
Building Classifiers With Unrepresentative Training Instances:
Experiences From The KDD Cup 2001 Competition

Anuradha Bhamidipaty anu@it.iitb.ac.in

Anand Janakiraman janaki@it.iitb.ac.in

Sunita Sarawagi sunita@it.iitb.ac.in

IIT Bombay, India.

Jayant Haritsa haritsa@dsl.serc.iisc.ernet.in

IISc Bangalore, India.

Abstract

In this paper we discuss our experiences in
participating in the KDD Cup 2001 compe-
tition. The task involved classifying organic
molecules as either active or inactive in their
binding to a receptor. The classification task
presented three challenges: highly skewed
class distribution, large number of features
exceeding training set size by two orders of
magnitude, and non-representative training
instances. Of these, we found the third chal-
lenge the most interesting and novel.

We present our process of experimenting with
a number of classification methods before fi-
nally converging on an ensemble of decision
trees constructed using a novel attribute par-
titioning method. Decision trees provided
partial shield from the differences in data dis-
tribution and the ensemble provided stabil-
ity by exploiting the redundancy in the large
set of features. Finally, we employed semi-
supervised learning to incorporate character-
istics of the test set into the classification
model.

We were second-runner’s up in the competi-
tion. We followed up the competition with
further research in semi-supervised learning
and obtained an accuracy higher than that
of the winning entry.

1. Introduction

Recently there has been a rapid growth of interest
in mining biological databases. In keeping with this
trend, the Annual ACM SIGKDD KDD Cup competi-
tion of the year 20011 was focused on the application

1http://www.cs.wisc.edu/~dpage/kddcup2001

of data mining techniques to mining biological data.
The first of the three problems in the competition was
“Prediction of Molecular Bioactivity for Drug Design
— Binding to Thrombin”. Drugs are small organic
molecules that achieve their desired activity by bind-
ing to a target site on a receptor. A crucial step in
drug design is to separate the active (binding) com-
pounds from the inactive (non-binding) ones. The task
in the competition was to identify the properties of
compounds that enable them to bind to Thrombin, a
key receptor in blood clotting.

The training dataset2 consisted of 1909 compounds
identified as either active or inactive in their ability
to bind to Thrombin. The test dataset consisted of
634 compounds whose binding to Thrombin was to be
predicted. The datasets presented three main chal-
lenges.

1. The training data was highly skewed. Out of
1909 compounds, 1867 were inactives and only 42
(2.2% of the total) were actives.

2. The number of features was two orders of magni-
tude more than the number of instances. Each
compound was represented by a feature vector
consisting of 139,351 binary features, which de-
scribe the three-dimensional properties of the
compound. The organizers did not provide the
definition of individual features. So we could not
exploit domain knowledge even if we had any.

3. The third, and the most important challenge, was
that the training set was not representative of the
data distribution in the test set.

A lot of research has gone into addressing the first
two challenges in the context of other applications.

2Contributed by DuPont Pharmaceuticals Research
Laboratories to KDD Cup 2001.

Skewed class distributions are handled in a number
of ways (Nathalie Japkowicz, 2000; Japkowicz, 2000;
Fawcett, 1996), including, building cost-sensitive clas-
sifiers (Domingos, 1999; Zadrozny & Elkan, 2001;
Chan & Stolfo, 1998; Provost & Fawcett, 1998; Weiss
& Provost, 2001) that assign higher cost to mis-
classifications of the minority class, stratified sampling
on the training instances to balance the class distribu-
tion (Kubat & Matwin, 1997) and rule-based methods
that attempt to learn high confidence rules for the mi-
nority class (Ali et al., 1997).

Large feature sets are typically handled through a fea-
ture selection step in the preprocessing stage (Dash
& Liu, 1997). A number of techniques exist rang-
ing from simplistic individual feature selection meth-
ods using measures like Entropy, Mutual Information
and Fisher’s index to more exhaustive approaches like
Wrappers (Kohavi & John, 1997) and Markov Blan-
kets (Koller & Sahami, 1996). In recent times these
techniques have been applied to classifying very high
dimensional datasets like text with much success.

