Database
Systems
Laboratory

|
v Indian Institute of Science

ROBUST QUERY PROCESSING:
Mission Possible!

Jayant Haritsa
Database Systems Lab
Indian Institute of Science, Bangalore, India

September 2020 VLDB Tutorial 1

Relational DBMS

* Workhorse of today’s Information Industry

— Commercial

 |IBM DB2, MS SQL Server, Oracle Exadata, HP SQL/MX
— Public-domain

* PostgreSQL, MySQL, Berkeley DB

« Extensively researched for over four decades

— Journals
« ACM TODS, IEEE TKDE, VLDBJ, ...

— Conferences
« ACM SIGMOD, IEEE ICDE, VLDB, EDBT, CIKM, ...

September 2020 VLDB Tutorial

Typical RDBMS Engine

Application

Query Processor

Indexes Buffer Manager

Concurrency Control Recovery

Operating System

Hardware
[Processors, Memory, Disks]

September 2020 VLDB Tutorial

Design of RDBMS Engines

* Transaction Processing (ACID)
— WAL/ARIES for Atomicity/Recovery
— 2PL for Concurrency Control
» Data Access Methods
— B-trees/Hashing for Large Ordered Domains
— Bitmaps for Small Categorical Domains
— R-trees for Geometric Domains
 Memory Management
— LRU-k (k=2 balances history and responsiveness)

* Query Processing (SQL)
—“Black Art”

September 2020 VLDB Tutorial

Query Execution Plans

SQL is a declarative language
— Specifies ends, not means

select STUDENT.Name, COURSE.Title

from STUDENT, COURSE, REGISTER
where STUDENT.RolINo = REGISTER.RolINo and
REGISTER.CourseNo = COURSE.CourseNo

Unspecified: join order [((SXR)XC)or ((RMC)XS) ?]
join technique [Nested-Loops / Sort-Merge / Hash?]

DBMS query optimizer identifies the optimal
evaluation strategy: “query execution plan”

September 2020 VLDB Tutorial

Sample Execution Plan

ara:

RETURN
Cost: 286868

Card:
Output Cardinality (rows)

Cost:
Execution Cost (time)

Card: 1000
TABLE SCAN

1

Card: 10000
HASH JOIN

Cost: 6834

i

Cost: 286868

Card: 10000
MERGE JOIN
Cost: 278751

Card: 10000
SORT
Cost: 225103

Card: 100
INDEX SCAN
Cost: 6745

Card: 10000
TABLE SCAN
Cost: 209760

REGISTER

September 2020

VLDB Tutorial

Query Optimization Framework

Declarative .| Query Optimizer Optinzal [Min Cost]
Query (Q) (Dynamic Programming) Plan P(Q)

I

Operator Execution Cost | Operator Output Cardinality
Estimation Model | | Estimation Model

Function of Function of
Hardware and DB Engine Data Distributions and Correlations

September 2020 VLDB Tutorial 7

Run-time Sub-optimality

The supposedly optimal plan-choice may actually turn
out to be highly sub-optimal (e.g. a 1000 times worsel)
when the query is executed with this plan. This adverse
effect is due to errors in:

(a) cost model
* Reasons: Simple linear models, operator-agnostic features,
fixed coefficients, system dynamics ...

(b) cardinality model

* Reasons: Coarse statistics, outdated statistics, attribute value
independence (AVI) assumption, multiplicative error
propagation, query construction, ...

September 2020 VLDB Tutorial

What have QP folks been doing all these years?

DB2 Oracle SQL Server’

“Elephants”T are highly sensitive animals!

(T Stonebraker-speak for enterprise DBMS)

September 2020 VLDB Tutorial 9

Cardinality Sensitivity Example

EMPLOYEE

MANAGER

mm
N EMPLOYEE AGE M MANAGER AGE

Cohen
2 Giuliani

3 Manafort

4 Melania
5 lvanka
6 Donald
7 Jared
10° Eric

25

25

25

25

25

25

25

25

Trump

Pence 50
Mnuchin 50
Shanahan 50
Whitaker 50
Bernhardt 50

Perdue 50
50
Ross 50

Output cardinality of the join is
ZERO

One new employee aged 50 joins
the company

Output cardinality of the join jumps
to a million!

No summary mechanism can
capture such “nanoscopic” changes

September 2020

VLDB Tutorial

10

Proof by Authority [Guy Lohman, IBM]

Snippet from April 2014 Sigmod blog post on

“Is Query Optimization a “Solved” Problem?”

The root of all evil, the Achilles Heel of query optimization, is the
estimation of the size of intermediate results, known as cardinalities.
The cardinality model can easily introduce errors of many orders of
magnitude! With such errors, the wonder isnt "Why did the
optimizer pick a bad plan?” Rather, the wonder is "Why would the
optimizer ever pick a decent plan?”

September 2020 VLDB Tutorial 11

Sound-bites

» Dave DeWitt: Query optimizers do terrible job of
producing good plans without a lot of hand tuning.

» Surajit Chaudhuri: Current state is unsatisfactory
with known big gaps in the technology.

» Little difference between worst-case and
average-case in Query Processing

Best Average Worst
Case Case Case

ﬁ

September 2020 VLDB Tutorial 12

Prior DB Research (lots!)

* Sophisticated estimation techniques

— SIGMOD 1999/2010, VLDB 2001/2009/2011, ..., CIDR 2019
— e.g. wavelet histograms, self-tuning histograms, deep learning

e Selection of stable plans

— SIGMOD 1994/2005/2010, PODS 1999/2002, VLDB 2008, ..., VLDB 2017
— e.g. Variance-aware plan selection

* Runtime re-optimization techniques

— SIGMOD 1998/2000/2004/2005, ..., ICDE 2019 [Stonebraker et al]
— e.g. POP (progressive optimization) [35], RIO (re-optimizer) [6]

Several novel ideas and formulations,
but are they robust?

September 2020 VLDB Tutorial 13

Is there any hope?

Over last decade, several promising advances
that collectively promise to soon make

robustness a contemporary reality —we survey
these techniques in the rest of the tutorial ...

September 2020 VLDB Tutorial 14

Thanks

Gratefully acknowledge presentation material provided by

Renata Borovica-Gajic (U of Melbourne, Australia)
Goetz Graefe (Google Madison Labs, USA)
Thomas Neumann (TU Munich, Germany)

Wolf Roediger (Tableau, Germany)

Wentao Wu (Microsoft Research, USA)

Srinivas Karthik (IISc Bangalore, India)

Andreas Kipf (TU Munich, Germany)

Zongheng Yang (UC Berkeley, USA)

September 2020 VLDB Tutorial 15

QP Robustness

September 2020

Importance of Robustness

* Dagstuhl Seminars
— 2010 (#10381), 2012 (#12321), 2017 (#17222)

« |[CDE 2011 panel on Robust Query Processing

* Immediate relevance to database vendors
* Huge impact on database users and customers

* Critical for Big Data world!

September 2020 VLDB Tutorial 17

ROBUSTNESS DEFINITION

Multiple perspectives, no consensus

— If worst-case performance is improved at the expense of average-
case performance, is that acceptable?

— Is it to be defined on a query instance basis, or “in expectation”?

Ultimately, robustness definition is application dependent
Graceful performance profile — no “cliffs”

Seamless scaling with workload complexity, database size,
distributional skew, join correlations

Provable guarantees on worst-case performance (relative to
an offline ideal that makes all the right decisions)

September 2020 VLDB Tutorial 18

TUTORIAL OUTLINE

« Stage 1.
« Stage 2:
« Stage 3:
« Stage 4.
« Stage 5:
« Stage ©:

Robust Operators

Robust Plans

Robust Query Execution
Robust Cost Models

Machine Learning Approaches

Future Research Directions

September 2020

VLDB Tutorial

19

Stage 1: Robust Operators

September 2020 VLDB Tutorial

20

Approaches

» Unified operators

— Basic Idea: If choice is eliminated, cannot make mistakes, by
definition! The key challenge is retaining, in the absence of
choice, comparable performance to the multi-choice environment.

