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Abstract

Spatial joins are one of the most important operations for combin-

ing spatial objects of several relations. The efficient processing of a
spatial join is extremely important since its execution time 1ssuper-

Iinear in the number of spatial objects of the participating relations,

arrd this number of objects may be very high. In this paper, we
present a first detailed study of spatial join processing using R-

trees, particularly R*-trees. R-trees are very suitable for supporting

spatial queries and the R*-tree is one of the most efficient members
of the R-tree family. Starting from a straightforward approach, we
present several techniques for improving its execution time with re-

spect to both, CPU- and I/O-tirrre. Eventually, we end up with an al-
gorithm whose total execution time is improved over the fwst ap-

proach by an order of magnitude. Using a buffer of reasonable size,

I/O-time is almost optimal, i.e. it ahnost corresponds to the time for
reading each required page of the relations exactly once. The per-

formance of the various approaches 1s investigated in an experi-

mental performance comparison where several large data sets from

real applications are used.

1 Introductiort

During the last decade, spatial database systems have become more
and more important for industry and researchers. For example, sub-
stantial progress has been made with respect to developing spatial

data models and designing efficient spatial access methods [22].

Spatial data consists of points, lines, redangles, polygons, surfaces
and even more complex objects composed from sunple ones. In or-

der to support spatial queries such as “find all objects which inter-

sect a given window”, spatial access methods cluster objects on
disks according to their spatial location in space. Consequently, if

objects are close together in space, they are stored close together on

disk with high probability. Due to high performance requirements
on spatird database systems, spatial access methods should be used

on every spatial relation for supporting spatial queries efficiently.

In a database system (DIM), we can distinguish between two dif-
ferent types of queries. The one type of queries, called single-scan

queries. require at most one access to an object and therefore, the

execution time is at most linear in the number of objects stored in
the corresponding relation. Window queries and point queries are

prime examples for single-scan queries in a spatial database. Sev-

eral approaches for an efficient processing of such queries are dis-
cussed in great detail. Samet provides an excellent survey [22] of al-
most all of these methods. The other type of queries are rnultiplr-
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stun queries where objects have to be accessed several times and

therefore, execution time is generally not linear but superliuear in
the number of objects. For example, a join-operation in a relational
DBS is a multiple-scan query. The most important multiple-scan

queries in a spatial D13S are the spatial join [ 18] and the map over-
luy [3]. The spatial jom operation is used to combine spatial objects

of two sets according to some spatial properties. For example, con-

sider the spatial relations “Forests” and “Cities” where an attribute
in each relation represents the borders of forests and cities, respec-
tively. The query “find all forests which are in a city” is an example

of a spatial join.

In this paper, we focus on the problem of designing and implem-

enting algorithms for spatial joins using spatial access methods.

Our goal is to use already existing access method rather than pre-
senting another special purpose data structure tailor-cut for this op-

eration. There are several reasons for using access methods to per-

form a spatial jout:

● In spatial applications, the assumption is ahnost always true that

a spatial index exists on a spatial relation. Therefore, it seems to

be an interestitrg approach to explolt these indices for spatial
joins.

● Many efficient algorithms designed for natural-joins, such as

bash-based join algorithms, cannot efficiently be applied to spa-
tial joins. Note, that hashing as used in the natural-join does not
preserve the order of data and therefore, objects close together in

data space are not in the same bucket with high probability.

● For todays spatial DB Ss, one of the most challenging require-

ment is to maintaio seamless spatial databases. This results in

very large spatial relations. Then, a spatial join ahnost always re-
quires access to objects in a given window. For example, let us

assume that the relations Forests and Cities contain all informa-

tion over Europe. A user in Munich might be interested in the
query “For all cities not further away than 100 km from Munich,

fmd all forests which are in a city”. AU efficient processing of the
window query is important for the efficiency of the spatial join.

In the following, we restrict our considerations to R-@ees [ 10], par-

ticularly R*-trees [2], used as the underlying spatial access method
for processing spatial joins. It has been shown in [2] that the R*-tree

is one of the most efficient members of the R-tree family with re-

spect to several single-scan queries. Since several geographic infor-
mation systems, e.g. Intergraph’s GIS, and DBSS, e.g. Postgres

[231, use R-trees as their basic spatial access method. there is also
considerable interest in efficient join algorithms using R-trees.

In this paper, we focus on exploiting R-trees for the efficient pro-
cessing of spatial joins. With respect to the authors knowledge, spa-

tial joins supported by R-trees have not been examined until now.
Previous approaches for processing joins are based on access metl-
ods others than R-trees or address the problem in a quite different
context. Orenstein [ 18] has proposed B+-trees in combination with

z-ordering as the underlying access method for performing spatial



joins. For a class of tree sti-uctures, Gunther [9] has presented a gen-

eral model for estimating the cost of spatial joins. In a chfferent set-

ting, Rotem [21] has discussed the issue of spatial join indices.

The paper is organized as follows. We fist introduce to the basic

ideas of spatial access methods and spatial j oins in section 2. Next
in section 3, we review the most important design goals of the R*-

tree. In section 4, we study spatial joins using R*-trees. First, we

present a straightforward approach for spatial join processing using
R-trees. After discussing the most important drawbacks, we present

several approaches for &proving CPU-time and IKLtime and ex-

perimentally identify their characteristics. In section 5, we report
the results of an experimental performance comparison. Section 6

concludes the paper and gives an outlook to future work.

2 Spatial Query Processing

Spatial DBSS have to cope with huge collections of multidimen-

sional data objects, such as polygons in two-dimensioual data

space. It is wefl understood) mat ~aditional index structmes dO not
efficiently support queries on spatial data. Therefore, several so-
called spatial access methods have been suggested over the last de-

cade. Spatial access methods are primarily designed to support sin-

gle-scan queries in a spatial database. An example for a singIe-scan

query is the window query Let A be a set of spatial objects and r be

a rectilinear rectangle. Find all objects a = A-with a m r # 0.

In order to support spatial queries like the window query effl-
ciently, a spatial access method attempts to store objects which are

close together in the data space on a common page. Obviously, this

policy reduces the number of disk accesses which is most com-

monly used for measuring response time of queries, particularly I/
O-intensive spatial queries.

The size of spatial objects in a relation varies extremely. In par-
ticular, the size of an object is not limited by the page size. In order
to deaJ with such large objects and at the same time to preserve spa-

tial locality in pages, spatial access methods organize only approx-
imations of objects as an index to the exact representation. The min-

imum bounding rectilinear rectangle (MBR) of an object is a very

common approach for an approximation. Then the window query is
processed in two steps, called falter and refinement step in [ 18]:

(i) filter step: Find all objeck+ whose M13R intersects the query

rectangle.
(ii) refinement step: For those objects, check whether they really

fulfil the query condition (if necessary, make use of the exact
representation).

Most popular with respect to spatial data handling are access meth-
ods based on linear quadtrees [8] or, almost equivalently, z-order-

ing [17] and other space-fflling curves [6]. The basic idea of these
methods is to decompase the data space into non-overlapping cells

which can be computed by recursively cutting the spaw. into two or

four parts of equal size. Cells can be identfled by a location code,
called z-value, and a size code, called level, On secondary storage,

celk can be organized according to their z-value and level in a B+-
tree. A disadvantage of this approach is that the same reference
might be stored several times in different cells. The ratio of the
number of references to the number of spatial objects is called re-

dundancyfactor. Note, that a high redundancy factor implies an ac-
curate approximation of the object. Consequently, the number of
objects participating in the refinement step is low and, the cost for

the falter step is high. A detailed discussion on the effect of redun-
dancy is given in [19].

