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Abstract

Recently we have proposed an adaptive, random sam-
pling algorithm for general query size estimation In
earlier work we analyzed the asymptotic efficiency
and accuracy of the algorithm, in this paper we inves-
tigate 1ts practicality as appled to selects and joins
First, we extend our previous analysis to provide sig-
nificantly improved bounds on the amount of sam-
pling necessary for a given level of accuracy Next,
we provide “samity bounds” to deal with queries for
which the underlying data 1s extremely skewed or the
query result 1s very small Finally, we report on the
performance of the estimation algorithm as imple-
mented 1n a host language on a commercial relational
system The results are encouraging, even with this
loose coupling between the estimation algonthm and
the DBMS

1 Introduction

Estimates of query result size are useful in query
optimization, as a means of determiming the feasi-
bility of queries, and as a quick way of answering
queries for which the size of the answer 1s of interest
mn 1ts own right The potential benefits of sampling-
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based algorithms for size estimation are many Unlike
parametric methods [Chr83a, Chr83b, Dem80, Fed84,
SAC*79, Lyn88, MDL83], they require no assump-
tions about the fit of the data to a probability distri-
bution Unlike histogram or table based nonparamet-
ric methods [Chr83b, KK85, HTY82, Koo80, MD88,
MK85, PSC84], they do not require storing and main-
taining detailed statistics about the base data and
views 1n the system Finally, they are robust in the
presence of correlation of attributes, which allows ac-
curate estimation for queries that involve many oper-
ators

However, there has been very little experimental
or analytic work to evaluate the practicality of sam-
pling estimation algorithms, perhaps due to skepti-
cism about the performance of these algorithms Folk
wisdom says that since

1 To attain reasonable accuracy, many samples
must be taken, and

2 Sampling algorithms must do a disk I/O per
tuple examined, whereas query evaluation algo-
nithms can amortize the cost of a disk I/O over
all tuples on a page, and

3 In sampling, the overhead of imitiating an oper-
ation 1s incurred n times, where n 1s the number
of samples taken, 1n evaluating the query, the
overhead 1s 1ncurred just once,

the cost of estimating a query through sampling 1s
too high to be effective In this paper we argue that,
to the contrary, a well-designed sampling algorithm
for size estimation can be very efficient

Recently, we proposed the first adaptive random
sampling algorithm for general query size estima-
tion [LN89, LN90] The analysis in those papers
showed that the algormthm has good asymptotic be-
havior, suggesting that 1t might be efficiently imple-
mentable However, asymptotics alone do not guar-
antee practicality The purpose of this paper 1s to



demonstrate that the algorithm has sufficiently high
performance to be useful 1n practice

We report the performance of the estimation algo-
rithm 1n estimating the sizes of various select and
join queries over a synthetic database designed to
stress the algorithm 7To ensure that our tests did not
underestimate the cost of sampling in a production
quality database system, we implemented our algo-
rithm as a host-level program running on a commer-
cal relational database system (EQUEL and RTIn-
gres ) Note that this actually overestimates the cost
of sampling, since the algorithm 1s implemented out-
side of the system, treating the system as a black box
For example, 1n our implementation every sample re-
quires a minimum of two UNIX pipe reads and two
UNIX pipe writes as the host program communicates
with the database back end

Detailed results of the experiments appear i Sec-
tions 4 and 5 The main point 1s that, unless the
query 1tself can be computed extremely efficiently
(e g, an equality selection on a key attribute with
an index), or the answer 1s very small, the size of the
query can be estimated accurately in a small fraction
of the time 1t takes to compute the query

While implementing the sampling algorithm, sev-
eral important points arose First, the algorithm gave
much better estimates than were predicted by the
bounds given in [LN89, LN90] In order to demon-
strate that thisis a property of the algorithm, and not
of the speafic data being used in the tests, we have
done a new analysis of the algorithmn order to derive
the smallest possible sampling bounds that guaran-
tee the required confidence levels Section 2 provides
this analysis The improvement over [LN89, LN9(]
1s dramatic, for example, the bound for 95% confi-
dence has been improved by a factor of 8 While this
does not change the asymptotic time bounds, a factor
of 8 reduction 1n running time can be the difference
between a useful and a useless estimation algorithm

