
Plan Bouquets: Query Processing without Selectivity
Estimation

Anshuman Dutt
Database Systems Lab, SERC/CSA

Indian Institute of Science, Bangalore, INDIA
anshuman@dsl.serc.iisc.ernet.in

Jayant R. Haritsa
Database Systems Lab, SERC/CSA

Indian Institute of Science, Bangalore, INDIA
haritsa@dsl.serc.iisc.ernet.in

ABSTRACT
Selectivity estimates for optimizing OLAP queries often differ sig-
nificantly from those actually encountered during query execution,
leading to poor plan choices and inflated response times. We
propose here a conceptually new approach to address this prob-
lem, wherein the compile-time estimation process is completely es-
chewed for error-prone selectivities. Instead, a small “bouquet” of
plans is identified from the set of optimal plans in the query’s selec-
tivity error space, such that at least one among this subset is near-
optimal at each location in the space. Then, at run time, the actual
selectivities of the query are incrementally “discovered” through a
sequence of partial executions of bouquet plans, eventually iden-
tifying the appropriate bouquet plan to execute. The duration and
switching of the partial executions is controlled by a graded pro-
gression of isocost surfaces projected onto the optimal performance
profile. We prove that this construction results in bounded over-
heads for the selectivity discovery process and consequently, guar-
anteed worst-case performance. In addition, it provides repeatable
execution strategies across different invocations of a query.

The plan bouquet approach has been empirically evaluated on
both PostgreSQL and a commercial DBMS, over the TPC-H and
TPC-DS benchmark environments. Our experimental results indi-
cate that, even with conservative assumptions, it delivers substan-
tial improvements in the worst-case behavior, without impairing the
average-case performance, as compared to the native optimizers of
these systems. Moreover, the bouquet technique can be largely im-
plemented using existing optimizer infrastructure, making it rela-
tively easy to incorporate in current database engines.

Overall, the bouquet approach provides novel guarantees that
open up new possibilities for robust query processing.

Categories and Subject Descriptors
H.2.4 [Database Management Systems]: Query Processing
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1. INTRODUCTION
Cost-based database query optimizers estimate a host of se-

lectivities while identifying the ideal execution plan for declara-
tive OLAP queries. For example, consider EQ, the simple SPJ
query shown in Figure 1 for enumerating orders of cheap parts –
here, the optimizer estimates the selectivities of a selection predi-
cate (p_retailprice) and two join predicates (part � lineitem,
lineitem � orders). In practice, these estimates are often signif-
icantly in error with respect to the actual values subsequently en-
countered during query execution. Such errors, which can even be
in orders of magnitude in real database environments [18], arise due
to a variety of well-documented reasons [23], including outdated
statistics, attribute-value independence(AVI) assumptions, coarse
summaries, complex user-defined predicates, and error propaga-
tion in the query execution operator tree [16]. Moreover, in en-
vironments such as ETL workflows, the statistics may actually be
unavailable due to data source constraints, forcing the optimizer to
resort to “magic numbers” for the values (e.g. 1/10 for equality
selections [22]). The net result of these erroneous estimates is that
the execution plans recommended by the query optimizer may turn
out to be poor choices at run-time, resulting in substantially inflated
query response times.

select * from lineitem, orders, part
where p_partkey = l_partkey and l_orderkey =

o_orderkey and p_retailprice < 1000

Figure 1: Example Query (EQ)

A considerable body of literature exists on proposals to tackle
this classical problem. For instance, techniques for improving
the statistical quality of the meta-data include improved summary
structures [1, 19], feedback-based adjustments [23], and on-the-fly
re-optimization of queries [17, 4, 20]. A complementary approach
is to identify robust plans that are relatively less sensitive to esti-
mation errors [9, 3, 4, 14]. While these prior techniques provide
novel and innovative formulations, they are limited in their scope
and performance, as explained later in the related work section.

Plan Bouquet Approach
In this paper, we investigate a conceptually new approach, wherein
the compile-time estimation process is completely eschewed for
error-prone selectivities. Instead, these selectivities are systemat-
ically discovered at run-time through a calibrated sequence of cost-
limited plan executions. In a nutshell, we attempt to side-step the
selectivity estimation problem, rather than address it head-on, by
adopting a “seeing is believing” viewpoint on these values.



1D Example. We introduce the new approach through a re-
stricted 1D version of the EQ example query wherein only the
p_retailprice selection predicate is error-prone. First, through re-
peated invocations of the optimizer, we identify the “parametric
optimal set of plans” (POSP) that cover the entire selectivity range
of the predicate. A sample outcome of this process is shown in
Figure 2, wherein the POSP set is comprised of plans P1 through
P5. Further, each plan is annotated with the selectivity range over
which it is optimal – for instance, plan P3 is optimal in the (1.0%,
7.5%] interval. (In Figure 2, P = Part, L = Lineitem, O = Order, NL = Nested

Loops Join, MJ = Sort Merge Join, and HJ = Hash Join) .

Figure 2: POSP plans on p_retailprice dimension

Figure 3: POSP performance (log-log scale)

The optimizer-generated costs of these POSP plans over the se-
lectivity range are shown (on a log-log scale) in Figure 3. On this
figure, we first construct the “POSP infimum curve” (PIC), defined
as the trajectory of the minimum cost from among the POSP plans
– this curve represents the ideal performance. The next step, which
is a distinctive feature of our approach, is to discretize the PIC by
projecting a graded progression of isocost (IC) steps onto the curve.
For example, in Figure 3, the dotted horizontal lines represent a ge-
ometric progression of isocost steps, IC1 through IC7, with each
step being double the preceding value. The intersection of each IC
with the PIC (indicated by �) provides an associated selectivity,
along with the identity of the best POSP plan for this selectivity.
For example, in Figure 3, the intersection of IC5 with the PIC cor-
responds to a selectivity of 0.65% with associated POSP plan P2.
We term the subset of POSP plans that are associated with the in-
tersections as the “plan bouquet” for the given query – in Figure 3,
the bouquet consists of {P1, P2, P3, P5}.

The above exercises are carried out at query compilation time.
Subsequently, at run-time, the correct query selectivities are ex-
plicitly discovered through a sequence of cost-limited executions
of bouquet plans. Specifically, beginning with the cheapest isocost
step, we iteratively execute the bouquet plan assigned to each step
until either:

1. The partial execution overheads exceed the step’s cost value
– in this case, we know that the actual selectivity location lies
beyond the current step, motivating a switch to the next step
in the sequence; or

2. The current plan completes execution within the budget –
in this case, we know that the actual selectivity location has
been reached, and a plan that is at least 2-competitive wrt the
ideal choice was used for the final execution.

Example. To make the above process concrete, consider the case
where the selectivity of p_retailprice is 5%. Here, we begin by
partially executing plan P1 until the execution overheads reach
IC1 (1.2E4 | 0.015%). Then, we extend our cost horizon to IC2,
and continue executing P1 until the overheads reach IC2 (2.4E4|
0.03%), and so on until the overheads reach IC4 (9.6E4 | 0.2%). At
this juncture, there is a change of plan to P2 as we look ahead to
IC5 (1.9E5 | 0.65%), and during this switching all the intermediate
results (if any) produced thus far by plan P1 are jettisoned. The
new plan P2 is executed till the associated overhead limit (1.9E5)
is reached. The cost horizon is now extended to IC6 (3.8E5 | 6.5%),
in the process jettisoning plan P2’s intermediate results and execut-
ing plan P3 instead. In this case, the execution will complete before
the cost limit is reached since the actual location, 5%, is less than
the selectivity limit of IC6. Viewed in toto, the net sub-optimality
turns out to be 1.78 since the exploratory overheads are 0.78 times
the optimal cost, and the optimal plan itself was (coincidentally)
used for the final execution.

