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ABSTRACT
We give near-optimal space bounds in the streaming model
for linear algebra problems that include estimation of matrix
products, linear regression, low-rank approximation, and
approximation of matrix rank. In the streaming model,
sketches of input matrices are maintained under updates of
matrix entries; we prove results for turnstile updates, given
in an arbitrary order. We give the first lower bounds known
for the space needed by the sketches, for a given estima-
tion error ε. We sharpen prior upper bounds, with respect
to combinations of space, failure probability, and number
of passes. The sketch we use for matrix A is simply STA,
where S is a sign matrix.

Our results include the following upper and lower bounds
on the bits of space needed for 1-pass algorithms. Here A
is an n × d matrix, B is an n × d′ matrix, and c := d +
d′. These results are given for fixed failure probability; for
failure probability δ > 0, the upper bounds require a factor
of log(1/δ) more space. We assume the inputs have integer
entries specified by O(log(nc)) bits, or O(log(nd)) bits.

1. (Matrix Product) Output matrix C with

‖ATB − C‖ ≤ ε‖A‖‖B‖.

We show that Θ(cε−2 log(nc)) space is needed.

2. (Linear Regression) For d′ = 1, so that B is a vector
b, find x so that

‖Ax− b‖ ≤ (1 + ε) min
x′∈IRd

‖Ax′ − b‖.

We show that Θ(d2ε−1 log(nd)) space is needed.

3. (Rank-k Approximation) Find matrix Ãk of rank no
more than k, so that

‖A− Ãk‖ ≤ (1 + ε)‖A−Ak‖,

where Ak is the best rank-k approximation to A. Our
lower bound is Ω(kε−1(n + d) log(nd)) space, and we
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give a one-pass algorithm matching this when A is
given row-wise or column-wise. For general updates,
we give a one-pass algorithm needing

O(kε−2(n+ d/ε2) log(nd))

space. We also give upper and lower bounds for algo-
rithms using multiple passes, and a sketching analog
of the CUR decomposition.

Categories and Subject Descriptors
F.2.0 [Theory of Computation]: Analysis of algorithms
and problem complexity; G.1.3 [Mathematics of Com-
puting]: Numerical linear algebra

General Terms
Algorithms Theory

1. INTRODUCTION
In recent years, starting with [16], many algorithms for

numerical linear algebra have been proposed, with substan-
tial gains in performance over older algorithms, at the cost of
producing results satisfying Monte Carlo performance guar-
antees: with high probability, the error is small. These algo-
rithms pick random samples of the rows, columns, or indi-
vidual entries of the matrices, or else compute a small num-
ber of random linear combinations of the rows or columns
of the matrices. These compressed versions of the matri-
ces are then used for further computation. The two general
approaches are sampling or sketching, respectively.

Algorithms of this kind are generally also pass-efficient,
requiring only a constant number of passes over the ma-
trix data for creating samples or sketches, and other work.
Most such algorithms require at least two passes for their
sharpest performance guarantees, with respect to error or
failure probability. However, in general the question has re-
mained of what was attainable in one pass. Such a one-pass
algorithm is close to the streaming model of computation,
where there is one pass over the data, and resource bounds
are sublinear in the data size.

Muthukrishnan [21] posed the question of determining the
complexity in the streaming model of computing or approx-
imating various linear algebraic functions, such as the best
rank-k approximation, matrix product, eigenvalues, deter-
minants, and inverses. This problem was posed again by
Sarlós [23], who asked what space and time lower bounds can
be proven for any pass-efficient approximate matrix product,
`2 regression, or SVD algorithm.
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In this paper, we answer some of these questions. We also
study a few related problems, such as rank computation.
In many cases we give algorithms together with matching
lower bounds. Our algorithms are generally sketching-based,
building on and sometimes simplifying prior work on such
problems. Our lower bounds are the first for these problems.
Sarlós [23] also gives upper bounds for these problems, and
our upper bounds are inspired by his and are similar, though
a major difference here is our one-pass algorithm for low-
rank approximation, improving on his algorithm needing two
passes, and our space-optimal one-pass algorithms for ma-
trix product and linear regression, that improve slightly on
the space needed for his one-pass algorithms.

We generally consider algorithms and lower bounds in the
most general turnstile model of computation [21]. In this
model an algorithm receives arbitrary updates to entries of a
matrix in the form“add x to entry (i, j)”. An entry (i, j) may
be updated multiple times and the updates to the different
(i, j) can appear in an arbitrary order. Here x is an arbitrary
real number of some bounded precision.

The relevant properties of algorithms in this setting are
the space required for the sketches; the update time, for
changing a sketch as updates are received; the number of
passes; and the time needed to process the sketches to pro-
duce the final output. Our sketches are matrices, and the
final processing is done with standard matrix algorithms.
Although sometimes we give upper or lower bounds involv-
ing more than one pass, we reserve the descriptor “stream-
ing” for algorithms that need only one pass.

1.1 Results and Related Work
The matrix norm used here will be the Frobenius norm

‖A‖, where ‖A‖ :=
[∑

i,j a
2
ij

]1/2
, and the vector norm will

be Euclidean. unless otherwise indicated. The spectral norm
‖A‖2 := supx‖Ax‖/‖x‖.

We consider first the Matrix Product problem:

Problem 1.1. Matrix Product. Matrices A and B are
given, with n rows and a total of c columns. The entries of
A and B are specified by O(lognc)-bit numbers. Output a
matrix C so that

‖ATB − C‖ ≤ ε‖A‖‖B‖.

Theorem 2.3 states that there is a streaming algorithm
that solves an instance of this problem with correctness
probability at least 1− δ, for any δ > 0, and using

O(cε−2 log(nc) log(1/δ))

bits of space. The update time is O(ε−2 log(1/δ)). This
sharpens the previous bounds [23] with respect to the space
and update time (for one prior algorithm) and update, final
processing time, number of passes (which previously was
two), and an O(log(1/δ)) factor in the space (for another
prior algorithm) [23]. We note that it is also seems possi-
ble to obtain a one-pass O(cε−2 log(nc) log(c/δ))-space algo-
rithm via techniques in [2, 6, 10], but the space is subopti-
mal.

Moreover, Theorem 2.6 implies that this algorithm is op-
timal with respect to space, including for randomized al-
gorithms. The theorem is shown using a careful reduction
from an augmented version of the indexing problem, which
has communication complexity restated in Theorem A.1.

The sketches in the given algorithms for matrix product,
and for other algorithms in this paper, are generally of the

form STA, whereA is an input matrix and S is a sign matrix,
also called a Rademacher matrix. Such a sketch satisfies the
properties of the Johnson-Lindenstrauss Lemma for random
projections, and the upper bounds given here follow read-
ily using that lemma, except that the stronger conditions
implied by the JL Lemma require resource bounds that are
larger by a logn factor.

