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ABSTRACT
Robust query processing with strong performance guarantees is an
extremely desirable objective in the design of industrial-strength
database engines. However, it has proved to be a largely intractable
and elusive challenge in spite of sustained efforts spanning sev-
eral decades. The good news is that in recent times, there have
been a host of exciting technical advances, at different levels in the
database architecture, that collectively promise to materially ad-
dress this problem. In this tutorial, we will present these novel
research approaches, characterize their strengths and limitations,
and enumerate open technical problems that remain to be solved to
make robust query processing a contemporary reality.
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1. OVERVIEW
An organic reason for the ubiquitous popularity of database man-

agement systems is their support for declarative user queries, typ-
ically expressed in SQL. In this framework, the user only specifies
the end objectives, leaving it to the database system to identify and
execute the most efficient means, called “plans”, to achieve them.
These two steps are performed by the query optimizer and the query
executor components, respectively, within the core of the database
engine. Over the past half-century, research on the design and im-
plementation of these components has been a foundational topic for
both the academic and industrial database communities.

In spite of this sustained research, the unfortunate reality is
that the resulting solutions have largely remained a “black art”.
This is due to the well-documented complexities and challenges
of database query processing [8, 9]. In fact, even as recently
as 2014, a highly-respected industry veteran was provoked to
lament: The wonder isn’t “Why did the optimizer pick a bad plan?”
Rather, the wonder is “Why would the optimizer ever pick a decent
plan?”! [32]. Similar sentiments have been expressed by other aca-
demic and industrial database experts as well [13, 10].
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Due to the above-mentioned problems, the scale of performance
degradation faced by database queries can be huge – often in or-
ders of magnitude as compared to an oracular ideal that magically
knows the correct inputs required for optimal query processing. As
a case in point, when Query 19 of the TPC-DS benchmark is exe-
cuted on PostgreSQL, the worst-case slowdown, relative to the hy-
pothetical oracle, can exceed a million! [14] Moreover, apart from
the obvious negative impacts on user productivity and satisfaction,
there are also financial implications of the performance degradation
– the total cost of ownership is significantly increased due to over-
provisioning, lost efficiency, and increased human administrative
costs [42].

In the midst of this gloom and doom, the positive news is that in
recent times there have been a host of exciting research advances,
which collectively promise to provide strong foundations for de-
signing the next generation of query processing engines. The ex-
pectation is that these advances will eventually organically support
robust query processing (RQP), relegating to the past the above-
mentioned cynicism on this bedrock objective. Many of the new
ideas owe their genesis to a series of influential and well-attended
Dagstuhl Seminars on the topic of Robust Query Processing over
the past decade [1, 2, 3]. Further, they have arisen from research
teams located at diverse locations across the world, including the
US, Europe and Asia.

In this tutorial, we will provide a detailed and holistic coverage
of these contemporary RQP innovations, highlight their strengths
and limitations, and outline a set of open technical problems and
future research directions.

2. TUTORIAL CONTENTS
The definition of robustness has itself been a subject of in-

tense debate for a long time, and a consensus has been difficult
to achieve [1]. For instance, if worst-case performance is improved
at the expense of average-case performance, is that an acceptable
notion of robustness? Or, would graceful degradation, as opposed
to “performance cliffs”, be the right perspective? Alternatively, is it
the ability to seamlessly scale with workload complexity, database
size and distributional skew? Or, could we settle for providing
strong theoretical guarantees relative to the oracular ideal? Perhaps,
the real answer is that robustness encompasses all of these scenar-
ios and more, with the specific choice being application-dependent.

The above semantic tangle is further complicated by the differ-
ent levels at which notions of robustness can be introduced – for
instance, at the granularity of individual operators (e.g. [7]), or
through entire query plans (e.g. [11]), or over end-to-end query ex-
ecutions (e.g. [14]). Moreover, one can take algorithmic (e.g. [41]),
statistical (e.g. [45]) or learning-based (e.g. [33]) approaches to in-
corporate the robustness features at these various levels.
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We will cover representative techniques along these various di-
mensions in the tutorial. The big picture is that a rich variety of
possibilities are currently available, and a judicious selection could
lead to the desired robustness. Moreover, with the impending ad-
vent of the so-called Big Data world, wherein data will be the en-
gine driving virtually all aspects of human endeavour, the role of
RQP will soon assume critical proportions.

The tutorial is organized in a sequence of six stages, whose con-
tents are summarized below.

2.1 Stage I: Robust Operators
A fertile area of RQP research has been the introduction of ro-

bustness into specific operators that appear in the query execution
plan. For instance, SmoothScan [7] is an adaptive access path that,
based on the statistical properties of the data, continually morphs
between the sequential scan and index access options to a table.
Specficially, at small selectivity values, it behaves similar to an in-
dex scan, whereas for higher selectivities, it progressively changes
its behavior towards a sequential scan.

