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Abstract—Robust query processing with strong performance
guarantees is an extremely desirable objective in the design of
industrial-strength database engines. However, it has proved to
be a largely intractable and elusive challenge in spite of sustained
efforts spanning several decades. The good news is that in recent
times, there have been a host of exciting technical advances,
at different levels in the database architecture, that collectively
promise to materially address this problem. In this tutorial, we
will present these novel research approaches, characterize their
strengths and limitations, and enumerate open technical problems
that remain to be solved to make robust query processing a
contemporary reality.
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I. OVERVIEW

An organic reason for the ubiquitous popularity of database

management systems is their support for declarative user

queries, typically expressed in SQL. In this framework, the

user only specifies the end objectives, leaving it to the database

system to identify and execute the most efficient means, called

“plans”, to achieve them. These two steps are performed

by the query optimizer and the query executor components,

respectively, within the core of the database engine. Over the

past half-century, research on the design and implementation

of these components has been a foundational topic for both

the academic and industrial database communities.

The unfortunate reality is that, in spite of this sustained

and long-standing research, the resulting solutions have largely

remained a “black art”. This is due to the well-documented

complexities and challenges of database query processing [8],

[9]. In fact, even as recently as 2014, a highly-respected

industry veteran was provoked to lament: The wonder isn’t
“Why did the optimizer pick a bad plan? Rather, the wonder
is “Why would the optimizer ever pick a decent plan?”! [29].

Similar sentiments have been expressed by other academic and

industrial experts as well, including: “Query optimizers do a
terrible job of producing reliable, good plans (for complex
queries) without a lot of hand tuning.” [13], and “Almost all
of us who have worked on query optimization find the current
state of the art unsatisfactory with known big gaps in the
technology.” [10].

It is important to note that, due to the above problems, the

scale of performance degradation faced by database queries

can be huge – often in orders of magnitude as compared to an

oracular ideal that magically knows the correct inputs required

for optimal query processing. As a case in point, when Query

19 of the TPC-DS benchmark is executed on PostgreSQL,

the worst-case slowdown, relative to the hypothetical oracle,

can exceed a million! [14]. Moreover, apart from the obvious

negative impacts on user productivity and satisfaction, there

are also financial implications of this performance degradation

– the total cost of ownership is significantly increased due

to over-provisioning, lost efficiency, and increased human

administrative costs [38].

In the midst of this gloom and doom, the positive news

is that in recent times, there have been a host of exciting

research advances, which collectively promise to provide

strong foundations for designing the next generation of query

processing engines. The expectation is that these advances

will eventually organically support robust query processing
(RQP), relegating to the past the above-mentioned cynicism

on this bedrock objective. Many of the new ideas owe their

genesis to a series of influential and well-attended Dagstuhl

Seminars on the topic of Robust Query Processing over the

last decade [1]–[3]. Further, they have arisen from research

teams located at diverse locations across the world, including

the US, Europe and Asia.

In this tutorial, we will provide a detailed and holistic

coverage of these contemporary RQP innovations, highlight

their strengths and limitations, and outline a set of open

technical problems and future research directions.

II. TUTORIAL CONTENTS

The definition of robustness itself has been a subject of

intense debate for a long time, and a consensus has been

difficult to achieve [1]. For instance, if worst-case performance

is improved at the expense of average-case performance, is

that an acceptable notion of robustness? Or, would graceful

degradation, as opposed to “performance cliffs”, be the right

perspective? Alternatively, is it the ability to seamlessly scale

with workload complexity, database size and distributional

skew? Or, could we settle for providing strong theoretical guar-

antees relative to the oracular ideal? Perhaps, the real answer

is that robustness encompasses all of these scenarios and more,

with the specific choice being application-dependent.

The above semantic tangle is further complicated by the

different levels at which notions of robustness can be intro-

duced – for instance, at the granularity of individual operators
(e.g [7]), or through entire query plans (e.g [11]), or over end-

to-end query executions (e.g. [14]). Moroever, one can take

algorithmic (e.g. [37]), statistical (e.g [40]) or learning-based
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(e.g. [30]) approaches to incorporate the robustness features at

these various levels.

We plan to cover representative techniques along all these

various dimensions in the tutorial. The big picture is that a rich

variety of possibilities are currently available, and a judicious

selection could potentially lead to the desired robustness.

Moreover, with the impending advent of the so-called Big

Data world, wherein data will be the engine driving virtually

all aspects of human endeavour, the role of RQP will soon

assume critical proportions.

The tutorial is organized in a sequence of five stages, whose

contents are summarized below.

A. Stage I: Robust Operators

A fertile area of research has been the introduction of

robustness into specific operators that appear in the query

execution plan. For instance, SmoothScan [7] is an adaptive

access path that, based on the statistical properties of the data,

continually morphs between the sequential scan and index

access options to a table. Specficially, at small selectivity

values, it behaves similar to an index scan, whereas for higher

selectivities, it progressively changes its behavior towards a

sequential scan.