— Smooth Scan (ICDE 2015, VLDBJ 2018 [7])
 Unifying Table Scan, Index Scan

— G-join (CS R&D, 2012 [17])
 Unifying Nested-loops, Sort-merge, Hash-join

» Scaling operators
— Flow-join (ICDE 2016 [39])

» Broadcast "heavy hitter” tuples to handle skew in distributed
systems

September 2020 VLDB Tutorial 21

Smooth Scan [7]

(Morph between Sequential Scan and Index Scan)

September 2020

VLDB Tutorial

22

Sub-optimal Access Paths: Example

Setting: TPC-H, SF10, DBMS-COM, Tuned Indexes

to cardinality underestimation

Chose index instead of scan due]
1000 r (time: minutes to hours)

B Tuned ==Qriginal

100

10

Execution Time
(log, normalized)

0.1

O N 00 OO0 O «—+
i
g

g O o9 o
TPC-HQUefy

Ql3
Ql4
Ql6
Q18
Q19
Q21
Q22

September 2020 VLDB Tutorial 23

Selectivity

Selectivity = Normalized Cardinality [0 to 100%)]

sel = (Output Rows / Max Output Rows) * 100

A

COURSE.fees < 1000 [Card’4"1°3}

FilterScan

TleO“

(4 x 103 /2 x 104) * 100
20 %

sel

September 2019 U. Oregon

24

Access path selection problem

Tipping Point: One tuple

difference in estimation has huge Index Scan
impact on performance -
v .
S -
= :
c [|
o) n
- -
|
§ Full Scan
5 Switching strategies results in

performance cliff; cost of
change may not be amortized
\g y

0 Estimated Actual 100%
Selectivity

September 2020 VLDB Tutorial

25

Quest for robust access paths

Index Scan

Robust Execution
(no estimation

Full Scan

Execution Time

0 Selectivity 100%

Near-optimal (= min(IS,FS)) throughout entire selectivity range

September 2020 VLDB Tutorial

26

Smooth Scan in a nutshell

» Statistics-oblivious access path
* Learn result distribution at run-time
* Adapt as you go

September 2020 VLDB Tutorial

27

Morphing Mechanism Modes

1. Index Access: Traditional index access
2. Entire Page Probe: Index access probes entire page
3. Gradual Flattening Access: Probe adjacent region(s)

\—' INDEX
T
¥ HEAP
7 X PAGES
Mode 1 Mode 2 Mode 3

September 2020 VLDB Tutorial 28

Morphing policies

-
Selectivity increase - Mode Increase
— Greedy SEL region > SEL_global
C o Selectivity decrease - Mode Decrease
_ SeleCtNlty Incre SEL region < SEL_global

— Elastic

-§~ - k‘ b IS X: Page with result
I \ N" \Af ~~~~ . . .
I /. SR T~ S SR: Region selectivity
I \V \N Sso Sso
I ’\ \\\\:~~~‘~~~ ~~~~~SG: Global selectivity
HEAPIPAGES 7/ SeosL TSNS ~~<f
A 4 A — - =
X IXIXIXIX] T XXX E IXIX] X T T XXX

Region snooping = Selectivity driven adaptation

September 2020 VLDB Tutorial 9

Smooth Scan benefits

Index Scan Full Scan Sort Scan Smooth Scan

el x|V V|V
::/a;t sequential % v v v
:Aevao;d full table ‘/ x \/ ‘/
g | V|V | ® | ¥

Sort Scan: Get all qualifying RIDs from the index, sort them, and
then sequentially retrieve the records.

September 2020 VLDB Tutorial

TPC-H with Smooth Scan

Setting: TPC-H, SF10, PostgreSQL with Smooth Scan

1400 H

1200

[N
o
o
o

800
600
400

Execution time (sec)

200

High selectivity

10x
15% %
& = BE HB=

Low selectivity

Q1 (Sort Scan) Q4 (Full Sc
M PostgreSQL

an) Q6 (Index Scan) Q7 (Index Scan) Q14 (Index Scan)
B PostgreSQL with Smooth Scan

Robust execution for all queries

September 2020

VLDB Tutorial 32

Performance Guarantee

ldeal: SortScan without Sorting Cost — i.e. sequentially
read only the relevant pages.

SmoothScan < (+rand_io_cost)
Ideal — seq_io_cost

For representative HDD parameters, factor is 11, while
for SSD, factor is ©.

September 2020 VLDB Tutorial

36

Limitations

« Several book-keeping data structures required to
maintain result semantics (duplicates/ordering)
— Page ID cache (to not process page twice)
— Tuple ID Cache (to not produce same tuple twice)
— Result Cache (for ordered output)
— Memory Management (for above structures)

* Requires changes to database engine internals

September 2020 VLDB Tutorial

37

G-join: Generalized Join [17]

(Morph across Indexed-NL Join, Sort-Merge Join, Hybrid-Hash Join)

September 2020

VLDB Tutorial

38

Comparative Algorithm Strengths

INL Join | SM Join | HH Join G-join

differences

Sorted v v
Inputs

Indexed v v
input

Input size v v

September 2020 VLDB Tutorial

39

Basic Idea

mplement Sort-Merge using concepts from Hash-Join
f inputs are already sorted, just do Merge Join

f inputs are not sorted, create internally sorted runs (using
replacement selection) as usual for both inputs, but do not
carry out merging steps.

Instead, similar to hash partitions, store “key-covering
pages” from the small-input (R) in a buffer pool, and a
single buffer page for the large-input (S). Dynamically
expand the R buffer pool until it key-covers the buffer page
of S — then join the memory-resident pages. After this is
done, bring the next S page into memory. Shrink the R
buffer pool if any page goes below the key coverage range.

September 2020 VLDB Tutorial 40

G-join: Phase 1

.

Ro

Hash table for

< Cut point 4f Ry
then buy/ (M-B pages)

Buffers (B
pages) for run
generation

=

R17R29 e ’RK

U

[
P

>Cut point, then generate runs

Hash table for

< Cut pot Ry
then pyg (M-B pages)

Buffers (B
pages) for run
generation

.

S1,S2,...,Sk

:

Ll

>Cut point, then generate runs

Figure 3.1 Phase 1 of G-Join

O =0

v -
~

C

September 2020

VLDB Tutorial

41

G-join: Phase 2

LK: Low Key. For example, LK ; represents the Low Key from Run#1 Page #1

HK: High Hey. For example, HK, , represents the High Key from Run#2 Page#0

| LK HK;, | | LKy0 HK; | LKk, HKy
R pages from
LK, HK,, LKxo HKgo runs Ry,...,Ry

/v’ Drop R pages guided by priority queue B \
<

Lowest HighKey(HK) from all R
runs
>

HighKey(HK) from current S page

l Join

LK HK Output if a match

Priority
queue A

Priority
queue B

Priority
queue C

S page from
one of its runs

f Read S runs guided by priority queue C

Figure 3.2 Phase 2 of G-Join

September 2020 VLDB Tutorial

42

Merge algorithm illustrated

Already dropped In bufferpool Yetto be read
I I

4 pagesof 3runs [€= = = = »ie P — —p
from inputR { <= = = —pe—ij b =
in the bufferpool R ey 4 ! DG =
(= - —|—><—><I— — =)
5 runs from input S -— = e = P = == = = P
to be joined 1 - = = e—) = = = = —)

‘ [[

one page at atime

< >

Covered key range
Key value domain

September 2020 VLDB Tutorial 43

Unsorted inputs

5000

left I
right D
intermediate I
4000 merge NN
o avg deviation ——+—
L
£ 3000 f
=
*E
S 2000
Q
O
>
B
1000 -
0

GJ HJ MlJ GJ HJ MJ GJ HJ MIJ
250 500 750

scale [number of warehouses]

GJ HJ MlJ
1000

September 2020 VLDB Tutorial

44

~Sorted inputs

execution time [s]

5000

4000

3000

2000

1000

intermediate

avg deviation

GJ HJ MJ

250

left
right

merge

Al

GJ HJ MJ

GJ HJ MJ
500 750

scale [number of warehouses]

GJ HJ MI]
1000

September 2020

VLDB Tutorial

45

Robust Performance

« Performance Guarantee:

* First-cut theoretical analysis shows rough equivalence
to best of existing algorithms

« Limitations:
« Skew in sizes of runs and skew in key value
distribution can adversely impact performance

Similar “unified” algorithms available for grouping and set
operations. [17]

September 2020 VLDB Tutorial 47

Stage 2: Robust Plans

September 2020

APPROACHES

* Least Expected Cost (PODS 99 [11], PODS 02 [12])

— estimate Distributions instead of Values for parameters

» Cost-Greedy (VLDB 2007 [18])

— reduce parametrlc optlmal set of plans (POSP) space into
low-cardinality ("anorexic”) approximation featuring
relatively stable plans

. SEER (VLDB 2008 [19])

— reduce POSP space into anorexic approximation that can
handle arbitrary estimation errors

September 2020 VLDB Tutorial 58

Cost-Greedy [18]

Query Template [08 of TPC-H]