Other access methods, such as R-trees [10], represent an object
only once generally using a MB R as an approximation. Then, a data
entry of an access method consists of the MJ3R and a pointer to the

corresponding object. An R-tree is a balanced tree built up in a sim-

ilar way as a B+-tree. Data entries are grouped together in a data
page according to the spatial proximity of their rectangles. A dKec-

tory entry in the R-tiee is referring to this data page. In order to di-

rect a spatial query, a directory entry consists of the minimum

bounding rectangle of those rectangles stored in the data pages of

the corresponding subtree. R-trees have the advantage to represent

objects uniquely. However, R-trees cannot guarantee a disjoint de-

composition, i.e. rectangles of directory entries may overlap. A

high overlap results in poor query performance. Nevertheless, in [2]

it has been shown that the R*-tree is very efficient for spatial query

processing, particularly in comparison to other members of the R-
tree family.

2.1 Joins with Spatial Objects

In the following, we consider two sets A = {al,...,a~ and B =

{bl,...,bJ of spatial dbjects. We refer to these sets as spatial rela-
tions. The reader may think of the objects in a spatial relation as

polygons representing a surface of a spatial object. Let Id be a func-

tion that assigns a unique identifier to each spatial object in a data-
base. Furthermore, let Mbr be a function that mmputes the mini-

mum bounding rectilinear rectangle of an object. For example,

Io!(ul) and Mbr(al) denote the ident~ler and minimum bounding

rectangle of al, respectively. The most important spatial joins are
given in the following:

1.) MBR-spatial-join Compute all pairs (Id(a,), Id(bj)) with
Mb~ai) n Mb~b) # 0

2.) ID-spatial-join: ~ompute dl ptis (Jd(ai), 14bj)) with ai n bj

#0
3.) Object-spalial-join Compute ai n bj with ai n b. # 0

1’Note that the MB R-spatial-join can be used for imp ementing the

falter step of the ID- and object-spatial-join. This explains the im-

portance of the MB R-spatial-join. The object-spatial-join does not

only compute the identifiers of the objects in the response set, but
also the resulting objects. Obviously, this is more expensive than an
ID-spatial-join. In addition to these three joins, we can introduce

other types of joins, if we use other spatial operators than intersec-
tion, e.g. containment, or if we consider more than two spatial rela-

tions for processing a join. The problem of spatial joins with more

than two spatial relations is similarly defined and its solution can

make use of the techniques that will be presented ia this paper.
Ahnost all methods designed for an efficient join processing of

non-spatial relations, see [15 ] for a survey, cannot be used for spa-

tial joins. Using the simple nested loop approach, every object of
the one relation has to be checked against all objects of the other re-

lation. Since we consider very large relations of spatial objects, the
performance of the nested loop algorithm is not acceptable. As al-
ready indicated previously, hashed-based join algorithms are suit-

able only for natural and equi-joins, but not for spatial joins. An-
other approach is similar to a sort-merge join. Here, spatial objects
are sorted according to their spatial proximity. This approach for

processing a spatial join maybe considered, if there is not already

a spatial index on the spatial relations. However, our basic assump-
tion is that a spatial access method efficiently supports access to the

spatial relations. Thus, we are interested in exploiting the spatial ac-

cess method for an efficient join processing.
There are several other approaches for performing joins using

multidimensional point access methods, e.g. grid files [1] and kd-
trees [ 11]. These methods can be used for spatial joins, if spatial ob-
jects are transformed to higher-dimensional points. However, the
most serious disadvantage is that the use of transformation does not
preserve proximity.

Methods for computing the spatial join are discussed in great de-
tail for quadtrees and simiiar access methods [18]. The cells of

quadtrees can be represented in a linear fashion in order of z-value
and level. A spatial j oin of two quadtrees can be performed by an

“almost linear” scan through the corresponding sequences of cells.
Note that the meauing of linear is not related to the number of ob-
jects, but to the number of pointers referring to the objects. The

number of pointers might be essentially higher than the number of
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objects. Without going into details of the algorithms, during the lin-

ear scan of the cells it might even be necessary to jump back to a
previous position in the sequence and start scanning over again. The

length of the jump depends on the redundancy factor and on the

overlap of the spatial objects. To avoid redundancy, objects must be

uniquely represented as suggested for R-trees. It is still an open
question which type of access method is most suitable for perform-

ing spatial joins and for other operations [12].

3 R*.tree

Au R-tree [10] is a B+-tree like access method that stores multidi-
mensional rectangles as complete objects without clipping them or

transforming them to higher dimensional points. Until now the

most efficient variant of the R-trees is experimentally shown to be
the R*-tree [2]. The R*-tree uses more sophisticated insertion and

splitting algorithms than the onginrd R-tree. However, there is al-
most no difference in the data structure.

3.1 Data Structure of R-trees

A non-leaf node contains entries of the form (rc$ rect) where ref is

the address of a child node and rrct is the minimum bounding rect-

angle of all rectangles which are entries in that child node. A leaf

node contains entries of the same form where ref refers to a spatial

object in the database and rect is the minimum bounding rectangle
of that spatial object. Let us mention, that storing spatial objects in-

stead of references in leaf nodes does not affect the basic algorithms

of the R-tree. Given an entry E of a node, Erect and E.ref denote
the corresponding rectangle and reference, respectively.

Let M be the number of entries that fit in a node and let m be a

parameter specifying the minimum number of entries in a node,
2< m <[M/21. AU R-tree satisfies the following properties:

● The root has at least two children unless it is a leaf.

● Every node contains between m and M entries unless it is the
root.

● The tree is balanced, i.e. every leaf node has the same distance

from the root
● Every rectangle of a non-leaf node covers all rectangles in its cor-

responding child node. In general, the rectangle is even the miu-

imum bounding rectangle.

Since one node of the data structure exactly cm-responds to one
page on secondary storage, we will use both terms synonymously

in the following.
An R-tree is completely dynamic; insertions and deletions can be

intermixed with queries witbout any global reorganization. Al-

though data entries are grouped together according to the location
of their rectangles in space, R-trees have to allow overlap in direc-

tory nodes, i.e. rectangles of different entries may have a common

intersection. Since a high overlap results in poor query perfor-
mance, one of the most important design goals of the R*-tree was

the reduction of overlap. Similar to B-trees, R-trees guarantee that

storage utilization is at least m/M and that the height grows loga-
rithmically in the number of data records. The reader is referred to
the original papers [101 and [2] for a more detailed discussion.

3.2 Basic Algorithms

Following the simikuities in the data structure, there is ahnost no
difference between R-tree and R*-tree with respect to specific que-

ries, like the window query. Let S be a query rectangle of a window
query. Then, the query is performed by starting in the root and com-
puting all entries whose rectangle intersects S. For these entries, the
corresponding child nodes are read into main memory and the query

is performed like in the root node unless it is a leaf node.
An example for an R-tree is given in Figure 1. The tree consists

of three data pages and a directory page. Note, that the rectangles of
the directory page are the minimum boundiig rectangles of those

rectangles that are stored in the corresponding child node. The

query window is depicted by the gray colored rectangle. First, the

query is performed against the root of the R-tree where rectangle r

and t intersect the window. Thus, the corresponding two data pages
are read into memory and their entries are checked for a common

intersection with the window. Eventually, rectangle al is found to
bean answer of the window query.

