
Query Optimizer Plan Diagrams:

Production, Reduction and Applications

Jayant R. Haritsa

Database Systems Lab, Indian Institute of Science

Bangalore 560012, INDIA
haritsa@dsl.serc.iisc.ernet.in

Abstract—The automated optimization of declarative SQL
queries is a classical problem that has been diligently addressed
by the database community over several decades. However, due
to its inherent complexities and challenges, the topic has largely
remained a “black art”, and the quality of the query optimizer
continues to be a key differentiator between competing database
products, with large technical teams involved in their design and
implementation.

Over the past few years, a fresh perspective on the behavior of
modern query optimizers has arisen through the introduction and
development of the “plan diagram” concept. A plan diagram is a
visual representation of the plan choices made by the optimizer
over a space of input parameters, such as relational selectivities.
In this tutorial, we provide a detailed walk-through of plan
diagrams, their processing, and their applications.

We begin by showcasing a variety of plan diagrams that
provide intriguing insights into current query optimizer imple-
mentations. A suite of techniques for efficiently producing plan
diagrams are then outlined. Subsequently, we present a suite
of post-processing algorithms that take optimizer plan diagrams
as input, and output new diagrams with demonstrably superior
query processing characteristics, such as robustness to estimation
errors. Following up, we explain how these offline characteristics
can be internalized in the query optimizer, resulting in an
intrinsically improved optimizer that directly produces high-
quality plan diagrams. Finally, we enumerate a variety of open
technical problems, and promising future research directions.

All the plan diagrams in the tutorial are sourced from popular
industrial-strength query optimizers operating on benchmark
decision-support environments, and will be graphically displayed
on the Picasso visualization platform.

I. INTRODUCTION

Modern database systems employ a query optimizer mod-

ule to automatically identify the most efficient strategy for

executing the declarative SQL queries submitted by users.

The efficiency of the strategies, called “plans”, is usually

measured in terms of query response times. Optimization is

a mandatory exercise since the difference between the cost

of the best execution plan and a random choice could be in

orders of magnitude. The role of query optimizers has become

especially critical during this decade due to the high degree

of query complexity characterizing current data warehousing

and mining applications, as exemplified by the TPC-H and

TPC-DS decision support benchmarks [26], [27].

The deep complexities and challenges of database query

optimization are well-documented [8], resulting in the area

largely remaining a “black art”. Consequently, the quality

of the query optimizer continues to be a key differentiator

between competing database products, with large R & D teams

involved in their design and implementation.

Plan Diagrams. Over the past five years, through a series of

VLDB conference papers [23], [16], [17], [14], [1], [18], we

have created a fresh perspective on the behavior of modern

query optimizers by developing the notion of a “plan dia-

gram”. Specifically, a plan diagram is a visual representation

of the plan choices made by the optimizer over an input

parameter space, whose dimensions may include database,

query and system-related features. In a nutshell, plan diagrams

pictorially capture the geometries of the optimality regions of

the parametric optimal set of plans (POSP) [19].

To make these notions concrete, consider the parametrized

SQL query template, QT8, shown in Figure I, which is

based on TPC-H Query 8. The template defines a relational

selectivity space on the SUPPLIER and LINEITEM relations,

with the selectivity variations specified through the s acctbal

:varies and l extendedprice :varies predicates, respectively.

select o year, sum(case when nation = ’BRAZIL’ then volume
else 0 end) / sum(volume)

from (select YEAR(o orderdate) as o year, l extendedprice
* (1 - l discount) as volume, n2.n name as nation

from part, supplier, lineitem, orders, customer,
nation n1, nation n2, region

where p partkey = l partkey and s suppkey = l suppkey
and l orderkey = o orderkey and o custkey = c custkey
and c nationkey = n1.n nationkey and n1.n regionkey =
r regionkey and s nationkey = n2.n nationkey and r name
= ’AMERICA’ and p type = ’ECONOMY ANODIZED
STEEL’ and
s acctbal :varies and l extendedprice :varies
) as all nations

group by o year
order by o year

Fig. 1. Example Query Template: QT8

The associated plan diagram for QT8, produced on a

popular commercial database engine, is shown in Figure 2(a).

