

Picasso Database Query
Optimizer Visualizer

Version 2.1

Database Systems Lab

Supercomputer Education & Research
Centre

and

Department of Computer Science &
Automation

Indian Institute of Science, Bangalore,
India

February 2011

©Indian Institute of Science, Bangalore, India

Dedicated to the IISc Centenary (1909 - 2011)

Indian Institute of Science 1 of 130

Picasso 2.1 February 2011

Picasso Database Query Optimizer
Visualizer

©Indian Institute of Science, Bangalore, India

DOCUMENTATION INDEX

(version 2.1 - February 2011)

For the latest information, visit the project web-site:
 http://dsl.serc.iisc.ernet.in/projects/PICASSO/picasso.html

1. Changes in Version 2.1

2. Introduction

3. Installation Instructions

4. Usage Guide
�❍ Conceptual Framework

■ VLDB 2005 paper
(Note: The client interface and diagram layouts shown in this paper are outdated. Please see the documentation below
for the current information.)

■ Presentation slides
(Note: The client interface and diagram layouts shown in these slides are outdated. Please see the documentation
below for the current information.)

�❍ Client GUI Controls
■ Plan Tree Windows

�❍ Command Line Interface
�❍ Diagram Semantics
�❍ Trouble-shooting
�❍ Future Plans

5. Software

�❍ Design and History
�❍ Porting Guide
�❍ Algorithms

6. Publications

Indian Institute of Science 2 of 130

Picasso 2.1 February 2011

http://dsl.serc.iisc.ernet.in/projects/PICASSO/picasso.html
file:///D|/PicassoSite/Picasso2Doc/Usage/paper.pdf
file:///D|/PicassoSite/Picasso2Doc/Usage/presentation.pdf

7. License Information

8. Development Team

9. Acknowledgements

10. Appendix
�❍ TPC-H data generation and loading
�❍ DB2 Setup
�❍ Oracle Setup
�❍ SQL Server Setup
�❍ Sybase ASE Setup
�❍ PostgreSQL Setup
�❍ MySql Setup

Download this Documentation in pdf format

Indian Institute of Science 3 of 130

Picasso 2.1 February 2011

file:///D|/PicassoSite/Picasso2Doc/Picasso2Doc.pdf

Picasso Database Query Optimizer
Visualizer

©Indian Institute of Science, Bangalore, India

Changes in Version 2.1

In May 2007, we released Version 1 of the Picasso Database Query Optimizer
Visualizer, a tool intended to provide a visual metaphor for exploring the intriguing
behavior of modern industrial-strength query optimizers on complex queries. The
Picasso tool has been received warmly by the database community and is currently
operational at several industrial and academic research labs world-wide. The
Version 2.0 of Picasso, featuring host of new functionalities was released in Feb
2009 and the change-log can be found here. Version 2.1 of Picasso is mostly a
bug-fix release along with one major enhancement of supporting MySql working along
with Picasso. Following are the details of the same

New features:

• MySql support: Support for the MySql database engine which was not
there earlier, has been added in this version.
• Collation Schemes: When the PSP predicates used in the query
template were of the string data type, interpolation of the histogram values was
done using the binary sort order (UNICODE order), which was Case sensitive.
Now, we have added support for the case insensitive collation scheme (with some
restrictions, as specified later).
• Load Packet: In v2.0, only the Save Packet feature was provided,
wherein users could save Picasso packets. Now the Load Packet feature has
been added and the saved packets can be re-visualized.

Bug Fixes:

● Null values in SQL-Server histogram: In our earlier version, if

Indian Institute of Science 4 of 130

Picasso 2.1 February 2011

NULL values were encountered in the histogram of any PSP predicate (as
encountered in SQL Server), we would get a java null pointer exception. Due to
technical reasons, it has been decided that the PSP predicates should be on non-
null attributes, and thus, a Picasso exception will now be issued if the query
template contains a PSP predicate which has null values in its histogram.

● 1D diagram rendering: The 1D diagram rendering was faulty in 2.0. This
issue has been fixed.

● Reduction on Operator level diagrams: While visualizing plan
diagrams at the Operator level (instead of the default Parameter level), if the
user tried to reduce the plan diagram, in case of LiteSeer or CC-Seer reduction
algorithms, a java exception was issued and when the reduction algorithm was Cost
Greedy, reduction would happen incorrectly. We have now disabled generation of
reduced diagrams on the Operator level of the plan diagram and allow reduction
only on the original plan diagram (Parameter level) as the former is not
conceptually defined.

● Statistics for Cost Greedy reduction: After reduction using the
Cost Greedy Algorithm, the average cost increase was calculated taking all the
points into account. We have now modified the average cost increase to take into
account only those points which were swallowed. Also, the calculation of maximum
cost increase was over estimated and is now corrected to show the accurate
number. The statistic about the minimum cost increase has been removed as the
quantity is not of much use.

● Reduced Diagram rendering in low video mode: The reduced
diagram rendering was buggy in the low video mode. This has been corrected.

● Sanity check in FPC based reduction algorithms: The sanity
constants which were used in the FPC based reduction algorithms have been
removed and reduction now happens purely on the cost threshold basis.

● IS_SERVER_DEBUG option not getting set: An option was
provided in Picasso settings to set the flag IS_SERVER_DEBUG, which when
turned on, would print server debug information onto the console. This being a
server setting was not handled correctly and hence was not working. This bug has
been fixed.

● Scrolling in Legend Panel: If the number of plans was more than a
certain number (~150), then the plans were not getting displayed in the legend panel
scroll bar. This bug has been fixed by increasing the length of the scroll bar to
handle a sufficiently large number of plans (~600).

● SQL parsing: If the SQL query template submitted to Picasso had the

Indian Institute of Science 5 of 130

Picasso 2.1 February 2011

constructs like OUTER/ INNER JOINS, then the mapping between the attributes and
their tables were not done correctly. This issue is fixed in this release.

Other Features:

● Limitation in the dimensionality: A limitation on the number of
dimensions of a plan diagram is placed to 4, i.e., the maximum number of PSP
predicates that can be given in a query template is 4. This restriction is placed
because of the tremendous amount of time required to generate even a very low
resolution plan diagram in dimensions higher than 5, which make it almost infeasible.

● Handling of new parameters in DB2 plan tree: There were
certain new parameters introduced in the plan trees of DB2 9.7, which are now
handled to correctly visualize Parameter level plan diagrams.

● DB2 index name in Picasso plan tree: In the visualization of plan
trees for DB2, the columns on which the indexes operate were not shown for the
index based operators. This has been modified to show necessary details.

● Compiled Plan tree: The visualization of the compiled plan trees has been
modified to show leaf level cardinalities pertaining to the relations.

Compatibility with v2.0:

• Diagram Database: Picasso 2.1 is fully compatible with Picasso
diagram databases that were created using v2.0.
• JDBC Upgrade: The DB2 JDBC driver supplied in the Picasso
distribution has been upgraded to additionally support DB2 9.7.

NEW FEATURES in Version 2.0

Version 2.0 of Picasso has new functionalities that collectively enable users to

a.focus their attention on selected sub-spaces of the diagram domain,
b.reduce the computational and communication overheads of diagram production,
and

Indian Institute of Science 6 of 130

Picasso 2.1 February 2011

c. identify robust execution plans that are tolerant of errors in selectivity estimates.

Specifically, the new features include:

Major new features:

● Custom Resolution for each dimension: In v1, the diagram
resolution had to be the same on all dimensions. Now, users can specify the
resolution on a per-dimension basis.

● Custom Range for each dimension: In v1, the diagrams were
always drawn over the entire selectivity range [0 to 100 percent] in all dimensions.
Now, the diagram production can be localized to user-specified sub-ranges along
each dimension.

● Client-side Processing: In v1, diagram processing operations at the
client often incurred significant communication and computational overheads with
the server. Now, the diagram packet sent from the server to the client contains
sufficient information to support processing almost all operations at the client itself.

● Approximate Compilation diagram generation: Producing
Picasso diagrams can turn out to be computationally expensive on higher-dimension
query templates with fine-grained diagram resolutions. To address this issue, the
tool now supports diagram approximation algorithms that explicitly optimize only a
subset of the query points in the selectivity space, and infer the remaining points,
based on error tolerances provided by the user. For practical tolerances, the
reduction in computational overheads can be as much as an order of magnitude.

● Robust Plan Reduction: The reduction of plan diagrams in v1 was such
that the cost-increase-threshold guarantee of plan replacement applied to the
optimality region of the replaced plan. The tool now has incorporated efficient
algorithms that extend this guarantee to the entire selectivity space. This feature
makes it feasible to identify execution plans that are robust to errors in selectivity
estimates, a chronic problem in database optimizers.

Additional functionalities:

● Multi Engine Plan View: At a given query location, side-by-side view of
plans from two different database engines, or the same engine at different
optimization levels.

Indian Institute of Science 7 of 130

Picasso 2.1 February 2011

• Enhanced Plan Legend Panel: For query templates with three or
more dimensions, the plan legend panel for each 2-D slice displays both the global
and the slice-specific number of plans. The ordering and coloring of plans in the
legend is kept consistent across the slices based on global space coverage.
• Compressed Diagram Packet: diagram packets sent from the
server to the client are compressed to reduce transfer latency.
• Multi-core Plan Operators: operator lists have been extended to
support database engines featuring plan operators that are specific to multi-core
platforms

Compatibility with v1:

● Java Environment: To run Picasso 2.0, the underlying Java platform must
be at least JDK6.0 and Java3D1.4.0 (v1 was compatible with JDK1.4.2).

● Diagram Database: Picasso 2.0 is fully compatible with Picasso diagram
databases that were created using v1.

● JDBC Upgrade: The MSSQL JDBC driver supplied in the Picasso distribution
has been upgraded to additionally support SQL Server 2008.

Documentation Home

Indian Institute of Science 8 of 130

Picasso 2.1 February 2011

http://java.sun.com/javase/downloads/index.jsp
https://java3d.dev.java.net/binary-builds-old.html

Picasso Database Query Optimizer
Visualizer

©Indian Institute of Science, Bangalore, India

INTRODUCTION

Welcome to the Picasso database query optimizer visualizer software developed at the
Database Systems Lab, Indian Institute of Science, Bangalore, India, by this team.

The Picasso tool, written entirely in Java, is operational on a rich suite of industrial-strength
database query optimizers (currently DB2, Oracle, SQL Server, Sybase ASE and
PostgreSQL are supported). It is in use at a host of academic and industrial labs world-
wide, and can be employed as a

a. query optimizer analysis, debugging, and redesign aid by system developers,
b. query optimization test-bed by database researchers, and
c. query optimizer pedagogical support by database instructors and students.

Given an SQL query template that defines a relational selectivity space and a choice of
database engine, the Picasso tool automatically generates a variety of diagrams that
characterize the behavior of the engine's optimizer over this relational selectivity space. The
diagrams include

1. Plan Diagram: A pictorial enumeration of the execution plan choices.
2. Cost Diagram: A visualization of the associated estimated plan execution

costs.
3. Cardinality Diagram: A visualization of the associated estimated query

result cardinalities.
4. Reduced Plan Diagram: Shows the extent to which the original plan

diagram may be simplified (by replacing some of the plans with their siblings in the
plan diagram) without increasing the cost of any individual query by more than a
user-specified threshold value.

5. Schematic Plan-tree Diagram: A tree visualization of a selected plan

Indian Institute of Science 9 of 130

Picasso 2.1 February 2011

http://dsl.serc.iisc.ernet.in/projects/PICASSO/picasso.html
http://dsl.serc.iisc.ernet.in/
http://www.iisc.ernet.in/

in the plan diagram.
6. Plan-difference Diagram: Highlights the schematic differences between

a selected pair of plans that appear in the plan diagram.
7. Compiled Plan-tree Diagram: A tree visualization of a selected plan

at a specific location in the plan diagram, annotated with cost and cardinality
information.

8. Foreign Plan-tree Diagram: At a given location in a plan diagram
produced on a database engine, a tree visualization of the plan produced by another
engine (or the same engine at another optimization level) at this location.

9. Abstract-Plan Diagram: A visualization of the behavior of a selected plan
in the plan diagram, when the optimizer is requested to use this specific plan
throughout the selectivity space. [This feature is operational only on SQL
Server and Sybase ASE.]

Apart from query compilation-related diagrams, Picasso also produces

9. Execution Cost Diagram: A visualization of the runtime query response
times.

10. Execution Cardinality Diagram: A visualization of the runtime query
result cardinalities.

The name of the tool stems from the observation that many plan diagrams appear similar to
cubist paintings – the art genius, Pablo Picasso, was a founding-father of the cubist painting
genre.

A history of the Picasso versions, listing the bug fixes and the new functionalities
incorporated in each version, is available in Code History.

Documentation Home

Indian Institute of Science 10 of 130

Picasso 2.1 February 2011

http://en.wikipedia.org/wiki/Cubism
http://en.wikipedia.org/wiki/Pablo_Picasso

Picasso Database Query Optimizer
Visualizer

©Indian Institute of Science, Bangalore, India

INSTALLATION INSTRUCTIONS

Overview

There are three processes involved in a Picasso setup, as shown in the figure:
(a) the Picasso Client, through which users enter query templates and visualize the
associated diagrams;
(b) the Picasso Server, which converts query templates into the equivalent set of
query instances, submits these queries to the database engine, and gathers the
associated execution plans; and
(c) the Database Engine, which produces efficient execution plans for the queries.

These three processes can all execute on the same machine or on different machines.
Further, multiple Picasso clients can connect to a single Picasso server, which in turn can
connect to multiple database engines. The client and server machines should support
Java compilation and execution, while the client machine should additionally support 3D
visualization. A few third-party libraries for visualization and database connection are
required for Picasso to function – the details are given in License Information (for

Indian Institute of Science 11 of 130

Picasso 2.1 February 2011

convenience, this support software is included with the Picasso code-base in the full
version).

Picasso is completely written in Java and should, in principle, operate in a platform-
independent manner. It has been successfully tested on the following system and
database environments:

System platforms:
(a) Windows 32-bit: Windows 7 Professional, Intel® Core™2 Duo
2.10GHz, 4 GB RAM, Mobile Intel® 965 Express Chipset Family
(b) Windows 64-bit: Windows Vista Business 64-bit, Sun Ultra 24
Intel Core2 QuadCore 3GHz, 8 GB Ram, NVidia Quadro FX 570
graphics card
(c) Unix 32-bit: Gentoo Linux (2.6.15 kernel), Pentium-IV 2.4GHz,
1 GB RAM, NVidia Riva TNT2 graphics card
(d)Unix 64-bit: Ubuntu Linux (2.6.24 kernel), Sun Ultra 24 Intel
Core2 QuadCore 3GHz, 8 GB Ram, NVidia Quadro FX 570 graphics
card

Database engines: DB2 8/9, Oracle 9i/10g/11g, SQL
Server 2000/2005/2008, Sybase ASE 15, PostgreSQL 8,
MySQL 5.1/5.4.1/5.5.9
(For porting to other database engines, please refer to the porting guide.)

Sample Picasso diagrams obtained with the above database engines on the Windows
platform are available from the Picasso home page.

Installation Steps

I Setup the Database Engine

1. Install a database engine. Click on the following links for setup information (on

Indian Institute of Science 12 of 130

Picasso 2.1 February 2011

http://dsl.serc.iisc.ernet.in/projects/PICASSO/picasso.html#diagrams

Windows) for specific database engines: DB2 Oracle SQL Server Sybase ASE
PostgreSQL MySql. The installation on Unix is on similar lines – please refer the
vendor product literature for details.

2. Populate the database with data.
Note: Picasso can be used with generic relational database schemas and SQL
query templates. The illustrative examples in the Picasso documentation are with
respect to the TPC-H benchmark, and the procedure for setting up this
benchmark is given in TPC-H data generation and loading.

3. Then:

a. For DB2 and Oracle, create the explain plan tables (these tables store
the query execution plans generated by these optimizers).
b. For all engines, create statistical summaries for all relational columns
that may be used as Picasso predicates in the query templates. Follow these
links for the creation procedure: DB2 Oracle SQL Server Sybase ASE
PostgreSQL MySql.

II Download the Picasso Software

1. From Picasso Download, download the Picasso code (version 2.1) − either the
full version, which includes all essential graphics and database libraries, or the
no-lib version, which has only the Picasso source code. Extract its contents on
the Server and Client machines. A directory called Picasso2.1 in which the
entire code-base is contained will be created. All paths mentioned in this
document and the supporting documentation are with reference to this directory.

2. Read through the documentation given in the PicassoDoc directory.

III Setup the Picasso Server

 On the Server machine:

 1. Install a Java compiler and execution engine [Sun’s JDK 6.0 has been

Indian Institute of Science 13 of 130

Picasso 2.1 February 2011

file:///D|/PicassoSite/Picasso2Doc/Installation/db2.htm
http://www.tpc.org/tpch/
file:///D|/PicassoSite/Picasso2Doc/Installation/db2.htm#plan
file:///D|/PicassoSite/Picasso2Doc/Installation/db2.htm#statistics
file:///D|/PicassoSite/Picasso2Doc/Installation/oracle.htm#statistics
http://bhairav.serc.iisc.ernet.in/license.htm
http://java.sun.com/javase/downloads/index.jsp

successfully used in our testbed].

2. If you downloaded the full version of Picasso, skip to Step 3. On the other
hand, if you downloaded the no-lib version, you need to manually add, in the
Libraries directory, the necessary database connection libraries for each
engine that you wish to have supported in Picasso.

Note: If you use different versions of the database connection libraries, you will
need to suitably edit the relevant bat and sh files in the PicassoRun
\Windows and PicassoRun/Unix directories, respectively.

3. Activate the Picasso interface for the desired database engines.
For Windows, execute activatedb.bat in the PicassoRun\Windows
directory.
For Unix, execute activatedb.sh in the PicassoRun/Unix directory.

4. Compile the Picasso Server.
For Windows, execute compileServer.bat in the PicassoRun
\Windows directory.
For Unix, execute compileServer.sh in the PicassoRun/Unix
directory.

IV Setup the Picasso Client

 On the Client machine:

1. Install a Java compiler and execution engine [Sun JDK 6.0 has been
successfully used in our testbed].

2. Install Java3D [Sun Java3D 1.4.0_01 has been successfully used in our
testbed]. We recommend the use of the OpenGL version of Java3D wherever
possible.

3. If you downloaded the full version of Picasso, skip to Step 4. On the other
hand, if you downloaded the no-lib version, then you need to manually add

Indian Institute of Science 14 of 130

Picasso 2.1 February 2011

http://java.sun.com/javase/downloads/index.jsp
https://java3d.dev.java.net/binary-builds.html
https://java3d.dev.java.net/binary-builds-old.html

the necessary graphics libraries in the Libraries directory.

Note: If you use different versions of the graphics libraries, you will need to
suitably edit the relevant bat and sh files in the PicassoRun\Windows
and PicassoRun/Unix directories, respectively.

4. Compile the Picasso Client.
For Windows, execute compileClient.bat in the PicassoRun
\Windows directory.
For Unix, execute compileClient.sh in the PicassoRun/Unix directory.

The installation is now complete. To learn how to use Picasso, proceed to the
user guide.

Documentation Home

Indian Institute of Science 15 of 130

Picasso 2.1 February 2011

Picasso Database Query Optimizer Visualizer
©Indian Institute of Science, Bangalore, India

USAGE GUIDE

 Overview
The motivation and conceptual framework underlying the Picasso Database Query Optimizer
Visualizer software are presented in this VLDB 2005 paper and this set of presentation slides (Note:
The diagram formats and interfaces in these documents are outdated with respect to the current code but the concepts
remain essentially the same).

The primary user input to Picasso is a query template. A Picasso query template is an SQL query
that additionally features predicates of the form "relation.attribute :varies" – these attributes
are termed as Picasso Selectivity Predicates (PSP). A sample template (based on Query
14 of the TPC-H benchmark) is shown below, with the two PSPs highlighted in yellow:

select l_extendedprice * (1 - l_discount)
from lineitem, part
where l_partkey = p_partkey
 and l_extendedprice :varies
 and p_retailprice :varies

Each template defines an n-dimensional relational selectivity space, where n is the number of PSP
relations. That is, the selectivity of each of the PSP relations is varied over the range [0-100%],
and the objective is to characterize the optimizer behavior over this selectivity space. In the above
example, which shows a 2-D template, the selectivity space corresponds to the lineitem and part
relations.

