
Practical Selectivity Estimation through Adaptive Sampling

Richard J Lipton* Jeffrey F Naughtont
Department of Computer Science Department of Computer Sciences

Princeton University University of Wisconsin
Donovan A SchnelderS

Department of Computer Sciences
University of Wisconsin

Abstract

Recently we have proposed an adaptive, random sam-
pling algorithm for general query size estlmatlon In
earlier work we analyzed the asymptotic ef’l?clency
and accuracy of the algorithm, m this paper we mves-
tlgate Its practlcahty as applied to selects and Jams
First, we extend our previous analysis to provide ag-
mficantly improved bounds on the amount of sam-
plmg necessary for a given level of accuracy Next,
we provide “sanity bounds” to deal with queries for
which the underlying data 1s extremely skewed or the
query result 1s very small Finally, we report on the
performance of the estlmatlon algorithm as ample-
mented m a host language on a commercial relational
system The results are encouraging, even with this
loose couplmg between the estlmatlon algorithm and
the DBMS

1 Introduction

Estimates of query result size are useful m query
optlmlzatlon, as a means of determmmg the feast-
blhty of queries, and as a quick way of answering
queries for which the size of the answer 1s of interest
m Its own right The potential benefits of samplmg-

*Work supported by DARPA and ONR contracts N00014-
85-C-0456 and N00014-85-K-0465, and by NSF Cooper&we
Agreement DCR8420948

t Work supported by NSF grant IRI-8909795
t Work supported by a DARPA/NASA Graduate Research

Assxhntshp

Permission to copy wthout fee all or part of tbls matcnal IS granted prowded
that the cop!” are not made or dwtnbuted for dwect commerwdl advantage, the
ACM copy@ noWe and the title of the pubbcatlon and ID date appear, and
nouce II pm that cqyng II by pmmwon of the Assoaat!on for Computmg
Macbmety To copy othetwe, or to repubbah, requws a fee and/or specific
pfX!JllSSlO”
0 1990 ACM 089791-365 5/90/0005/0001 $1 SO

based algorithms for size estlmatlon are many Unlike
parametric methods [Chr83a, Chr83b, Dem80, Fed84,
SAC+79, Lyn88, MDL83], they require no assump-
tions about the fit of the data to a probability dlstn-
butlon Unlike histogram or table based nonparamet-
rlc methods [Chr83b, KK85, HTY82, Koo80, MD88,
MK85, PSC84], they do not require storing and mam-
taming detailed statlstlcs about the base data and
views m the system Finally, they are robust m the
presence of correlation of attributes, which allows ac-
curate estlmatlon for queries that involve many oper-
ators

However, there has been very little experimental
or analytic work to evaluate the practlcahty of sam-
pling estlmatlon algorithms, perhaps due to skeptl-
clsm about the performance of these algorithms Folk
wisdom says that smce

1 To attam reasonable accuracy, many samples
must be taken, and

2 Sampling algorithms must do a disk I/O per
tuple examined, whereas query evaluation algo-
rithms can amortize the cost of a disk I/O over
all tuples on a page, and

3 In sampling, the overhead of mltlatmg an oper-
ation 1s incurred n times, where n 1s the number
of samples taken, m evaluating the query, the
overhead 1s incurred Just once,

the cost of estlmatmg a query through sampling 1s
too high to be effective In this paper we argue that,
to the contrary, a well-designed sampling algorithm
for size estlmatlon can be very efficient

Recently, we proposed the first adaptive random
sampling algorithm for general query size estlma-
tlon [LN89, LN90] The analysis m those papers
showed that the algorithm has good asymptotic be-
havior, suggesting that It might be efficiently ample-
mentable However, asymptotlcs alone do not guar-
antee practlcahty The purpose of this paper 1s to

1

demonstrate that the algorithm has sufficiently high
performance to be useful m practice

We report the performance of the estlmatlon algo-
rithm m estlmatmg the sizes of various select and
Jam queries over a synthetic database designed to
stress the algorithm To ensure that our tests did not
underestimate the cost of sampling m a production
quality database system, we implemented our alga
rlthm as a host-level program running on a commer-
cial relational database system (EQUEL and RTIn-
gres) Note that this actually overestimates the cost
of sampling, smce the algorithm 1s implemented out-
side of the system, treating the system as a black box
For example, m our lmplementatlon every sample re-
quires a mmlmum of two UNIX pipe reads and two
UNIX pipe writes as the host program commumcates
with the database back end

Detailed results of the experiments appear m Sec-
tions 4 and 5 The mam pomt 1s that, unless the
query itself can be computed extremely efficiently
(e g , an equality selection on a key attribute with
an index), or the answer 1s very small, the size of the
query can be estimated accurately m a small fraction
of the time It takes to compute the query

While lmplementmg the sampling algonthm, sev-
eral important points arose First, the algorithm gave
much better estimates than were predicted by the
bounds given m [LN89, LN90] In order to demon-
strate that this 1s a property of the algorithm, and not
of the specific data being used m the tests, we have
done a new analysis of the algorithm m order to derive
the smallest possible sampling bounds that guaran-
tee the required confidence levels Section 2 provides
this analysis The improvement over [LN89, LN90]
IS dramatic, for example, the bound for 95% confi-
dence has been improved by a factor of 8 While this
does not change the asymptotic time bounds, a factor
of 8 reduction m running time can be the difference
between a useful and a useless estlmatlon algorithm