The algorithm mentioned above relies on a bound for the
higher moments of the error of the product estimate, which
is Lemma 2.2. The techniques used for that lemma also yield
a more general bound for some other matrix norms, omitted
in this abstract. The techniques of these bounds are not
far from the trace method [24], which has been applied to
analyzing the eigenvalues of a sign matrix. However, we
analyze the use of sign matrices for matrix products, and
in a setting of bounded independence, so that trace method
analyses don’t seem to immediately apply.

Second, we consider the following linear regression prob-
lem.

Problem 1.2. Linear Regression. Given an n×d matrix
A and an n× 1 column vector b, each with entries specified
by O(lognd)-bit numbers, output a vector x so that

‖Ax− b‖ ≤ (1 + ε) min
x′∈IRd

‖Ax′ − b‖.

Theorem 3.4 gives a lower bound of Ω(d2ε−1 log(nd)) space
for randomized algorithms for the regression problem (This
is under a mild assumption regarding the number of bits per
entry, and the relation of n to d.) Our upper bound algo-
rithm requires a sketch with O(d2ε−1 log(1/δ))) entries, with
success probability 1− δ, each entry of size O(log(nd)), thus
matching the lower bound, and improving on prior upper
bounds by a factor of log d [23].

In Section 4, we give upper and lower bounds for low rank
approximation:

Problem 1.3. Rank-k Approximation. Given integer k,
value ε > 0, and n × d matrix A, find a matrix Ãk of rank
at most k so that

‖A− Ãk‖ ≤ (1 + ε)‖A−Ak‖,

where Ak is the best rank-k approximation to A.

There have been several proposed algorithms for this prob-
lem, but all so far have needed more than 1 pass. A 1-pass
algorithm was proposed by Achlioptas and McSherry [1],
whose error estimate includes an additive term of ‖A‖; that
is, their results are not low relative error. Other work on
this problem in the streaming model includes work by De-
sphande and Vempala [11], and by Har-Peled [17], but these
algorithms require a logarithmic number of passes. Recent
work on coresets [15] solves this problem for measures other
than the Frobenius norm, but requires two passes. In par-
ticular, this algorithm solves Problem 28 of [21].

We give a one-pass algorithm needing

O(kε−2(n+ d/ε2) log(nd) log(1/δ))

space. While this does not match the lower bound (given
below), it is the first one-pass rank-k approximation with low
relative error; only the trivial O(nd log(nd))-space algorithm
was known before in this setting, even for k = 1.

We also give a related construction, which may be useful
in its own right: a low-relative-error sketching version of the
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CUR decomposition; The CUR decomposition of Drineas
et al. [13] is an approximation of a matrix A by the prod-
uct of a matrix C whose columns are a subset of those of
A, a matrix U , and a matrix R whose rows are a subset of
those of A. That is, C and R are samples of A. Here we
show that for appropriate sign matrices S and Ŝ, the ma-
trix Ã := AŜ(STAŜ)−STA (where X− denotes the pseudo-

inverse of matrix X) satisfies ‖A − Ã‖ ≤ (1 + ε)‖A − Ak‖,
with probability 1 − δ. The space needed by these three
matrices is O(kε−1(n + d/ε) log(nd) log(1/δ)). Such a de-
composition of A may prove useful in itself. While samples
of the columns and rows of A are more useful than the dense
sketches AŜ and STA, the matrix Ã is simple to compute,
can be found in one pass, and has a better dependence on
ε than the sampling CUR decomposition. It is also a bicri-
teria solution to the low-rank approximation problem, since
its rank is at most kε−1 log(1/δ).

When the entries of A are given a column or a row at
a time, a streaming algorithm for low-rank approximation
with the space bound

O(kε−1(n+ d) log(nd) log(1/δ))

is achievable, as shown in Theorem 4.5. (It should be re-
marked that under such conditions, it may be possible to
adapt earlier algorithms to use one pass.) Our lower bound
Theorem 4.10 shows that at least Ω(kε−1n) bits are needed,
for row-wise updates, thus when n ≥ d, this matches our
upper bound up to a factor of log(nd) for constant δ.

Our lower bound Theorem 4.11, for general turnstile up-
dates, is Ω(kε−1(n+ d) log(nd)), matching the row-wise up-
per bound. We give an algorithm for turnstile updates, also
with space bounds matching this lower bound, but requir-
ing two passes. (An assumption regarding the computation
of intermediate matrices is needed for the multi-pass algo-
rithms given here, as discussed in §1.4.)

Our lower bound Theorem 4.12 shows that even with mul-
tiple passes and randomization, Ω((n+ d)k log(nd)) bits are
needed for low-rank approximation, and we give an algo-
rithm needing three passes, and O(nk log(nd)) space, for n
larger than a constant times max{d/ε, k/ε2} log(1/δ).

In Section 5, we give bounds for the following.

Problem 1.4. Rank Decision Problem. Given an integer
k, and a matrix A, output 1 iff the rank of A is at least k.

The lower bound Theorem 5.2 states that Ω(k2) bits of
space are needed by a streaming algorithm to solve this prob-
lem with constant probability; the upper bound Theorem 5.1
states that O(k2 log(n/δ)) bits are needed for failure proba-
bility at most δ by a streaming algorithm. The lower bound
is extended to the problem of checking the invertibility of
A, and to eigenvalue or determinant estimation with small
relative error, by reduction from Rank Decision.

Lower bounds for related problems have been studied in
the two-party communication model [7, 8], but the results
there only yield bounds for deterministic algorithms in the
streaming model. Bar-Yossef [5] gives lower bounds for the
sampling complexity of low rank matrix approximation and
matrix reconstruction. We note that it is much more difficult
to lower bound the space complexity. Indeed, for estimating
the Euclidean norm of a length-n data stream, the sampling
complexity is Ω(

√
n) [4], while there is a sketching algorithm

achieving O((logn)/ε2) bits of space [3].

Space Model Theorem
Product

Θ(cε−2 log(nc)) turnstile 2.3, 2.6
O(cε−2)(lg lg(nc+ lg(1/ε)) col-wise 2.4
Ω(cε−2) A before B 2.7

Regression
Θ(d2ε−1 log(nd)) turnstile 3.2, 3.4
Ω(d2(ε−1 + log(nd))) insert-once 3.11

Rank-k Appr.
O(kε−2(n+ dε−2) log(nd)) turnstile 4.9
Ω(kε−1(n+ d) log(nd)) turnstile 4.11
O(kε−1(n+ d) log(nd)) row-wise 4.5
Ω(kε−1n) row-wise 4.10
O(kε−1(n+ d) log(nd)) 2, turnstile 4.4
O(k(n+ dε−1 + kε−2) log(nd)) 3, row-wise 4.6
Ω(k(n+ d) log(nd)) O(1), turnstile 4.12

Rank Dec.
O(k2 logn) turnstile 5.1
Ω(k2) turnstile 5.2

Figure 1: Algorithmic upper and lower bounds given
here; results are for one pass, unless indicated oth-
erwise under “Model.”. All space upper bounds are
multiplied by log(1/δ) for failure probability δ.