Second, highly skewed data provide special chal-
lenges to estimation through sampling To deal with
this problem, 1n Section 3 we propose the notion of
sanity bounds for sampling Intwitively, the adaptive
algorithm augmented with samty bounds will either
(1) estimate the query size to within some given per-
centage of its true value, or (2) guarantee that the
query size 1s 1tself small

The literature directly related to this paper 1s sur-
prisingly sparse Both Piatetsky-Shapiro and Con-
nell [PSC84] and Muralikrishna and DeWitt [MD88§]
discuss using sampling to build approximate selec-
tivity histograms Those papers use the Kolmogorov
test statistic to give bounds on the number of samples
necessary to construct a histogram with a given accu-

racy, but do not consider the problem of estimating
the size of the query directly through sampling

Olken and Rotem [OR86, OR89] consider the prob-
lem of sampling to construct a random subset of
a query answer without computing the full answer
This problem 1s complementary to size estimation,
since an algorithm for size estimation does not 1mply
an algorithm for constructing a random sample, and
vice-versa

The most closely related work 1s that of Hou, Oz-
soyoglu, and Taneja [HOT88, HOT89] In that work,
the emphasis i1s on the estimation of aggregate queries
1n real-time environments, rather than on query size
estimation The papers present data relating the
number of samples to accuracy, but do not explic-
itly consider timing considerations A comparison 1n
Sections 4 and 5 shows that while our algorithm and
their algorithm are comparable for selections on single
relations, for join queries our algorithm clearly dom-
1nates with respect to efficiency of size estimation

The results presented 1n this paper argue that size
estimation through sampling could be easily added
to database systems and can provide what 1s perhaps
surprisingly good performance We close 1n Section 6
with a discussion that current trends in technology
argue that sampling will be even more useful in future
systems

2 Bounds on Sampling

The sampling algorithm presented 1n this paper 1s
based on a model developed 1n [LN90] The central
notion of that algonthm was that of partitioning the
query In order to estimate the size of the query,
we first partition the answer to the query into some
number of disjoint subsets such that 1t 1s possible to
randomly choose one of these subsets and compute 1ts
size We emphasize that this partitioning 1s concep-
tual, the sampling algorithm does not construct the
answer to the query The sampling algorithm works
by repeatedly randomly choosing one of these subsets,
computing the size of the subset, then estimating the
size of the query result based on these samples

Example 2.1 In this paper we will be concerned
with the two “work-horse” operators of relational sys-
tems, join and select (The general algorithm apphes
to other types of queries as well )

First, consider a selection query Q; = o(R) In
this case the answer can be partitioned based on the
tuples iIn R Each tuple of R can be considered as a
representative of a subset of the answer to the query,
if the tuple satisfies the selection, then the size of the
subset 1s 1, 1f not, the size of the subset 1s zero



Next, consider the natural join query @, = R™¥ S
The query 1s partionable as follows for each tuple »
in R, the corresponding partition of Qs 1s all tuples ¢
1 Qy such that ¢ was generated by joining r with
some tuple of S In this case the size of a subset
denoted by a tuple r 18 the number of S-tuples that
jomwith» 0O

A novel feature of the estimation algorithm 1s that
the termination condition 1s expressed in terms of the
s1ze of the sum of the samples taken, rather than in
terms of the number of samples This lends the al-
gorithm an adaptive flavor, if the samples are large,
fewer will be taken, if the samples are small, more
will be taken

If the size of a sample can be computed 1n time that
1s some function of the size of the sample, the adaptive
nature of the algorithm makes 1t more efficient than a
corresponding non-adaptive sampling approach In-
tuitively, this 1s because a non-adaptive sampling ap-
proach must take enough samples to guarantee accu-
racy 1n all cases, the adaptive algorithm 1s able to
terminate early 1n the expensive cases, that 1s, when
the samples turn out to be large

Suppose that the answer to the query to be esti-
mated can be partitioned into n disjoint subsets, and
define a random variable X to be the size of a ran-
domly selected subset We let E denote the expected
value of X, and V denote 1ts variance

We assume that we have available two constants b
and Anmax These constants are spectfic to the query
being estimated, b 1s an upper bound on the size of a
partition, while Apay 1 an upper bound on the query
size Note that Apyax 18 Just bn The accuracy does
not depend on how close the bounds b and Ay are
to their actual values, however, the closer they are,
the more efficient the samphng