Second, highly skewed data provide special chal-
lenges to estimation through sampling To deal with
this problem, m Section 3 we propose the notion of
sanzly bounds for sampling Intmtlvely, the adaptive
algorithm augmented with sanity bounds will either
(1) estimate the query size to wlthm some given per-
centage of Its true value, or (2) guarantee that the
query size is itself small

The literature directly related to this paper 1s sur-
prlsmgly sparse Both Platetsky-Shapiro and Con-
nell [PSC84] and Murahkrlshna and Dewitt [MD881
discuss usmg sampling to build approximate selec-
tivity histograms Those papers use the Kolmogorov
test statlstlc to give bounds on the number of samples
necessary to construct a histogram with a given accu-

racy, but do not consider the problem of estlmatmg
the size of the query directly through sampling

Olken and Rotcm [OR86,OR89] consider the prob-
lem of sampling to construct a random subset of
a query answer without computmg the full answer
This problem 1s complementary to size estlmatlon,
since an algorithm for size estlmatlon does not Imply
an algorithm for constructmg a random sample, and
vice-versa

The most closely related work 1s that of Hou, Oz-
soyoglu, and TaneJa [HOT88, HOT891 In that work,
the emphasis 1s on the estlmatlon of aggregate queries
m real-time environments, rather than on query size
estimation The papers present data relating the
number of samples to accuracy, but do not exphc-
ltly consider tlmmg conslderatlons A comparison m
Sections 4 and 5 shows that while our algorithm and
their algorithm are comparable for selections on single
relations, for Jam queries our algorithm clearly dom-
mates with respect to efficiency of size estlmatlon

The results presented m this paper argue that size
estlmatlon through sampling could be easily added
to database systems and can provide what 1s perhaps
surprlsmgly good performance We close m Section 6
with a dlscusslon that current trends m technology
argue that sampling will be even more useful m future
systems

2 Bounds on Sampling

The sampling algorithm presented m this paper IS
based on a model developed m [LN90] The central
notion of that algorithm was that of partztzonzng the
query In order to estimate the size of the query,
we first partition the answer to the query mto some
number of dlsJomt subsets such that it 1s possible to
randomly choose one of these subsets and compute Its
size We emphasize that this partltlonmg 1s concep-
tual, the sampling algorithm does not construct the
answer to the query The sampling algorithm works
by repeatedly randomly choosmg one of these subsets,
computmg the size of the subset, then estimating the
size of the query result based on these samples

Example 2.1 In this paper we will be concerned
with the two “work-horse” operators of relational sys-
tems, Jam and select (The general algorithm applies
to other types of queries as well)

First, consider a selection query Q1 = a(R) In
this case the answer can be partitioned based on the
tuples m R Each tuple of R can be considered as a
representative of a subset of the answer to the query,
If the tuple satisfies the selectlon, then the size of the
subset IS 1, If not, the size of the subset 1s zero

Next, consider the natural Join query &z = R W S
The query is partronable as follows for each tuple r
m R, the correspondmg partrtron of Q2 is all tuples t
m Q2 such that t was generated by Jommg T with
some tuple of S In this case the size of a subset
denoted by a tuple r is the number of S-tuples that
Join with T 0

A novel feature of the estrmatron algorithm is that
the termmatron condrtron 1s expressed m terms of the
size of the sum of the samples taken, rather than m
terms of the number of samples This lends the al-
gorithm an adaptive flavor, rf the samples are large,
fewer will be taken, rf the samples are small, more
will be taken

If the size of a sample can be computed m time that
is some function of the size of the sample, the adaptive
nature of the algorithm makes rt more efficient than a
correspondmg non-adaptive sampling approach In-
tuitively, this 1s because a non-adaptive sampling ap-
proach must take enough samples to guarantee accu-
racy m all cases, the adaptrve algorithm 1s able to
terminate early m the expensive cases, that is, when
the samples turn out to be large

Suppose that the answer to the query to be estr-
mated can be partitioned mto n disJomt subsets, and
define a random variable X to be the srze of a ran-
domly selected subset We let E denote the expected
value of X, and V denote its varmnce

We assume that we have avarlable two constants b
and Amax These constants are specific to the query
being estimated, b is an upper bound on the size of a
partrtron, while A,,, is an upper bound on the query
size Note that A,, 1s Just bn The accuracy does
not depend on how close the bounds b and A,, are
to their actual values, however, the closer they are,
the more efficrent the samplmg

The sampling algorrthm takes as parameters two
mtegers d and e, and attempts to produce an estr-
mate A that 1s wrthm max(A/d,A,,/e) of the ac-
tual value A Addrtronally, a parameter p, where
0 5 p < 1, specrfies the desired confidence m the
estimate That is, the estimate will be wrthm the
specified error bound with probabrhty p The general
algorithm appears m Figure 1