Determines how the market share of Brazil in the USA has
changed over 1995-1996 for Steel parts

select o_year, sum(case when nation = 'BRAZIL' then volume else 0 end) / sum(volume)
from (select YEAR(o_orderdate) as o_year,
|_extendedprice * (1 - |_discount) as volume, n2.n_name as nation
from part, supplier, lineitem, orders, customer, nation n1, nation n2, region
where p_partkey = |_partkey and s_suppkey = |_suppkey and
|_orderkey = o_orderkey and o_custkey = ¢_custkey and

c_nationkey = n1.n_nationkey and n1.n_regionkey = r_regionkey and
r_name = 'AMERICA and s_nationkey = n2.n_nationkey and
o_orderdate between '1995-01-01" and '1996-12-31" and

p_type ='ECONOMY ANODIZED STEEL'

and s_acctbal = C1 and |_extendedprice < C2
) as all_nations
group by o_year
order by o_year

September 2020 VLDB Tutorial 63

POSP Plan Diagram

01 A

Selectivity

C2

<mMm-d—mZ—r

C1

>

1 I I
50 60 70

SUPPLIER

I 1
90 100

Selectivity

September 2020

VLDB Tutorial

64

Highly irregular
plan boundaries

LINEITEM.L EXTENDEDPRICE

Intricate

Diagram

Diag Comp Card Diag | Exec Cost Diag | Exec Card Diag | Sel Log
QTD: DB2 9 opp U 100 g8 30apl

Complex
Patterns

SUPPLIER.S_ACCTBAL

of plans: 76 ||~

B -:
B
P4
P5

[lre

L
" es

Min Est Cost: 8.26E5 —
Max Est Cost: 1.05E6 “77]
P10

Min Est Card: 5.90E-2 p—

Max Est Card: 9.00E0 . P11

Extremely fine-
grained coverage
(P76 ~ 0.01%)

Gini Coeff: 0.83

29.60 %
17.69 %
847 %
473 %
419 %
4.02 %
285%
249 %
243 %
238 %
238 %
163 %

1.30 %

September 2020

VLDB Tutorial

65

Problem Statement

Can the plan diagram be recolored with a smaller

set of colors (i.e. some plans are “swallowed” by
others), such that

Guarantee:

No query point in the original diagram has
its estimated cost increased, post-swallowing,
by more than 4 percent (user-defined)

September 2020 VLDB Tutorial 66

CostGreedy

« Optimal plan diagram reduction (w.r.t. minimizing the
number of plans/colors) is NP-hard
— through problem-reduction from classical Set Cover

« CostGreedy is a greedy heuristic-based algorithm with

following properties:
[m is number of query points, n is number of plans in diagram]

— Time complexity is O(mn)
* linear in number of plans for a given diagram resolution
— Approximation Factoris O(Iln m)
* bound is both tight and optimal
* in practice, performance closely approximates offline optimal

September 2020 VLDB Tutorial 67

Reducd&dmisdex(Plagbiagram

QueryTemplate | Plan Diag | Reduced Plan Diag | Comp Cost Diag | Comp Card Diag | Exec Cost Diag | Exec Card Diag | Sel Log
QTD: QT8_OptA*_100

Reduced Plan Diagram

100+

80

60

40

LINEITEM.L EXTENDEDPRICE

20+

Comparatively
smoother contours

September 2020

| \ \ |
40 60 80 100

PLIER.S ACCTBAL

VLDB Tutorial

Gini Coeff: 0.71

of Plans: §
Cost Inc Thresh: 10.0 . P2

]
Lk
| 2X

Reduced i

to 5 plans
from 76 !

% Cost Inc: 9.33%

Regenerate Diagram

87.20 %
6877 %
269 %
2.02 %
1.32 %

68

Applications of Plan Diagram Reduction

* Quantifies redundancy in plan search space
* Provides better candidates for plan-cacheing

« Enhances viability of Parametric Query Optimization
(PQO) techniques

* Improves efficiency/quality of LEC plans

* Minimizes overheads of multi-plan approaches
(e.g. Adaptive Query Processing)

* |dentifies selectivity-error resistant plan choices

—retained plans are robust choices over larger
selectivity parameter space

September 2020 VLDB Tutorial 69

Limitation

Cost Greedy can cause arbitrarily poor performance
If the selectivity error is large enough that the actual
location of the query falls outside the swallowing
region of the estimated location.

September 2020 VLDB Tutorial 70

Notation

/select *)

from STUDENT, COURSE, REGISTER 100%!sel (coURSE REGISTER).
where S.RollNo = R.RolINo and =
C.CourseNo = R.CourseNo and

q a(75%,,5’12%, 85%)
_ C.fees < 1000) o /

® (5%, 2%, B%)
sel (o (COURSE)) 100%

Jd. — estimated selectivity location
In SS (Selectivity Space)

d, — actual run-time location in SS -

> __— optimal plan for q_ 1009/ 5¢! (STUDENT x REGISTEEVI;',(«)/

P 2 — optimal plan for q,

P . — replacement plan for P,

September 2020 VLDB Tutorial 71

Error Locations wrt Plan Replacement Regions

\

@
S
S el s T - Endo-optimal,,
Fn
2
B
o Y e --» Swallow,,
)]
%)
-------------- ~-» Exo-optimal,,
0 ®
0 Selectivity X 100

September 2020

VLDB Tutorial

72

SEER [19]

[Selectivity Estimate Error Resistance]

Globally Safe Replacement

» Earlier local constraint:
P., can replace P_, if

— V points g in P_,’s endo-optimality region,
cost(P..,q) < (1+ A) cost(P,. ,q)

* New global constraint:
P.,canreplace P,, only if it guarantees a
globally safe space

— V points g in selectivity space S,
cost(P,,,q) < (1+ 1) cost(P,, ,q)

September 2020 VLDB Tutorial

76

Globally Safe Replacement

----»Safe (P, P,,)

September 2020 VLDB Tutorial

77

Plan Cost Model (2D)

Given selectivity variations x and y,

for any plan P in the plan dia(\ngex scan; BUIT o
optimizers, we can fit: Aggregate
V

PlanCostp(x,y) = a,x + a, Yy + a,xy +

Sort a,xlogx+a,ylogy +
@/a6xy log XY + a, :|A TabIeScan]

The specific values of a, through a, are a function of P .
Extension to n-dimensions is straightforward.

September 2020 VLDB Tutorial

79

Cost Model Fit Example

1400 1400 7

1200 1200 =

1000 -3 1000 ~---

800~ 800~

600 600

400 — 400 -

200 ~ - 200 —

00—- 1 8‘ 1
Original Cost Function Fitted Cost Function

September 2020 VLDB Tutorial 80

Main Result

Given the 7-coefficient plan cost model,
heed to perform APC at only the
perimeter of the selectivity space to
determine global safety

i.e. Border Safety = Interior Safety |

September 2020 VLDB Tutorial

81

Limitation

* Although SEER introduces stability into the plan
choices, its performance guarantees are with

respect to P, , the optimal plan at the estimated
location (i.e. the native optimizer’s plan)

 |deally, we would like performance guarantees
to be with respect to P, , the optimal plan at the
actual location (i.e. the “God’s plan™).

September 2020 VLDB Tutorial 84

Stage 3: Robust Execution

September 2020 VLDB Tutorial

Performance Metrics

100%, /
/A sel (COURSE » REGISTER)

* g, — estimated selectivity location in SS

* g, — actual run-time location in SS o
q,(75%, 62%, 85%)
® / |

- P_,— optimal plan for g s
. POa — optimal plan for d, 0%

® Q. (5%, 2%, 8%)
i >
sel (o (COURSE)) 100%

t(Poe; a)
SubOpt(qe, qa) = o 5p [1,%0)

100% ./ sel (STUDENT i REGISTER) | /

MaxSubOpt (MSO) = MAX|SubOpt(q.,q,)] Vq. q, €SS

Note: Metric is now with respect to the ideal plan

September 2020 VLDB Tutorial 86

APPROACHES

* Bounded Impact (PVLDB 2009 [36])

— performance guarantee with quartic dependency on error magnitude

- Plan Bouquet (SIGMOD 14 / TODS 16 [14])

— discovery-based approach to selectivities

— error-independent guarantees with linear dependency on plan
diagram density

. Spill-Bound (ICDE 16 / TKDE 19 [25])

— platform-independent guarantee with quadratic dependency on error
dimensionality

* Frugal Spill-Bound (PVLDB 2018 [26])

— extension to ad-hoc queries

September 2020 VLDB Tutorial 87

Measuring Cardinality Estimation Errors

Popular error metrics (= optimization goals)
l, = \/(fe(x) — fa(x))?
loo=max |(fe(x) — fa(X)

Minimizing these error metrics can lead to
arbitrarily bad plans!

September 2020 VLDB Tutorial 88

Q(uotient) Error

* Errors propagate multiplicatively, so metric should also be
multiplicative

* |t should be symmetric wrt over- and under-estimation

g-error is defined as:

o max (fe(0), fa ()
T) min (£,(), i (1)

- actual cardinality 10, estimation 100 = [, = 10
- actual cardinality 10, estimation1 = [, = 10

Knowing g-error provides bounds on resulting plan performance!