Extension to Multiple Dimensions. When the above ap-
proach is generalized to the multi-dimensional selectivity environ-
ment, the IC steps and the PIC curve become surfaces, and their
intersections represent selectivity surfaces on which multiple bou-
quet plans may be present. For example, in the 2-D case, the IC
steps are horizontal planes cutting through a hollow 3D PIC sur-
face, typically resulting in hyperbolic intersection contours with
different plans associated with disjoint segments of this contour –
an instance of this scenario is shown in Figure 6.

Notwithstanding these changes, the basic mechanics of the bou-
quet algorithm remain virtually identical. The primary difference
is that we jump from one IC surface to the next only after it is de-
termined (either explicitly or implicitly) that none of the bouquet
plans present on the current IC surface can completely execute the
given query within the associated cost budget.

Performance Characteristics
At first glance, the plan bouquet approach, as described above, may
appear to be utterly absurd and self-defeating because: (a) At com-
pile time, considerable preprocessing may be required to identify
the POSP plan set and the associated PIC; and (b) At run-time, the
overheads may be hugely expensive since there are multiple plan
executions for a single query – in the worst scenario, as many plans
as are present in the bouquet!

However, we will attempt to make the case in the remainder
of this paper, that it is indeed possible, through careful design, to
have plan bouquets efficiently provide robustness profiles that are
markedly superior to the native optimizer’s profile. Specifically, if
we define robustness to be the worst-case sub-optimality in plan
performance that can occur due to selectivity errors, the bouquet
mechanism delivers substantial robustness improvements, while
providing comparable or improved average-case performance.

For instance, the runtime performance of the bouquet technique
on EQ is profiled in Figure 4 (dark blue curve). We observe that its



Figure 4: Bouquet Performance (log-log scale)

performance is much closer to the PIC (dark green) as compared to
the worst case profile for the native optimizer (dark red), comprised
of the supremum of the individual plan profiles. In fact, the worst
case sub-optimality for the bouquet is only 3.6 (at 6.5%), whereas
the native optimizer suffers a sub-optimality of around 100 when
P5 (which is optimal for large selectivities) is mistakenly chosen
to execute a query with a low selectivity of 0.01%. The average
sub-optimality of the bouquet, computed over all possible errors,
is 2.4, somewhat worse than the 1.8 obtained with the native opti-
mizer. However, when the enhancements described later in this pa-
per are incorporated, the optimized bouquet’s performance (dashed
blue) improves to 3.1 (worst case) and 1.7 (average case), thereby
dominating the native optimizer on both metrics.

Our motivation for the cost-based discretization of the PIC is
that it leads to guaranteed bounds on worst-case performance. For
instance, we prove that the cost-doubling strategy used in the 1D
example results in an upper-bound of 4 for the worst-case sub-
optimality – this bound is inclusive of all exploratory overheads
incurred by the partial executions, and is irrespective of the query’s
actual selectivity. In fact, we can go further to show that 4 is the
best competitive factor achievable by any deterministic algorithm.
For the multi-dimensional case, the bound becomes 4 times the
bouquet cardinality (more accurately, the plan cardinality of the
densest contour), and we present techniques to limit this cardinal-
ity to a small value. To our knowledge, these robustness bounds are
the first such guarantees to be presented in the database literature
(although similar characterizations are well established in the algo-
rithms community [8]). Further, we also present a variety of design
optimizations that result in a practical performance which is well
within the theoretical bounds.

In order to empirically validate its utility, we have evaluated
the bouquet approach on PostgreSQL and a popular commercial
DBMS. Our experiments utilize a rich set of complex decision sup-
port queries sourced from the TPC-H and TPC-DS benchmarks.
The query workload includes selectivity spaces with as many as
five error-prone dimensions, thereby capturing environments that
are extremely challenging from a robustness perspective. Our per-
formance results indicate that the bouquet approach typically pro-
vides orders of magnitude improvements, as compared to the op-
timizer’s native choices. As a case in point, for Query 19 of the
TPC-DS benchmark with 5 error prone join selectivities, the worst-
case sub-optimality plummeted from about 106 to just 10! The
potency of the approach is also indicated by the fact that for many
queries, the bouquet’s average performance is within 4 times of the
corresponding PICs.

What is even more gratifying is that the above performance pro-
files are conservative since we assume that at every plan switch,
all previous intermediate results are completely thrown away – in
practice, it is conceivable that some of these prior results could be
retained and reused in the execution of a future plan.

Apart from improving robustness, there is another major bene-
fit of the bouquet mechanism: On a given database, the execution
strategy for a particular query instance, i.e. the sequence of plan ex-
ecutions, is repeatable across different invocations of the query in-
stance – this is in marked contrast to prior approaches wherein plan
choices are influenced by the current state of the database statistics
and the query construction. Such stability of performance is es-
pecially important for industrial applications, where considerable
value is attributed to reproducible performance characteristics [3].

Finally, with regard to implementation, the bouquet technique
can be largely constructed using techniques (e.g. abstract plan cost-
ing) that have already found expression in modern DB engines, as
explained later in Section 5.4.

Thus far, we had tacitly assumed the optimizer’s cost model to be
perfect – that is, only optimizer costs were used in the evaluations.
While this assumption is certainly not valid in practice, improving
the model quality is, in principle, an orthogonal problem to that of
estimation. Notwithstanding, we also analyze the robustness guar-
antees in the presence of bounded modeling errors. Moreover, to
positively verify robustness improvements, explicit run-time evalu-
ations are also included in our experimental study.

In closing, we wish to highlight that from a deployment perspec-
tive, the bouquet technique is intended to complementarily co-exist
with the classical optimizer setup, leaving it to the user or DBA
to make the choice of which system to use for a specific query in-
stance – essential factors that are likely to influence this choice are
discussed in the epilogue.

Organization. The remainder of the paper is organized as fol-
lows: In Section 2, a precise description of the robust execution
problem is provided, along with the associated notations. Theoreti-
cal bounds on the robustness provided by the bouquet technique are
presented in Section 3. We then discuss its design methodology, the
compile-time aspects in Section 4 and the run-time mechanisms in
Section 5. The experimental framework and performance results
are reported in Section 6. Related work is reviewed in Section 7,
while Section 8 presents a critical review of the bouquet approach.

2. PROBLEM FRAMEWORK
In this section, we present our robustness model, the associated

performance metrics, and the notations used in the sequel. Robust-
ness can be defined in many different ways and there is no univer-
sally accepted metric [13] – here, we use the notion of performance
sub-optimality to characterize robustness.

The error-prone selectivity space is denoted as ESS and its di-
mensionality D is determined by the number of error-prone selec-
tivity predicates in the query. The space is represented by a grid of
D-dimensional points with each point q(s1, s2, ..., sD) correspond-
ing to a unique query with selectivity sj on the jth dimension. The
cost of a plan Pi at a query location q in ESS is denoted by ci(q).

For simplicity, we assume that the estimated query locations and
the actual query locations are uniformly and independently dis-
tributed over the entire discretized selectivity space – that is, all
estimates and errors are equally likely. This definition can easily
be extended to the general case where the estimated and actual lo-
cations have idiosyncratic probability distributions.