The constants ICI and k2 depend on the desired
confidence level p Imtrally, m [LN90], we presented
the algorithm without the second conJunct m the
control expression of the whde loop (the conJunct
(m < kze2))) Th e reason for the second conJunct is
given m Section 3 The analysrs m that paper proved
the followmg bound

Theorem 2.1 Suppose that an a run of the algorithm
of Fzgure 1, the whale loop termanates because s 2

s= 0,
m =O,
while ((s < klbd(d + 1)) and (m < k2e2)) do begin

s = s + RandomSample(),
m =m+l

end,
A = nslm,

Frgure 1 A general algorrthm for query size estlma-
tion

klbd(d + 1) Then for 0 < p 5 1, zf kl = l/(1 - fi),
the error an A as less than A/d wath probabalaty p

Imtral experiments with an rmplementatlon of
the algorithm showed umformly much better perfor-
mance than that guaranteed by Theorem 2 1 The
followmg theory offers a partial explanation of this
phenomenon

Brrefly, Theorem 2 1 gives weak bounds because it
1s so general In particular, it assumes that the sum of
the samples has an arbitrary drstrrbutron, m practice,
relatively few samples are necessary m order for the
drstrlbutron of the sum to begin to look normal Note
that thus is not a statement about the distribution of
the sizes of the partrtrons of the query Rather, it is an
observatron about the sum of a set of random samples
of the partitions To quantify this observation, we use
the followmg definition

Definition 2.1 Suppose that m a particular run of
the algorithm m Figure 1 m samples are made Then
we wdl say the central lamat approxamataon applaes if

CLIXs -mE

a

has the standard normal drstrrbutron

By the Central Lrmrt Theorem [Fe168], for any
given instance of the estimation problem, for large
enough m we may always treat the samplmg as if the
central limit approximation applies For small num-
bers of samples on certam drstrrbutions the approxr-
matlon will be less accurate The followmg theorem
shows that when the central hmrt approximation ap-
phes, much better bounds can be derived It uses the
notation Q(a) = 1/2rJzoo exa12dx, that is, the area
under the unit normal distribution to the left of a

Theorem 2.2 Suppose that an a run of the algorathm
of Fagure 1, the whale loop termanates because s >_

3

p ICI (no CLA) %I (with CLA)
080 1 95 1 26

n
Proof:

Table 1 Value of kl, with and without central hmlt
assumption

kIbd(d + l), and let the central lamat approzamataon
apply Then for 0 5 p < 1, af

ICI 2 [m-’ (?)I2

the error an A as less than A/d wath probabalaty p

The improvement m the value of k1 given by The-
orem 2 2 over Theorem 2 1 1s dramatic, the values
of kl with and wlthout the central hmlt assumption
for several values of p are given m Table 1 (The
reader uninterested m the proof of this theorem can
safely skip the remamder of this sectlon)

The proof of Theorem 2 2 uses the followmg se-
quence of lemmas We represent the probability of
an event z by P[z]

Lemma 2.1 Let m = pV/E2 be a posatave Integer,
and suppose that the samplang satasfies the central
lamat approxamataon Then

Proof:

=

0

We bound the error m the estimate with the fol-
lowing lemma

Lemma 2.2 Let m 2 pV/E2 and d > 0, and sup-
pose that the samplang satasfies the central lamat ap-
proxamataon Then

P[-;(;x,)-Ai<A,d] =2+$-I

=

0
We can now prove Theorem 2 2
Proof: (Theorem 2 2) There are two parts to

the proof First, we prove that if the algorithm m
Figure 1 termmates with s 2 kl(V/E)d(d + l), then
the desired confidence and accuracy hold Next, we
show that b 2 V/E, completmg the proof

There are two ways that the algorithm can fall -
It can stop too early to guarantee a good error bound,
or it can stop after enough samples but with a bad
estimate

By Lemma 2 1, the probablhty that the algo-
rithm stops with fewer than m = pV/E2 samples 1s
@((a - p)/fi) By Lemma 2 2, the probablhty that,
given m = ,8V/E2 samples, the estimate 1s within
A/d of A, 1s ZQ(fi/d) - 1 Combmmg the two gives
a probability of success equal to

m(Jg) (x($1)
We can bound this product by setting the two proba
blhtles to both be equal to p’, where p’ = 4, where
p 1s the desired probability of success This gives
p = [a-‘((1 + p’)/2)12d2, and

Cr=

= .-l(+)d(@-‘(p’)+O-‘(+)d)

< - a-l (+) d (Q-l (+) +a--’ (+) d)

I [Qj-l (y)12d(d+ 1)

This completes the proof that d the algorithm sam-
ples untd s 2 kl(V/E)d(d + l), the desired accuracy
holds with probablhty p

Now we turn to prove that b 2 V/E By definition
of v,

v = (:$x%2 - (gx,)2)

< 1 2x; - n () 1

4

so V/E 5 bE/E = b This means that Ifs 2 klbd(d+
l), we also have s > kl(V/E)d(d+l), and the theorem
holds •I

3 Skewed Data and Small

Q ueries

While the central hmlt approxlmatlon indicates that
m many cases a much smaller amount of samphng will
suffice than the amount mdlcated by Theorem 2 1,
there 1s still a problem of efficiency when b 1s large
m comparison to E In practical terms, this means
that the sizes of the partitions of the query are highly
skewed, that is, that a large portlon of the total query
size 1s due to a small portlon of the samples

