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Abstract 

Recently we have proposed an adaptive, random sam- 
pling algorithm for general query size estlmatlon In 
earlier work we analyzed the asymptotic ef’l?clency 
and accuracy of the algorithm, m this paper we mves- 
tlgate Its practlcahty as applied to selects and Jams 
First, we extend our previous analysis to provide ag- 
mficantly improved bounds on the amount of sam- 
plmg necessary for a given level of accuracy Next, 
we provide “sanity bounds” to deal with queries for 
which the underlying data 1s extremely skewed or the 
query result 1s very small Finally, we report on the 
performance of the estlmatlon algorithm as ample- 
mented m a host language on a commercial relational 
system The results are encouraging, even with this 
loose couplmg between the estlmatlon algorithm and 
the DBMS 

1 Introduction 

Estimates of query result size are useful m query 
optlmlzatlon, as a means of determmmg the feast- 
blhty of queries, and as a quick way of answering 
queries for which the size of the answer 1s of interest 
m Its own right The potential benefits of samplmg- 
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based algorithms for size estlmatlon are many Unlike 
parametric methods [Chr83a, Chr83b, Dem80, Fed84, 
SAC+79, Lyn88, MDL83], they require no assump- 
tions about the fit of the data to a probability dlstn- 
butlon Unlike histogram or table based nonparamet- 
rlc methods [Chr83b, KK85, HTY82, Koo80, MD88, 
MK85, PSC84], they do not require storing and mam- 
taming detailed statlstlcs about the base data and 
views m the system Finally, they are robust m the 
presence of correlation of attributes, which allows ac- 
curate estlmatlon for queries that involve many oper- 
ators 

However, there has been very little experimental 
or analytic work to evaluate the practlcahty of sam- 
pling estlmatlon algorithms, perhaps due to skeptl- 
clsm about the performance of these algorithms Folk 
wisdom says that smce 

1 To attam reasonable accuracy, many samples 
must be taken, and 

2 Sampling algorithms must do a disk I/O per 
tuple examined, whereas query evaluation algo- 
rithms can amortize the cost of a disk I/O over 
all tuples on a page, and 

3 In sampling, the overhead of mltlatmg an oper- 
ation 1s incurred n times, where n 1s the number 
of samples taken, m evaluating the query, the 
overhead 1s incurred Just once, 

the cost of estlmatmg a query through sampling 1s 
too high to be effective In this paper we argue that, 
to the contrary, a well-designed sampling algorithm 
for size estlmatlon can be very efficient 

Recently, we proposed the first adaptive random 
sampling algorithm for general query size estlma- 
tlon [LN89, LN90] The analysis m those papers 
showed that the algorithm has good asymptotic be- 
havior, suggesting that It might be efficiently ample- 
mentable However, asymptotlcs alone do not guar- 
antee practlcahty The purpose of this paper 1s to 
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demonstrate that the algorithm has sufficiently high 
performance to be useful m practice 

We report the performance of the estlmatlon algo- 
rithm m estlmatmg the sizes of various select and 
Jam queries over a synthetic database designed to 
stress the algorithm To ensure that our tests did not 
underestimate the cost of sampling m a production 
quality database system, we implemented our alga 
rlthm as a host-level program running on a commer- 
cial relational database system (EQUEL and RTIn- 
gres ) Note that this actually overestimates the cost 
of sampling, smce the algorithm 1s implemented out- 
side of the system, treating the system as a black box 
For example, m our lmplementatlon every sample re- 
quires a mmlmum of two UNIX pipe reads and two 
UNIX pipe writes as the host program commumcates 
with the database back end 

Detailed results of the experiments appear m Sec- 
tions 4 and 5 The mam pomt 1s that, unless the 
query itself can be computed extremely efficiently 
(e g , an equality selection on a key attribute with 
an index), or the answer 1s very small, the size of the 
query can be estimated accurately m a small fraction 
of the time It takes to compute the query 

While lmplementmg the sampling algonthm, sev- 
eral important points arose First, the algorithm gave 
much better estimates than were predicted by the 
bounds given m [LN89, LN90] In order to demon- 
strate that this 1s a property of the algorithm, and not 
of the specific data being used m the tests, we have 
done a new analysis of the algorithm m order to derive 
the smallest possible sampling bounds that guaran- 
tee the required confidence levels Section 2 provides 
this analysis The improvement over [LN89, LN90] 
IS dramatic, for example, the bound for 95% confi- 
dence has been improved by a factor of 8 While this 
does not change the asymptotic time bounds, a factor 
of 8 reduction m running time can be the difference 
between a useful and a useless estlmatlon algorithm 

Second, highly skewed data provide special chal- 
lenges to estimation through sampling To deal with 
this problem, m Section 3 we propose the notion of 
sanzly bounds for sampling Intmtlvely, the adaptive 
algorithm augmented with sanity bounds will either 
(1) estimate the query size to wlthm some given per- 
centage of Its true value, or (2) guarantee that the 
query size is itself small 

The literature directly related to this paper 1s sur- 
prlsmgly sparse Both Platetsky-Shapiro and Con- 
nell [PSC84] and Murahkrlshna and Dewitt [MD881 
discuss usmg sampling to build approximate selec- 
tivity histograms Those papers use the Kolmogorov 
test statlstlc to give bounds on the number of samples 
necessary to construct a histogram with a given accu- 

racy, but do not consider the problem of estlmatmg 
the size of the query directly through sampling 