In this picture, each colored region represents a specific plan,

and a set of 89 different optimal plans, P1 through P89, cover

the selectivity space. The value associated with each plan in

the legend indicates the percentage area covered by that plan

in the diagram – the biggest, P1, for example, covers about

22% of the space, whereas the smallest, P89, is chosen in

only 0.001% of the space.



(a) Plan Diagram (b) Reduced Diagram (Threshold λ = 10%)

Fig. 2. Sample Plan Diagram and Reduced Plan Diagram (QT8)

As is evident in Figure 2(a), plan diagrams can be sur-

prisingly complex and dense, with a large number of plans

covering the space – several such instances, spanning a repre-

sentative set of benchmark-based query templates on current

optimizers, are available at [28].

Applications. Plan diagrams are currently in vogue at a

host of industrial and academic sites world-wide. They are

employed in a diverse set of applications, including charac-

terizing the behavior of optimizer designs; visually analyzing

regression test results; investigating structural differences be-

tween neighboring plans in the parameter space; debugging

new query processing features; evaluating the variations in the

plan choices made by competing optimizers; etc. As a case

in point, vivid examples of non-monotonic cost behavior in

commercial optimizers, perhaps indicative of modeling errors,

were highlighted in [23].

Apart from aiding optimizer design, plan diagrams can also

be used in operational settings. Specifically, since they identify

the optimal set of compile-time plans, they can be accessed at

run-time to immediately identify the best plan for the current

query without going through the time-consuming optimization

exercise. Further, they can prove useful to adaptive plan

selection techniques (e.g. [12], [13], [22]) which, based on

run-time observations, may dynamically choose to re-optimize

the query and switch plans mid-way through the processing.

In this context, plan diagrams can help reduce the overheads

incurred in determining the substitute plan choices.

The most compelling use of plan diagrams lies, however,

in their serving as inputs to plan-replacement algorithms,

which output new plan diagrams with demonstrably superior

query processing characteristics. The novel aspect of these

replacement schemes is that they do not entail returning to the

exponentially large plan search space – instead, they restrict

their attention to the comparatively miniscule parametric-

optimal space, thereby ensuring computational efficiency.

For example, given a cost-increase-threshold (λ), the orig-

inal plan diagram can be “reduced” to a simpler picture that

features only a subset of the original plans while ensuring

that the cost of any query point does not go up by more

than λ percent, relative to its original cost. That is, some

of the original plans are completely “swallowed” by their

siblings, leading to a reduced number of plans in the diagram.

It has been empirically shown in [16] that with a threshold

of λ = 20%, the absolute number of plans in the reduced

picture invariably comes down to within or around ten. In

short, complex plan diagrams can be made “anorexic” while

retaining acceptable query processing performance. As a case

in point, the QT8 plan diagram (Figure 2(a)) can be reduced

with just λ =10% to the diagram shown in Figure 2(b), where

only 7 of the original 89 plans are retained.

Anorexic plan diagram reduction has significant practical

benefits, as described in detail in [16], including quanti-

fying the redundancy in the plan search space, enhancing

the applicability of parametric query optimization (PQO)

techniques [19], [20], identifying error-resistant and least-

expected-cost plans [10], [11], and minimizing the overheads

of multi-plan approaches [2], [21].

A particularly potent use of plan replacement schemes is in

addressing the long-standing problem of selectivity estimation

errors [24], which result in poor plan choices at run-time.

Our study [17] indicates that a substantial fraction of optimizer

choices may be improved by identifying substitute POSP plans

that are comparatively robust to such errors, without materially

sacrificing query performance in the absence of errors.

Finally, in our most recent work [1], we have shown that

it is indeed feasible to successfully internalize, in the query

optimizer core, the offline plan-replacement notions discussed

above. The end result is an intrinsically improved optimizer

that directly produces high-quality plan diagrams in an online

fashion, rather than as a post-processing step.



II. TUTORIAL STAGES

In this tutorial, we aim to provide the audience with a

detailed walk-through of plan diagrams, their processing, and

their applications. The presentation is organized in six stages,

described below.