Another unified operator is G-join [17], which brings the popu-
lar join algorithms (nested-loops, sort-merge and hash) into a com-
mon framework. This merger makes it unnecessary for the op-
timizer to have to choose between the alternatives, thereby pre-
venting mistakes. Similar unifications have been developed for the
grouping and duplicate elimination operators as well.

Handling data skew in high-performance systems is an essen-
tial requirement for scalable distributed joins. A novel approach to
achieve this goal is Flow-join [39], wherein instead of constructing
detailed statistics, a lightweight approach that trades off communi-
cation for computation is proposed. Specifically, they detect “heavy
hitter” tuples in the initial runtime phase using small approximate
histograms, and subsequently avoid load imbalances by broadcast-
ing tuples that join with these heavy hitters.

An innnovative approach for INL joins was proposed in [3],
based on dynamic routing of individual tuples, reminiscent of Ed-
dies [5]. Here, multiple plans proceed in parallel, and through a
system of “back pressure”, tuples are preferentially led away from
inefficient plans towards efficient alternatives. Further, the execu-
tion is always making forward progress. A preliminary evaluation
showed a worst case degradation of two times compared to the
ideal, and orders of magnitude improvement as compared to the
native optimizer choices.

2.2 Stage II: Robust Plans
We next consider techniques that aim to provide robustness at

the granularity of entire plans. Contemporary optimizers typically
approximate the distributions of run-time parameters with repre-
sentative values -– for example, the mean or mode -– and then al-
ways choose the corresponding plan to execute the query. But this
will obviously not work well if the actual values encountered at
run-time are significantly different from the representative values.
Therefore, an alternative strategy proposed in [11] is to instead op-
timize for the “least expected cost” (LEC) plan, where the expecta-
tion is computed over the full distribution of the input parameters.

Determining the LEC plan involves substantial computational
overheads when the number of plans over the parameter space is
large. Further, it also assumes that the candidate plans have all
been modeled at the same level of accuracy, rarely true in prac-
tice. However, these limitations can be addressed by leveraging the
anorexic plan reduction technique, called CostGreedy, proposed
in [18]. Here, the set of candidate plans is reduced to a small abso-
lute number through plan substitution, without materially affecting
the query processing quality at any location in the parameter space.

An alternative approach to plan robustness, called SEER, was
taken in [19], that combines anorexic plan reduction with a gener-
alized mathematical characterization of plan cost behavior over the
parameter space. This formulation lends itself to efficiently estab-
lishing guarantees on the behavior of the substitute plans as com-
pared to the optimizer’s standard choices. In particular, they proved
the powerful result that the behavior on the corners of the param-
eter space can be used to deterministically predict the behavior in
the interior of the space, resulting in efficient replacement strate-
gies. Further, a particularly attractive feature is that the plan re-
placements never seriously harm, but often significantly help, with
respect to the original plan choices.

2.3 Stage III: Robust Execution
In this stage, we move on to the robust execution of entire

queries. The specific performance metric used here is Maximum
Sub-Optimality (MSO). This metric is defined as the worst-case
slowdown, evaluated over the entire selectivity space, relative to an
oracular ideal that magically knows the correct selectivities.

An early work that attempted to provide MSO guarantees with
regard to query performance was described in [36]. Here, they first
came up with constraints on the magnitude of the selectivity esti-
mation inaccuracy, measured using the q-error metric, such that the
finally chosen plan was equivalent to the optimal. They then went
on to provide a bound on the performance sub-optimality incurred
for an arbitrary estimation error, and showed that the sub-optimality
was within a quartic dependency on this error. However, this high-
degree polynomial dependency makes the guarantee to be imprac-
tically large when the estimation error is significant, as is often the
case. Moreover, it is often not possible to apriori know the value
of the error, making it infeasible to provide a bound to the user at
query submission time.

A radically different approach to bounding suboptimality that
is error-independent and results in small MSO values was pre-
sented in [14]. In this execution technique, called PlanBouquet,
the brittle selectivity estimation process is completely abandoned,
and replaced with a calibrated “trial-and-error” discovery mecha-
nism. This technique lends itself to provable MSO guarantees even
in situations where state-of-the-art systems may suffer from arbi-
trarily poor execution. An improved version of PlanBouquet, called
SpillBound, which significantly accelerates the selectivity discov-
ery process, and provides platform-independent performance guar-
antees, was recently presented in [25]. Specifically, its MSO is
bounded by D2 + 3D, where D is the expected number of error-
prone predicates in the input query. So, for instance, if D = 3,
the sub-optimality can never exceed 18, irrespective of the query
location in the selectivity space.

2.4 Stage IV: Robust Cost Models
Apart from the cardinality model, robustness can also be ad-

versely impacted by errors in the operator cost model, and this is-
sue has been the subject of several studies during the past decade.
These two models address very different aspects of the data pro-
cessing environment – the cardinality model reflects the ability
to capture the distributions and correlations present in the data,
whereas the cost model registers the ability to capture the behavior
of the underlying hardware and physical operator implementations.