The problem m this case IS not so much with our
specific algorithm, but with sampling m general To
make the followmg dlscusslon concrete, consider the
case of estimating a selection on a l,OOO,OOO tuple
relation, and, furthermore, that only one tuple satls-
fies the selectlon Then we will have 999,999 partl-
tlons of size zero, and one partltlon of size one This
means that the expected size of a random sample 1s
l/l, 000,000, so samplmg until s > klbd(d+l) can be
expected to require 1, 000, 000 * kld(d + 1) samples

The problem 1s that the bound s > klbd(d + 1) 1s
designed to ensure that the total error 1s at most A/d
In this case, that corresponds to asking for an error
less than one on a sample space of size l,OOO,OOO

The solution 1s to guarantee Instead that the error
will be at most some fixed fraction of the worst-case
size In essence, If the answer 1s small relative to the
problem space, we sample enough to guarantee that
the answer 1s mdeed small

As m the adaptive case, there are two types of
bounds we can prove, dependmg on whether or not
we assume the central limit approxlmatlon The fol-
lowmg theorem does not assume the central limit ap-
proxlmatlon (For proofs of Theorems 3 1 and 3 2,
see [LNSSO])

Theorem 3 1 Suppose that an a run of the algonthm
of Fagure 1, the whale loop termanates because m >
k2e2 Then for 0 5 p < 1, af k2 2 1/(1-p), the error
an A as less than A ,,,Je of A wath probabalaty p

If we assume that the central hmlt approxlmatlon
1s valid, tighter bounds are possible

Table 2 Value of k2, with and wlthout central hmlt
assumption

Theorem 3.2 Suppose that an a run of the algorathm
of Fagure 1, the whale loop termanates because m >
k2e2, and suppose that the central lamat approxamataon
appbes to the samples Then for 0 5 p < 1, af kz >
P-l((l +p),2)12, th e error an A as less than Amaxle
of A wath probabalaty p

Again, as m the case of the bounds on k1, the cen-
tral limit approxlmatlon gives much better bounds
The values for k2 for several values of p are given m
Table 2

When comparing these bounds with those given for
those given m Section 2, It 1s important to note two
things First, here the error 1s expressed m terms of
the worst-case bound on the size of the actual sum be-
mg estimated, which m general may be much larger
than the actual size of the sum That is, it 1s possible
that A ,,,,Jd >> A/d Second, here k2e2 1s the num-
ber of samples taken, whereas m the adaptive case
klbd(d + 1) 1s the sum of the sizes of the samples
taken

Example 3 1 We return to the example of a selec-
tion query that returns a single tuple of a l,OOO,OOO
tuple relation As noted above, if we omit the “sanity
bound,” and request that the query size be estimated
to within 10% of the true query size with 80% cer-
tamty, we can expect to take about 5 0 x lo8 samples
Smce for the same effort we could scan the entire re-
lation 500 times, this 1s clearly a mistake

If we add the sanity bound and say that we wish
to estimate the query to wlthm 10% of the worst-case
bound on the selection size or 10% of the answer size,
whichever 1s larger, we get that at most 200 samples
are required 0

4 Estimating Select ions

In the literature on estlmatmg statlstlcal parameters
of database queries, estlmatmg the fraction of tuples
that satisfy a selection has received the most atten-
tlon, both from a parametric and a non-parametric

5

vlewpomt In this sectlon we examine the problem of
estlmatmg the size of selectlon through samphng

Overview of Selectivity Sampling

Samphng to estimate selectlvitles is most effective in
sltuatlons where the selection itself must be evaluated
through a scan of the relation This mcludes selec-
tions on columns for which there 1s no mdex, complex
selection condlt:ons such aa arlthmetlc expressions,
and dyadlc selectlon condltlons such as “A X = A Y,”
where X and Y are attributes of relation A Sampling
to estimate the selectlvltles of the last two types of se-
lectlons is particularly important, since non-sampling
parametric and non-parametnc approaches do not
work well m these cases

As noted m Example 2 1, our adaptive samplmg al-
gorithm can be used to estimate selectlvltles by par-
tltlonmg the input relation by tuples That is, we
randomly choose a tuple, and check to see if it satls-
fies the selection condltlon, If It does, the sample 1s
of size one, if not, it 1s of size zero In order for this
strategy to be practical, we need an index on some
column of the relation, note that this need not be the
column to which the selection apphes

In the experiments we ran, we ensured that there
was always an index on a dense key attribute of the
relation (By “dense” we mean that there are no gaps
between consecutive values appearing in the relation)
This 1s not necessary m general, If we use the tech-
niques from [OR89], all that 1s reqmred 1s a B+-tree
on some attribute of the relation

If we assume that the cost of retrieving a sample
tuple from the relation 1s much greater than the cost
of verlfymg that the tuple satisfies the selection, then
the form of the selectlon expression does not slgmf-
scantly affect the runnmg time of the algorithm, all
that matters 1s the selectlvlty bemg estimated Hence
in our experiments we ran simple equahty selections
on columns wlthout indices, but the results are also
representative of estimating more complex selections
with the same selectlvltles