1.2 Techniques for the Lower Bounds
Our lower bounds come from reductions from the two-

party communication complexity of augmented indexing. Al-
ice is given x ∈ {0, 1}n, and Bob is given i ∈ [n] together
with xi+1, . . . , xn. Alice sends a single message to Bob, who
must output xi with probability at least 2/3. Alice and Bob
create matrices Mx and My, respectively, and use a stream-
ing algorithm to solve augmented indexing.

For regression even obtaining an Ω(d2 log(nd)) bound is
non-trivial. It is tempting for Alice to interpret x as a d× d
matrix Mx with entries drawn randomly from [nd]. She sets
A = M−1

x , which she gives the streaming algorithm. Bob
sets b to a standard unit vector, so that the solution is a
column of A−1 = Mx, which can solve augmented indexing.

This argument is flawed because the entries of A may be
exponentially small, so A is not a valid input. We instead
design b in conjunction with A. We reduce from augmented
indexing, rather than indexing (as is often done in stream-
ing), since Bob must use his knowledge of certain entries of
A to guarantee that A and b are valid inputs.

To achieve an extra factor of 1/ε, we copy this construc-
tion 1/ε times. Bob can set b to force a large error on 1/ε−1
of the copies, forcing the regression coefficients to “approx-
imately solve” the remaining copy. This approach loses a
log(nd) factor, and to gain it back we let Bob delete entries
that Alice places in A. The log(nd) factor comes from cre-
ating log(nd) groups, each group containing the 1/ε copies
described above. The entries across the log(nd) groups grow
geometrically in size. This idea is inspired by a lower bound
for Lp-estimation in [22], though there the authors studied
the Gap-Hamming Problem. Of the groups that are not
deleted, only one contributes to the error, since the entries
in other groups are too small.

1.3 Notation and Terminology
For integer n, let [n] denote {1, 2, . . . , n}.
A Rademacher variable is a random variable that is +1

or −1 with probability 1/2. A sign (or Rademacher) matrix
has entries that are independent Rademacher variables. A p-
wise independent sign matrix has entries that are Rademacher
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variables, every subset of p or more entries being indepen-
dent.

For a matrix A, let a:j denote the jth column of A, and
aij denote the entry at row i and column j. More generally,
use an upper case letter for a matrix, and the corresponding
lower case for its columns and entries. We may write a2

:j for

‖a:j‖2.
We say that matrices C and D are conforming for mul-

tiplication, or just conforming, if the number of columns of
C equals the number of rows of D. If the appropriate num-
ber of rows and columns of a matrix can be inferred from
context, we may omit it.

For a matrix A, let A− denote the Moore-Penrose pseudo-
inverse of A, so that A− = V Σ−UT , where A = UΣV T is
the singular value decomposition of A.

The following is a simple generalization of the Pythagorean
Theorem, and we will cite it that way.

Theorem 1.5. (Pythagorean Theorem) If C and D
matrices with the same number of rows and columns, then
CTD = 0 implies ‖C +D‖2 = ‖C‖2 + ‖D‖2.

Proof. By the vector version, we have ‖C + D‖2 =∑
i‖c:i + d:i‖2 =

∑
i‖c:i‖

2 + ‖d:i‖2 = ‖C‖2 + ‖D‖2.

For background on communication complexity, see Section
A.

1.4 Bit Complexity
We will assume that the entries of an n × d input ma-

trix are O(log(nd))-bit integers. The sign matrices used for
sketches can be assumed to have dimensions bounded by
the maximum of n and d. Thus all matrices we maintain
have entries of bit size bounded by O(log(nd)). For low-
rank approximation, some of the matrices we use in our two
and three pass algorithms are rounded versions of matrices
that are assumed to be computed exactly in between passes
(though not while processing the stream). This “exact in-
termediate” assumption is not unreasonable in practice, and
still allows our upper bounds to imply that the lower bounds
cannot be improved.

2. MATRIX PRODUCTS

2.1 Upper Bounds
Given matrices A and B with the same number of rows,

suppose S is a sign matrix also with the same number of
rows, and with m columns. It is known that

E[ATSSTB]/m = AT E[SST ]B/m = AT [mI]B/m = ATB

and

E[‖ATSSTB/m−ATB‖2] ≤ 2‖A‖2‖B‖2/m. (1)

Indeed, the variance bound (1) holds even when the entries
of S are not fully independent, but only 4-wise independent
[23]. Such limited independence implies that the storage
needed for S is only a constant number of random entries
(a logarithmic number of bits), not the nm bits needed for
explicit representation of the entries. The variance bound
implies, via the Chebyshev inequality, that for given ε > 0,
there is an m = O(1/ε2) such that ‖ATSSTB/m−ATB‖ ≤
ε‖A‖‖B‖, with probability at least 3/4. We show that, also,
if m is boosted up by a factor of O(log(1/δ)), for given δ > 0,
that the failure probability can be bounded by δ.

Theorem 2.1. For A and B matrices with n rows, and
given δ, ε > 0, there is m = Θ(log(1/δ)/ε2), as ε → 0, so
that for an n×m sign matrix S,

P{‖ATSSTB/m−ATB‖ < ε‖A‖‖B‖} ≥ 1− δ.

This bound holds also when S is a 4dlog(
√

2/δ)e-wise inde-
pendent sign matrix.

Theorem 2.1 is proven using Markov’s inequality and the
following lemma, which generalizes (1), up to a constant.

Here for a random variable X, Ep[X] denotes [E[|X|p]]1/p.

Lemma 2.2. Given matrices A and B, suppose S is a sign
matrix with m > 15 columns, and A, B, and S have the
same number of rows. Then there is an absolute constant C
so that for integer p > 1 with m > Cp,

Ep
[
‖ATSSTB/m−ATB‖2

]
≤ 4((2p−1)!!)1/p‖A‖2‖B‖2/m.

This bound holds also when S is 4p-wise independent.

The proof is omitted in this abstract.
For integer p ≥ 1, the double factorial (2p − 1)!! denotes

(2p− 1)(2p− 3) · · · 5 · 3 · 1, or (2p)!/2pp!. This is the number
of ways to partition [2p] into blocks all of size two. From

Stirling’s approximation, (2p− 1)!! ≤
√

2(2p/e)p.
Thus, the bound of Lemma 2.2 isO(p) as p→∞, implying

that

Ep
[
‖ATSSTB/m−ATB‖

]
= O(

√
p)

as p→∞. It is well known that a random variable X with
Ep[X] = O(

√
p) is subgaussian, that is, its tail probabilities

are dominated by those of a normal distribution.
The proof of Theorem 2.1 is omitted from this abstract.
The following algorithmic result is an immediate conse-

quence of Theorem 2.1, maintaining sketches STA and STB,
and (roughly) standard methods to generate the entries of
S with the independence specified by that theorem.