Olken and Rotcm [OR86,OR89] consider the prob- 
lem of sampling to construct a random subset of 
a query answer without computmg the full answer 
This problem 1s complementary to size estlmatlon, 
since an algorithm for size estlmatlon does not Imply 
an algorithm for constructmg a random sample, and 
vice-versa 

The most closely related work 1s that of Hou, Oz- 
soyoglu, and TaneJa [HOT88, HOT891 In that work, 
the emphasis 1s on the estlmatlon of aggregate queries 
m real-time environments, rather than on query size 
estimation The papers present data relating the 
number of samples to accuracy, but do not exphc- 
ltly consider tlmmg conslderatlons A comparison m 
Sections 4 and 5 shows that while our algorithm and 
their algorithm are comparable for selections on single 
relations, for Jam queries our algorithm clearly dom- 
mates with respect to efficiency of size estlmatlon 

The results presented m this paper argue that size 
estlmatlon through sampling could be easily added 
to database systems and can provide what 1s perhaps 
surprlsmgly good performance We close m Section 6 
with a dlscusslon that current trends m technology 
argue that sampling will be even more useful m future 
systems 

2 Bounds on Sampling 

The sampling algorithm presented m this paper IS 
based on a model developed m [LN90] The central 
notion of that algorithm was that of partztzonzng the 
query In order to estimate the size of the query, 
we first partition the answer to the query mto some 
number of dlsJomt subsets such that it 1s possible to 
randomly choose one of these subsets and compute Its 
size We emphasize that this partltlonmg 1s concep- 
tual, the sampling algorithm does not construct the 
answer to the query The sampling algorithm works 
by repeatedly randomly choosmg one of these subsets, 
computmg the size of the subset, then estimating the 
size of the query result based on these samples 

Example 2.1 In this paper we will be concerned 
with the two “work-horse” operators of relational sys- 
tems, Jam and select (The general algorithm applies 
to other types of queries as well ) 

First, consider a selection query Q1 = a(R) In 
this case the answer can be partitioned based on the 
tuples m R Each tuple of R can be considered as a 
representative of a subset of the answer to the query, 
If the tuple satisfies the selectlon, then the size of the 
subset IS 1, If not, the size of the subset 1s zero 



Next, consider the natural Join query &z = R W S 
The query is partronable as follows for each tuple r 
m R, the correspondmg partrtron of Q2 is all tuples t 
m Q2 such that t was generated by Jommg T with 
some tuple of S In this case the size of a subset 
denoted by a tuple r is the number of S-tuples that 
Join with T 0 

A novel feature of the estrmatron algorithm is that 
the termmatron condrtron 1s expressed m terms of the 
size of the sum of the samples taken, rather than m 
terms of the number of samples This lends the al- 
gorithm an adaptive flavor, rf the samples are large, 
fewer will be taken, rf the samples are small, more 
will be taken 

If the size of a sample can be computed m time that 
is some function of the size of the sample, the adaptive 
nature of the algorithm makes rt more efficient than a 
correspondmg non-adaptive sampling approach In- 
tuitively, this 1s because a non-adaptive sampling ap- 
proach must take enough samples to guarantee accu- 
racy m all cases, the adaptrve algorithm 1s able to 
terminate early m the expensive cases, that is, when 
the samples turn out to be large 

Suppose that the answer to the query to be estr- 
mated can be partitioned mto n disJomt subsets, and 
define a random variable X to be the srze of a ran- 
domly selected subset We let E denote the expected 
value of X, and V denote its varmnce 

We assume that we have avarlable two constants b 
and Amax These constants are specific to the query 
being estimated, b is an upper bound on the size of a 
partrtron, while A,,, is an upper bound on the query 
size Note that A,, 1s Just bn The accuracy does 
not depend on how close the bounds b and A,, are 
to their actual values, however, the closer they are, 
the more efficrent the samplmg 

The sampling algorrthm takes as parameters two 
mtegers d and e, and attempts to produce an estr- 
mate A that 1s wrthm max(A/d,A,,/e) of the ac- 
tual value A Addrtronally, a parameter p, where 
0 5 p < 1, specrfies the desired confidence m the 
estimate That is, the estimate will be wrthm the 
specified error bound with probabrhty p The general 
algorithm appears m Figure 1 

The constants ICI and k2 depend on the desired 
confidence level p Imtrally, m [LN90], we presented 
the algorithm without the second conJunct m the 
control expression of the whde loop (the conJunct 
(m < kze2)) ) Th e reason for the second conJunct is 
given m Section 3 The analysrs m that paper proved 
the followmg bound 

Theorem 2.1 Suppose that an a run of the algorithm 
of Fzgure 1, the whale loop termanates because s 2 

s= 0, 
m =O, 
while ((s < klbd(d + 1)) and (m < k2e2)) do begin 

s = s + RandomSample(), 
m =m+l 

end, 
A = nslm, 

Frgure 1 A general algorrthm for query size estlma- 
tion 

klbd(d + 1) Then for 0 < p 5 1, zf kl = l/(1 - fi), 
the error an A as less than A/d wath probabalaty p 