September 2020 VLDB Tutorial 89

Cost Bounds Implied by Q-error

 Theorem:
Let all joins be Sort-Merge or all be Grace-Hash.
Then

MSO < g*

where q is the maximum q-error taken over all
Intermediate results.

Problems: q can be arbitrarily large
q Is usually not known in advance

September 2020 VLDB Tutorial 90

Plan Bouquet [14]

Approach

« Plan Bouquet is a new query processing technique, that
completely abandons estimating operator selectivities

 Instead, run-time selectivity discovery using compile-time
selected bouquet of plans

— provides worst case performance guarantees wrt ideal

that magically knows the correct selectivities
e.g. for single error-prone selectivity, relative guarantee of 4

— empirical performance well within guaranteed bounds
on industrial-strength environments

September 2020 VLDB Tutorial 92

Basic Assumption

* Plan Cost Monotonicity (PCM)

For any plan P and distinct locations g, and g,

Cost (P, q,)<Cost(P, q,) 0
|f q1 < q2 C'OS't(P}qZ‘P:].OO
AN I o
| %
(i.e. spatial domination = cost domination) cost(P, a,) <100
. >
September 2019 U. Oregon 96

Contemporary Optimizer Behavior
on 1D Selectivity Space

September 2020 VLDB Tutorial

97

Parametric Optimal Set of Plans (POSP)

m’arametric version of Example Query) \

select *

from STUDENT, COURSE, REGISTER

where S.RollNo = R.RolINo and
C.CourseNo = R.CourseNo and

\ C.fees < $1 /

S: Student NL: Nested Loop Join
C: Course MJ: Merge Join
R: Register HJ: Hash Join

Estimated Costs log-scale

6.1E+06

1.5E+06

3.8E+05

9.6E+04

2.4E+04

6.0E+03

- ==QOptimal /MJ\H

2 0®x X 0® ® ® X
S rz @ S o
o o o o ol o i

i =

Selectivity COURSE |og-scale

100.00%

September 2020

VLDB Tutorial

98

POSP Performance Profile (across SS)

— Pl —p2 —. /o
6.1E+06 | — P1 P2 P3 A
7/
E ==:Pf]l sses P§ e /
T 1.5E+06 - 7,0 -
) ‘ ’
%Do;’o:{o--.o’-.t;,rﬁ'::
- y " _.ze-"" PS5
a 3.8E+05 —______________-____A-_:_;..._-u- P4
8 T T T ;‘7 P3
9 _~7 P2
8 96E404 | __ __ —7
£ L
7 el
W 2.4E+04 - S P1
6.06403 | | | | |
X R R 32 3° 52) G
b b el 3 Q o o o
< - 0 < ve) S

Selectivity COURSE (log-scale)

September 2020 VLDB Tutorial

99

Sub-optimality Profile (across SS)

P1

—Qptimal SubOpt

(qe= 1%I qa= 99%)
=20

6.1E+06 -
—Worst Case (Native Optimizer)

1.5E+06 -

P5

A P5

3.8E+05 - SubOpt
(9.= 80%, q,= 0.01%)

=100

9.6E+04 - MaxSubOpt = 100

Estimated Costs (log-scale)

2.4E+04 -

6.0E+03

0.01%
0.04%
0.16%
0.64%
2.60% -
10.40%
41.60%

100.00%

Selectivity COURSE (log-scale)

September 2020 VLDB Tutorial 100

Plan Bouquet Behavior
on 1D Selectivity Space

September 2020 VLDB Tutorial

Bouquet Identification

Estimated Costs (log-scale)

6.1E+06 -

1.5E+06

3.8E+05

9.6E+04

2.4E+04

6.0E+03

0.01%

0.04% -
0.16%
0.64%
2.60% -

Selectivity COURSE (log-scale)

10.40% -
41.60% -

100.00%

IC7

| 1C6

IC5
IC4
IC3

| 1C2

IC1

Step 1: Draw cost steps

with cost-ratio r=2
(geometric progression).

Step 2: Find plans at
intersection of optimal
profile with cost steps

Bouquet = {P1, P2, P3, P5}

September 2020

VLDB Tutorial

102

Bouquet Execution

N

Let g, =5%

6.1E+06 -

1.5E+06

3.8E+05

9.6E+04

Estimated Costs (log-scale)

2.4E+04

—P1 —P2 -

---P4

¢

. P3

LN P5

./-

/s
. /

Vs

el e

f -
.............. TS

..-..C’..._"‘n‘:.
-

.
- -

-
.

,-l"

-

P5

6.0E+03 %

0.01%

September 2020

0.04%
0.16%
0.64% —
2.60% —

Selectivity COURSE (log-scale)

10.40% 2

A
41.60% |

VLDB Tutorial

100.00%

IC7
IC6
IC5
IC4
IC3
1C2
IC1

(1) Execute P1

with budget IC1(1.2E4)
Throw away results of P1
(2) Execute P1

with budget 1C2(2.4E4)
Throw away results of P1
(3) Execute P1

with budget IC3(4.8E4)
Throw away results of P1
(4) Execute P1

with budget 1C2(9.6E4)
Throw away results of P1
(5) Execute P2

with budget IC5(1.9E5)
Throw away results of P2
(6) Execute P3

with budget 1C6(3.8E5)

P3 completes with cost 3.4E5

_ %

103

Bouquet Execution

fetqa 5%

@Jquet Cost=3.4 E5 (P3)\

/ 1.92 ES5 (P2) +
|=—P1 —pP2 --.P3 , -
6.1E+06 , ~ 0.96 E5 (P1) +
T ~=-P4 ++¢P5 g 0.48 E5 (P1) +
8 1.5E406 - RV e 0.24 E5 (P1) +
% eeeveeeesneesssnesssnnsqmafiopmTonsasrrresenill 0.12 E5 (P1)
= - +Z=="" P5 _
g 380405 :-.-:-.-:?-_-.-:-.-:-.i'{/i'-""'*l"% = ok 132
Q
)
E 9.6E+04 - - / P2 : SUbopt (*, 5%) - 7.1/3.4 =2.1
- e
£ ‘ '
- B H . With obvious optimization
Wo2.4E+04 | K ' SubObt(* 5%) = _
" : \iOpt(,5%) =6.3/3.4 = 1y
% P1 [q, = 59%
6.0E+03 7% - - - - ¢ I] with budget 1C6(3.8E5)
35.'“ % E %‘ %‘ § ?é 38“ P3 completes with cost 3.4E5
o =)) o ~ o o o /
—i < 3

September 2020 Selectivity COURSE (log-scale)

VLDB Tutorial

104

Bouquet Performance (EQ)

=—Qptimal
6.1E+06 | —worst Case (Native Optimizer)
T —Bouquet (Enhanced)
§ 1.5E+06 -
oo
<) i
E 3.8E+05 :
7] .
(o}
U :
ge) :
L 9.6E+04 -:
© :
E
7 5
o 2.4E+04
6.0E+03 T T T T | |
X R X X X xR R
) 3 = 3 3 E; 3
o o o o ~ o —
i <

Selectivity COURSE (log-scale)

100.00%

Native Optimizer

MaxSubOpt = 100

Bouquet

MaxSubOpt = 3.1

September 2020 VLDB Tutorial

105

Worst Case Cost Analysis

A 3
ar — — Bougquet (upper bound) a+...+ar™?
(Ic.) ar:_;';l___ ---- Optimal (lower bound)

2 ar
m-<1 e e e .
(IC Jar

G, ar -

k-1
(ICk) ar

TVO AN ———>
_

3

N

P, would complete

k-2_| P . . .
(G Jar 2 within its budget
wcpard B[—Mqa € (a1, Al
a-r+ar
(Ic,) ar-| P, -2,
(Icy) a +—=2—-2..
cmir:_] >
CI1 qz q3 qk-l qk qk+1 qml qm
selectivity >

September 2020 VLDB Tutorial 106

1D Performance Bound

Chouquet (Ak—1, Ax] = cost(ICq) + cost(ICy) + ...+ cost(ICk_;) + cost(ICy)

= a + a + .+ ar¥? + ark?
_a@*-1)
N (r—1)

Coptimal (Ak—1, x] = ar¥™2 (Implication of PCM)

1 ><a(r"—1)< ré
ark—2 r—1) ~ r-—1

SubOptyouquet(*, Ga) < Vqq € (9k-1,9k]

Reaches minima atr =2

Best performance achievable by any = MSO =4
deterministic online algorithm!