Ybr

M=3 as
m=2

P a
+

Figure 1: Example of an R-tree

The efficiency of queries depends on the goodness how R-trees as-

sign rectangles to nodes. Thus, the insertion algorithm of the R-tree

is most crucial to query performance. The insertion algorithm of the
R*-tree is completely different and superior to the ones of the other

R-trees. There are basically three reasons for the performance im-

provements.
First, an insertion of au entry with rectangle R might be guided to

a non-leaf node that does not contain any entry whose rectangle

covers R completely. An algorithm has to select a child node to
which the insertion process is forwarded to. In case of the R*-tree,

the entry is chosen whose rectangle has the minimum increase of

overlap with its siblings.
Second, whenever an entry is inserted into a full node in the R*-

tree, the node is generally not split, but some fraction of its entries

is deleted and re-inserted on the same level in the R*-tree. The en-
tries for re-iusertion are selected such that they have the largest dis-

tance from the cerrtre of the original minimum bounding rectangle

of the node. Re-insertion of entries increases storage utilization, im-
proves the quality of the partition (e.g. reducing overlap) and makes
performance almost independent of the sequence of insertions. If,

during a re-irrsertion process on level 1 of the R*-tree, an entry
should be inserted into a full node on level 1, the node is split into

two.

Third, the algorithm for splitting a node in an R*-tree is com-
pletely different from the one of the original R-tree. Fwst, we must
determine the axis where the split has to be performed. For each

axis, all entries are sorted according to the left corner (with respect
to the considered axis) of their rectangles, all possible M-2m+ 1

splits are considered with respect to the ordering in the sequence,

and eventually, we sum up the perimeters of the resulting nodes
overall possible splits. The same process is repeated with the entries

ordered according to the right corner of their rectangles. The axis

with the minimum overall sum is chosen as the split-axis. Then, we

consider again the sequence of entries sorted with respect to the left
corner of the interval obtained by projecting the rectangle on the

split-axis. This sequence is grouped into two subsequences. The
number of entries in the left and right subsequence varies between
m and M-m+ 1. Among these M-2m+ 1 possibilities, we choose the

split resulting in a minimum of overlap between the minimum

bounding rectangles of the two subsequences. Each of the subse-

quences is stored separately in a node of the R-tree.

4 Spatial Join

In the following we investigate how to perform the MBR-spatial-
join using R*-trees. In the remainder of the paper, we use spatial

join as a synonym for the MBR-spatial join. Furthermore, for an
R*-tree R we use the following notations:

lRldir (lRldat) = number of directory (data) pages

llRlldu (/lRlldat) = number of directory (data) entries
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Obviously, the total number IRI of pages is given by lRldat + lR&

Analogously, the total number IIRII of entries is given by
llRlldat+llRll&.

Now, let us consider two sets of rectangles each of them being or-

gmized by an R*-tree. In the following, we call the R*-trees R and
S. As a performance measure for the execution time of a spatial jom

between R and S, we use CPU-time as well as I/O-time. Only the

number of disk accesses is not sufficient to measure execution time
of joins, particularly of spatial joins, appropriately. AIready in case

of natural-joins, the number of tests for the join condition has essen-

tial influence on the execution time. To check the join condition in
case of spatial joins is far more expensive than in case of natural-

joins. Therefore, a good measure for performance consists of both,
the number of disk accesses and the number of comparisons.

The I/O-time is usually measured in the number of disk accesses

required for performing the join. A similar performance measure is

used in the following. Since the I/O-time for reading and writing a
page slightly depends on the size of the page, we differentiate be-
tween the positiomng cost (including seek cost and rotational la-

tency) and transfer cost. Obviously, a buffer of pages can essen-
tially reduce the I/O-cost. Independent of the size of a buffer, an op-

timal processing of a spatial join will read each required page only

once into main memory. If all pages are required for a join, a lower
bound for the I/O-cost is lRldat + lSl&r This result is well-known as

the minimum cost for a natural-join using two B-trees. In case of

R*-trees, however, it might be possible that a spatial join requires

less than IRldat + [Slat pages. The reason is that the union of all di-
rectory rect&gles with the same dhmce from the root of the R*-

tree does not completely cover the underlying data space.
The CPU-time of a spatial join is measured in the number of

floating point comparisons. Comparisons are required for checking

the join condition, i.e. whether two rectilinear rectangles intersect.
Note, that for a pair of rectilinear rectangles four comparisons are

exactly required to determine that the join condition is fulfiiled. If

the rectangles do not fulfill the join condition, less than four com-
parisons might be required. There are many other operations affect-

ing CPU-time, but in general they do not asymptotically influence

CPU-time.
An analytical investigation of the execution time of a spatial join

performed with R*-trees seems to be almost impossible. Not sm-

prisingly, there are only a few analytical results known for spatial
access methods. Most of these analytical results are restricted to
multidimensional points, to single-scan queries, and to uniformly

distributed data set very rarely occurring in real applications. In the

following, we investigate spatial joins in an empwical comparison
using carthographlc maps from real applications. We consider two

fdes with 131,461 and 128,971 line objects in an area of California.

The data is drawn from the TIGEfULine files used by the US Bu-
reau of the Census [4]. The fwst map represents streets whereas the
second map represents rivers and railway tracks. For each of the

maps, the minimum bounding rectangles of the polygonal objects

are stored in on R* -tree. The join of R and S results in a response
set of 86,094 pairs of intersecting rectangles. For various page

sizes, the most important properties of R*-trees R and S are re-

ported in Table 1.

R*-tree R R*-tree S
page size M IRI+ISI

height lRlti lRl&@ height Islti Isl&ti

1 KByte 51 4 127 4,202 4 117 2,996 8,442

2 KByte 102 3 33 2,143 3 30 1,991 4,197

4 KByte 204 3 9 1,069 3 8 l,tx)5 2,091

8 KByte 409 3 3 541 3 3 495 1,042

Table 1: Properties of R*-trees R and S

4.1 A First Approach of a Spatial Join for R-trees

The basic idea of performing a spatial join with R*-trees is to use
the property that directory rectangles form the minimum bounding
box of the data rectangles in the corresponding subtrees. Thus, if the

rectangles of two directory entries ER and Es do not have a common

intersection, there will be no pair (rectR, rects) of intersecting data
rectangles where rectR is in the subtree of ER and rect~ is in the sub-

tree of Es. Otherwise, there might be a pair of intersecting data rect-

angles in the corresponding sub trees. In the following three subsec-
tions we assume that both trees are of the same height. The case of

joining R*-trees of different height is discussed in section 4.4. The

following algorithm presents our f~st approach:

Spatiol.loinl (R,S: R_Node); (* height of R is equal height of S *)
FOR (all Es e S) DO

FOR (all E~ G R with ENrect o Es.rect # 0) DO
IF (R is a leaf owze) THEN (* (S is also a leaf page)*)

Output oQs j
ELSE

ReadPage(E~.ref); ReadPage(Es.ref);
SputialJoinl@R.ref, Eyre~

END
END

END
END SpatialJoin 1;

Here it is assumed that R_Node is the type of a node in an R*-tree
and that each node accommodates a wllection of entries. As previ-

ously introduced, an entry E consists of a pointer ref and a rectangle

rect. A procedure ReadPage is assumed to read the required page
from the buffer or, if the page is not in the buffer, from secondmy

storage. The algorithm recursively traverses both of the trees in top-

down fashion.
The R*-tree makes use of a so-called path buffer accommodating

all nodes of the path which was accessed last. In order to be more

et%cient with respect to I/0, an additional buffer is used for single
pages, not complete paths, independently of the path buffer. The

buffer, called LRU-buffer, follows the last recently used policy.