The query template is converted into a sequence of queries, each of which represents a different point
in the selectivity space, through one-sided range predicates of the form “relation.attribute ≤
constant” implementing each PSP. Note that this formulation also ensures the property of query
subsumption as we move outwards from the origin of the selectivity space. To estimate the
constants that would result in the desired selectivities of the PSP relations, Picasso essentially carries
out an “inverse-transform” of the statistical summaries (as present in the database engine’s metadata)
corresponding to these relations.

To meaningfully cover the full range of selectivities, a Picasso query template should satisfy the

Indian Institute of Science 16 of 130

Picasso 2.1 February 2011

http://bhairav.serc.iisc.ernet.in/doc/Usage/paper.pdf
http://bhairav.serc.iisc.ernet.in/doc/Usage/presentation.pdf

following conditions:

o Each relation can participate in at most one PSP.

o The PSP relations should feature only in join predicates in the query, but not in
any other equality or range predicates.

o The permissible data-types for a PSP column are integer, float, string and
date (and their equivalents).

o For a PSP column of data-type string, the permitted characters in the string are A-Z,
a-z and 0-9.

o The PSP attributes must have pre-generated statistical summaries.

o The PSPs should be on dense-domain attributes in high-cardinality
relations.

o The attribute names appearing in the PSPs must either all be unique or disambiguated by
explicitly providing REL_NAME.ATTR_NAME in the PSP.

Given a Picasso query template and a choice of database engine, the Picasso tool automatically
generates a variety of diagrams that characterize the behavior of the engine’s optimizer over this
relational selectivity space. The diagrams include:

1. Plan Diagram: A pictorial enumeration of the execution plan choices.
2. Cost Diagram: A visualization of the associated estimated plan execution costs.
3. Cardinality Diagram: A visualization of the associated estimated query result
cardinalities.
4. Reduced Plan Diagram: Shows the extent to which the original plan diagram
may be simplified (by replacing some of the plans with their siblings in the plan diagram)
without increasing the cost of any individual query by more than a user-specified threshold
value.
5. Schematic Plan-tree Diagram: A tree visualization of a selected plan in the
plan diagram.
6. Plan-difference Diagram: Highlights the schematic differences between a
selected pair of plans in the plan diagram.
7. Compiled Plan-tree Diagram: A tree visualization of a selected plan at a
specific location in the plan diagram, annotated with cost and cardinality information.
8. Foreign Plan-tree Diagram: At a given location in a plan diagram produced

Indian Institute of Science 17 of 130

Picasso 2.1 February 2011

on a database engine, a tree visualization of the plan produced by another engine (or the
same engine at another optimization level) at this location.
9. Abstract-Plan Diagram: A visualization of the behavior of a selected plan in
the plan diagram, when the optimizer is requested to use this specific plan throughout the
selectivity space. [This feature is operational only on SQL Server and Sybase ASE.]

Apart from query compilation-related diagrams, Picasso also produces:

10. Execution Cost Diagram: A visualization of the runtime query response
times.
11. Execution Cardinality Diagram: A visualization of the runtime query result
cardinalities.

There are four basic steps in using Picasso:

1. Starting a Picasso Server.

2. Starting the Picasso Client and connecting to the Picasso Server.

3. Connecting to a DB engine through the Picasso Server.

4. Creating (or selecting) a Query Template and generating (or viewing) the associated
Picasso diagrams.

These steps are described in detail in the remainder of this document.

Steps 1−3: Setup

1. Start the Picasso server by executing runServer.bat | runServer.sh in
PicassoRun\Windows | PicassoRun/Unix directory, giving the port number
through which the server will interface with clients as an optional argument (the default port
number is 4444). The server will start and run in a console window.

2. Start the Picasso Client by executing runClient.bat | runClient.sh in PicassoRun
\Windows | PicassoRun/Unix directory. When the client starts, the following
'Welcome' screen appears.

Indian Institute of Science 18 of 130

Picasso 2.1 February 2011

Click on the 'Enter' button in this screen. A dialog asking for the Picasso Server information is
displayed with default values.

Enter the required information and click OK.

Indian Institute of Science 19 of 130

Picasso 2.1 February 2011

The confirmation message will appear. Click OK.

Then the Picasso Client screen appears, looking like:

To learn in detail about the controls on the Picasso Client
screen, see Client GUI Controls.

1. In the DBConnection menu click New. (Or you can select one of the existing database
instances from the DBConnection Descriptor dropdown list and from the

Indian Institute of Science 20 of 130

Picasso 2.1 February 2011

DBConnection menu click Edit.) The following dialog will appear. Enter the required details
and click Save.

Step 4: Generating Picasso Diagrams

2. In the Settings panel, set the required fields.

3. In the diagram panel, go to the QueryTemplate tab. Enter a Picasso query template
by either typing in a query template or clicking on the Load QueryTemplate button and
selecting a file containing a query template. Then enter a suitable name to identify this
template in the QueryTemplate Descriptor field. (The maximum permitted length of
the descriptor is specified by QTNAME_LENGTH in PicassoConstants.java and the
default value is 128).
Note: Representative query templates based on the TPC-H benchmark are
available for all the database engines in the QueryTemplates directory.

4. To obtain any of the diagrams (Plan/CompCost/CompCard/ExecCost/
ExecCard), click on the associated tabs. If the diagram had been previously generated,
the picture is retrieved by the server and shown immediately. Otherwise, a dialog comes up
indicating the estimated time to generate and asking whether the diagram should be
generated. Click OK if you want to generate. A new feature of Picasso 2.0 is that an option
to generate an approximate diagram (as per user-specified error tolerances), instead of the
exact diagram, is also provided.

5. As the diagram is being generated, the Progress Bar (at the bottom of the screen)
shows the quantitative progress, while the Status Bar provides additional details, including
the elapsed time and the estimated time to completion. A Cancel Processing button
appears just above the status bar, and clicking this button terminates the on-going generation

Indian Institute of Science 21 of 130

Picasso 2.1 February 2011

process. There is also a Pause Processing|Resume Processing toggle button
that can be used to temporarily suspend and later resume the diagram generation process at
the server.

To learn in detail about the semantics of the Picasso
Diagrams, see Diagram Semantics.

Command-Line Interface

Apart from the above visual client interface, Picasso also supports a command-line interface
for generating compilation and execution diagrams, which is especially useful for batch processing
of query templates. The details are given in Command Line Interface.

User-Specific Files

There are two user-specific files in Picasso: DBConnections and local_conf, both present
in the PicassoRun directory. The former, which is in binary format, is for storing the
information about database connections, while the latter, which is in text format, is for customizing
the default values of the user-settable constants. These files should be updated only through the
controls in the Picasso Client interface, as explained in Client GUI Controls.

 Notes:

1. If a Picasso Client is closed, any ongoing process on the Server is not affected. The client can be
restarted later and the results of the previous processes viewed in the normal manner.

2. In case of problems, please refer the Trouble-shooting document.

Documentation Home

Indian Institute of Science 22 of 130

Picasso 2.1 February 2011

Picasso Database Query Optimizer Visualizer
©Indian Institute of Science, Bangalore, India

CLIENT GUI CONTROLS

This document describes the controls available in the Picasso Client graphical interface. After
connection to a Picasso server and DB engine, the whole interface revolves around the concept of a
Query Template Descriptor (QTD), which represents a user-specified Picasso query
template augmented with the associated optimizer and diagram-related settings. Within each query
template, the attributes chosen for Picasso variation are termed as Picasso Selectivity
Predicates (PSP). The following description is organized based on the control panels that
become available as the user moves from top to bottom in the interface:

1. Menu Bar

● File menu
Save Screen: Saves a snapshot of the current screen in JPEG format.

Save Packet: Writes a DiagramPacket object and a Vector of plan-trees into a user-
specified file – this will either be a plan diagram packet, a reduced plan diagram packet, or an
execution diagram packet, depending on the tab currently displayed. The default name is
“<QTD>_{P|R|E}.pkt”, with “QTD” corresponding to the query template descriptor, and
“P|R|E” corresponding to whether the source is a Plan diagram, Reduced plan diagram or
Execution diagram, respectively.
The user can optionally choose to save the packet in compressed (gzipped) format by
appropriately setting the "Saved Packet Format" field in the Picasso Client
→LocalSettings menu.
The saved packets can be read and manipulated in external applications – for example, by
including DiagramPacket.java (as well as DataValues.java, TreeNode.java and
QueryPacket.java) in the external application, and then writing additional methods to use the
data in the packet. A sample program that reads .pkt (and .pkt.gz) files and outputs the
values (both diagram and plan tree information) into a human-readable .txt file is available as
DisplayDiagramPacket.java in the Code sub-directory of PicassoDoc. To compile and
execute this program, use compileDisplayDiagramPacket.bat and
runDisplayDiagramPacket.bat in Windows, and compileDisplayDiagramPacket.sh and
runDisplayDiagramPacket.sh in Unix.

Load Packet: The DiagramPacket and the Vector of plan-trees which are saved using the
Save Packet feature described above can be loaded back into Picasso using the Load

Indian Institute of Science 23 of 130

Picasso 2.1 February 2011

Packet option. It should be noted that the Reduced Diagram and Execution diagrams tabs
are invalid when a reduced plan diagram packet is loaded and the Execution diagrams tabs
are invalid when a plan diagram packet is loaded. Also, for any plan diagram packet which is
loaded, only the Cost Greedy reduction algorithm can be applied.

Print Diagram: Shows a ‘Page Setup’ dialog and a subsequent ‘Print’ dialog to print the
current diagram. This function is supported only when one of the diagram tabs is selected.

Print Preview: Opens the ‘Page Setup’ dialog and then pops up a ‘Picasso Print
Preview’ dialog which shows what would be printed. This dialog has a ‘Print’ button which
will open the ‘Print’ dialog to print the contents of the preview. This function is supported only
when one of the diagram tabs has been selected.
Note: Printing in ‘Landscape’ mode usually produces a better formatted picture as compared
to the ‘Portrait’ mode.

Exit: Closes the Picasso Client.

● Picasso Server menu
Connect to PicassoServer: Opens the Enter Picasso Server Info dialog which
asks for the machine name (or IP) and port number of the Picasso Server to which you wish
to connect. For connecting to a Picasso server hosted locally on the client machine, it is
recommended to use ‘localhost’ for machine name.

Server Status: Checks if the Picasso Client is currently connected to any Picasso Server
and if so, prints the machine name and port of the server.

● Picasso Client menu
Local Settings: Opens a dialog for changing the values of user-settable defaults (defined
in PicassoConstants.java) such as the server port, the choice of plan diagram reduction
algorithm, etc.

● DBConnection menu
Connect: Attempts to connect to the database engine associated with the currently
selected DBConnection Descriptor and reports an error if unable to connect. If the
connection is successful, the QueryTemplate Descriptor drop-down list is populated
with the QTDs already available on this engine, if any, for the given database instance.
For each database connection, all Picasso-related
information, including the QTDs and diagrams, is stored in a
set of Picasso tables and views within the associated
database. The tables are PicassoQTIDMap, PicassoPlanStore,

Indian Institute of Science 24 of 130

Picasso 2.1 February 2011

PicassoPlanTree, PicassoPlanTreeArgs, PicassoSelectivityMap,
PicassoSelectivityLog, PicassoRangeResMap, PicassoXMLPlan,
PicassoApproxMap and the view is picasso_columns.

New: Opens the DB Connection Settings dialog for creating a new
DBConnection instance. The fields in this dialog are:

Connection Descriptor: Specifies the user-defined name that uniquely identifies
the DB connection implied by the choice of settings in the dialog.
Machine: Name or IP of the machine on which the database engine is running. (Note:
The machine name specified here is from the perspective of the Picasso Server, not the
Client. For example, if ‘localhost’ is specified, it means the machine on which the
Picasso Server is running.)
Engine: Select from the drop-down menu the database engine to which you wish to
connect (current options are DB2, Oracle, SQL Server, Sybase ASE and PostgreSQL).
Port: Port number of the above database connection. This field is populated with the
default value when the Engine is selected (e.g. selecting DB2 results in port number
50000).
Database: Name of the database instance that you wish to use in the engine (e.g.
tpch).
Schema: Name of the schema within the database (e.g. admin).
User: User name with which you can connect to this database instance (e.g.
picasso).
Password: Password of the above user.
Save button: Clicking this will close the dialog and save the new connection instance.
Cancel button: Closes the dialog without saving any changes.

Edit: Opens the above dialog, but showing the corresponding values for the connection
instance that is selected in the DBConnection Descriptor drop-down list. You can
make any changes and click Save to save the changes in the existing connection instance.

Delete: Opens the same dialog, but with a Delete button in place of the Save button,
and with all the fields grayed out. The fields will contain the details of the connection
instance which is currently selected in the DBConnection Descriptor drop-down list.
Clicking the Delete button deletes the connection instance.

Destroy Picasso Database: This control drops (assuming the current user has the
requisite permissions) the entire set of Picasso tables and views for the database connection,
resulting in the permanent deletion of all associated QTDs.

Indian Institute of Science 25 of 130

Picasso 2.1 February 2011

● Query Template menu
Refresh QueryTemplate List: Populates the QueryTemplate Descriptor list
with the QTDs previously defined for the current DB connection.
Delete QueryTemplate: Deletes the query template which is currently selected in the
QueryTemplate Descriptor list after a confirmation.
Rename QueryTemplate: Changes the descriptor of the currently selected query
template.

● Help menu
Documentation Home: Opens the index page of the complete documentation.
Usage Guide: Opens a help page containing information on how to use the Picasso client.
Mouse-Key Mappings: Displays a dialog containing the mouse-key mappings for
operations on the diagrams.
About Picasso: Displays a dialog containing information on Picasso including version,
home page, contact, etc.

2. Logo Panel

This is found in the title segment of the screen just below the menu bar, and contains three
buttons:

● Database Systems Laboratory: Opens the Database Systems Lab home page in a
browser.

● Picasso Database Query Optimizer Visualizer: Opens the Picasso home page in
a browser.

● Indian Institute of Science: Opens the Indian Institute of Science home page in a
browser.

3. Settings Panel

● DBConnection Descriptor: Drop-down list of connection instances. Selecting any of
these instances will result in an attempt to connect to the specified engine and database.

● Optimization Level: Some database engines allow users to choose from different

Indian Institute of Science 26 of 130

Picasso 2.1 February 2011

http://dsl.serc.iisc.ernet.in/
http://dsl.serc.iisc.ernet.in/projects/PICASSO/
http://www.iisc.ernet.in/

optimization levels or different optimization goals. For example, DB2 supports a spectrum of
numeric settings (0–9) that cover the optimization-quality versus optimization-effort tradeoff,
while Oracle provides two choices: minimizing latency (First_Row), or minimizing response
time (All_Rows). The optimization levels currently supported for the various engines are as
follows, with the default Picasso setting also indicated for the multi-level engines:

o DB2: 0, 1, 3, 5, 7, 9 (Default = 5)

o Oracle: First_Row, All_Rows (Default = All_Rows)

o SQL Server: Installation Default

o Sybase ASE: allrows_dss, allrows_oltp, allrows_mix (Default =
allrows_mix)

o PostgreSQL: Installation Default

● QueryTemplate Descriptor: A drop-down list of existing query templates for the
database instance referenced by the current DB connection. Depending on whether the
diagram corresponding to the query template is Compilation, Execution or Approximate-
Compilation, a tag of (C), (C,E) or (A) is shown along with the query template name.

● Query Distribution: Defines the distribution to be used while generating query points.
Currently two distributions are supported: Uniform and Exponential. With the Uniform
distribution, the query points are evenly located over the selectivity space. On the other hand,
with the Exponential distribution, the density of points is maximum near the origin and
becomes progressively lower moving outwards in the space. The motivation for the
Exponential distribution stems from the observation in the literature that plan density is often
high around the origin and along the axes, and it may therefore be useful, from a
computational perspective, to focus the query workload on these regions. In the current
implementation, the parameters chosen for the exponential distribution produce an “80-20”
skew – that is, in each dimension, 80 percent of the query points are in the initial 20 percent of
the corresponding axis. The default distribution is Uniform.

● Plot Resolution: Specifies the resolution with which the query points are distributed in
each dimension of the selectivity space. For example, if the selected resolution is ni on each
dimension and there are d dimensions, then the diagram will reflect the output of

 distinct queries. The default is to have the same resolution on all dimensions but, by

Indian Institute of Science 27 of 130

Picasso 2.1 February 2011

choosing “Custom per Dimension”, the user can specify each dimension to have its own
resolution. The available resolutions are 10, 30, 100, 300 and 1000, with the default being 10.

● Plot Range: The default is for diagrams to be generated over the full range (0-100 percent)
of the selectivity space in all dimensions. However, the user can specify, for each dimension,
the selectivity range within which the diagram should be generated by selecting “Custom per
Dimension”. The combination of Custom range and Custom resolution enables users to focus
the computational effort on the desired sub-spaces.

● Plot Selectivity: The selectivity corresponding to a PSP may sometimes be estimated
differently by Picasso and by the optimizer (see Diagram Semantics for a discussion
of this issue). This field decides which estimate, Picasso or Engine, should be used to
plot the Picasso diagrams – the default is Picasso.

4. Diagram Parameters

There are two pop-up windows which collect the parameter values for the diagram generation.

Indian Institute of Science 28 of 130

Picasso 2.1 February 2011

http://dsl.serc.iisc.ernet.in/projects/PICASSO/picasso_download/doc/Usage/semantics.htm#Selectivities

● Range & Resolution: This pop-up window appears when the user chooses the
Custom per Dimension option in either the Plot Range or the Plot Resolution
field in the Settings Panel.

● Approximation Parameters: This pop-up window displays the estimated time to
generate the exact diagram and allows the user the ability to opt for an approximate diagram
instead, if so desired.

Indian Institute of Science 29 of 130

Picasso 2.1 February 2011

If approximation is chosen, then the following information is collected from the user:

o Approximation Technique: Specifies choice of approximation algorithm –
currently, two choices are available, the sampling-based RS_NN and the grid-
partitioning-based GS_PQO (see Algorithm Details for the details of these
various options). The default choice is GS_PQO.

o Error Thresholds: Specifies user’s tolerance for plan-identity and plan-
location errors – the first error refers to the percentage of plans that completely fail to
appear in the approximate diagram, while the latter refers to the percentage of points in
the approximate diagram that have incorrect plan assignments, both errors measured
with respect to the exact diagram. The reductions in computational effort due to the
approximation are directly impacted by the choices for these tolerances – specifically,
the higher the values, the more the savings. The default value is 10% for both errors
since our experience is that with these settings the computational effort is typically
reduced by about an order of magnitude as compared to the exact diagram.

Indian Institute of Science 30 of 130

Picasso 2.1 February 2011

http://dsl.serc.iisc.ernet.in/projects/PICASSO/picasso_download/doc/Usage/semantics.htm#Selectivities

When OK is clicked, a new estimate of the generation time corresponding to the approximate
diagram is shown.

5. Diagram Bar

Indian Institute of Science 31 of 130

Picasso 2.1 February 2011

● QueryTemplate: This tab is for entering and viewing the Picasso query template text for a
given QTD. As mentioned earlier, a Picasso query template should satisfy the following
conditions:

o Each relation can participate in at most one PSP.

o The PSP relations should feature only in join predicates in the query,
but not in any other equality or range predicates.

o The permissible data-types for a PSP attribute are int, float, string and
date (and their equivalents).
[Exceptions: Date is not supported in Oracle, and String is not supported in
PostgreSQL.]

o The PSP attributes must have pre-generated statistical summaries.

o For meaningful coverage of the full range of selectivities, the PSPs should be on
dense-domain attributes in high-cardinality relations.

o The attribute names appearing in the PSPs must either all be unique or
disambiguated by explicitly providing RELATION_NAME.ATTRIBUTE_NAME in the
PSP.