September 2020 VLDB Tutorial 107

Bouquet Approach in 2D SS

September 2020

VLDB Tutorial

108

2D Bouquet Identification

Cost

(normalized)

Isocost Planes>

Multiple Plans
per contour

September 2020 109

Characteristics of 2D Contours

origin

sel - X

2D contours
* Hyperbolic curves
* Multiple plans per contour

Third quadrant coverage (due to PCM)

P'z‘ can complete any query with actual selectivitiy (q,)
in the shaded region within cost(IC,)

September 2020 VLDB Tutorial 110

Crossing 2D Contours

Covered by
all plans in
contour

—————————————

IC
m

Covered by
only one plan
in contour

origin

sel - X

-

Septe \

—> Entire set of contour plans must be executed to
fully cover all locations under IC,

~

111

2D Performance Analysis

 When q, € (IC,_,, IC,] Number of plans on it" contour
k

Cbouquet(qa) — Z[ni X COSt(ICi)]
i=1

p = max(n,)
\ k

Cbouquet(qa) = p X z COSt(ICi)
i=1
SubOptyoyquet(da) = 4p (Using 1D Analysis)

Bound for N-dimensions: MSO =4 X p .. .

« MSO =4p

September 2020 VLDB Tutorial 112

Dealing with large p

* In practice, p can often be large, even in 100s,
making the performance guarantee of 4p
impractically weak

* Reducing p:

Anorexic POSP reduction
(from CostGreedy)

September 2020 VLDB Tutorial 113

MSO guarantees (compile time)

Query MSO Bound
(dim)
— Q5 (3D) 14.4
Q7 (3D) 14.4
[TPC-H] Q8 (4D) 33.6
Q7 (5D) 43.2
— Q15 (3D) 14.4
Q96 (3D) 14.4
[TPC-DS] Q7 (4D) 19.2
Q19 (5D) 38.4
Q26 (4D) 24.0

Q91 (4D) 43.2

VLDB Tutorial

September 2020

114

Empirical Evaluation

September 2020 VLDB Tutorial

Experimental Testbed

« Database Systems: PostgreSQL and COM (commercial engine)
Databases: TPC-H and TPC-DS (standard benchmarks)

Physical Schema: Indexes on all attributes present in
query predicates

Workload: 10 complex queries from TPC-H and TPC-DS

— with SS having upto 5 error dimensions (join-selectivities)

Metrics: Computed MSO using Abstract Plan Costing over SS

September 2020 VLDB Tutorial 116

Performance on PostgreSQL

Native
Optimizer

MSO ZNAT SBOU
1.E+08
%
Log-scale 1.e+x06 2 . 0 0 Z
1.E+04 . é Z ; 2 Z
mMEEAEERN
1.E+02 é 7m = é 2 7 é é
1.E+00 ARNBRARB N

oL P 59\"’3,&60"9‘ 39\'95916399)
307 20~ pO~ ‘)0/30/0 30/0 &0’30/0 &0/0 5,0/0

Plan
Bouquet

MSO
bounds

September 2020 VLDB Tutorial

117

Performance with Commercial System

MSO

1.E+04

NAT EBOU

1.E+02

MY

AN

7

N\
N

1.E+00

.-

2V~

o0

o \v}

@
w >
(A

September 2020

VLDB Tutorial 118

Summary

* Plan bouquet approach achieves

— bounded performance sub-optimality

 using a (cost-limited) plan execution sequence guided by isocost
contours defined over the optimal performance curve

— robust to changes in data distribution
 only q, changes — bouquet remains same
— easy to deploy
* bouquet layer on top of the database engine
— repeatability in execution strategy (important for industry)

* g, Is always zero, depends only on q,
 independent of metadata contents

September 2020 VLDB Tutorial 119

Limitations of PlanBouquet

* Enormous offline computational effort to produce
the plan diagram, suitable only for “canned” queries

 Partially addressed by enumerating only the contours,
not the entire diagram
* Practical guarantee values are predicated on
anorexic reduction holding true

* Guarantee of 4p depends on plan diagram
complexity, making it not portable across query
optimizers, databases and hardware systems

September 2020 VLDB Tutorial 120

FOLLOW-UP WORK

» Spill-Bound (ICDE 16 / TKDE 19 [25])
— Half-space pruning instead of hypograph pruning
—MSO = D? + 3D (where D is dimensionality of SS)
— platform-independent guarantee
—Lower bound of (D)

* Frugal Spill-Bound (PVLDB 2018 [26])
—extension to ad-hoc queries

—exponential decrease in overheads for linear
relaxation in MSO guarantee

September 2020 VLDB Tutorial 121

Stage 4: Robust Cost Models

September 2020 VLDB Tutorial

Approaches

» Learning-based approaches (ICDE 2009, ICDE 2012 [4],
PVLDB 2019 [40])

 Statistical approaches (ICDE 2013 [45], PVLDB 2013
[44], PVLDB 2014 [47])

September 2020 VLDB Tutorial 141

Optimizer’s Cost Estimates: Unusable

10° ¢ .
- avgerr: 120%

Direct Scaling: e
Predict the execution time T 8 5l «
by scaling the cost estimate C, » ; reastSquaresFittine
e, T=a°C F R x X

g 107k X

° X Xy

X
Fig. 5 of [4] o .
10° 10"
Optimizer Cost Estimate
September 2020 VLDB Tutorial 142

Why Does Direct Scaling Fail?

* PostgreSQL’s cost model Cost Unit
C,: seq_page_cost \1.0
C =ngcs + n,.c +necy +nic; + nyc, ¢.: rand_page._cost 20
‘ Scaling c,: cpu_tuple_cost 0.01
Cy C C; C c:: cpu_index_tuple cost | 0.005

T=a-C=cf|ns+n—+n—+n—+n,-2)|| =P =

| Cs Cs Cs Cs C,: Cpu_operator_cost 0.0025

‘1', Should be

cs=a-c,=a-10=a

correct!

« Assumptions for scaling fail in practice
— Ratios between the ¢ values are incorrect.
— n values are incorrect.

» Solution: Proper calibration

September 2020 VLDB Tutorial

143

Calibrated cand n

Cost models become much more effective.

Query Execution Time (s)

1000
X A
+
e
+ * *
* ot
100 F +
+ #
10 |
1 L L .
1 10 100

Predicted Time By Naive Scaling (s)

Prediction by Scaling:

Tpred =a-(xc-n)

Query Execution Time (s)

1000

100

10 f

10 100 1000
Predicted Time By Calibration (s)

Prediction by Calibration:

_ / /
Tpred — ZC 'n

September 2020

VLDB Tutorial

144

Main Ildea

« Calibrate c¢: use profiling queries
« Calibrate n: refine cardinality estimates

calibration
queries

offline calibrated
profiling cost units

J

AN
A 4
query time
i predictor
DB %MET 1
NS
; corrected
final query online S
lan samplin cardinality
P Piing estimation

September 2020

VLDB Tutorial

145

Profiling Queries For PostgreSQL

Isolate the unknowns and solve them one per equation

q,: select * from R

q,: select count(*) from R

q5: select * from R where R. A< a
(R.A with an index)

q,: select * from R

qs: select * from Rwhere R.B<b
(R.B unclustered index)

R in memory

l

R in memory

l

R in memory

l

R on disk

l

R on disk

l

th :@ M1

Ly = Cp Ny ’ No2

t3:Ct°nt3+@ni3+C0'n03

t4_ :@‘ nS4_ + Ct . Tlt4_

ts
= Cs * Ngs Nys T+ Cp * Nys
+ C; N5 + C, - Nys

September 2020

VLDB Tutorial

148

Calibrating the n values

« The nvalues are functions of N values (i.e., input cardinalities).
— Calibrating the n values = Calibrating the N values

Example 1 (In-Memory Sort) n,
SscC =<ENt -log N.D ¢, + tc of child
r¢ = C¢ Nt

Example 2 (Nested-Loop Join)
sc = sc of outer child + sc of inner child
rc = ¢y @ NP -rc of inner child
nt

sc: start-cost rc:run-cost tc = sc + rc: total-cost
N;: # of input tuples

September 2020 VLDB Tutorial 149

Refine Cardinality Estimates

 Different perspective than the norm (query optimization)

Query Optimization

Execution Time
Prediction

of Plans Hundreds/Thousands

1

Time per Plan Must be very short

Can be a bit longer

Precision Important

Critical

Approach Histograms (dominant)

Sampling (one option)

September 2020 VLDB Tutorial

10U

A Sampling-Based Estimator

* Estimate the selectivity p, of a select-join query q.
[Haas et al., J. Comput. Syst. Sci. 1996]

: >
q:Ry ™R, n samples
Partition (w/ replacement) B oa Bl
P11 22
| A 1 | . 1 /1 1= |B11] X | B2 |
Bi1 Ba1 Sii| B | x| Bz =) p,

Bin, B, Sp:

Ry R,

The estimator p,is unbiased and strongly consistent

September 2020 VLDB Tutorial

151

Cardinality Refinement Algorithm

» Design the refinement algorithm based on the previous
sampling formula.