The sampling algorithm takes as parameters two
integers d and e, and attempts to produce an esti-
mate A that 1s within max(A/d, Amax/e) of the ac-
tual value A Additionally, a parameter p, where
0 < p < 1, specifies the desired confidence mn the
estimate That 1s, the estimate will be within the
specified error bound with probability p The general
algorithm appears in Figure 1

The constants k; and ky depend on the desired
confidence level p Imtially, in [LN90], we presented
the algorithm without the second comjunct in the
control expression of the while loop (the conjunct
(m < kz2e?)) ) The reason for the second conjunct 1s
given n Section 3 The analysts in that paper proved
the following bound

Theorem 2.1 Suppose that in a run of the algorithm
of Figure 1, the while loop terminates because s >

s =0,

m =0,

while ((s < k1bd(d + 1)) and (m < kz€?)) do begin
s = s+ RandomSample(),
m =m+1

end,

A =ns/m,

Figure 1 A general algonthm for query size estima-
tion

kibd(d+1) Then for0<p<1, ofky =1/(1-/p),
the error in A 15 less than A/d with probability p

Initial experiments with an implementation of
the algorithm showed umiformly much better perfor-
mance than that guaranteed by Theorem 21 The
following theory offers a partial explanation of this
phenomenon

Briefly, Theorem 2 1 gives weak bounds because 1t
1s so general In particular, 1t assumes that the sum of
the samples has an arbitrary distribution, in practice,
relatively few samples are necessary 1n order for the
distribution of the sum to begin to look normal Note
that this 1s not a statement about the distribution of
the s1zes of the partitions of the query Rather, 1t 1s an
observation about the sum of a set of random samples
of the partitions To quantify this observation, we use
the following definition

Definition 2.1 Suppose that in a particular run of
the algorithm in Figure 1 m samples are made Then
we will say the central limit approzimation applies if

Yo, X, —mE
vVmV

has the standard normal distribution

By the Central Limit Theorem [Fel68], for any
given nstance of the estimation problem, for large
enough m we may always treat the samphing as 1f the
central himit approximation applhies For small num-
bers of samples on certain distributions the approxi-
mation will be less accurate The following theorem
shows that when the central limit approximation ap-
plies, much better bounds can be derived It uses the
notation ®(a) = 1/27 [* _e*’/2dz, that 1s, the area
under the umt normal distribution to the left of a

Theorem 2.2 Suppose that in a run of the algorithm
of Figure 1, the while loop terminates because s >



p | ky (no CLA) | ky (with CLA)
080 95 26
090 195 38
095 395 50
099 199 5 122

Table 1 Value of k1, with and without central Iimit
assumption

kibd(d + 1), and let the central limit approzimation
apply Then for 0 <p< 1, f

o (5]

the error in A 1s less than A/d with probability p

The improvement in the value of k; given by The-
orem 2 2 over Theorem 2 1 1s dramatic, the values
of k; with and without the central limit assumption
for several values of p are given in Table 1 (The
reader uninterested 1n the proof of this theorem can
safely skip the remainder of this section )

The proof of Theorem 2 2 uses the following se-
quence of lemmas We represent the probability of
an event ¢ by P[z]

Lemma 2.1 Let m = BV/E? be a positive integer,
and suppose that the sampling satisfies the central

limit epprozimation Then
= aV a—pf
P[ZX,Z—E— =1-<1>( 7 )
p [E:r;l X2 a%]

=1
- p [L%X_""_E > aV—mE’]
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0

We bound the error in the estimate with the fol-
lowing lemma

Lemma 2.2 Let m > BV/E? and d > 0, and sup-
pose that the sampling satisfies the central limit ap-

promimation Then
< A/d} = 20 (‘—/-B) ~1

n LN
2 (x4 d

P
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We can now prove Theorem 2 2

Proof: (Theorem 22) There are two parts to
the proof First, we prove that if the algorithm in
Figure 1 terminates with s > ki (V/E)d(d + 1), then
the desired confidence and accuracy hold Next, we
show that b > V/E, completing the proof

There are two ways that the algorithm can fail —
1t can stop too early to guarantee a good error bound,
or 1t can stop after enough samples but with a bad
estimate