Note: Representative query templates based on the TPC-H benchmark
are available for all the supported database engines in the
QueryTemplates directory.

The components in this tab are:

QueryTemplate Descriptor (QTD) field: This is a user-defined mnemonic for
identifying query templates and would usually also include information from the Settings
panel. The name should be typed in before generating any of the diagrams. When a new
query template is loaded through the Load QueryTemplate button, or when the Clear
QueryTemplate button is clicked, a default QTD is generated which identifies the current
settings, and this descriptor is editable. The default string represents information about the
DB Engine, optimization level, query distribution, and plot resolution, all separated by the
underscore (_) character. This default string is not generated if the query is typed manually.

Indian Institute of Science 32 of 130

Picasso 2.1 February 2011

Load QueryTemplate button: This opens a file dialog where you can select a query
template from among an available set.

Clear QueryTemplate button: Clears the text area and fills the QTD name according to
the settings in the Settings panel.

Text Area: Type in the query template or load it from a file by clicking on the Load
QueryTemplate button.

Display Dimensions: Select any two of the d PSP columns in the query template to
determine the X (first drop-down list) and Y (second drop-down list) selectivity axes of the
initial diagrams to be displayed by the Picasso server. Subsequently, other dimensions can
be substituted to obtain different 2-D slices of the d-dimensional hypercube defined by the
query template.

The remaining 6 tabs are the diagram tabs. All these diagrams are generated afresh only if they
are not from an existing QTD, otherwise the previously generated pictures are shown. Finally, at
all times, a fresh generation can be forced by clicking the Regenerate Diagram button.
Note also that for diagrams generated at high resolution (e.g. 1000), both the generation and the
loading processes can be time-consuming.

● Plan Diag:

Indian Institute of Science 33 of 130

Picasso 2.1 February 2011

The Plan Diagram is a pictorial enumeration of the execution plan choices
made by the optimizer over a relational selectivity space. The plan diagram assigns a
unique color to each different optimal plan and assigns this color to all occurrences of
the plan in the diagram. The relative percentage space occupied by each plan is also
shown in the legend. In this tab, the plan diagram is displayed with the axes labeled
with the PSP names and graduated with the selectivity values.

The Plan Diagram is always 2D, except when the query-template has only 1 dimension
(i.e one PSP), in which case it is 1D. If the query-template has more than 2
dimensions (i.e. ≥ 2 PSPs), then the plan diagram represents a 2D slice where the
x and y axes and the constants corresponding to the rest of the dimensions are
chosen using the Display Dimensions and Set Dim Sel controls of the
QueryTemplate tab.

Set Dim Sel button: This is applicable for query templates with 3 or more

Indian Institute of Science 34 of 130

Picasso 2.1 February 2011

dimensions. It opens a drop-down list for specifying the selectivities of the remaining
dimensions, when visualizing 2-D slices of the d-dimensional hypercube defined by
the query template.

Diagram Panels (top + right): The QTD is displayed at the center of the top panel,
and the number of plans in the current 2-D slice and in the overall diagram are displayed at
the right corner. The minimum and maximum estimated values of the costs and cardinalities
of the query template are displayed in the middle of the right panel for both the slice and the
overall diagram. Further, the selectivities of the remaining dimensions are also shown here.
(Note: For 1-D and 2-D query templates, only the overall information is shown.)

The “Parameter ↔ Operator Diff” toggle button on the right panel is used to
toggle the visualization of the plan diagram between

(a) Parameter Diff: plan differentiation on the basis of both operators and
their parameters (default setting); and
(b) Operator Diff: plan differentiation solely on the basis of operators

See Diagram Semantics for the technical details on these differentiations.

When any point in the diagram is clicked, it is converted to the closest query point
in the selectivity space. For exact diagrams, these query points are the explicit points
at which the query was optimized during the diagram generation process, whereas for
the approximate diagrams, they may also be inferred points.

In this tab, you can:

Indian Institute of Science 35 of 130

Picasso 2.1 February 2011

http://dsl.serc.iisc.ernet.in/projects/PICASSO/picasso_download/doc/Usage/semantics.htm#PlanDifference

Left-click + drag on the plan diagram to move it around.

Shift + Left-click on the diagram and move the cursor up to zoom in, or down
to zoom out.

Right-click at any point in the diagram to view the Schematic Plan Tree
corresponding to the plan choice in that region of the plan diagram.
To view the schematic difference between a pair of plans right-click on one
plan, drag and drop the mouse on the second plan. This will open a Plan
Difference window showing both the plans, with the differences between the
plans highlighted in a color-coded format. (Dragging and dropping the mouse on
points corresponding to the same plan will simply bring up the corresponding
Plan Tree.)

Shift + Right-click on a point in the diagram shows a QueryInfo message
box with information on selectivity values, cost, cardinality, constants and plan
number.

Ctrl + Right-click on a point in the diagram to view the Compiled Plan
Tree, that is, the detailed plan tree with costs and cardinalities for the individual
nodes. This window also displays summary information about the overall
estimated cost and result cardinality.

● Abstract Plan Diag: Alt + Right-click on a point to produce a new
set of compilation or execution diagrams, where the plan associated with the
clicked point is supplied to the engine as an Abstract Plan, along with the
associated query, for each query point in the new diagrams. This abstract
plan is then used as a hint by the optimizer in plan selection, and is typically
chosen in all (or most) of the entire space covered by the new diagrams. The
utility of this feature is that the associated cost diagrams provide a
visualization of the behavior of the cost function of the specific abstract plan
over the entire selectivity space, and not just the regions in which it happens
to be the optimal choice. When Abstract-Plan is invoked, Picasso
automatically creates a new QTD by adding the suffix “_Px”, where x is the
plan number, to the original plan’s QTD – this can be changed by the user if
desired.

Note: This feature is currently available only on SQL Server and
Sybase ASE, which natively support the Abstract-Plan functionality
at the engine API. A related point is that in SQL Server, the
abstract plan may include the Picasso predicates with constants

Indian Institute of Science 36 of 130

Picasso 2.1 February 2011

corresponding to the clicked point – this means that if the diagrams
of the abstract plan are re-invoked from a different point In the
original plan diagram, Picasso will treat it as a fresh diagram
generation. In Sybase ASE, however, the abstract plan does not
include such constants and hence the previously-produced
diagrams of an abstract plan can be directly re-used in subsequent
invocations. The details of Abstract-Plan functionality for SQL
Server are available here, and for Sybase ASE they are available
here .

An example query template incorporating an Abstract Plan is shown (see the
last line of the template) in the picture below:

and an example cost diagram produced from such a template is shown in the
following picture:

Indian Institute of Science 37 of 130

Picasso 2.1 February 2011

http://msdn2.microsoft.com/en-us/library/ms190727.aspx
http://manuals.sybase.com/onlinebooks/group-asarc/asg1200e/aseperf/@Generic__BookTextView/37084

● Foreign Plan-tree Diagram: Ctrl + Alt + Right-click on a point in
the diagram to compare the associated plan with the plan choice made at the
same selectivity coordinates by another database engine, or by the same
engine at a different optimization level (we refer to this new plan as
Foreign Plan). An engine and optimization level dialog first appears, and
after the desired choices are selected, two plan trees are shown – the
foreign plan and, to aid in comparison, the original local plan.
With the dialog, the query template also appears and can be syntactically
edited – the reason this editing may be required is that SQL dialects vary
across database engines. For example, the SQL standard string
function SUBSTRING is invoked as SUBSTR in some engines – a
detailed listing of such dialect variations is available in this Wikibook .

While the editing can be done manually, a third-party automatic multi-dialect
SQL conversion tool, SwisSQL API (Java), which supports all major
database engines, can also be interfaced with Picasso. The SwisSQL tool
can be obtained through email enquiry. It is available for payment under a
commercial license, and free of charge under an academic license (a trial

Indian Institute of Science 38 of 130

Picasso 2.1 February 2011

http://en.wikibooks.org/wiki/SQL_dialects_reference
http://www.adventnet.com/products/sqlone-apijava/index.html
mailto:sales@adventnet.com?Subject=Need%20Download%20of%20SwisSQL%20SQLOne%20API%20%28Java%29
http://www.swissql.com/products/sqlone-apijava/sqlone-apijava-downloadform.html

version is also available for free download). To use SwisSQL with Picasso,
download the software, store the SwisSQLAPI.jar library file in the
Libraries folder, and edit the runClient.bat | runClient.sh files in
the PicassoRun\Windows | PicassoRun/Unix directories
to use the AutoConvert-inclusive run-time invocation. This will activate the
AutoConvert SQL Dialect button on the dialog and the specific
conversion carried out will be based on the user’s choice of engine. Finally,
hitting the Submit button invokes the foreign plan production process.
[Note: As a general precaution, we recommend that users check that
the auto-conversion result is satisfactory before submission; further,
if the auto-conversion fails for any reason, manual conversion can
always be used instead.]

Click the Reset View button to restore the original view of the diagram.

(Note: For Sybase ASE, the plans produced are compliant with those produced by the iSQL
command-line client.)

● Reduced Plan Diag:

Indian Institute of Science 39 of 130

Picasso 2.1 February 2011

http://www.swissql.com/products/sqlone-apijava/sqlone-apijava-downloadform.html

The Reduced Plan Diagram shows the extent to which the original plan diagram
can be simplified by completely replacing some of the existing plan regions with their
sibling optimal plans in the diagram, without increasing the cost of any individual
query by more than a user-specified threshold value.
When this tab is clicked, the Enter Cost Increase Threshold dialog box asks
for the threshold value which can be any positive number (the default value is
determined by the PLAN_REDUCTION_THRESHOLD macro in PicassoConstants.
java − it is set to 10% in the distribution). For Cost-Bounding-based reduction
algorithms (see below), a rough estimate of the location of the “knee” in the graph
characterizing “Plan Cardinality of the Reduced Plan Diagram versus Cost Increase
Threshold” is also provided as an aid to help the user in choosing the threshold.
Further, an estimate of the threshold location to result in a desired number of plans is
also given – this number is specified by the DESIRED_NUM_PLANS macro in
PicassoConstants.java, which is set to 10 in the distribution.

The Reduced Plan Diagram is labeled and graduated similar to the Plan Diagram. The
QTD is displayed at the middle of the top panel, and the reduced number (#) of plans
is displayed at the right corner. The bounds on the minimum, maximum and average
cost increases are displayed in the middle of the right panel for Cost-Bounding-based
reduction algorithms (see below).

Indian Institute of Science 40 of 130

Picasso 2.1 February 2011

The mouse-key-control operations are the same as those of the Plan Diagram, except
that “Compiled Plan Tree”, “Abstract Plan Diagram” and “Foreign Plan
Tree” cease to be valid choices.

A variety of choices of Plan Reduction algorithms are available in Picasso. They are:
CostGreedy [VLDB 2007], CC-SEER and LiteSEER, the latter two
derived from SEER [VLDB2008]. In the CostGreedy algorithm, bounds on the
increased costs of swallowed points are inferred from the costs of points present in
their neighborhood. On the other hand, the CC-SEER and LiteSEER algorithms
explicitly evaluate the increased costs of swallowed points through the Abstract-plan-
costing mechanism – therefore, they can be used only on engines that support this
feature (SQL Server and Sybase ASE in Picasso). The required algorithm can be
selected via Picasso Client → Local Settings. While the CostGreedy
algorithm guarantees that the replacement plan is within the cost -increase threshold
over the optimality region of the replaced plan, the CC-SEER algorithm provides the
same guarantee over the entire selectivity space, thereby providing robustness to
errors in selectivity estimates, a common problem faced by query optimizers in
practice. The LiteSEER algorithm is a heuristic variant of CC-SEER that substantially
reduces the computational effort and provides robustness similar to SEER, albeit
without the guarantee. (Note: In Picasso 1.0, a cost-bounding-based reduction
algorithm called AreaGreedy [VLDB 2005] was also supported, but it has
been discontinued since CostGreedy is superior in all performance aspects.)

For a description of the plan reduction algorithms, see Algorithmic Details,
and for a discussion of plan reduction semantics, see Diagram Semantics.

● Comp Cost Diag:

Indian Institute of Science 41 of 130

Picasso 2.1 February 2011

http://dsl.serc.iisc.ernet.in/projects/PICASSO/picasso_download/doc/Code/algorithms.htm#planreduction
http://dsl.serc.iisc.ernet.in/projects/PICASSO/picasso_download/doc/Usage/semantics.htm#PlanReduction

The Compilation Cost Diagram is a visualization of the associated estimated plan
execution costs. This is similar to a Plan Diagram, but shows the estimated cost of
executing the query-template over the selectivity space, as an additional
dimension. The costs are normalized to the range [0,1] with respect to the maximum
cost occurring anywhere in the d-dimensional selectivity space, i.e. global
normalization.

The QTD is displayed at the centre-top of the diagram and the number (#) of plans in
the corresponding 2-D plan diagram slice is displayed at the right-hand top corner. The
global minimum and maximum estimated values of the cost and cardinality of the
query template are displayed in the middle of the right-hand panel of the diagram.

In this tab, you can:

Left-click + drag on the diagram to rotate (or relocate the diagram in case
of 1D query templates).

Shift + Left-click on the diagram and move the cursor up to zoom in, or
down to zoom out.

Ctrl + Left click + drag to move it around.

Indian Institute of Science 42 of 130

Picasso 2.1 February 2011

Click the Reset View button to restore the original view of the diagram.

If the Cost Domination Principle (see the VLDB 2005 paper) is not followed in the
diagram, an alert is issued to the user. However, to prevent unnecessary alarms
arising out of arithmetic approximations, the threshold at which failure of cost
domination is alerted is determined by the COST_DOMINATION_THRESHOLD macro
in PicassoConstants.java – that is, the alert is issued only if the cost of a dominating
point is less than (COST_DOMINATION_THRESHOLD * cost of any of its dominated
points). The threshold is set to 95% in the distribution.
The alert also gives a count of the number of query points where cost domination was
violated, and in the Client Console, gives the complete list of these violating points,
indicating their costs and the costs of the points w.r.t. whom they have incurred the
violation.

● Comp Card Diag:

The Compilation Cardinality Diagram is a visualization of the associated

Indian Institute of Science 43 of 130

Picasso 2.1 February 2011

http://bhairav.serc.iisc.ernet.in/doc/Usage/paper.pdf

estimated query result cardinalities, and is similar in layout and behavior to a
Compilation Cost Diagram.

● Exec Cost Diag:

The Execution Cost Diagram is a visualization of the query execution costs – evaluated
in terms of response time – as determined through actual execution of the queries.
The layout and behavior of this diagram is similar to that of the Compilation Cost Diagram. A
comparison between the Execution Cost Diagram and the Compilation Cost Diagram can aid
in characterizing the optimizer’s modeling quality.

Notes:
1) The response time values in the Exec Cost Diag are given in units of seconds.
2) The running times can be highly dependent on the system status at the time of query execution and it is
therefore possible that the execution cost diagrams for a given query template are significantly different
between successive generations. For more details, see Diagram Semantics.

● Exec Card Diag:

Indian Institute of Science 44 of 130

Picasso 2.1 February 2011

http://dsl.serc.iisc.ernet.in/projects/PICASSO/picasso_download/doc/Usage/semantics.htm#ExecDiagram

The Execution Cardinality Diagram is a visualization of the result cardinalities
obtained through actual execution of the query, and is similar in layout and behavior to an
Execution Cost Diagram. A comparison between the Execution Card Diagram and the
Compilation Card Diagram can aid in characterizing the optimizer’s modeling quality.
Note that unlike the Execution Cost Diagram, the Execution Cardinality Diagram is not
affected by the diagram production environment. In this sense, it provides a more stable
characterization of the optimizer’s modeling quality relative to the cost-based comparisons.

Summary of Mouse-Key controls for Picasso Diagrams

Indian Institute of Science 45 of 130

Picasso 2.1 February 2011

Notes:
1) If any of the diagram tabs are clicked when the associated pictures have not been previously
generated, Picasso will estimate the time to generate the corresponding diagrams and ask for a
confirmation of generation. If Yes is clicked, then the generation takes place, with the status bar
showing the current status of completion, elapsed time and estimated remaining time, and the progress
bar continuously showing the progress. But if No is clicked, the control is transferred to the
QueryTemplate tab. See DiagramSemantics for a discussion of the estimation process.
2) The time estimates for producing an execution diagram are based on actually executing a sample
query, and it may therefore take significant time to produce the estimate.

● Sel Log:

Indian Institute of Science 46 of 130

Picasso 2.1 February 2011

http://dsl.serc.iisc.ernet.in/projects/PICASSO/picasso_download/doc/Usage/semantics.htm#TimeEstimations

When this tab is clicked, the Picasso selectivities and the associated constants are displayed
for each PSP, along with the Predicate and Plan selectivities – see Diagram
Semantics for details on these various selectivities.

The absolute and relative differences between the Picasso selectivities and the Predicate
selectivities are shown as Absolute Difference and Relative Difference, respectively. Rows
that have a Relative Difference above a user-specified difference threshold are marked in
red. The relative difference threshold is specified using the
SELECTIVITY_LOG_REL_THRESHOLD macro in PicassoConstants.java − it is set to
10% in the distribution.

Note: Whenever the Absolute Difference is less than the value of the
SELECTIVITY_LOG_ABS_THRESHOLD macro in PicassoConstants.java (set to 1% in
the distribution), the corresponding rows are not shown in red even if the relative
difference is more than the threshold – this is to prevent unnecessary alarms arising from
small selectivity values.

6. Remaining Buttons and Indicators

Indian Institute of Science 47 of 130

Picasso 2.1 February 2011

http://dsl.serc.iisc.ernet.in/projects/PICASSO/picasso_download/doc/Usage/semantics.htm#Selectivities
http://dsl.serc.iisc.ernet.in/projects/PICASSO/picasso_download/doc/Usage/semantics.htm#Selectivities

● Regenerate Diagram button: This is found in all the 6 diagram tabs, near the right-
hand bottom side of the screen. Clicking this button in any of the plan or compilation
diagrams regenerates the diagrams, reflecting changes (if any) in settings or environment.
Clicking the button in any of the execution diagrams regenerates all the diagrams (both
compilation and execution).

● Reset View button: This button lies below the Regenerate Diagram button in all

the diagram tabs. Clicking it restores the original view of the diagram.

● Gini Coeff: This is the Gini coefficient, displayed just above the plan legend, which
measures the skew in the areas of the regions covered by the various optimal plans in the
plan and reduced plan diagrams. It is a number between 0 and 1, where 0 corresponds to no
skew (i.e. all plans cover approximately the same area) and 1 corresponds to extreme skew (i.
e. one plan covers almost the entire space).

● Plan Legend: Occupies a vertical strip near the right-hand side of the screen. This is the

legend for the current Plan Diagram, but is displayed alongside all the other diagrams as a
visual aid. (For the Reduced Plan Diagram, the corresponding legend with the reduced
number of plans is shown.) Each colored square represents a plan, and the associated
number and space coverage in the current diagram is shown alongside. The plans are
displayed in decreasing order of space covered. Here too, as in the case of the Plan
Diagram, you can: (a) click on a color to view the associated Plan Tree window; (b) click on
one plan, drag and drop the mouse on a second plan to view the Plan Difference window
showing both the plans, with the differences between the plans highlighted; and (c) Alt
+Right-click to invoke the Abstract Plan feature.

● Progress Bar: This is found below the legend. When any diagram is being generated, the

progress of that process is shown here with a growing progress bar and the percentage
completed.

● Status Bar: This is the bottom-most horizontal strip in the screen. It shows the current

status in red colored text on a yellow background.

● Cancel Processing Button: This button located at the bottom portion of the screen
above the status bar, becomes active during the diagram generation or reduction
process. Clicking it terminates the current process at both client and server and discards all
information gathered thus far.

● Pause/Resume Processing Button: This button located at the bottom portion of the

screen above the status bar, becomes active during the diagram generation or reduction

Indian Institute of Science 48 of 130

Picasso 2.1 February 2011

process. Clicking it makes the server pause the current process. The process can be resumed
by clicking the button again.

7. Plan Tree windows

 Click here for information on the various Plan Tree windows.

