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Abstract

Query optimizers depend heavily on statistics representing column distributions to create good query plans. In many cases,
though, statistics are outdated or nonexistent, and the process of refreshing statistics is very expensive, especially for ad hoc
workloads on ever bigger data. This results in suboptimal plans that severely hurt performance. The core of the problem is the
fixed decision on the type of physical operators that comprise a query plan. This paper makes a case for continuous adaptation
and morphing of physical operators throughout their lifetime, by adjusting their behavior in accordance with the observed
statistical properties of the data at run time. We demonstrate the benefits of the new paradigm by designing and implementing
an adaptive access path operator called Smooth Scan, which morphs continuously within the space of index access and full
table scan. Smooth Scan behaves similarly to an index scan for low selectivity; if selectivity increases, however, Smooth Scan
progressively morphs its behavior toward a sequential scan. As a result, a system with Smooth Scan requires no optimization
decisions on the access paths up front. Additionally, by depending only on the result distribution and eschewing statistics and
cardinality estimates altogether, Smooth Scan ensures repeatable execution across multiple query invocations. Smooth Scan
implemented in PostgreSQL demonstrates robust, near-optimal performance on micro-benchmarks and real-life workloads,
while being statistics oblivious at the same time.
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1 Introduction

Perils of query optimization complexity Query execution
performance of database systems heavily depends on query
optimization decisions; deciding which (physical) operators
to use and in which order to place them in a plan is of critical
importance and can affect response times by several orders of
magnitude [54]. To find the best possible plan, query optimiz-
ers employ a cost model to estimate performance of viable
alternatives. In turn, cost models rely on statistics about the
data to estimate the size of intermediate results (cardinal-
ity estimates) of each operator in the plan. With the growth
in complexity of decision support systems (e.g., templatized
queries, UDF) and the advent of dynamic web applications
that have databases at their backbone, the optimizer’s grasp of
reality becomes increasingly loose and it becomes more diffi-
cult to produce an optimal plan [17,44]. For instance, to defy
complexity and make up for lack of statistics, commercial
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Fig. 1 Non-robust performance due to cardinality misestimates in a
state-of-the-art commercial DBMS

database management systems often assume uniform data
distributions and attribute value independence, which is in
reality hardly the case [29]. As a result, cardinality estimates
are frequently off by several orders of magnitude, conse-
quently leading to suboptimal plans and non-robust query
performance [9,35,37,59,65,75].

Example of non-robust behavior To illustrate the severe
impact of cardinality misestimates and consequent sub-
optimal access path choices, we provide an example of
non-robust performance using a state-of-the-art commercial
system, referred to as DBMS-X. We run the TPC-H bench-
mark [76], having first tuned the system with a set of indexes
as indicated by its own tuning tool. Figure 1 shows that for
several queries performance degrades significantly after tun-
ing (e.g., up to a factor of 400 for Q12). More details are
provided in Sect. 7.2, but for now it suffices to say that the
only change compared to the original plan of Q12 is the type
of access path operator. This decision prolonged the execu-
tion time from 1 min to 11 h.

Tipping points causing robustness problems The per-
formance degradation shown in Fig. 1 is attributed to
suboptimal access path choices, where the optimizer favored
index usage over full table scans for the cases when it under-
estimated the result cardinality sizes. The core of the problem
of access path selection lies in the fact that even a small car-
dinality estimation error may lead to a drastically different
result in terms of performance. This effect is shown in Fig. 2
as the tipping point. When considering access path selection,
the optimizer makes a choice between an index scan and
full scan. Figure 2 illustrates how the cost (i.e., execution
time) varies for these access path alternatives as a function
of result selectivity increase. The tipping point is the esti-
mated cardinality value' for which the optimizer makes a
decision switch, i.e., for the values below the tipping point

I We use the term cardinality value as the value derived from the
optimizer’s estimate on result selectivity, i.e., card_value = |T| %
selectivity, where |T'| is the number of tuples in a relation and selec-
tivity is a selectivity factor [73].
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Fig.2 Access path selection sensitivity to cardinality estimation

the optimizer opts for the index scan and for the values above
it opts for the full scan. This means that one tuple difference
in cardinality estimation can swing the decision between an
index scan and a full scan, possibly causing a significant
performance drop. It also demonstrates the sensitivity of the
optimizer to the quality of estimates. For instance, the choice
of index for the estimated selectivity point shown as EST in
Fig. 2 will result in a severe performance degradation for the
case when the actual selectivity appears to be higher than
estimated (e.g., ACT shown in Fig. 2).

A case for robustness in query processing Overall, the
sensitivity to the quality of the optimizer’s cardinality estima-
tion results in unpredictable performance, thereby affecting
the robustness of the system. In addition, the overall behav-
ior is driven by the current version of statistics used by the
system, which means that two different deployments over the
same data might have different performance results if their
statistical summaries that represent data distributions differ.
Statistical summaries form a part of metadata catalog popu-
lated by the collect statistics command; hence, it is possible
for different deployments to be out of sync: although repre-
senting the same data(base) their statistical summaries will
differ. The last aggravates testing repeatability across differ-
ent servers or even multiple invocations of the same query (if
the statistics collection command was issued in between).

Stability and predictability, which imply that similar
query inputs should have similar execution performance, are
of paramount importance for industrial vendors as a path
toward respecting service-level agreements (SLA) [64]. This
is exemplified, nowadays, in cloud environments, offering
paid-as-a-service functionality governed by SLAs in envi-
ronments which are much more ad hoc than traditional closed
systems, and where a manual human effort is highly unde-
sirable [32]. In these cases, the system’s ability to efficiently
operate in the face of unexpected and especially adverse run-
time conditions (e.g., receiving more tuples from an operator
than estimated) becomes more important than yielding great
performance for one query input while potentially suffering
from severe degradation due to a suboptimal plan choice for
another [43,45]. We define robustness in query processing
as the ability of a system to efficiently cope with unexpected
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and adverse conditions with respect to its input and deliver
near-optimal performance for all query inputs.

Run-time reoptimization Past efforts on robustness
focus primarily on dealing with the problem at the optimizer
level [7,9,33,34,37,38]. Nonetheless, in dynamic environ-
ments with constantly changing workloads and data char-
acteristics, judicious query optimization performed up front
could bring only partial benefits as the environment keeps
changing even after optimization. Orthogonal approaches on
run-time reoptimization [3,6,40,58,59,65], although promis-
ing, lack the flexibility at the level of access paths. They are
limited in their scope, either by completely ignoring intra-
operator adaptivity within the access path operator, or by
performing binary switching decisions that introduce risks
and result in unpredictable performance.

To illustrate the latter, let us re-consider the access path
selection problem. A simple solution to recover from the sub-
optimal access path choice would be to switch the strategy
(at run time) from an index scan to a full table scan upon
detecting a cardinality misestimation or alternatively when
the observed cardinality reaches the tipping point between
the index and full table scan. Such a case is depicted in Fig. 3
with a ‘Reoptimization’ line. Reoptimization is typically per-
formed by monitoring the result cardinality and triggering
the switch once the observed cardinality exceeds the esti-
mate. Reoptimization bounds the worst case performance
and prevents severe performance degradation that could have
happened with continuation of the suboptimal access path
(the index scan). However, it is not robust. The main prob-
lem with reoptimization is that it is based on a binary decision
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Fig.4 Access paths suboptimality as a function of selectivity increase

and switches completely when a certain cardinality threshold
is reached. This means that even a single extra result tuple
can result in drastically different performance if the switch
occurs, since after the switch the execution time is prolonged
by the time to perform full scan (see Fig. 3). Such a behavior
can discourage business analysts who repeat the same query
they ran yesterday and observe different query performance,
while the only change was addition of a single record to a
database table [10].

We refer to the effect of a sudden increase in execution
time as a performance cliff. The performance hit, together
with the uncertainty whether the overhead incurred at the
time of change will be amortized over the remaining query
time, render this approach volatile and hence non-robust. For
instance, if the actual result selectivity lies anywhere in the
gray box shown as ‘Risk’ in Fig. 3, a better decision would
be to continue with the index scan, since the reoptimization
overhead (the cost of full scan) cannot be amortized over the
rest of the query lifetime. Additionally, since the violation
of the optimizer’s estimates usually triggers reoptimization,
this approach remains sensitive to the version of statistics
present in the system, which complicates testing across dif-
ferent query invocations and deployments.

Suboptimality of access paths Figure 4 illustrates the
core of the problem with access path selection. The fig-
ure depicts how suboptimality changes for access paths as
a function of result selectivity increases. The suboptimal-
ity is measured as a discrepancy from the optimal solution
which lies at the lower bound of the alternative access paths
throughout the entire selectivity interval. The actual selectiv-
ity points and the suboptimality levels will vary depending on
the hardware characteristics. Neither access path is, however,
optimal over the entire selectivity interval, making any choice
potentially risky for the cases of cardinality misestimation.
The full scan is suboptimal until the tipping point, since the
index scan is the optimal access path for low selectivity. On
the contrary, the index scan is highly suboptimal for high
selectivity. Reoptimization is never optimal, but is closer to
the optimal compared to the index (in the worst case), making
it a viable patch to prevent further performance degradation
in the case of cardinality underestimation. To reduce vari-
ability and performance drops due to suboptimal decisions,
we need an access path whose performance stays at the lower
cost boundary (i.e., close to the ‘Optimal’ line), throughout
the entire selectivity interval.

Smooth Scan In this paper, we respond to the quest for
robust execution at the access path level by introducing a
novel class of access path operators designed with the goal of
providing robust performance for every query input, regard-
less of the severity of cardinality estimation errors. Since
the understanding of the data distributions is a continuous
process that develops throughout the execution of a query,
we propose a new class of morphable operators that con-
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tinuously and seamlessly adjust their execution strategy as
the understanding of the data evolves. We introduce Smooth
Scan, an operator that morphs between an index look-up and
a full table scan, achieving near-optimal performance regard-
less of the operator’s selectivity and obliviously to the existing
data statistics. Morphing relieves the optimizer from choos-
ing an optimal access path a priori, since the execution engine
has the ability to adjust its behavior at run time as a response
to the observed operator selectivity.

This paper extends our previous work [18] with the theo-
retical analysis on the worst case performance guarantees
of Smooth Scan. Worst case performance guarantees are
extremely important when considering the algorithm robust-
ness as they show the maximal discrepancy from the optimal
solution. In addition, since Smooth Scan trades off CPU for
I/O reduction, we present a more detailed cost model that
incorporates both I/O and CPU costs. We also present a new
robust out-of-core design and implementation of the Smooth
Scan algorithm that achieves good performance irrespective
of the allowed memory size. Additionally, we enrich our
experiments across several dimensions: (i) we report new
experiments with respect to the cost model and (ii) statistics
collection and include (iii) an in-depth sensitivity analysis on
the behavior of the Smooth Scan algorithm on disk and (vi)
for various memory sizes. We finally survey related work on
adaptive query processing techniques in more detail.

The contributions of the paper are the following:

We propose a new paradigm of building smooth and
morphable access path operators that adjust their behav-
ior and transform from one operator implementation to
another according to the statistical properties of the data
observed at run time.

— We design and implement a statistics-oblivious access
path operator called Smooth Scan that morphs between
an index access and a full scan as selectivity knowledge
evolves at run time.

— We present a theoretical analysis on the worst case perfor-
mance guarantees of Smooth Scan’s alternative policies.