By Lemma 21, the probability that the algo-
rithm stops with fewer than m = BV/E? samples 1s
®((a—p)/v/B) By Lemma 2 2, the probability that,
given m = BV/E? samples, the estimate 1s within
A/d of A 15 2®8(v/B/d)—1 Combining the two gives
a probability of success equal to

o(57) (= () )

We can bound this product by setting the two proba-
bilities to both be equal to p’, where p’ = ,/p, where
p 18 the desired probabihity of success This gives
B =[2((1+p)/2)]*d* and

a= e (p)VB+ 8
- ()8 ()9
d

< o () (o0 () 01 () )
S [q,—l (1+2 p)]2d(d+1)

This completes the proof that if the algorithm sam-
ples until s > k,(V/E)d(d + 1), the desired accuracy
holds with probability p

Now we turn to prove that b > V/E By definition

of V,
- (in- (i)
HE)

IN
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so V/E < bE/E =b This means that if s > k;bd(d+
1), we also have s > k1(V/E)d(d+1), and the theorem
holds O

3 Skewed Data and Small
Queries

While the central limit approximation indicates that
11 many cases a much smaller amount of samphng will
suffice than the amount indicated by Theorem 2 1,
there 1s still a problem of efficiency when b 1s large
1 comparison to E In practical terms, this means
that the sizes of the partitions of the query are highly
skewed, that 1s, that a large portion of the total query
size 1s due to a small portion of the samples

The problem 1n this case 1s not so much with our
specific algorithm, but with sampling 1n general To
make the following discussion concrete, consider the
case of estimating a selection on a 1,000,000 tuple
relation, and, furthermore, that only one tuple satis-
fies the selection Then we will have 999,999 parti-
tions of size zero, and one partition of size one This
means that the expected size of a random sample 1s
1/1,000,000, so sampling until s > k;bd(d+1) can be
expected to require 1,000,000 % kyd(d + 1) samples

The problem 1s that the bound s > k1bd(d + 1) 1s
designed to ensure that the total error 1s at most A/d
In this case, that corresponds to asking for an error
less than one on a sample space of size 1,000,000

The solution 1s to guarantee mstead that the error
will be at most some fixed fraction of the worst-case
size In essence, if the answer 1s small relative to the
problem space, we sample enough to guarantee that
the answer 1s indeed small

As 1n the adaptive case, there are two types of
bounds we can prove, depending on whether or not
we assume the central liiit approximation The fol-
lowing theorem does not assume the central limit ap-
proximation (For proofs of Theorems 3 1 and 3 2,
see [LNS90] )

Theorem 3 1 Suppose that in a run of the algorithm
of Figure 1, the while loop terminates because m >
koe? Then for0 < p < 1, 1f ko > 1/(1—p), the error
in A 15 less than Amax/e of A wnth probability p

If we assume that the central himit approximation
1s vahd, tighter bounds are possible

p | k2 (no CLA) | kg (w1th CLA)
080 50 17
090 100 27
095 200 38
099 100 0 67

Table 2 Value of ks, with and without central limit
assumption

Theorem 3.2 Suppose that in a run of the algorithm
of Figure 1, the while loop terminates because m >
koe2, and suppose that the central imit approzimation
applies to the samples Then for 0 < p <1, if ky >
[®@=1((1+p)/2)}?, the error in A 15 less than Amax/e
of A with probability p

Again, as 1n the case of the bounds on k1, the cen-
tral limit approximation gives much better bounds
The values for ko for several values of p are given 1n
Table 2

When comparing these bounds with those given for
those given 1n Section 2, 1t 18 important to note two
things First, here the error 1s expressed 1n terms of
the worst-case bound on the size of the actual sum be-
ing estimated, which 1n general may be much larger
than the actual size of the sum That 1s, 1t 1s possible
that Amax/d > A/d Second, here kse? 1s the num-
ber of samples taken, whereas 1n the adaptive case
kibd(d + 1) 1s the sum of the sizes of the samples
taken

Example 3 1 We return to the example of a selec-
tion query that returns a single tuple of a 1,000,000
tuple relation As noted above, if we omit the “samity
bound,” and request that the query size be estimated
to within 10% of the true query size with 80% cer-
tainty, we can expect to take about 5 0 x 108 samples
Since for the same effort we could scan the entire re-
lation 500 times, this 1s clearly a mistake