The database used to estimate the selectlvltles was
based on the database used m the Wlsconsm bench-
marks [BDT83] We tested 1% and 10% selectlvltles
on relations of 10,000, 30,000 and 50,000 tuples Ex-
cept where noted otherwise, the tuple size was 208
bytes We varied the selectlvltles by performing an
equality select on a column with a random permuta-
tion of integers from one to ten (for the 10% case) or
from one to 100 (for the 1% case)

The fragment of EQUEL code that does the sam-
pling for the 1% case IS presented m Figure 2 The
column a unlqueia IS a key for relation wlscrela,

range of a 1s wlscrela
sum=m=O,
while ((sum <= k*D*(D+i)*b) && (m <= k*E*E))
t

mtt,
target = random0 % I,

repeat retrieve (size = count(a uniquela
where a unlqueia = @target and
a hundreda = 5) >

sum += size,
3
estimate = (sum*N)/m,

Figure 2 EQuel code for estimating selectlvlty

k 1 0 01 err 0 10 err 1 0 01 time 0 10 time
10 1 97 61 I 50 06
20 45 43 10 1 08
30 39 37 13 7 14
40 28 29 18 5 17

Table 3 Time and error vs k for selectlvlty tests

and there 1s a B+-tree index on that column The
relatlonshlp between this code fragment and the gen-
eral algorithm m Figure 1 should be clear

Discussion of Selection Data

Table 3 gives the time to compute the estimate and
the relative error m the estimate for both one and 10
percent selections from a 10,000 tuple relation and
a range of k values Recall that the bound for the
sampling IS k *d * (d + 1) *b, here b 1s 1, and m order
to clarify the exposltlon, we also set d = 1 and vary k
Smce we wish to evaluate the adaptive nature of the
algorithm, we set e artlficlally high, to avoid “samty”
escapes

The data points given represent average values
over 100 trials All trials were run under RTIngres
Release 5 0 running on a moderately loaded DEC
VAX 6820

Two observations are clear from the data First,
with the exception of the k = 1 0 value, the relative
errors are very close for one and 10 percent Second,
the one percent estlmatlons take roughly a factor of
ten longer to compute

These two observations are direct consequences of
the adaptive nature of the sampling algorithm Intu-
ltlvely, the algorithm samples until it has seen enough
“one” samples to make a good estimate To see the

same number of “one” values m the one percent case
as the 10 percent case, we would expect to do a factor
of ten more samples, smce there are a tenth as many
ones

Note also that although the relative error 1s roughly
the same m each case, the absolute error 1s a factor
of ten worse m the 10 percent case For example,
m the k = 4 0 entry, the error of 28% m the one
percent selection corresponds to an error of 28 tuples,
whereas the error of 29% m the ten percent selectlon
corresponds to an error of 290 tuples This 1s the
same observation that motivates the “sanity bounds”
as discussed m Section 3

To put the efficiency of estlmatlon mto perspective,
we compared the time of estimation to the time to
actually compute the query Since both the one per-
cent and 10 percent selections were chosen to force
INGRES to scan the relation, both queries took the
same time 9 0 seconds This means that while the 10
percent selectlon estimation was not too expenwve, in
all cases other than k = 1 0, estlmatmg the size of the
one percent selection took longer than computmg the
actual number

While on the surface this lmphes sampling 1s a bad
Idea for one percent selectlvltles, this 1s not neces-
sarlly the case First, the estlmatlon ran for a long
time because the sanity bounds were purposely set
high enough to guarantee that they did not come mto
play In an actual apphcatlon of samphng, the sanity
bounds should be set so that the sampling will not
run as long as the query

Secondly, and perhaps more importantly, sampling
to estimate selectlvltles scales very well In fact, the
time to estimate a selectlvlty 1s largely independent of
the size of the input relation As the relation grows,
the time to compute the query grows, so the percent-
age of compute time to estimate to a given accuracy
decreases This 1s important because It 1s queries over
large relations, where computation times can be very
high, that must be estimated rather than computed
The graph m Figure 3 gives data for estlmatmg and
computing a 10 percent selectivity over relations of
lOK, 30K, and 50K tuples The vertical ax~x1.s 1s the
relative error of the estimate with respect to the ac-
tual query size, the horizontal axis 1s the ratlo of the
time to estimate the query size to the time to com-
pute the query size

Another factor m the efficiency of samphng IS the
tuple size When scannmg the relation to compute
the answer, INGRES has the advantage of gettmg
about c tuples for each disk access, where c 1s the
average number of tuples per disk page Hence the
larger c 1s) the less efficient sampling will be Con-
versely, with smaller c, samplmg 1s more efficient

04
0 : 1 6 8 10 12 11 16 ,Y 20

PERC!Z.T OF COWPUE TIME

Figure 3 Scale-up results for select estimation

Table 4 Time vs tuple size for selectlvlty tests (k =
30,s=010)

The simplest way to vary c 1s to vary the tuple size
Table 4 shows the effect of varying the tuple size by
a factor of three m the 10 percent selection The
estimating time remains constant, whereas the time
to compute the query grows m proportion to the tuple
size The next subsection discusses two ways to deal
with large c values

Comparison with Hou et al.