— Using both synthetic benchmarks and TPC-H in a thor-
ough experimental analysis, we show that Smooth Scan,
implemented in PostgreSQL, is a viable option for
achieving near-optimal performance, by approximating
the performance of the optimal access path throughout
the entire selectivity interval.

The rest of the paper is structured as follows: Sec-
tion 2 presents the background on access path selection,
describing three main approaches. Section 3 introduces the
intra-operator adaptivity at the access path level through the
design of the Smooth Scan operator. Section 4 introduces the
implementation details of Smooth Scan when incorporated
into a mature open-source DBMS (PostgreSQL). Section 5
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presents the detailed cost model of Smooth Scan. Section
6 presents a competitive analysis of the worst case perfor-
mance of Smooth Scan when compared against a theoretical
bound. Section 7 demonstrates, through an experimental
analysis, that Smooth Scan achieves robust and efficient
performance. Finally, Sect. 8 provides a related work dis-
cussion, positioning Smooth Scan with respect to existing
efforts in (re)optimization, adaptivity and robustness. Sec-
tion 9 presents our concluding remarks.

2 Background

In order to fully understand the advantages and the mecha-
nisms of the Smooth Scan operator, this section provides a
brief background on the traditional access path operators.

Full (table) scan Full table scan is employed when there
are no alternative access paths, or when the selectivity of
the access operator is estimated to be high (above 1-10%
depending on the system parameters). The execution engine
starts by fetching the first tuple from the first page of a table
stored in a heap and continues accessing tuples sequentially
inside the page. It then accesses the adjacent pages until it
reaches the last page. Figure 5a depicts an example of a full
scan over a set of pages in the heap; the number placed on
the left-hand side of each tuple indicates the order in which
the page is accessed. Even if the number of qualifying tuples
is small, a full table scan is bound to fetch and scan all pages
of a table, since there is no information on where tuples of
interest might be. Despite its rigorousness, the sequential
access pattern employed by the full table scan is one to two
orders of magnitude faster than the random access pattern of
an index scan.

(a) Table
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Fig.5 Access paths in a DBMS. a Full (table) scan. b index scan
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Index scan Secondary indexes are built on top of data
pages stored in the heap. Indexes are usually implemented as
B*-trees containing pointers to tuples. Figure 5b depicts a
B -tree index built on top of the same table we used in Fig. 5a
with the leaves of the tree pointing to the heap data pages. A
query with a range predicate needs to traverse the tree once
in order to find the pointer to the first tuple that qualifies,
and then, it continues following adjacent leaf pointers until
it finds the first tuple that does not qualify. As before, the
number placed on the left-hand side of each tuple indicates
the order in which it is accessed. The upside of this approach,
compared to the full scan, is that only tuples that are needed
are actually accessed. The downside is the random access
pattern when following pointers from the leaf page(s) to the
heap (shown as lines with arrows). Since the random access
pattern is much slower than the sequential one, performance
deteriorates quickly if many tuples need to be selected. More-
over, as the number of tuples that qualify grows, so does the
chance that the index scan visits the same page more than
once.

Sort (bitmap) scan represents a middle ground between
the previous two approaches. Sort Scan still exploits the sec-
ondary index to obtain tuple identifiers (ID) of all tuples
that qualify, but prior to accessing the heap, the qualifying
tuple IDs are sorted in an increasing heap page order. In
this way, the poor performance of the random access pattern
gets translated into a (nearly) sequential pattern, which is
easily detected by disk prefetchers. This can decrease exe-
cution time even when the selectivity of the operator grows
significantly. However, it has dramatic influence on the exe-
cution model. The index access that traditionally followed
the pipeline execution model now gets transformed into a
blocking operator which can be harmful, especially when
the index is used to provide an interesting ordering [73].
One advantage of B-tree indexes stems from the fact that
tuples are accessed in the sorted order of attributes on which
the index is built. Sorting of tuple IDs based on their page
placement breaks the natural index ordering that is restored
by introducing a sorting operator above the index access (or
up in the tree). In addition, the introduction of the blocking
operator so early in the execution plan may stall the rest of
the operators; if they require a sorted input, their execution
can start only after the second sort finishes.

3 Intra-operator adaptivity with Smooth
Scan

Having discussed in Sect. 1 reasons why performance cliffs
are undesirable, this section introduces Smooth Scan which
avoids performance cliffs while providing robust query exe-
cution performance within given cost boundaries. Instead of
making binary decisions like the one introduced with reop-
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Fig.6 Targeted behavior of Smooth Scan

timization, Smooth Scan gradually and adaptively shifts its
behavior between access path patterns to fit the data distri-
butions, thereby avoiding performance drops.

The core idea behind Smooth Scan is to gradually trans-
form between two strategies, i.e., the index look-up and full
table scan, maintaining the advantages of both worlds. The
main objective is to provide smooth behavior so that at no
point during execution an extra tuple in the result causes a
performance cliff. Smooth Scan morphs its behavior incre-
mentally, and continuously, causing only gradual changes in
performance as it goes through the data and its estimation
about result cardinality evolves.

Figure 6 shows the targeted performance behavior of
Smooth Scan as a function of result selectivity increase.
As we produce more result tuples, the behavior of Smooth
Scan keeps adjusting continuously, eventually approaching
the behavior of the full scan when more tuples qualify from
the select operator. This continuous adaptation is the key ele-
ment, which provides near-optimal performance regardless
of the severity of cardinality estimation errors.

A critical advantage of Smooth Scan over run-time reop-
timization with binary switching is that Smooth Scan does
not need to choose a single point of adaptation (i.e., the
switch point). As a result, a single point of failure is removed
and replaced with incremental refinement actions and deci-
sions. Moreover, we release the optimizer from the burden of
choosing an optimal access path a priori, which solves both
common problems with access paths: (a) choosing an index
when selectivity is underestimated due to attribute correla-
tion, which usually results in performance degradation; (b)
choosing a full table scan when selectivity is overestimated
due to anti-correlation (see Fig. 4).

3.1 Morphing mechanism

We now describe how Smooth Scan achieves this gradual
adaptation. During the operator lifetime, Smooth Scan can
be in three modes, while morphing between an index and
full scan. In each mode, the operator performs a gradu-
ally increasing amount of work as a result of the selectivity
increase.

@ Springer



526

R. Borovica-Gajic et al.

Mode 0: Index scan Assuming the existence of index as
an access path, Smooth Scan starts with a classical Index Scan
as its initial mode. For each tuple from the index, Smooth
Scan fetches a single page from the main relation where
the look-up key resides and produces one resulting tuple.
Additionally, Smooth Scan continuously monitors the result
cardinality, and once it exceeds a threshold (see discussion
on the policies below), it switches to the Entire Page Probe
mode.

Mode 1: Entire page probe A core problem of Index
Scan is that a particular disk page can be referenced multiple
times, causing repeated (random) I/O accesses (e.g., 3 times
for pages 3 and 4 in Fig. 5b). The classical index scan retrieves
solely the searched record driven by the index probe while
ignoring remaining records from the page, some possibly
belonging to the result. The latter potentially results in a need
to return to the same page somewhere in the future if more
tuples from the same page qualify. To avoid repeated page
accesses from which the index scan suffers, in this mode
Smooth Scan analyzes all records from each heap page it
loads to find qualifying tuples, trading CPU cost for I/O cost
reduction. Since the cost of an I/O operation translates to an
order of million CPU instructions [41], Smooth Scan invests
CPU cycles for reading additional tuples from each page with
minimal overhead. Figure 7 depicts the access pattern of a
Smooth Scan in this mode. Like in Fig. 5, the number at the
left-hand side of each tuple indicates the order in which the
access path touches this tuple. Within each page, Smooth
Scan accesses tuples sequentially.

Mode 2: Flattening access When the result cardinality
grows, Smooth Scan amortizes the random I/O cost by flat-
tening the random pattern and replacing it with a sequential
one. Flattening happens by reading additional adjacent pages
from the heap, i.e., for each page it has to read, Smooth Scan
prefetches a few more adjacent pages (read sequentially). An
example of a morphing region is depicted in Fig. 7 as the gray
rectangle over the heap pages.

Mode 2+: Flattening expansion Flattening Access Mode
is in fact an ever-expanding mode. When it first enters
Flattening Access Mode, Smooth Scan starts by fetching
one extra page for each page it needs to access. However,
when it detects result cardinality increase, Smooth Scan pro-
gressively increases the number of pages it prefetches by
multiplying it with a factor of 2. The reason is that, as selec-
tivity increases, the I/O increase in fetching more potentially
unnecessary pages could be masked by the CPU process-
ing cost of the tuples that qualify. In this way, as the result
cardinality increases, Smooth Scan keeps expanding, and
conceptually, it morphs more aggressively into a full table
scan.
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3.2 Morphing policies

There are several ways in which Smooth Scan can morph
between modes.

Greedy policy Assuming a worst case scenario, i.e., a very
high result selectivity, Smooth Scan can perform morphing
region expansion after each index probe. In this way, the
morphing expansion greedily follows the selectivity increase.
The upside of this approach is that, due to its fast convergence,
its worst case performance resembles the performance of full
scan. The downside is that, in the case of low selectivity,
Smooth Scan introduces an overhead of reading unnecessary
pages that could not be masked by useful work.

Selectivity increase driven policy Blindly morphing
between the modes may introduce too much overhead if
the I/O cost cannot be overlapped with useful work. With
this policy, Smooth Scan continuously monitors selectivity
at run time, and it expands the morphing region size when
it detects a selectivity increase. In particular, Smooth Scan
computes the result selectivity over the last morphing region
(the heap pages triggered with the previous index access)
and it increases the morphing region size each time the
local selectivity over the last morphing region [calculated
in Eq. (1)] is greater than the global selectivity over so far
seen pages [calculated in Eq. (2)]. The meaning of the param-
eters can be found in Table 1. If selectivity does not increase,
Smooth Scan keeps the previous morphing region size.

#Pres_region

seljpeal = 1

focal #Rveen_region ( )
#Ppes

selgiobal = - 2)
ST #Pyeen

Elastic policy When considering big data sets, it is
unlikely that a single execution strategy will be optimal dur-
ing the entire scan over a big table; dense and sparse regions
with respect to the tuple distribution on disk frequently
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appear in such a context due to skewed data distributions.
To benefit from the density discrepancy and use skew as an
opportunity, Smooth Scan uses the Elastic Policy to morph
two ways; it increases the morphing region size over a dense
region, while it decreases the morphing region size when it
passes the dense region. More precisely, if the local selectiv-
ity over the last morphing region is higher than the global
selectivity over all tuples seen so far, then this implies a
denser region; hence, Smooth Scan doubles the morphing
size. In the counter case, Smooth Scan halves the morphing
region size for the next heap access. This way, morphing is
performed at a pace that is purely driven by the data and the
query at hand.

3.3 Morphing triggering point

Optimizer driven Smooth Scan can be introduced to the
existing query stack as a reaction to unfavorable conditions,
i.e., as a robustness patch. With this strategy Smooth Scan
initiates morphing once the result cardinality exceeds the
optimizer’s estimate. A cardinality violation is an indica-
tion that the optimizer’s estimate is inaccurate and that the
chosen access path might be suboptimal. After triggering,
Smooth Scan can morph with either of the policies described
in Sect. 3.2.

SLA driven Another option is to take action only when
there is danger of violating a performance threshold, i.e., a
service-level agreement (SLA). For example, let us assume
a given time 7 as an upper bound (SLA) for the operator
execution. In this case, Smooth Scan continuously moni-
tors execution and has a running estimate of the expected
total cost (based on the cost model discussed in Sect. 5). The
moment Smooth Scan detects that it will not be able to guar-
antee the SLA target behavior unless it switches to a more
conservative behavior, it triggers morphing.