If we add the samity bound and say that we wish
to estimate the query to within 10% of the worst-case
bound on the selection size or 10% of the answer size,
whichever 1s larger, we get that at most 200 samples
are required O

4 Estimating Selections

In the literature on estimating statistical parameters
of database queries, estimating the fraction of tuples
that satisfy a selection has received the most atten-
tion, both from a parametric and a non-parametric



viewpoint In this section we examine the problem of
estimating the size of selection through samplhng

Overview of Selectivity Sampling

Sampling to estimate selectivities 18 most effective 1n
situations where the selection 1tself must be evaluated
through a scan of the relation This includes selec-
tions on columns for which there 1s no index, complex
selection conditions such as arithmetic expressions,
and dyadic selection conditions such as “A X = A Y,”
where X and Y are attributes of relation A Samplhng
to estimate the selectivities of the last two types of se-
lections 1s particularly important, since non-sampling
parametric and non-parametric approaches do not
work well 1n these cases

As noted 1n Example 2 1, our adaptive sampling al-
gorithm can be used to estimate selectivities by par-
titioning the mnput relation by tuples That 15, we
randomly choose a tuple, and check to see if 1t satis-
fies the selection condition, if 1t does, the sample 15
of size one, 1f not, 1t 1s of size zero In order for this
strategy to be practical, we need an index on some
column of the relation, note that this need not be the
column to which the selection applies

In the experiments we ran, we ensured that there
was always an mdex on a dense key attribute of the
relation (By “dense” we mean that there are no gaps
between consecutive values appearing 1n the relation )
This 1s not necessary 1n general, if we use the tech-
niques from [OR89], all that 1s required 1s a B*-tree
on some attribute of the relation

If we assume that the cost of retrieving a sample
tuple from the relation 1s much greater than the cost
of verifying that the tuple satisfies the selection, then
the form of the selection expression does not sigmf-
1cantly affect the running time of the algorithm, all
that matters 1s the selectivity being estimated Hence
1n our experiments we ran simple equality selections
on columns without indices, but the results are also
representative of estimating more complex selections
with the same selectivities

The database used to estimate the selectivities was
based on the database used in the Wisconsin bench-
marks [BDT83] We tested 1% and 10% selectivities
on relations of 10,000, 30,000 and 50,000 tuples Ex-
cept where noted otherwise, the tuple size was 208
bytes We varied the selectivities by performing an
equality select on a column with a random permuta-
tion of integers from one to ten (for the 10% case) or
from one to 100 (for the 1% case )

The fragment of EQUEL code that does the sam-
pling for the 1% case 1s presented in Figure 2 The
column a uniqueila 1s a key for relation wiscrela,

## range of a 1s wiscrela
sum = m = 0,
while ((sum <= k#*D*(D+1)*b) && (m <= k*E*E))
{
n++,
target = random() % W,
## repeat retrieve (si1ze = count(a uniqueia
#it where a uniquela = Qtarget and
## a hundreda = §))
sum += size,
3

estimate = (sum*N)/m,

Figure 2 EQuel code for estimating selectivity

k [00lerr O10err | 001 time 010 time
10 97 61 50 06
20 45 43 101 08
30 39 37 137 14
40 28 29 185 17

Table 3 Time and error vs k for selectivity tests

and there 1s a B*-tree index on that column The
relationship between this code fragment and the gen-
eral algorithm in Figure 1 should be clear

Discussion of Selection Data

Table 3 gives the time to compute the estimate and
the relative error 1n the estimate for both one and 10
percent selections from a 10,000 tuple relation and
a range of k values Recall that the bound for the
sampling 1s k xd * (d + 1) # b, here b 1s 1, and 1n order
to clarify the exposition, we also set d = 1 and vary k
Since we wish to evaluate the adaptive nature of the
algorithm, we set e artifictally high, to avoid “samity”
escapes

The data points given represent average values
over 100 trials All trials were run under RTIngres
Release 5 0 running on a moderately loaded DEC
VAX 6820

Two observations are clear from the data First,
with the exception of the k = 1 0 value, the relative
errors are very close for one and 10 percent Second,
the one percent estimations take roughly a factor of
ten longer to compute

These two observations are direct consequences of
the adaptive nature of the sampling algorithm Intu-
1tively, the algorithm samples until it has seen enough
“one” samples to make a good estimate To see the



same number of “one” values 1n the one percent case
as the 10 percent case, we would expect to do a factor
of ten more samples, since there are a tenth as many
ones