Hou, Ozsoyoglu, and TaneJa [HOT88, HOT891 de-
scribe another algorithm for estimating selectlvltles
through random sampling While similar, there
are a number of differences between their approach
and ours First, they sample without replacement,
whereas we sample with replacement For the large
population sizes we are consldermg, this does not
make much of a difference Perhaps most agmfi-
cantly, Hou et al [HOT881 propose to use cluster
samplrng In cluster samphng, when a disk page 1s
brought into memory, all tuples on the page are sam-
pled This increases the efficiency, especially if c, the
blocking factor, 1s large However, the samples are no
longer independent

Using all tuples on a disk page 1s clearly a good
idea One natural way to incorporate this mto our
samphng framework 1s as follows first, define a sam-
ple to be a randomly chosen disk page of the relation,
rather than a randomly chosen tuple The size of a
sample 1s the number of tuples m the page that sat-
isfy the selection, and n, the number of partltlons, 1s
the number of disk blocks m the relation Note that
this 1s different from cluster sampling, cluster sam-
pling treats a disk page as a set of correlated samples,
whereas the method outlmed above treats a disk page
as a single sample

From the EQUEL interface we could not lmple-
ment either cluster sampling or this algorithm In-
tultlvely, the block sampling algorithm of [HOT881
should perform better than the simple non-blocking
adaptive samplmg algorithm we have presented, smce
essentially m the same samphng time the blocking al-
gorithm can examme a factor of c more tuples than
the non-blocking adaptive algorithm The compan-
son between the algorithm of [HOT881 and the block-
mg version of our adaptive algorithm 1s less obvious,
and will be the topic for future experlmentatlon

5 Estimating Joins

In this section we consider the problem of estlmatmg
Join selectlvltles through random sampling Estlmat-
mg Join selectlvltles 1s more mvolved than estimating
the simple selectlvltles of Sectlon 4, however, since m
general computing a Join IS more expensive than com-
puting a select, and much less 1s known about non-
sampling methods of estlmatmg Joins, finding good
sampling estlmatlon algorithms for Jams IS crltlcal

Overview of Join Sampling

In this paper we consider binary Joins, although most
of the dlscusslon can be extended to arbitrary Jams
with minor modlficatlons As dlscussed m Exam-
ple 2 1, we sample Jams by denotmg one relation as
the source relation and the other as the target rela-
tlon The query answer 1s partltloned mto as many
subsets as there are tuples m the source relation, the
size of a subset denoted by a tuple t of the source
relation is Just the number of tuples in the target re-
latlon that Join with t A sample 1s Just the size of a
randomly chosen subset

The EQUEL fragment m Figure 4 implements the
sampling loop for one of the Joins described below
Agam, the analogy to the algorithm m Figure 1
should be clear

Because m Join sampling the samples are no longer
zero-one samples, the dlstrlbutlon of sample sizes can

range of a 1s wlscrela
range of d 1s wlscreld
sum = m = 0,
while ((sum <= k*b*D*(D+l)) && (m <= k*E*E))
<

1

m++)
target = random0 % N,
repeat retrieve (sue = count(d unlqueld

where a unlqueia = @target and
d norm8d = a thousa))

sum t= size;

estimate = (sum*N)/ m,

Figure 4 EQUEL to estimate a Join size

be more mterestmg and haa a slgmficant effect on the
estimation algorithm Recall from Section 2 that the
bounds on samplmg are expressed m terms of ratlo of
the variance and expected value of the samples, which
1s bounded above by the maximum size of any sample
In order to fully test our algorithm, we investigated
Joins m which the Join attribute m one relation was
uniformly dlstnbuted, and the Jam attribute m the
other wils normally dlstrlbuted By varying the stan-
dard deviation of the normal dlstnbutlons, we were
able to test the algorithm for various dlstrlbutlons of
sample 51zes

As m the selectlon estlmatlon case, we assume that
one of the relations has a dense key with an mdex,
although all that 1s needed 1s a B+-tree on some at-
tribute There 1s an additional reqmrement for effi-
clent Join sampling after randomly choosmg a tuple t
of the source relation, we must find all tuples of the
target relation that Jam with t Hence if the samphng
1s to be efficient, there must be an index on the Jam
attribute of the target relation

In the followmg data, the source and target rela,
tlons both contamed 10,000 tuples, each of 208 bytes
The relevant columns for the sampling were

unique1 - an integer key column, used for ran-
domly choosmg a source tuple

unlque2 - a permutation of unique1

thousa - random Integers between one
and 1000, subject to the condltlon that each ap-
pears exactly 10 times m the relation

normX - the posltlve half of a normal dlstnbu-
tlon with mean zero and standard deviation X
There are 3 such columns, for X = 250, 1000,
and 16000

8

; 140.
c!
E 120.