Problem Solution

The estimator needs random 1/Os | Take samples offline and store them

at runtime to take samples. as tables in the database.

Query plans usually contain more | Estimate multiple operators in a
than one operator. single run, by reusing partial results.
The estimator only works for Rely on PostgreSQL's cost models for
select/join operators. aggregates.

September 2020 VLDB Tutorial 152

Cardinality Refinement Algorithm (Example)

q1 = Ry X R,
Plan for g: g = R; X R, X R;

agg agg S S
| . |

Rewrite a; Pq, = 25| % |R$
e N q1' A' _ | R3]

SN R

S Pg, =
Rs 2 |RF| x [RG| x||R3]
R, R, Ry R;

Reuse

R;, R5, R3 are samples (as tables) of Ry, R,, R;

For agg, use PostgreSQL’s estimates based on
the refined input estimates from gq,.

September 2020 VLDB Tutorial 153

Experimental Settings

« PostgreSQL 9.0.4, Linux 2.6.18

« TPC-H 1GB and 10GB databases

— Both uniform and skewed data distribution

« Two different hardware configurations
— PC1: 1-core 2.27 GHz Intel CPU, 2GB memory
— PC2: 8-core 2.40 GHz Intel CPU, 16GB memory

September 2020 VLDB Tutorial

154

Calibrating Cost Units

PC1:

PC2:

Cost Unit

Calibrated

(ms)

Calibrated
(normalized to c,)

Default

C,: seq_page_cost 5.53e-2 1.0 1.0

¢, rand_page_cost 6.50e-2 1.2 4.0

c,: cpu_tuple_cost 1.67e-4 < 0.003 10.01 >
c;: cpu_index_tuple_cost | 3.41e-5 0.0006 0.005
C,: Cpu_operator_cost 1.12e-4 0.002 0.0025

Cost Unit Calibrated Calibrated Default
(ms) (normalized to c,)

C,: seq_page_cost 5.03e-2 1.0 1.0

¢, rand_page_cost 4.89e-1 9.7 4.0

c,: cpu_tuple_cost 1.41e-4 0.0028 0.01

c;: cpu_index_tuple_cost | 3.34e-5 <m66 0.005

C,: Cpu_operator_cost 7.10e-5 0.0014 0.0025

September 2020

VLDB Tutorial

155

Prediction Precision

» Metric of precision 1 QL ppred _ poet|
— Mean Relative Error (MRE) M — T act
— (questionable as compared to g-error)

* Dynamic database workloads
— Unseen queries frequently occur

« Compare with existing approaches
— Direct scaling
— Machine learning approaches

September 2020 VLDB Tutorial 156

Precision on TPC-H 1GB DB

Uniform data:

4 oo PCH
3.5 | m===m PC2
3 »
2.5 F
2 -
1.5 F
1 -
05 F
0

Relative Error

TR

T

Esym ERrep Direct
Approach Scaling

E,: c’s (calibrated) + n’s (true cardinalities)
E.: c’s (calibrated) + n’s (cardinalities by optimizer)
E.: C’s (calibrated) + n’s (cardinalities by sampling)

September 2020 VLDB Tutorial 157

Precision on TPC-H 1GB DB (Skewed)

Skewed data:

4 sz PCH
3.5 | m==mm PC2
3 -
2.9 F
2 -
15 F
'1 -
0.5 }
0

Relative Error

| LR
Esym Eggp E,

Approach

E,: c’s (calibrated) + n’s (true cardinalities)
E.: c’s (calibrated) + n’s (cardinalities by optimizer)
E.: C’s (calibrated) + n’s (cardinalities by sampling)

September 2020 VLDB Tutorial

158

Summary

« Systematic framework to calibrate the cost units
and refine the cardinality estimates used by
current cost models.

« Showed that current statistical cost models are
quite effective in query execution time
prediction after proper calibration, and the
additional overhead is affordable in practice.

September 2020 VLDB Tutorial 161

Stage 5: ML Approaches

September 2020 VLDB Tutorial

162

Motivation

« Over the past three years, a flood of publications
[16, 22, 23, 27, 28, 34, 37, 40, 48, 49, 50, 51, 52, 53, 54, 56,
57, 59, ...] advocating deep-learning-based approaches for
both cardinality-estimation and cost-estimation.

» Basic idea is to replace coarse parametrized models with
fine-grained learnt models. The expectation is that these
deep models are better able to capture the in situ data and
system behavior due to their flexibility, scalability and lack of
prior assumptions.

September 2020 VLDB Tutorial 163

Approaches

 Two broad classes

— query-based (supervised learning)

* Models constructed by training on a large set of queries and
leveraging the observed values during execution as labels

— data-based (unsupervised learning)

* Model the joint probability density functions of the underlying
data to capture distributions and correlations

September 2020 VLDB Tutorial 164

(Multi-set Convolutional Neural Network)

VISCN [28]

September 2020

VLDB Tutorial

165

Framework

« Estimating cardinalities for correlated joins, since they are
especially hard to model well
— e.g. French actors are more likely to participate in romantic movies
than actors of other nationalities
* Key ldeas

— Set-based model (based on DeepSets):
(AN B) X} C and A X (B X C) are both represented as {A, B, C}

— Integrates sampling:
use bitmaps of qualifying base table samples as ML features
* Advantages
— Learns join-crossing correlations

— Addresses “O-tuple” situations: model relies on query features in
cases when no or very few samples qualify

September 2020 VLDB Tutorial 166

1) Obtaining Training Data

* Generate synthetic queries using schema information
(data types and constraints) and the actual values
from the database

* Execute queries on a snapshot of the database to
obtain true cardinalities

* Annotate queries with bitmaps indicating qualifying
base table samples

September 2020 VLDB Tutorial 167

2) Feature Selection and Representation

* Query features (tables, predicates, joins, ...) are one-hot encoded
« Values (literals) and true cardinalities are normalized to [0,1]

SELECT * FROM title t, movie_companies mc WHERE t.id = mc.movie id

Table set {[0101...0],[0010...1]} Joinset {[0010]}

table id samples join id

AND t.production _year > 2010 AND mc.company id =5

Predicate set {[100001000.72],[000100100.14]}

column id op. id value

* True cardinality (label): 665 (encoded as 0.1 if max = 6650)

September 2020 VLDB Tutorial 168

3) Set-based ML model

* Four fully-connected multi-layer neural networks (MLPs)

TCardinaIity prediction

(
Sigmoid
Linear
RelU
Average Linear Concatenate
over s%t _) output of each
| __~ setmodule
\ Concat
|
Avg. pool Avg. pool Avg. pool
/| 7 T
j4 Fa| N\ pa 771 - .- ~
. ’ N e - N Ve A \
RelLU RelLU RelU
Linear Linear Linear
RelU RelU RelU
Linear) Linear) Linear
- // .)/ _ j/
Table set Tg Join set Jg Predicate set P

September 2020 VLDB Tutorial

169

4) Optimization Metric

* g-error: multiplicative ratio between true and estimated
cardinalities.

« Goal: minimize mean g-error over the training set

September 2020 VLDB Tutorial 170

Estimation Quality

« |IMDB data-set: contains many correlations
* Synthetic queries: only equality and range predicates

[y
@
N

1

-

-
"
S
1
NN W
gaEA L
FTITT T
-
-

PostgreSQL IB Join Samp. MSCN
1 '
&5 led A ? T] '
o] . ' 1]
3 I : :
le2 -
§ —r— . ——
S 1 || 2+ _=T +
o0 T -T- 1 -
i) -+
o
)
©
c
=

I 1 1 I I L] L] L] 1

0 1 2 0 1 2 0 1 2
number of joins

September 2020 VLDB Tutorial 171

Generalizing to More Joins

PostgreSQL MSCN

) led -

le2 —) =

95th
75th T I —
50th :
25th
5th

number of joins

[y

@

N
1
-

-

g

e
1

undere. [log scale] overe
i
{H

September 2020 VLDB Tutorial 173

Training Convergence

mean q-error
(o)}

0 25 50 75 100
number of epochs

September 2020 VLDB Tutorial 174

Summary

 Deep learning can capture complex correlations and
address limitations of pure sampling when there is a
good match between the training and testing
environments

September 2020 VLDB Tutorial 175

NARU [48]

(Neural Relation Understanding)

September 2020

VLDB Tutorial

176

Learning Model

Training
Learn joint data distribution

with deep autoregressive model

Data d Likelihood

Source Encode Model Decode
— Tuples [L‘]"'v.; _____ _ P(x1)
Table | = (2 Fp-. oL [Plal)—
TR PG,)

unsupervised loss
(maximum likelihood)

Selectivity
estimates

Inference
Monte Carlo integration to
answer range density queries

salary=10k
P0|nt query '.