Note also that although the relative error 1s roughly
the same 1n each case, the absolute error 1s a factor
of ten worse 1n the 10 percent case For example,
in the ¥ = 40 entry, the error of 28% i1n the one
percent selection corresponds to an error of 28 tuples,
whereas the error of 29% 1n the ten percent selection
corresponds to an error of 290 tuples This 1s the
same observation that motivates the “samity bounds”
as discussed 1n Section 3

To put the efficiency of estimation into perspective,
we compared the time of estimation to the time to
actually compute the query Since both the one per-
cent and 10 percent selections were chosen to force
INGRES to scan the relation, both queries took the
same time 9 0 seconds This means that while the 10
percent selection estimation was not too expensive, n
all cases other than k = 1 0, estimating the size of the
one percent selection took longer than computing the
actual number

While on the surface this implies sampling 1s a bad
idea for one percent selectivities, this 1s not neces-
sarilly the case First, the estimation ran for a long
time because the samity bounds were purposely set
high enough to guarantee that they did not come into
play In an actual applhication of sampling, the sanity
bounds should be set so that the sampling will not
run as long as the query

Secondly, and perhaps more importantly, sampling
to estimate selectivities scales very well In fact, the
time to estimate a selectivity 1s largely independent of
the size of the input relation As the relation grows,
the time to compute the query grows, so the percent-
age of compute time to estimate to a given accuracy
decreases This 1s important because 1t 1s queries over
large relations, where computation times can be very
high, that must be estimated rather than computed
The graph 1n Figure 3 gives data for estimating and
computing a 10 percent selectivity over relations of
10K, 30K, and 50K tuples The vertical axis 1s the
relative error of the estimate with respect to the ac-
tual query size, the horizontal axis 1s the ratio of the
time to estimate the query size to the time to com-
pute the query size

Another factor 1n the efficiency of sampling 1s the
tuple size When scanning the relation to compute
the answer, INGRES has the advantage of getting
about ¢ tuples for each disk access, where ¢ 1s the
average number of tuples per disk page Hence the
larger ¢ 1s, the less efficient samphng will be Con-
versely, with smaller ¢, sampling 1s more efficient
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Figure 3 Scale-up results for select estimation

tup size | est | comp | est /comp
200 bytes | 14 90 0156
600 bytes { 14 26 0 0 054

Table 4 Time vs tuple size for selectivity tests (k =
30,5=010)

The simplest way to vary ¢ 1s to vary the tuple size
Table 4 shows the effect of varying the tuple size by
a factor of three in the 10 percent selection The
estimating time remains constant, whereas the time
to compute the query grows 1n proportion to the tuple
size The next subsection discusses two ways to deal
with large ¢ values

Comparison with Hou et al.

Hou, Ozsoyoglu, and Taneja [HOT88, HOTS89] de-
scribe another algorithm for estimating selectivities
through random samphng While similar, there
are a number of differences between their approach
and ours First, they sample without replacement,
whereas we sample with replacement For the large
population sizes we are considering, this does not
make much of a difference Perhaps most sigmfi-
cantly, Hou et al [HOTS88] propose to use cluster
sampling In cluster sampling, when a disk page 1s
brought 1nto memory, all tuples on the page are sam-
pled This increases the efficiency, especially if ¢, the
blocking factor, 1s large However, the samples are no
longer independent



Using all tuples on a disk page 1s clearly a good
idea One natural way to incorporate this into our
sampling framework 1s as follows first, define a sam-
ple to be a randomly chosen disk page of the relation,
rather than a randomly chosen tuple The size of a
sample 1s the number of tuples in the page that sat-
1sfy the selection, and n, the number of partitions, 1s
the number of disk blocks 1n the relation Note that
this 1s different from cluster samplhing, cluster sam-
phing treats a disk page as a set of correlated samples,
whereas the method outhined above treats a disk page
as a single sample

From the EQUEL nterface we could not imple-
ment erther cluster sampling or this algorithm In-
twitively, the block sampling algorithm of [EOT88§]
should perform better than the sumple non-blocking
adaptive sampling algorithm we have presented, since
essentially in the same sampling time the blocking al-
gorithm can examine a factor of ¢ more tuples than
the non-blocking adaptive algorithm The compari-
son between the algorithm of [HOT88] and the block-
ing version of our adaptive algorithm 1s less obvious,
and will be the topic for future experimentation