Given a user query Q, denote the optimizer’s estimated location
of this query by qe and the actual location at runtime by qa. Next,



denote the plan chosen by the optimizer at qe as Poe, and the op-
timal plan at qa by Poa. With these definitions, the sub-optimality
incurred due to using Poe at qa is simply defined as the ratio:

SubOpt(qe , qa ) =
coe(qa )

coa (qa )
∀qe , qa ∈ ESS (1)

with SubOpt ranging over [1, ∞). The worst-case SubOpt for
a given query location qa is defined to be wrt the qe that results in
the maximum sub-optimality, that is, where selectivity inaccuracies
have the maximum adverse performance impact:

SubOptworst (qa ) = max
qe∈ESS

(SubOpt(qe , qa )) ∀qa ∈ ESS (2)

With the above, the global worst-case is simply defined as the
(qe, qa) combination that results in the maximum value of SubOpt
over the entire ESS, that is,

MSO = max
qa∈ESS

(SubOptworst (qa)) (3)

Further, given the uniformity assumption about the distribution
of estimated and actual locations, the average sub-optimality over
ESS is defined as:

ASO =

∑
qe∈ESS

∑
qa∈ESS

SubOpt(qe , qa )

∑
qe∈ESS

∑
qa∈ESS

1
(4)

The above MSO and ASO definitions are appropriate for the
way that modern optimizers behave, wherein selectivity estimates
are made at compile-time, and a single plan is executed at run-
time. However, in the plan bouquet technique, neither of these
characteristics is true – error-prone selectivities are not estimated
at compile-time, and multiple plans may be invoked at run-time.
Notwithstanding, we can still compute the corresponding statistics
by: (a) substituting qe with a “don’t care” ∗; (b) replacing Poe

with Pb to denote the plan bouquet mechanism; and (c) having the
cost of the bouquet, cb(qa), include the overheads incurred by the
exploratory partial executions. Further, the running selectivity lo-
cation, as progressively discovered by the bouquet mechanism, is
denoted by qrun.

Even when the bouquet algorithm performs well on theMSO and
ASO metrics, it is possible that for some specific locations qa ∈
ESS, it performs poorer than the worst performance of the native
optimizer – it is therefore harmful for the queries associated with
these locations. This possibility is captured using the following
MaxHarm metric:

MH = max
qa∈ESS

(
SubOpt(∗, qa )

SubOptworst (qa )
− 1 ) (5)

Note that MH values lie in the range (−1,MSObouquet − 1] and
harm occurs whenever MH is positive.

An assumption that fundamentally underlies the entire bouquet
mechanism is that of Plan Cost Monotonicity (PCM) – that is, the
costs of the POSP plans increase monotonically with increasing
selectivity values. This assumption has often been made in the lit-
erature [5, 6, 15], and holds for virtually all the plans generated
by PostgreSQL on the benchmark queries. The only exception we
have found is for queries featuring existential operators, where the
POSP plans may exhibit decreasing monotonicity with selectivity.
Even in such scenarios, the basic bouquet technique can be utilized
by the simple expedient of plotting the ESS with (1 − s) instead
of s on the selectivity axes. Thus, only queries whose optimal cost
surfaces have a maxima or minima in the interior of the error space,
are not amenable to our approach.

3. ROBUSTNESS BOUNDS
We begin our presentation of the plan bouquet approach by char-

acterizing its performance bounds with regard to the MSO metric,
initially for the 1D scenario, and then extending it to the general
multi-dimensional case.

3.1 1D Selectivity Space
As described in the Introduction, the 1D PIC curve is discretized

by projecting a graded progression of isocost steps onto the curve.
We assume that the PIC is an increasing function (by virtue of
PCM) and continuous throughout ESS; its minimum and maxi-
mum costs are denoted by Cmin and Cmax, respectively. Now,
specifically consider the case wherein the isocost steps are orga-
nized in a geometric progression with initial value a (a > 0)
and common ratio r (r > 1), such that the PIC is sliced with
m = logr�

Cmax

Cmin
� cuts, IC1, IC2, . . . ICm, satisfying the bound-

ary conditions a/r < Cmin ≤ IC1 and ICm−1 < Cmax = ICm,
as shown in Figure 5.

Figure 5: 1D Selectivity Space

For 1 ≤ k ≤ m, denote the selectivity location where the kth

isocost step (ICk) intersects the PIC by qk and the correspond-
ing bouquet plan as Pk. All the qk locations are unique by def-
inition due to the PCM and continuity requirements on the PIC
curve. However, it is possible that some of the Pk plans may be
common to multiple intersection points (e.g. in Figure 3, plan P1
was common to steps IC1 through IC4). Finally, for mathematical
convenience, assign q0 to be 0.

With this framework, the bouquet execution algorithm operates
as follows in the most general case, where a different plan is as-
sociated with each step: We start with plan P1 and budget IC1,
progressively working our way up through the successive bouquet
plans P2, P3, . . . until we reach the first plan Pk that is able to fully
execute the query within its assigned budget ICk. It is easy to see
that the following lemma holds:

LEMMA 1. If qa resides in the range (qk−1, qk], 1 ≤ k ≤ m,
then plan Pk executes it to completion in the bouquet algorithm.

PROOF. We prove by contradiction: If qa was located in the re-
gion (qk, qk+1], then Pk could not have completed the query due to
the PCM restriction. Conversely, if qa was located in (qk−2, qk−1],
Pk−1 itself would have successfully executed the query to com-
pletion. With similar reasoning, we can prove the same for the
remaining regions that are beyond qk+1 or before qk−2.



Performance Bounds. Consider the generic case where qa
lies in the range (qk−1, qk]. Based on Lemma 1, the associated
worst case cost of the bouquet execution algorithm is given by the
following expression:

Cbouquet(qa) = cost(IC1) + cost(IC2) + ... + cost(ICk)

= a+ ar + ar2 + ...+ ark−1 =
a(rk − 1)

r − 1
(6)

The corresponding cost for an “oracle” algorithm that magically
apriori knows the correct location of qa is lower bounded by ark−2,
due to the PCM restriction. Therefore, we have

SubOpt(∗, qa) ≤

a(rk−1)
r−1

ark−2
=

r2

r − 1
−

r2−k

r − 1
≤

r2

r − 1
(7)

Note that the above expression is independent of k, and hence of
the specific location of qa. Therefore, we can state for the entire
selectivity space, that:

THEOREM 1. Given a query Q on a 1D error-prone selectivity
space, and the associated PIC discretized with a geometric pro-
gression having common ratio r, the bouquet execution algorithm

ensures that: MSO ≤
r2

r − 1

Further, the choice of r can be optimized to minimize this value –
the RHS reaches its minima at r = 2, at which the value of MSO
is 4. The following theorem shows that this is the best performance
achievable by any deterministic online algorithm – leading us to
conclude that the doubling based discretization is the ideal solution.

THEOREM 2. No deterministic online algorithm can provide
an MSO guarantee lower than 4 in the 1D scenario.

PROOF. We prove by contradiction, assuming there exists an
optimal online robust algorithm, R* with a MSO of f , f < 4.

Firstly, note that R* must have a monotonically increasing se-
quence of plan execution costs, a1, a2, . . . , ak∗+1 in its quest to
find a plan Pk∗+1 that can execute the query to completion. The
proof is simple: If ai > aj with i < j, then we could construct
another algorithm that skips the aj execution and still execute the
query to completion using Pk∗+1, and therefore has less cumula-
tive overheads than R*, which is not possible by definition.

Secondly, if R* stops at Pk∗+1, then qa has to necessarily lie in
the range (qk∗ , qk∗+1] (Lemma 1 holds for any monotonic algo-
rithm). Therefore, the worst-case performance of R* is given by∑i=k∗+1

i=1 ai

ak∗

≤ f . Since qa could be chosen to lie in any interval,

this inequality should hold true across all intervals, i.e.

