckets. Figure 2: Error as a function of shevaMmeter of Zipf).

results in good estimates, the required storage makes it impractical. Alternatively, one could make the following

assumption:
Continuous Values Assumption: Only the boundary attribute values of each bucket are explicitly
stored, and all possible intermediate values are assumed to be present in the relation.

Clearly, this assumption will generate poor results if alarge number of attribute values are distributed non-uniformly
in the value domain (as is often the case for floating point attributes). In both these cases, none of the histograms
can approximate the frequency distribution with high accuracy, unless there are as many buckets as frequencies.
We expect that such cases are not very common in real data, so histogram-based techniques will indeed be effec-

tive in estimation.

7 Summary

We have presented an overview of our work on histograms and their effectiveness in several database estimation
problems. We have identified the class of serial histograms as optimal in many cases, and the class of end-biased
histograms as suboptimal but far more practical. Our overall conclusions is that, even when they are not optimal,
these histograms are quite effective, and can therefore be used as universal tools for many database estimation
problems.

Based on the above, we intend to use histograms in building a complete query size/cost estimator. As part
of the foundations of this effort, we are currently working on several problems related to histograms that are
not completely solved yet. First, we are conducting an experimental study to identify robust and effective his-
tograms for estimating result sizes of range queries. Second, we are investigating optimality of various classes
of histograms for estimating access cost to secondary indices. Finally, we are looking into the effect of database
updates on optimal histograms and how to automatically detect the point where histogram recalculation becomes

necessary.
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