5 Estimating Joins

In this section we consider the problem of estimating
Join selectivities through random samphng Estimat-
g join selectivities 1s more mvolved than estimating
the sumple selectivities of Section 4, however, since 1n
general computing a join 18 more expensive than com-
puting a select, and much less 1s known about non-
sampling methods of estimating joins, finding good
sampling estimation algorithms for joins 1s critical

Overview of Join Sampling

In this paper we consider binary joins, although most
of the discussion can be extended to arbitrary joins
with minor modifications As discussed 1n Exam-
ple 2 1, we sample joins by denoting one relation as
the source relation and the other as the target rela-
tion The query answer 1s partitioned into as many
subsets as there are tuples 1n the source relation, the
size of a subset denoted by a tuple ¢ of the source
relation 1s just the number of tuples 1n the target re-
lation that join with ¢ A sample 1s just the size of a
randomly chosen subset

The EQUEL fragment in Figure 4 implements the
sampling loop for one of the joins described below
Again, the analogy to the algorithm in Figure 1
should be clear

Because 1n join samplhing the samples are no longer
zero-one samples, the distribution of sample sizes can

## range of a 1s wiscrela
## range of d 1s wiscreld
sum = m = 0,
while ((sum <= k#b*D#(D+1)) &% (m <= k*E+E))
{
m++,
target = random() % N,
## repeat retrieve (size = count(d uniqueid
i where a uniquela = Qtarget and
## d norm8d = a thousa))
sum += size;
}

estimate = (sum*N)/ m,

Figure 4 EQUEL to estimate a join size

be more interesting and has a significant effect on the
estimation algorithm Recall from Section 2 that the
bounds on samplhng are expressed 1n terms of ratio of
the variance and expected value of the samples, which
1s bounded above by the maximum size of any sample
In order to fully test our algorithm, we investigated
Joins 1n which the join attribute in one relation was
uniformly distributed, and the join attribute in the
other was normally distributed By varying the stan-
dard deviation of the normal distributions, we were
able to test the algornthm for various distributions of
sample sizes

As 1n the selection estimation case, we assume that
one of the relations has a dense key with an index,
although all that 1s needed 1s a B*-tree on some at-
tribute There 1s an additional requirement for effi-
cient join samphing after randomly choosing a tuple ¢
of the source relation, we must find all tuples of the
target relation that join with ¢ Hence if the sampling
18 to be efficient, there must be an index on the jon
attribute of the target relation

In the following data, the source and target rela-
tions both contained 10,000 tuples, each of 208 bytes
The relevant columns for the sampling were

¢ uniquel — an integer key column, used for ran-
domly choosing a source tuple

e unique2 — a permutation of uniquei

e thousa — random 1ntegers between one
and 1000, subject to the condition that each ap-
pears exactly 10 times 1n the relation

e normX — the positive half of a normal distribu-
tion with mean zero and standard deviation X
There are 3 such columns, for X = 250, 1000,
and 16000
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Figure 5 Error vs percentage of compute time

Discussion of Join Data

The graph 1n Figure 5 shows the relative error 1n the
estimate as a function of the percentage of time to
compute the full join There are curves for each of
unique2 jon normX for X = 250, 1000, and 16000
A couple of trends are clear from the graph First,
fairly accurate estimates (certainly good enough to be
useful 1n query optimization) are possible 1n a small
fraction of the time required to compute the join size
Second, the more skewed the data (the smaller the
standard deviation) the less efficient the estimation

This can be understood as an extension of the sit-
uation with selects In the select case, if there were
many zeroes and few ones, the algorithm had to sam-
ple for a relatively long time 1n order to discover those
ones, 1n the join case, 1f there are a few outlying sam-
ple sizes that are much bigger than the average sam-
ple size, the algorithm again needs to do more sam-
pling to discover those samples

This dependence on variance of the samples raises
an interesting point there 1s no a priorireason to pick
one relation as the source over the other Clearly, if
only one relation has an 1ndex on the join attnibute,
1t must be the target relation But if both relations
have indices on the join attribute, either can serve as
the source The decision should be made 1n such a
way as to minimize the variance of the samples