T’
6 1oLl.
E

E 8o.

f

f: 6o

b 3 b 9 I? ;s 3 21 2.3 -7 ?O
PERCEVT OF COVPLTE lWE

Figure 5 Error vs percentage of compute time

Discussion of Join Data

The graph m Figure 5 shows the relative error m the
estimate as a function of the percentage of time to
compute the full Join There are curves for each of
unique2 Join normX for X = 250, 1000, and 16000
A couple of trends are clear from the graph First,
fairly accurate estimates (certamly good enough to be
useful m query optlmlzatlon) are possible m a small
fraction of the time reqmred to compute the Jam size
Second, the more skewed the data (the smaller the
standard devlatlon) the less efficient the estlmatlon

This can be understood as an extension of the at-
uatlon with selects In the select case, lf there were
many zeroes and few ones, the algorithm had to sam-
ple for a relatively long time m order to discover those
ones, m the Jam case, if there are a few outlymg sam-
ple sizes that are much bigger than the average sam-
ple size, the algorithm agam needs to do more sam-
plmg to discover those samples

This dependence on variance of the samples raises
an interesting pomt there 1s no a pnon reason to pick
one relation as the source over the other Clearly, If
only one relation has an mdex on the Join attnbute,
it must be the target relation But d both relations
have indices on the Jam attnbute, either can serve as
the source The declslon should be made m such a
way as to mmlmlze the variance of the samples

Consider Jommg two relations, with the Jam at-
tribute m one relation thous, and the Jam attrlbute
m the other norm2000 It turns out that d we make
the relation with norm2000 the source relation, then

Table 5 Two ways to sample a Jam

V/E = 3 2, whereas If we pick the relation with thous
as the source, V/E = 1 14 Table 5 compares the
performance of both strategies by glvmg the relative
error of each strategy at several pomts m time The
data points are averages over 100 trials, the errors
for each time t are interpolated values The strategy
with lower V/E converges faster

The scale-up conslderatlons m terms of tuple srze
for Jam estlmatlon are slmllar to those for select es-
tlmatlon However, If V/E grows as the size of the
Jommg relations grows, then smce the amount of sam-
pling necessary for a given accuracy 1s proportional to
V/E, the cost of sampling will not remam constant
On the other hand, :f V/E grows more slowly than
the size of the relation, or remains constant, as 1s of-
ten the case, Jam sampling will mcrease m efficiency
as relations grow

Comparison with Hou et al.

Hou et al [HOT88, HOT891 also give an algorithm for
estimating Jam selectlvltles In its simplest form, the
algorithm works as follows Suppose we are Jommg
relations R and S, and denote the size of R by IRI,
and the size of S by ISI The algorithm works as
follows First pick a tuple from the R, then pick a
tuple from S If the tuples Join, the sample 1s of size
one, otherwise, the sample 1s of size zero Say m such
samples have been taken, and that the sum 1s s Then
estimate that A, the true answer, 1s IRI\Sjs/m

A more sophlstlcated version of their algorithm,,
also presented m [HOT88], mvolves randomly choos-
mg a set of disk blocks of R and a set of disk blocks
of S, then comparing all tuples within these blocks to
see if they Join This greatly reduces the number of
disk I/O’s for a given number of tuple comparisons

Agam, since we cannot implement this blocked
sampling algorithm through the EQUEL mterface,
we cannot sensibly compare times for the two algo-
rithms However, we can compare the accuracy of the
estimate m terms of the number of tuples examined

We compared relative accuracies of our adaptive
samphng algorithm and the HOT algorithm for the
query unlque2a Join quarterb That ls, the Join at-

9

HOT SampIng Umqwlr,om Qummd
240 1
220.

2w.

180.

E
R 160.
C
: 140.
T

i Ito
loo.

E
R 80.

:: 60.

40.

20
1

\
0 IOKRchncms

A 20K Rclrtms

- 30K Relruom

0 10 20 30 JO 50 60 70 80 90 100
TL’PLES EXAMINED ITHOUSANDS)

Figure 6 Accuracy of HOT Algorithm for query
unlque2a Jam quarterb

tribute m relation A contained a random permutation
of the integers from zero to n, where n 1s the num-
ber of tuples m relation A, while the Join attribute
m relation B contained a random permutatlon of the
integers from zero to n/4, each mteger appearing four
times

Figure 6 gives the accuracy of the HOT algorithm
on this query for relations of sizes varymg from 10K
to 40K tuples Figure 7 gives the accuracy of the
adaptive algorithm for the same query Both graphs
compare the relative error m the estimate vs the
number of tuples examined The scale for the z-axis
1s different m the two figures, the graphs indicate that
the adaptive algorithm converges to a good estimate
much faster (m terms of number of tuple compar-
isons) than the HOT algorithm However, smce the
HOT algorithm uses clustered sampling, It IS able to
make more tuple comparisons per disk I/O than the
adaptive algorithm

Also, the intended apphcatlon of the HOT algo-
rithm IS real&me systems, where predlctablhty of the
time to compute a sample IS paramount Since every
sample m the HOT algorithm consists of extracting a
fixed number of disk pages, it IS predictable, whereas
m the adaptive algorithm, the time for a sample will
vary depending on the size of the sample