Documentation Home

Indian Institute of Science 49 of 130

Picasso 2.1 February 2011

http://dsl.serc.iisc.ernet.in/projects/PICASSO/picasso_download/doc/Usage/plantree.htm
http://dsl.serc.iisc.ernet.in/projects/PICASSO/picasso_download/doc/index.htm

Picasso Database Query Optimizer Visualizer
©Indian Institute of Science, Bangalore, India

PLAN TREE WINDOWS

This section describes the various plan-related windows: Schematic Plan Tree,
Compiled Plan Tree, Plan Difference, and Foreign Plan Tree that
arise from keyboard-mouse operations on the Picasso diagrams.

1. Schematic Plan Tree window:

Indian Institute of Science 50 of 130

Picasso 2.1 February 2011

This window appears when any plan region in PlanDiag or Reduced PlanDiag is right-
clicked and displays the schematic structure of the associated plan tree. The window also
appears when any plan in the legends that are shown in all the compilation diagrams
(PlanDiag, Reduced PlanDiag, CompCost, CompCard) is clicked. The
window has these controls:

Zoom In button: Click to enlarge the tree.

Zoom Out button: Click to shrink the tree.

Indian Institute of Science 51 of 130

Picasso 2.1 February 2011

Node Information: When a node in the plan tree is selected, this panel shows the
name of the node and its parameter details, if any.

Plan Tree: This is the pictorial representation of the plan tree. Each node in this tree
represents an execution operation and is displayed with its name. Further, each node type
is assigned a unique color. Clicking on a node displays its details (including parameter
information, if any) in the space above the tree. If necessary, the nodes and edges in the
tree can be moved around to enhance the display clarity.

Note: The names of the nodes are retained the same as those used by the respective
database engines. That is, similar operators may be named differently across plan trees
corresponding to different database engines (e.g. DB2 uses RETURN and TBSCAN to refer to what
Oracle chooses to call SELECT STATEMENT and TABLE ACCESS, respectively.) Refer the vendor
documentation for the semantics of the various node types.

Menu bar:
File menu: There are 4 menu items: Save, Print, Print Preview and Exit. Their
functions are the same as those in the root client window.
Help menu:

Usage Guide: Opens a help page pertaining to Plan Windows.
About Picasso: Displays a dialog containing information on Picasso including version,
home page, etc.

2. Compiled Plan Tree window:

Indian Institute of Science 52 of 130

Picasso 2.1 February 2011

This window appears when the user executes a Shift+right-click on any point within the
PlanDiag. This window has the same controls as the Schematic Plan Tree, with the addition
of a Display Type drop-down box − the selection in this box determines what information is
displayed for each node. The default setting is ‘Both’, whereby the cost and cardinality at each
node is shown. With ‘Cost’ only the cost is shown, while with ‘Card’ only the cardinality is
shown, and with ‘None’, the vanilla plan tree is displayed. The difference between Compiled

Indian Institute of Science 53 of 130

Picasso 2.1 February 2011

Plan Tree and Plan Tree is that the compiled plan tree is with respect to a specific query point,
whereas the plan tree is with respect to a plan region.

3. Plan Difference window:

This window appears when the user right-clicks on a particular plan (either in the diagram for
PlanDiag and Reduced PlanDiag, or in the legend for all the compilation diagrams) and
then drags the mouse and drops on a different plan. It shows side-by-side the schematic plan
trees corresponding to these two plans. The nodes which perform the same function (i.e. same
label) with the same inputs in both the plans are shown completely in white, signifying their
commonality. The differences, on the other hand, are highlighted through different colors, as
given below:

Indian Institute of Science 54 of 130

Picasso 2.1 February 2011

● Node labels, Node parameters and Node inputs are identical: White nodes with
Black input links

● Node labels are the same: White Fill

o Parameters different: Green-bordered nodes with Black input links

o Left and right inputs swapped: Orange-bordered nodes with Blue input
links

o Left and right inputs different: Orange-bordered nodes with Red input
links

● Node labels are different: Red-bordered nodes filled with the native node color

o Left and right inputs swapped: Blue input links

o Left and right inputs different: Red input links

● Nodes are unmapped (i.e. no corresponding node in the other tree): Nodes filled
with the native node color and Black input links

The controls in this window are the same as those in the Schematic Plan Tree window, with an
additional item, Color Code Guide, in the Help menu, which displays the above color
coding.

Note that when plan difference is carried out on a OperatorDiff-based plan diagram, the
trees will always include at least one colored node or link (that is, unlike ParameterDiff-
based plan diagrams, it is not possible to have pure black-and-white trees with only green node
borders).

For a discussion of Plan Difference semantics, please see Diagram Semantics, and for
a description of the node-matching algorithm, see Algorithmic Details.

4. Foreign Plan Tree window:

This window appears when the user executes a Ctrl+Alt+right-click on any point within the
PlanDiag and chooses either a foreign engine, or the same engine at a different optimization

Indian Institute of Science 55 of 130

Picasso 2.1 February 2011

http://dsl.serc.iisc.ernet.in/projects/PICASSO/picasso_download/doc/Usage/semantics.htm#PlanDifference
http://dsl.serc.iisc.ernet.in/projects/PICASSO/picasso_download/doc/Code/Algorithms.htm#plandifference

level. The window shows the compiled versions of both the foreign plan-tree and the local
plan-tree at the selectivity coordinates of the clicked point. If a common engine is used, then the
schematic plan difference between the two trees is also shown.

The settings panel for this functionality is shown below.

■ Example Foreign Plan Tree Diagram for the Different Engines case:

Indian Institute of Science 56 of 130

Picasso 2.1 February 2011

■ Example Foreign Plan Tree Diagram for the Same Engine case (note the Plan Difference
comparison):

Indian Institute of Science 57 of 130

Picasso 2.1 February 2011

Documentation Home

Indian Institute of Science 58 of 130

Picasso 2.1 February 2011

http://dsl.serc.iisc.ernet.in/projects/PICASSO/picasso_download/doc/index.htm

Picasso Database Query Optimizer Visualizer
©Indian Institute of Science, Bangalore, India

COMMAND LINE INTERFACE to PICASSO SERVER

Apart from the Picasso Client graphical interface described in the main documentation, the Picasso Server
can also be accessed directly through the command line. The utility resides in the PicassoRun
directory and is called PicassoCmd.

The command line utility can be used as follows:

1. a) For generating exact diagrams that have the same resolution and the complete range on
all dimensions:
PicassoCmd <ServerName> <Port> <DBConnection>
<OptLevel> <QTD> <QDist> <DiagType> <QTFile> <Resolution>

b) For generating approximate diagrams that have the same resolution and the complete
range on all dimensions:
PicassoCmd <ServerName> <Port> <DBConnection>
<OptLevel> <QTD> <QDist> <DiagType> <QTFile> <Approx-
algo> <IdError> <LocError> <Resolution>

2. a) For generating exact diagrams with dimension-specific ranges and/or resolutions:
PicassoCmd -R <ServerName> <Port> <DBConnection>
<OptLevel> <QTD> <QDist> <DiagType> <QTFile> <Approx-
algo> <IdError> <LocError> {<Resolution> <Startpoint>
<Endpoint>}

b) For generating approximate diagrams with dimension-specific ranges and/or resolutions:
PicassoCmd -R <ServerName> <Port> <DBConnection>
<OptLevel> <QTD> <QDist> <DiagType> <QTFile>
{<Resolution> <Startpoint> <Endpoint>}

The number of {<Resolution> <Startpoint> <Endpoint>} triplets has to be identical to
the dimensionality of the query template. The triplets are associated with the PSP predicates in their
syntactic order of appearance in the query template – i.e., the first triplet corresponds to the first :
varies predicate in textual order, the second triplet corresponds to the second :varies predicate, and
so on.

Indian Institute of Science 59 of 130

Picasso 2.1 February 2011

The following table explains the various arguments:
Argument Meaning
ServerName Name/IP of machine running Picasso Server
Port Port number of Picasso Server
DBConnection Database Connection Descriptor
OptLevel Database Engine's Optimization Level
QTD Query Template Descriptor
QDist Query Distribution (permitted values are Uniform and Exponential)
DiagType Diagram Type (permitted values are Compilation, Approximate and

Execution)
QTFile File containing the Query Template
Approx-algo Choice of Approximation algorithm (permitted values are Sampling and

Grid)
IdError Identity error tolerance (1-99 percent)

LocError Location error tolerance (1-99 percent)
Resolution Number of query points along a dimension (permitted values are 10, 30,

100, 300 and 1000)
Startpoint Start point of the selectivity space along the dimension (0-99 percent)

Endpoint End point of the selectivity space along the dimension (1-100 percent).
Endpoint must be greater than Startpoint by at least 1%.

 Notes:
1. The first eight arguments and <Resolution> are compulsory for all diagrams. Further, if
DiagType = Approximate, then the arguments <Approx-algo>, <IdError>,
<LocError> are compulsory.
2. If the -R option is used, then the number of {<Resolution> <startPoint>
<endPoint>} triplets must be exactly the same as the dimensionality of the query template.

The following are representative examples of using the command line facility:

a. PicassoCmd localhost 4444 sql_localhost default
SQL_Default_Uniform_100_q2 Uniform Compilation E:\Picasso
\QueryTemplates\sqlserver\q2.sql 100
first connects to the Picasso server residing on “localhost” at port “4444” and then to the
database engine using the “sql_localhost” connection descriptor. It then produces compilation
diagrams with QTD “SQL_Default_Uniform_100_q2” at a “default” optimization
level with queries Uniformly distributed at a resolution of 100 on each dimension over the
entire selectivity range, for the query template in file “E:\Picasso\QueryTemplates\sqlserver\q2.

Indian Institute of Science 60 of 130

Picasso 2.1 February 2011

sql”.

b. PicassoCmd localhost 4444 sql_localhost default
SQL_Default_Uniform_100_q8_RS-NN Uniform Approximate E:
\Picasso\QueryTemplates\sqlserver\q8.sql Sampling 10 20 100
first connects to the Picasso server residing on “localhost” at port “4444” and then to the
database engine using the “sql_localhost” connection descriptor. It then produces
approximate diagrams with QTD “SQL_Default_Uniform_100_q8_RS-NN” at a
“default” optimization level with queries Uniformly distributed at a resolution of 100 on
each dimension over the entire selectivity range, for the query template in file “E:\Picasso
\QueryTemplates\sqlserver\q2.sql” using the "Sampling (RS-NN)"
approximation algorithm with tolerances of 10% identity error and 20% location error.

c. PicassoCmd -R localhost 4444 sql_localhost default
SQL_Default_Uniform_100_q9_custom Uniform Compilation E:
\Picasso\QueryTemplates\sqlserver\q8.sql 100 10 80 30 20 50
first connects to the Picasso server residing on “localhost” at port “4444” and then to the
database engine using the “sql_localhost” connection descriptor. It then produces compilation
diagrams with QTD “SQL_Default_Uniform_100_q9_custom” at a “default”
optimization level with queries Uniformly distributed for the query template in file “E:\Picasso
\QueryTemplates\sqlserver\q9.sql”. The diagram has customized range and
resolution on different dimensions – in the first dimension, the resolution is 100 with the selectivity
range going from 10% to 80%, while in the second dimension the resolution is 30 with the
selectivity range going from 20% to 50%.

Documentation Home

Indian Institute of Science 61 of 130

Picasso 2.1 February 2011

Picasso Database Query Optimizer
Visualizer

©Indian Institute of Science, Bangalore, India

DIAGRAM SEMANTICS

This section describes the semantics underlying the various Picasso diagrams.

1. Diagram Production

Given a d-dimensional query template and a plot resolution of ni on dimension i, the

Picasso Server generates queries that are either uniformly or exponentially
(based on the user’s choice of Query Distribution) distributed over the selected
selectivity space. In the case of compilation diagrams, each of these queries is
submitted to the database engine to be optimized, whereas in the case of execution
diagrams, the queries are actually executed. After the plans corresponding to all the
points are obtained, a different color is associated with each unique plan, and all
query points are colored with their associated plan colors. Then, the rest of the
diagram is colored by painting the hyper-rectangle around each point with the color
corresponding to its plan. For example, in a 2-D plan diagram with a uniform grid
resolution of 10, there are 100 real query points, and around each such point a
square of dimension 10x10 is painted with the point’s associated plan color. The
implementation in Picasso is such that the query instances are generated in row-
major order beginning with the point closest to the origin.

Note that the above description is true for producing exact diagrams, the only option
in Picasso v1. However, in version 2, a new feature of approximate
compilation diagrams is supported. In these approximate diagrams, only
a subset of the points in the selectivity space is explicitly optimized while the
characteristics of the remaining points are inferred. The quality of the
approximation and the associated overheads are determined by the error tolerances

Indian Institute of Science 62 of 130

Picasso 2.1 February 2011

specified by the user.

For each database on a database engine, all Picasso-related information is stored in
a set of tables and views within the database on the engine – the tables are
PicassoQTIDMap, PicassoPlanStore, PicassoPlanTree,
PicassoPlanTreeArgs, PicassoSelectivityMap, PicassoSelectivityLog,
PicassoRangeResMap, PicassoXMLPlan, PicassoApproxMap and the
view is picasso_columns.

2. Picasso/Predicate/Plan Selectivities

Given a query point in the selectivity space, Picasso estimates the constants that
would result in the desired selectivities of the base relations by essentially carrying
out an “inverse-transform” of the statistical summaries corresponding to the Picasso
columns (PSPs). However, it is possible that there are discrepancies between the
optimizer’s view of the selectivities corresponding to these constants and the Picasso
view for a variety of reasons:

1. Different interpolation mechanisms from the summaries – Picasso always
uses linear interpolation (for the commercial optimizers, such internal
information is not readily available).

2. Different usage of the summaries – for example, some optimizers choose
to not use the histogram statistics at low optimization levels, whereas Picasso
always uses the complete information.

3. Values presented in the optimizer’s query plan may sometimes be a
function of the overall plan structure – for example, when an engine chooses a
nested mode of execution with a PSP in the inner sub-query, the selectivities
shown may not correspond to the range of the PSP, but to the equality predicate
that is checked in each iteration of the nested execution.

4. Incorrect calculations in the optimizer – for example, one of the optimizers
makes a miscalculation whenever the constant happens to coincide exactly with

Indian Institute of Science 63 of 130

Picasso 2.1 February 2011

histogram bucket boundaries, resulting in the clearly impossible situation where
even with C1 < C2, the selectivity of R.A ≤ C2 is estimated to be less than
the selectivity of R.A ≤ C1, because C2 happens to coincide exactly with the
bucket boundary.

5. Sometimes, for some of the selectivity locations in a given plan diagram,
the Plan Selectivities (see definition below) may be quite different from the
corresponding Picasso or Predicate selectivities (see definition below) because
the plans at those selectivity points may impose predicates in addition to the
PSP on the node. This can happen, for example, when the PSP features in the
inner relation of a nested loop join. Another reason for differences is that the
plan selectivities are computed on a d-dimensional space, whereas the Picasso
and Predicate selectivities are computed on uni-dimensional space, and
therefore the query points on which the plan selectivities are computed may
produce plans that have issues like the nested-loop join situation. Finally, it is
also possible that the optimizers may, for certain plan structures, produce rule-
based selectivities.

To provide users with a holistic view of this issue, Picasso gives three selectivities:
Picasso, Predicate and Plan, for the set of constants corresponding to each
PSP, in the Selectivity Log that is produced along with the diagrams. These
selectivities are defined as follows:

• Picasso selectivity: This is the selectivity of the PSP as determined by the
Picasso software through the statistical summaries of the database engine.

• Predicate selectivity: This is the optimizer’s estimated selectivity for the
PSP when the uni-dimensional query “select * from Table T where PSP(T)”
is optimized.

• Plan selectivity: This is the selectivity associated with the node containing the
PSP in the optimizer’s plan for the original query. The plans are taken from the query
points on the diagonal of the d-dimensional space.

Indian Institute of Science 64 of 130

Picasso 2.1 February 2011

3. Plan Difference

The semantics for ‘plan difference’ are vendor-specific in terms of what variations
qualify as genuine semantic differences between a pair of plans. In the absence of
such information, Picasso currently supports two extreme levels of differentiating
between plans: As a “lower bound”, it compares the plans at an Operator level,
where only differences between either the tree structures themselves, or the node
identities at corresponding locations, are taken into account. On the other hand, as
an “upper bound”, it compares the plans at a Parameter level, where auxiliary
information associated with a node is also taken into account. To make this clear,
consider a TableScan node in plan P1 that has its Prefetch attribute set to
‘None’, while in plan P2 the same node has Prefetch set to ‘Sequential’.
These two nodes would be identical with an Operator perspective, but different from
a Parameter perspective.

A related issue in the above is “what constitutes an operator parameter”, that is, what
auxiliary information from the plan is to be associated with a node. Again, since this
is vendor-specific, we have made choices based on our understanding of the
relevance of the information to the execution engine. However, we recommend users
of Picasso to suitably modify the code if they prefer alternative choices. Currently,
the operator parameters included for the various engines are the following:

• DB2 – all operator parameters in the EXPLAIN_ARGUMENTS table except
NUMROWS, BITFLTR, FETCHMAX, ISCANMAX, MAXPAGES, MAXRIDS, SPILLED (if a parameter is
present multiple times for a given operator, only the first is retained)

• Oracle – all operator parameters present in the OPTIONS table

• SQL Server – all information associated with the operator (the constants
associated with PSP predicates are replaced by :varies)

• Sybase ASE – the CacheStrategy and Order operator parameters

Indian Institute of Science 65 of 130

Picasso 2.1 February 2011

• PostgreSQL – no operator parameters are included since we were unable
to identify any parameter information in the optimizer’s plan output; as a
consequence, there are no differences in the pictures derived with Operator and
Parameter settings for this engine

4. Plan Reduction

In plan reduction, a plan in the plan diagram is replaced if and only if all its
associated query points can be ‘swallowed’ by one or more sibling plans, without
increasing the original cost of the points by more than the user-specified threshold
percentage. The query points of a swallowed plan are re-colored with the colors of
the “swallower” plans.

There are two categories of plan reduction algorithms:

1. Algorithms based on Cost-bounding (CB), wherein bounds on the
increased costs of swallowed points are inferred from the costs of points
present in their neighborhood. The AreaGreedy and CostGreedy
algorithms implemented in Picasso fall into this category.

2. Algorithms based on Abstract-plan-costing (APC), wherein
the increased costs of swallowed points can be explicitly evaluated through
the Abstract-plan-costing mechanism. The CC-SEER and LiteSEER
algorithms implemented in Picasso fall into this category.

Cost-bounding Approach

In the CB-based approach, the swallowing criteria used for a query point qs is that
the candidate swallower plan must have at least one query point qt in the first

quadrant relative to q as the origin in the selectivity space whose cost is
within the threshold w.r.t. q’s cost. If there are multiple such points, the qt point with
the lowest cost is selected as the replacement. Further, if there are multiple feasible
swallower plans, the plan with the lowest replacement cost is chosen as the

Indian Institute of Science 66 of 130

Picasso 2.1 February 2011

preferred swallower.

A fundamental assumption in this reduction approach, which is also the reason for
restricting attention to the first quadrant, is that query processing costs
monotonically increase with increasing selectivities – that is, more input
from the base relations implies more work to be done and hence more cost incurred
(see the Cost Domination Principle in this VLDB 2005 paper). While this is true in
practice for most query templates, it may sometimes not hold because of either (a)
the intrinsic nature of the query template (e.g. presence of the EXISTS operator may
lead to cost reductions with increasing selectivities), or (b) due to erroneous
modeling in the optimizer. Further, even if it apparently holds based on the
explicit query points that are optimized in the plan diagram, it is possible, albeit
unlikely, that there are regions in between these points where it may be violated.
Therefore, the reduction diagrams should always be interpreted with care
keeping in mind the likelihood of the cost monotonicity assumption being valid. Note
that explicit violations of the assumption are flagged by the Cost Domination
Principle violation alert message in Picasso. Further, in such situations where the
costs do not monotonically increase in the entire space, we permit swallowing only if
the candidate swallower point in the first quadrant is not only within the threshold but
also has the same or higher cost than the point under consideration.