∀j ∈ 1, 2, . . . , k∗:

∑i=j+1
i=1 ai

aj

≤ f

Using the notation Aj to represent
∑j

i=1 ai and Yj to represent the

ratio
Aj+1

Aj
, we can rewrite the above as:

Aj+1

aj
≤ f ⇒ Aj+1 ≤ f(Aj−Aj−1) ⇒

Aj+1

Aj
≤ f

(Aj−Aj−1)

Aj

that is, Yj ≤ f(1− 1
Yj−1

).

We can show through elementary algebra that ∀z > 0, (1− 1
z
) ≤

z
4
. Therefore, we have that Yj ≤ ( f

4
)Yj−1, leading to Yk∗ ≤

( f
4
)
k∗

−1
Y1. Using the assumption of f < 4, we can find a suffi-

ciently large k∗ such that ( f
4
)
k∗

−1
Y1 < 1 . Hence, Yk∗ < 1 which

implies that Ak∗+1 < Ak∗ , a contradiction.

Figure 6: 2D Selectivity Space

3.2 Multi-dimensional Selectivity Space
We now move to the general case of multi-dimensional selec-

tivity error spaces. A sample 2D scenario is shown in Figure 6a,
wherein the isocost surfaces ICk are represented by contours that
represent a continuous sequence of selectivity locations (in contrast
to the single location in the 1D case). Further, multiple bouquet
plans may be present on each individual contour as shown for ICk

wherein four plans, P k
1 , P

k
2 , P

k
3 , P

k
4 , are the optimizer’s choices

over disjoint x, y selectivity ranges on the contour. Now, to decide
whether qa lies below or beyond ICk, in principle every plan on
the ICk contour has to be executed – only if none complete, do we
know that the actual location definitely lies beyond the contour.

This need for exhaustive execution is highlighted in Figure 6b,
where for the four plans lying on ICk, the regions in the selec-
tivity space on which each of these plans is guaranteed to complete
within the ICk budget are enumerated (the contour superscripts are
omitted in the figure for visual clarity). Note that while several re-
gions are “covered” by multiple plans, each plan also has a region
that it alone covers – the hashed regions in Figure 6b. For queries
located in such regions, only the execution of the associated unique
plan would result in confirming that the query is within the contour.

The basic bouquet algorithm for the multi-dimensional case is
shown in Figure 7, using the notation nk to represent the number
of plans on contour k.

for cid = 1 to m do � for each cost-contour cid
for i = 1 to ncid do � for each plan on cid

start executing P cid
i

while running-cost(P cid
i )≤ cost-budget(ICcid ) do

execute plan P cid
i � cost limited execution

if P cid
i finishes execution then
return query result

stop executing P cid
i

Figure 7: Multi-dimensional Bouquet Algorithm

Performance Bounds. Given a query Q with qa located in the
range (ICk−1, ICk], the worst-case total execution cost for the
multi-D bouquet algorithm is given by

Cbouquet(qa) =
k∑

i=1

[ni × cost(ICi)] (8)

Using ρ to denote the number of plans on the densest contour, and
upper-bounding the values of the ni with ρ, we get the following
performance guarantee:

Cbouquet(qa) ≤ ρ×
k∑

i=1

cost(ICi) (9)



Now, following a similar derivation as for the 1D case, we arrive at
the following theorem:

THEOREM 3. Given a query Q with a multidimensional error-
prone selectivity space, the associated PIC discretized with a ge-
ometric progression having common ratio r and maximum con-
tour plan density ρ, the bouquet execution algorithm ensures that:

MSO ≤ ρ
r2

r − 1

Setting r = 2 in this expression ensures that MSO ≤ 4 ρ.

3.3 Minimizing IsoCost Surface Plan Density
To the best of our knowledge, the above MSO bounds are the first

such guarantees in the literature. While the 1D bounds are inher-
ently strong giving a guarantee of 4 or better, the multi-dimensional
bounds, however, depend on ρ, the maximum plan density over the
isocost surfaces. Therefore, to have a practically useful bound, we
need to ensure that the value of ρ is kept to the minimum.

This can be achieved through the anorexic reduction technique
described in [15]. Here, POSP plans are allowed to “swallow” other
plans, that is, occupy their regions in the ESS space, if the sub-
optimality introduced due to these swallowings can be bounded to
a user-defined threshold, λ. In [15], it was shown that even for
complex OLAP queries, a λ value of 20% was typically sufficient
to bring the number of POSP plans down to “anorexic levels”, that
is, a small absolute number within or around 10.

When we introduce the anorexic notion into the bouquet setup,
it has two opposing impacts on the sub-optimality guarantees – on
the one hand, the constant multiplication factor is increased by a
factor (1 + λ); on the other, the value of ρ is significantly reduced.
Overall, the deterministic guarantee is altered from 4 ρPOSP to
4 (1 + λ) ρANOREXIC .

Empirical evidence that this tradeoff is very beneficial is shown
in Table 1, which compares for a variety of multi-dimensional er-
ror spaces, the bounds (using Equation 8) under the original POSP
configuration and under an anorexic reduction (λ = 20%). As
a particularly compelling example, consider 5D_DS_Q19, a five-
dimensional selectivity error space based on Q19 of TPC-DS – we
observe here that the bound plunges by more than an order of mag-
nitude, going down from 379 to 30.4.

Error ρ MSO ρ MSO
Space POSP Bound ANOREXIC Bound

3D_H_Q5 11 33 3 12.0
3D_H_Q7 13 34 3 9.6
4D_H_Q8 88 213 7 24.0
5D_H_Q7 111 342.5 9 37.2

3D_DS_Q15 7 23.5 3 12.0
3D_DS_Q96 6 22.5 3 13.0
4D_DS_Q7 29 83 4 17.8
4D_DS_Q26 25 76 5 19.8
4D_DS_Q91 94 240 9 35.3
5D_DS_Q19 159 379 8 30.4

Table 1: Performance Guarantees (POSP versus Anorexic)

3.4 Cost Modeling Errors
Thus far, we had catered to arbitrary errors in selectivity estima-

tion, but assumed that the cost model itself was perfect. In practice,
this is certainly not the case, but if the modeling errors were to be
unbounded, it appears hard to ensure robustness since, in principle,
the estimated cost of any plan could be arbitrarily different to the
actual cost encountered at run-time. However, we could think of
an intermediate situation wherein the modeling errors are non-zero
but bounded – specifically, the estimated cost of any plan, given

correct selectivity inputs, is known to be within a δ error factor of

the actual cost. That is,
cestimated

cactual
∈ [

1

(1 + δ)
, (1 + δ)].

Our construction is lent credence to by the recent work of [24],
wherein static cost model tuning was explored in the context of
PostgreSQL – they were able to achieve an average δ value of
around 0.4 for the TPC-H suite of queries.

This “unbounded estimation errors, bounded modeling errors”
framework is amenable to robustness analysis – specifically, it is
easy to show that (proof in [12])

MSObounded_modeling_error ≤ MSOperfect_model ∗ (1 + δ)2

So, for instance, when δ = 0.4, corresponding to the average in
[24], the MSO increases by at most a factor of 2.

4. BOUQUET: COMPILE-TIME
In this section, we describe the compile-time aspects of the bou-

quet algorithm, whose complete work-flow is shown in Figure 8.

Figure 8: Architecture of Bouquet Mechanism

4.1 Selectivity Space Construction
Given a user query Q, the first step is to identify the error-prone

selectivity dimensions in the query. For this purpose, we can lever-
age the approach proposed in [17], wherein a set of uncertainty
modeling rules are outlined to classify selectivity errors into cat-
egories ranging from “no uncertainty” to “very high uncertainty”.
Alternatively, a log could be maintained of the errors encountered
by similar queries in the workload history. Finally, there is always
the fallback option of making all predicates where selectivities are
evaluated, to be selectivity dimensions for the query.