Theorem 2.3. Given δ, ε > 0, suppose A and B are ma-
trices with n rows and a total of c columns. The matrices
A and B are presented as turnstile updates, using at most
O(lognc) bits per entry. There is a data structure that re-
quires m = O(log(1/δ)/ε2) time per update, and O(cm log(nc))
bits of space, so that at a given time, ATB may be estimated
such that with probability at least 1− δ, the Frobenius norm
of the error is at most ε‖A‖‖B‖.

2.2 Column-wise Updates
When the entries to A and B are received in column-wise

order, a procedure using less space is possible. The sketches
are not STA and STB, but instead rounded versions of those
matrices. If we receive entries of A (or B) one-by-one in a
given column, we can maintain the inner product with each
of the rows of ST exactly using m log(cn) space. After all
the entries of a column of A are known, the corresponding
column of STA is known, and its m entries can be rounded
to the nearest power of 1 + ε. After all updates have been
received, we have Â and B̂, where Â is STA where each
entry has been rounded, and similarly for B̂. We return
ÂT B̂ as our output.

The following theorem is an analysis of this algorithm. By
Theorem 2.7 below, the space bound given here is within a
factor of lg lg(nc) + lg(1/ε) of best possible.
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Theorem 2.4. Given δ, ε > 0, suppose A and B are ma-
trices with n rows and a total of c columns. Suppose A and
B are presented in column-wise updates, with integer entries
having O(log(nc)) bits. There is a data structure so that, at
a given time, ATB may be estimated, so that with probabil-
ity at least 1 − δ the Frobenius norm of the error at most
ε‖A‖‖B‖. There is m = O(1/ε2) so that for c large enough,
the data structure needs O(cm log 1/δ)(lg lg(nc) + lg(1/ε))
bits of space.

The proof of Theorem 2.4 is omitted from this abstract.
The proof depends on the following, where the log n penalty

of JL is avoided, since only a weaker condition is needed.

Lemma 2.5. For matrix A with n rows, and given δ, ε >
0, there is m = Θ(ε−2 log(1/δ)), as ε → 0, such that for an
n×m sign matrix S,

P{|‖STA‖/
√
m− ‖A‖| ≤ ε‖A‖} ≥ 1− δ.

The bound holds when the entries of S are p-wise indepen-
dent, for large enough p in O(log(1/δ)).

The proof is omitted in this abstract.

2.3 Faster Products of Sketches
Taking the above rounding approach even further, we note

that under some conditions it is possible to estimate the
sketch product ATSSTB more quickly than O(dd′m), even
as fast as O(dd′), where the constant in the O(·) notation is
an absolute constant. As dd′ → ∞, if δ and ε are fixed (as
so m is fixed), the necessary computation is to estimate the
dot products of a large number of fixed-dimensional vectors
(the columns of STA with those of STB).

Suppose we build an ε-cover E for the unit sphere in
IRm, and map each column â:i of STA to x ∈ E nearest to
â:i/‖â:i‖, and similarly map each b̂:j to some y ∈ E. Then

the error in estimating âT:i b̂:j by xT y‖â:i‖‖b̂:j‖ is at most

3ε‖â:i‖‖b̂:j‖, for ε small enough, and the sum of squares of all
such errors is at most 9ε2‖STA‖2‖STB‖2. By Lemma 2.5,
this results in an overall additive error that is within a con-
stant factor of ε‖A‖‖B‖, and so is acceptable.

Moreover, if the word size is large enough that a table of
dot products xT y for x, y ∈ E can be accessed in constant
time, then the time needed to estimate ATSSTB is dom-
inated by the time needed for at most dd′ table lookups,
yielding O(dd′) work overall.

Thus, under these word-size conditions, our algorithm is
optimal with respect to number of passes, space, and the
computation of the output from the sketches, perhaps leav-
ing only the update time for possible improvement.

Even if δ and ε are not fixed, we can use fast rectangular
matrix multiplication to compute ATSSTB. It is known [9,
18] that for a constant γ > 0, multiplying an r×rγ matrix by
an rγ×r matrix can be done in r2polylog r time. An explicit
value of γ = .294 is given in [9]. Thus, if m ≤ min(d, d′).294,
then ATSSTB can be computed in dd′polylog(min(d, d′))
time using block multiplication. This reduces the time com-
plexity if m is larger than polylog(min(d, d′)).

2.4 Lower Bounds for Matrix Product

Theorem 2.6. Suppose n ≥ β(log10 cn)/ε2 for an abso-
lute constant β > 0, and that the entries of A and B are

represented by O(log(nc))-bit numbers. Then any random-
ized 1-pass algorithm which solves Problem 1.1, Matrix Prod-
uct, with probability at least 4/5 uses Ω(cε−2 log(nc)) bits of
space.

The proof of Theorem 2.6 is omitted from this abstract.
For a less demanding computational model, we have:

Theorem 2.7. Suppose n ≥ β/ε2 for an absolute con-
stant β > 0, and that the entries of A and B are represented
by O(log(nc))-bit numbers. Then even if each entry of A and
B appears exactly once in the stream, for every ordering of
the entries of A and B for which every entry of A appears
before every entry of B, any randomized 1-pass algorithm
which solves Problem 1.1, Matrix Product, with probability
at least 4/5 uses Ω(cε−2) bits of space.

The proof of Theorem 2.7 is omitted from this abstract.

3. REGRESSION

3.1 Upper Bounds
Our algorithm for regression is a consequence of the fol-

lowing theorem. For convenience of application of this result
to algorithms for low-rank approximation, it is stated with
multiple right-hand sides: that is, the usual vector b is re-
placed by a matrix B. Moreover, while the theorem applies
to a matrix A of rank at most k, we will apply it to regression
with the assumption that A has d ≤ n columns implying an
immediate upper bound of d on the rank. This also is for
convenience of application to low-rank approximation.

Theorem 3.1. Given δ, ε > 0, suppose A and B are ma-
trices with n rows, and A has rank at most k. There is an
m = O(k log(1/δ)/ε) such that, if S is an n×m sign matrix,

then with probability at least 1− δ, if X̃ is the solution to

min
X
‖ST (AX −B)‖2, (2)

and X∗ is the solution to

min
X
‖AX −B‖2, (3)

then

‖AX̃ −B‖ ≤ (1 + ε)‖AX∗ −B‖.

The entries of S need be at most η(k + log(1/δ))-wise inde-
pendent, for a constant η.

This theorem has the following immediate algorithmic im-
plication.

Theorem 3.2. Given δ, ε > 0, and n × d matrix A, and
n-vector b, sketches of A and b of total size

O(d2ε−1 log(1/δ) log(nd))

can be maintained under turnstile updates, so that a vector
x̃ can be found using the sketches, so that with probability at
least 1− δ,

‖Ax̃− b‖ ≤ (1 + ε)‖Ax∗ − b‖,

where x∗ minimizes ‖Ax− b‖. The update time is

O(dε−2 log(1/δ)).