We found the problem of building a classifier with a
training dataset that is not representative of the test
instances the most compelling and novel. Not being
able to rely on the crutches of cross-validation for var-
ious stages of model selection and classifier evaluation
led us to concentrate on metrics like robustness and
stability more than accuracy on the validation set. The
competition like several others of the kind released the
data in two stages. The initial method that we de-
signed based on high accuracy on a set-aside portion
of the training set, had to be discarded when we found
that the test attributes had a drastically different dis-
tribution of “1”s. Our final method was an ensemble of
decision trees built in a novel way to exploit multiple
redundant sets of features and that provided stability
to our method. Another interesting outcome was the
way we dealt with unlabeled test instances. To capture
the difference in data distribution we augmented the
training data of a supervised learner with unlabeled
test instances.

Outline We describe our methodology in detail in
the order in which we worked on the problem. Sec-
tion 2 describes the training phase. Section 3 describes
the steps we followed after the test set was released.
Section 3.5 presents a postmortem of our method done
after the results were declared. Section 4 describes our
further post-competition research on semi-supervised
learning that yielded an accuracy higher than the best
achieved at the competition. Finally, we conclude in
Section 5 with a list of the lessons learnt.

2. Training Phase

In the training phase we were engrossed with the chal-
lenges offered by the limited active instances and the
enormous set of features. As the data was highly
skewed, the organizers had announced the evaluation
criteria as weighted accuracy defined as the average
of the fraction of actives and the fraction of inactives
correctly classified. Thus, predicting all instances as
belonging to the majority class would yield an accu-
racy of 98% on the training instances, but a weighted
accuracy of only 50%.

2.1. Familiarization with the Data

The training data was not devoid of noise — for exam-
ple, there were four identical records with all 139,351
features having a value of “0” but two of them were
active and the other two inactive. Overall there were
lot more zeros than ones (1000 to 1). The number of
features with a value of “1” was eleven times higher
for the actives than for the inactives. A naive sepa-
ration between the two classes based on the count of
“1”s in the records. In terms of the number of ”1”s
the top 8 records were all actives and the bottom 1000
records were all inactives (except for the two actives
mentioned earlier). Thus, purely based on the number
of ”1”s it was possible to gain a weighted accuracy of
60% on the training set.

2.2. Feature Selection

The large number of features necessitated some form
of feature selection. We employed entropy based fea-
ture selection. However, we observed that selecting
just the top n features with the highest entropy left
us with several actives with all zeros as the feature
value even for fairly large values of n (greater than
1000). This made them indistinguishable from other
inactives several of which also had all zeros. There-
fore, we used an alternative feature selection method.
For each active a, we selected the k highest entropy
features only amongst those features where the value
v of that feature in a appeared in greater fraction of
actives than the opposite value 1 − v. The union of
the top-k features from each active formed the final
feature set. This ensured that in addition to the top n
entropy features, we also picked some others that al-
though had slightly lower entropy, would nevertheless
be helpful in distinguishing actives. At the end of this
process we had roughly 800 features.

Figure 1. A single decision tree.

2.3. Classification Methods

We next sought to train different classifiers on the
training data. Three-fourths of the available data was
used for training and the rest one-fourth for validation.
Since the training set was limited, ideally we should
have employed N -fold cross-validation. However, for
our first-cut experiments we used a single validation
set.

We experimented with four classification meth-
ods: C4.5 Decision Tree classifier (Quinlan, 1993),
MLC++’s naive Bayes classifier (Kohavi et al.,
1996) , SVMTorch Support Vector Machine classifier
(SVM) (Collobert & Bengio, 2001) and a clustering
method tailor made for the current problem at hand.

Decision Tree Classifier The first method we tried
was decision tree classifiers. Surprisingly, a fairly sim-
ple tree (shown in Figure 1) consisting of just 6 at-
tributes was able to yield close to perfect accuracy on
the training set. However, on the validation data it
mis-classified 7 out of the 10 actives, with a confusion

matrix of
[

3 7
1 459

]
. Clearly, we needed to explore

other methods.