Eager approach An alternative approach, favored in this
work, is to completely replace access paths with Smooth
Scan. With this strategy, Smooth Scan eagerly starts mor-
phing immediately as of the first tuple. In this way, Smooth
Scan guarantees that the total number of page accesses will
be equal to the total number of heap pages in the worst case.
Moreover, with this strategy there is no need to record tuples
produced before morphing has started (to prevent result
duplication), which provides additional benefit and decreases
bookkeeping information.

Since the bookkeeping overhead of the Eager strategy is
minimized, in the experiments performed throughout this
paper, Eager is the default strategy unless stated otherwise.
We study other strategies in detail in Sect. 7.

4 Integration of Smooth Scan into
PostgreSQL

In this section, we discuss the design details of Smooth Scan
and its interaction with the remaining query processing stack
when incorporated inside an existing mature DBMS. We
implement Smooth Scan in PostgreSQL 9.2.1 DBMS as a
classical access path operator existing side by side with the
traditional access path operators described in Sect. 2. Dur-
ing query execution, the access path choice is replaced by
the choice of Smooth Scan, whereas the upper layers of
query plans generated by the optimizer remain intact. Thus,
one advantage of Smooth Scan is that it can be integrated
into existing systems with fewer changes compared to more
involved approaches such as [5,6].

4.1 Design details

To make the Smooth Scan operator work efficiently, several
critical issues need to be addressed.

Page ID cache To avoid processing the same heap page
twice (since multiple leaf pointers of the index can point to
the same page), Smooth Scan keeps track of the pages it
has read and records them in a Page ID Cache. The Page
ID Cache is a bitmap structure with one bit per page. Once
a page is processed, its bit is set to 1. When traversing the
leaf pointers from the index, a bit check precedes a heap page
access. Smooth Scan accesses the heap page only if that page
has not been accessed before. Otherwise, Smooth Scan skips
the leaf pointer (X in Fig. 7) and continues the leaf traversal.

Tuple ID cache If Smooth Scan starts from Mode 0 fol-
lowing the Optimizer or SLA Driven strategy, it has to ensure
that the result tuples will not be duplicated. This could happen
ifaresulttuple is produced by following the traditional index,
and later on the same page is fetched with Smooth Scan. To
address this issue, Smooth Scan keeps a cache of tuple IDs
produced with the traditional access in a bitmap-like struc-
ture. Later, while producing tuples Smooth Scan performs a
bit check whether the tuple has already been produced. The
overhead of the Tuple ID Cache, while relatively low, can be
avoided if a DBMS maintains a strict (indexg,y, T 1 D) order-
ing in the secondary index (which some commercial systems
do). Then it suffices to remember the last tuple reached with
the traditional index and ignore tuples with (indexiey, T1D)
lower than that last tuple.

Result cache If an index is chosen to support an inter-
esting order (e.g., in a query with an ORDER BY clause),
then the tuple order has to be respected. This means that
a query plan with Smooth Scan cannot consume all tuples
the moment it produces them. To address this constraint, the
additional qualifying tuples found (i.e., all but the one specif-
ically pointed to by the given index look-up) are kept in the
Result Cache. The Result Cache is a hash-based data structure
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that stores qualifying tuples. In this setting, an index probe is
preceded by a hash probe of the Result Cache for each tuple
identifier obtained from the leaf pages of the index. If the
tuple is found in the Result Cache, it is immediately returned
(and could be deleted); otherwise, Smooth Scan fetches it
from the disk following the current execution mode. The
cache deletion is done in a bulk fashion. The Result cache
is partitioned into a number of smaller caches that can be
deleted once all tuples from an instance are produced. By
grouping the caches per key value (or key ranges), Smooth
Scan can remove all items from a cache as soon as the key
value of the cache is traversed.

Memory management Both the Page ID and Tuple ID
Cache are bitmap structures, meaning that their size is sig-
nificantly smaller compared to the data set size (they easily
fit into memory). To illustrate, their size is usually a couple
of KB to MB for hundreds of GB of data. In the Tuple ID
cache, we keep only the IDs of the tuples acquired with the
traditional index, which is in practice significantly lower than
the overall number of tuples.

The Result Cache is an auxiliary structure whose size
depends on the access order of tuples, the number of attributes
in the payload, and the overall operator selectivity. In the
worst case, if the cache grows above the allowed memory
size, Smooth Scan performs partitioning and overflows parti-
tions into temporary files on disk. Partition ranges are created
by looking at the root page of the index to decide on the num-
ber of partitions (and their ranges). The reasons are twofold.
First, the root page of an index is typically stored in memory;
hence, its access will not invoke an unnecessary I/0. Second,
the root page of an index contains information about the dis-
tribution of key values, since, assuming a B-tree is balanced,
data skew will be shown in the way the keys are distributed.
For instance, a big gap between two consecutive keys in the
root implies a sparse region with respect to the distribution of
data with values in that range. Similarly, a small gap implies
a dense region. Smooth Scan uses the root keys to decide on
the number of partitions and their ranges given the allotted
memory size (and the table size). If the number of partitions
is higher than the total number of keys in the root page, mean-
ing that consecutive keys create too large partitions, Smooth
Scan accesses the second-level index pages to refine the par-
tition ranges.

During run time, Smooth Scan pipelines tuples for the
current key immediately as it finds them, while remaining
qualifying tuples (for other partition ranges) are stored in
their corresponding partitions. If memory becomes scarce,
Smooth Scan employs overflow resolution and writes a par-
tition with the highest key values into a temporary file on disk
first. Once a particular key (or a partition range) is completely
consumed, Smooth Scan can freely discard the partition it
belongs to. This shrinking reduces memory pressure dur-
ing run time. Once Smooth Scan needs to service the data
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belonging to another partition, it simply accesses the parti-
tion (i.e., the temporary file) and returns all tuples belonging
to it, enjoying the benefit of spatial locality. Hence, even if
the table is much larger compared to the allotted memory,
Smooth Scan will still benefit from reducing repeated and
random accesses compared to the index scan at the expense
of additional sequential access to temporary files.

4.2 Interaction with query processing stack

Smooth Scan is an access path targeted primarily at pre-
venting severe performance degradation due to unexpected
selectivity increase, which is a common complaint received
by the customer support for major industrial vendors as
it is a major source of unpredictability in query perfor-
mance [43,44,63]. Nonetheless, its impact goes much beyond
being just a patch that prevents further performance drops.

Simplified query optimization Smooth Scan simplifies
the query optimization process. Effectively, when choosing
the access path for a select operator the optimizer can always
choose Smooth Scan. Smooth Scan will then make all deci-
sions on-the-fly during query execution. It should be noted,
however, that Smooth Scan is a local optimization that solves
the problem of access path selection, while the problem of
join ordering still needs to be addressed by the query opti-
mizer.

Interaction with other operators Smooth Scan is able to
completely replace the functionality of both index scan and
full scan. The output of Smooth Scan is an input to other oper-
ators in a query plan. Depending on the next operator in the
query tree, a different variation of Smooth Scan may be used.
For example, if a Merge Join follows Smooth Scan implying
an imposed order among tuples, then the variant of Smooth
Scan with the result caching will be used. Since the tuples
obtained out of order could not be immediately consumed,
they are rather stored in the Result Cache until their key value
arrives. If Index Nested Loops Join (INLJ) is an operator on
top of the scan and Smooth Scan is employed as the outer
input to a join, Smooth Scan does not have constraints on the
order of tuples produced from this input; hence, Smooth Scan
can consume tuples the moment it finds them and no caching
is needed. If the ordering requirement is, however, placed by
some of the operators up in the tree, we still employ the first
option. If Smooth Scan serves as an inner input (a param-
eterized path) to a join, the results per requested join key
could be produced in an arbitrary order by calling Smooth
Scan with that particular key value as a filtering predicate.
As a result, the repeated I/O accesses are avoided and ran-
dom ones are significantly reduced per join key value, which
helps in the case of multiple key matches (e.g., PK-FK rela-
tionship). Finally, since Hash Join (HJ) does not support an
interesting order, this implies that when placed below a HJ,
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Smooth Scan can produce the result tuples the moment it
finds them.

5 Modeling Smooth Scan

This section provides an analytical model of the access
path alternatives. The analytical model serves the purpose
of answering the critical questions of which policy and
mode Smooth Scan should employ and when. Smooth Scan
trades CPU for I/O cost reduction; thus, the proposed model
includes the cost of the access path operators both in terms
of the number of disk I/O accesses and in terms of the
CPU cost. Although it is expected that in most cases 1/O
dominates overall cost [41], the rapid evolution of modern
hardware continuously shifts those balances; thus, we pro-
vide a complete model that can be easily adjusted for future
faster hardware as well. We make a distinction between the
cost of a sequential and random access, since the nature of
accesses drives the overall query performance.

#Tp = %J 3
#P = #—T—‘ 4
#Tp
fanout = LJ (@)
| 1.2 x Kg
[ #T —‘
#leaves = | —— (6)
fanout
height = [108 g0 (#leaves)| + 1 7
card = sel x #T (8)
#leaves,os = [ﬂ—‘ ©))
fanout

Table 1 contains the parameters of the cost model. Formu-
las calculating the cost of the non-clustered index scan and
the full scan are presented for comparison purposes. (Sim-
ilar cost model formulas are found in database textbooks
[69].) Indexes are implemented as B*-trees, with k as the
tree fanout. Equations (3)—(9) are base formulas used for
all access path operators. We simplify the calculations by
assuming every page is filled completely (100%) and that
heap pages and index pages are of the same size (Ps). Lastly,
we assume that Tg already includes a tuple overhead (usu-
ally padding and a tuple header). In Eq. (5), we calculate the
fanout of the BT -tree by adding 20% of space per key for a
pointer to a lower level. For Egs. (6) and (9), we assume that
every tuple stored in a heap page has a pointer to it in a leaf
page of the index.

Full table scan The cost of full scan does not depend on
the number of tuples that qualify for the given predicate(s).
Thus, regardless of the selectivity of the query its cost remains

Table 1 Smooth Scan: cost model parameters

Parameter Description

Ts Tuple size (bytes)

#T Number of tuples in the relation

Ps Page size (bytes)

#Tp Number of tuples per page

#P Number of pages the relation occupies

Ks Size of the indexing key (bytes)

sel Selectivity of the query predicate(s) (%)
card Number of result tuples

card,x Number of tuples obtained with Mode X
mOepi Was a traditional index employed first? 0/1
rand cost Cost of a random I/0 access (per page)
Seq o5t Cost of a sequential I/O access (per page)
CPU o Cost of a CPU operation (per tuple)

#Pres Number of pages containing result tuples
#Pres_reg Number of pages with result in current region
#Pseen Number of pages seen so far

#Pseen_reg Number of pages in the current region
#rand;, Number of random accesses

#seq,, Number of sequential accesses

Derived values

fanout B*-tree fanout

# leaves Number of leaf pages in BT -tree

#leaves,es Number of leaf pages with pointers to results
height Height of BT -tree

OPio cost Cost of an operator in terms of I/O

OP cpu_cost Cost of an operator in terms of CPU

CR Competitive ratio

constant. As shown in Eq. (10), the I/O cost is the cost of
fetching all pages of the relation sequentially (as we expect
each table to be stored sequentially on disk). Once full scan
fetches a page, it performs a tuple comparison for all tuples
from the page to find the ones that qualify. Assuming that each
comparison invokes one CPU operation, the overall CPU cost
is given by Eq. (11).