The reason for two dfferent buffers is that the path buffer exclu-
swely belongs to the data structure (i.e. R*-tree), whereas the LRU-
buffer can be considered as a buffer of the underlying system. Note,

that in a multiuser environment, a spatial join operation can only oc-
cupy a “smalJ” fraction of the LRU-buffer. To which extend the

LRU-buffer is used in a spatial join, depends on the system load. In

our experiments, we assume that the R*-trees involved in the spatial
join exclusively use all pages of the LRU-buffer.

Size of pages

1 KByte 2 KByte 4 KByte 8 KByte

o 24,727 12,479 5,720 2,837

Size of 8 20,318 12,010 5,720 2,837
LRU-

buffer
32 13,803 9.589 5,454 2,822

(KByte) 128 11,359 6,299 4,474 2,676

512 10,372 4,964 2,768 2,181

opt. buffer size 8,442 4,197 2,091 1,042

# comparisons 33,566,961 65,807,555 118,864,748 242,728,164

Table 2: Number of disk accesses and comparisons of SpariaLIoinl

In Table 2, we report the results of the algorithm Spatial.foinl using
R*-trees R and S as input. The spatial join is performed with vari-
ous page sizes and various buffer sizes. The largest considered
buffer size corresponds to keeping about 6% of both R*-trees in
main memory. For todays computer system, thk seems to be a real-
istic assumption. For each setting, we report the number of disk ac-

cesses required to compute the join. Additionally, we keep track of
the number of comparisons required for checking the join condi-
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tion. This number is reported in the last row of Table 2. Note, that

this number is independent of the size of the LRU-buffer.

Let us fwst discuss the results without using an LRU-buffer, i.e.

buffer size = O. For all sizes of pages, a page of the R*-tree is read

into main memory on the average only about three times. For these

spec~lc files, the overlap of the R*-tree seems to have not much in-

fluence on the performance of the join. Now let us consider the
cases of using small LRU-buffers, For a small page, the LRU-buffer

pays off even if it is very small. For a 32 ICByte LRU-buffer, the

number of disk accesses is only 55% of the number required by the
join without any LRU-buffer. For larger page sizes, the same effect
can onIy be observed in case of also using a large buffer.

In order to determine whether the spatial join is CPU-bound or I/

O-bound, we have estimated the execution time of the spatial join
charging 1.5 *10-2 seconds for positioning the disk arm, 5*10-3 sec-

onds for transferring 1 ICByte of data from disk and, 3.9*10-6 sec-

onds for a floating point comparison (including necessary over-

head). The last number is experimentally determined and obviously

depends on the underlying hardware. For performing the experi-

ments, we used HP720 workstations which deliver on 57 MIPs and
17.9 MFlops. Moreover, the positiomng cost for moving the disk

arm to the position of the desired page depends on the specifk disk,

how well the spatial relations are clustered on disk and on the load
of the disk during performing the join. Using the resuIts of Table 2,

we have computed the time estimates presented in Figure 2.

time (*c)

1

Wfer u

pagesize, 1 KByte 2 KByte 4 KByte S KByie

1000
time (See)

500

0

l/o-
time

cPu-
time

page size 1 KB 2K6 4KB 8 KB

Figure 2 Etimation of the execution time of SpatiulJoinl

As demonstrated in the upper diagram of Figure 2, best overall per-
formance is achieved for page sizes of 1 and 2 KByte. The lower
diagram shows that the spatial join is slightly 170-bound for a page

size of 1 KByte. However, with increasing page size, the spatial join
is becoming more and more CPU-bound. This observation is true
for small and Iwge LRU-buffers. Hence, we can state that cost op-

timization of a spatial join has to take into account both, CPU- and

I/O-time.
There are at least two parts in the algorithm SpatialJoinI which

are worth to be improved. First, CPU-time consumption is rather

high since each entry of the one node is checked against all entries
of the other node. Second, pages are selected for the next call of

SputialJoinl without taking into account the I/O-cost for reading

these pages. A better approach would be to compute the “best” se-
quence of pairs of pages required for computing the join on the next

level of the R*-tree.

4.2 CPU-Time Tuning

The consumption of CPU-time is proportional to the number of
floating point comparisons required for computing the join condi-
tion (i.e. the test whether two rectangles intersect). Hence, our pri-
mary goal is to reduce the number of comparisons for each call of

SpatidJoinl, i.e. for each pair of qualifying nodes. However, sev-
eral constraints have been taken into accoun~

● The storage utilization and the query performance of the original

R*-tree should not be affected. In particular, the node capacity

should not be reduced.

● Evpmsive. preprocessing steps for the nodes of the R*-tree should
be avoided. Since pages are kept in main memory only temporar-

ily, such a preprocessing step of a page would be required each

time the page is read into the buffer.

● The algorithm should be robust and easy to implement. In gen-
eral, we are not interested in the algorithm with best asymptotic
performance, but in the one which is efficient for realistic prob-

lem sizes which corresponds to the number of entries in the

nodes.
In order to reduce CPU-time we examine two approaches: First, for

a given pair of nodes, we restrict the search space of the join such

that in SpatialJoinl ordy a small number of entries has to be consid-

ered. Second, errtries are sorted according to their spatial location

and thereafter, an algorithm based on the plane-sweep paradigm

[20] is used to compute the desired pairs of intersecting entries.

Restricting the search space
In algorithm SpatialJoinl, each entry of the one node is tested for

the join condition against all entries of the other node. Let us con-

sider two directory errtries ER and Es which fulfil the join-condi-
tion, i.e ER rect o Eprect # 0. Then, Spatial.loinl is invoked using

EPref and EF ref as input. The following property is very important
with respect to reducing CPU-time:

Only the entries of E1.ref and E2ref which intersect the intersec-

tion rectangle Efi rect n E> rect may have a common intersec-

tion.