The chosen dimensions form the ESS selectivity space. In
general, each dimension ranges over the entire [0,100] percentage
range – however, due to schematic constraints, the range may be
reduced. For instance, the maximum legal value for a PK-FK join
is the reciprocal of the PK relation’s minimum row cardinality.

4.2 POSP Generation
The next step is to determine the parametric optimal set of

plans (POSP) over the entire ESS. Producing the complete POSP
set requires repeated invocations of the query optimizer at a high
degree of resolution over the space. This process can, in prin-
ciple, be computationally very expensive, especially for higher-
dimensional spaces. However, user queries are often submitted



through “canned” form-based interfaces – for such environments
it appears feasible to offline precompute the entire POSP set.

Further, even when this is not the case, the overheads can be
made manageable by leveraging the following observation: The
full POSP set is not required, only the subset that lies on the isocost
surfaces. Therefore, we begin by optimizing the two locations at
the corners of the principal diagonal of the selectivity space, giving
us Cmin and Cmax. From these values, the costs of all the isocost
contours are computed. Then, the ESS is divided into smaller hy-
percubes, recursively dividing those hypercubes through which one
or more isocost contours pass – a contour passes through a hyper-
cube if its cost is within the cost range established by the corners
of the hypercube’s principal diagonal. The recursion stops when
we reach hypercubes whose sizes are small enough that it is cheap
to explicitly optimize all points within them. In essence, only a
narrow “band” of locations around each contour is optimized.

Finally, note that the POSP generation process is “embarrass-
ingly parallel” since each location in the ESS can be optimized
independent of the others. Therefore, hardware resources in the
form of multi-processor multi-core platforms can also be leveraged
to bring the overheads down to practical levels.

Selectivity Injection. As discussed above, we need to be able
to systematically generate queries with the desired ESS selectivi-
ties. One option is to, for each new location, suitably modify the
query constants and the data distributions, but this is clearly im-
practically cumbersome and time-consuming. We have therefore
taken an alternative approach in our PostgreSQL implementation,
wherein the optimizer is instrumented to directly support injection
of selectivity values in the cost model computations. Interestingly,
some commercial optimizer APIs already support such selectivity
injections to a limited extent (e.g. IBM DB2 [26]).

4.3 Plan Bouquet Identification
Armed with knowledge of the plans on each of the isocost con-

tour surfaces, which is usually in the several tens or hundreds of
plans, the next step is to carry out a cost-based anorexic reduc-
tion [15] in order to bring the plan cardinality down to a manage-
able number. That is, we identify a smaller set of plans, such that
each replaced location now has a new plan whose cost is within
(1+λ) times the optimal cost. We denote the set of plans on the
surface of ICk with Bk and the union of these sets of plans pro-
vides the final plan bouquet i.e. B = ∪m

k=1 Bk. Finally, the isocost
surfaces (IC), annotated with their updated costs (the original costs
are inflated by 1 + λ to account for the anorexic reduction), and B,
the set of bouquet plans, are passed to the run-time phase.

5. BOUQUET: RUN TIME
In this section, we present the run-time aspects of the bouquet

mechanism, as per the work-flow shown in Figure 8.
The basic bouquet algorithm (Figure 7) discovers the location of

a query by sequentially executing the set of plans on each contour
in a cost-limited manner until either one of them completes, or the
plan set is exhausted, forcing a jump to the next contour. Note that
in this process, no explicit monitoring of selectivities is required
since the execution statuses serve as implicit indicators of whether
we have reached qa or not. However, as we will show next, con-
sciously tracking selectivities can aid in substantively curtailing the
discovery overheads. In particular, the tracking can help to (a) re-
duce the number of plan executions incurred in crossing contours;
and (b) develop techniques for increasing the selectivity movement
obtained through each cost-limited plan execution.

5.1 Reducing Contour Crossing Executions
In this optimization, during the processing of a contour, the lo-

cation of qrun is incrementally updated after each (partial) plan
execution to reflect the additional knowledge gained through the
execution. An example learning sequence is shown in Figure 9
– here, the qrun known at the conclusion of ICk−1 is progres-
sively updated via q1run and q2run to reach q3run on ICk, with the
corresponding plan execution sequence being P1, P4, P3 (the con-
tour superscripts are omitted for ease of exposition). The important
point to observe here is that the contour crossing was accomplished
without executing P2.

Figure 9: Minimizing Contour Crossing Executions

We now discuss how the plan execution sequence is decided.
The strategy used is to ensure that at all times, the actual location
is in the first quadrant with respect to the current location as ori-
gin – this invariant allows us to use the positive axes as a “pincer”
movement towards reaching the desired target, in the process elim-
inating from consideration some plans on the contour. Specifically,
at each qrun location, we first identify AxisPlans, the set of bou-
quet plans present at the intersection of the isocost contour with the
dimensional-axes corresponding to qrun as origin. For example, in
Figure 9, AxisPlans(qrun) is comprised of P4 and P1, correspond-
ing to the x and y dimensions, respectively. Then, from within
this set, we heuristically pick, using a combination of structure and
cost considerations, the plan that promises to provide the maximum
movement towards qa. The specific heuristic used is the following:
The plans in AxisPlans are first ordered based on their costs at qrun,
and then clustered into “equivalence groups” based on the closeness
of these costs. From the cheapest equivalence group, the plan with
an error-prone node occurring deepest in the plan-tree is chosen for
execution. The expectation is that being cheapest at qrun provides
the maximum spare budget, while having error-prone nodes deep
within the plan-tree ensures that this spare budget is not uselessly
spent on processing error-free nodes.

In Figure 9, the above heuristic happens to chose P1 at qrun
and thereby reach q1run. The process is repeated with qrun set to
q1run – now AxisPlans (q1run) is {P2, P4}, and P4 is chosen by the
heuristic, resulting in a movement to q2run. Finally, with qrun set
to q2run, AxisPlans (q

2
run) contains only P3 which is executed to

reach q3run, and hence ICk. Note, as mentioned before, that P2 is
eliminated from consideration in this incremental process.

There is a further advantage of the incremental updates to qrun:
When we reach q3run in Figure 9, we not only learn that qa lies be-
yond ICk but can also ab initio eliminate 3 plans (Pi, Pi+4, Pi+5)
from the list of candidate plans for crossing ICk+1, since these
plans lie outside the first quadrant of q3run.



5.2 Monitoring Selectivity Movement
Having established the utility of incremental updates to qrun, we

now go into the details of its implementation. Consider the scenario
wherein Figure 9 represents the selectivity updation process for a
TPC-H based query with error-prone join selectivities sSL and sOC

on the x and y dimensions, respectively. Correspondingly, let plans
P1 through P4 be as shown in Figure 10. Further, each node j
of these plans is labeled with the corresponding tuple count, tj ,
obtained at the end of the cost-limited execution – these annotations
are explicitly shown for P1 in Figure 10.

Figure 10: Plans on the kth contour

After P1’s execution, the tuple count on node SL can be utilized

to update the running selectivity ŝSL as
tSL

|S|e × |L|e
where |S|e and

|L|e denote the cardinalities of the input relations to the SL join.
The values in the denominator are clearly known before execution
as these nodes are assumed to be error-free. Note that ŝSL is a lower
bound on sSL, and therefore continues to maintain the “first quad-
rant” invariant required by the bouquet approach.