Note that it is possible for a plan PJ to be swallowed by another plan PK, and later,
for (the now enlarged) PK itself to be swallowed by a plan PM, as long as all the
query points now associated with PK do not have their original costs increased by
more than the threshold.

In general, if a sufficiently large threshold is given, the user may expect to wind up
with a single plan in the reduced plan diagram. However, in our implementation,
this will happen only if the query costs follow the Cost Domination Principle
mentioned above.

Abstract-plan-costing Approach

In the APC-based approach, cost domination and restricting attention to first
quadrant is not mandatory since Abstract-plan-costing can be used to explicitly

Indian Institute of Science 67 of 130

Picasso 2.1 February 2011

http://bhairav.serc.iisc.ernet.in/doc/Usage/paper.pdf

evaluate the costs of replacement plans at the replaced locations. However, in our
algorithms, to ensure that Abstract-plan-costing needs to be carried out at only a few
points in the selectivity space, a different assumption is made with regard to the
behavior of plan cost functions over the selectivity space – specifically, that all plans
follow the parametrized cost model template described in this VLDB 2008 paper,
which was arrived at after an in-depth study of current industrial-strength optimizers.

For a detailed treatment of the Plan Reduction problem, see this technical report
(CB-based algorithms) and this technical report (APC-based algorithms).

5. Time Estimations for Exact Diagram Production

For estimating the time to produce a compilation diagram, Picasso first
measures the compilation times for five query points spaced uniformly on the
principal diagonal of the n-D selectivity space and scales the average of these by the
total number of query points in the diagram. The above initial estimate is re-
calibrated dynamically during the diagram processing based on the time taken
for the queries fired so far and the number of remaining queries.

For estimating the time to produce an execution diagram, Picasso first measures
the execution time of a query point on the principal diagonal that is located close to
the origin of the n-D selectivity space. For example, in the case of a full-range
diagram, the query (0.05, 0.05,…, 0.05). This value is used as an indicator of the
multiplication factor f relating the query optimizer’s estimated cost and the actual
response time. Then the optimizer costs for all the points in the diagram are
aggregated and finally multiplied by f to estimate the production time of the entire
diagram.

The above initial estimate is re-calibrated dynamically during the diagram
processing based on the time taken for the queries fired so far and the aggregate
estimated cost of the remaining queries.

An important point to note is that since the time estimates for producing an execution

Indian Institute of Science 68 of 130

Picasso 2.1 February 2011

http://dsl.serc.iisc.ernet.in/publications/conference/seer.pdf
http://dsl.serc.iisc.ernet.in/publications/report/TR/TR-2007-01.pdf
http://dsl.serc.iisc.ernet.in/publications/report/TR/TR-2007-02.pdf

diagram are based on actually executing a sample query, it may therefore take
significant time even to just produce the estimate. Further, the estimation could be
significantly influenced by the current system environment, e.g. the contents of the
database memory cache.

6. Time Estimations for Approximate Compilation Diagram Production

For estimating the time required to generate an approximate compilation diagram,
coarse estimators, S-est and G-est, are incorporated in the Sampling (RS_NN) and
Grid (GS_PQO) approximation algorithms, respectively.

S-est: In this time estimator for the RS_NN algorithm, a randomly-chosen small
seed set of query points is initially optimized and the plan-identity error is estimated
using the dmax statistical estimator, as described in this technical report. Then, a
second randomly chosen query point set of the same size is optimized and the
incremental reduction in the error is estimated. Based on this reduction, the number
of samples required for reducing the error to meet the user-specified tolerance is
estimated through linear scaling. Finally, the time for optimizing the expected number
of required samples is estimated, again through linear scaling.

Note that our estimation process only considers plan-identity error. This is because,
given similar tolerance levels for both errors, our empirical observation has been that
the plan-location error typically lags behind the plan-identity error. However, it is
possible that the user may have given a significantly larger tolerance for identity error
as compared to location error, in which case the assumption is no longer valid. To
handle this situation, we artificially treat the lower of the tolerance levels to be the
plan-identity error in computing the time estimation, in the process achieving a
conservative estimate (note that this assumption is only intended for generation time
estimation and does not impact the approximation process itself). In the current
implementation, the cardinality of the seed set is 50 query points, which typically
takes less than a minute to optimize on standard platforms.

G-est: In this time estimator for the GS_PQO algorithm, the points on the corner
cells of the grid-partitioned space are initially optimized. The "plan richness" factor, a

Indian Institute of Science 69 of 130

Picasso 2.1 February 2011

http://dsl.serc.iisc.ernet.in/publications/report/TR/TR-2008-01.pdf

measure of the expected number of plans present in the region, is computed for
each of these cells (see this technical report for details). Among the cells that are
adjacent to an axis, we choose the one with the maximum plan-richness for repeated
partitioning until it is estimated that the user tolerance levels have been met within
the cell. Call this cell as Maxaxis . Subsequently, the cell with the highest selectivity

coordinates (i.e. the cell at the far end of the principal diagonal of the space) is also
processed in a similar manner. Call this cell as Maxsel . Now we assume that each
cell adjacent to an axis will incur the same overheads as Maxaxis , while all

remaining cells will incur that of Maxsel. We sum up the sample size accordingly as
the final estimate. In the current implementation, the initial partitioning of the
selectivity space is such that each cell has an edge length of 8 query points. The
motivation for treating the cells bordering the axes differently than those in the
hinterland is the commonplace observation that plans tend to be distributed richly
along the axes as compared to the interior regions.

7. Execution Cost Diagram

An important point to note with regard to execution cost diagrams is that the actual
running times depend on a number of factors, including system load, cache status,
and also, the order in which the query instances are generated − this is
because the order can influence the cache contents. In the current diagrams
produced by Picasso, no special effort is made to produce a cold-cache – instead the
diagram is a function of whatever happens to be the cache status during the diagram
production process. Further, as mentioned above, the queries are generated in row
order beginning with the point closest to the origin.

Note that the above issue does not arise for Execution Cardinality Diagrams, since
the result cardinality is a function of only the database contents, and not the system
environment.

Indian Institute of Science 70 of 130

Picasso 2.1 February 2011

http://dsl.serc.iisc.ernet.in/publications/report/TR/TR-2008-01.pdf

Documentation Home

Indian Institute of Science 71 of 130

Picasso 2.1 February 2011

http://dsl.serc.iisc.ernet.in/projects/PICASSO/picasso_download/doc/index.htm

Picasso Database Query Optimizer
Visualizer

©Indian Institute of Science, Bangalore, India

TROUBLE-SHOOTING

1. If you get connection errors to the database engines, make sure that you have the
appropriate database connection libraries present in the Libraries directory, and
that you have executed the activatedb script.

2. If you get visualization errors, make sure that you have the appropriate graphics
libraries present in the Libraries directory.

3. If the AutoConvert SQL Dialect button is greyed out, you will need to
download the SwisSQL.API.jar library file into the Libraries directory (see
the licenses documentation for download details). Note that this optional library is
not provided even with the full distribution of Picasso.

4. If you have problems running Picasso with the Java3D installed on your system,
copy the library files j3dcore.jar, j3dutils.jar and vecmath.jar from the
system’s Java3D directory to the Libraries directory.
In Windows, if the problem persists, edit runClient.bat as follows:
Change “java -Xmx256m …” to
 “java –Djava.library.path=<JDK_HOME>\jre\bin –Xmx256m
…”
This directory contains J3D.dll and J3dUtils.dll which are required to run
Picasso.

5. If the Picasso Client doesn’t seem to be responding, or is taking a long time for
some operation, check the console from which the Client was run. If there is any
error message like “Out of memory exception”, then close the Client and restart it. If
the problem persists, increase the JVM memory amount to 1 GB by providing -
Xmx1024m argument. By default it is set to 256 MB.

6. During its operations, the Picasso Client may throw an error message “Out of
Memory Error, Please Restart PicassoClient”. This happens when too many
diagrams are created in the current session of the client. When this happens, close

Indian Institute of Science 72 of 130

Picasso 2.1 February 2011

the Client and start it again.
7. After clicking on a diagram tab, you may sometimes receive a black diagram screen

instead of the picture. This is usually because your system does not have sufficient
video memory to host all the diagrams retrieved from the server. To conserve video
memory, try lowering the screen resolution and reducing the color quality.
Alternatively, set the flag LOW_VIDEO in PicassoConstants.java to True (the
default value is False), recompile the client, and resume operations – with this flag
set to true, the video memory is flushed before each new diagram is loaded.

8. The Picasso Client window always starts in a maximized state. If it is resized to
some other state during its operations, then the Status Bar may not be visible.
To see the status bar, maximize the Client window.

9. The Plan Legend may not show sometimes – in such cases, try resizing the window
to Normal size and then revert to Maximized size.

10. If the Picasso Client or the Picasso Server seems to hang, it could be because the
associated console is in the ‘Select’ mode, perhaps due to a mouse click. In this
situation, try to bring the console back to the normal mode by pressing the ‘Enter’
key in the console.

11. If the Machine field of the DBConnection Settings dialog accepts the IP of
a machine, but does not accept the machine name, then add the machine to the file
Windows\system32\drivers\etc\hosts | /etc/hosts in Windows | Unix
and try again.

12. For a Picasso error that appears related to the database engine, first check if the
query can be independently and successfully executed directly on the database
engine, in order to make sure the error is not due to the query syntax or semantics
(such as missing table, wrong schema, etc), and take measures accordingly.

Note: If the above solutions do not address your problem, please contact us at picasso@dsl.
serc.iisc.ernet.in with a description of the problem. Both the Picasso Server and the Picasso
Client write their outputs and errors into log files in the PicassoRun/Logs directory.
The log files typically take up a few tens of kilobytes space for each freshly processed query
template. With your email, please attach the Server and Client log files, the SelLog text file
(created in Logs directory by executing Save in the File menu for the SelLog screen), as
well as screen dumps of the Server and Client consoles.

 KNOWN ISSUES:

Indian Institute of Science 73 of 130

Picasso 2.1 February 2011

mailto:picasso@dsl.serc.iisc.ernet.in
mailto:picasso@dsl.serc.iisc.ernet.in

1. In a Linux environment, the client may throw the exception (<unknown>:8407): Gtk-
CRITICAL **: gtk_paint_box: assertion `style->depth == gdk_drawable_get_depth
(window)' failed. This is an open bug currently being examined by Sun Developer
Network. For more details, please refer to this page.

Documentation Home

Indian Institute of Science 74 of 130

Picasso 2.1 February 2011

http://bugs.sun.com/view_bug.do?bug_id=6624717

Picasso Database Query Optimizer
Visualizer

©Indian Institute of Science, Bangalore, India

FUTURE PLANS

We hope to include the following features in future releases of the Picasso software:

1. Support for the Date data type in Oracle, and the String data type in PostgreSQL.

2. Knee estimators for the PlanCardinality-versus-CostIncreaseThreshold graphs of
CC-SEER and LiteSEER.

3. Display of multiple diagrams side-by-side in the drawing canvas.

4. Remote applet access to Picasso installations.

5. Parallel diagram generation on multi-core systems.

6. Incremental diagram generation and partial diagram visualization.

Documentation Home

Indian Institute of Science 75 of 130

Picasso 2.1 February 2011

Picasso Database Query Optimizer
Visualizer

©Indian Institute of Science, Bangalore, India

CODE DESIGN and HISTORY

Design:

Refer to this master’s thesis for an introduction to the overall design of
Picasso, and to the Server class diagram and Client class diagram for the
code organization.

History:

Version 0.5b (May 2006)

1. Limited release

Version 1.0 beta (November 2006)

1. Public release

2. Features:

a. Rewritten Picasso parser

b. Modular separation of code between Client and Server

3. Bugs:

Indian Institute of Science 76 of 130

Picasso 2.1 February 2011

file:///D|/PicassoSite/Picasso2Doc/Code/aslam.pdf
file:///D|/PicassoSite/Picasso2Doc/Code/server_class_diag.jpg
file:///D|/PicassoSite/Picasso2Doc/Code/client_class_diag.jpg

No Description Status
1 Postgres plan parser missing right

tree of binary input for Sort
Fixed in v1.0

2 Only uppercase schema information
supported

Fixed in v1.0

3 Bigint type not supported for SQL
Server

Fixed in v1.0

4 PlanDiff incorrectly showed some
differences

Fixed in v1.0

5 Checked Cost-domination violation
locally, instead of globally

Fixed in v1.0

6 Picasso parser gives error on some
complex queries

Fixed in v1.0

7 Lengthy sub-operator information
in SQL Server caused exception

Fixed in v1.0

8 Big-int typecasting is incorrect Fixed in v1.0
9 Sybase ASE templates for Q17 and

Q20 were incorrect
Fixed in v1.0

10 Remote connection to PostgreSQL
was not working

Fixed in v1.0

11 Identical attribute names of
different relations not permitted in
PSPs

Fixed in v1.0

Version 1.0 (May 2007)

1. Public release

2. Major new features:

1. Client-side implementation of Operator-based and Parameter-based plan
differentiation – the user can toggle between these two views without having
to create two separate diagrams

2. Exponential distribution of query points in the selectivity space –

Indian Institute of Science 77 of 130

Picasso 2.1 February 2011

maximum density around the origin and along the axes, progressively lesser
moving outwards in the space

3. Command-line interface to submit query templates for diagram
generation in batch mode

4. CostGreedy plan reduction algorithm which is significantly more efficient
than AreaGreedy, the algorithm used in the beta version

5. Abstract Plan feature through which, at a given point in the current plan
diagram, the user can visualize the plan produced by another engine or by
the same engine at another optimization level

6. Abstract Plan feature through which a specific plan appearing in the plan
diagram can be employed through the entire selectivity space, and not just in
its optimality region
(this feature is available only on MS SQL Server 2005 and Sybase ASE)

3. Minor new features:

1. Detailed operator parameter information for SQL Server

2. Added Relation nodes under index nodes for DB2 and Oracle, so that the
leaf nodes are always base relations

3. Index node parameter information for Oracle

4. Improved the quality of the diagram production time estimator for
execution cost diagrams by taking into account the estimated compiler costs
at all points in the diagram

5. Improved the speed of the execution cost diagram time estimator by
using the lower diagonal corner as the sample query point rather than the
mid-point of the diagonal

6. Quantified the number of query points where Cost Domination fails

4. Other changes:

Indian Institute of Science 78 of 130

Picasso 2.1 February 2011

1. Several bug-fixes of version 1.0 beta listed in above table

2. Several improvements to user messages

3. Changed the term “Sub-Operator” to “Parameter” to be consistent with
literature

Version 2.0 (February 2009)

5. Public release

6. Major new features:

1. Custom Resolution for each dimension – diagram resolutions can be
specified by the user on a per-dimension basis.

2. Custom Range for each dimension – diagram production can be
localized to user-specified sub-ranges along each dimension of the
selectivity space.

3. Client-side implementation of (a) color assignments to plans, and (b)
slicing of diagrams for query templates with three or more dimensions.

4. Approximate diagram generation – efficient production of approximate
diagrams that are in conformance with user-specified tolerances to plan
identity and plan location errors. User has a choice of two approximation
algorithms: RS-NN, based on random sampling and nearest-neighbor
implementation, and GS-PQO, based on grid partitioning and parametric
query optimization.

5. Robust Plan Reduction through the CC-SEER algorithm which extends
the cost-increase-threshold guarantee of plan replacement to the entire
selectivity space, thereby providing robustness to errors in selectivity
estimates. LiteSEER, a computationally light-weight heuristic-based variant
of CC-SEER is also available in the system.

7. Additional new functionalities:

1. Multi Engine Plan View – at a given query location, side-by-side view of

Indian Institute of Science 79 of 130

Picasso 2.1 February 2011

plans from two different database engines, or the same engine at different
optimization levels.

2. Enhanced Plan Legend Panel – for query templates with three or more
dimensions, the plan legend panel for each 2-D slice displays both the global
and the slice-specific number of plans. The ordering and coloring of plans in
the legend is kept consistent across the slices based on global space
coverage.

3. Compressed Diagram Packet – diagram packets sent from the server to
the client are compressed to reduce transfer latency.

4. Multi-core Plan Operators – operator lists have been extended to support
database engines featuring plan operators that are specific to multi-core
platforms.

8. Other changes:

1. Several improvements to user status and error messages

Version 2.1 (February 2011)

9. Public release

10. Major new features:

1. MySql Support – Users can now run Picasso on MySql.

2. Collation Schemes – Different collation schemes can now be used for
PSPs which are of the String data type.

3. Load Packet – The packets which are saved using the Save Packet
feature can now be visualized in Picasso using this feature.

11. Other changes:

1. Many bugs have been fixed and improvements to user status and error
messages have been done.

Indian Institute of Science 80 of 130

Picasso 2.1 February 2011

Documentation Home

Indian Institute of Science 81 of 130

Picasso 2.1 February 2011

Picasso Database Query Optimizer Visualizer
©Indian Institute of Science, Bangalore, India

PORTING GUIDE

This document outlines the steps for porting Picasso to database platforms other than those natively
supported in the current code-base: DB2, Oracle, SQL Server, Sybase ASE,
PostgreSQL.

Let the new database engine be called ABC. These are the changes that need to be carried out to
port Picasso to ABC:

1. Edit the file DBConstants.java in the package iisc.dsl.picasso.common, adding the
following lines:

In global scope:
import iisc.dsl.picasso.common.db.AbcInfo;

Inside the class DBConstants:
public static final String ABC = "ABC";

Inside the initializer specification of the databases array:
new AbcInfo()

2. Edit the file Database.java in the package iisc.dsl.picasso.server.db.

Add the line: import iisc.dsl.picasso.server.db.abc.abcDatabase;

In the Database class, modify the function getDatabase(), adding the following lines:

 else if(vendor.equals(DBConstants.ABC))
 db = new AbcDatabase(settings);

3. Create a package abc in the package iisc.dsl.picasso.server.db

4. Create the class abcInfo (which extends DBInfo) in the package iisc.dsl.picasso.
common.db. In this class, define inside the constructor, the variables name, defaultPort,

Indian Institute of Science 82 of 130

Picasso 2.1 February 2011

treeNames, treecard and optLevels: (a) name should be the same as DBConstants.
ABC; (b) optLevels is an array of Strings representing different optimization levels supported
by the database; (c) treeNames is an array of Strings representing the names appearing in the
plan tree nodes, and is used for assigning colors to the plan tree nodes; (d) treecard is an
array of integers representing the expected number of children for corresponding nodes in
treeNames; and (e) defaultPort is a String that denotes the default port that is shown
when a new DBConnection Descriptor is created.

5. Create the class abcDatabase (which extends Database) in the package iisc.dsl.
picasso.server.db.abc. This class should implement all the abstract functions defined in
Database. They are:

abstract public boolean connect(DBSettings settings) - Should attempt to establish a
connection to the given database URL (using JDBC) and return a boolean corresponding to whether or not
the connection was successfully established.

abstract public Histogram getHistogram(String tabname, String schema, String attrib) -
Should fill in the value and freq (frequency) Vectors of the Histogram object after reading the histogram
corresponding to the requested attribute from the database.

abstract public Plan getPlan(String query) - Should create and return a Plan object corresponding
to the query string after retrieving and parsing the plan got from the database engine.

abstract public Plan getPlan(String query, int startQueryNumber) - Used to set an
identification number for the plan in the database's explain output table. In case the database engine
does not support such identification or has no plan table, this function can simply call the function above.

abstract public void emptyPlanTable() - Should empty the database's plan table, if such a table
exists.

abstract public void removeFromPlanTable(int qno) - Should remove the plan corresponding to
the identification number passed as a parameter from the database's plan table. If no plan table exists, this
function maybe empty.

abstract public boolean checkPlanTable() - Should return a boolean indicating the presence or
absence of the plan table in the database, if one can exist. If the database does not have a plan table, this
function should always return true.

The following functions are necessary to create the Picasso tables, whose schema is given below:

abstract protected void createQTIDMap(Statement stmt)
abstract protected void createPlanStore(Statement stmt)

Indian Institute of Science 83 of 130

Picasso 2.1 February 2011

abstract protected void createPlanTree(Statement stmt)
abstract protected void createPlanTreeArgs(Statement stmt)
abstract protected void createSelectivityLog(Statement stmt)
abstract protected void createSelectivityMap(Statement stmt)
abstract protected void createPicassoRangeResMap(Statement stmt)
abstract protected void createPicassoApproxSpecs(Statement stmt)
abstract protected void createPicassoColumns(Statement stmt)

1. Table picassoqtidmap

It stores global information about each Picasso diagram.