Naive Bayes Classifier Naive Bayes classifiers
have been found useful for text classification
((Chakrabarti et al., 1998)). This dataset with the
sparsity of ”1”s resembled a text dataset. Also, naive
Bayes has been found to be useful in those high di-
mensional settings where no single feature holds a sig-
nificant information. Instead, the information is scat-
tered over several features. Naive Bayes by combining
them into a single value gives due importance to all of
them. This is in contrast to decision tree classifiers,
that typically select only a few (less than a dozen) fea-
tures. Unfortunately, our first cut experiments with
naive Bayes yielded negative results. The confusion
matrix for a single naive Bayes when applied on the

Figure 2. Actives clustered and separated from the inac-
tives.

validation set was found to be
[

0 10
1 459

]
. All the ac-

tive instances were mis-classified by naive Bayes. Our
guess for this bad performance was the extreme skew-
ness in class distribution. Perhaps, the prior probabil-
ity of the majority class overshadows the differences in
the attribute conditional probability terms.

Support Vector Machine Classifier Support vec-
tor machines (SVMs) (Vapnik, 1995; Joachims, 1998)
have been shown to excel at two-class discriminative
learning problems. In high dimensional settings, like
text, they often outperform generative classifiers, es-
pecially those that use inaccurate generative models,
such as Naive Bayes. The next natural step for us
was to try out SVMs. The accuracy we achieved using
SVMs was no better than with decision trees. We had
experimented with linear and Gaussian kernels and a
limited range of parameter values. More exhaustive
tuning of the SVM parameters might have yielded bet-
ter results.

We were not satisfied with the results of any of the
above standard classification methods. Therefore, we
proceeded to explore better methods of feature selec-
tion using a variant of a nearest neighbor classifier as
the basis.

2.4. Clustering

The idea was to choose a feature set where the ac-
tive instances cluster together and are separated from
the inactives as shown in Figure 2. If such a clus-
ter exists, then the proximity of a test instance to the
cluster could be used to predict it as either active or
inactive. Our measure of similarity was the number
of overlapping “1”s between two instances. This is a
slight deviation from standard similarity measures for
binary attributes, since we felt that the presence of a
“1” was more important in determining the activity
level of the compound.

With the previously selected feature set, we found that
there was a poor separation of the actives from the
inactives. We therefore proceeded to deploy a more
exhaustive method for feature selection that would
achieve this separation. In this method, we pick fea-
tures incrementally, one-by-one such that we achieve
the maximum clustering of the actives and the maxi-
mum separation from the inactives at each stage. Let
F be the given feature space and G be the subset of
features obtained after feature selection. G is initial-
ized to φ, the empty set. The feature selection method
we used is described in Figure 3. xπ(G) denotes the
projection of an instance x on the set of features G.
The distance d(ca, ci) between the active centroid ca
and the inactive centroid ci is the Euclidean distance.

Incremental feature selection method:
Let, A = set of actives
Let, I = set of inactives
F =feature space
G = φ

separation = 0
do

/* Choose a feature for inclusion */
for each feature, fi ∈ F

ca =
∑

x∈A
xπ(fi∪G)
|A|

ci =
∑

x∈I
xπ(fi∪G)
|I|

new separation = d(ca, ci)
if new separation > separation

f = fi
separation = new separation

end if
end for
G = G ∪ f
F = F − f

while no significant change in separation.

Figure 3. Incremental feature selection

With this approach we selected a set of 493 features.
The feature set clustered the actives together with a
minimum intra-cluster similarity (in terms of number
of matching “1”s) of 10 features amongst the actives
while the inactives had a maximum similarity of only
8 features with any active. We also obtained a sepa-
ration of the actives and the inactives in terms of the
number of ”1”s in the selected feature space. The ac-
tives had at least 25 features with a value of “1” and
the inactives had a maximum of only 14 features with a
value of “1”. Thus, we felt confident about classifying
instances based on distance from the centroid of the
actives and inactives. This method yielded a weighted
accuracy of close to 100% on the validation dataset.

Table 1. Results obtained in the Training Phase

Method Wt. Accuracy on
Used training set(%) validation set(%)
Decision Tree 96.5 64.9
SVM 93.1 60.0
Naive Bayes 64.7 49.9
Clustering 100 95.0

We were happy with this result and awaited the release
of the test dataset.