This property can easily be used for improving the join. A linear

scan through each of the two nodes marks all entries which are re-

quired for performing the join, i.e. which intersect the intersecting
rectangles of the two nodes. Then, each marked entry of the one

node is tested against all marked entries of the other node.

s

Figure 3: Restricting the search space of a spatial join

An example is illustrated irr Figure 3. Algorithm SpatialJoinI
checks the join condition 49 times, whereas our new approach only
requires 6 tests of the join condition and additionally, it must scan

each of the nodes which corresponds to 14 times checking the join ~

condition. The modified algorithm, called SpatiaLJoin2 (short S./2),
is specified as follows:

SpatiaLJoin2 (R,S: R_Node; rect: Rectangle);
(* rect is tbe intersection of the MBRs of nodes R and S *)

BEGIN
S@ialJoinla ({ El @ e R) A @@ect n rect # @},

END SpatialJoin2;
(%lr&~ S) A(&.rectflrect#Q})

(* SpatialJoinIa is SpatialJoinl where line
“SpatialJoinl(ER. ref,ES.ref)” is replaced by
“SpatiatJoin2(E~. ref, Es.ref, ERrect n Es.rect)” *)

Table 3 reports the results for the number of our comparisons for

both SpatialJoin2 and to SputialJoinl. The results show a huge im-
provement in the number of comparisons. The factor of improvem-

ent varies between 4.6 and 8.9. Nevertheless, there is still a strong
dependence between the required CPU-time and the page size.
More precisely, the effect is clearly visible that the number of com-
parisons increases superlinearly in the page size.
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It
Size of pages

1 KByte I 2 KByte I 4 KByte I 8 KByte
II I t I

SpatialJoin 1 33,566,961 65,807,555 118,864,748 242,728,164

SpatialJoin2 7,316,389 10,347,688 15,796,183 27,219,893

performance gair 4.59 6.’36 7.52 8.92

Table 3: Compmisons witblwithout restricting the search space

Spatial sorting and plane sweep

Our second approach for improving spatial join is to sort the entries
in anode of the R*-tree accordimg to the spatial location of the cor-
responding rectangles. Here, the obvious problem occurs that two-

dimensioual rectangles cannot be sorted (i.e. mapped into an l-di-

mensional sequence) without any loss of locality. A suitable solu-
tion with respect to computing the intersection is the following ap-

proach. Let us consider a sequence Rseq = el,...,rn> of n reetrm-

gles. A rectangle q is given by its lower left comer (r,.xl, q.yl) and
its upper right corner (ri.xu, q.yu). We use ~x(ri) and ~Y(ri) to refer
to the projection of q onto the X- and Y-axis, respectively. A se-

quence Rseq = <rl,...,rn> is sorted with respect to the X-axis, if q.xl
< ri+l .x1, 1< i < n. For example, a sorted sequence of 6 rectangles

k depicted in Figure 4 is al, r4, r2, r5, r3, r6>.

fl—

Figure 4 Two sets of rectangles & their projection onto the X-axis

Plane sweep is a common technique for computing intersections

[20]. The basic idea is to move a Line, the so-called sweep-line, per-

pendicular to one of the axes, e.g. the x-axis, from left to right.
Given two sequences of rectangles Rseq and Sseq, we exploit the

plane-sweep tectilque without the overhead of buildlng up any ad-

ditional dynamic data structure. Let Rseq = al,... ,rn> and Sseq =
<S1,... ,Sm> be sequences of rectangles. Fust, Rseq and Sseq are

sorted as described above. Hence, ri.xl S rj+l .x1, 1 < i < n, and

sj.xl s sj+l.fl, 1 s j t m. Then, we move the sweep-line to the reet-
angle, say t, m Rseq w Sseq with the lowest xl-value. Jf the rectan-

gle t is in Rseq, we sequentially traverse Sseq starting from its fust

rectangle Untfi a rectangle, say sh, in %eq is found whose xi-vakre
is greater than t.xu. Now, we know that interval rcx(t) intersects the

interval ~x(sj) for all j with 1 <j <h. If also interval rtY(t) intersects

interval rCY(S.), then rectangle t also intersects rectangle sj. If rect-
S!angle t is in seq, Rseq is traversed analogously. Thereafter, reetan-

gle t is marked to be processed. Then, the sweep-line is moved to

the next unmarked rectangle in Rseq u Sseq with the lowest xl-

value and the same step as described above is repeated for all un-
marked rectangles. When the last entry from R or S was processed,
all intersections are computed. The formal description of the algo-
rithm is given as follows:

SortedIntersectionTest (Rseq, Sseq: SEQUENCE OF Rectangle;
VAR Ontpnt SEQUENCE OF PAIR OF Rectatrgle);

(* Rseq and Sseq are sorted llRseqll = number of rectangles in Rseq *)
Output := <>; i := 1; j := 1;
WHILE (i S HRseqll) A (j < llSseqll) DO

IF r,.xl <s .x1 THEN (*=t=rl*)
hrternalI!.oop (r,, j, Sseq, Output); i :=i+l

ELSE (*+t=s, *)
InternalLoop (sJ,i, Rseq, Output); j := j+l

END

InternatLoop (t : Rectangle; unmarked: (“ARDIN~
Sseq: SEQUENCE OF Rectangle;
VAR Output : SEQUENCE OF Pair OF Rectangle);

k := unmarked;
WHILE (k S llSseqll) A (s&xl < t.xu) DO (*a X-intersection *)

IF (t.yl < q,..yn) A (t.yu > Swyl) THEN (* =+ Y-intersection *)
Append (Output, (t,s~) )

END;
k:=k+l

END
END Intemdhop:

Au example how the algorithm proceeds is illustrated in Figure 5.

The sweep-line stops at rectangles rl, S1,r2, S2and r3. For each stop,
the pairs of rectangles which are tested for intersection are given on

the ~ight hand side of Figure 5.

sequence of intersection tests:

t=rl:rl++sl

t = 51: s1~r2

t = r2: r2++s2 , r2++s3
t=s2:-

t = rq: r3+s3

Figure 5: Example for the sorted intersection test.

We want to emphasize that this algorithm can easily be imple-

mented with two pointers, but without using any additional data
structures. The algorithm can be performed in O(llRseqll -t llSseqll +
kx) time where kx denotes the number of pairs of intersecting inter-

vals created by projecting the rectangles of Rseq and Sseq onto the

X-axis. There are several computational geometry algorithms that
can solve the same problem in O((IIRII+HSII) log(max(llRll,llSll)) +

k) time where k denotes the size of the response set. However, these
approaches require rather complex data stmctures, see [20] and [5].

Moreover, several (but a constant number of,) sweeps over the data

are necessary which leads to rather high constants. These solutions
are worthwhile to be considered for large problem sizes, but their
overhead is too high for a rather small problem size as in our case

for commonly used page sizes.
More interesting than the worst time complexity of the algorithm is
the average time needed by the algorithm for real spatial join oper-

ations. There me two interesting questions: Fwst, is it still worth to

restrict the search space like for the straightforward algorithm? SW-

ond, does the preprocessing step (i.e. sorting) still pay off, even if a
page has to be sorted each time it is read into the buffer? This is an

important question because a number of pages may be transferred

into main memory more than once.

Size of pages

1 KByte 2 KByte 4 KByte 8 KByte

version (I) join 4,906,048 6,079,544 7,202,892 9,651,854
without

sorting
restricting

2,818,729 3,307,217 3,796,240 4,318,238

the search join-ratio of (I)
space to SJ 1

6.84 10.82 16.50 25.15

join 5,124,435 5,521,254 5,769,313 6,662,370

version sorting 768,551 880,171 993,419 1,120,404

(II) join-ratio of (II)
with to SJ 1

6.55 1I .92 20.60 36.43

‘esticting join-ratio of (II;
the search to SJ2 1.43 1.87 2.74 4.09

space
repeat-factor
to SJ2

2.85 5.48 10.09 18.35

Table 4 Comparisons of spatial joins wiWwithout sorting

The results of Table 4 illustrate the effect of sorting on the CPU-
time (measured in the number of comparisons) required for the spa-

EN-D
END SortedIntersectionTest:
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tial join between the two R*- trees R and S. We investigated two

versions: version I is without restricting the search space and ver-

sion II with restricting the search space. In both versions we distin-

guish between the time spent for the join and the time spent for sort-

ing all the nodes of the tree.
F~st, let us assume that the entries in the R*-tree are sorted as de-

sired. This assumption is true if the insert and delete algorithms

maintain the nodes of the R*-tree sorted or if we sort all nodes of
the R*-trees once and then perform only queries and joins. Then,

the rows ‘join-ratio’ give the ratio of the number of comparisons re-

quired for the corresponding version to the number of comparisons

required for the specified algorithm (XI] or S.12). As illustrated in

Table 4, there is a huge improvement if the entries of the nodes are

sorted. The join-ratio increases with an increasing size of the pages.