A. Stage I: Plan Diagram Analysis

We begin by showcasing the intriguing plan diagrams ob-

tained with popular industrial-strength optimizers in database

environments based on the TPC-H and TPC-DS benchmarks.

In particular, we provide compelling evidence that plan dia-

grams often appear similar to cubist paintings, with a large

number of plans covering the space and possessing optimality

regions characterized by highly intricate patterns and irregular

boundaries. These tessellated patterns include speckles, stripes,

blinds, mosaics and bands, while the irregular boundaries

suggest the presence of strongly non-linear and discretized

cost models. The diagrams also highlight that the fundamental

assumptions underlying the PQO research literature rarely hold

in practice. Even worse, our study has thrown up examples of

non-monotonic cost behavior where increasing result cardinal-

ities decrease the estimated processing cost, perhaps indicative

of modeling errors.

B. Stage II: Plan Diagram Production

We then explain how plan diagrams can be directly pro-

duced using the features generically available in the APIs

of query optimizers. While these techniques are satisfactory

for low-dimension and low-resolution diagrams, they become

computationally infeasible when scaled to higher dimensions

and resolutions. To address this issue, we present powerful

approximation techniques that provide highly accurate plan

diagrams while incurring only minor overheads compared to

the exhaustive approach. We also prove that if optimizer APIs

were extended to provide, in addition to the cheapest plan,

the second-best plan also, then zero-error diagrams can be

produced with only around 10% overheads.

C. Stage III: Anorexic Plan Diagrams

Next, we show how complex plan diagrams can almost

always be reduced to much simpler “anorexic” pictures, fea-

turing only a few plans from the POSP set, without materially

affecting the query processing quality. Our first reduction

technique is based on a conservative upper-bounding of plan

costs and can be applied to generic optimizers. The second,

and more powerful, option leverages a “foreign plan costing”

(FPC) feature now available in high-end optimizers, wherein

plans can be costed outside of their native optimality regions.

We investigate the plan diagram reduction issue from the-

oretical, statistical and empirical perspectives. The analysis

shows that reduction is an NP-hard problem in general, and

remains so even for interesting constrained variations. We

then design an online greedy reduction algorithm with tight

and optimal performance guarantees, whose complexity scales

linearly with the number of plans in the diagram. Finally,

statistical estimators that accurately predict the best tradeoff

between the query processing quality and the reduction in plan

diagram cardinality are constructed.

D. Stage IV: Robust Plan Diagrams

We then turn our attention to the chronic problem of selec-

tivity estimation errors faced by database systems, and explain

how the plan diagram reduction scheme can be extended to

identify plans that are comparatively robust to such errors.

The extension is based on a generalized mathematical char-

acterization of plan cost behavior over the parameter space,

which lends itself to efficiently establishing guarantees on the

behavior of the substitute plans as compared to the optimizer’s

standard choices. In particular, we prove the powerful result

that the behavior on the corners of the parameter space can be

used to deterministically predict the behavior throughout the

rest of the space, resulting in efficient replacement strategies.

A particularly attractive feature of the robust plan diagrams

is that the replacements are chosen such that they “never ma-

terially harm, but often significantly help”, with respect to the

original choices of the optimizer. That is, the replacements are

always safe and often robust, guaranteeing that the behavior

of the replacement plan diagram never compares unfavorably

with that of the optimizer’s own plan diagram.

E. Stage V: Optimizer Integration

We then present a modified query optimization algorithm

that, by judiciously expanding the set of candidate plans

retained during the optimization procedure, directly incorpo-

rates the offline diagram post-processing techniques within

the standard optimization framework. The end result is a new

query optimizer design that delivers a small and select set of

robust plans to execute user queries, and does so in spite of

completely lacking the global behavioral information available

to the offline algorithms. A prototype implementation has been

successfully carried out on the PostgreSQL [29] system.

The concepts and algorithms presented in the above five

stages will be pictorially demonstrated on the Picasso query

optimizer visualization tool [28]. Given a parametrized query

template such as QT8, Picasso automatically generates a

suite of diagrams, including plan diagrams and reduced plan

diagrams, that comprehensively capture the plan choices made

by the optimizer over the parameter space. Our examples will

cover a representative set of popular commercial and public-

domain query optimizers, operating on the TPC-H and TPC-

DS benchmark environments.