3. Testing Phase

With the release of the test dataset we faced the third
and the most important of the challenges — the differ-
ences in the distributions of the training and the test
datasets. The organizers had also warned that “the
compounds in the test set were made after chemists
saw the activity results for the training set, so the test
set might contain a higher fraction of actives than did
the training set. But there would still be more inactives
than the actives”.

3.1. Differences in Training and Testset
Distributions

Some quick summary statistics of the distribution of
”0”s and ”1”s convinced us beyond doubt of the differ-
ence. We found that on an average the number of ”1”s
in each attribute in the test set was four times more
than in the training set. In Figure 4 we show a scatter
plot of the fraction of ”1”s for each attribute in the
test set against the fraction in the train set . From the
figure we find that there were several attributes where
the fraction of “1”s in the test set was significantly
higher.

The increase in the number of ”1”s in the test set could
be due to two reasons:

• The first could be directly due to an increase in
the fraction of actives. We had observed in the
training dataset that the actives tended to have
more ”1”s than the inactives, an increase in the
fraction of actives could cause the fraction of ”1”s
per attribute to increase. The organizers had al-
ready revealed that the fraction of actives was in-
deed higher in the test set.

• The second, more subtle reason could be because
the test set was created in a biased manner to fa-
vor actives. It was possible that the inactives in

Figure 4. Scatter plot over different attributes of the frac-
tion of ones in test and the training sets. Each of the
139,351 attributes contributes a point in this plot.

the experiment were very different from the inac-
tives in the training dataset. In particular, they
are likely to be closer to the actives and have a
higher concentration of ”1”s. We had no means of
verifying this during the competition. However, a
postmortem analysis of the actives and inactives
separately shows that the inactives too had a sig-
nificantly higher count of ”1”s in the testset. In
Figures 5 we redraw the scatter plots this time
separately for the actives and inactives. We find
that the inactives have significantly larger number
of ones in the test set compared to the training
set. The test actives had also changed but not as
drastically as the inactives.

Thus the difference in distribution was two-fold (1) the
fraction of actives was significantly higher in the test
set than in the training (2) for each attribute the frac-
tion of ”1”s was higher in the test than in the training
set. Some recent papers discuss the first problem of
dealing with differences in the class distribution in the
training and test set (Provost & Fawcett, 1998; Weiss
& Provost, 2001; Zadrozny & Elkan, 2001; Domingos,
1999). However, there is relatively little work on han-
dling the second case.

We next discuss the two techniques that we used to
address this change in data distribution.

3.2. Distribution Independent Classifiers

Our clustering approach relied strongly on threshold-
ing on the number of matching ones. With the drastic
difference in the frequency of ”1”s in the training and
test instances, we no longer felt confident about the
efficacy of this method.

We wanted a classifier that would be less critically de-
pendent on the specific input data distribution. Dis-

(a) Actives

(b) Inactives

Figure 5. Scatter plot of the fraction of ones in test and
training sets for different attributes plotted separately for
the Active and Inactive classes.

criminative classifiers like decision trees are known to
be less sensitive to the input data distribution than
generative classifiers like Naive Bayes. However, a sin-
gle decision tree like the one shown in Figure 1 can pick
only a small set of important features in this large di-
mensional space. We therefore, decided to build an
ensemble of decision trees to cover the large feature
space through other groups of important features.

The trees in an ensemble are built serially by succes-
sively removing attributes already used in the previous
trees of the ensemble as shown in Figure 6. Trees are
added to the ensemble until the accuracy of the tree on
the validation dataset does not drop. This method of
constructing tree ensembles presents a departure from
the normal method of creation by partitioning or re-
sampling the training dataset. In our case, training
data is limited but the number of attributes is abun-
dant. This helped us identify all important groups of
useful yet redundant attributes. We were surprised
that we could construct nine such serial trees each of
which yielded accuracy close to the first tree in spite
of the reduced attribute set. This exposed the redun-
dancy present in the input feature space and enabled

us to exploit it to build a stable classifier.