With restricting the search space the results are even better. The

number of comparisons does not vary considerably in the page size.

There is also a clear gain over the unsorted spatial join with restrict-

ing the search space. The join-ratio varies between 1.4 and 4.1.

In general, the sorted order of errtries is not maintained in the

nodes of an R*-tree during insertions and deletions of data objects.
Then we suggest that a page is sorted immediately after it is read

from disk. Due to a limited size of the buffer, a page may have to be

read and sorted more than once. The repeat-factor in Table 4 gives
the number how often a page can be sorted on the average until the

performance of the join witbout sorting is better than the perfor-

mance of the join with sorting (both joins with restricting the search

space). For example, in case of 4Kbyte pages, a page has to be read

and sorted more than 10 times until the sorted version of the join is

less efficient than the version without sorting. As shown in Table 2,

even for Sputialloinl the number how ofterr a page is read is essen-
tiality less than the repeat-factor.

Overall, we have shown that for realk.ic page sizes the combina-

tion of both approaches (spatial sorting and restriction of the search

space) reduces the CPU-time consumption of a spatkd join by fac-

tors.

4.3 J/O-Time Tuning

In this section we address the problem of improving the I/O-perfor-

mance of a spatial join performed on R*-tmes. We assume the

availability of an LRU-buffer organized by the underlying system
in which the R*-tree is embedded. Multiple users share the LRU-

buffer and therefore, the R*-tree might occupy only a small fraction

of the buffer. Therefore, our goal is to achieve good I/O-perfor-
mance with a buffer size as small as possible. In section 4.1, we

have already shown in some experiments that for an LRU-buffer of

reasonable size algorithm SputiuJJoinl reads a page around 1.5
times on the average. Under the assumption that every page is re-
quired to answer the join, this means that SpatiaJJoinl is already

close to optimum.
In order to reduce I/O-cost, the problem occurs to compute a read

schedule of the pages required for the spatial join of two R*-trees
such that for a given buffer the number of disk accesses is minimal.
The read schedule determines the sequence how the pages are read
form disk into the buffer. In [ 16] the problem of determining the op-

timal read schedule for a fixed size buffer has been shown to be NP-
hard. Thus, we are interested in a heuristic solution that comes close
to the optimum

In a similar setting, heuristic solutions have already been dis-
cussed in [7]. However, these solutions assume that the required
pairs of (data) pages are known before performing the join. More-

over, expensive preprocessing steps are necessary to build up some

additional data structures. We caJl this approach a global optimiza-
tion policy. In a spatial access method such as the R*-tree, a local
optimization should be preferred such that the spatial partitioning
and clustering of the R*-tree is exploited to determine the read

schedule. A local optimization is less expensive than a global opti-

mization with respect to CPU-time and main memory. A third opti-

mization policy is the ulgon”thm-driven optimization. In this ap-

proach, the read schedule is determined by the algorithm processing

the spatial data. AU example is the plane-sweep map overlay pre-

sented in [13], But the algorithm-driven optimization is not gener-
ally applicable because it is restricted to a class of algorithms ex-

ploiting spatial order.

Our solution presented here uses a local optimization policy
based on spatial locality as a main criterion for computing the read

schedule. Such a policy tries to ffl the buffer with those pages

whose minimum bounding rectangles are close together in data
space. Because of the overlap in the R*-tree, the corresponding en-

tries referring to those pages might be spread over several paths of

the tree. Thus, we decided to restrict our policy to one pair of pages.

In the following, we discuss three locrd optimization policies
based on spatial locality. We discuss their I/O-performance using

the results of experimental tests. These results are compared to the
ones of algorithm SpatialJoinl, see section 4.1.

Local plane-sweep order
In section 4.2, we already described a plane-sweep algorithm to de-

termine the intersections of two sets of rectangles. Based on spatial

ordering this algorithm creates a sequence of pairs of intersecting
rectangles. Obviously, this sequence can also be used to determine

the read schedule of the spatial join. In addition to preserving spatial

locality in the buffer, this approach can be used without any extra

cost. In the following, we call this approach local plane-sweep or-

der and the corresponding join algorithm SpatiaLloin3 (in shoti

SJ3). Note, that we assume in the following that algorithm Sorred-

ItiersectionTest does not use sequences of rectangles as introduced

originally, but sequences of entries for in- and output.

SpatialJoin3 (R,S: R_Node: red: Rectangle);
R:= {EJ @, G R) A @i.red n rect # @));
S:= (EJ @G S)A (&rcctnrect#O)};
sort(R); sort(s);
SortedIntersectionTest (R,S, Seq);
FOR i := 1 TO llSeall DO

(E~,E~):= Seq[i~
IF (R is a leaf page) THEN (* (S is also a leaf page) *)

Output (E~,Es)
ELSE

ReadPage(ERref); ReadPage@wref);
SpatiafJoin3 t&.ref,Es.ref, E~.rect n E~.rect)

END
END

END SpatialJoin3;

Let us discuss the properties of the algorithm using the examples il-

lustrated in Figure 6. Let us assume that a buffer consists of two
pages and that the references belonging to the rectangles are point-

ing to data pages. In both examples two sequences of minimal
bounding rectangles of subtrees (rl, r2, r3, r4) and (sl, 52) are pro-
cessed. Note that SI is the only rectangle that differentiates the two

examples. In the ftrst example the sequence of intersections using
local plane-sweep order is (I, II, IV, III). Thus, the read schedule is
<sl,r2,rl ,s2,r4,r3>. For this sequence, each data page on the next

level of the tree has to be read into main memory once.

Figure 6: Examples for join situations

In example 2, the situation is very similar to example 1 but the xl-

vaJue of S1is now greater than the xl-value of rl. This slightly dif-
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feretrt situation changes the read schedule. Now, the sequence of in- of 4 KBvte, the columns entitled “SJ3”. “SJ4” and “SJ5” show the

tersections is (II, I, IV, III) and the corresponding read schedule is

<1, S2, S1, r2, S2, r3, r4>. Thus, the data page belonging to rectangle
52 must be read twice into the buffer. The problem is that a page,
whose corresponding rectangle frequently intersects other rectan-

gles, is not completely processed in one step. In order to avoid such

situations we complete the local plane-sweep order with a pinning

mechanism.

Local plane-sweep order with pinning
The concept of pinning is based on the following idea. Fust, we de-

termine a pm (ER, Es) of entries with respect to the local plane-
sweep order. Mer processing the corresponding subtrees ER.ref

and Es .ref, we compute the degree of the rectangles of both entries.