F. Stage VI: Future Research Directions

In the concluding part of the tutorial, we will outline a

set of open technical problems and future research directions.

Sample problems include the following:

a) Plan Diagram Density Classifier: Currently, only af-

ter a plan diagram is produced do we know whether it is sparse

(few plans) or dense (several plans). It would be extremely

useful to develop a predictor for the density of the diagram

prior to production. This objective could be treated as a data

mining problem involving classification, and the associated



feature vector is likely to have to include aspects of the query

template, the database engine, and the schematic/statistical

meta-data. If the boolean (sparse or dense) predictor works

out successfully, a follow-up challenge would be to extend it

to explicitly quantify the expected density.

b) Plan Diagram Coloring Mechanism: Currently,

unique colors are assigned at random to the various plans

featuring in the plan diagram. A semantically richer option

would be to color plans in a manner that also reflects the extent

of their structural differences. For instance, if a pair of plans

happen to have the same join order, they should be assigned

close shades of a common color. With this new approach to

coloring, the plan diagram itself provides a first-cut reflection

of the differences between plans as we traverse the selectivity

space. To achieve this objective, a semantically consistent plan

distance metric has to be first defined, after which an efficient

coloring scheme that reflects these differences as closely as

possible has to be designed.

c) Query Execution Visualization: While plan diagrams

capture the “compile-time” behavior of query optimizers, it

would be instructive to also visualize the run-time behavior

in a similar manner. A first step in this important direction

has been taken in [15], and there is ample scope for pursuing

these ideas further.

III. TARGET AUDIENCE AND OUTCOMES

The target audience of the tutorial includes researchers,

developers and students with an interest in the internals of

database engines. The background expected is that of an

introductory database systems course covering relational data

models, declarative query languages, and query processing

techniques. The primary source material for the tutorial is

available in [23], [16], [17], [14], [1], [18], complemented by

inputs from the rich corpus of literature on query optimization

and processing. A sampling of relevant papers is given in the

accompanying list of references.

Database researchers can expect to find the tutorial provid-

ing a fresh perspective on a classical problem, and serving as

a stimulus to work on the development of stable and efficient

database engines. This gains significance in light of the recent

observation that lack of robustness can contribute as much as a

third to the total cost of ownership for a database system [25].

From the perspective of system developers and practitioners,

the concepts and diagrams presented in the tutorial can serve

as potent mechanisms for the analysis, testing and redesign of

their systems. Finally, for database instructors and students,

plan diagrams are a powerful pedagogical support to help

comprehend and appreciate the complexities and subtleties of

industrial-strength query optimization, going far beyond the

toy examples typically covered in a classroom setting.

Overall, the primary message of this tutorial is that it is

indeed feasible to efficiently produce plan diagrams that si-

multaneously possess the desirable properties of being online,

anorexic, safe and robust. We are optimistic that this result

could play a meaningful role in designing the next generation

of database query optimizers.

REFERENCES

[1] M. Abhirama, S. Bhaumik, A. Dey, H. Shrimal and J. Haritsa, “On the
Stability of Plan Costs and the Costs of Plan Stability”, Proc. of 36th
Intl. Conf. on Very Large Data Bases (VLDB), September 2010.

[2] G. Antoshenkov, “Dynamic Query Optimization in Rdb/VMS”, Proc. of

9th IEEE Intl. Conf. on Data Engineering (ICDE), April 1993.
[3] B. Babcock and S. Chaudhuri, “Towards a Robust Query Optimizer: A

Principled and Practical Approach”, Proc. of ACM SIGMOD Conf. on

Management of Data, June 2005.
[4] S. Babu, P. Bizarro and D. DeWitt, “Proactive Re-Optimization”,

Proc. of ACM SIGMOD Conf. on Management of Data, June 2005.
[5] S. Babu, P. Bizarro and D. DeWitt, “Proactive Re-Optimization with

Rio”, Proc. of ACM SIGMOD Conf. on Management of Data, June
2005.

[6] P. Bizarro, N. Bruno and D. DeWitt, “Progressive Parametric Query
Optimization”, IEEE Trans. on Knowledge & Data Engineering, 21(4),
April 2009.