3.3. Semi-supervised Learning

Semi-supervised learning (Nigam et al., 2000; Blum
& Mitchell, 1998; Goldman & Zhou, 2000; Bennett &
Demiriz, 1998; Joachims, 1999) attempts to incorpo-
rate a fraction of the test instances to the training data
when building a model. This provides a mechanism of
incorporating the characteristics of the test data dis-
tribution in the trained model. We used the following
method for semi-supervised learning.

1. Repeat for a few rounds

(a) For each test instance, get predictions using
the current ensemble of trees.

(b) Select a subset of test instances on which
the ensemble’s prediction has very high con-
fidence.

(c) Add the subset to the training set with the
current prediction and create a new ensemble
of decision trees.

Our first attempt at semi-supervised learning selected
for inclusion all test instances that got the same pre-
diction from each tree in the ensemble. However, we
had no guarantee that unanimity amongst the trees
implied correctness. It was important to ensure that
we were not drifting away from the “correct” model
by amplifying our mistakes in each round of semi-
supervised learning. In the second attempt, we set
aside a validation dataset and evaluated the errors on
the unanimous cases. We did find cases where the pre-
diction was wrong in spite of unanimity. We therefore,
wanted a finer-grained distinction between instances.

We made each tree output a weight that denotes the
confidence that the predicted instance is active. The
weight was equal to the fraction of the total actives
correctly classified by the leaf node at which the clas-
sification was done. The score of each prediction was
the sum of the scores from each tree. The validation
dataset was used to determine the score ranges where
predictions were error-free on the validation instances.
Thus, test instances with score only within this range
were incorporated via semi-supervised learning.

At the end of three rounds of semi-supervised learning
we had exhausted instances on which the prediction
score was high. At the end of the process, we had
three rounds of 6 trees each.

Out of the 634 unlabeled instances we incorporated
437 instances (126 actives and 311 inactives) into the
training set via the above process. The rest 200 odd in-
stances were treated as confusing instances. To predict

Figure 6. Forming an ensemble of decision trees.

labels for the confusing ones, we built decision trees
with the correctly predicted test instances as training
data. We verified that the accuracy of these trees on
the original training data was high.

With this we submitted our predictions to the orga-
nizers of the competition.

3.4. Final Results

With our ensemble of 18 trees built using the limited
semi-supervised learning we achieved a weighted ac-
curacy of 64.3% and an unweighted accuracy of 72%.
We were ranked second-runner’s up in the competi-
tion. The winners had a weighted accuracy of 68.5%
and unweighted accuracy of 70%. The winners used
Bayesian Belief Networks for the task. They perform
an initial feature selection step using mutual informa-
tion to pick about 200 relevant features. Then they
learn a few Bayesian networks on the training data
and further prune the feature set using a Markov Blan-
ket approach. The final model they used for prediction
surpisingly had as low as 4 features in it! Details of the
method used by the winners can be found in (Cheng
et al., 2002).

3.5. Postmortem

With the release of the true predictions of the test
dataset, we carried out some postmortem analysis of
our methods. We found that the accuracy of the test
set with a single decision tree was 49%. The first round
ensemble of decision trees with unweighted majority
prediction yielded 57% accuracy and weighted major-
ity predictions yielded 63% accuracy. Semi-supervised
learning boosted this accuracy to 64.3%.

4. Further Work on Semi-supervised
Learning

The competition got us hooked into doing further re-
search in semi-supervised learning. Over the next few
months our research on this topic led to the design of a
new algorithm, and on applying this on the KDD Cup
data we were surprised to get a weighted accuracy of

71% — higher than what was obtained by the winning
entry!

A primary goal we had in this research on semi-
supervised learning was to design a method that was
not tied to a particular supervised learning method.
Most existing approaches to semi-supervised learn-
ing (Nigam & Ghani, 2000; Blum & Mitchell, 1998;
Goldman & Zhou, 2000; Bennett & Demiriz, 1998;
Joachims, 1999) are tied to a particular underlying
supervised learners. None of these were directly ap-
plicable to our supervised learner — an ensemble of
decision tree classifiers. Hence our key motivation was
to design a semi-supervised technique independent of
any supervised algorithm.