Imtral experiments with an rmplementatlon of 
the algorithm showed umformly much better perfor- 
mance than that guaranteed by Theorem 2 1 The 
followmg theory offers a partial explanation of this 
phenomenon 

Brrefly, Theorem 2 1 gives weak bounds because it 
1s so general In particular, it assumes that the sum of 
the samples has an arbitrary drstrrbutron, m practice, 
relatively few samples are necessary m order for the 
drstrlbutron of the sum to begin to look normal Note 
that thus is not a statement about the distribution of 
the sizes of the partrtrons of the query Rather, it is an 
observatron about the sum of a set of random samples 
of the partitions To quantify this observation, we use 
the followmg definition 

Definition 2.1 Suppose that m a particular run of 
the algorithm m Figure 1 m samples are made Then 
we wdl say the central lamat approxamataon applaes if 

CLIXs -mE 

a 

has the standard normal drstrrbutron 

By the Central Lrmrt Theorem [Fe168], for any 
given instance of the estimation problem, for large 
enough m we may always treat the samplmg as if the 
central limit approximation applies For small num- 
bers of samples on certam drstrrbutions the approxr- 
matlon will be less accurate The followmg theorem 
shows that when the central hmrt approximation ap- 
phes, much better bounds can be derived It uses the 
notation Q(a) = 1/2rJzoo exa12dx, that is, the area 
under the unit normal distribution to the left of a 

Theorem 2.2 Suppose that an a run of the algorathm 
of Fagure 1, the whale loop termanates because s >_ 
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p ICI (no CLA) %I (with CLA) 
080 1 95 1 26 

n 
Proof: 

Table 1 Value of kl, with and without central hmlt 
assumption 

kIbd(d + l), and let the central lamat approzamataon 
apply Then for 0 5 p < 1, af 

ICI 2 [m-’ (?)I2 

the error an A as less than A/d wath probabalaty p 

The improvement m the value of k1 given by The- 
orem 2 2 over Theorem 2 1 1s dramatic, the values 
of kl with and wlthout the central hmlt assumption 
for several values of p are given m Table 1 (The 
reader uninterested m the proof of this theorem can 
safely skip the remamder of this sectlon ) 

The proof of Theorem 2 2 uses the followmg se- 
quence of lemmas We represent the probability of 
an event z by P[z] 

Lemma 2.1 Let m = pV/E2 be a posatave Integer, 
and suppose that the samplang satasfies the central 
lamat approxamataon Then 

Proof: 

= 

0 

We bound the error m the estimate with the fol- 
lowing lemma 

Lemma 2.2 Let m 2 pV/E2 and d > 0, and sup- 
pose that the samplang satasfies the central lamat ap- 
proxamataon Then 

P[-;(;x,)-Ai<A,d] =2+$-I 

= 

0 
We can now prove Theorem 2 2 
Proof: (Theorem 2 2 ) There are two parts to 

the proof First, we prove that if the algorithm m 
Figure 1 termmates with s 2 kl(V/E)d(d + l), then 
the desired confidence and accuracy hold Next, we 
show that b 2 V/E, completmg the proof 

There are two ways that the algorithm can fall - 
It can stop too early to guarantee a good error bound, 
or it can stop after enough samples but with a bad 
estimate 

By Lemma 2 1, the probablhty that the algo- 
rithm stops with fewer than m = pV/E2 samples 1s 
@((a - p)/fi) By Lemma 2 2, the probablhty that, 
given m = ,8V/E2 samples, the estimate 1s within 
A/d of A, 1s ZQ(fi/d) - 1 Combmmg the two gives 
a probability of success equal to 

m(Jg) (x($1) 
We can bound this product by setting the two proba 
blhtles to both be equal to p’, where p’ = 4, where 
p 1s the desired probability of success This gives 
p = [a-‘((1 + p’)/2)12d2, and 

Cr= 

= .-l(+)d(@-‘(p’)+O-‘(+)d) 

< - a-l (+) d (Q-l (+) +a--’ (+) d) 

I [Qj-l (y)12d(d+ 1) 

This completes the proof that d the algorithm sam- 
ples untd s 2 kl(V/E)d(d + l), the desired accuracy 
holds with probablhty p 

Now we turn to prove that b 2 V/E By definition 
of v, 

v = (:$x%2 - (gx,)2) 

< 1 2x; - n ( ) 1 
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so V/E 5 bE/E = b This means that Ifs 2 klbd(d+ 
l), we also have s > kl(V/E)d(d+l), and the theorem 
holds •I 

3 Skewed Data and Small 

Q ueries 

While the central hmlt approxlmatlon indicates that 
m many cases a much smaller amount of samphng will 
suffice than the amount mdlcated by Theorem 2 1, 
there 1s still a problem of efficiency when b 1s large 
m comparison to E In practical terms, this means 
that the sizes of the partitions of the query are highly 
skewed, that is, that a large portlon of the total query 
size 1s due to a small portlon of the samples 