Column Type Modifiers Description
qtid integer not null Unique identifier for each Picasso

Diagram generated.
qtemplate text Query template provided by the

user for generating the Picasso
Diagram.

qtname varchar (64) not null,
unique

Unique string identifier associated
with the Picasso Diagram.

resolution integer A value of 10,30,100,300 or 1000
indicates a diagram of the
corresponding resolution on all
dimensions over the entire
selectivity space. A value of -1
indicates a 'custom range' or
'custom resolution' diagram.

dimension integer Number of dimensions of the
Picasso diagram, equivalent to the
number of Picasso predicates in the
query template.

exectype varchar (32) It can have the values
COMPILETIME, RUNTIME or
APPROX-COMPILETIME.

distribution varchar (32) It can have the values UNIFORM or
EXPONENTIAL.

optlevel varchar (64) Optimization level chosen by the
user.

Indian Institute of Science 84 of 130

Picasso 2.1 February 2011

plandifflevel varchar (32) Indicates the level at which two plan
trees are compared. It can have the
value SUB-OPERATOR or
OPERATOR.

gentime bigint Time of generation.
genduration bigint Time taken for generating the

diagram.

Primary Key: (qtid)

2. Table picassoplanstore

It stores the plan number, compilation and execution costs, and compilation and execution
cardinalities, for each point in the selectivity space.

Column Type Modifiers Description
qtid integer not null Unique identifier for each Picasso

Diagram generated (references
picassoqtidmap).

qid integer not null Identifier for each point in the selectivity
space ('product of resolution' number of
entries).

planno integer Plan number corresponding to the
selectivity point.

cost double precision Corresponding compile time estimated
cost.

card double precision Corresponding compile time estimated
cardinality.

runcost double precision Corresponding run time cost (0 for
compile time diagrams).

runcard double precision Corresponding run time cardinality (0 for
compile time diagrams).

Primary Key: (qtid, qid)

Foreign Key constraints: (qtid) REFERENCES picassoqtidmap(qtid) ON DELETE CASCADE

Indian Institute of Science 85 of 130

Picasso 2.1 February 2011

3. Table picassoplantree

It stores the representative plan tree for each plan appearing in a Picasso Diagram. Each record
represents a node of a plan-tree.

Column Type Modifiers Description
qtid integer not null Unique identifier for each Picasso

Diagram generated (references
picassoqtidmap).

planno integer not null Identifier for each distinct plan.
id integer not null Identifier for each node in the plan tree.
parentid integer not null Identifier of the parent node.
name varchar (64) String identifier associated with the

node
cost double precision Cost corresponding to the node
card double precision Cardinality corresponding to the node

Primary Key: (qtid, planno, id, parentid)

Foreign Key constraints: (qtid) REFERENCES picassoqtidmap(qtid) ON DELETE CASCADE

4. Table picassoplantreeargs

It stores the parameter information, if any, for each node in a plan tree. There can be multiple
parameters for a single node, each of them resulting in a record in the table.

Column Type Modifiers Description
qtid integer not null Unique identifier for each Picasso

Diagram generated (references
picassoqtidmap).

planno integer not null Identifier for each distinct plan.
id integer not null Identifier for each node in the plan tree.

Indian Institute of Science 86 of 130

Picasso 2.1 February 2011

argname varchar (64) not null String identifier associated with the sub-
operator.

argvalue varchar (64) not null Value of the sub-operator.

Primary Key: (qtid, planno, id, argname, argvalue)

Foreign Key constraints: (qtid) REFERENCES picassoqtidmap(qtid) ON DELETE CASCADE

5. Table picassoselectivitylog

It stores for each axis point in a plan diagram, the Picasso, Plan and Predicate selectivities along with
the constants used. The total number of entries inserted into the table per diagram is equal to the
sum of the dimensional resolutions.

Column Type Modifiers Description
qtid integer not null Unique identifier for each Picasso

Diagram generated (references
picassoqtidmap).

dimension integer not null Dimension number
sid integer not null Identifier for the selectivity point.

Ranges from 0 to the dimension's
resolution - 1.

picsel double precision Corresponding Picasso selectivity.
plansel double precision Corresponding Plan selectivity.
predsel double precision Corresponding Predicate selectivity.
datasel double precision Reserved for future use.
const varchar (512) Constant corresponding to the

selectivity.

Primary Key: (qtid, dimension, sid)

Foreign Key constraints: (qtid) REFERENCES picassoqtidmap(qtid) ON DELETE CASCADE

6. Table picassoselectivitymap

Indian Institute of Science 87 of 130

Picasso 2.1 February 2011

It maps each entry in picassoplanstore to entries in the picassoselectivitylog table.

Column Type Modifiers Description
qtid integer not null Unique identifier for each Picasso Diagram

generated (references picassoqtidmap).
qid integer not null Identifier for each point in the selectivity

space ('product of resolution' times).
dimension integer not null Dimension number.
sid integer not null Identifier for the selectivity point. Ranges

from 0 to the 'resolution in the
corresponding dimension' - 1.

Primary Key: (qtid, qid, dimension)

Foreign Key constraints: (qtid) REFERENCES picassoqtidmap(qtid) ON DELETE CASCADE

7. Table picassorangeresmap

It stores the range and resolution information for the Picasso Diagrams which have '-1' (i.e. Custom)
as their resolution value in picassoqtidmap.

Column Type Modifiers Description
qtid integer not null Unique identifier for each Picasso

Diagram generated (references
picassoqtidmap).

dimnum integer not null Dimension number.
resolution integer not null Corresponding resolution.
startpoint double precision not null Corresponding start point of the

selectivity range.
endpoint double precision not null Corresponding end point of the

selectivity range.

Primary Key: (qtid, dimnum)

Foreign Key constraints: (qtid) REFERENCES picassoqtidmap(qtid) ON DELETE CASCADE

Indian Institute of Science 88 of 130

Picasso 2.1 February 2011

8. Table picassoapproxmap

It stores information about Approximate Picasso Diagrams.

Column Type Modifiers Description
qtid integer not null Unique identifier for each Picasso

Diagram generated (references
picassoqtidmap).

samplesize float Sample size in percentage required
for approximation.

samplingmode integer Specifies the approximation
algorithm used. ‘0’ for RS_NN and
‘1’ or GS_PQO

areaerror double precision Specifies the area error tolerance
provided by user.

identityerror double precision Specifies the identity error
tolerance provided by user.

fpc integer Reserved for future use

Primary Key: (qtid)

Foreign Key constraints: (qtid) REFERENCES picassoqtidmap(qtid) ON DELETE CASCADE

9. View picassocolumns

It stores information about all the user tables and columns (including Picasso) present in the database.

Column Type Modifiers
column_name name
table_name name

Indian Institute of Science 89 of 130

Picasso 2.1 February 2011

owner oid

6. Create the class abcHistogram (which extends Histogram) in the package iisc.dsl.
picasso.server.db.abc. The class should implement the constructor which provides an
instance of abcDatabase and table name, schema and attribute name.

abcHistogram(Database db, String tabName, String schema, String attribName)

This class should also implement the following function which returns a constant of appropriate
data-type, given a selectivity value:

abstract public String getConstant(double sel)

Note: For information on the overall code structure of Picasso, see
Code-design.

Documentation Home

Indian Institute of Science 90 of 130

Picasso 2.1 February 2011

http://bhairav.serc.iisc.ernet.in/doc/Code/history.htm
http://bhairav.serc.iisc.ernet.in/doc/index.htm

Picasso Database Query Optimizer
Visualizer

©Indian Institute of Science, Bangalore, India

ALGORITHMIC DETAILS

1. Plan Reduction Algorithms

A detailed assessment of the Plan Reduction problem is available in this technical
report. It is shown in the report that, given an optimality criterion of minimizing the
plan cardinality of the reduced plan diagram for a user-specified cost increase
threshold, finding the optimal solution is NP-Hard. Therefore, the only recourse is to
develop heuristic-based algorithms – Picasso 1.0 supported two greedy algorithms,
referred to as AreaGreedy and CostGreedy, respectively. In Picasso 2.0,
only CostGreedy is retained since it is has significantly better performance
characteristics, with regard to both reduction and efficiency, than AreaGreedy.

CostGreedy

This algorithm operates under the assumption that the Cost Domination Principle
(query processing costs increase as we move outwards from the origin in the
selectivity space) holds and therefore only plan swallowing possibilities in the first
quadrant are considered with respect to the plan under consideration. A direct
corollary of this assumption is that in exploring swallowing possibilities for a given
plan, we do not need to retain all points contained in each potential swallower plan,
but only those corresponding to the minimum cost in the first quadrant. The
algorithm processes the query points starting from the top-right corner (with the Cost
Domination assumption, this corner will have the highest cost of all points) and
progressively makes its way to the origin, in the process using the Greedy SetCover
algorithm to recolor the points – the complete details are in this technical report . The
time complexity of CostGreedy is O(mn) where n is the number of plans in the

Indian Institute of Science 91 of 130

Picasso 2.1 February 2011

http://dsl.serc.iisc.ernet.in/publications/report/TR/TR-2007-01.pdf
http://dsl.serc.iisc.ernet.in/publications/report/TR/TR-2007-01.pdf
http://dsl.serc.iisc.ernet.in/publications/report/TR/TR-2007-01.pdf

plan diagram and m is the number of of points in the diagram, a significant
improvement over AreaGreedy whose complexity is O(m2). More importantly, it
can be shown that CostGreedy provides the best possible approximation factor with
respect to the optimal reduction.

Knee Estimator
As an aid to help users make informed choices of the values to enter in the Enter
Cost Increase Threshold dialog box, a rough estimate of the location of the
threshold value corresponding to the “knee” in the graph characterizing “Plan
Cardinality of the Reduced Plan Diagram versus Cost Increase Threshold”, is
provided in the box. Also provided is an estimate of the minimum threshold required
to reach a desired number of plans (specified by the DESIRED_NUM_PLANS macro
in PicassoConstants.java, set to 10 in the distribution) in the reduced plan diagram.
The estimator implemented in Picasso is the AmmEst estimator described in this
technical report.

Cost Increase Statistics
In the panel immediately to the right of the reduced diagram, we show bounds on the
minimum, average and maximum cost increase (in percentage terms) computed over
all points that have undergone plan replacement during the reduction process. By
definition, these values will all be smaller than the user-specified cost increase
threshold.

2. Robust Plan Reduction Algorithms

The above-mentioned reduction algorithms, AreaGreedy and CostGreedy, ensure
that the replacement plans are within the cost-increase-threshold at all points in the
optimality regions of the replaced plans. However, in practice, query optimizers are
subject to significant errors in their selectivity estimates, and it may therefore be
possible that the location of the query at run-time may lie outside the optimality
region of the replaced plan. At such locations, the performance of the replacement
plan could be much worse than the replaced plan, resulting in the replacement being
harmful from a global perspective. This possibility naturally leads to the concept of a
robust replacement – that is, a replacement where the λ-threshold criterion is
satisfied at all points in the selectivity space, i.e. the replacement ensures
global safety. Providing robust replacements requires costing of plans outside
their optimality regions, and it is therefore possible only with database engines that
support the Abstract Plan Costing feature (in Picasso, these engines are SQL

Indian Institute of Science 92 of 130

Picasso 2.1 February 2011

http://dsl.serc.iisc.ernet.in/publications/report/TR/TR-2007-01.pdf

Server and Sybase ASE). Direct approaches to achieving robust plan reduction are
computationally prohibitively expensive, but through empirical modeling of plan cost
function behavior, we have been able to develop efficient alternatives, which are
described in this technical report. The algorithm described there, called SEER,
guarantees global safety and requires Abstract-plan-costing operations only along
the surfaces of the selectivity space hyper-cube. More remarkably, we have found
through detailed experiments with industrial-strength benchmark environments that
SEER provides global safety without jeopardizing anorexic reduction. Unlike
the Cost Bounding-based reduction algorithms, which are completely conditioned on
Cost Domination holding true, the Abstract-plan-costing-based approach can
supported a richer class of plan cost models wherein the plan cost function can have
one local maxima or one local minima in the interior of the selectivity space. In
Picasso 2.0, the following two variations of SEER have been implemented:

CC-SEER (CornerCube SEER)
CC-SEER guarantees global safety like SEER but improves on its efficiency by
implementing a more conservative test for global robust replacement. Specifically,
CC-SEER only involves Abstract-plan-costing operations at the corner hyper-
cubes of the selectivity space and is therefore significantly faster than SEER.
Moreover, its performance is resolution independent unlike SEER, and therefore the
performance gap between CC-SEER and SEER increases with higher resolution
diagrams. Concretely, while SEER’s time complexity is O(m.rd -1), where m is the
number of points in the diagram, r is the resolution and d is the dimensionality, CC-
SEER cuts it down to O(m.4d). Our experimental results indicate that CC-SEER’s
reduction quality is comparable to that of SEER, and it therefore provides an
extremely attractive tradeoff between efficiency and reduction quality.

LiteSEER
LiteSeer is a light-weight heuristic-based variant of SEER that makes its replacement
decisions solely based on Abstract-plan-costing operations at the corners of the
hypercube, and is therefore extremely efficient. In fact, it can be shown that
LiteSEER is optimal in the sense that it incurs the minimum work (complexity-wise)
required by any reduction algorithm. While it does not guarantee global safety, our
experimental results indicate that in practice, its safety and reduction characteristics
are quite close to that of SEER and CC-SEER.

Knee Estimator

Indian Institute of Science 93 of 130

Picasso 2.1 February 2011

http://dsl.serc.iisc.ernet.in/publications/report/TR/TR-2007-02.pdf

Currently, no estimators have been designed for CC-SEER and we intend to address
this issue in our future work. As an interim measure, we suggest that users can first
obtain the estimates from CostGreedy, and then use the same with CC-SEER. A
word of caution, however – there may be significant differences between the
Reduced-Plan-Cardinality vs. Threshold graphs of CostGreedy and CC-SEER. This
is because, on the one hand, there is greater potential for reduction in CC-SEER due
to using explicit costs instead of cost bounds. But, on the other hand, the global
safety guarantee may prevent some replacements permitted by CostGreedy. Our
experience has been that the latter factor dominates in the higher-resolution
diagrams and therefore the knee of the graph is typically at a larger threshold for CC-
SEER as compared to CostGreedy.
The above-mentioned issues for CC-SEER arise with LiteSEER as well, and
due to its relaxed safety criterion, LiteSEER's knee will always be lower than that of
CC-SEER.

Cost Increase Statistics
The cost increase statistics, mentioned above for the CostGreedy and AreaGreedy
algorithms, are not provided for the robust reduction algorithms, CC-SEER and
LiteSEER. This is because computing these statistics would require costing (using
Abstract-plan-costing) of the replacement plans at all replaced points in the selectivity
space, which would be prohibitively expensive. However, at any specific replaced
point in the reduced plan diagram, the cost of the replacement plan can be
ascertained by using the Shift+Right-click command which provides the
QueryInfo message box.

3. Plan Difference Algorithm

The plan difference algorithm visually highlights the difference between a pair of
selected plans. The common parts between the two plan trees are shown in white,
whereas all differences are colored as mentioned in the Plan Tree Windows
documentation, reproduced below:

§ Node labels, Node parameters and Node inputs are identical: White nodes
with Black input links

Indian Institute of Science 94 of 130

Picasso 2.1 February 2011

file:///D|/PicassoSite/Picasso2Doc/Usage/PlanTree.htm
file:///D|/PicassoSite/Picasso2Doc/Usage/PlanTree.htm

§ Node labels are the same: White Fill

o Parameters different: Green-bordered nodes with Black input links

o Left and right inputs swapped: Orange-bordered nodes with Blue
input links

o Left and right inputs different: Orange-bordered nodes with Red input
links

§ Node labels are different: Red-bordered nodes filled with the native node
color

o Left and right inputs swapped: Blue input links

o Left and right inputs different: Red input links

§ Nodes are unmapped (i.e. no corresponding node in the other tree): Nodes
filled with the native node color and Black input links

We describe here the node matching process between the two trees, PA and PB . In
our description, the term “branch” is used to refer to any connected chain of nodes
between a pair of branching nodes, or between a branching node and a leaf, in these
trees. Branches are directed from the lower node to the higher node. The matching
proceeds as follows:
1. First all the leaf nodes (relations) and all the nodes with binary inputs
(typically join nodes) are identified for PA and PB.

2. A leaf of PA is matched with a leaf of PB if and only if they both have the

same relation label. In the situation that there are multiple matches available
(that is, if the same relation label appears in multiple leaves), an edit-
distance computation is made between the branches of all pairs of matching
leaves between PA and PB. The assignments are then made in increasing

order of edit-distances.
3. A binary node of PA is matched with a binary node of PB if the set of base

Indian Institute of Science 95 of 130

Picasso 2.1 February 2011

relations that are processed is the same. If the node label, node
parameters, and the left and right inputs are identical (in terms of base
relations), the node is colored white and the input links are black. However,
if the node label is different, or the node parameters are different, or if the
left and right input relation subsets are different, then the node and the input
links are colored as per the above coloring scheme.
4. A minimal edit-distance computation is made between the branches
arising out of each pair of matched nodes, and the nodes that have to be
added or deleted, if any, in order to make the branches identical are colored
as per the above coloring scheme. Unmodified nodes, on the other hand,
are matched with their counterparts in the sibling tree and colored either
white or white with green border.

Note: When plan difference is carried out on a OperatorDiff-based plan
diagram, the treeswill always include at least one colored node or link (that
is, unlike ParameterDiff -based plan diagrams, it is not possible to have pure
black-and-white trees with only green node borders).

4. Approximation Algorithms

Plan diagrams can be computationally extremely expensive for plan diagrams on
higher-dimension query templates and fine-grained diagram resolutions. For
example, a 3D plan diagram with a resolution of 100 on each dimension could well
take about a week to produce. To address this problem, diagram approximation
algorithms have been incorporated in Picasso 2.0. Specifically, these algorithms
produce approximate diagrams by explicitly optimizing only a small subset of points
from the query selectivity space and inferring the remaining points, thereby
drastically reducing the computation time. Two categories of errors can arise in the
approximation process:

1. Plan Identity Error: This error metric refers to the possibility of
the approximation missing out on a subset of the plans present in the exact
plan diagram. It is computed as the percentage of plans lost in the
approximation process. This error is challenging to control since a majority of
the plans appearing in plan diagrams are typically small in area and therefore
hard to find.
2. Plan Location Error: This error metric refers to the possibility of
incorrectly assigning plans to query points in the approximate plan diagram. It

Indian Institute of Science 96 of 130

Picasso 2.1 February 2011

is computed as the percentage of incorrectly assigned points. This error is also
challenging to control since the plan boundaries can be highly non-linear and
are sometimes even irregular in shape.

We take from the user the tolerance levels for these two errors and our algorithms
attempt to ensure that the actual errors in the approximate diagram are in the close
proximity of these thresholds, while at the same time minimizing the diagram
production overheads. The two approximation algorithms currently implemented in
Picasso are briefly described below.

Random Sampling with Nearest Neighbor Inference
(RS_NN)
This algorithm employs classical random sampling and nearest neighbor
classification to generate approximate diagrams. It begins by optimizing a small seed-
set of randomly chosen points in the diagram, and then repeatedly optimizes a
similarly-sized random group from the remaining un-optimized query points in each
successive iteration. The stopping condition for the iteration is when the identity-
error is expected, using a statistical estimator, to have reached below the user's
tolerance level. After this, the algorithm repeatedly (a) infers the plan assignments for
all un-optimized points using nearest neighbor classification, and then (b) explicitly
optimizes a subset of these points, until the location-error is estimated to have
reached below the user's tolerance level. To reduce the number of misclassifications
along plan region boundaries, the plan assignments of the inferred points in the
diagram are passed through a low-pass filter in the final step.