Consider joming two relations, with the join at-
tribute 1n one relation thous, and the jon attribute
n the other norm2000 It turns out that if we make
the relation with norm2000 the source relation, then

time (sec) | err, V/E=114 | err, V/E =32
025 20 29
050 14 20
075 12 17
100 10 15

Table 5 Two ways to sample a join

V/E = 3 2, whereas 1f we pick the relation with thous
as the source, V/E = 114 Table 5 compares the
performance of both strategies by giving the relative
error of each strategy at several points in time The
data points are averages over 100 trials, the errors
for each time t are interpolated values The strategy
with lower V/E converges faster

The scale-up considerations in terms of tuple size
for join estimation are similar to those for select es-
timation However, if V/E grows as the size of the
Joining relations grows, then since the amount of sam-
pling necessary for a given accuracy 1s proportional to
V/E, the cost of sampling will not remain constant
On the other hand, if V/E grows more slowly than
the size of the relation, or remains constant, as 1s of-
ten the case, join sampling will increase 1n efficiency
as relations grow

Comparison with Hou et al.

Hou et al [HOT88, HOT89] also give an algorithm for
estimating join selectivities In 1ts simplest form, the
algorithm works as follows Suppose we are joining
relations R and S, and denote the size of R by |R),
and the size of S by |S| The algonthm works as
follows Furst pick a tuple from the R, then pick a
tuple from S If the tuples join, the sample 1s of size
one, otherwise, the sample 1s of size zero Say m such
samples have been taken, and that the sumis s Then
estimate that A, the true answer, 1s |R||S|s/m

A more sophisticated version of their algorithm,
also presented in [HOT88], involves randomly choos-
ing a set of disk blocks of R and a set of disk blocks
of S, then comparing all tuples within these blocks to
see If they join This greatly reduces the number of
disk I/O’s for a given number of tuple comparisons

Again, since we cannot implement this blocked
sampling algorthm through the EQUEL interface,
we cannot sensibly compare times for the two algo-
rithms However, we can compare the accuracy of the
estimate 1n terms of the number of tuples examined

We compared relative accuracies of our adaptive
sampling algorithm and the HOT algorithm for the
query unique2a join quarterb That 1s, the join at-
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Figure 6 Accuracy of HOT Algornithm for query
unique2a jomn quarterb

tribute 1n relation A contained a random permutation
of the integers from zero to n, where n 1s the num-
ber of tuples in relation A, while the join attribute
in relation B contained a random permutation of the
integers from zero to n/4, each integer appearing four
times

Figure 6 gives the accuracy of the HOT algorithm
on this query for relations of sizes varying from 10K
to 40K tuples Figure 7 gives the accuracy of the
adaptive algorithm for the same query Both graphs
compare the relative error 1n the estimate vs the
number of tuples examined The scale for the z-axis
1s different 1n the two figures, the graphs indicate that
the adaptive algorithm converges to a good estimate
much faster (in terms of number of tuple compar-
1sons) than the HOT algorithm However, since the
HOT algorithm uses clustered sampling, 1t 1s able to
make more tuple comparisons per disk I/O than the
adaptive algorithm

Also, the intended application of the HOT algo-
rithm 1s real-time systems, where predictability of the
time to compute a sample 1s paramount Since every
sample 1n the HOT algorithm consists of extracting a
fixed number of disk pages, it 1s predictable, whereas
in the adaptive algorithm, the time for a sample will
vary depending on the size of the sample
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Figure 7 Accuracy of Adaptive Algorithm for query
unique2a join quarterb

6 Conclusion

We have argued that adaptive random sampling can
be a useful tool mn estimating query sizes Imple-
mented 1 a loosely coupled manner as a host lan-
guage program, 1t gave good performance over a wide
range of select and join queries

In future work we intend to examine the efficiency
of random adaptive samphng when added as an op-
erator within the database system This will allow us
to test the disk block-at-a-time variant of our select
estimation algorithm, and to test the performance
of the algorithm with the host/system overhead re-
moved Finally, we plan to investigate sampling on
large main-memory and on multiprocessor machines
Such machines provide an extremely attractive envi-
ronment for size estimation through sampling, since
1) 1n mamm-memory databases, there 1s no handicap
to the sampling algorithm due to poor use of disk ac-
cesses, and 2) on a multiprocessor, many samples can
be done simultaneously in parallel
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