Let Λs and Λu denote arbitrary supervised and un-
supervised learning algorithms, and Dl and Du de-
note the set of labeled and unlabeled instances respec-
tively. Our algorithm begins with a hypothesis h that
Λs learns using only Dl. This h is used to label Du. Si-
multaneously, we use Λu to clusterDu∪Dl into clusters
such that each cluster has diameter less than d. The
d is a function of the minimum distance between two
instances of the opposite class in the initial training
set Dl. Modulo noise, we want d to be less than this
minimum distance. Unlabeled instances from clusters
satisfying a purity criterion are included in the train-
ing set as follows. A cluster is called pure if it contains
instances belonging to the same class (as determined
using the current hypothesis). The pure clusters are
then ranked based on the fraction of instances in that
cluster that come from the labeled set Dl. Larger the
number of labeled instance in a cluster, higher is its
rank. Each of these pure clusters are then evaluated in
that order for possible inclusion in the training set. We
evaluate the worth of including unlabeled instances in
a cluster using N fold cross-validation on the super-
vised classifier Λs. A cluster is included if its inclusion
results in a decrease in the cross-validation error. Once
a set of unlabeled instances are included, the classifier
is retrained and the process of including new unlabeled
data repeated until no more pure clusters are found.

As already mentioned, the algorithm achieved a
weighted accuracy of 71% on the KDD Cup dataset.
We also tested its performance on some of the stan-
dard UCI datasets and found good improvements over
supervised learning. Further details of the algorithm
can be found at (Janakiraman & Sarawagi, 2002).

5. Lessons Learnt

The challenges presented by the competition, namely
that of skewed class distribution, large feature space

and non-representativeness of the training data are rel-
evant when dealing with real world applications.

Our experience of working on this dataset taught us
the following lessons:

1. An ensemble of decision tree classifiers appears to
be a promising method of dealing with differences
in training and test data distribution.

2. High-dimensional datasets often contain redun-
dant sets of attributes. This redundancy can be
exploited to build robust and stable classifiers like
an ensemble of trees. This is particularly useful
when the size of the training set is small.

3. Non-representativeness of the test instance could
be because of differences in the class distribution
or due to a more fundamental difference in the
distribution of the input attributes. While there
has been some work in recent times in addressing
the first type of difference, there is relatively little
known about how to handle the second kind of
difference.

4. Semi-supervised learning can be useful in han-
dling differences in training and test data distri-
butions by allowing some of the sure test instances
to influence the predictions of the other test in-
stances.

References

Ali, K., Manganaris, S., & Srikant, R. (1997). Par-
tial Classification using Association Rules. Proc. of
the 3rd Int’l Conference on Knowledge Discovery in
Databases and Data Mining. Newport Beach, Cali-
fornia.

Bennett, K. P., & Demiriz, A. (1998). Semi-supervised
support vector machines. Advances in Neural Infor-
mation Processing Systems, 12, 368–374.

Blum, A., & Mitchell, T. (1998). Combining labeled
and unlabeled data with co-training. COLT: Pro-
ceedings of the Workshop on Computational Learn-
ing Theory. Morgan Kaufmann Publishers.

Chakrabarti, S., Dom, B., Agrawal, R., & Raghavan,
P. (1998). Scalable feature selection, classification
and signature generation for organizing large text
databases into hierarchical topic taxonomies. VLDB
Journal: Very Large Data Bases, 7, 163–178.

Chan, P. K., & Stolfo, S. J. (1998). Toward scalable
learning with non-uniform class and cost distribu-
tions: A case study in credit card fraud detection.

Knowledge Discovery and Data Mining (pp. 164–
168).

Cheng, J., Hatzis, C., Hayashi, H., Krogel, M.-A.,
Morishita, S., Page, D., & Sese, J. (2002). Kdd
cup 2001 report. Sigkdd Explorations, 3. http:
//www.acm.org/sigs/sigkdd/explorations.