Grid Partitioning with Parametric Query Optimization
Inference (GS_PQO)
This algorithm employs grid partitioning and the basic notions of parametric query
optimization, along with plan-tree differencing techniques to generate approximate
diagrams. Unlike RS_NN, heuristics are used to measure the expected quality of
approximation. The entire diagram is partitioned into a coarse grid and the plan
richness factor is computed for each of the grid cells. The plan richness is
determined by the extent of structural differences between the plans at the corners of
the cell. The cells are first arranged in a max-heap structure based on their plan
richness factor. Then, the cell at the top of the heap is extracted and repeatedly sub-
divided until the plan richness of the resultant cells reaches below a certain threshold
(this value is derived directly from the user given error tolerances).

Indian Institute of Science 97 of 130

Picasso 2.1 February 2011

The plan assignment process operates as follows: If any pair of adjacent
corner points have different plans, then explicitly optimize the middle
point of the edge joining these two corners, otherwise assign the
corner plan to the middle point. Then, process the center point of the
cell based on the plans lying on the cross-hairs joining the middle
points. Break the cell into smaller cells using the newly assigned
points and calculate their plan richness factor. Insert them into the
heap.

Once all the rectangles in the heap reach a plan richness factor below the desired
threshold, the plans are inferred for all the remaining un-optimized points — the
middle point of each edge is assigned a plan chosen randomly from the plans at the
corners of the edge. Finally, the algorithm terminates if the heap is empty.

For detailed descriptions of the approximation algorithms and the associated
experimental results, please refer to this technical report .

Documentation Home

Indian Institute of Science 98 of 130

Picasso 2.1 February 2011

http://dsl.serc.iisc.ernet.in/publications/report/TR/TR-2008-01.pdf

Picasso Database Query Optimizer
Visualizer

©Indian Institute of Science, Bangalore, India

PUBLICATIONS

PAPERS

● Analyzing Plan Diagrams of Database Query Optimizers

Naveen Reddy and Jayant Haritsa
Proc. of 31st Intl. Conf. on Very Large Data Bases
(VLDB), Trondheim, Norway, September 2005.

● On the Production of Anorexic Plan Diagrams

Harish D., Pooja Darera and Jayant Haritsa
Proc. of 33rd Intl. Conf. on Very Large Data Bases
(VLDB), Vienna, Austria, September 2007.

● Identifying Robust Plans through Plan Diagram Reduction

Harish D., Pooja Darera and Jayant Haritsa
Proc. of 34th Intl. Conf. on Very Large Data Bases
(VLDB), Auckland, New Zealand, August 2008.

● Efficiently Approximating Query Optimizer Plan Diagrams

Atreyee Dey, Sourjya Bhaumik, Harish D. and Jayant Haritsa
Proc. of 34th Intl. Conf. on Very Large Data Bases
(VLDB), Auckland, New Zealand, August 2008.

● On the Stability of Plan Costs and the Costs of Plan Stability
M. Abhirama, Sourjya Bhaumik, Atreyee Dey, Harsh Shrimal and Jayant Haritsa
Proc. of 36th Intl. Conf. on Very Large Data Bases

Indian Institute of Science 99 of 130

Picasso 2.1 February 2011

http://dsl.serc.iisc.ernet.in/publications/conference/picasso-revised.pdf
http://dsl.serc.iisc.ernet.in/publications/conference/anorexic_vldb07.pdf
http://dsl.serc.iisc.ernet.in/publications/conference/seer.pdf
http://dsl.serc.iisc.ernet.in/publications/conference/approx.pdf
http://dsl.serc.iisc.ernet.in/publications/conference/stability_vldb10.pdf

(VLDB), Singapore, September 2010.

● The Picasso Database Query Optimizer Visualizer
Jayant Haritsa
Proc. of 36th Intl. Conf. on Very Large Data Bases
(VLDB), Singapore, September 2010.

● THESES

● Next Generation Relational Query Optimizers

Naveen Reddy
ME Thesis, Dept. of Computer Science and Automation,
Indian Institute of Science, June 2005.

● Picasso: Design and Implementation of a Database Optimizer Analyzer

Mohammed Aslam
ME Thesis, Dept. of Computer Science and Automation,
Indian Institute of Science, July 2006.

● Picasso: Analyzing and Characterizing Relational Query Optimizers

Akshat Nair
ME Thesis, Dept. of Computer Science and Automation,
Indian Institute of Science, July 2006.

● Picasso 1.0: Design and Analysis
Tarun Ramsinghani
ME Thesis, Dept. of Computer Science and Automation,
Indian Institute of Science, July 2007.

● Reduction of Query Optimizer Plan Diagrams

Pooja Darera
MS Thesis, Supercomputer Education & Research
Center, Indian Institute of Science, December 2007.

Indian Institute of Science 100 of 130

Picasso 2.1 February 2011

http://dsl.serc.iisc.ernet.in/publications/conference/demo_vldb10.pdf
http://dsl.serc.iisc.ernet.in/thesis/naveen.pdf
http://dsl.serc.iisc.ernet.in/thesis/aslam.pdf
http://dsl.serc.iisc.ernet.in/thesis/akshat.pdf
http://dsl.serc.iisc.ernet.in/thesis/tarun.pdf
http://dsl.serc.iisc.ernet.in/thesis/akshat.pdf

● SIGHT and SEER: Efficient Production and Reduction of Query Optimizer Plan

Diagrams
Harish D
ME Thesis, Dept. of Computer Science and Automation,
Indian Institute of Science, July 2008.

● Efficient Generation of Query Optimizer Plan Diagrams
Sourjya Bhaumik
ME Thesis, Dept. of Computer Science and Automation,
Indian Institute of Science, June 2009.

● Characterizing Plan Diagram Reduction Quality and Efficiency
Harsh Shrimal
ME Thesis, Dept. of Computer Science and Automation,
Indian Institute of Science, June 2009.

● Design and Implementation of Picasso 2.0
Ravi Shetye
ME Thesis, Dept. of Computer Science and Automation,
Indian Institute of Science, July 2009.

● On the Stability of Plan Costs and the Costs of Plan Stability
M. Abhirama
ME Thesis, Dept. of Computer Science and Automation,
Indian Institute of Science, August 2009.

● Efficiently Approximating Query Optimizer Diagrams
Atreyee Dey
MS Thesis, Supercomputer Education & Research Centre,
Indian Institute of Science, August 2009.

• TECHNICAL REPORTS

Indian Institute of Science 101 of 130

Picasso 2.1 February 2011

http://dsl.serc.iisc.ernet.in/thesis/akshat.pdf
http://dsl.serc.iisc.ernet.in/thesis/harish.pdf
http://dsl.serc.iisc.ernet.in/thesis/harish.pdf
http://dsl.serc.iisc.ernet.in/thesis/sourjya.pdf
http://dsl.serc.iisc.ernet.in/thesis/harsh.pdf
http://dsl.serc.iisc.ernet.in/thesis/shetye.pdf
http://dsl.serc.iisc.ernet.in/thesis/abhirama.pdf
http://dsl.serc.iisc.ernet.in/thesis/atreyee.pdf

● Reduction of Query Optimizer Plan Diagrams
Harish D., P. Darera and J. Haritsa
Technical Report TR-2007-01, DSL/SERC, Indian
Institute of Science, March 2007.

● Robust Plans through Plan Diagram Reduction

Harish D., P. Darera and J. Haritsa
Technical Report TR-2007-02, DSL/SERC, Indian
Institute of Science, November 2007.

● Efficient Generation of Approximate Plan Diagrams

A. Dey, S. Bhaumik, Harish D. and J. Haritsa
Technical Report TR-2008-01, DSL/SERC, Indian
Institute of Science, March 2008.

● Stability-conscious Query Optimization
M. Abhirama, Sourjya Bhaumik, Atreyee Dey, Harsh Shrimal and Jayant Haritsa
Technical Report TR-2009-01, DSL/SERC, Indian
Institute of Science, October 2009.

Documentation Home

Indian Institute of Science 102 of 130

Picasso 2.1 February 2011

http://dsl.serc.iisc.ernet.in/publications/report/TR/TR-2007-01.pdf
http://dsl.serc.iisc.ernet.in/publications/report/TR/TR-2007-02.pdf
http://dsl.serc.iisc.ernet.in/publications/report/TR/TR-2008-01.pdf
http://dsl.serc.iisc.ernet.in/publications/report/TR/TR-2009-01.pdf

Picasso Database Query Optimizer
Visualizer

©Indian Institute of Science, Bangalore, India

LICENSE INFORMATION

1. Picasso Software

The Picasso Database Query Optimizer Visualizer software is copyrighted by the Indian
Institute of Science, Bangalore, India, as per this Copyright Certificate issued by Govt.
of India, on May 1, 2006. The entire software package, including the source code, is
provided completely free of charge on an as-is-where-is basis. Downloading
the Picasso software automatically implies that you accept and acknowledge copyright
ownership by the Indian Institute of Science, and that your usage of the Picasso
software is governed by the terms of this licensing agreement .

2. Third-Party Software

Third-party software required for Picasso to function is comprised of libraries for

(a) graphics layout and visualization
(b) establishment of connections with the various database engines
(c) SQL query dialect conversion, and
(d) scientific computations

All rights on these support libraries rest entirely with the respective
vendors.

To assist in setup and testing of your initial Picasso installation, all essential libraries
are included with the full version of the Picasso code-base in the Libraries folder –
however, we strongly recommend that users should visit the vendor URLs given
below for complete details about the licensing of the support libraries, and make sure

Indian Institute of Science 103 of 130

Picasso 2.1 February 2011

http://www.iisc.ernet.in/
http://www.iisc.ernet.in/
http://dsl.serc.iisc.ernet.in/projects/PICASSO/picasso-copyright.pdf
http://www.iisc.ernet.in/
http://bhairav.serc.iisc.ernet.in/license.htm

that their usage complies with the vendor’s requirements. Users are fully responsible for
their usage of the support software and Indian Institute of Science is not liable for any
improper usage. As a general policy, it is advisable for Picasso users to directly
download the support libraries from the vendor web-sites, or from alternative third-party
sources, and update the Libraries folder with these downloaded files.

2.1 Graphics

Java3D: This is an extension to Java for displaying three dimensional graphics,
distributed under BSD and JRL licenses, resdistributable as per this document.
Libraries used: j3dcore.jar j3dutils.jar vecmath.jar

VisAD: This is a Java component library for interactive and collaborative visualization
and analysis of numerical data, distributed under an LGPL license, redistributable as
per this document.
Libraries used: visad.jar

JGraph: This is a Java library for the visualization and layout of graphs. While the
basic JGraph library is freely available, Picasso also makes use of the commercial
JGraph Layout library which we have purchased, and is redistributable as per this
licensing agreement.
Libraries used: jgraph.jar jgraphlayout.jar

Swing-Layout: This is a Java component library for layout of graphic components,
distributed under an LGPL license, redistributable as per this document.
Libraries used: swing-layout-1.0.jar

2.2 Databases

DB2 JDBC Driver: This is a JDBC driver for connecting to DB2 databases,
redistributable as per this document.
Libraries used: db2jcc.jar db2jcc_license_cu.jar

Oracle JDBC Driver: This is a JDBC driver for connecting to Oracle databases,

Indian Institute of Science 104 of 130

Picasso 2.1 February 2011

http://java.sun.com/products/java-media/3D/
file:///D|/PicassoSite/Picasso2Doc/Installation/LibraryLicenses/licenseJava3D.htm
http://www.ssec.wisc.edu/~billh/visad.html
file:///D|/PicassoSite/Picasso2Doc/Installation/LibraryLicenses/licenseVisAD.htm
http://www.jgraph.com/
file:///D|/PicassoSite/Picasso2Doc/Installation/LibraryLicenses/licenseJGraph.htm
http://www.ssec.wisc.edu/~billh/visad.html
file:///D|/PicassoSite/Picasso2Doc/Installation/LibraryLicenses/licenseSwingLayout.htm
http://www14.software.ibm.com/webapp/download/preconfig.jsp?id=2004-09-20+10:09:21.003415R&cat=database&fam=&s=c&S_TACT=104AH%20W42&S_CMP=
file:///D|/PicassoSite/Picasso2Doc/Installation/LibraryLicenses/licenseDB2.htm
http://www.oracle.com/technology/software/tech/java/sqlj_jdbc/htdocs/jdbc9201.html

redistributable as per this licensing agreement.
Libraries used: ojdbc14.jar

MSSQL JDBC Driver 2.0: This is a JDBC driver for connecting to Microsoft SQL
Server, redistributable as per this licensing agreement.
Libraries used: sqljdbc4.jar

Sybase ASE JDBC Driver: This is a JDBC driver for connecting to Sybase ASE
database products and its use is as per the terms given in this document – we have
received permission from Sybase ASE for redistribution of the driver.
Libraries used: jconn3.jar
Picasso also uses a hist_values stored procedure, written by Kevin Sherlock, for
reading the statistical summaries in Sybase ASE.

PostgreSQL JDBC Driver: This is a JDBC driver for connecting to PostgreSQL,
distributed under a BSD license, redistributable as per this document.
Libraries used: postgresql-8.0-311.jdbc3.jar.

MySQL JDBC Driver: This is a JDBC driver for connecting to MySQL, redistributable
as per this document.
Libraries used: mysql-connector-java-5.1.8-bin.jar.

SwisSQL API (Java): This is a multi-dialect SQL parser and conversion tool, which
supports the automatic conversion of SQL queries across database engine dialects.
The tool can be obtained through email enquiry. It is available for payment under a
commercial license, and free of charge under an academic license. A trial version is
also available for free download. [Note: This optional library is not included in
the Picasso distribution.]
Libraries used: SwisSQLAPI.jar

Driver Sites:
Comprehensive lists of database drivers, including both vendor drivers and third-party
drivers, are available at the following sites:

o Sun: http://developers.sun.com/product/jdbc/drivers
o Minq Software: http://www.minq.se/products/dbvis/drivers.html

Indian Institute of Science 105 of 130

Picasso 2.1 February 2011

file:///D|/PicassoSite/Picasso2Doc/Installation/LibraryLicenses/licenseOracle.htm
http://www.microsoft.com/DOWNLOADS/details.aspx?FamilyID=f914793a-6fb4-475f-9537-b8fcb776befd&displaylang=en
file:///D|/PicassoSite/Picasso2Doc/Installation/LibraryLicenses/licenseSQLServer.htm
http://www.sybase.com/products/middleware/jconnectforjdbc
http://www.sybase.com/detail?id=1037380
file:///D|/PicassoSite/Picasso2Doc/Installation/hist_values.txt
http://www.teamsybase.net/kevin.sherlock/
http://jdbc.postgresql.org/
file:///D|/PicassoSite/Picasso2Doc/Installation/LibraryLicenses/licensePostgreSQL.htm
http://dev.mysql.com/downloads/connector/j/5.1.html
file:///D|/PicassoSite/Picasso2Doc/Installation/LibraryLicenses/mysql_drivers_license.en.pdf
http://www.swissql.com/products/sqlone-apijava/index.html
mailto:sales@adventnet.com?Subject=Need%20Download%20of%20SwisSQL%20SQLOne%20API%20(Java)
http://www.swissql.com/products/sqlone-apijava/sqlone-apijava-downloadform.html
http://developers.sun.com/product/jdbc/drivers
http://www.minq.se/products/dbvis/drivers.html

2.3 Scientific Operations

LinearAlgebra: This is a Java library for linear algebra operations, produced by the
Statistics group of the Forest Product Laboratory, established by the U.S. Department
of Agriculture Forest Service. It is redistributable as per this document. In the Picasso
distribution, for ease of packaging and installation, we have constructed from the
original library a restricted pic_linearalgebra.jar library comprised only of the
specific files mentioned below. [Note: This library is included in both the full and
no-lib versions of the Picasso distribution.]
Files used: BLAS_j.java, QR_j.java, LU_j.java, NotFullException.java

Documentation Home

Indian Institute of Science 106 of 130

Picasso 2.1 February 2011

http://www1.fpl.fs.fed.us/linear_algebra.html
http://www1.fpl.fs.fed.us/index.html
http://www.fpl.fs.fed.us/
http://www.fs.fed.us/
file:///D|/PicassoSite/Picasso2Doc/Installation/LibraryLicenses/licenseLinearAlgebra.htm

Picasso Database Query Optimizer
Visualizer

©Indian Institute of Science, Bangalore, India

DEVELOPMENT TEAM

• Jayant Haritsa (Project Lead)

(primary student contributors in chronological order of
participation)

• Naveen Reddy (ME, CSA, IISc)
• Mohammed Aslam (ME, CSA, IISc)
• Akshat Nair (ME, CSA, IISc)
• Vidya Bharat (Project Associate)
• Shruthi A (MS, SERC, IISc)
• Tarun Ramsinghani (ME, CSA, IISc)
• Pooja Darera (MS, SERC, IISc)
• Abhijit Pai (ME, CSA, IISc)
• Harish D (ME, CSA, IISc)
• Sourjya Bhaumik (ME, CSA, IISc)
• Atreyee Dey (MS, SERC, IISc)
• Ravi Shetye (ME, CSA, IISc)
• M. Abhirama (ME, CSA, IISc)
• Harsh Shrimal (ME, CSA, IISc)
• Anshuman Dutt (ME, CSA, IISc)
• Mahesh Bale (ME, CSA, IISc)
• Mayuresh Kunjir (ME, CSA, IISc)
• Priyank Mehta (PA)
• Rakshit Trivedi (PA)
• Bruhathi HS (MS, SERC, IISc)

Indian Institute of Science 107 of 130

Picasso 2.1 February 2011

http://dsl.serc.iisc.ernet.in/~haritsa

Documentation Home

Indian Institute of Science 108 of 130

Picasso 2.1 February 2011

Picasso Database Query Optimizer
Visualizer

©Indian Institute of Science, Bangalore, India

ACKNOWLEDGEMENTS

• This work was supported in part by a
Swarnajayanti Fellowship from the Dept. of Science
& Technology, Govt. of India, by a research grant
from the Dept. of Bio-technology, Govt. of India, and
by generous grants from our industrial benefactors
including IBM, Google, Microsoft and Sybase.

• We thank the faculty, students and staff of the
Supercomputer Education & Research Centre and
the Dept. of Computer Science & Automation at the
Indian Institute of Science for their sustained
support and encouragement of our activities over
the years.

Documentation Home

Indian Institute of Science 109 of 130

Picasso 2.1 February 2011

Picasso Database Query Optimizer
Visualizer

©Indian Institute of Science, Bangalore, India

TPC-H data generation and loading

Note: Picasso can be used with any generic relational database schema and SQL
queries. The examples in the Picasso documentation are with respect to the TPC-H
benchmark, and the procedure for generating and loading the TPC-H database is given
here.

1. Download the TPC-H benchmark programs DBGEN and QGEN from the TPC-H
site.

2. Create the TPC-H schema in your database engine using the file dss.ddl as per
these instructions: DB2 Oracle SQL Server Sybase ASE PostgreSQL MySql

3. Generate the data.

a. Compile DBGEN and QGEN after creating a suitable makefile.
b. Run it to produce the data files (.tbl files) and queries.

4. Load the TPC-H data as per these instructions: DB2 Oracle SQL Server Sybase
ASE PostgreSQL MySql

Note: While loading data into tables, it is preferable to initially not specify the integrity
constraints (primary key, foreign key and index) since it might slow down the
insertion process. These constraints can be added later as mentioned below after the
data has been loaded into the tables.

5. Apply the integrity constraints on the data using file dss.ri as per these

Indian Institute of Science 110 of 130

Picasso 2.1 February 2011

http://tpc.org/tpch/
http://tpc.org/tpch/

instructions: DB2 Oracle SQL Server Sybase ASE PostgreSQL MySql

Note 1: The dss.ddl and dss.ri files may have to be modified to suit the syntax
requirements of particular database engines. For example:

a. The connect to statement should not be present for Oracle. Also this
statement is not required (for other engines) if a connection to the database
has already been established. The equivalent command for Sybase ASE
(through the isql prompt) is use <dbname>. And for PostgreSQL (through
the psql prompt), it is \c <dbname>
b. Sybase ASE (through the Interactive SQL prompt) requires that the
script should not have a semi-colon (;) at the end of any statement.
c. The schema name (qualifier to the table names) should be changed to
reflect the actual schema name or the table names should be made un-
qualified.
d. While specifying foreign key constraints, Oracle requires the keyword
constraint and the constraint name to appear before the keywords
foreign key.
e. While specifying any constraints, SQL Server, Sybase ASE and
PostgreSQL require that these constraints should not be named.
f. The isql prompt of Sybase ASE requires that there should be no semi-
colon after each statement – instead there should be a go command.
g. The commit work statements are not needed since any ddl command
is generally automatically followed by a commit. In the case of some engines,
this could also lead to a syntax error.
h. SQLServer uses the datetime data type in place of date.