The proof of Theorem 3.1 is not far that of from Theorem
12 of [23], or that in [14]. The following lemma is crucial.
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Lemma 3.3. For A, B, X∗, and X̃ as in Theorem 3.1,

‖A(X̃ −X∗)‖ ≤ 2
√
ε‖B −AX∗‖

The proof of the lemma is omitted in this abstract. The
proof of Theorem 3.1 is omitted from this abstract.

3.2 Lower Bounds for Regression
Theorem 3.4. Suppose n ≥ d(log10(nd))/(36ε) and d is

sufficiently large. Then any randomized 1-pass algorithm
which solves the Linear Regression problem with probability
at least 7/9 needs Ω(d2ε−1 log(nd)) bits of space.

Proof. Throughout we shall assume that ε < 1/72 and
that u := 1/(36ε) is an integer. Put L := nd.

We reduce from the AIND problem on strings of length
d(d− 1)(log10 L)/(72ε). Alice interprets her input string as
a d(log10 L)u× d matrix A, which is constructed as follows.

For each z ∈ {0, . . . , log10 L− 1} and each k ∈ [u], we de-
fine an upper-triangular d×d matrix Az,k. We say that Az,k

is in level z and band k. The matrix Az,k consists of random
{−10z,+10z} entries inserted above the diagonal from Al-
ice’s input string. The diagonal entries of the matrices will
be set by Bob. A is then the d(log10 L)u×d matrix obtained
by stacking the matrices A0,1, A0,2, . . . , A0,u, A1,1, . . . , A1,u,
. . . , Alog10 L−1,u on top of each other.

Bob has an index in the AIND problem, which corre-

sponds to an entry Az
∗,k∗

i∗,j∗ for a z∗ ∈ {0, 1, . . . , log10 L− 1},
a k∗ ∈ [u] and an i∗ < j∗. Put Q := 100z

∗
(j∗ − 1). Bob’s

input index is random and independent of Alice’s input, and
therefore, conditioned on the value of j∗, the value of i∗ is
random subject to the constraint i∗ < j∗. Notice, in partic-
ular, that j∗ > 1.

By definition of the AIND problem, we can assume Bob
is given the entries in Az,k for all z > z∗ and each k ∈ [u].

Let P be a large positive integer to be determined. Bob
sets the diagonal entries of A as follows. Only matrices in

level z∗ have non-zero diagonal entries. Matrix Az
∗,k∗ has

all of its diagonal entries equal to P . The remaining matrices

Az
∗,k in level z∗ in bands k 6= k∗ have Az

∗,k
j,j = P whenever

j ≥ j∗, and Az
∗,k
j,j = 0 whenever j < j∗.

Alice feeds her entries of A into an algorithm Alg which
solves the linear regression problem with probability at least
7/9, and transmits the state to Bob. Bob then feeds his
entries of A into Alg. Next, using the entries that Bob is
given in the AIND problem, Bob sets all entries of matrices
Az,k in levels z > z∗ to 0, for every band k.

Bob creates the d(log10 L)u×1 column vector b as follows.
We think of b as being composed of (log10 L)u vectors bz,k,
z ∈ {0, . . . , log10 L − 1}, k ∈ [u], so that b is the vector ob-
tained by stacking b0,1, b0,2, . . . , b0,u, . . . , blog10 L−1,u on top
of each other. We say bz,k is in level z and band k.

For any x ∈ IRd, the squared error of the linear regression

problem is ‖Ax − b‖2 =
∑log10 L−1
z=0

∑u
k=1‖A

z,kx − bz,k‖2.
For all vectors bz

∗,k in level z∗, Bob sets bz
∗,k
j∗ = P . He sets

all other entries of b to 0, and feeds the entries of b to Alg.
We will show in Lemma 3.5 below that there exists a vec-

tor x ∈ IRd for which ‖Ax− b‖2 ≤ Q
(
u− 97

99

)
. It will follow

by Lemma 3.9 that the vector x∗ output by Alg satisfies
various properties useful for recovering individual entries of

Az
∗,k∗ . By Lemma 3.10, it will follow that for most (j, j∗)

pairs that Bob could have, the entry Az
∗,k∗

j,j∗ can be recov-
ered from x∗j , and so this is also likely to hold of the ac-
tual input pair (i∗, j∗). Hence, Alice and Bob can solve the

AIND problem with reasonable probability, thereby giving
the space lower bound.

Consider the vector x ∈ IRd defined as follows. Let xj = 0
for all j > j∗. Let xj∗ = 1. Finally, for all j < j∗, let

xj = −Az
∗,k∗

j,j∗ /P .

Lemma 3.5. ‖Ax− b‖2 ≤ Q
(
u− 97

99

)
.

Proof. We start with three claims.

Claim 3.6. (Az,kx− bz,k)j = 0 whenever z > z∗.

Proof. For z > z∗ and any k, Az,k is the zero matrix
and bz,k is the zero vector.

Claim 3.7. For all j ≥ j∗, (Az,kx− bz,k)j = 0.

The proof of Claim 3.7 is omitted from this abstract.
Set P = d2L4. The number of bits needed to describe P is
O(logL).

Claim 3.8. For all j < j∗,

• For (z, k) = (z∗, k∗), (Az
∗,k∗x− bz

∗,k∗)2j ≤ 1
d2L4 .

• For (z, k) 6= (z∗, k∗), (Az,kx− bz,k)2j ≤ 100z + 3
dL

.

The proof of Claim 3.8 is omitted from this abstract.
From Claim 3.6, Claim 3.7, and Claim 3.8, we deduce:

• For any z > z∗ and any k, ‖Az,kx− bz,k‖2 = 0.

• ‖Az
∗,k∗x− bz

∗,k∗‖2 =
∑
j(A

z∗,k∗x− bz
∗,k∗)2j ≤ 1

dL4 .

• For any z ≤ z∗ and any k 6= k∗, ‖Az,kx − bz,k‖2 =∑
j<j∗(A

z,kx − bz,k)2j ≤ 100z(j∗ − 1) + 3
L

, where the
inequality follows from the fact that we sum over at
most d indices.

For z = z∗, using that u− 1 = 1/(36ε)− 1 ≥ 2,

u∑
k=1

‖Az
∗,kx− bz

∗,k‖2 ≤ (u− 1)

[
Q+

3

L

]
+

1

dL4

≤ (u− 1)

[
Q+

4

L

]
,

for sufficiently large d. Moreover,∑
z<z∗

u∑
k=1

‖Az,kx− bz,k‖2 ≤
∑
z<z∗

u

[
100z(j∗ − 1) +

4

L

]
≤

[
Qu

99

]
+

log10 L

9εL
.