Collobert, R., & Bengio, S. (2001). Svmtorch: Support
vector machines for large-scale regression problems.
Journal of Machine Learning Research, 1, 143–
160. Software available from http://www.idiap.
ch/learning/SVMTorch.html.

Dash, M., & Liu, H. (1997). Feature selection for clas-
sification. Intelligent Data Analysis, 1, 131–156.

Domingos, P. (1999). Metacost: A general method for
making classifiers cost-sensitive. Knowledge Discov-
ery and Data Mining (pp. 155–164).

Fawcett, T. (1996). Learning with skewed class
distributions– summary of responses. Machine
Learning List, 8.

Goldman, S., & Zhou, Y. (2000). Enhancing super-
vised learning with unlabeled data. Proc. 17th Inter-
national Conf. on Machine Learning (pp. 327–334).
Morgan Kaufmann, San Francisco, CA.

Janakiraman, A., & Sarawagi, S. (2002). A hybrid
approach to semi-supervised learning. Master’s the-
sis, Kanwal Rekhi School of Information Technology.
sunita@it.iitb.ac.in.

Japkowicz, N. (2000). The class imbalance problem:
Significance and strategies. Proceedings of the 2000
International Conference on Artificial Intelligence
(IC-AI’2000).

Joachims, T. (1998). Text categorization with sup-
port vector machines: learning with many relevant
features. Proceedings of ECML-98, 10th European
Conference on Machine Learning.

Joachims, T. (1999). Transductive inference for text
classification using support vector machines. Proc.
16th International Conf. on Machine Learning (pp.
200–209). Morgan Kaufmann, San Francisco, CA.

Kohavi, R., & John, G. H. (1997). Wrappers for fea-
ture subset selection. AI Journal special issue on
relevance, 97, 273–324.

Kohavi, R., Sommerfield, D., & Dougherty, J. (1996).
Data mining using MLC++: A machine learning li-
brary in C++. Tools with Artificial Intelligence (pp.
234–245). IEEE Computer Society Press, available
from http://www.sgi.com/tech/mlc/.

Koller, D., & Sahami, M. (1996). Toward optimal fea-
ture selection. International Conference on Machine
Learning (pp. 284–292).

Kubat, M., & Matwin, S. (1997). Addressing the
curse of imbalanced training sets: one-sided selec-
tion. Proc. 14th International Conference on Ma-
chine Learning (pp. 179–186). Morgan Kaufmann.

Nathalie Japkowicz, C. (Ed.). (2000). Learning from
imbalanced data sets, papers from the aaai workshop,
technical report ws-00-05. AAAI Press.

Nigam, K., & Ghani, R. (2000). Understanding the
behavior of co-training.

Nigam, K., Mccallum, A. K., Thrun, S., & Mitchell,
T. (2000). Text classification from labeled and unla-
beled documents using EM. Machine Learning, 39,
103–134.

Provost, F. J., & Fawcett, T. (1998). Robust
classification systems for imprecise environments.
AAAI/IAAI (pp. 706–713).

Quinlan, J. R. (1993). C4.5: Programs for
machine learning. Morgan Kaufman. soft-
ware available from http://www.cse.unsw.edu.
au/~quinlan/c4.5r8.tar.gz.

Vapnik, V. N. (1995). The nature of statistical learning
theory. Heidelberg, DE: Springer Verlag.

Weiss, G., & Provost, F. (2001). The effect of class
distribution on classifier learning (Technical Report
ML-TR 43). Department of Computer Science, Rut-
gers University.

Zadrozny, B., & Elkan, C. (2001). Learning and mak-
ing decisions when costs and probabilities are both
unknown. In Proceedings of the Seventh Interna-
tional Conference on Knowledge Discovery and Data
Mining (KDD).

http://www.acm.org/sigs/sigkdd/explorations
http://www.acm.org/sigs/sigkdd/explorations
http://www.idiap.ch/learning/SVMTorch.html
http://www.idiap.ch/learning/SVMTorch.html
http://www.sgi.com/tech/mlc/
http://www.cse.unsw.edu.au/~quinlan/c4.5r8.tar.gz
http://www.cse.unsw.edu.au/~quinlan/c4.5r8.tar.gz