160

0 IOK Relrams

+ 30K Relruom

0 4OK Rclauors

0 -34567893
TL-F’LES EXAMINED MWDREDSl

Figure 7 Accuracy of Adaptive Algorithm for query
unique2a Join quart erb

6 Conclusion

We have argued that adaptive random samphng can
be a useful tool m estlmatmg query sizes Imple-
mented m a loosely coupled manner as a host lan-
guage program, it gave good performance over a wide
range of select and Join queries

In future work we intend to examme the efficiency
of random adaptive samplmg when added as an op-
erator within the database system This will allow us
to test the disk block-at-a-time variant of our select
estlmatlon algonthm, and to test the performance
of the algorithm with the host/system overhead re-
moved Fmally, we plan to investigate sampling on
large mam-memory and on multiprocessor machines
Such machines provide an extremely attractive envl-
ronment for size estlmatlon through sampling, since
1) m main-memory databases, there 1s no handicap
to the sampling algorithm due to poor use of disk ac-
cesses, and 2) on a multiprocessor, many samples can
be done simultaneously m parallel

References

[BDT83] D Bltton, D Dewitt, and C Turbyfill
Benchmarkmg database systems A sys-
tematlc approach In Proc Nznth VLDB,
pages 8-19, 1983

[Chr83a] S Chrlstodoulakls Estimating block
transfers and Jam sizes In Proc ACM

10

[Chr83b]

[Dem80]

[Fed841

[Fe1681

[HOT881

[HOT891

[HTY82]

[KK85]

[Koo80]

[LN89]

[LN90]

SIGMOD Conference, pages 40-54, May
1983

S Chrlstodoulakls Estlmatmg record se-
lectlvltles Informatron Systems, 8(2) 69-
79, 1983

R Demolombe Estlmatlon of the number
of tuples satlsfymg a query expressed m
predicate calculus language In Proc Szcth
VLDB, pages 55-63, 1980

J Fedorowlcz Database performance
evaluation using multiple regression tech-
niques In Proc ACM SIGMOD Confer-
ence, pages 70-76, June 1984

W Feller An Introductton to Probabal-
zty Theory and Its Applrcatrons, volume 1
John Wiley and Sons, Inc , New York, New
York, 1968

W -C Hou, G Ozsoyoglu, and B TaneJa
Statlstlcal estimators for relatlonal algebra
expressions In Proc ACM PODS, pages
276-287, March 1988

W -C Hou, G Ozsoyoglu, and B TaneJa
Processing aggregate relational queries
with hard time constramts In Proc ACM
SIGMOD Conference, pages 68-77, June
1989

L Herschberg, P D Tmg, and S B Yao
Query optlmlzatlon m star computer net-
works ACM Transactaons on Database
Systems, 7(4), December 1982

N Kamel and R Kmg A model of data
dlstrlbutlon based on texture analysis In
Proc ACM SIGMOD Conference, pages
319-325, May 1985

R Kool The optamaxatzon of quenes zn
relataonal database systems PhD thesis,
Case Western University, Cleveland, Ohlo,
1980

R Lipton and J Naughton Estlmatmg
the size of generalized transltlve closures
In Proc Fzfteenth VLDB, pages 165-172,
August 1989

R Lipton and J Naughton Query size es-
tlmatlon by adaptive sampling In Proc
ACM PODS, March 1990

[LNSSO] R Lipton and J Naughton and D
Schneider Practical Selectivity Estlma-
tlon through Adaptive Sampling Um-
verslty of Wlsconsm-Madison Computer
Sciences Department Technical Report,
March 1990

[Lyn88] C Lynch Selectivity estimation and
query optlmlzatlon m large databases with
highly skewed dlstrlbutlons of column val-
ues In Proc Fourteenth VLDB, pages
240-251, August 1988

[MCSSS] M M annmo, P Chu, and T Sager Sta-
tlstlcal profile estlmatlon m database sys-
tems Computrng Surveys, 20(3) 191-221,
September 1988

[MD881 M Murahkrlshna and D Dewitt Equl-
depth histograms for estimating selectlv-
lty factors for multi-dimensional queries
In Proc SIGMOD Conference, pages 28-
36, June 1988

[MDL83] A M on tg ornery, D D’Souza, and S Lee
The cost of relational algebraic operations
on skewed data Estimates and exper-
iments Informatzon Processang Letters,
pages 235-241, 1983

[MK85] B Muthuswamy and G Kerschberg A
DDSM for relatlonal query optlmlzatlon
Technical report, Umverslty of South
Carolma, Columbia, 1985 As cited
in [MCSSS]

[OR861 F Olken and D Rotem Simple ran-
dom sampling for relational databases In
Proc Twelfth VLDB, pages 160-169, Au-
gust 1986

[OR891 F Olken and D Rotem Random sampling
from B+trees In Proc Fzfteenth VLDB,
pages 269-278, August 1989

[PSC84] G Platetsky-Shapiro and C Connell Ac-
curate estlmatlon of the number of tuples
satlsfymg a condltlon In Proc ACM SIG-
MOD Conference, pages 256-276, June
1984

[SAC+791 P G Sehnger, M M Astrahan, D D
Chamberhn, R A Lorle, and T G
Price Access path selectlon m a relatlonal
database management system In Proc
ACM SIGMOD Conference, pages 23-34,
1979

11