Another unified operator is G-join [16], which brings the

popular join algorithms (nested-loops, sort-merge and hash)

into a common framework. This merger makes it unnecessary

for the optimizer to have to choose between the alternatives,

thereby preventing mistakes. Similar unifications have been

developed for the grouping and duplicate elimination operators

as well.

Handling data skew in high-performance systems is an

essential requirement for distributed joins that hope to achieve

load balancing and thereby scalability. A novel approach

to achieve this goal is Flow-join [36], wherein instead of

constructing detailed statistics, or carrying out extra analysis,

they opt for a lightweight approach that trades off communica-

tion for computation. Specifically, they detect “heavy hitter”

tuples in the initial runtime phase using small approximate

histograms, and subsequently avoid load imbalances by broad-
casting tuples that join with these heavy hitters.

Yet another innnovative approach for indexed nested-loop

joins was proposed recently in [3], based on dynamic routing

of individual tuples, reminiscent of the well-known Eddies

framework [5]. Here, multiple plans are allowed to proceed

in parallel, and through a system of back pressure, tuples

are preferentially led away from the inefficient plans towards

efficient plans. Further, the execution is always making for-

ward progress, without ever backtracking or throwing away

partial results. A preliminary evaluation showed a worst case

degradation of two times compared to the ideal, and orders of

magnitude improvement as compared to the native optimizer

choices.

B. Stage II: Robust Plans

We turn our attention in the second stage to techniques

that attempt to provide robustness at the granularity of entire

plans. When faced with unknown input parameter values that

become available only at run-time, contemporary optimizers

typically approximate the parameter’s distribution using some

representative value - for example, the mean or mode - and

then always choose the corresponding plan to execute the

query. But this will obviously not work well if the actual

value encountered at run-time is significantly different from

the representative value. Therefore, an alternative strategy

proposed in [11] is to instead instead optimize for the “least

expected cost” (LEC) plan, where the expectation is computed

over the full distribution of the input parameters.

Computing the LEC plan involves substantial computational

overheads when the number of plans over the parameter space

is large. Further, it also assumes that the candidate plans have

all been modeled at the same level of accuracy, rarely true

in practice. However, these limitations can be addressed by

leveraging the anorexic plan reduction technique proposed in

[17], wherein the number of candidate plans is significantly

reduced to a small absolute number through substitution,

without materially affecting the query processing quality at

any location in the parameter space.

An alternative approach to plan robustness, called SEER,

was taken in [18], that combined the above-mentioned

anorexic plan reduction with a generalized mathematical char-

acterization of plan cost behavior over the parameter space.

This formulation lends itself to efficiently establishing guar-

antees on the behavior of the substitute plans as compared

to the optimizers standard choices. In particular, they proved

the powerful result that the behavior on the corners of the

parameter space can be used to deterministically predict the

behavior in the interior of the space, resulting in efficient

replacement strategies. A particularly attractive feature is that

the plan replacements never materially harm, but often signif-

icantly help with respect to the original optimizer choices.

C. Stage III: Robust Execution

In this stage, we move on to the robust execution of

entire queries. The specific performance metric used here

is Maximum Sub-Optimality (MSO), which is defined as

the worst-case slowdown, evaluated over the entire selectivity

space, relative to an oracular ideal that magically knows the

correct selectivities.

An early work that attempted to provide MSO guarantees

with regard to query performance was described in [33].

Here, they first came up with constraints on the magnitude

of the selectivity estimation inaccuracy, measured using the q-
error metric, such that the finally chosen plan was equivalent

to the optimal. They also then went on to give a bound

on the performance sub-optimality incurred for an arbitrary

estimation error, and showed that the sub-optimality was

within a quartic dependency on this error. However, this high-

degree polynomial dependency makes the guarantee to be

impractically large when the estimation error is significant, as

is often the case. Moreover, it is often not possible to apriori

know the value of the error, making it infeasible to provide a

bound to the user at query submission time.
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A radically different approach to bounding suboptimality

that is error-independent and small in absolute value was

presented in [14]. In this execution technique, called Plan-
Bouquet, the brittle selectivity estimation process is com-

pletely abandoned, and replaced with a calibrated “trial-and-

error” discovery mechanism. This technique lends itself to

provable MSO guarantees even in situations where state-of-

the-art systems may suffer from arbitrarily poor execution. An

improved version of PlanBouquet, called SpillBound, which

significantly accelerates the selectivity discovery process, and

provides platform-independent performance guarantees, was

recently presented in [22]. Specifically, its MSO is bounded by

D2 + 3D, where D is the dimensionality of the ESS, i.e. the

expected number of error-prone predicates in the input query.