Note 2: The .tbl file may have to be modified to suit the syntax requirements of
particular database engines. For example,

a. PostgreSQL requires that the delimiter should not appear at the end of
every line and that string values should not be quoted.

b. DB2 requires that the values should be comma-separated and the string
values should be enclosed in double quotes (“”).

Indian Institute of Science 111 of 130

Picasso 2.1 February 2011

file:///D|/PicassoSite/Picasso2Doc/Installation/oracle9i.htm#ri

Documentation Home

Indian Institute of Science 112 of 130

Picasso 2.1 February 2011

Picasso Database Query Optimizer
Visualizer

©Indian Institute of Science, Bangalore, India

DB2

(The following setup procedure is known to work with IBM DB2 v8, v9 on Windows.)

1. Install DB2 with complete support for Java
a. Run setup.exe and follow the wizard.
b. In the Configure DB2 Instances screen, you can customize the
Protocol settings (including port number and service name) and Startup
settings of the instance.

2. If the DB2 service is not already running, start it with the command db2start.

3. Open a command window using Start → Programs → IBM DB2
→ Command Line Tools → Command Window

4. Create a database by giving the command: db2 create database
<dbname>.
Connect to it using the command: db2 connect to <dbname>

5. Create the schema. If the schema to be created is in a file, run the
command: db2 –tvf <filename>

6. Load the data into the database tables. If you are loading data from a file, use
this command:

db2 import from <filename> of del commitcount <value>
insert into <tablename>

Indian Institute of Science 113 of 130

Picasso 2.1 February 2011

For example,
db2 import from nation.tbl of del commitcount 100 insert
into NATION

7. Create the integrity constraints (primary key, foreign key and indexes) on the
data. If statements are in a file, run the command: db2 -tvf <filename>

8. Create the explain plan tables. These are the tables in which query
execution plans are stored by the optimizer. To create these tables, after
connecting to the database, run the following command in the location \IBM
\SQLLIB\MISC:
 db2 -tvf EXPLAIN.DDL

9. Create statistical summaries for all table columns that may be used as
Picasso predicates in the query templates, with the command:
 db2 runstats on table <fully qualified table name> on
columns (column_list) with distribution

For example, if statistics have to be collected on the columns N_NAME and
N_COMMENT of the table NATION belonging to schema ‘admin’, the
command is:
 db2 runstats on table admin.NATION on columns
(N_NAME, N_COMMENT) with distribution

To improve the scope for optimization, you could optionally create statistics for
all columns of each table. This can be done using the command:

db2 runstats on table <fully qualified table name> with
distribution on all columns
where
with distribution specifies that distribution statistics are requested,
and
all columns updates statistics on all the columns of the table.

Note:
1. The diagrams on the Picasso website have been generated with statistical

Indian Institute of Science 114 of 130

Picasso 2.1 February 2011

summaries created on all table columns.
2. With recent versions of DB2 (e.g. v9.5), most of the above-mentioned
operations can be conveniently performed through the DB2 Control Center
GUI.
3. The explain plan tables and the data tables should be created under
the same schema name.

10. Optionally, run the following commands to enhance the scope for
optimization:

db2set db2_extended_optimization=on
db2 update database cfg for tpch using sortheap
<memory allocation>

Documentation Home

Indian Institute of Science 115 of 130

Picasso 2.1 February 2011

Picasso Database Query Optimizer
Visualizer

©Indian Institute of Science, Bangalore, India

Oracle

(The following setup procedure is known to work with Oracle 9i, 10g, 11g on
Windows.)

1. Install Oracle: Run setup.exe and follow the wizard.

2. Open the SQL Plus command prompt window through one of the following ways:

a. Start → Programs → Oracle → OraHome →
Application Development → SQL Plus. Login as system/
manager (or any other valid user/password).

b. Type sqlplus system/manager (or any other valid user name and
password) in the command prompt.

3. Create the schema. If the schema to be created is in a file, run the following
command in the SQL prompt:

@ <full path>\<filename>

4. Load the data into the database tables. If you are loading data from a file:

a. Create a .ctl file for each table with the following contents (in the same
location as the data files):

load data
INFILE '<filename>'
INTO TABLE <tablename>
FIELDS TERMINATED BY '<delimiter>'
<table_format>

For example, if the data is pipe-separated, the customer.ctl file will
have these contents:

load data

Indian Institute of Science 116 of 130

Picasso 2.1 February 2011

INFILE 'customer.tbl'
INTO TABLE CUSTOMER
FIELDS TERMINATED BY '|'
(C_CUSTKEY, C_NAME, C_ADDRESS, C_NATIONKEY,
C_PHONE, C_ACCTBAL, C_MKTSEGMENT,
C_COMMENT)

b. After creating this file, open a command prompt, navigate to the location of
the above files and run the command:

sqlldr <username>/<password> control =
<filename>
For example, for username ‘system’ loading table
CUSTOMER with files located in C:\, navigate to C:\ and run
the command:
sqlldr system/manager control = customer.ctl

5. Create the integrity constraints (primary key, foreign key and indexes) on the data.
If you are using a file for this, run the following command in the SQL prompt:

@ <full path>\<filename>

6. Create the explain plan tables. These are the tables in which query execution
plans are stored by the optimizer. To create these tables, use this command in the
SQL prompt:

@ <path of oracle home>\rdbms\admin\utlxplan.sql
For more information about Oracle plan tables, see
http://www.adp-gmbh.ch/ora/explainplan.html

7. Create statistical summaries for all table columns that may be used as
Picasso predicates in the query templates, using the following command in the SQL
prompt:

EXEC dbms_stats.gather_table_stats ('<schema_name>’,
‘<table_name>’, method_opt => 'FOR COLUMNS
<column_names>');
For example, to create statistics on the N_NAME and N_COMMENT
columns of the NATION table:
EXEC dbms_stats.gather_table_stats ('system',
‘NATION’, method_opt => 'FOR COLUMNS N_NAME,

Indian Institute of Science 117 of 130

Picasso 2.1 February 2011

http://www.adp-gmbh.ch/ora/explainplan.html

N_COMMENT');
To improve the scope for optimization, you could optionally create statistics
for all columns of each table. This can be done using the command:
EXEC dbms_stats.gather_schema_stats
('<schema_name>’, method_opt => 'FOR ALL
COLUMNS', cascade => TRUE);

Note: The diagrams on the Picasso website have been generated with statistical
summaries created on all table columns.

8. You can optionally set the following parameters to fine-tune the optimization
environment (the diagrams on the Picasso website were generated using the default values for all
these parameters):

a. query_rewrite_enabled
b. optimizer_dynamic_sampling
c. optimizer_mode
d. optimizer_features_enabled

For a more exhaustive list of optimization parameters, see
http://www.dba-oracle.com/art_ault_optimization_parameters.htm

Notes:

1. Creating statistical summaries is computationally intensive and may take
significant time to complete. If there is an error "unable to extend temp
segment in tablespace <tablespace_name>", enable the expansion of the
datafile in that tablespace by checking the ‘Automatically extend
datafile when full’ check box in the datafile properties. Then execute the
above commands again.

2. For more information on gathering Oracle statistics, see: http://www.psoug.
org/reference/dbms_stats.html

Documentation Home

Indian Institute of Science 118 of 130

Picasso 2.1 February 2011

http://www.dba-oracle.com/art_ault_optimization_parameters.htm
http://www.psoug.org/reference/dbms_stats.html
http://www.psoug.org/reference/dbms_stats.html

Picasso Database Query Optimizer
Visualizer

©Indian Institute of Science, Bangalore, India

SQL Server

(The following setup procedure is known to work with Microsoft SQL Server
2000, 2005, 2008 on Windows.)

1. Install MS SQL Server. Run setup.exe (or Autorun.exe) and follow the
wizard for installation of MS SQL Server. Install with SQLServer authentication.
You will be asked for the password for username “sa”.

2. Open Enterprise Manager using Start → Programs → Microsoft
SQL Server → Enterprise Manager.

3. Create a new database by right-clicking the Databases and selecting New

Database in the tree view in the left pane.

4. Create the tables using the Enterprise Manager. Under the database you
just created, right-click on Tables → New Table. Here you can enter the
table information.

5. Load the data into the database. If the data to be loaded is in files, right click on the
database and select Tasks → Import Data and follow the wizard. Select
the data source as Text File and follow the wizard to completion.

6. Create primary key, foreign key and indexes. In the Enterprise Manager,
navigate to the table and right-click on it and select Design. Here you can add
keys, indexes, constraints etc.

7. Create statistical summaries for all table columns that may be used as
Picasso predicates in the query templates, with this command:
 CREATE STATISTICS <stats_name> ON <table_name>

Indian Institute of Science 119 of 130

Picasso 2.1 February 2011

(column_list) WITH FULLSCAN
To improve the scope for optimization, you could optionally create statistics for all
columns of each table of the database using the command:
 exec sp_createstats

Note: The diagrams on the Picasso website have been generated with statistical
summaries created on all table columns.

Documentation Home

Indian Institute of Science 120 of 130

Picasso 2.1 February 2011

Picasso Database Query Optimizer
Visualizer

©Indian Institute of Science, Bangalore, India

Sybase ASE

(The following setup procedure is known to work with Sybase ASE 15 on Windows.)

1. Install Sybase by running setup.exe and following the wizard.

2. Create a device (or two) for the new database and allocate enough space on the
devices. Create a database using the Add Database utility of Sybase
Central and allocate these new devices to this database.

3. Open an SQL prompt in one of the following two ways:

1. Open the Interactive SQL utility of Sybase and select the database name
from the drop-down list of databases.

2. In the command prompt, type isql –S <servername> –U
<username> -P <password> and in this prompt, give the command
use <dbname> followed by a go command. The servername is the
name of the machine where this DB service is running.
The isql command file is usually found in the Sybase\OCS\bin directory.
This prompt requires that there should be no semi-colon after a statement, and
instead there should be a go command following each statement.

4. Create the stored procedure hist_values to obtain the information required to
create statistics.

Indian Institute of Science 121 of 130

Picasso 2.1 February 2011

file:///D|/PicassoSite/Picasso2Doc/Installation/hist_values.txt

5. Create the tables. If the schema to be created is in a file, use one of the following
methods depending on which of the above SQL prompts is being used:

a. In the Interactive SQL prompt, go to File → Run Script and
select the required file to run.

b. In the command prompt, type isql –S <servername> –U
<username> -P <password> -i <filename> to run the file. The file
should have no semi-colon after a statement, and instead, there should be a
go command after each statement.

6. Load the data into the database tables. If the data to be loaded is in files, any of
these utilities can be used:

a. Data → Import menu item of the Interactive SQL window. (This utility
requires the data files to be named with a ‘.csv’ extension.)

b. The bcp utility. To enable this, in the Sybase Central utility, navigate to

the database name in the tree view, right-click on it and select Properties.
In the Options tab, check the “select into/bulkcopy/pllsort”
item. Then run the following command in the command prompt:

bcp <dbname>.<schema>.<tablename> in <filename> -c –t
“<delimiter>” –r “<return_character>” -U<user> -P<passwd>
For example, if the file nation.tbl has pipe-delimited data with a pipe at the
end of each line, and the database is tpch, schema is dbo, user is sa/
sysadmin, and table is NATION, the command looks like this:
bcp tpch.dbo.NATION in nation.tbl -c –t “|” –r “|\n” -Usa -
Psysadmin

7. Create the integrity constraints (primary key, foreign key and indexes) on the data.
If you are using a file for this, run it similar to step 5 above.

8. Create statistical summaries for all table columns that may be used as

Indian Institute of Science 122 of 130

Picasso 2.1 February 2011

Picasso predicates in the query templates. These summaries can be created using
the following command in the SQL prompt:

update statistics <db_name>.<schema_name>.
<table_name> (<column_name>)

To improve the scope for optimization, you could optionally create statistics for
all columns of each table. This can be done using the command:

update all statistics <table_name>

Note: The diagrams on the Picasso website have been generated with
statistical summaries created on all table columns.

Notes:

1. If the transaction logs become full, they can be cleared using the command:

dump tran <dbname> with no_log

2. If you get an error like “There is not enough memory in the procedure cache”,
then restart the Sybase service and increase the procedure cache size by giving
the command

sp_configure ‘procedure cache’, <new_size>

The original procedure cache size can be viewed using the command:

sp_configure ‘procedure cache’

Indian Institute of Science 123 of 130

Picasso 2.1 February 2011

Documentation Home

Indian Institute of Science 124 of 130

Picasso 2.1 February 2011

Picasso Database Query Optimizer
Visualizer

©Indian Institute of Science, Bangalore, India

PostgreSQL

(The following setup procedure is known to work with PostgreSQL 8 on Windows.)

1. Install PostgreSQL by running the .msi installer file. The process will include
creating two accounts: a service account (preferably called postgres)
and an internal database account. The service account is
an OS user account, which will be created during this installation if it doesn’t
exist. It should not be a privileged (root or admin) user.

2. Grant full permissions to this service account on the PostgreSQL
installation folder.

3. Login to the machine as the PostgreSQL service account. The database
is already initialized during installation. You can optionally initialize a new
instance (in a new data folder) by running this command in the command prompt:

initdb –D <data_folder name with path>
For example, if the data folder is ‘data1’ in the current directory, the command is:

initdb –D data1

4. Start the service with the command:

postmaster –D <data_folder name with path>
For example,

postmaster –D data1

5. Create a database that will contain the database tables. The command is:
createdb <dbname>

Indian Institute of Science 125 of 130

Picasso 2.1 February 2011

6. Open the PostgreSQL prompt with the command:

psql <dbname> -U <db_username>

Here, the db_username should be the internal database account.
You will be prompted for the password, after which the SQL prompt opens.

Note: If the –U <db_username> option is not specified, this command
assumes the current OS user as the db user, and prompts for the password.
Incidentally if the current OS user name is the same as the internal
database account, you will be directly logged in.

7. Create the tables by entering appropriate SQL statements. If the schema to be

created is in a file, run the command: \i <filename> in the psql prompt.

8. For loading tables into the database, use the COPY utility of PostgreSQL. The
command template is given below. Run the command in the psql prompt.

COPY <tablename> FROM '<filename>' WITH DELIMITER
AS '<delimiter>';

The filename should be given with the full absolute path.

For example, to load data file C:\nation.tbl which has pipe-separated data,
into the NATION table, the command is:

COPY NATION FROM 'C:\\nation.tbl ' WITH DELIMITER
AS '|';

Note: Before loading large data files, it may be helpful w.r.t. response time to set
the ‘checkpoint_segments’ to a higher value than the default in the file
postgresql.conf in the data directory.

9. Create the integrity constraints (primary key, foreign key and indexes) now. If the
commands are in a file, run the command: \i <filename> in the psql prompt.

10. Create statistical summaries for each of the columns that may be used as
Picasso predicates in the query templates using the following command in the
psql prompt:

Indian Institute of Science 126 of 130

Picasso 2.1 February 2011

VACUUM ANALYZE;

Note: The diagrams on the Picasso web-site have been generated with statistical
summaries created on all table columns.

Documentation Home

Indian Institute of Science 127 of 130

Picasso 2.1 February 2011

Picasso Database Query Optimizer
Visualizer

©Indian Institute of Science, Bangalore, India

MySQL

(The following setup procedure is known to work with MySQL 5.1, 5.4.1 and
5.5.9 on Windows with InnoDB as storage engine.)

1. Install MySQL: Run setup.exe and follow the wizard.

2. Create the schema. If the schema to be created is in a file, run the following
command on the command prompt:

 mysql --host=localhost -u UserName -p Password --
database=DbName < “filename”

For example,

 mysql --host=localhost -u root -p pass123 --
database=TPCH < “c:\\tpch\\dss.ddl”

Note: escape sequence “\\” required on windows while giving file path.

3. Load the data into the database tables. If you are loading data from a file, run the
following command after opening MySQL Command Prompt as mentioned in above
step with --host –u and --database options:

Indian Institute of Science 128 of 130

Picasso 2.1 February 2011

load data local
INFILE '<filename>'
INTO TABLE '<tablename>'
FIELDS TERMINATED BY '<delimiter>'

For example, if the data is pipe-separated:

load data local
INFILE 'customer.tbl'
INTO TABLE CUSTOMER
FIELDS TERMINATED BY '|'

4. Create the integrity constraints (primary key, foreign key and indexes) on the data.
If you are using a file for this, run the following command in the command prompt:

mysql --host=localhost -u UserName -p Password --
port=portno --database=DbName < “filename”

For example,

 mysql --host=localhost -u root -p pass123 --port=3308
--database=TPCH < “c:\\tpch\\dss.ri”

5. Whenever the data is changed, update statistics for tables that may participate in the
query templates, using the following command in the MySQL Command Line Client:

ANALYZE TABLE table_name;

6. You can optionally set the following parameters to fine-tune the optimization
environment (the diagrams on the Picasso website were generated using the default values for all
these parameters):

a) optimizer_search_depth

b) optimizer_prune_level

Indian Institute of Science 129 of 130

Picasso 2.1 February 2011

For detailed explanation of optimization parameters, see

http://dev.mysql.com/doc/refman/5.5/en/controlling-query-plan-evaluation.html

Notes:

1. PSP should be on an indexed attribute.

2. Query Template should not involve any form of sub-query. Valid query templates
include SPJ queries which may contain aggregation functions, GROUP BY, ORDER
BY and HAVING clause.

3. For compiled plan tree diagram, cost for intermediate nodes is not available. Only
final cost is available.

4. As the histograms are not natively supported by the database, we have used the
equi-depth and value based techniques to construct them. The type of histogram
depends on the number of distinct values. If the distinct values are fewer than
number of buckets (default 75), a value based histogram is constructed otherwise an
equi-depth histogram is constructed.

5. The diagrams on the Picasso website have been generated with index on the
varying attribute and InnoDB as the storage engine.

Documentation Home

Indian Institute of Science 130 of 130

Picasso 2.1 February 2011

http://dev.mysql.com/doc/refman/5.4/en/controlling-optimizer.html

	titlePagecover
	Local Disk
	Picasso Database Query Optimizer Visualizer

	index
	Local Disk
	Document Index

	changes2.1
	Local Disk
	What's new in Picasso v2.0

	intro
	Local Disk
	Introduction to Picasso

	installation
	Local Disk
	PICASSO Installation

	usage
	Local Disk
	Picasso Usage Guide

	controls
	Local Disk
	Controls in the Picasso Client GUI

	plantree
	Local Disk
	Plan Tree Windows

	cmdlineguide
	Local Disk
	Picasso Command Line Usage Guide

	semantics
	Local Disk
	Diagram Semantics

	troubleshooting
	Local Disk
	Trouble-shooting Picasso

	future
	Local Disk
	Future Plans

	history
	Local Disk
	Picasso History

	porting
	Local Disk
	Picasso Porting Guide

	algorithms
	Local Disk
	Picasso Algorithms

	pub
	Local Disk
	Publications

	license
	Local Disk
	Picasso Licensing Information

	team
	Local Disk
	Document Index

	ack
	Local Disk
	Acknowledgements

	tpch
	Local Disk
	Procedure for TPC-H

	DB2
	Local Disk
	Procedure for DB2

	Oracle
	Local Disk
	Procedure for Oracle

	SQLServer
	Local Disk
	Procedure for MS SQLServer

	Sybase
	Local Disk
	Procedure for Sybase

	PostgreSQL
	Local Disk
	Procedure for PostgreSQL

	MySQL
	Local Disk
	Procedure for MySQL