FSio_cost =#P x Seq cost (10)
FSepu_cost = #T X cpuyg, (11)

Index scan To fetch the tuples, the (non-clustered) index
scan traverses the tree once to find the first tuple that qualifies
[height in Eq. (12)]. For the remaining tuples, it contin-
ues traversing the leaf pages from the index (#leavesyes X
seqcost) and uses all tuple IDs that qualify to access the
heap pages, potentially triggering a random I/O operation
per look-up [card in Eq. (12)]. While traversing the tree,
within every internal node page, the index scan performs a
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binary search in order to find a pointer of interest to the next
level [height x log, (fanout) in Eq. (13)]. For each tuple
obtained by following the pointers from the leaf, it then per-
forms a tuple comparison to see whether the tuple qualifies
[the second part of Eq. (13)].

1Sio_cost = (height + card) X randcos;
+#leavesyes X Seqeost (12)
IScpu_cost = (height x log, (fanout)
Hcard) X cpucost (13)

Smooth Scan Having defined the cost of the basic access
path operators, we move on to define the cost of Smooth Scan.
We calculate the cost of Smooth Scan for each mode sepa-
rately. Overall result cardinality is split between the modes
(Eq. (14)). Like the index scan, the cost of the Smooth Scan
access is driven by selectivity. Assuming uniform distribu-
tion of the result tuples (the worst case cost), the number of
pages containing the result is calculated in Eq. (15).

card = cardyo + card,,1 + cardyn (14)
#P,os = min(card, #P) (15)

Mode 0: Index scan If the traditional index is employed
prior to morphing, the I/O cost to obtain first card,,o tuples
is identical to the cost of the index scan for the same number
of tuples; hence, we omit the formula. A slight difference is
in calculating the CPU cost in Mode 0 [the multiplier 2 in
Eq. (16)], to populate tuple IDs to the Tuple ID cache.

SSepu_cost_mo = (height x log, (fanout)
+cardyo X 2) X cpUcost (16)

Mode 1: Entire page probe The number of tuples for
which Mode 1 is going to be employed is calculated in
Eq. (17). Every page is assumed to be fetched with a ran-
dom access (Eq. (18)). Once Smooth Scan obtains a page,
it performs a tuple comparison checking all tuples from the
page [the first part of Eq. (19)]. Before fetching a page x,
Smooth Scan checks whether x has already been processed;
if not, it scans x and adds it to the Page Cache [the second part
of Eq. (19)]. Finally, if Smooth Scan started in Mode 0, for
each tuple Smooth Scan has to perform a check whether the
tuple has already been produced in Mode O [the third part of
Eq. (19)]. In case Smooth Scan needs to support an interest-
ing order, the Result Cache will be used as a replacement for
the Tuple ID cache functionality. In that case, Smooth Scan
only marks the tuple ID as a key in the cache, without copy-
ing the actual tuple as a hash value; the probe match without
the actual result thus signifies that the tuple has already been
produced. Thus, the CPU cost remains (roughly) the same in
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both cases.
#P,,1 = min (card,,, #P) a7
SSiofcost?ml = #Py1 X randces; (18)

SScpu_casl_ml = (#Pml X #TP + #Pml x 2
+# Py X #Tp X mOcpi) X CpUeost (19)

Mode 2: Flattening access We calculate the maximum num-
ber of pages to fetch with Mode 2 in Eq. (20). Notice that
pages processed in Mode 1 are skipped in Mode 2. The
nature of the morphing expansion in Mode 2 of Smooth Scan
is described with Eq. (21). The solution of the recurrence
equation is shown in Eq. (22). In this case, n is the num-
ber of times Smooth Scan expands the morphing region size
(i.e., the number of times Smooth Scan performs a random
I/O access) and f(n) translates to the number of pages to
fetch with Mode 2 (# P,;2). The minimum number of random
accesses (jumps) to fetch all pages containing the results is
given by Eq. (24). This number is the best-case scenario,
when the access pattern is such that all pages are fetched
with the flattening pattern without repeated accesses. The
worst- case scenario number of random accesses is shown in
Eq. (25). When selectivity is low, the number of random I/O
accesses is at worst equal to the number of pages that contain
the results. Nonetheless, there is an upper bound to it, equal
to the logarithm of the number of pages in total, since after
this number all pages will be accessed.

Since both Egs. (24) and (25) converge to the same value
equal to log, (#P + 1), we use this value in the remainder
of the section. The I/O cost of Mode 2 of Smooth Scan is
shown in Eq. (26), and is equal to the cost of the number
of jumps with a random access pattern, plus the cost to fetch
the remaining number of pages with a sequential pattern. The
CPU cost per page in Mode 2 is identical to the cost per page
in Mode 1 (Eq. (27)).

#Py2 = min (cardy, #P — #Py1) (20)
fG+1)=2x f@i@),i =0..n 21
fO0)=0, fn)=2",n>=0 (22)
#rand;,(m2_min)
#Ppo = Z 2 (23)
i=0

#rand;,(m2_mn) = logy #Pu2 + 1) (24)
#rand;,(m2_mx) = min (#sz, log, (#P + 1)) (25)

SSio_cost_m2 = #randi,(m2) x randcos:
+ (#Pyn — #rand;,(m2))
XSeqcost (26)
SSepu_cost_m2 = (#HPpua X #1p + # Py x 2
+# Py X #Tp * mQcpi)
X CPUcost 27)
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Finally, the overall costs are the sums of the operator CPU
and I/O costs for all employed modes.

SSiu_cost - SSio_cost_mO + SSio_cost_ml + SSio_cost_mZ
SScpu?cost = SS::pu?cost?mO + SScpufcostfml
+SScpu_coSt_m2

6 Competitive analysis

This section provides a competitive analysis comparing
Smooth Scan against the optimal access path (referred to as
Oracle). The Oracle provides a theoretical bound, modeling
the case when all resulting pages are known in advance and
accessed sequentially; it mimics the behavior of Sort Scan,
while ignoring the sorting cost. We calculate a competitive
ratio (CR) as the maximum ratio between the cost of Smooth
Scan and the Oracle throughout the entire selectivity interval

(Eq. (28)).

SScosi (sel)

CR=max| ————
<0racle(sel)

) , sel € [0, 100%)] (28)

The competitive ratio is an important metric when consid-
ering robustness, since it shows how far from optimal Smooth
Scan can be. The purpose of this analysis is to give insights
on which Smooth Scan’s policy is most robust, and examines
worst case performance guarantees of Smooth Scan. For each
of the policies, we consider their worst case result distribu-
tion (depicted in Fig. 8) and calculate the CR as a function
of table size (the number of pages #P).

6.1 Greedy policy

We first consider Smooth Scan with the Greedy Policy
according to which the operator increases the morphing
region size after each index access.

Worst case result distribution The worst case result dis-
tribution for the Greedy policy is when all additional pages
that Smooth Scan obtains with the flattening access pat-
tern do not contain any tuples contributing to the result set.
In this case, the number of fault pages (not containing the
result tuples) is maximized. This can happen when the next
result tuple is always one page ahead of the current morphing
region. The order does not have to be such that the page is
strictly ahead, but without loss of generality we assume this
use case scenario, while in order to cover the most adversar-
ial behavior we consider index accesses between morphing
regions to be entirely random.

Figure 8a depicts a result distribution for such a case.
Squares with striped lines denote pages containing results,
while empty squares denote fault pages (i.e., without results).
Below each graphics in Fig. 8 describing a different result

(a)
A TTATITTATITTIIII T AT -1

1/2 1/a 1/8 1/16 1/32

(b)

1/2 3/4 6/8 1/16 1/16 1/16 1/16

(c)

1/21/2 see 1/2

Fig. 8 Worst case result distributions for Smooth Scan alternatives. a
Greedy Smooth Scan, b Selectivity increase Smooth Scan, ¢ Elastic
Smooth Scan

distribution pattern, we show the number of page hits (divi-
dend) per the morphing region size (divisor). The case when
Greedy Smooth Scan is least effective is when the number of
page hits is equal to the maximum number of (random) jumps
distributed over the entire table (depicted in Fig. 8a). With the
selectivity increase above this number, Smooth Scan’s num-
ber of I/O accesses remains constant since all pages of the
table have been accessed, and thus, Smooth Scan only ben-
efits from further selectivity increase. Therefore, the worst
case performance of Greedy Smooth Scan is when the car-
dinality is equal to the number of random jumps (Eq. (29)).
Equation (30) shows the cost of Smooth Scan for this use
case scenario, while Eq. (31) calculates the CR.

card = #rand;, = log, #P + 1) (29)
SScost = #rand;, x rand;ps;
+ (#P —#trandio) X seqcost (30)
CR = max SScust — SScost
Oracle #rand;, X seqcost

#rand;, X randcosr +#P X Seqcost

-1 31
#rand;, X seqcost S

The CR of Greedy Smooth Scan against the Oracle for
this use case and characteristics of HDD (rand,,s; = 10 and
seqcos: = 1) is depicted in Fig. 9. For 1000 pages the value
of CR is equal to 110. The value of CR increases sublinearly
with the increase in number of pages, reaching the value of
760 for 10,000 pages. A similar CR is observed for the char-
acteristics of SSD (rand,,s; = 2 and seq.o5; = 1), ranging
from 100 to 750.

Discussion From the competitive analysis, we see that
Greedy Smooth Scan is not a viable option for low selectivity,
since it can be highly suboptimal due to a high number of
fault pages that this policy might fetch.
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Fig.9 The CR of Greedy Smooth Scan against Oracle

6.2 Selectivity increase driven policy

Selectivity increase (SI) Driven Policy increases the mor-
phing region size as a response to the observed selectivity
increase.

Worst case result distribution Figure 8b depicts the
worst case result distribution for this policy. With the SI
driven policy, an initial high selectivity can mislead Smooth
Scan to keep a high region size (e.g., in Fig. 8b a morphing
region of size 16 is kept throughout the rest of the operator
lifetime).

To increase the morphing region size, SI Smooth Scan
has to notice the selectivity increase over the last morphing
region bigger than the selectivity seen so far [calculated in
Egs. (1) and (2)]. A minimal selectivity sequence that will
trigger the morphing region increase has to be a sequence 1/2,
3/4,6/8,12/16, ...,3%21=2 /21  where the divisor denotes the
size of the current morphing region and the dividend denotes
the number of pages containing results in this region. Equa-
tion (32) calculates the number of pages containing results
needed to trigger such a behavior. After performing the mor-
phing region expansion x times, to maximize the number of
fault pages the remaining y morphing regions have a single
match. The total number of accesses is shown in Eq. (33). In
the following equations, we replace y with Eq. (34) [derived
from Eq. (33)]. Since the total cost of Smooth Scan depends
on both x and y, and since we can represent y as f (#P, x), in
Fig. 10 we plot the CR of Smooth Scan against the Oracle as
afunction of x and # P. In addition, Fig. 10b shows a 2D view
of the same graph, where the same color in equidistant con-
tours denotes the same value of CR. The peak value has the
brightest color. We plot the CR for the HDD characteristics
(randcosr = 10 and seqcosr = 1).

x—2 y
#Pm=1+23x2"+21
i=0 i=1

=143xQ =D +y (32)
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Fig. 10 The CR of Selectivity Increase Smooth Scan when compared
against Oracle. a CR against Oracle, b equidistant contours

X
#P = 242" xy
i=1
=2xQ2 " —D+2"%xy=2"%x2+y)—2 (33)
#P +2
y = 7%
#randi, = x +y

-2 (34)

SScost = #rand;, X rand..s;
+ #P — #rand;,) X seqcost (35

CR= St (36)

#Pres X S€qcost

For this use case, the CR is a monotonically increasing
sublinear function that reaches a value of 100 for 100K pages
for the x peak value of 8, i.e., for 8 morphing increase steps.
We have experimented with higher page numbers for which
we noticed a higher absolute value of CR with the x peak
translated on the right. This is expected since with more pages
we can increase the morphing region size to a higher value,
for which we need more steps. Nonetheless, the overall trend
is similar. Although the CR of SI Smooth Scan is better than
the CR of Greedy Smooth Scan, it is still a monotonically
increasing sublinear function, which again puts a soft upper
bound on the worst case performance of SI Smooth Scan.
The same trend is noticed in the case of SSD as well.