The problem m this case IS not so much with our 
specific algorithm, but with sampling m general To 
make the followmg dlscusslon concrete, consider the 
case of estimating a selection on a l,OOO,OOO tuple 
relation, and, furthermore, that only one tuple satls- 
fies the selectlon Then we will have 999,999 partl- 
tlons of size zero, and one partltlon of size one This 
means that the expected size of a random sample 1s 
l/l, 000,000, so samplmg until s > klbd(d+l) can be 
expected to require 1, 000, 000 * kld(d + 1) samples 

The problem 1s that the bound s > klbd(d + 1) 1s 
designed to ensure that the total error 1s at most A/d 
In this case, that corresponds to asking for an error 
less than one on a sample space of size l,OOO,OOO 

The solution 1s to guarantee Instead that the error 
will be at most some fixed fraction of the worst-case 
size In essence, If the answer 1s small relative to the 
problem space, we sample enough to guarantee that 
the answer 1s mdeed small 

As m the adaptive case, there are two types of 
bounds we can prove, dependmg on whether or not 
we assume the central limit approxlmatlon The fol- 
lowmg theorem does not assume the central limit ap- 
proxlmatlon (For proofs of Theorems 3 1 and 3 2, 
see [LNSSO] ) 

Theorem 3 1 Suppose that an a run of the algonthm 
of Fagure 1, the whale loop termanates because m > 
k2e2 Then for 0 5 p < 1, af k2 2 1/(1-p), the error 
an A as less than A ,,,Je of A wath probabalaty p 

If we assume that the central hmlt approxlmatlon 
1s valid, tighter bounds are possible 

Table 2 Value of k2, with and wlthout central hmlt 
assumption 

Theorem 3.2 Suppose that an a run of the algorathm 
of Fagure 1, the whale loop termanates because m > 
k2e2, and suppose that the central lamat approxamataon 
appbes to the samples Then for 0 5 p < 1, af kz > 
P-l((l +p),2)12, th e error an A as less than Amaxle 
of A wath probabalaty p 

Again, as m the case of the bounds on k1, the cen- 
tral limit approxlmatlon gives much better bounds 
The values for k2 for several values of p are given m 
Table 2 

When comparing these bounds with those given for 
those given m Section 2, It 1s important to note two 
things First, here the error 1s expressed m terms of 
the worst-case bound on the size of the actual sum be- 
mg estimated, which m general may be much larger 
than the actual size of the sum That is, it 1s possible 
that A ,,,,Jd >> A/d Second, here k2e2 1s the num- 
ber of samples taken, whereas m the adaptive case 
klbd(d + 1) 1s the sum of the sizes of the samples 
taken 

Example 3 1 We return to the example of a selec- 
tion query that returns a single tuple of a l,OOO,OOO 
tuple relation As noted above, if we omit the “sanity 
bound,” and request that the query size be estimated 
to within 10% of the true query size with 80% cer- 
tamty, we can expect to take about 5 0 x lo8 samples 
Smce for the same effort we could scan the entire re- 
lation 500 times, this 1s clearly a mistake 

If we add the sanity bound and say that we wish 
to estimate the query to wlthm 10% of the worst-case 
bound on the selection size or 10% of the answer size, 
whichever 1s larger, we get that at most 200 samples 
are required 0 

4 Estimating Select ions 

In the literature on estlmatmg statlstlcal parameters 
of database queries, estlmatmg the fraction of tuples 
that satisfy a selection has received the most atten- 
tlon, both from a parametric and a non-parametric 
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vlewpomt In this sectlon we examine the problem of 
estlmatmg the size of selectlon through samphng 

Overview of Selectivity Sampling 

Samphng to estimate selectlvitles is most effective in 
sltuatlons where the selection itself must be evaluated 
through a scan of the relation This mcludes selec- 
tions on columns for which there 1s no mdex, complex 
selection condlt:ons such aa arlthmetlc expressions, 
and dyadlc selectlon condltlons such as “A X = A Y,” 
where X and Y are attributes of relation A Sampling 
to estimate the selectlvltles of the last two types of se- 
lectlons is particularly important, since non-sampling 
parametric and non-parametnc approaches do not 
work well m these cases 

As noted m Example 2 1, our adaptive samplmg al- 
gorithm can be used to estimate selectlvltles by par- 
tltlonmg the input relation by tuples That is, we 
randomly choose a tuple, and check to see if it satls- 
fies the selection condltlon, If It does, the sample 1s 
of size one, if not, it 1s of size zero In order for this 
strategy to be practical, we need an index on some 
column of the relation, note that this need not be the 
column to which the selection apphes 

In the experiments we ran, we ensured that there 
was always an index on a dense key attribute of the 
relation (By “dense” we mean that there are no gaps 
between consecutive values appearing in the relation ) 
This 1s not necessary m general, If we use the tech- 
niques from [OR89], all that 1s reqmred 1s a B+-tree 
on some attribute of the relation 

If we assume that the cost of retrieving a sample 
tuple from the relation 1s much greater than the cost 
of verlfymg that the tuple satisfies the selection, then 
the form of the selectlon expression does not slgmf- 
scantly affect the runnmg time of the algorithm, all 
that matters 1s the selectlvlty bemg estimated Hence 
in our experiments we ran simple equahty selections 
on columns wlthout indices, but the results are also 
representative of estimating more complex selections 
with the same selectlvltles 