We can bound the total error of x by adding these quantities,

log10 L−1∑
z=0

u∑
k=1

‖Az,kx− bz,k‖2 ≤ Q

(
u− 98

99

)
+ Err

where Err = 1
9εL

+ log10 L
9εL

. Now, using the bound in the

theorem statement, 1
9ε
≤ 4n

d log10 L
, where the latter is upper-

bounded by n
2d

for sufficiently large d. Hence, 1
9εL
≤ 1

2d2
.

Moreover, log10 L
9εL

is at most 4n log10 L

nd2 log10 L
≤ 4

d2
. It follows that

Err < 5
d2

. For sufficiently large d, 5
d2
≤ Q

99
, and so

log10 L−1∑
z=0

u∑
k=1

‖Az,kx− bz,k‖2 ≤ Q
(
u− 97

99

)
,

and the lemma follows.
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Let x∗ be the output of Alg. Then, using Lemma 3.5, and
the fact that u = 1/(36ε), with probability at least 7/9

‖Ax∗ − b‖2 ≤ (1 + ε)2‖Ax− b‖2 ≤ (1 + 3ε)

(
u− 97

99

)
Q

≤
(
u− 97

99
+

1

12

)
Q ≤

(
u− 43

48

)
Q. (4)

Call this event E . We condition on E occurring in the re-
mainder of the proof.

Lemma 3.9. The following conditions hold simultaneously:

1. For all j > j∗, x∗j ∈ [−L2/P, L2/P ].

2. For j = j∗, x∗j ∈ [1− L2/P, 1 + L2/P ].

3. For j < j∗, x∗j ∈ [−L2/P, L2/P ].

The proof of Lemma 3.9 is omitted from this abstract.

Lemma 3.10. With probability at least 1 − 49/d, for at
least a 41/46 fraction of the indices j < j∗, we have

sign(x∗j ) = − sign(Az
∗,k∗

j,j∗ ).

Notice that Az
∗,k∗

j,j∗ ∈ {−10z
∗
, 10z

∗
}, so its sign is well-defined.

The proof of Lemma 3.10 is omitted from this abstract.
Bob lets x∗ be the output of Alg and outputs − sign(x∗i∗).
Since i∗ is random subject to i∗ < j∗, the previous lemma
ensures that for sufficiently large d, Bob’s correctness prob-
ability is at least 41

46
− 49

d
≥ 8

9
, given E . By a union bound,

Alice and Bob solve the AIND problem with probability at
least 8

9
− 2

9
≥ 2

3
, and so the space complexity of Alg must

be Ω(d2(log(nd))/ε).

Theorem 3.11. Suppose n ≥ d/(36ε). Consider the Lin-
ear Regression problem in which the entries of A and b are
inserted exactly once in the data stream. Then any random-
ized 1-pass algorithm which solves this problem with proba-
bility at least 7/9 needs Ω(d2(1/ε+ log(nd))) bits of space.

The proof of Theorem 3.11 is omitted from this abstract.

4. LOW-RANK APPROXIMATION

4.1 Upper Bounds
We give several algorithms, trading specificity and passes

for space. As mentioned in §1.4, we will assume that we
can compute some matrices exactly, and then round them
for use. We will show that all matrices (up to those ex-
act computations) can be used in rounded form during the
streaming phase.

Throughout this section, A is an n×d input matrix of rank
ρ, with entries of size γ = O(log(nd)) as nd→∞. The value
k is a given integer, Ak is the best rank-k approximation to
A, ∆k := ‖A−Ak‖ is the error of Ak, δ > 0 is the probability
of failure, and ε > 0 is the given error parameter.

Bit Complexity.
To prove space and error bounds for these algorithms, we

will show that the numerical error is small enough, using
O(log(nd))-bit entries, assuming the input matrix also has
entries of O(log(nd)) bits. We will assume that, between
passes, we may do exact computations, and then round the

results to use during and after the next pass. A key property
here is that the singular values of an integer matrix with
bounded entries cannot be too small or too large. We note
that this lemma is also proven and used in [15], though there
it is used for measures other than the Frobenius norm.

Lemma 4.1. If n×d matrix A has integer entries bounded
in magnitude by γ, and has rank ρ ≥ 2k, then the k’th sin-
gular value σk of A has | log σk| = O(log(ndγ)) as nd→∞.

This implies that ‖A‖/∆k ≤ (ndγ)O(1) as nd→∞.

The proof of Lemma 4.1 is omitted from this abstract.
The analysis of the low-rank approximation algorithms is

based on the application of Theorem 3.1, as in the following
theorem; again, the proof technique is similar to that of [23,
14].

Theorem 4.2. There is an m = O(k log(1/δ)/ε) such
that, if S is an n × m sign matrix, then with probability
at least 1 − δ, there is an n ×m matrix Y of rank at most
k, so that

‖Y STA−A‖ ≤ (1 + ε)∆k.

Similarly, for a d×m sign matrix R, with probability at least
1− δ there is an m× d matrix Z so that

‖ARZ −A‖ ≤ (1 + ε)∆k.

The entries of S and R need be at most η(k+log(1/δ))-wise
independent, for a constant η.

The theorem says that the rowspace of STA contains a
very good rank-k approximation to A, and similarly for the
columnspace of AR.

The proof of Theorem 4.2 is omitted from this abstract.
The following lemma will be helpful.

Lemma 4.3. Given a matrix A and matrix U with or-
thonormal columns, both with the same number of rows, the
best rank-k approximation to A in the columnspace of U is
given by U [UTA]k, where [UTA]k is the best rank-k approx-
imation to UTA. A similar claim applies for G a matrix
with orthonormal rows, and the best rank-k approximation
to A in the rowspace of G.

The proof of Lemma 4.3 is omitted from this abstract.

4.1.1 Two passes
The most direct application of the above theorem and

lemma yields a two pass algorithm, as follows. In the first
pass, accumulate STA. Before the second pass, compute a
matrix G whose rows are an orthonormal basis for the rows-
pace of STA. In the second pass, accumulate the coefficients
AGT of the projection AGTG = A(STA)−STA of A onto
the row space of STA. Finally, compute the best rank-k
approximation [AGT ]k to AGT , and return Ãk = [AGT ]kG.
As proven below, this approximation is close to A.

Although this discussion assumes that G is computed ex-
actly, we will show that an approximation Ĝ can be used:
for an appropriate κ in O(log(nd)), Ĝ is 2−κb2κGc, stored
implicitly as a scaling factor and an integer matrix. (Here
b c denotes the floor function applied entrywise.)

Theorem 4.4. If the rank ρ ≥ 2(k + 1), then there is an
m = O(k log(1/δ)/ε) such that, if S is an n×m sign matrix,
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then with probability at least 1− δ, the rank-k matrix Ãk, as
returned by the above two-pass algorithm, satisfies

‖A− Ãk‖ ≤ (1 + ε)∆k.

An approximation Ĝ to G with O(log(nd))-bit entries may
be used, with the same asymptotic bounds. The space used
is

O(m(n+ d)) log(nd) = O(kε−1(n+ d)) log(1/δ) log(nd).