Discussion Similar to the Greedy Policy, there are cases
when the SIdriven policy cannot provide robust performance.
With a soft bound on the CR, the discrepancy of SI Smooth
Scan from the optimal access path can be quite high, making
it an undesirable choice.

6.3 Elastic policy

Elastic Policy follows the selectivity pattern of the access,
i.e., it increases the morphing region size in the dense regions
and decreases it in the sparse regions.

Highest page miss rate In order to increase the morphing
region size, Smooth Scan has to notice the same selectivity
increase pattern as the one described in Eq. (32). The behavior
of Elastic Smooth Scan, however, differs in this case. After
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Fig. 11 The CR of Elastic Smooth Scan for the worst case result distri-
bution of SI Smooth Scan. a CR against Oracle, b equidistant contours
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Fig.12 The highest page miss rate for Elastic Smooth Scan

noticing the selectivity drop, Elastic Smooth Scan progres-
sively decreases the morphing size back until it reaches the
value of 1 page. Therefore, Elastic Smooth Scan performs x
times the region morphing increase and x times the region
morphing decrease, after which it continues with the morph-
ing region size of 1 for the (y —x) remaining tuples (assuming
no local selectivity increase is noticed again). Equation (37)
calculates the total number of pages accessed.

X X
#P = 214> 24 (y—x)
i=1 i=0

=25 =) +2 14y —x
=22 _34y_x (37)
#randi, = x+y
SScost = #rand;, x rand.os;
+ (#P — #rand;,) X seqcost (38)

SSCOSI (39)

CR=—F——
#Pres X Seqcost

Figure 11 plots the CR against the Oracle for the use case
from which the Selectivity Increase driven policy suffers. For
calculations, we use the characteristics of HDD and plot the
CR as a function of x and y [#P could be derived from Eq.
(37)]. The CR is a monotonically decreasing function that
from an initial value of 10 for one random access, converges
to a value of 2 for x > 10 (a more realistic case). From
this analysis, we have seen that Elastic Smooth Scan has an
expected CR of 2 for the use case for which SI Smooth Scan
has a soft upper bound; hence, it is a more robust choice.

The highest number of page misses happens when the
distribution is such that the number of pages in each morphing
region for one half of the table is just enough to perform
the expansion; after visiting this half the selectivity drops
sharply with having only one resulting page per the remaining

(shrinking) regions. Figure 12 depicts such a distribution. We
calculate the CR for this scenario. Our analysis shows the CR
against the Oracle of 2.45 for 100 pages that decreases to the
value of 2.0001 for 3M pages.

Worst case result distribution The previous analysis
showed the worst case scenario with respect to the number
of fault page reads. Nonetheless, for Elastic Smooth Scan,
this is not the scenario with the worst case CR. The worst
case for Elastic Smooth Scan appears when the number of
random I/O accesses is maximized. This happens when the
access is such that every second page has a result match (illus-
trated in Fig. 8c). In this case, Elastic Smooth Scan keeps the
morphing size of 2, since it never detects the local selec-
tivity increase when compared to the one over so far seen
pages (except for the first page). Therefore, Smooth Scan
will perform #P /2 random accesses, and the same amount
of sequential accesses (to fetch adjacent pages).

#P
#rand;, = N (40)

SScost = #Hrand;, X rand;qs;
+ (#P — #rand;,) X seqcost 41
SSCOS[

CR = 2ot
o X S€qcost

-5 X (randcost + seqcost) _

#P
= X S€{cost

11 (42)

The CR is calculated in Eq. (42). For characteristics of
HDD, with rand.,s; = 10 and seq.,s; = 1, the CR reaches
the value of 11 when compared against the Oracle, and is
constant regardless of the table size. The same ratio decreases
in the case of SSD (rand.os; = 2 and seq.os: = 1), reaching
the value of 6. When compared to Full Scan (which is the
optimal existing access path in this case), the CR of Elastic
Smooth Scan is equal to 5.5 for HDD, and 3 for SSD.

Discussion Overall, Elastic Smooth Scan proves to be the
most robust solution. This policy provides a firm upper bound
on suboptimality with the maximum theoretical CR of 11 and
6 in the case of HDD and SSD, respectively, regardless of the
table size. We thus choose Elastic Smooth Scan as the default
policy in our experiments.

Additionally, our analysis shows that a morphing increase
factor greater than 2 leads to a higher CR. For instance, for
the previous analysis, the morphing increase factor of 10 for
HDD gives a competitive ratio of 19. Therefore, we use the
factor of 2 as the morphing increase factor for the Smooth
Scan implementation.
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7 Experimental evaluation

This section presents a detailed experimental analysis of
Smooth Scan. We demonstrate that Smooth Scan achieves
robust performance in a range of synthetic and real work-
loads without the need for accurate statistics, while existing
approaches fail to do so. Furthermore, Smooth Scan proves
to be competitive with existing access paths throughout the
entire selectivity interval, making it a viable replacement
option.

7.1 Experimental setup

Software Smooth Scan is implemented inside PostgreSQL
9.2.1 DBMS. To demonstrate the problem of robustness pre-
sented in Sect. 1, we use a state-of-the-art commercial DBMS
we refer to as DBMS-X.

Benchmarks We use two sets of benchmarks to show-
case algorithm characteristics: (a) for stress testing we use a
micro-benchmark, and (b) to understand the behavior of the
operators in a realistic setting we use the TPC-H benchmark
SF 10 [76].

Hardware. All experiments are conducted on servers
equipped with 2 x Intel Xeon X5660 Processors, @2.8 GHz
(with L1 32KB, L2 256KB, L3 12MB caches), with 48 GB
RAM, and 2 x 300 GB 15000 RPM SAS disks with an aver-
age 1/O transfer rate of 130 MB/s, running Ubuntu 12.04.1.
In all experiments we report cold runs; we clear database
buffer caches as well as OS file system caches before each
query execution. The memory setting thus does not impact
our findings.

7.2 TPC-H analysis

TPC-H in DBMS-X In Fig. 1 in Sect. 1, we demonstrated
the severe impact of suboptimal index choices on the overall
TPC-H workload. For this experiment, we used the tun-
ing tool provided as part of DBMS-X, with 5GB of space
allowance (1/2 of the data set size) to propose a set of indexes
estimated to boost the performance of the TPC-H workload.
In queries Q12 and Q19, the presence of indexes favors a
nested loop join when the number of qualifying tuples in
the outer table is significantly underestimated, resulting in a
significant increase in random I/O to access tuples from the
index (“table look-up”), which in turn results in severe per-
formance degradation (factors 400 and 20, respectively). In
both cases, the access path operator choice is the only change
compared to the original plan, i.e., join ordering stays the
same. Smaller degradation as a result of a suboptimal index
choice followed by join reordering occurs in several other
queries (Q3, Q18, Q21) resulting in the overall workload
performance degradation by a factor of 22.
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Improving performance with Smooth Scan We now
demonstrate a significant benefit that Smooth Scan brings
to PostgreSQL compared to the optimizer’s chosen alterna-
tives when running TPC-H queries. Since PostgreSQL does
not have a tuning tool, we create the set of indexes proposed
by the commercial system from the previous experiment (on
the same workload).

Figure 13 shows the results for 5 interesting TPC-H
queries that typically trigger robustness issues in databases.
These queries represent “choke points” for testing data access
locality [13]. They cover: (i) range predicates, (ii) a LIKE
statement, (iii) an equality over string predicates, which
are all known to be problematic predicates that cause car-
dinality misestimates, consequently leading to poor query
performance. We show the performance of: (i) single table
selections with selectivities from both sides of the spectrum
(very high and very low), (ii) two-table joins covering both
selectivity extremes, and (iii) a more complex query involv-
ing a 6-table join and predicates over multiple attributes as
an exemplary case of complex decision-making workloads.
Low and high selectivity experiments are chosen as extreme
cases for Smooth Scan—showing that it can solve the prob-
lem of suboptimal index selection in the case of cardinality
misestimates such as for Q12 and Q19 of DBMS-X (low
selectivity), but also demonstrating the negligible overhead
in the cases when the optimal choice can be made by a DBMS
(high selectivity).

The brackets on the right-hand side of the query ID show
the selectivity of the query. Q1 and Q6 are single table selec-
tion queries, with the selectivity of 98 and 2%, respectively.
Q4 and Q14 are two-table join queries with two selectiv-
ity extremes (65 and 1%, respectively) when considering the
LINEITEM table. The performance greatly depends on the
selectivity of this table, since it is the largest. Lastly, we
run Q7, a 6-table join, which has selectivity of 30%. Since
Smooth Scan trades CPU utilization for I/O cost reduction,
we show the execution breakdown through CPU utilization
and I/O wait time (i.e., the blocking I/O in the critical path of
execution). Similarly, in Table 2 we show the number of I/O
requests issued by the operators, together with the amount
of data transferred from the disk. The query execution plans
are given in Appendix [15].

Figure 13 shows that PostgreSQL with Smooth Scan
avoids extreme degradation and achieves good performance
for all queries. For instance, while plain PostgreSQL suf-
fers in Q6 due to a suboptimal choice of an index scan,
PostgreSQL with Smooth Scan maintains good performance
preventing a degradation of a factor of 10. Q6 selects 2% of
the data, which in the case of the index scan causes 566K
of random I/O accesses over the LINEITEM table (shown in
Table 2). By flattening (i.e., accessing adjacent pages) and
avoiding repeated accesses, Smooth Scan reduces this num-
ber to 95K which results in much better performance.
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Table 2 1/O analysis of TPC-H

Q6 Q4 Q14 Q7

pSql SS pSql SS pSql SS pSql SS

566 95 225 235 416 87 745 124
8.7 8.8 10.9 12.1 6.8 8.9 11.6 11.6

) Ql
queries oSqT S5
#1/0 req. (K) 71 87
Read data (GB) 8.9 10.2
M CPU Utilization 1/0 Wait time
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Fig. 13 Improving performance of TPC-H queries with Smooth Scan

On the other hand, in query Q1 with selectivity of 98%
the plain PostgreSQL chooses Sort Scan (also called Bitmap
Heap Scan), which is the optimal path. However, even in this
case Smooth Scan introduces only a marginal overhead; it
quickly realizes that the result selectivity is high and adjusts
the execution by forcing sequential accesses. As a result,
Smooth Scan adds an overhead of only 14% over the opti-
mal behavior. This overhead is due to periodical random
I/0O accesses when following pointers from the index, which
increased the number of 1/O requests for disk pages from
71K to 87K.

In Q4, the selectivity of the LINEITEM table is 65%,
and PostgreSQL chooses the full scan as the outer table of a
nested loop join with a primary key look-up as the inner input.
Although Smooth Scan starts with using the index look-up
on the outer table as well, it adjusts its access patterns quickly
morphing its behavior toward sequential scan and adds less
than 1% of overhead over the optimal solution.