The other selectivity sOC, is not present as an independent node

in plan P1. If we directly use ŝOC =
tSLOC

tSLO × |C|e
, there is a danger

of overestimation wrt qa(OC) since tSLO may not be known com-
pletely due to the cost-budgeted execution of P1. Such overestima-
tions may lead to violation of the “first quadrant” property, and are
therefore impermissible. Consequently, we defer the updating of
sOC to the subsequent execution of plans P4 and P3 where it can be
independently computed from fully known inputs.

In general, given any plan-tree, we can learn the lower bound for
an error-prone selectivity only after the cardinalities of its inputs
are completely known. This is possible when either the inputs are
apriori error-free, or any error-prone inputs have been completely
learnt through the earlier executions. The latter method of learn-
ing allows the bouquet approach to function even in the (unlikely)
case where it does not possess plans with independent appearances
for all the error-prone selectivities. In the above discussion, an im-
plicit assumption is that all selectivities are independent with re-
spect to each other – this is in conformance with the typical mod-
eling framework of current optimizers.

5.3 Maximizing Selectivity Movement
Now we discuss how individual cost-limited plan executions can

be modified to yield maximum movement of qrun towards qa in
return for the overheads incurred in their partial executions – that
is, to “get the maximum selectivity bang for the execution buck”.

In executing a budgeted plan to determine error-prone selectiv-
ities, we would ideally like the cost budget to be utilized as far as
possible by the nodes in the plan operator tree that can provide us
useful learning. However, there are two hurdles that come in the
way: Firstly, the costs incurred by upstream nodes that precede the
error nodes in the plan evaluation. Secondly, the costs incurred by
the downstream nodes in the pipeline featuring the error nodes.

The first problem of upstream nodes can be ameliorated by pref-
erentially choosing during the AxisPlans routine, as mentioned ear-
lier, plans that feature the error-prone nodes deeper (i.e. earlier)
in the plan-tree. The second problem of downstream nodes can
be solved by deliberately breaking the pipeline immediately af-
ter first error node and spilling its output, which ensures that the
downstream nodes do not get any data/tuples to process. These
changes help to maximize the effort spent on executing the error-
prone nodes, and thereby increase the selectivity movement with a
given cost budget.

Movement Example. We now illustrate, using the same exam-
ple scenario as Figure 9, as to how spill-based execution is utilized
to achieve increased selectivity movement. In Figure 11, the spilled
versions of the plans P1 through P4 are shown, denoted using P̃ .
The modified selectivity discovery process using the spilled partial
executions is shown in Figure 12, with the progressive selectivity
locations being qarun, q

b
run, q

c
run and qdrun.

Figure 11: Plans (spilled version) and their movement direction

The discovery process starts with executing plan P̃1 until its cost-
limit is reached. The tuple count on the error-prone node SL is
then used to calculate ŝSL, as discussed earlier. Since the budget
allotted for the full plan is now solely focused on learning sSL, it is
reasonable to expect that there will be materially more movement in
sSL as compared to executing generic P1. In fact, it is easy to prove
that, at the minimum, crossing of qrun from the third quadrant of
the P1 segment to its fourth quadrant is guaranteed – this minimal
case is shown in Figure 12 as location qarun.

After P̃1 exhausts its cost-budget, the AxisPlans routine chooses
P̃4 to take over, which starts learning sOC, and ends up reaching at
least qbrun in Figure 12. Continuing in similar vein, P̃2 is executed
to reach qcrun, and finally, P̃3 is executed to reach qdrun on the next
contour. Due to focusing our energies on learning only a single
selectivity in each plan execution, the movement of qrun follows a
Manhattan profile from the origin upto qa, as shown in Figure 12.

A high-level pseudocode of the full bouquet algorithm, incorpo-
rating the above optimizations, is presented in Figure 13.

5.4 Implementation Details
For implementing the bouquet mechanism, the database engine

needs to support the following functionalities: (1) abstract plan
costing; (2) selectivity injection during query optimization; (3)
cost-limited partial execution of plans (generic and spilled); and
(4) selectivity monitoring on a running basis. Abstract plan cost-
ing is supported by quite a few commercial engines including
SQL Server [25], while limited selectivity injection is provided in
DB2 [26]. The other two features were found to be easy to imple-
ment since they leverage pre-existing engine resources. For exam-
ple, in PostgreSQL, the node-granularity tuple counter required for
cost-limited execution, as well as selectivity monitoring, is avail-
able through the instrumentation data structure [29].



Figure 12: Maximizing Selectivity Movement

qrun = (0,0, ...,0); cid = 1 � initialization
loop

Pcur = AxisPlanRoutine(qrun , cid) � next plan selection
while running-cost(Pcur )≤ cost-budget(ICcid ) do

execute Pcur � cost limited execution
if Pcur finishes execution then

return query result
update qrun � selectivity updation
if optimal-cost(qrun )≥ cost-budget(ICcid ) then

cid ++ � early contour change

Figure 13: Optimized Bouquet algorithm

5.5 Summary of Features
We complete this discussion of the mechanics of the bouquet ap-

proach with a synopsis of its distinctive features: (a) Compile-time
estimation is completely eschewed for error-prone selectivities; (b)
Plan switch decisions are triggered by predefined isocost contours
(in contrast to dynamic criteria of [17, 18]); (c) Plan switch choices
are restricted to an anorexic set of precomputed POSP plans; (d)
AVI assumptions on intra-relational predicates are dispensed with
since selectivities are explicitly monitored; (e) A first-quadrant in-
variant between the actual selectivity and the running selectivity is
maintained, supporting monotonic progress towards the objective.

6. EXPERIMENTAL EVALUATION
We now turn our attention towards profiling the performance of

the bouquet approach on a variety of complex OLAP queries, using
the MSO, ASO and MH metrics enumerated in Section 2. As a
precursor to these run-time metrics, we also discuss the overheads
incurred by the bouquet algorithm in the compile-time phase.

Database Environment. The test queries (full descriptions in
[12]) are chosen from the TPC-H and TPC-DS benchmarks to
cover a spectrum of join-graph geometries, including chain, star,
branch, etc. with the number of base relations ranging from 4 to
8. The number of error-prone selectivities range from 3 to 5 in
these queries, all corresponding to join-selectivity errors, for mak-
ing challenging multi-dimensional ESS spaces. We experiment
with the TPC-H and TPC-DS databases at their default sizes of
1GB and 100GB, respectively, as well as larger scaled versions.
Finally, the physical schema has indexes on all columns featuring
in the queries, thereby maximizing the cost gradient Cmax

Cmin
and cre-

ating “hard-nut” environments for achieving robustness.

The summary query workload specifications are given in Ta-
ble 2 – the naming nomenclature for the queries is xD_y_Qz,
where x specifies the number of dimensions, y the benchmark (H
or DS), and z the query number in the benchmark. So, for example,
3D_H_Q5 indicates a three-dimensional error selectivity space on
Query 5 of the TPC-H benchmark.

Query Join-graph Cmax Query Join-graph Cmax

(# relations) Cmin (# relations) Cmin

3D_H_Q5 chain(6) 16 3D_DS_Q96 star(4) 185
3D_H_Q7 chain(6) 5 4D_DS_Q7 star(5) 283
4D_H_Q8 branch(8) 28 5D_DS_Q19 branch(6) 183
5D_H_Q7 chain(6) 50 4D_DS_Q26 star(5) 341

3D_DS_Q15 chain(4) 668 4D_DS_Q91 branch(7) 149

Table 2: Query workload specifications

System Environment. For the most part, the database engine
used in our experiments is a modified version of PostgreSQL
8.4 [28], incorporating the changes outlined in Section 5.4. We
also present sample results from a popular commercial optimizer.
The hardware platform is a vanilla Sun Ultra 24 workstation with 8
GB memory and 1.2 TB of hard disk.