[7] N. Bruno, S. Chaudhuri and R. Ramamurthy, “Power Hints for Query
Optimization”, Proc. of 25th IEEE Intl. Conf. on Data Engineering

(ICDE), March 2009.
[8] S. Chaudhuri, “An Overview of Query Optimization in Relational

Systems”, Proc. of ACM Symp. on Principles of Database Systems

(PODS), June 1998.
[9] S. Chaudhuri, “Query Optimizers: Time to Rethink the Contract?”,

Proc. of ACM SIGMOD Conf. on Management of Data, June 2009.
[10] F. Chu, J. Halpern and P. Seshadri, “Least Expected Cost Query

Optimization: An Exercise in Utility”, Proc. of ACM Symp. on Principles

of Database Systems (PODS), May 1999.
[11] F. Chu, J. Halpern and J. Gehrke, “Least Expected Cost Query Opti-

mization: What Can We Expect”, Proc. of ACM Symp. on Principles of

Database Systems (PODS), May 2002.
[12] R. Cole and G. Graefe, “Optimization of Dynamic Query Evaluation

Plans”, Proc. of ACM SIGMOD Intl. Conf. on Management of Data,
May 1994.

[13] A. Deshpande, Z. Ives and V. Raman, “Adaptive Query Processing”,
Foundations and Trends in Databases, Now Publishers, 1(1), 2007.

[14] A. Dey, S. Bhaumik, Harish D. and J. Haritsa, “Efficiently Approximat-
ing Query Optimizer Plan Diagrams”, Proc. of 34th Intl. Conf. on Very

Large Data Bases (VLDB), August 2008.
[15] G. Graefe, H. Kuno and J. Wiener, “Visualizing the robustness of query

execution”, Proc. of Conf. on Innovative Data Systems Research (CIDR),
January 2009.

[16] Harish D., P. Darera and J. Haritsa, “On the Production of Anorexic
Plan Diagrams”, Proc. of 33th Intl. Conf. on Very Large Data Bases

(VLDB), September 2007.
[17] Harish D., P. Darera and J. Haritsa, “Identifying Robust Plans through

Plan Diagram Reduction”, Proc. of 34th Intl. Conf. on Very Large Data

Bases (VLDB), August 2008.
[18] J. Haritsa, “The Picasso Database Query Optimizer Visualizer”, Proc. of

36th Intl. Conf. on Very Large Data Bases (VLDB), September 2010.
[19] A. Hulgeri and S. Sudarshan, “Parametric Query Optimization for Linear

and Piecewise Linear Cost Functions”, Proc. of 28th Intl. Conf. on Very

Large Data Bases (VLDB), August 2002.
[20] A. Hulgeri and S. Sudarshan, “AniPQO: Almost Non-intrusive Paramet-

ric Query Optimization for Nonlinear Cost Functions”, Proc. of 29th

Intl. Conf. on Very Large Data Bases (VLDB), August 2003.
[21] N. Kabra and D. DeWitt, “Efficient Mid-Query Re-Optimization of Sub-

Optimal Query Execution Plans”, Proc. of ACM SIGMOD Intl. Conf. on

Management of Data, May 1998.
[22] V. Markl, V. Raman, D. Simmen, G. Lohman, H. Pirahesh and M. Cil-

imdzic, “Robust Query Processing through Progressive Optimization”,
Proc. of ACM SIGMOD Intl. Conf. on Management of Data, May 2004.

[23] N. Reddy and J. Haritsa, “Analyzing Plan Diagrams of Database Query
Optimizers”, Proc. of 31st Intl. Conf. on Very Large Data Bases (VLDB),
August 2005.

[24] M. Stillger, G. Lohman, V. Markl and M. Kandil, “LEO, DB2’s LEarning
Optimizer”, Proc. of 27th Intl. Conf. on Very Large Data Bases (VLDB),
August 2001.

[25] www.dagstuhl.de/no cache/en/program/calendar/semhp/?semnr=10381
[26] www.tpc.org/tpch
[27] www.tpc.org/tpcds
[28] dsl.serc.iisc.ernet.in/projects/PICASSO/
[29] www.postgresql.org