The degree of an rectangle of an entry E, short &g(E. rect,). is given
by the number of intersections between rectangle Erect and the
rectangles which belong to entries of the other tree not processed

untd now. Second, we pin the page in the buffer whose correspond-

ing rectangle has a maximal degree. Third, the spatial join is per-
formed on the pinned page with all other pages. Then, we determine

the next pair of entries using the local plane-sweep order again. In

example 2 of Figure 6, we obtain deg(rl) = 0 and deg(s2) = 2. Thus,

the read schedule 1s-al, S2,r4, r3, S1,r2>. A similar idea to make use
of the degree of an entry was rdready presented in [7].

The local plane-sweep order approach extended by pinning
works like algorithm SpatialJoin3 with the following exception: If

a pair of intersecting pages is in the directory, we compute the de-
gree of the corresponding rectangles after joining the pair. The page
whose rectangle has a maximal degree is pinned and the spatial join

is completely performed for the pinned page. Then the algorithm

continues as before. In the following, we call the corresponding join
algorithm SpatialJoin4 (in short S.J4).

Local z-order
Until now, we have presented two approaches based on the plane-

sweep algorithm which has already been used to reduce CPU-time.
Let us now consider the spatial join of two nodes with respect to

spatial sorting. First, we compute the intersections between each

rectangle of the one node and aJl rectangles of the other node. Then.
we sort the rectangles according to the spatial location of thew cen-

ters. Thus, the problem occurs to sort two-tlmensional points. A

common way for sorting multidimensional points is based on
space-filling curves, for example the Peano-curve. also called z-or-
dering [17]. The basic idea is to decom~se the underlying space

into cells of equal size and provide an ordering on this set of cells.

❑
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Figure 7: Spatial sorting using z-order

An example is given in Figure 7. First. aJl intersections are com-
puted between the rectangles (rl,... ,ra) and (sl,... ,S3). This results

in a set of rectangles (I,... ,V). The centers of the rectangles are rep-

resented by the dots in the grid. The order of the cells of the grid is
determined by z-ordering which is illustrated in the rightmost dia-

gram of Figure 7. Thus the sequence of intersection is (I, II, HI, V,

IV). As introduced for the local plane-sweep order, we use this ap-
proach with pinning of page and therefore, the read schedule is
<S1 ,r2,r1 ,s2,r4,r3, s3>. The corresponding algorithm is named Spa-

tialJoin5, short SJ5.

Comparison
In Table 5, we compare the I/O-performance of the different ap-
proaches presented in this subsection. Several experiments were
performed for different page and buffer sizes. For a given page size

number if disk accesses for the algorithms S.J3, SJ4 and SJ5, re-
spectively. The results vary in these columns in the size of the avail-

able LRU-buffer. We observe the following effects:
● The local plane-sweep order approach (SJ3) considerably profits

from pinning (SJ4) of pages, particularly, if the buffer is small.

With a buffer size of512 KB yte the I/O-performance is nearly

the same. Because the CPU-performance of both approaches is
the same, the rdgoritbm using local plane-sweep order with pin-

ning (SJ4) is clearly better than SJ3.
● For small buffer sizes the z-order approach (SJ5) is slightly better

than the plane-sweep approach (SJ4), for large buffer sizes it is

vice versa. But in order to compute the z-order of the inters=-

tions, we need CPU-time. Even, if there is a small I/O-gain, the
loss of CPU-time is not compensated,

buffer size SJ3 SJ4 SJ5

O KByte 6,085 5,384 5,290

8 KByte 6,062 5,366 5,248

32 JCByte 4,678 4,246 4,178

128 KByte 3,117 3,008 2,947

512 K.Byte 2,399 2,373 2,392

Table 5: Number of disk accesses of algorithms SJ3, SJ4 and SJ5

In Table 6, we compared the I/O-performance of algorithm Spatial-
Joinl with the one of SpaCialJoin4. Column “SJ4” refers to the

number of disk accesses for algorithm SJ4 and column “(’ZO)” gives
the ratio of the number of accesses required for SJ4 to the number

of accesses required for SJ1 expressed io per cent. Row “optimum”

gives the optimum number of disk accesses which corresponds to

IRI+ISI, the total number of pages in both R*-trees. Results depend

on the buffer size and on the page size. Table 6 shows the following

results and effects:

● The approach using algorithm SJ4 requires up to 4590 less disk

accesses than the algorithm SJ1. For a reasonable size of the

buffer. the number of accesses is close to the optimum. Moreo-
ver, algorithm SJ4 achieves about the same J/O-performance as

SJ1 using a buffer which is smaller by a factor of 3 to 6.

● The performance gain of SJ4 in comparison to SJ1 depends on
both, buffer and page size. In detail, the larger the page, the big-

ger is the buffer size with the greatest gain over algorithm SJ1,

indicated by the gray colored cells in Table 6. The reason is that
the buffer performance does not only depend on the total buffer
size, but also on the number of buffer pages. This number de-

creases with increasing page size.

11 11 ,, fI page size:
I

1 KByte II 21CByte II 4KByte II 8KByte I

SJ4 (%) SJ4 (%) SJ4 (%) SJ4 (%)

I o 23,088 93.4 11,530 92.4 5,384 94.1 2,703 95.3

i buffer ~ 17,513 86.2 i0,632 88.5 5,366 93.8 2,703 95.3

g;, 32 12,704 92.0 7,436 ‘77,5 4,246 77.9 2,552 90.4

128 10,856 95.6 5,685 90.3 3,008 67,2 1,857 69.4

‘$12 9,385 90,5 5,108 102.9 2,373 85.7 1,186 154.4

4,197 I 2,091 1,042I
I

_-—

optimnm
II

8,442
11 1{ II 1

Table 6: I/O-performance given by number of dissk accesses

Overall, local plane-sweep ordering in combination with pinning of

pages, i.e. algorithm SJ4, seems to be the most efficient approach.

The I/O-performance is improved in comparison to the original al-
gorithm SJI and to the algorithm SJ3 without pinning. Moreover,
the I/O-performance is almost the same as the one for algoritbrnSJ5
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which makes use of z-ordering. However, the preprocessing step

for algorithm S’J5 is more expensive then the one for algorithm SJ4.
Nevertheless, the I/O-performance of both approaches is very close

to the optimum number of disk accesses.

4.4 Spatial Join of R*-trees with Different Height

In our previous discussion on spatial joins, we made the assumption

that the R*-trees are of the same height. In this subsection, we dis-

cuss the special case of different heights. In the following, we as-

sume that R*-tree R is higher than R*-tree S.

There is no difference in join processing to our previous algo-

rithms as long as both nodes contain directory entries. Let NR be a
directory node of R*-tree R, N~ be data node of R*-tree S and, let
us consider the spatial join between node NR and Ns.

Now, the idea is to perform window queries on the subtrees
rooted in Ns using the data rectangles of NR as query rectangles.
First, we compute all intersecting pairs of entries (ER, Es) with

ER.rect n Es.rect # 0. We have considered three different methods

for performing the window queries: (a) for each entry Es, we per-
form a window query on ER.ref, if ER.rect n Es.rect # 0, (b) for

each entry ER, all window queries with query rectangles Es.rect,

where Es .rect n ER.rect # 0, are performed in the subtree rooted in

ER.ref in one step, or (c)we use an order based on spatial locality

such as local plane-sweep ordering with pinning. The difference be-

tween the fust two policies is that for policy (a) the nodes of the
subtree rooted in NR are read into the buffer whereas for policy (b)

the nodes of the subtree are read only once. Thus, as long as all
pages of the subtree can be kept in the buffer, there is no difference
in I/O-performance. Otherwise, we expect that policy (b) performs

better than policy (a).