So, for instance, if D = 3, the sub-optimality can never exceed

18, irrespective of the query location in the space.

D. Stage IV: Robust Cost Models

Thus far, our focus has been primarily on incorporating

robustness with respect to the operator cardinality model,
which is primarily responsible for the poor choice of runtime

plans. However, an alternate source of errors that can adversely

impact robustness is the operator cost model, and this issue has

also been the subject of several studies during the past decade.

Note that these two models address very different aspects

of the data processing environment – the cardinality model

reflects the ability to capture the distributions and correlations

present in the data, whereas the cost model registers the

ability to capture the behavior of the underlying hardware and

physical operator implementations.

The effectiveness of machine learning techniques to predict

query execution time, by using both plan-level and operator-

level models, was demonstrated in [4]. Their features included

optimizer cost estimates, query parameters and the actual

runtime statistics. In marked contrast, another research group

showed in [40] that, with proper augmentation and tuning,

existing statistical models could themselves produce satisfac-

tory estimates of query execution times. In their approach,

an initial offline profiling phase was used to to establish the

unit temporal costs for utilizing various system resources.

Subsequently, online sampling was employed to estimate the

number of usages for a given query. In follow-up papers [41],

[42], stronger statistical models were incorporated in their

algorithmic suite to maintain the prediction quality in the

presence of uncertainty and concurrency.

The above results were for pure SQL queries, but extensions

such as UDFs create challenges of costing imperative code. A

promising mechanism to circumvent this problem is to convert

UDFs into equivalent SQL expressions that are inlined into the

calling query, as proposed recently in [35].

E. Stage V: Future Research Directions

In the final stage of the tutorial, we will summarize the

results and conclusions of the previous stages, and then outline

a set of open technical problems and future research directions.

Sample problems include the following:

Geometries of Plan Cost Functions: Most of the prior work

has only assumed that plan cost functions are monotonic

with regard to selectivities. However, in practice, these

functions often exhibit greater regularity in their behavior.

As a case in point, plan costs are modeled in [15]

as low-order polynomial functions of plan selectivities,

leading to the Bounded Cost Growth property, which is

leveraged to achieve bounded suboptimalities. An even

stronger constraint that is found to generally hold in

practice is concavity, resulting in monotonically non-

increasing slopes. Such profiles can be utilized to improve

the robustness of the query processing solutions, or the

associated overheads, as shown recently in [23].

Query-Graph Sensitive Robustness: The robustness tech-

niques developed in the literature thus far are largely

agnostic to the join-graphs of the queries under con-

sideration. Howver, these graphs often exhibit a regular

structure such as chain, cycle, star, clique, etc., and it

is likely that this information could be gainfully used

to improve the robustness of the resulting execution. For

instance, it should be simpler to assure good performance

for chain queries, where the optimization choices are

comparatively limited, as opposed to star queries.

Robustness Benchmarks: A pre-requisite for confirming the

robustness offered by new approaches is the development

of principled benchmarks that exercise and push the

system to its limits. This is critical since the standard

benchmarks, such as TPC-DS, measure performance, not

robustness. Some recent efforts in this direction include

OptMark [28], JOB [26] and OTT [43], but there remain

aspects of robustness that are yet to be covered.

Machine Learning Techniques for Component Selection:
We advocate the database engine to have a multiplicity
of components that separately but cooperatively cater to

the various query processing environments. For instance,

if the cardinality estimates are expected to be reasonably

accurate, then the native query optimizer is appropriate

for choosing the plan. On the other hand, if the estimates

are expected to be brittle, then the SpillBound technique

can be invoked instead. An obvious question that arises

with such an architecture is how to determine the specific

environment that is currently operational, and hence

the associated component. Machine learning techniques

could be used to judiciously make this choice, similar

to the exercise recently carried out in [20] in the context

of analytical data flows.

Graceful Performance Degradation: A major problem

faced in real deployments is the presence of “performance

cliffs”, where the performance suddenly degrades

precipitously although there has only been a minor

change in the operational environment. This is

particularly true with regard to hardware resources,

such as memory. So, an important future challenge is to

design algorithms that provably degrade gracefully with

regard to all their performance-related parameters.
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III. TARGET AUDIENCE

Robust support for declarative query processing has been a

long-standing concern for the database community. In partic-

ular, the target audience for this tutorial includes researchers,

developers and students with an interest in the internals

of database engines. The background expected is that of

an introductory database systems course covering relational

data models, declarative query languages, and basic query

optimization and processing techniques.

The primary source material for the tutorial consists of the

papers highlighted in the above presentation, complemented

by supporting inputs from the rich corpus of literature on

query optimization and processing. A sampling of relevant

publications is given in the reference list, with emphasis on

recent contributions to the field.
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