By Theorem 4.12, the space used is optimal for fixed ε
(and δ).

The proof of Theorem 4.4 is omitted from this abstract.

4.1.2 One pass for Column-wise Updates
If A is given a column at a time, or a row at a time, then an

efficient streaming algorithm is possible. By Theorem 4.10,
for n within a constant factor of d, the space used by this
algorithm is within a factor of log(nd) of optimal.

Theorem 4.5. Suppose input A is given as a sequence of
columns or rows. There is an m = O(k log(1/δ)/ε), such

that with probability at least 1 − δ, a matrix Ãk can be ob-
tained that satisfies

‖Ãk −A‖ ≤ (1 + ε)∆k.

The space needed is

O((n+ d)m) = O(kε−1(n+ d) log(1/δ) log(nd)).

The update time is amortized O(m) per entry.

The proof of Theorem 4.5 is omitted from this abstract.

4.1.3 Three passes for Row-wise Updates, With Small
Space

We show the following.

Theorem 4.6. Suppose A is given row-wise. There is
m = O(k log(1/δ)/ε) such that, a matrix Ãk can be found in
three passes so that with probability at least 1− δ,

‖Ãk −A‖ ≤ (1 + ε)∆k.

The algorithm uses space

O(k(n+ d log(1/δ)/ε+ k log(1/δ)2/ε2) log(nd)).

A comparable approach, without sketching, would use
Θ((nk + d2) log(nd)) space over two passes, so this result
becomes interesting when k < εd. As mentioned in the intro-
duction, for n larger than a constant times max{d/ε, k/ε2} log(1/δ),
the space bound is O(nk log(nd)), which is comparable to
our lower bound Theorem 4.12, showing that Ω((n+d)k log(nd))
bits are needed even with multiple passes and randomiza-
tion.

The proof of Theorem 4.6 is omitted from this abstract.

4.1.4 One pass, and a CUR decomposition
To obtain a low-rank approximation even for turnstile up-

dates, we will need more space. First, we can apply The-
orem 3.1 twice to obtain a sketching analog of the CUR
decomposition [13, 12].

Theorem 4.7. There is an m = O(k log(1/δ)/ε) such
that, if S is an n× (m/ε) sign matrix, and R is a d×m sign
matrix, then with probability at least 1− δ,

‖A− Ã‖ ≤ (1 + ε)∆k,

where Ã := AR(STAR)−STA. The entries of S need be at
most η(k/ε+ log(1/δ))-wise independent, for a constant η.

Proof. We apply Theorem 3.1 with k, A, B, and m of
the theorem mapping to k/ε, AR, A, and m/ε, respectively.

The result is that for X̃ the solution to

min
X
‖STARX − STA‖,

we have

‖ARX̃−A‖ ≤ (1+ε)‖ARX∗−A‖ = (1+ε) min
X
‖ARX−A‖,

and applying Theorem 3.1 again, with k, A, B, and m of
the theorem mapping to m, Ak, A, and m, we have, with
probability at least 1− δ,

‖ARX∗ −A‖ ≤ (1 + ε)‖A−Ak‖ = (1 + ε)∆k. (5)

Since X̃ = (STAR)−STA, we have

‖AR(STAR)−STA−A‖ = ‖ARX̃ −A‖
≤ (1 + ε)‖ARX∗ −A‖
≤ (1 + ε)2∆k,

and the theorem follows, after adjusting δ and ε by constant
factors.

Note that by computing the SVD ŨΣ̃Ṽ T of (STAR)−, we
obtain a low-rank approximation to A of the form

ARŨΣ̃Ṽ TSTA,

which is of the same form as an SVD. While this decomposi-
tion has rank O(kε−1 log(1/δ)), and is guaranteed to approx-
imate A only nearly as well as the best rank-k approxima-
tion, it would be much quicker to compute, and potentially
could be substituted for the SVD in many applications.

A rank-k approximation is similarly obtainable, as follows.

Theorem 4.8. Under the conditions of the previous the-
orem, let U be an orthonormal basis for the columnspace of
AR. Then the best rank-k approximation U [UT Ã]k to Ã in
the columnspace of U satisfies

‖A− U [UT Ã]k‖ ≤ (1 +
√
ε)∆k.

For convenience of reference, we state a result giving a
quality bound of the usual form, simply using a different ε.

Theorem 4.9. There is an m = O(k log(1/δ)/ε2) such
that, if S is an n × (m/ε2) sign matrix, and R is a d ×
m sign matrix, the following succeeds with probability 1 −
δ. Let U be an orthonormal basis for the columnspace of
AR. Then the best rank-k approximation U [UT Ã]k to Ã :=
AR(STAR)−STA in the columnspace of U satisfies

‖A− U [UT Ã]k‖ ≤ (1 + ε)∆k.

The entries of S need be at most η(k/ε+ log(1/δ))-wise in-
dependent, for a constant η.

Proof. (of Theorem 4.8.) For any such U , there is a
matrix Y so that UY = AR; in particular, we will take U
to be the matrix of left singular vectors of AR, so that the
corresponding Y is ΣV T .

Consider the projections UUTA and UUTAk of A and Ak
to the columnspace of AR, as well as Ã, which is already
in the columnspace of AR. We first obtain distance bounds
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involving these projections, by applying Lemma 3.3 used in
the proof of Theorem 3.1; this bound is used twice, first in
the setting of the first application of Theorem 3.1, and then
in the setting of the second application.

The projection UUTA can also be expressed as ARX∗,
with X∗ as in the first application of Theorem 3.1, and Ã
then equal to the corresponding ARX̃. From Lemma 3.3
and (5),

‖UUTA− Ã‖ = ‖AR(X∗ − X̃)‖
≤ 2
√
ε‖A−ARX∗‖

≤ 2
√
ε(1 + ε)∆k. (6)

Since the projection UUTAk is the closest matrix in the
columnspace of AR to Ak, and again from Lemma 3.3, as in
the second application above, we have

‖UUTAk −Ak‖ ≤ ‖AR(AkR)−Ak −Ak‖ ≤ 2
√
ε∆k. (7)

Also, since [UT Ã]k is the closest rank-k matrix to UT Ã =

Y (STAR)−STA, UTAk must be no closer to UT Ã, and so

‖Ã− U [UT Ã]k‖ ≤ ‖Ã− UUTAk‖

(triangle ineq.) ≤ ‖Ã− UUTA‖+ ‖UUTA− UUTAk‖

(By (6)) ≤ 2
√
ε(1 + ε)∆k + ‖UUT (A−Ak)‖. (8)

Since ‖UUTZ‖ ≤ ‖Z‖ for any Z, we have

‖UUTA− UUTAk‖ ≤ ∆k. (9)

Since (A− UUTA)TU = 0, we have

‖A− U [UT Ã]k‖2 − ‖A− UUTA‖2

(Pyth. Thm.) = ‖UUTA− U [UT Ã]k‖2

(triangle ineq.) ≤ (‖UUTA− Ã‖+ ‖Ã− U [UT Ã]k‖)2

(By (6),(8)) ≤ (2
√
ε(1 + ε)∆k + [2

√
ε(1 + ε)∆k

+ ‖UUT (A−Ak)‖])2

= (4
√
ε(1 + ε)∆k + ‖UUT (A−Ak)‖])2

= ‖UUTA− UUTAk‖2

+ 8
√
ε(1 + ε)∆k‖UUTA− UUTAk‖

+ 16ε(1 + ε)2∆2
k

(By (9)) ≤ ‖UUTA− UUTAk‖2

+ 8
√
ε(1 + ε)∆k + 16ε(1 + ε)2∆2

k

= ‖UUTA− UUTAk‖2

+ 8∆2
k(1 + ε)(

√
ε+ 2ε(1 + ε)).