The database used to estimate the selectlvltles was 
based on the database used m the Wlsconsm bench- 
marks [BDT83] We tested 1% and 10% selectlvltles 
on relations of 10,000, 30,000 and 50,000 tuples Ex- 
cept where noted otherwise, the tuple size was 208 
bytes We varied the selectlvltles by performing an 
equality select on a column with a random permuta- 
tion of integers from one to ten (for the 10% case) or 
from one to 100 (for the 1% case ) 

The fragment of EQUEL code that does the sam- 
pling for the 1% case IS presented m Figure 2 The 
column a unlqueia IS a key for relation wlscrela, 

## range of a 1s wlscrela 
sum=m=O, 
while ((sum <= k*D*(D+i)*b) && (m <= k*E*E)) 
t 

mtt, 
target = random0 % I, 

## repeat retrieve (size = count(a uniquela 
## where a unlqueia = @target and 
## a hundreda = 5) > 

sum += size, 
3 
estimate = (sum*N)/m, 

Figure 2 EQuel code for estimating selectlvlty 

k 1 0 01 err 0 10 err 1 0 01 time 0 10 time 
10 1 97 61 I 50 06 
20 45 43 10 1 08 
30 39 37 13 7 14 
40 28 29 18 5 17 

Table 3 Time and error vs k for selectlvlty tests 

and there 1s a B+-tree index on that column The 
relatlonshlp between this code fragment and the gen- 
eral algorithm m Figure 1 should be clear 

Discussion of Selection Data 

Table 3 gives the time to compute the estimate and 
the relative error m the estimate for both one and 10 
percent selections from a 10,000 tuple relation and 
a range of k values Recall that the bound for the 
sampling IS k *d * (d + 1) *b, here b 1s 1, and m order 
to clarify the exposltlon, we also set d = 1 and vary k 
Smce we wish to evaluate the adaptive nature of the 
algorithm, we set e artlficlally high, to avoid “samty” 
escapes 

The data points given represent average values 
over 100 trials All trials were run under RTIngres 
Release 5 0 running on a moderately loaded DEC 
VAX 6820 

Two observations are clear from the data First, 
with the exception of the k = 1 0 value, the relative 
errors are very close for one and 10 percent Second, 
the one percent estlmatlons take roughly a factor of 
ten longer to compute 

These two observations are direct consequences of 
the adaptive nature of the sampling algorithm Intu- 
ltlvely, the algorithm samples until it has seen enough 
“one” samples to make a good estimate To see the 



same number of “one” values m the one percent case 
as the 10 percent case, we would expect to do a factor 
of ten more samples, smce there are a tenth as many 
ones 

Note also that although the relative error 1s roughly 
the same m each case, the absolute error 1s a factor 
of ten worse m the 10 percent case For example, 
m the k = 4 0 entry, the error of 28% m the one 
percent selection corresponds to an error of 28 tuples, 
whereas the error of 29% m the ten percent selectlon 
corresponds to an error of 290 tuples This 1s the 
same observation that motivates the “sanity bounds” 
as discussed m Section 3 

To put the efficiency of estlmatlon mto perspective, 
we compared the time of estimation to the time to 
actually compute the query Since both the one per- 
cent and 10 percent selections were chosen to force 
INGRES to scan the relation, both queries took the 
same time 9 0 seconds This means that while the 10 
percent selectlon estimation was not too expenwve, in 
all cases other than k = 1 0, estlmatmg the size of the 
one percent selection took longer than computmg the 
actual number 

While on the surface this lmphes sampling 1s a bad 
Idea for one percent selectlvltles, this 1s not neces- 
sarlly the case First, the estlmatlon ran for a long 
time because the sanity bounds were purposely set 
high enough to guarantee that they did not come mto 
play In an actual apphcatlon of samphng, the sanity 
bounds should be set so that the sampling will not 
run as long as the query 

Secondly, and perhaps more importantly, sampling 
to estimate selectlvltles scales very well In fact, the 
time to estimate a selectlvlty 1s largely independent of 
the size of the input relation As the relation grows, 
the time to compute the query grows, so the percent- 
age of compute time to estimate to a given accuracy 
decreases This 1s important because It 1s queries over 
large relations, where computation times can be very 
high, that must be estimated rather than computed 
The graph m Figure 3 gives data for estlmatmg and 
computing a 10 percent selectivity over relations of 
lOK, 30K, and 50K tuples The vertical ax~x1.s 1s the 
relative error of the estimate with respect to the ac- 
tual query size, the horizontal axis 1s the ratlo of the 
time to estimate the query size to the time to com- 
pute the query size 

Another factor m the efficiency of samphng IS the 
tuple size When scannmg the relation to compute 
the answer, INGRES has the advantage of gettmg 
about c tuples for each disk access, where c 1s the 
average number of tuples per disk page Hence the 
larger c 1s) the less efficient sampling will be Con- 
versely, with smaller c, samplmg 1s more efficient 
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Figure 3 Scale-up results for select estimation 

Table 4 Time vs tuple size for selectlvlty tests (k = 
30,s=010) 

The simplest way to vary c 1s to vary the tuple size 
Table 4 shows the effect of varying the tuple size by 
a factor of three m the 10 percent selection The 
estimating time remains constant, whereas the time 
to compute the query grows m proportion to the tuple 
size The next subsection discusses two ways to deal 
with large c values 

Comparison with Hou et al. 