In the remainder of this section, we compare the bouquet al-
gorithm (with anorexic parameter λ = 20%) against the native
PostgreSQL optimizer, and the SEER robust plan selection algo-
rithm [14]. SEER uses a mathematical model of plan cost behav-
ior in conjunction with anorexic reduction to provide replacement
plans that, at all locations in ESS, either improve on the native op-
timizer’s performance, or are worse by at most the λ factor – it is
therefore expected to perform better than the native optimizer on
our metrics. It is important to note here that, in the SEER frame-
work, the comparative yardstick is Poe, the optimal plan at the es-
timated location, whereas in our work, the comparison is with Poa,
the optimal plan at the actual location.1

For ease of exposition, we will hereafter refer to the bouquet
algorithm, the native optimizer, and the SEER algorithm as BOU,
NAT and SEER, respectively, in presenting the results.

6.1 Compile-time Overheads
The computationally expensive aspect of BOU’s compile-time

phase is the identification of the POSP set of plans in ESS. For
this task, we use the contour-focused approach described in Sec-
tion 4, which ignores most of the space lying between contours.
In all of our queries, the number of contours was no more than
10. Therefore, the contour-POSP was generated within a few hours
even for 5D scenarios on our generic workstation, which appears
a feasible investment for canned queries. Moreover, as described
in Section 4.2, these overheads could be brought down to a few
minutes, thanks to the inherent parallelism in the task.

6.2 Worst-case Performance (MSO)
In Figure 14, the MSO performance is profiled, on a log scale,

for a set of 10 representative queries submitted to NAT, SEER and
BOU. The first point to note is that NAT is not inherently robust
– to the contrary, its MSO is huge, ranging from around 103 to
107. Secondly, SEER also does not provide any material improve-
ment on NAT – this may seem paradoxical at first glance, but is
only to be expected once we realize that not all the highly sub-
optimal (qe, qa) combinations in NAT were necessarily helped in

1Purely heuristic-based reoptimization techniques, such as
POP [18] and Rio [4], are not included in the evaluation suite since
their performance could be arbitrarily poor with regard to both Poe

and Poa, as explained in [12].



the SEER framework. Finally, and in marked contrast, BOU pro-
vides orders of magnitude improvements over NAT and SEER –
as a case in point, for 5D_DS_Q19, BOU drives MSO down from
106 to around just 10. In fact, even in absolute terms, it consistently
provides an MSO of less than ten across all the queries.

Figure 14: MSO Performance (log-scale)

6.3 Average-case Performance (ASO)
At first glance, it may be surmised that BOU’s dramatic improve-

ment in worst-case behavior is purchased through a correspond-
ing deterioration of average-case performance. To quantitatively
demonstrate that this is not so, we evaluate ASO for NAT, SEER
and BOU in Figure 15, again on a log scale. We see here that for
some queries (e.g. 3D_DS_Q15), ASO of BOU is much better
than that of NAT, while for the remainder (e.g. 4D_H_Q8) the
performance is comparable. Even more gratifyingly, the ASO in
absolute terms is typically less than 4 for BOU. On the other hand,
SEER’s performance is again similar to that of NAT – this is an
outcome of the high dimensionality of the error space which makes
it extremely difficult to find universally safe replacements that are
also substantively beneficial.

Figure 15: ASO Performance (log-scale)

6.4 Spatial Distribution of Robustness
We now profile for a sample query, namely 5D_DS_Q19, the

percentage of locations for which BOU has a specific range of
improvement over NAT. That is, the spatial distribution of en-

hanced robustness,
SubOptworst(qa)

SubOpt(∗, qa)
. This statistic is shown in

Figure 16, where we find that for the vast majority of locations
(close to 90%), BOU provides two or more orders of magnitude im-
provement with respect to NAT. SEER, on the other hand, provides
significant improvement over NAT for specific (qe, qa) combina-
tions, but may not materially help the worst-case instance for each
qa. Therefore, we find that its robustness enhancement is less than
10 at all locations in the ESS.

6.5 Adverse Impact of Bouquet (MH)
Thus far, we have presented the improvements due to BOU.

However, as highlighted in Section 2, there may be individual qa

Figure 16: Distribution of enhanced Robustness (5D_DS_Q19)

locations where BOU performs poorer than NAT’s worst-case, i.e.
SubOpt(∗, qa) > SubOptworst(qa). This aspect is quantified in
Figure 17 where the maximum harm is shown (on a linear scale)
for our query test suite. We observe that BOU may be upto a factor
of 4 worse than NAT. Moreover, SEER steals a march over BOU
since it guarantees that MH never exceeds λ (= 0.2). However, the
important point to note is that the percentage of locations for which
harm is incurred by BOU is less than 1% of the space. Therefore,
from an overall perspective, the likelihood of BOU adversely im-
pacting performance is rare, and even in these few cases the harm
is limited (≤MSO-1), especially when viewed against the order of
magnitude improvements achieved in the beneficial scenarios.

Figure 17: MaxHarm performance

6.6 Plan Cardinalities

Figure 18: Plan Cardinalities (log-scale)

The plan cardinalities of NAT, SEER and BOU are shown on a
log-scale in Figure 18. We observe here that although the origi-
nal POSP cardinality may be in the several tens or hundreds, the
number of plans in SEER is orders of magnitude lower, and those
retained in BOU is even smaller – only around 10 or fewer, even
for the 5D queries. This is primarily due to the initial anorexic
reduction and the subsequent confinement to plan contours. The
important implication of these statistics is that the bouquet size is,
to the first degree of approximation, effectively independent of the
dimensionality and complexity of the error space.

6.7 Query Execution Times (TPC-H)
To verify that the promised benefits of BOU are actually deliv-

ered at run-time, we also carried out experiments wherein query re-
sponse times were explicitly measured for NAT and BOU. For this
purpose, we crafted query instance 2D_H_Q8a (details in [12]),
whose qa was (33.7%, 45.6%), but NAT erroneously estimated the



location to be qe = (3.8%, 0.02%) due to incorrect AVI assump-
tions.2 As a result, the plan chosen by NAT took almost 580 sec-
onds to complete, whereas the optimal plan at qa finished in merely
16 seconds, i.e SubOpt(qe, qa) ≈ 36.

When BOU was invoked on the same 2D_H_Q8a query, it iden-
tified 6 bouquet plans spread across 7 isocost contours, resulting in
an MSO bound of less than 20 (Equation 8). Subsequently, basic
BOU produced the query result in about 117 seconds, involving 18
partial executions to cross 5 contours before the final full execution.
Moreover, optimized BOU further brought the running time down
to less than 70 seconds, using only 11 partial executions.

The isocost-contour-wise breakups of both basic and optimized
BOU are given in Table 3, along with a comparative summary of
their performance. Overall, the sub-optimality of optimized BOU
is ≈ 4, almost an order of magnitude lower than that of NAT
(≈ 36). Note that the intended doubling of execution times across
contours does not fully hold in Table 3 – this is an artifact of the
imperfections in the underlying cost model of the PostgreSQL op-
timizer, compounded by our not having tuned this default model.

Contour Avg Plan # Exec. Time(sec) # Exec. Time(sec)
ID Exec. Time (Basic (Basic (Opt. (Opt.