Rearranging this bound,

‖A− U [UT Ã]k‖2 − 8∆2
k(1 + ε)(

√
ε+ 2ε(1 + ε))

≤ ‖A− UUTA‖2 + ‖UUTA− UUTAk‖2

(Pyth. Thm.) = ‖A− UUTAk‖2

(triangle ineq.) ≤ (‖A−Ak‖+ ‖Ak − UUTAk‖)2

(By (7)) ≤ (∆k + 2
√
ε∆k)2,

which implies

‖A− U [UT Ã]k‖2 ≤ 8∆2
k(1 + ε)(

√
ε+ 2ε(1 + ε))

+ (∆k + 2
√
ε∆k)2

≤ ∆2
k(1 + 12

√
ε+O(ε)),

and the theorem follows upon taking square roots, and ad-
justing ε by a constant factor.

4.2 Lower Bounds for Low-Rank Approxima-
tion

The next theorem shows that our 1-pass algorithm re-
ceiving entries in row or column order uses close to the best
possible space of any streaming algorithm.

Theorem 4.10. Let ε > 0 and k ≥ 1 be arbitrary.

• Suppose d > βk/ε for an absolute constant β > 0.
Then any randomized 1-pass algorithm which solves
the Rank-k Approximation Problem with probability at
least 5/6, and which receives the entries of A in row-
order, must use Ω(nk/ε) bits of space.

• Suppose n > βk/ε for an absolute constant β > 0.
Then any randomized 1-pass algorithm which solves
the Rank-k Approximation Problem with probability at
least 5/6, and which receives the entries of A in column-
order must use Ω(dk/ε) bits of space.

The proof of Theorem 4.10 is omitted from this abstract.
We can improve the bound of Theorem 4.10 if we assume

the algorithm must work in the general turnstile model.

Theorem 4.11. Let ε > 0 and k ≥ 1 be arbitrary. Sup-
pose min(n, d) > βk log10(nd)/ε for an absolute constant
β > 0. Then any randomized 1-pass algorithm which solves
the Rank-k Approximation Problem with probability at least
5/6 in the general turnstile model uses Ω((n+d)k log(dn))/ε
bits of space.

The proof of Theorem 4.11 is omitted from this abstract.
Our O(1)-pass upper bounds match the following trivial
lower bound, which is immediate from Corollary A.2.

Theorem 4.12. For any 1 ≤ k ≤ min(n, d) and any
ε > 0, any multi-pass algorithm for the Rank-k Approxi-
mation Problem with probability of error at most 1/3 must
use Ω((n + d)k log(nd)) bits of space. Moreover, this holds
for any ordering of the entries of A.

5. RANK DECISION

Theorem 5.1. Suppose A is an n× n matrix. The Rank
Decision Problem can be solved in 1-pass with O(k2 logn/δ)
bits of space with error probability at most δ.

The proof of Theorem 5.1 is omitted from this abstract.
Via a few binary searches, one can design an algorithm us-
ing O(log rank(A)) passes and O(rank2(A) log(n/δ)) space
to actually compute the rank of A based on the above deci-
sion problem. We omit the details.

Theorem 5.2. Any randomized 1-pass algorithm which
solves the Rank Decision Problem with probability of error
at most 1/3 must use Ω(k2) bits of space.

The proof of Theorem 5.2 is omitted from this abstract.
Any algorithm which computes the rank of A also solves

the Rank Decision Problem for k = rank(A), so it has com-
plexity Ω(rank(A)2). As the instance in the Rank Decision
Problem concerns distinguishing a rank-k from a rank-k− 1
square k × k matrix, it also gives an Ω(n2) lower bound for
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testing if an n×n matrix is invertible and for approximating
the determinant to within any relative error. By adjusting
the diagonal values in the upper left quadrant of the matrix
A in the proof, one easily obtains an Ω(n2) space bound for
approximating the i-th largest eigenvalue for any value of i.
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APPENDIX
A. COMMUNICATION COMPLEXITY

For lower bounds, we will use a variety of definitions and
basic results from two-party communication complexity, as
discussed in [19]. We will call the two parties Alice and Bob.

For a function f : X × Y → {0, 1}, we use R1−way
δ (f)

to denote the randomized communication complexity with
two-sided error at most δ in which only a single message is
sent from Alice to Bob. We also use R1−way

µ,δ (f) to denote
the minimum communication of a protocol, in which a single
message from Alice to Bob is sent, for solving f with proba-
bility at least 1−δ, where the probability is taken over both
the coin tosses of the protocol and an input distribution µ.

In the augmented indexing problem, which we call AIND,
Alice is given x ∈ {0, 1}n, while Bob is given both an i ∈ [n]
together with xi+1, xi+2, . . . , xn. Bob should output xi.

Theorem A.1. ([20]) R1−way
1/3 (AIND) = Ω(n) and also

R1−way
µ,1/3 (AIND) = Ω(n), where µ is uniform on {0, 1}n×[n].

Corollary A.2. Let A be a randomized algorithm, which
given a random x ∈ {0, 1}n, outputs a string A(x) of length
m. Let B be an algorithm which given a random i ∈ [n],
outputs a bit B(A(x)) so that with probability at least 2/3,
over the choice of x, i, and the coin tosses of A and B, we
have B(A(x))i = xi. Then m = Ω(n).

Proof. Given an instance of AIND under distribution
µ, Alice sends A(x) to Bob, who computes B(A(x))i, which
equals xi with probability at least 2/3. Hence, m = Ω(n).

Suppose x, y are Alice and Bob’s input, respectively. We
derive lower bounds for computing f(x, y) on data stream
x ◦ y as follows. Any r-pass streaming algorithm A yields a
(2r−1)-round communication protocol for f in the following
way. Alice computes A(x) and sends the state of A to Bob,
who computes A(x ◦ y). Bob sends the state of A back to
Alice, who continues the execution of A (the second pass)
on x ◦ y. In the last pass, Bob outputs the answer. The
communication is 2r − 1 times the space of the algorithm.
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