Hou, Ozsoyoglu, and TaneJa [HOT88, HOT891 de- 
scribe another algorithm for estimating selectlvltles 
through random sampling While similar, there 
are a number of differences between their approach 
and ours First, they sample without replacement, 
whereas we sample with replacement For the large 
population sizes we are consldermg, this does not 
make much of a difference Perhaps most agmfi- 
cantly, Hou et al [HOT881 propose to use cluster 
samplrng In cluster samphng, when a disk page 1s 
brought into memory, all tuples on the page are sam- 
pled This increases the efficiency, especially if c, the 
blocking factor, 1s large However, the samples are no 
longer independent 



Using all tuples on a disk page 1s clearly a good 
idea One natural way to incorporate this mto our 
samphng framework 1s as follows first, define a sam- 
ple to be a randomly chosen disk page of the relation, 
rather than a randomly chosen tuple The size of a 
sample 1s the number of tuples m the page that sat- 
isfy the selection, and n, the number of partltlons, 1s 
the number of disk blocks m the relation Note that 
this 1s different from cluster sampling, cluster sam- 
pling treats a disk page as a set of correlated samples, 
whereas the method outlmed above treats a disk page 
as a single sample 

From the EQUEL interface we could not lmple- 
ment either cluster sampling or this algorithm In- 
tultlvely, the block sampling algorithm of [HOT881 
should perform better than the simple non-blocking 
adaptive samplmg algorithm we have presented, smce 
essentially m the same samphng time the blocking al- 
gorithm can examme a factor of c more tuples than 
the non-blocking adaptive algorithm The compan- 
son between the algorithm of [HOT881 and the block- 
mg version of our adaptive algorithm 1s less obvious, 
and will be the topic for future experlmentatlon 

5 Estimating Joins 

In this section we consider the problem of estlmatmg 
Join selectlvltles through random sampling Estlmat- 
mg Join selectlvltles 1s more mvolved than estimating 
the simple selectlvltles of Sectlon 4, however, since m 
general computing a Join IS more expensive than com- 
puting a select, and much less 1s known about non- 
sampling methods of estlmatmg Joins, finding good 
sampling estlmatlon algorithms for Jams IS crltlcal 

Overview of Join Sampling 

In this paper we consider binary Joins, although most 
of the dlscusslon can be extended to arbitrary Jams 
with minor modlficatlons As dlscussed m Exam- 
ple 2 1, we sample Jams by denotmg one relation as 
the source relation and the other as the target rela- 
tlon The query answer 1s partltloned mto as many 
subsets as there are tuples m the source relation, the 
size of a subset denoted by a tuple t of the source 
relation is Just the number of tuples in the target re- 
latlon that Join with t A sample 1s Just the size of a 
randomly chosen subset 

The EQUEL fragment m Figure 4 implements the 
sampling loop for one of the Joins described below 
Agam, the analogy to the algorithm m Figure 1 
should be clear 

Because m Join sampling the samples are no longer 
zero-one samples, the dlstrlbutlon of sample sizes can 

## range of a 1s wlscrela 
## range of d 1s wlscreld 
sum = m = 0, 
while ((sum <= k*b*D*(D+l)) && (m <= k*E*E)) 
< 

## 
## 
## 

1 

m++ ) 
target = random0 % N, 
repeat retrieve (sue = count(d unlqueld 

where a unlqueia = @target and 
d norm8d = a thousa)) 

sum t= size; 

estimate = (sum*N)/ m, 

Figure 4 EQUEL to estimate a Join size 

be more mterestmg and haa a slgmficant effect on the 
estimation algorithm Recall from Section 2 that the 
bounds on samplmg are expressed m terms of ratlo of 
the variance and expected value of the samples, which 
1s bounded above by the maximum size of any sample 
In order to fully test our algorithm, we investigated 
Joins m which the Join attribute m one relation was 
uniformly dlstnbuted, and the Jam attribute m the 
other wils normally dlstrlbuted By varying the stan- 
dard deviation of the normal dlstnbutlons, we were 
able to test the algorithm for various dlstrlbutlons of 
sample 51zes 

As m the selectlon estlmatlon case, we assume that 
one of the relations has a dense key with an mdex, 
although all that 1s needed 1s a B+-tree on some at- 
tribute There 1s an additional reqmrement for effi- 
clent Join sampling after randomly choosmg a tuple t 
of the source relation, we must find all tuples of the 
target relation that Jam with t Hence if the samphng 
1s to be efficient, there must be an index on the Jam 
attribute of the target relation 

In the followmg data, the source and target rela, 
tlons both contamed 10,000 tuples, each of 208 bytes 
The relevant columns for the sampling were 

unique1 - an integer key column, used for ran- 
domly choosmg a source tuple 

unlque2 - a permutation of unique1 

thousa - random Integers between one 
and 1000, subject to the condltlon that each ap- 
pears exactly 10 times m the relation 

normX - the posltlve half of a normal dlstnbu- 
tlon with mean zero and standard deviation X 
There are 3 such columns, for X = 250, 1000, 
and 16000 
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Figure 5 Error vs percentage of compute time 