On the contrary, the selectivity of the LINEITEM table in
Q14 is around 1%, but still a factor of 2 more than what
the optimizer estimated. Both plain PostgreSQL and our
implementation start with an index scan as the outer input,
joined with an INLJ with ORDERS (a primary key look-up).
This query is an illustration for cases when performance of
DBMS-X degraded severely (e.g., by a factor of 400). Fur-
thermore, this is a major source of performance degradation
in databases—a suboptimal index choice due to cardinal-
ity underestimates, typically as a consequence of attribute
value independence assumption employed by most DBMSs
[9,35,37,59,65,75]. Unlike the index scan that issues 416K
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Fig. 14 Profiling I/O access of Q1: a full/sort scan, b index scan, ¢
Smooth Scan

I/0O requests for this query, Smooth Scan issues only 87K
requests which translates to a performance improvement of
a factor of 8. In both join queries, Smooth Scan does not per-
form any additional page fetching over the inner tables since
for each probe we have a single match; thus, there is no need
to perform morphing region expansion, which Smooth Scan
correctly detects.

Lastly, an index choice for plain PostgreSQL over the
LINEITEM table for a 6-way join in Q7 hurts performance by
a factor of 7 compared to the performance of Smooth Scan.
This degradation is due to the choice of the index over a range
predicate with selectivity of 30%. The result cardinality of
the range predicate was 18M as opposed to 300K which was
the estimated value. Smooth Scan detects higher selectivity
and naturally morphs toward a more desirable access pattern.

Discussion The memory structures of Smooth Scan span
a couple of MB in these experiments. For illustration, the
Page ID cache for the LINEITEM occupies 140KB (for IM
pages). Although Smooth Scan can transfer larger amounts
of data from disk compared to the original access path (see
Table 2), its benefit comes from exploiting the access locality
and issuing fewer I/O requests. Overall, Smooth Scan pro-
vides robust behavior without requiring accurate statistics.
It brings significant gains when the original system makes a
suboptimal decision and only marginal overheads over opti-
mal decisions.

Profiling I/O access To better grasp the behavior of
Smooth Scan on disk, we profile the access of TPC-H Q1
with the iosnoop tool. Figure 14 depicts the disk accesses of
all access paths when running Q1. The figure shows which
device address (shown on the Y axis) is requested at what
point in time (shown on the X axis). In the case of both full
scan and sort scan, all pages are requested and accessed con-
secutively from the first until the last one. This is due to high
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Table 3 Histogram of block transfer sizes

Block size 8 KB 16 KB 32 KB 64 KB 128 KB

# of transfers 3079 288 174 168 83263

selectivity of Q1 (98%), i.e., all pages have matching tuples.
The index scan suffers from accessing pages repeatedly over
time. Compared to the index scan, Smooth Scan requests
fewer pages over time (and no repeated accesses occur). In
the case of Smooth Scan the access is not purely sequen-
tial, as it is driven by occasional index probes which invoke
random I/O accesses. This is evident in the last stages of exe-
cution where accesses to a single page are typically issued
to fetch the data of interest, without expanding the morphing
region. This is due to the fragmentation in accessed areas
on disk, since the neighboring pages have already been pro-
cessed in the past. Due to this reason and the fact that the
result selectivity is high (98%), the highest number of data
transfers was issued to the maximum block size of 128 KB>
(83,263 transfers) followed by a single page 8KB requests
(3079 transfers), as presented in Table 3.

7.3 Fine-grained analysis over full selectivity
interval

This section provides the performance comparison of Smooth
Scan against Full Scan, Index Scan and Sort Scan. In
order to demonstrate the robust behavior of Smooth Scan,
a micro-benchmark is used to stress test various aspects. All
experiments are run on top of our extension of PostgreSQL,;
thus, Full Scan, Index Scan and Sort Scan are the original
PostgreSQL access paths. The micro-benchmark consists of
a table with 10 integer columns randomly populated with
values from an interval 0 — 10°. The first column is the pri-
mary key identifier and is equal to the tuple order number.
The table contains 400M (4 % 10%) tuples and occupies 25GB
of disk space for 3M (3 % 10°) pages each of which is of 8KB
size (PostgreSQL’s default value). In addition to the primary
key, a non-clustered index is created on the second column
(c2). We run the following query:

Ql: select * from relation
where c2>= 0 and c2<X$%
[order by c2 ASC];

Supporting an interesting order In this experiment, we
show that Smooth Scan maintains tuple ordering and hence
outperforms other alternatives for queries (or subplans) that
require the ordering of tuples. Figure 15a shows the perfor-
mance of all alternative access paths for a query with an

2 128 KB block requests were consecutive up to 16 MB of size, which
is the maximum expansion region of Smooth Scan.
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Fig. 15 Smooth Scan versus alternative access paths for a query with
and without an order by clause. a With order by, b without order by

order by clause. The performance of Index Scan degrades
quickly due to repeated and random I/O accesses. For selec-
tivity 0.1% its execution time is already 10 times higher than
the execution of Full Scan, reaching a factor of more than
a 100 for 100% selectivity. Sort Scan solves the problem
of repeated and random accesses, while at the same time
fetching only the heap pages that contain results; therefore,
it is the best alternative for selectivity below 1%. Nonethe-
less, its sorting overhead to restore the proper ordering grows
and for selectivity above 2.5% it is not beneficial anymore.
Smooth Scan is between the alternatives when selectivity is
below 2.5%, while it achieves the best performance for the
selectivity above this level. This is attributed to avoiding the
overhead of posterior sorting of tuples to produce results in
the interesting order, from which Full Scan and Sort Scan
suffer.

Without an interesting order Figure 15b shows the per-
formance of the access paths when executing Q1 without
the order by clause. For selectivity between 0 and 2.5%, the
behavior of the operators is the same as in the previous exper-
iment. For higher selectivity, however, Full Scan is the best
alternative, since it performs a pure sequential access. Both
Sort Scan and Smooth Scan, however, manage to maintain
good performance. The overhead of Sort Scan is attributed
to the pre-sort phase of the tuples obtained from the index;
after that the access is nearly sequential as page IDs are mono-
tonically increasing. Smooth Scan does not suffer from the
sorting overhead, but it does suffer from a periodical random
I/O access driven by the index probes, adding less than 20%
overhead when compared to Full Scan for 100% selectivity.
A different behavior is observed when the experiment is run
on an SSD (shown in Fig. 23), where Smooth Scan benefits
much more compared to Sort Scan (by a factor of 3).

Discussion Smooth Scan bridges the gap between exist-
ing access paths. Its performance does not degrade when
selectivity increases, like in the case of Index Scan. This is
particularly important in real-life scenarios where a degra-
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dation in Index Scan causes performance drops of several
orders of magnitude [44]. At the same time, Smooth Scan
does not pay the cost of Full Scan to select just a few tuples,
which is important for point queries for which Full Scan
is impractical. When the order is not imposed, the absolute
performance of Smooth Scan is comparable to that of Sort
Scan; nonetheless, the benefit of Smooth Scan becomes visi-
ble when considering its placement in the query plan. Unlike
Sort Scan, Smooth Scan adheres to the pipelining model,
which is important since the access path operators are exe-
cuted first and can stall the rest of the query plan. In the
experiments, Smooth Scan’s CR reaches a maximum value
of 2 over the optimal solution, for the case when selectivity is
below 0.01%. To put absolute numbers in perspective, in our
experiment a maximal overhead of 60 s is paid to prevent a
worst case performance degradation of 11 h. In decision sup-
port systems that are characterized by long-running queries,
this overhead is likely tolerable as a robustness guarantee for
the prevention of severe performance drops that happen due
to data correlation and skew.

7.4 Sensitivity analysis of Smooth Scan

We now study the parameters that affect the performance
of Smooth Scan such as the impact of its morphing modes,
policies, and strategies. We show the bookkeeping overhead
and study the Smooth Scan on HDD versus SSD. For all
experiments in this section, unless stated otherwise, we use
Q1 from the micro-benchmark without an order by clause.
Impact of the entire page probe mode The pointer
chasing of non-clustered indexes when performing a tuple
look-up in general hurts performance when selectivity
increases. Figure 16 depicts the improvement that Smooth
Scan achieves by removing repeated accesses when exe-
cuting query Q1 from the micro-benchmark. The curve of
Smooth Scan denoted as the ‘Entire Page Probe’ morphs
only until Mode 1. Smooth Scan improves performance by
a factor of 10 when compared to Index Scan for selectivity

100000

10000 ~

o

b

- 1000

]

E

e 100

c

2

§ 10 —A-Full Scan
g Index Scan
w 1r -©-Smooth Scan (Entire Page Probe)

-%-Smooth Scan (Flattening Access)

0.1

- < un O O wun o
o N N~ O
—

0.001
0.01

Result selectivity (%)

Fig. 16 Sensitivity analysis of Smooth Scan modes

100%. The performance of Smooth Scan degrades with selec-
tivity increase up to 1%; this is the point when approximately
all pages have been read. With 120 tuples per page (64-byte
tuples in 8KB pages) and uniform distribution, we expect one
tuple from each page to qualify. After that point the execu-
tion time stays nearly flat with the increase of 20% for 100%
selectivity, showing that the overhead of reading the remain-
ing tuples from a page is dominated by the time needed to
fetch a page from disk. The execution time of Smooth Scan
when morphing only up to Mode 1 is, however, still signifi-
cantly higher (a factor of 14) compared to Full Scan for 100%
selectivity. This is due to the discrepancy between random
and sequential page accesses; the former being an order of
magnitude slower in the case of HDD.

Impact of the flattening access mode To alleviate the
random access problem, Smooth Scan employs Mode 2+
(shown in Fig. 16 as the ‘Flattening Access’ curve). By
fetching adjacent pages, Smooth Scan amortizes access costs
at the expense of extra CPU cost to go through all fetched
data. Smooth Scan with Flattening Access is not only much
better than Index Scan (by a factor of 115) but also nearly
approaches the behavior of Full Scan; in the worst case of
selectivity 100% Smooth Scan is only 20% slower than Full
Scan.

Maximum morphing region size We perform a sensitiv-
ity analysis on the maximum number of adjacent pages up
to which Smooth Scan performs the morphing region expan-
sion. The experiment varies this number from 1000 up to
5000 pages, shown in Fig. 17 the query execution times for
3 cases, when selectivity is 1, 10 and 100%. We performed
a fine-grained analysis over the entire selectivity range, and
results followed the same trend; hence, for clarity we show
only these 3 selectivity points. The experiments show that
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Fig. 17 Max. region size (# pages)
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2000 pages are optimal, which translates to the morphing
region size of 16MB. Thus, we keep 2000 as the maximum
morphing region size for the rest of the experiments.

Impact of policy choices We plot the impact of policy
choices in Fig. 18. The Greedy policy morphs with each index
probe and hence converges to Full Scan faster than other poli-
cies. For lower selectivity, the Selectivity Increase and Elastic
policies introduce less overhead compared to Greedy since
they fetch fewer adjacent pages, i.e., more pages need to be
seen for the morphing region size to increase. This particu-
larly holds for the Elastic policy that adjusts the morphing
size depending on the selectivity of the fetched regions. Since
itis the most responsive to the changes in selectivity, we favor
it in the rest of the experiments.