Table 7 presents the results of the experiments comparing these
three versions. We have used similar data sets as before with the ex-

ception that R*-tree R stores 598,677 records instead of 131,461.
With a page capacity of 2 ICEyte the height of R*-tree R is 4 and the

height of R*-bee S is 3. The spatial join was performed using Spa-

tiaLJoin4, but the join of directory and data nodes followed the pol-

icies, described above.

butfer sire (a) (b) (c)

OKJ3yte 111,140 24,111 27,679

8 KEtyte 27,586 23,288 23,822

32 KByte 18,019 17,936 17,954

128 KByte 14,453 14,453 14,454

512 KByte 13,038 13,038 13,038

Table 7: I/O-performance its case of R*-trees of different height

As expected, policies (b) and (c) outperform policy (a). For very
small buffers, version (b) is superior to policy (c). The reason is that

policy (b) guarantees that each page of the subtrees is read ordy

once into the buffer, whereas policy (c) shows similar performance
only in the case of a medium-sized and large buffer.

Overall, we get the best I/O-performance by joining the entries of
two directory pages according to the local plane-sweep order with
pinning (SpatialJoin4) and by following policy (b) in case of the

join of a directory and a data page.

5 Summary of the Performance Comparison

In the previous sections, we compared the performance of various

spati~ jo~ algofibs using two sample spatkd relations. Most in-
teresting m our concluding comparison is the validation of our pre-
vious results using other spatial relations for performing spatial
joins. Furthermore, we present the results with respect to the overall
execution time. Under the same assumption as in section 4.1, the

estimation for the execution time of SpatiafJoin4 is presented in

Figure 8. In analog ;, we charged 1.5”10-2 seconds for positioning

the disk arm, 5*1 0- seconds for transferring 1 KB yte of data from
disk and 3.9* 10-6 seconds for a floating point comparison. Contrary

to SpafialJoinl, SJ4 achieves best performance for a page size of 8

KByte and we expect even better performance for a page size of 16
KEtyte. This observation can be made independent of the buffer

size, as shown in the upper diagram of Figure 8. Originally, the ex-

ecution time of SpatialJoinI was clearly determined by CPU-time.
However, the lower diagram of Flgore 8 shows that the execution

time of SpatialJoin4 is now l/O-bound. Only if the page size is

rather large, the execution time will be CPU-bound again.

ttme

Wfer
.* $-. . . .-m

page size 1 KByte 2 KByie 4 KByfe 8 KByte

time (Ye%)
150

100

50 l/04ime

o CPU-time

page size 1 KB 2 KB AKS 8KB

Figore 8: Total join time and ratio between CPU-& I/O-time

The factor of the performance improvement of algorithm Spalid-

Join4 in comparison to algorithm Spatial.loinl is illustrated in the

upper diagram of Figure 9. For a page size of 4 KByte, SpatialJoin4
performs about 5 times faster than SpatidJoinl. For larger page

sizes, the factor increases, whereas for smaller page sizes, e.g. 1

KByte, the factor decreases. The lower diagram of Figure 9 depicts

the factors of the performance improvement of SJ4 in comparison

to algorithm SparidJoin2.

fa

kuffer

page size. 1 KByte 2 KE?yfe 4 K6yte 8 KByte

factor

tuner sze

page size 1 KByie 2 KByfe 4 KByfe 8 KByte

Figure 9: Overall improvements in respect to total joio time

In order to investigate whether our previous results depend on the

particular data, we have performed several spatial joins with vari-
ous spatial relations obtained from real geographic applications. In
Table 8, we report the most import characteristics of our tests (A)
to (E). For test (D), we have performed a spatial join with two iden-

tical R*-trees. Nevertheless, our algorithms treated the R*-trees as
if they would be different. For test (E), region date instead of line
data was used for performing spatial joins [24].
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I II R*-tree R II R*-tree S II inter- 1

llRll&t subject of map llsll*t subject of map sections

(A) 131,461 streets 128,971 rivers & railways 86,094

(B) 131,461 streets 131,192 streets 154,262

(c) 598,677 streets 128,971 rivers & railways 395,189

(D) 128,971 rivers & railways 128,971 rivers & railways 505,583

(E) 67,527 region data 33,696 region data 543,069

Table 8: Characteristics of R*-trees in various test A-E

In Figure 10, we depict the improvement factor how many times al-

gorithm $w[idoird performs better than SpatialJoinl for differ-

ent page sizes. We have assumed a buffer size of 128 KB yte. The

results confirm the factors of performance improvement over test

(A) already frequently being quoted in the previous sections. There
is only one exception: test (C) with 2 KByte pages has a lower im-

provement because the R*-trees have different height and therefore,
the window queries do not profit very much from sorting.

15,00 HA

1000
,B

❑ C

500

❑ D

000
SE

I?igure 10: Improvement factors for different rerd test data

6 Conclusions and Future Work

In a spatial database system, spatial joins are one of the most impor-

tant operations for combining spatial objects of severrd relations.
Contrary to window queries, execution time is superlinear in the
number of objects and therefore, spatial joins may require more

than one access to each of the objects. Moreover, approaches sug-

gested for performing traditional joins, e.g. natural-joins, are not
applicable to spatial joins.

In this paper, we have presented the ftrst detailed study of spatial

join processing using R-trees, particularly R*-trees. The R*-tree is
one of the most efficient members of the R-tree family. Several da-
tabase and geographic information systems already use R-trees as

their basic spatial access method. Therefore, it is of considerable in-
terest to design efficient Join algorithms particularly for R*-trees.

First, we have presented a straightforward join algorithm for R*-

trees using already an LRU-buffer to reduce the IKMirne. We have

shown that this approach requires optimization with respect to both

CPU- and I/O-time. Irr order to improve CPU-time, we suggest two

techniques which make use of spatial sorting and restricting the
search space. Moreover, J/O-performance has been improvccl by

determining how the required pages are read into the buffer, Our
suggested policies are based on spatial locali~, such that the pages
required for computing an answer to the spatird joirr are already in
the buffer with high probability. In an experimental performance

comparison using large relations of real data, we showed that our
suggested techniques improve the execution time of the fust ap-

proach by factors. With respect to the results of our experiments, we
can state that the technique of restricting the search space improves
the number of comparisons by a factor of 4 to 8, and the technique

of spatial locality reduces the number of disk accesses up to 4.YZO.

Independent of the time required for one comparison and of the
time for one disk access, the execution time of the approach using

all of our suggested techniques is considerable better than the ap-

proaches using only a few or even none of the suggested techniques.

In our fnture work, we are particularly interested in a more de-

tailed study of spatial joins. In this paper, we put our emphasis on

the MBR-spatial-joirr which computes the spatial join of the mini-

mum bounding rectangles of the spatial objects. We are in the pro-
cess of investigating more complex types of spatial joins which ac-

tually operate on the real spatial objects. Until now, all our ap-

proaches assume a conventional computer architecture. However,
paralJel computer systems and disk arrays are very interesting for
performing spatial joins and window queries, for example using

parallel R-trees [14].
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