Discussion of Join Data 

The graph m Figure 5 shows the relative error m the 
estimate as a function of the percentage of time to 
compute the full Join There are curves for each of 
unique2 Join normX for X = 250, 1000, and 16000 
A couple of trends are clear from the graph First, 
fairly accurate estimates (certamly good enough to be 
useful m query optlmlzatlon) are possible m a small 
fraction of the time reqmred to compute the Jam size 
Second, the more skewed the data (the smaller the 
standard devlatlon) the less efficient the estlmatlon 

This can be understood as an extension of the at- 
uatlon with selects In the select case, lf there were 
many zeroes and few ones, the algorithm had to sam- 
ple for a relatively long time m order to discover those 
ones, m the Jam case, if there are a few outlymg sam- 
ple sizes that are much bigger than the average sam- 
ple size, the algorithm agam needs to do more sam- 
plmg to discover those samples 

This dependence on variance of the samples raises 
an interesting pomt there 1s no a pnon reason to pick 
one relation as the source over the other Clearly, If 
only one relation has an mdex on the Join attnbute, 
it must be the target relation But d both relations 
have indices on the Jam attnbute, either can serve as 
the source The declslon should be made m such a 
way as to mmlmlze the variance of the samples 

Consider Jommg two relations, with the Jam at- 
tribute m one relation thous, and the Jam attrlbute 
m the other norm2000 It turns out that d we make 
the relation with norm2000 the source relation, then 

Table 5 Two ways to sample a Jam 

V/E = 3 2, whereas If we pick the relation with thous 
as the source, V/E = 1 14 Table 5 compares the 
performance of both strategies by glvmg the relative 
error of each strategy at several pomts m time The 
data points are averages over 100 trials, the errors 
for each time t are interpolated values The strategy 
with lower V/E converges faster 

The scale-up conslderatlons m terms of tuple srze 
for Jam estlmatlon are slmllar to those for select es- 
tlmatlon However, If V/E grows as the size of the 
Jommg relations grows, then smce the amount of sam- 
pling necessary for a given accuracy 1s proportional to 
V/E, the cost of sampling will not remam constant 
On the other hand, :f V/E grows more slowly than 
the size of the relation, or remains constant, as 1s of- 
ten the case, Jam sampling will mcrease m efficiency 
as relations grow 

Comparison with Hou et al. 

Hou et al [HOT88, HOT891 also give an algorithm for 
estimating Jam selectlvltles In its simplest form, the 
algorithm works as follows Suppose we are Jommg 
relations R and S, and denote the size of R by IRI, 
and the size of S by ISI The algorithm works as 
follows First pick a tuple from the R, then pick a 
tuple from S If the tuples Join, the sample 1s of size 
one, otherwise, the sample 1s of size zero Say m such 
samples have been taken, and that the sum 1s s Then 
estimate that A, the true answer, 1s IRI\Sjs/m 

A more sophlstlcated version of their algorithm,, 
also presented m [HOT88], mvolves randomly choos- 
mg a set of disk blocks of R and a set of disk blocks 
of S, then comparing all tuples within these blocks to 
see if they Join This greatly reduces the number of 
disk I/O’s for a given number of tuple comparisons 

Agam, since we cannot implement this blocked 
sampling algorithm through the EQUEL mterface, 
we cannot sensibly compare times for the two algo- 
rithms However, we can compare the accuracy of the 
estimate m terms of the number of tuples examined 

We compared relative accuracies of our adaptive 
samphng algorithm and the HOT algorithm for the 
query unlque2a Join quarterb That ls, the Join at- 
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Figure 6 Accuracy of HOT Algorithm for query 
unlque2a Jam quarterb 

tribute m relation A contained a random permutation 
of the integers from zero to n, where n 1s the num- 
ber of tuples m relation A, while the Join attribute 
m relation B contained a random permutatlon of the 
integers from zero to n/4, each mteger appearing four 
times 

Figure 6 gives the accuracy of the HOT algorithm 
on this query for relations of sizes varymg from 10K 
to 40K tuples Figure 7 gives the accuracy of the 
adaptive algorithm for the same query Both graphs 
compare the relative error m the estimate vs the 
number of tuples examined The scale for the z-axis 
1s different m the two figures, the graphs indicate that 
the adaptive algorithm converges to a good estimate 
much faster (m terms of number of tuple compar- 
isons) than the HOT algorithm However, smce the 
HOT algorithm uses clustered sampling, It IS able to 
make more tuple comparisons per disk I/O than the 
adaptive algorithm 

Also, the intended apphcatlon of the HOT algo- 
rithm IS real&me systems, where predlctablhty of the 
time to compute a sample IS paramount Since every 
sample m the HOT algorithm consists of extracting a 
fixed number of disk pages, it IS predictable, whereas 
m the adaptive algorithm, the time for a sample will 
vary depending on the size of the sample 

160 
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Figure 7 Accuracy of Adaptive Algorithm for query 
unique2a Join quart erb 

6 Conclusion 

We have argued that adaptive random samphng can 
be a useful tool m estlmatmg query sizes Imple- 
mented m a loosely coupled manner as a host lan- 
guage program, it gave good performance over a wide 
range of select and Join queries 