Impact of trigger choices Figure 19 plots the impact of
triggering strategy choices. The Eager strategy starts imme-
diately with Smooth Scan; in this case, we plot the Elastic
Smooth Scan. The Optimizer Driven strategy starts with the
traditional index and changes to Smooth Scan after 15K
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Fig. 19 Triggering choices
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tuples (the optimizer’s estimated cardinality), causing the
increase in the execution time for selectivity 0.005%. After
the shift to Smooth Scan, for this experiment we continue
with the Selectivity Increase Driven policy. The overhead
of the Optimizer Driven strategy increases for higher selec-
tivity compared to the Eager strategy and is attributed to a
tuple check for each tuple produced with Smooth Scan, and
to additional repeated accesses of the same pages accessed
before the Smooth Scan behavior is triggered. On the other
hand, the initial execution time is lower compared to the
Eager strategy due to fewer page accesses. Similar behavior
is observed with the SLA driven triggering strategy, with a
sharper cliff for point 0.009%, since with this strategy we
switch immediately to Greedy. For this experiment, we have
set an upper performance bound equal to the performance of
2 Full Scans as an SLA constraint; the calculated bound is
shown as the dashed line in Fig. 19. According to the model,
the morphing triggering point is 32K tuples, which guaran-
tees the execution time just slightly below the SLA bound
for 100% selectivity.

Overall, the Eager strategy strikes a balance in terms of
overall performance; hence, we favor it as the default strategy
in the remaining experiments. However, when in an environ-
ment where respecting SLASs is the main priority, or Smooth
Scan serves as a means of fixing suboptimal decisions then
the SLA or Optimizer driven strategies are viable alternatives.
We can turn a strategy knob depending on the applications
requirements.

Adjusting to skew distribution Smooth Scan has demon-
strated the ability to prevent execution time blow-up due
to selectivity increase tested on uniform distributions of
result tuples. Many modern applications, however, exhibit
non-uniform data distributions (e.g., stock markets, Inter-
net networks [23,49]). For these applications, one execution
strategy is not likely to optimally serve the entire table. We
show that Smooth Scan can adapt well to skewed distribu-
tion of values across pages. We use the Elastic policy and
compare it against the Selectivity Increase (SI) policy.

We use a table with 1.5B tuples, 10 integer columns (ran-
dom values from [0-10°]) that occupy 100GB, and create a
secondary index on the second column (c2). First 15M tuples
have c¢2 = 0; afterward, another 0.001% of random tuples has
value 0. The result selectivity is slightly above 1%, with most
of the tuples coming from the pages placed at the beginning
of the relation heap, i.e., we read all tuples where c2 = 0.

Figure 20a plots the execution time of Index Scan, Full
Scan, Selectivity Increase and Elastic Smooth Scan; Fig. 20b
plots the number of distinct pages fetched to answer the
query. From Fig. 20b, one can see that Selectivity Increase
Smooth Scan fetches 56 times more pages than Elastic
Smooth Scan, and it is 5 times slower. The large number of
pages is due to the initial skew; Selectivity Increase Smooth
Scan notices the high selectivity increase at the beginning,
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and in order to reduce the potential degradation, it continues
fetching big chunks of sequentially placed page, ultimately
fetching 8.8M out of 12.5M pages. On the contrary, after
the dense region, Elastic Smooth Scan decreases the morph-
ing step, quickly converging back to the access of a single
page per probe, ultimately ending up with only 150K pages
fetched. This number is close to the number of pages accessed
by Index Scan that fetched 140K pages. The severe impact of
random I/O is not seen for Index Scan, since for this experi-
ment the index key follows the page placement on disk.

From the experiment, one could observe that Elastic
Smooth Scan continues to provide near-optimal perfor-
mance, despite the significant initial skew. This is particularly
important for long-running queries over big data, where data
distributions tend to be non-uniform [58]. Approaches that
employ one execution strategy, or run multiple alternatives
shortly and stop all but the winning one are likely to make a
mistake and not be able to benefit from this density discrep-
ancy. Elastic Smooth Scan, however, seamlessly adjusts its
behavior to fit the data distribution.

The overhead of auxiliary data structures To avoid
repeated page accesses, Smooth Scan in PostgreSQL uses
the data structures described in Sect. 4. We now show the
bookkeeping overhead of these structures and their usability
rate, demonstrated on Q1 from the micro-benchmark with an
ORDER BY clause.

Figure 21a shows that Result Cache adds a maximum over-
head of 14% when storing all result matches in the cache
(shown as blue bars). At the same, the Result Cache Hit
Rate, calculated as the ratio between the number of tuple
requests served from the cache and the total number of tuple
requests, reaches 100% for 1% selectivity. Figure 21b shows
that the morphing accuracy, calculated as the ratio between
the number of pages containing result matches and the total
number of checked pages with Smooth Scan, gets improved
after 1%, reaching 100% for 2.5% selectivity. The overhead
of page ID checks remains significantly below 1% in all our
experiments; hence, we do not show it separately.

Memory sensitivity of result cache Since Result Cache
is the largest data structure, we perform a sensitivity analysis

Fig. 21 Analysis of auxiliary data structures. a Result cache analysis,
b morphing accuracy
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Fig.22 Memory sensitivity of Result Cache

of Result Cache to the memory size. We run Q1 from the
micro-benchmark, varying the Result Cache size from 2.5%
of the table size to 100% of the table size. The table size is
25GB with 400M tuples stored, and the query has selectivity
100% throughout the entire experiment.

To see the overhead when partitions are spilled on disk,
Fig. 22 plots the normalized execution time with respect to
the execution time when Result Cache completely resides in
memory, i.e., when no spilling occurs. As one can see from
the graph, Smooth Scan is quite resilient to the memory size,
adding only 37% of overhead when the memory size is 2.5%
of the table size, i.e., it occupies only 625MB, compared to
the case when all data stays in memory (i.e., no partitioning
occurs). For the memory size of 2.5%, Smooth Scan builds
50 partitions in total shown by the black line in Fig. 22.
Moreover, Smooth Scan is quite resilient to the number of
partitions created. For instance, Smooth Scan adds only 3%
of additional overhead for creating 50 partitions compared to
14 partitions for the case when the memory size is 10% of the
table size. The biggest overhead increase of 20% is between
100 and 80% and is attributed to disk access. Once partitions
start spilling to disk (in all other cases except 100% they do),
the performance remains steady across a different number of
partitions, because Smooth Scan enjoys the benefit of spatial
locality when fetching partitions from disk.
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Fig.23 Smooth Scan on SSD

7.5 Smooth Scan on SSD

Given the different access costs of solid state disks (SSD),
better random access performance, and the forecasts of their
potential replacement of HDD [47], we now stress test
Smooth Scan on SSD. We use a solid state disk OCZ Deneva
2C Series SATA 3.0 with advertised read performance of
550MB/s (offering 80kIO/s of random reads). We use query
Q1 from the micro-benchmark without an order by clause
and compare Smooth Scan against the existing access oper-
ators.

Figure 23 demonstrates that Smooth Scan benefits even
more from solid state technology than from hard disks (shown
in Fig. 15). SSD is well known for removing mechanical
limitations of disks, which enables them to achieve better
performance of random I/O accesses. Our analysis for the
hardware used in this paper shows that random I/O accesses
are two times slower than sequential accesses on SSD, while
this discrepancy reaches a factor of 10 in the case of HDD.
This difference makes Index Scan (and Smooth Scan) more
beneficial on SSD than on HDD. In our experiments, Index
Scan on HDD is beneficial only for selectivity below 0.01%,
while on SSD this range increases until 0.1%. For higher
selectivity, Index Scan on SSD still loses the battle against
other alternatives, since it suffers from repeated accesses and
cannot benefit from the flattening pattern compared to other
alternatives. Consequently, Index Scan is slower than Smooth
Scan by a factor of 30 for 100% selectivity. What is interest-
ing to note is that Sort Scan loses the battle against Smooth
Scan for selectivity above 0.1% (even without the imposed
order), since the pre-sort overhead to obtain page IDs cannot
be masked due to faster I/O performance.

Discussion Smooth Scan favors SSD over HDD, since
occasional random jumps when following the index pointers
do not hurt performance as much, compared to the sorting
overhead of Sort Scan to pre-sort tuples. Smooth Scan is
faster than Full Scan for selectivity below 20%, and is only
10% slower for 100% selectivity. The smaller gap between
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random and sequential I/O and the decreased SSD latency
thus makes Smooth Scan a promising solution for the future.

7.6 Cost model analysis

In this experiment, we show that the estimates of the ana-
lytical model derived in Sect. 5 correspond closely to the
measured performance. Figure 24 compares the execution
time and number of I/O requests of Full Scan, and Smooth
Scan against the analytical cost model, shown as a function
of result selectivity increase.

We model the costs for a table with 400M tuples from
the micro-benchmark. For the page size we take the value
of 8KB (default PostgreSQL page); for the tuple size we
assume 68 bytes (40 bytes of data plus the overhead for
the tuple header), and for the key size we use 16 bytes. We
assume uniform distribution of result tuples and approximate
the number of random I/O accesses for Mode 2 of Smooth
Scan with log, (#P + 1). Finally, for seq.,s; we use 1, for
rand.,s; we use 10, and for cpuco5; We use 10-6 (i.e., one
1/O translates to 1M CPU cycles). Our disk has I/O transfer
rate of 130MB/s, which for the block size of 128KB (the
OS setting) gives the throughput of 1000 blocks per second.
Thus, when transforming the analytical model into execution
time, we use 1ms as the block transfer latency.

The model suggests that for lower selectivity Smooth Scan
behaves like Index Scan, while for higher selectivity it con-
verges to the performance of Full Scan. This is corroborated
in the experiment presented in Fig. 24a, where Smooth Scan
converges to Full Scan as predicted. The only discrepancy
from the model we observe is that Smooth Scan converges
faster to Full Scan than estimated. This effect is partly due
to the disk controller behavior that groups many sequen-
tial I/O requests from the disk controller queue into one in
the case of Full Scan. This consequently puts the perfor-
mance bar of Full Scan a bit lower than expected. Similar
behavior is not observed in the case of Smooth Scan that
issues requests for sequential subarrays with random jumps
in between. Although the same grouping of sequential sub-
arrays could happen and equally improve performance, the
disk controller did not possess logic to do so. For high selec-
tivity, both Full Scan and Smooth Scan slightly exceed the
estimates of the model. This is due to the overhead of tuple
construction of PostgreSQL, that is not part of the model, but
dominates the CPU cost in the case of high selectivity.

Figure 24b compares the estimated and measured 1/O per-
formance of Full Scan and Smooth Scan. Smooth Scan again
exhibits close to estimated behavior in terms of the number
of I/0O requests. While for Full Scan the analytical model has
a 2% of relative error, in the case of Smooth Scan for 100%
selectivity the relative error is 11%, i.e., the model suggested
I/O increase of 5% compared to Full Scan, while measured
experiments capture 16% of I/O increase. When it comes to
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the CPU cost, both the analytical model and real execution
observe a negligible CPU overhead due to Smooth Scan’s
operations. Since the CPU cost is less than 0.1% of the total
cost, we do not present CPU measures separately.

7.7 The benefit of mid-operator reoptimization

We now study the benefit of mid-operator reoptimization as
an alternative to preventing performance degradation. We
demonstrate that although a simple solution can help in some
cases (such as fulfilling SLA constraints for instance), there
are consequences behind binary decisions such as perfor-
mance cliffs or the inability to return once the decision has
been made.