&ge=30

S5k<=salary<=15

Range query

' 20< S=age< =28

September 2020

VLDB Tutorial 177

Joint Distribution

~
- Age Salary Age Salary

25 2000 25 2000

induces
25 10,000 =—» 25 10,000

24 2000 24 2000
24 2000 everything else
Data

(strings, nums, dates, ...)

P(A,S)

1/4

1/4

2/4

0

Joint Distribution (P)

%rows matched by the query?

SELECT * FROM T
WHERE Age <= 25 AND Salary <= 2000

selectivity(Q) = density(Q):
density(Age<=25 && Salary<=2000)

Integrating the joint yields density(Q):
Valid Age: [24, 25]; Valid Salary: [2000].
Sum up the densities from valid points.

= P(25, 2000) + P(24, 2000)
=1/4 +2/4=0.75

September 2020

VLDB Tutorial

178

Learning the Joint Distribution

Age Salary P(AS)

25 2000 i 1/4
25 10,000 i 1/4
24 2000 i 2/4
everything else ; 0

Joint Distribution (P)

Use a deep autoregressive model to learn:

P(x) = H?:| P(xi|x<i)

where x is an n-dimensional tuple.

Data Likelihood
Source Encode Misdal Decode
— Tuples [L}'-*Z‘ ... P(x)) Selectivit
AR N __, Selectivity
Table | =—=>> ' el P(xa|x1) estimates
TR P(xsxi, x0)
| I

unsupervised loss
(maximum likelihood)

Calculation becomes

density(Age<=25 && Salary<=2000)
~= Model(25, 2000) + Model(24, 2000)

September 2020

VLDB Tutorial

179

Learning the Joint

Not materialized; Emitted on-demand by model

Age Salary P(A)S)

25 2000 * 1/4
25 10,000 : 1/4 Compared to previous work:
: chain-rule factorization means no information loss
24 2000 . 2/4
everything else | 0 Independence assumption loses information

e 1D Histogram: P(A,B,C) ~= P(A) P(B) P(C)
e Partial Independence: P(A,B,C) ~= P(A,B) P(C)

Joint Distribution (P
oint Distribution (P) Conditional Independence: P(A,B,C) ~=P(B) P(C|B) P(A|C)

September 2020 VLDB Tutorial 180

Model Training

Output: probability distributions

over columns

P(Age); iP(salary|Age); Train via
T T Maximum Likelihood

DAR Model
‘Agei iSalary:

25 10K ;
Stream in
24 2K
each tuple
25 2K

Input: each tuple

Plug in any deep autoregressive model:

e Masked MLP

* MADE [ICML'15]

e ResMADE [Nash et al. '19]
e Transformer [NIPS’17] and variants
e \WaveNet

September 2020

VLDB Tutorial

181

Range Density Estimates

DAR model outputs point density.
Require range density at inference time.

SData Encode leellhOOd DeCOde
ource
< xi P(x)
Tuples = IR B __ Selectivity density(Age<=25 && Salary<=2000)
Table | == (L%2 f(’Q'X') estimates 2 valid points to forward pass
X3 1 RS P(X3|X|,X2)

density(X1 in R1,..., Xn in Rn)
S ised loss :
(i likelibocd) has |[R1]| x |R2| x ... x |Rn| points
(exponential)

Insight: not all points in the queried region are meaningful

— use Monte Carlo integration (sampling) to approximate range density

September 2020 VLDB Tutorial 182

Approximate Inference

5k<=salary<=15k Progressive Sampling

x1_sample)

Exact inference: exponential in

#columns of the table Weight densities appropriately

: Age in
. : + sample X1 [20...28]
2:0< =a:ge< g . ~P(X1] X1inR1) l
Salary in
' 5k..15k
— P(Agein [20..28] && : ia;“)‘(’;e X)fz. . |]
Salary in [5k...15K]) . VPX2 [X2inR2, l

Use sample from each dimension to

progressively zoom into high-mass region

September 2020 VLDB Tutorial

183

Progressive Sampling

= 0.18

® = 0.16

® °® -0.14
= 0.12
=0.10
= 0.08
= 0.06
= 0.04
o - 0.02
= 0.00

-0.18
-0.16
. - 0.14
- 0.12
- 0.10
- 0.08
- 0.06
- 0.04
= 0.02
- 0.00

September 2020

VLDB Tutorial

187

Estimation Accuracy

« Supervised: Few hours to collect 10K training queries
* Unsupervised: Few minutes to read and train

10° F
w | H
_O R
— 104 F
O :
w 103 E
) F
2 -
5 10% F
O :
_g' 10t E
2 ol £
S 0 =

Postgres DBMS Mat. DE MSCN Naru
Sample (Superv) (Superv.)
SIGMOD’15 CIDR’19

Dataset DMV (11M tuples, 11 columns)
Workload 5-11 range/eq filters; 2K queries
Model Masked MLP (#params: 3M: ~1% data size)

September 2020 VLDB Tutorial

191

Limitations of Learning approaches

* Universality
— Ability to handle unseen adhoc queries is suspect
« Explainability
— Do not provide an intuitive confirmation of the approach
« Guarantees
— Average case may be excellent, but worst-case can be arbitrarily poor
* Heavy-weight
— May require expensive training phase
* Uncertainty estimation
— Hard to quantify the risk involved in trusting the model

Open Problem:

Compare Algorithmic (Algebra+Geometry) vs Function-fitting approaches

September 2020 VLDB Tutorial 194

Putting it all together

September 2020

Good news

The proposed techniques are

complementary and can work together!

September 2020 VLDB Tutorial

196

New RQP Architecture: Plan-level

SpillBound for
Performance Guarantees

\

" | CostGreedy for
Anorexic Plan Density

&’ | Q-Calibrated + Naru-Sampled
origin- —— Cost Model for Contours

Septe2fBer 2020 VDB Tuttartiiadl 198

New RQP Architecture: Intra-Plan

N

G-Join, FlowJoin for
Data Processing

SmoothScan for
Data Access

September 2020

VLDB Tutorial 199

Stage 6: Future Research

September 2020 VLDB Tutorial 200

1) Structure of Query Graphs

« Graph structure (chain, star, cycle, etc.) has significant
Impact on robustness guarantees
— Tighter guarantees for chain (8D — 6) as compared to star (D?+3D)

500 ~

400 A

300

M5S0

200 +

100 ~

0

s Chain
s Worst Branch

Best Branch

= Star

0

T T T
4 6 8

T T T T T T T
10 12 14 16 18 20 22 24
No. of Edges

Open Problem: MSO derivations based on query graph type

September 2020

VLDB Tutorial 201

2) Refined Cost Model Calibration

» Calibration discussed previously assumed the Postgres
basic 5-parameter model as a given for the entire suite of
operators.

* Open Problem: Add operator-specific features and
operator-specific calibration of the coefficients, and see if
accuracy can be improved.

September 2020 VLDB Tutorial 203

3) Robustness Benchmarks

« Standard industry benchmarks (e.g. TPC-DS) are
oriented towards performance, not robustness.

« Recent proposals on benchmarks:

— Optimizer Benchmark (OptMark) (CIKM 16 [28])

« TPC-DS synthetic data, examines plan coverage and estimation of plans
better than optimizer’s choice; does not cover magnitude of cost differences

— Join-Order Benchmark (JOB) (VLDBJ 18 [26])

« Based on IMDB real data with heavy skew and correlation, and join-heavy
queries, g-error

— Optimizer Torture Test (OTT) (SIGMOD 16 [43])

« Two-column relations, one join attribute and one selection, the two columns
are highly correlated (in fact, identical values!)

 Open Problem: Design non-pathological realistic benchmarks
that highlight robustness issues (e.g. performance cliffs)

September 2020 VLDB Tutorial 204

END RQP TUTORIAL

BIBLIOGRAPHY

REFERENCES

10.
11.
12.
13.
14.

Robust Query Processing. Dagstuhl Seminar, 2010. www.dagstuhl.de/en/program/calendar/semhp/?semnr=10381.

Robust Query Processing. Dagstuhl Seminar, 2012. www.dagstuhl.de/en/program/calendar/semhp/?semnr=12321.

Robust Performance in Database Query Processing. Dagstuhl Seminar, 2017.
www.dagstuhl.de/en/program/calendar/semhp/?semnr=17222.

M. Akdere, U. Cetintemel, M. Riondato, E. Upfal, S. Zdonik. Learning-based query performance modeling and
prediction. ICDE, 2012.

R. Avnur, J. Hellerstein. Eddies: Continuously Adaptive Query Processing. SIGMOD, 2000.
S. Babu, P. Bizarro, D. DeWitt. Proactive Re-optimization. SIGMOD, 20053.