In future work we intend to examme the efficiency 
of random adaptive samplmg when added as an op- 
erator within the database system This will allow us 
to test the disk block-at-a-time variant of our select 
estlmatlon algonthm, and to test the performance 
of the algorithm with the host/system overhead re- 
moved Fmally, we plan to investigate sampling on 
large mam-memory and on multiprocessor machines 
Such machines provide an extremely attractive envl- 
ronment for size estlmatlon through sampling, since 
1) m main-memory databases, there 1s no handicap 
to the sampling algorithm due to poor use of disk ac- 
cesses, and 2) on a multiprocessor, many samples can 
be done simultaneously m parallel 

References 

[BDT83] D Bltton, D Dewitt, and C Turbyfill 
Benchmarkmg database systems A sys- 
tematlc approach In Proc Nznth VLDB, 
pages 8-19, 1983 

[Chr83a] S Chrlstodoulakls Estimating block 
transfers and Jam sizes In Proc ACM 

10 



[Chr83b] 

[Dem80] 

[Fed841 

[Fe1681 

[HOT881 

[HOT891 

[HTY82] 

[KK85] 

[Koo80] 

[LN89] 

[LN90] 

SIGMOD Conference, pages 40-54, May 
1983 

S Chrlstodoulakls Estlmatmg record se- 
lectlvltles Informatron Systems, 8(2) 69- 
79, 1983 

R Demolombe Estlmatlon of the number 
of tuples satlsfymg a query expressed m 
predicate calculus language In Proc Szcth 
VLDB, pages 55-63, 1980 

J Fedorowlcz Database performance 
evaluation using multiple regression tech- 
niques In Proc ACM SIGMOD Confer- 
ence, pages 70-76, June 1984 

W Feller An Introductton to Probabal- 
zty Theory and Its Applrcatrons, volume 1 
John Wiley and Sons, Inc , New York, New 
York, 1968 

W -C Hou, G Ozsoyoglu, and B TaneJa 
Statlstlcal estimators for relatlonal algebra 
expressions In Proc ACM PODS, pages 
276-287, March 1988 

W -C Hou, G Ozsoyoglu, and B TaneJa 
Processing aggregate relational queries 
with hard time constramts In Proc ACM 
SIGMOD Conference, pages 68-77, June 
1989 

L Herschberg, P D Tmg, and S B Yao 
Query optlmlzatlon m star computer net- 
works ACM Transactaons on Database 
Systems, 7(4), December 1982 

N Kamel and R Kmg A model of data 
dlstrlbutlon based on texture analysis In 
Proc ACM SIGMOD Conference, pages 
319-325, May 1985 

R Kool The optamaxatzon of quenes zn 
relataonal database systems PhD thesis, 
Case Western University, Cleveland, Ohlo, 
1980 

R Lipton and J Naughton Estlmatmg 
the size of generalized transltlve closures 
In Proc Fzfteenth VLDB, pages 165-172, 
August 1989 

R Lipton and J Naughton Query size es- 
tlmatlon by adaptive sampling In Proc 
ACM PODS, March 1990 

[LNSSO] R Lipton and J Naughton and D 
Schneider Practical Selectivity Estlma- 
tlon through Adaptive Sampling Um- 
verslty of Wlsconsm-Madison Computer 
Sciences Department Technical Report, 
March 1990 

[Lyn88] C Lynch Selectivity estimation and 
query optlmlzatlon m large databases with 
highly skewed dlstrlbutlons of column val- 
ues In Proc Fourteenth VLDB, pages 
240-251, August 1988 

[MCSSS] M M annmo, P Chu, and T Sager Sta- 
tlstlcal profile estlmatlon m database sys- 
tems Computrng Surveys, 20(3) 191-221, 
September 1988 

[MD881 M Murahkrlshna and D Dewitt Equl- 
depth histograms for estimating selectlv- 
lty factors for multi-dimensional queries 
In Proc SIGMOD Conference, pages 28- 
36, June 1988 

[MDL83] A M on tg ornery, D D’Souza, and S Lee 
The cost of relational algebraic operations 
on skewed data Estimates and exper- 
iments Informatzon Processang Letters, 
pages 235-241, 1983 

[MK85] B Muthuswamy and G Kerschberg A 
DDSM for relatlonal query optlmlzatlon 
Technical report, Umverslty of South 
Carolma, Columbia, 1985 As cited 
in [MCSSS] 

[OR861 F Olken and D Rotem Simple ran- 
dom sampling for relational databases In 
Proc Twelfth VLDB, pages 160-169, Au- 
gust 1986 

[OR891 F Olken and D Rotem Random sampling 
from B+trees In Proc Fzfteenth VLDB, 
pages 269-278, August 1989 

[PSC84] G Platetsky-Shapiro and C Connell Ac- 
curate estlmatlon of the number of tuples 
satlsfymg a condltlon In Proc ACM SIG- 
MOD Conference, pages 256-276, June 
1984 

[SAC+791 P G Sehnger, M M Astrahan, D D 
Chamberhn, R A Lorle, and T G 
Price Access path selectlon m a relatlonal 
database management system In Proc 
ACM SIGMOD Conference, pages 23-34, 
1979 

11 