Figure 25 shows the benefit of mid-operator reoptimiza-
tion implemented through an operator we refer to as Switch
Scan. Switch Scan is implemented in PostgreSQL, existing
side by side with the remaining access path operators. Switch
Scan starts with following an index scan. During run time,
it monitors the operator’s selectivity and upon detecting the
selectivity estimation violation, to prevent further degrada-
tion, it switches the access path strategy to full scan. Although

pretty simplistic, Switch Scan bounds the worst case execu-
tion time to the time of obtaining X tuples (the optimizer’s
cardinality estimation) with the index look-up plus the time
to perform the full table scan, which could still be signif-
icantly lower than the time to fetch all the tuples with the
index look-up.

We report results of executing query Q1 from the micro-
benchmark. In the case of Switch Scan, one can observe a
performance cliff for 0.009% selectivity, due to the strategy
switch. In this example, the optimizer’s cardinality estimate
is 32K tuples, and it decided to employ an index scan. While
monitoring the actual cardinality, Switch Scan detects more
than 32K tuples and performs the switch before producing
the next result tuple. The execution time to produce 32001
tuples now becomes the execution time of the index seek
for 32K tuples plus the execution time of the full table scan.
After the switch, Switch Scan performs just like Full Scan,
avoiding degradation of more than an order of magnitude
when selectivity is 100%. Nonetheless, the moment Switch
Scan opts for the switch, the execution time increases by the
time of the full scan, which might not be amortized over the
rest of the query’s lifetime.

The performance hit together with the uncertainty whether
the overhead incurred at the time of a change will actually
be amortized over the remaining query time is perceived as
lacking in robustness. In this example, if it were to receive
only 32001 qualifying tuples (but not knowing it at the
time), Switch Scan would pay the overhead that could not
be amortized over the rest of the query life time and hence
is unjustified. Moreover, since the decision depends on the
accuracy of the statistics, this approach is highly volatile.
Smooth Scan, on the other hand, manages to approach
near-optimal performance throughout the entire selectivity
interval as shown in Fig. 25, while being statistics oblivious.
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7.8 Statistics collection overheads

An alternative to correcting suboptimal plans with intra-
operator adaptivity presented in Sect. 3 would be to avoid
suboptimal paths in the first place. One could argue this can be
achieved by having perfectly accurate statistics representing
data; we show, however, that repeatedly collecting statistics
is prohibitively expensive, since this effort usually involves
full table access.

For this experiment, we use a table with 40M tuples from
the micro-benchmark, with a non-clustered index built on
columns (c2, ¢3). Throughout the experiment, we employ
the following query:

Q2: select * from relation
where c2=X and c3=X;

We perform a constant update of data introducing the skew
between columns c2 and ¢3 (i.e., we update both columns
to value X). With this setting, we want to simulate a sensor
processing environment where data is ingested constantly
24/7, causing a frequent change of data statistics. Completely
accurate statistics are rarely present in such a system.

Figure 26 shows the statistics collection times on the table,
comparing them against the execution time of query Q2 run
on DBMS-X. We have measured statistics collection time
on a commercial system, since this system supports a wider
spectrum of possibilities than PostgreSQL. We compare the
performance of Bitmap Scan, Full Scan and the optimizer’s
choice against the time to collect statistics. The three graphs
demonstrate the three levels of database statistics, namely (a)
base statistics (the table size, tuple size, number of tuples,
etc.); (b) single column distribution statistics (histograms on
each column separately); (c) joint-data distributions [a his-
togram on the group of columns (c2, c3)].

Despite being the cheapest alternative, the basic statistics
could still lead to the choice of suboptimal plans as shown
in Fig. 26a, since they cannot accurately detect neither skew
nor the presence of column correlations. In the case of basic
statistics presence, the optimizer kept the original access path
choice (i.e., Bitmap Scan) throughout the entire selectivity
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Fig. 26 Statistics collection in DBMS-X as an alternative to run-time
adaptivity: a basic statistics, b single-column histograms, ¢ joint-

distribution histograms
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range. On the other hand, one could observe that obtaining
histograms on all columns introduces a higher cost as shown
in Fig. 26b. Having histograms on all columns could solve the
problem of suboptimal decisions in the case of skewed data.
Nevertheless, it will still not detect the correlation between
different columns (notice the suboptimal decision for selec-
tivity 40% in Fig. 26b). Therefore, whenever a query contains
multiple filtering predicates over different columns, joint-
data distributions are required. Figure 26¢ shows the statistics
collection time on the group of two columns from the query.
Performing this collection once could be tolerated. Calculat-
ing all possible joint distributions for the workload consisting
of many queries, however, is an unattainable goal, especially
since applications today have hundreds of columns in each
Table [75].

Query Q2 is a simple query that showcases the problem
with cardinality estimation. Assuming no accurate statistics
exist on the table, the optimizer would fall into a trap of using
the index regardless of the actual result cardinality. This is
happening because the uniformity assumption assumes the
selectivity of each predicate to be 10~> (1/100K), while the
independence further assumes the overall selectivity to be
10710 (1073 % 107) [29]. Therefore, the optimizer would
always opt for the index look-up, severely hurting perfor-
mance in the case of higher selectivity [37,58,59,61-63,65].

8 Related work

The volatility of query optimizers does not only affect the
quality of plans, but it might significantly decrease the overall
user experience. Anecdotal evidence from the industrial lead-
ers states that the angriest calls are from customers unsatisfied
with their query performance [44,63]. With queries being
increasingly complex, statistics being less available and more
expensive to gather and data being even stored remotely,
it is clear that the traditional optimize-then-execute query
paradigm is becoming insufficient [12,37,56-59,62,65,67].
This has led to the need for having adaptive query process-
ing techniques, where runtime feedback is used to monitor
the current query execution strategy with a purpose of cor-
recting the choice and providing a better query response time
[8,35,50,81]. Adaptive query processing is an active area of
database research that comes in several flavors [35], rang-
ing from runtime statistics refinement, dynamic plan change
through shuffling or reoptimization, and robust or multiple
plans selection to the fine-grained adjustment within opera-
tors.

Run-time statistics refinement Missing or imprecise
statistical information could be obtained at run time usu-
ally with low overhead, if the statistics collection procedure
gets piggybacked on the query execution. Learned statis-
tical information then can be injected [24] back in the
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planning procedure and exploited by the current or future
queries [2,20,21,25-27,74,75]. A step further is to explicitly
trigger subplans to collect statistical information for par-
ticular parts of the plan search space (i.e., sensitive query
fragments) [1,51,53,68] in order to remove uncertainty. In
such cases, the execution and statics collection are usually
interleaved, where newly gathered knowledge helps propos-
ing better plans. Despite improving the quality of plans, there
are environments where statistical information cannot be
fully gathered (e.g., remote data sources, frequent data ingest
[52], streaming, etc.). In such environments, plans need to be
changed dynamically at run time.

Change through subplan shuffling Subplan shuffling is
employed to deal with unexpected data arrival delays, usually
due to effects of network transfer from remote sources typical
for data integration systems. The employed techniques min-
imize the idle time during query processing by rescheduling
the order of the subplans of the original plan [3,56,57,77].
The latter ultimately results in join reordering of the origi-
nal plan. A step further is to fully interleave the scheduling
and execution phase and trigger scheduling every time a data
item becomes unavailable or a subplan finishes [19]. The
highest level of adaptivity is achieved in Ingres [80] and with
Eddies [6,70] where the order among the existing (prede-
termined) operators is reassessed and changed based on the
data arrival and the observed selectivities of operators of the
query plan.

Change through reoptimization Unlike shuffling, reop-
timization performs full query optimization usually upon
detecting a cardinality estimate violation [9,40,59,62,65].
When performing reoptimization, a special attention has to
be paid to the treatment of intermediate results (already done
work) that could be fully exploited or discarded [82]. It is
also important to know when is a possible time to perform
reoptimization to ensure the correctness of results [40,62].

Multiple plan choices Multi-plan techniques have been
explored in the database community for the past decade.
Multi-plan approaches choose a set of possible plans and
execute them either in parallel [4,5] or each one on a disjoint
subset of data [12,22,58,67,82]. Special cases of multi-plan
choices are parametric [55], and dynamic plans [31,46],
where from a set of plans determined at compile time, a spe-
cific plan or operator implementation is chosen based on the
value of parameter markers obtained at run time. Similarly,
Plan Bouquets [37] choose from a discretized space of para-
metric optimal plans the subset based on observed selectivity
at run time, while Proactive Reoptimization proposes a set of
switchable plans that could be safely interchanged without
losing already processed work [9].

Robust plan selection Robust plans take into account the
uncertainty of the optimization process and choose plans
more resilient to the cardinality misestimates [7,30]. The

plan search space can be pruned leaving only a subset of
plans more resilient to the optimizer misestimates [33,34].

Adaptive operators All mentioned approaches that per-
form dynamic plan changes are examples of inter-operator
adaptivity, where the adaptation mechanism is employed
between operators, i.e., it mostly pertains to the operator
order. Adaptive operators, on the other hand, are more fine-
grained as they encapsulate the adaptation mechanism within
their own algorithm [16,48,78,79].

Robustness and adaptation to data characteristics at the
intra-operator level are considered in [4,5,11,28,42,66].
Despite a lot of efforts in fixing suboptimal decisions, little
attention has been paid to the access path selection prob-
lem. Nonetheless, a suboptimal decision at the level of access
paths has a highly detrimental effect on the overall query per-
formance [14], since the access paths touch most of the data
before any filtering has been applied.

Improving 10 access Index-lookups cause poor disk per-
formance due to random access latency. Asynchronous 10
with prefetching [39] improves performance of such pattern
but still suffers from repeated page reads. Partial sorting of
tuples [36,39] can improve access locality and size, but unless
the entire input is sorted, repeated page reads are still possi-
ble.

In this paper, we fill the need for adaptation at the access
path level by introducing a hybrid adaptive access path
called Smooth Scan. Smooth Scan guarantees nearly opti-
mal performance throughout the entire range of possible
selectivities, thereby preventing poor execution cases as a
consequence of suboptimal decisions. Unlike [4,5], however,
Smooth Scan does not waste any resources by doing double
work, nor does it require a serious change of the database
architecture. Moreover, since the high risk of having incom-
plete statistics in the case of ever-increasing data sets still
remains, Smooth Scan is completely statistics oblivious.

9 Concluding remarks and the future ahead

With the increase in complexity of modern workloads and
the technology shift toward cloud environments, robustness
in query processing is gaining momentum. Still current sys-
tems remain sensitive to the quality of statistics. As a result,
the run-time execution of queries may fluctuate severely as
a result of marginal changes in the underlying data. For a
productive user experience, the performance of every query
must be robust, i.e., close to the expected performance, even
with missing, stale, or insufficient statistics.

This paper introduces Smooth Scan, a statistics-oblivious
access path that continuously morphs between the two access
path extremes: an index look-up and a full table scan. As
Smooth Scan processes data during query execution, itunder-
stands the properties of the data and morphs its behavior to the
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preferred access path. We implement Smooth Scan in Post-
greSQL, and through both synthetic benchmarks and TPC-H
we show that it achieves near-optimal performance over the
entire range of possible selectivities.

We believe that the impact of techniques presented in this
paper could reach far beyond traditional (relational) DBMS,
as similar access patterns with the same trade-off between the
random and sequential I/O are observed in NoSQL database
solutions [71,72]. Additionally, recent research has shown
that access path selection is equally important for column
stores and in memory analytics systems [60]. Similarly, it
would be worth considering the adjustments of Smooth Scan
to storage tiering hierarchy where data is spread across mul-
tiple tiers with different access latency properties.
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