R. Borovica-Gajic, S. Idreos, A. Ailamaki, M. Zukowski, C. Fraser. Smooth Scan: Robust Access Path Selection
without Cardinality Estimation. VLDBJ, 27(4), 2018.

S. Chaudhuri. An Overview of Query Optimization in Relational Systems. PODS, 1998.

S. Chaudhuri. Query Optimizers: Time to rethink the contract? SIGMOD, 2009.

S. Chaudhuri. Interview in XRDS. 19(1), 2012.

F. Chu, J. Halpern, P. Seshadri. Least Expected Cost Query Optimization: An Exercise in Utility. PODS, 1999.
F. Chu, J. Halpern, J. Gehrke. Least Expected Cost Query Optimization: What can we expect? PODS, 2002.

D. Dewitt. Interview in Sigmod Record. 31(2), 2002.

A. Dutt, J. Haritsa. Plan Bouquets: A Fragrant Approach to Robust Query Processing. ACM TODS, 41(2), 2016.

September 2020 VLDB Tutorial 207

REFERENCES (contd)

15.

16.

17.
18.
19.
20.
21.

22.

23.
24,
25.

20.

A. Dutt, V. Narasayya, S. Chaudhuri. Leveraging re-costing for online optimization of parameterized queries with
guarantees. SIGMOD, 2017.

A. Dutt, C. Wang, A. Nazi, S. Kandula, V. Narasayya, S. Chaudhuri. Selectivity estimation for range predicates using
lightweight models. PVLDB, 12(9), 2019.

G. Graefe. New algorithms for join and grouping operations. Computer Science — R&D, 27(1), 2012.

Harish, D., P. Darera, J. Haritsa. On the Production of Anorexic Plan Diagrams. VLDB, 2007.

Harish, D., P. Darera, J. Haritsa. Identifying Robust Plans through Plan Diagram Reduction. PVLDB, 1(1), 2008.
H. Harmouch, F. Naumann. Cardinality Estimation: An Experimental Survey. PVLDB, 11(4), 2017.

S. Hasan, S. Thirumuruganathan, J. Augustine, N. Koudas, G. Das. Deep Learning Models for Selectivity Estimation
of Multi-attribute Queries. SIGMOD, 2020.

D. Havenstein, P. Lysakovski, N. May, G. Moerkotte, G. Steidl. Fast Entropy Maximization for Selectivity Estimation
of Conjunctive Predicates on CPUs and GPUs. EDBT, 2020.

R. Hayek and O. Shmueli. Improved Cardinality Estimation by Learning Queries Containment Rates. EDBT, 2020.
N. Kabra, D. DeWitt. Efficient Mid-Query Re-Optimization of Sub- Optimal Query Execution Plans. SIGMOD, 1998.
S. Karthik, J. Haritsa, S. Kenkre, V. Pandit, L. Krishnan. Platform-independent Robust Query Processing. IEEE
TKDE, 31(1), 2019.

S. Karthik, J. Haritsa, S. Kenkre, V. Pandit. A Concave Path to Low-overhead Robust Query Processing. PVLDB,
11(13), 2018.

September 2020 VLDB Tutorial 208

REFERENCES (contd)

27,

28.

29.

30.

31.
32.
33.
34.
35.

36.

37.

M. Kiefer, M. Heimel, S. Bress, V. Markl. Estimating Join Selectivities using Bandwidth-Optimized Kernel Density
Models. PVLDB, 10(13), 2017.

A. Kipf, T. Kipf, B. Radke, V. Leis, P. Boncz, A. Kemper. Learned Cardinalities: Estimating Correlated Joins with
Deep Learning. CIDR, 2019.

V. Leis, B. Radke, A. Gubichev, A. Mirchev, P. Boncz, A. Kemper, T. Neumann. Query Optimization through the
looking glass, and what we found running the Join Order Benchmark. VLDBJ, 27(5), 2018.

V. Leis, B. Radke, A. Gubichev, A. Kempers, T. Neumann. Cardinality Estimation Done Right: Index-based Join
Sampling. CIDR, 2017.

Z. Li, O. Papaemmanouil, M. Cherniack. OptMark: A Toolkit for Benchmarking Query Optimizers. CIKM, 2016.
G. Lohman. Is Query Optimization a Solved Problem? ACM Sigmod Blog, 2014. wp.sigmod.org/?p=1075.

T. Malik, R. Burns, N. Chawla. A Black-Box Approach to Query Cardinality Estimation. CIDR, 2007.

R. Marcus, O. Papaemmanouil. Towards a Hands-Free Query Optimizer through Deep Learning. CIDR, 2019.

V. Markl, V. Raman, D. Simmen, G. Lohman, H. Pirahesh, M. Cilimdzic. Robust query processing through
progressive optimization. SIGMOD, 2004.

G. Moerkotte, T. Neumann, G. Steidl. Preventing Bad Plans by Bounding the Impact of Cardinality Estimation
Errors. PVLDB, 2(1), 2009.

T. Neumann, B. Radke. Adaptive Optimization of Very Large Join Queries. SIGMOD, 2018.

September 2020 VLDB Tutorial 209

REFERENCES (contd)

38.

39.

40.
41.

42.
43.

44,

45.

46.
47.

48.

K. Ramachandra, K. Park, K. Emani, A. Halverson, C. Galindo-Legaria, C. Cunningham. Froid: Optimization of
Imperative Programs in a Relational Database. PVLDB, 11(4), 2017.

W. Roediger, S. Idicula, A. Kemper, T. Neumann. Flow-join: Adaptive skew handling for distributed joins over high-
speed networks. ICDE, 2016.

J. Sun and G. Li. An End-to-End Learning-based Cost Estimator. PVLDB, 13(3), 2019.

K. Tzoumas, A. Deshpande, C. Jensen. Efficiently adapting graphical models for selectivity estimation. VLDBJ,
22(1), 2013.

J. Wiener, H. Kuno, G. Graefe. Benchmarking Query Execution Robustness. TPCTC, 2009.

F.Wolf, M. Brendle, N. May, P. Willems, K. Sattler, M. Grossniklaus. Robustness Metrics for Relational Query
Execution Plans. PVLDB, 11(11), 2018.

W. Wu, Y. Chi, H. Hacigumus, J. Naughton. Towards predicting query execution time for concurrent, dynamic
databae workloads. PVLDB, 6(10), 2013.

W. Wu, Y. Chi, S. Zhu, J. Tatemura, H. Hacigumus, J. Naughton. Predicting query execution time: Are optimizer
cost models really unusable? ICDE, 2013.

W. Wu, J. Naughton, H. Singh. Sampling-based Query Reoptimization. SIGMOD, 2016.

W. Wu, X. Wu, H. Hacigumus, J. Naughton. Uncertainty Aware Query Execution Time Prediction. PVLDB, 7(14),
2014,

Z. Yang et al. Deep Unsupervised Selectivity Estimation. PVLDB, 13(3), 2019.

September 2020 VLDB Tutorial 210

Additional References

49.

50.

51.

52.
53.

54.

55.
56.

57.
58.

59.

A. Dutt, C. Wang, V. Narasayya, S. Chaudhuri. Efficiently Approximating Selectivity Functions using Low Overhead
Regression Models. PVLDB, 13(11), 2020.

B. Hilprecht, A. Schmidt, M. Kulessa, A. Molina, K. Kersting, C. Binnig. Deep DB: Learn from Data, not from
Queries! PVLDB, 13 (7), 2020.

A. Kipf, M. Freitag, D. Vorona, P. Boncz, T. Neumann, A. Kemper. Estimating Filtered Group-By Queries is Hard:
Deep Learning to the Rescue. VLDB AIDB Workshop, 2019.

R. Marcus et al. Neo: A Learned Query Optimizer. PVLDB, 12(11), 2019.

R. Marcus, O. Papaemmanouil. Plan-Structured Deep Neural Network Models for Query Performance Prediction.
PVLDB, 12(11), 2019.

M. Mueller, G. Moerkotte, O. Kolb. Improved Selectivity Estimation by Combining Knowledge from Sampling and
Synopses. PVLDB, 11(9), 2018.

T. Neumann, B. Radke. Adaptive Optimization of Very Large Join Queries. SIGMOD, 2018.

J. Ortiz, M. Balazinska, J. Gehrke, S. Keerthi. Learning State Representations for Query Optimization with Deep
Reinforcement Learning. SIGMOD DEEM Workshop, 2018.

Y.Park, S.Zhong, B. Mozafari. Quicksel: Quick Selectivity Learning with Mixture Models. SIGMOD, 2020.

F. Wolf, N. May, P. Willems, K. Sattler. Robustness Metrics for Relational Query Execution Plans. PVLDB 11(11),
2018.

L. Woltmann C Hartmann M. Thlele D Habich, W. Lehner. Cardinality Estimation with Local Deep Learning

VLDB Tutorial 211