(in sec) BOU) BOU) BOU) BOU)

1 0.6 2 1.2 2 1.2
2 3.1 4 12.4 2 6.2
3 4.8 4 19.2 3 14.4
4 6.2 5 31.0 3 18.6
5 12.2 3 36.6 1 12.2
6 16.1 1 16.1 1 16.1

Total 19 116.5 12 68.7

Performance Summary NAT Basic BOU Opt. BOU Optimal
(in seconds) 579.4 116.5 68.7 16.1

Table 3: Bouquet execution for 2D_H_Q8a

6.8 Commercial Database Engine
All the results presented thus far were obtained on our instru-

mented PostgreSQL engine. We now present sample evaluations on
a popular commercial engine, hereafter referred to as COM. Since
COM’s API does not directly support injection of selectivities, we
constructed queries 3D_H_Q5b and 4D_H_Q8b (details in [12]),
wherein all error dimensions correspond to selection predicates on
the base relations – the selectivities on such dimensions can be in-
directly set up through changing only the constants in the query.
The database and system environment remained identical to that of
the PostgreSQL experiments.

Focusing on the performance aspects, shown in Figure 19, we
find that here also large values of MSO and ASO are obtained for
NAT and SEER. Further, BOU continues to provide substantial im-
provements on these metrics with a small sized bouquet. Again, the
robustness enhancement is at least an order of magnitude for more
than 90% of the query locations, without incurring any harm at the
remaining locations (MH < 0). These results imply that our earlier
observations are not artifacts of a specific engine.

7. RELATED WORK
A rich body of literature is available pertaining to selectivity esti-

mation issues [11]. We start with the overview of the closely related
techniques which can be collectively termed as plan-switching
approaches, as they involve run-time switching among complete
query plans. At first glance, our bouquet approach, with its partial

2We explicitly verified that there were no estimation errors in the
remaining selectivity dimensions of the query.

Figure 19: Commercial Engine Performance (log-scale)

execution of multiple plans, may appear very similar to run-time
re-optimization techniques such as POP [18] and Rio [4]. How-
ever, there are key differences: Firstly, they start with the opti-
mizer’s estimate as the initial seed, and then conduct a full-scale
re-optimization if the estimate are found to be significantly in error.
In contrast, we always start from the origin of the selectivity space,
and directly choose plans from the bouquet for execution without
invoking the optimizer again. A beneficial and unique side-effect
of this start-from-origin approach is that it assures repeatability of
the query execution strategy.

Secondly, both POP and Rio are based on heuristics and do
not provide any performance bounds. In particular, POP may get
stuck with a poor plan since its validity ranges are defined using
structure-equivalent plans only. Similarly, Rio’s sampling-based
heuristics for monitoring selectivities may not work well for join-
selectivities and its definition of plan robustness on the basis of
performance at corners (principal diagonal) has not been justified.

Recently, a novel interleaved optimization and execution ap-
proach was proposed in [20] wherein plan fragments are selectively
executed, when recommended by an error propagation framework,
to guard against the fallout of estimation errors. The error frame-
work leverages an elegant histogram construction mechanism from
[19] that minimizes the multiplicative error. While this technique
substantively reduces the execution overheads, it provides no guar-
antees as it is largely based on heuristics.

Techniques that use a single plan during the entire query execu-
tion [9, 3, 14, 19, 6] run into the basic infeasibility of a single plan
to be near-optimal across the entire selectivity space. The bouquet
mechanism overcomes this problem by identifying a small set of
plans that collectively provide the near-optimality property. Fur-
ther, it does not require any prior knowledge of the query workload
or the database contents. On the other hand, the use of only one ac-
tive plan (at a time) to process the data makes the bouquet algorithm
dissimilar from Routing-based approaches wherein different data
segments may be routed to different simultaneously active plans –
for example, plan per tuple [2] and plan per tuple group [21].

Our technique may superficially look similar to PQO techniques,
(e.g. PPQO [5]), since a set of plans are identified before execu-
tion by exploring the selectivity space. The primary difference is
that these techniques are useful for saving on optimization time for
query instances with known parameters and selectivities. On the
other hand, our goal is to regulate the worst case performance im-
pact when the computed selectivities are likely to be erroneous.

Further, the bouquet technique does not modify plan structures
at run-time (modulo spilling directives). This is a major difference
from “plan-morphing” approaches, where the execution plan may
be substantially modified at run-time using custom-designed oper-
ators, e.g. chooseplan [10], switch [4], feedback [7].

Finally, we emphasize that our goal of minimizing the worst case
performance in the presence of unbounded selectivity errors, does
not coincide with any of the earlier works in this area. Previously
considered objectives include (a) improved performance compared
to the optimizer generated plan [4, 14, 17, 18, 20]; (b) improved av-



erage performance and/or reduced variance [9, 6, 3]; (c) improved
accuracy of selectivity estimation structures [1]; and (d) bounded
impact of multiplicative estimation errors [19].

8. CRITIQUE OF BOUQUET APPROACH
Having presented the mechanics and performance of the bouquet

approach, we now take a step back and critique the technique.
The bouquet approach is intended for use in difficult estimation

environments – that is, in database setups where accurate selectivity
estimation is hard to achieve. However, when estimation errors
are apriori known to be small, re-optimization techniques such as
[18, 4], which use the optimizer’s estimate as the initial seed, are
likely to converge much quicker than the bouquet algorithm, which
requires starting at the origin to ensure the first quadrant invariant.
But, if the estimates were apriori guaranteed to be under-estimates,
then the bouquet algorithm can also leverage the initial seed.

Being a plan-switching approach, the bouquet technique suffers
from the drawbacks generic to such approaches: Firstly, they are
poor at serving latency-sensitive applications as they have to per-
force wait for the final plan execution to return result tuples. Sec-
ondly, they are not recommended for update queries since maintain-
ing transactional consistency with multiple executions may incur
significant overheads to rollback the effects of the aborted partial
executions. Finally, with single-plan optimizers, DBAs use their
domain knowledge to fine-tune the plan using “plan-hints”. But this
is not straightforward in plan-switching techniques since the actual
plan sequence is determined only at run-time. Notwithstanding the
limitations, such techniques are now featured even in commercial
products (e.g. [27]).

There are also a few problems that are specific to the bouquet
approach: Firstly, while it is inherently robust to changes in data
distribution, since these changes only shift the location of qa in the
existing ESS, the same is not true with regard to database scale-
up. That is, if the database size increases significantly, then the
original ESS no longer covers the entire error space. An obvious
solution to handle this problem is to recompute the bouquet from
scratch, but most of the processing may turn out to be redundant.
Therefore, developing incremental bouquet maintenance strategies
is an interesting future research challenge.

Secondly, the bouquet identification overheads increase expo-
nentially with dimensionality. Apart from the obvious amortization
over repeated query invocations, we also described some mech-
anisms for reducing these overheads in Section 6.1. Further, a
complex query does not necessarily imply a commensurately large
number of error dimensions because: (i) The selectivities of base
relation predicates of the form “column op constant” can be esti-
mated accurately with current techniques; (ii) The join-selectivities
for PK-FK joins can be estimated accurately if the entire PK-
relation participates in the join; (iii) The partial derivatives of the
POSP plan cost functions along each dimension can be computed
on a low resolution mapping of the ESS, and any dimension with a
small derivative across all the plans can be eliminated since its cost
impact is marginal.

Thirdly, the identification of ESS dimensions may not always
be straightforward. For example, in cyclic queries, different plans
may combine predicates in different ways. One option to handle
this scenario is to first construct the ESS using individual predicates
as dimensions. Then, assuming that predicate independence holds,
the selectivity of any predicate combination could be inferred using
the existing values for the individual constituent predicates.

Given the above discussion, the bouquet approach is currently
recommended specifically for providing response-time robustness
in large archival read-only databases supporting complex decision-

support applications that are likely to suffer significant estimation
errors. We expect that many of today’s OLAP installations may fall
into this category.

In closing, we wish to highlight that the bouquet approach pro-
vides novel performance guarantees that open up new possibilities
for robust query processing.
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