The effectiveness of learning-based techniques to predict query
execution time, by using both plan-level and operator-level mod-
els, was demonstrated in [4]. Their features included optimizer
cost estimates, query parameters and the actual runtime statistics.
In marked contrast, another research group showed in [45] that,
with proper augmentation and tuning, existing statistical models
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could themselves produce satisfactory estimates of query execution
times. In their approach, an initial offline profiling phase was used
to to establish the unit temporal costs for utilizing various system
resources. Subsequently, online sampling was employed to esti-
mate the number of such usages for a given query. In follow-up pa-
pers [44, 47], stronger statistical models were incorporated in their
algorithmic suite to maintain the prediction quality in the presence
of uncertainty and concurrency.

The above results were for pure SQL queries, but extensions such
as UDFs create additional challenges of costing imperative code.
A promising mechanism to circumvent this problem is to convert
UDFs into equivalent SQL expressions that are inlined into the call-
ing query, as proposed in Froid [38], implemented in SQL Server.

2.5 Stage V: Machine Learning Approaches
During the past few years, there has been an outpouring of pa-

pers advocating machine learning-based approaches to query pro-
cessing (e.g. [16, 22, 23, 27, 28, 34, 37, 40, 48]). Most use deep
neural network-based learning techniques, modeling the query op-
timization components as regression problems. Within this corpus,
two broad classes have emerged – query-based and data-based.
The former is an example of supervised learning, with models con-
structed by training on a large set of queries and leveraging the
actual cardinalities observed during execution as the labels. On
the other hand, the data-based techniques fall under unsupervised
learning, and model the joint probability density functions of the
underlying data to capture distributions and correlations.

We will cover an exemplar from each of these classes in the tu-
torial. Specifically, for the query-based class, we present MSCN
(multi-set convolutional neural network) [28] where relations, joins
and filters are represented as modules comprised of two-layer neu-
ral networks with shared parameters. The module outputs are av-
eraged, then concatenated, and finally fed to an output network.
The approach accurately predicts join-crossing correlations in the
data and and addresses the inherent low-frequency weaknesses of
traditional sampling-based estimation.

For the data-based class, we will overview Naru (neural re-
lation understanding) [48], a cardinality estimator that leverages
high-capacity deep autoregressive models in combination with
Monte Carlo integration-based sampling techniques to efficiently
and accurately handle the rich multivariate distributions of high-
dimensional databases.

2.6 Stage VI: Future Research Directions
In the final stage of the tutorial, we will outline a set of open

technical problems and future research directions, including:

Geometries of Plan Cost Functions. While prior work has
only assumed monotonicity for plan cost functions, these functions
often exhibit greater regularity in practice. As a case in point, plan
costs are modeled in [15] as low-order polynomial functions of
plan selectivities, leading to the Bounded Cost Growth property,
which is leveraged to achieve bounded suboptimalities for Paramet-
ric Query Optimization (PQO). An even stronger constraint that is
found to generally hold in practice is concavity, resulting in mono-
tonically non-increasing slopes. Such profiles can be utilized to
improve the robustness of the query processing solutions, or the as-
sociated overheads – for instance, in [26], exponential reductions in
overheads are obtained with linear relaxation in MSO guarantees.

Join-Graph-Sensitive Robustness. The robustness tech-
niques developed in the literature are largely agnostic to the join-
graphs of the queries under consideration. Howver, these graphs

often exhibit a regular structure such as chain, cycle, star, clique,
etc., and this information could perhaps be gainfully used to im-
prove the robustness of the resulting execution. For instance, it
should be simpler to assure good performance for chain queries,
where the optimization choices are comparatively limited, as op-
posed to star queries.

Graceful Performance Degradation. A major problem
faced in real deployments is the presence of “performance cliffs”,
where the performance suddenly degrades precipitously although
there has only been a minor change in the operational environ-
ment. This is particularly true with regard to hardware resources,
such as memory. So, an important future challenge is to design al-
gorithms that provably degrade gracefully with regard to all their
performance-related parameters.

Robustness Benchmarks. A pre-requisite for confirming the
robustness offered by new approaches are principled benchmarks
that exercise and push the system to its limits. This is critical since
the standard benchmarks, such as TPC-DS, measure performance,
not robustness. Some recent efforts in this direction include Opt-
Mark [31], JOB [29] and OTT [46], but there remain several as-
pects of robustness that are yet to be covered.

3. TARGET AUDIENCE
Robust support for declarative query processing has been a long-

standing concern for the database community, so we expect this
tutorial to have widespread appeal among the VLDB 2020 atten-
dees. In particular, the target audience for this tutorial includes re-
searchers, developers and students with an interest in the internals
of database engines. The background expected is that of an intro-
ductory database systems course covering relational data models,
declarative query languages, and basic query optimization and pro-
cessing techniques.

Database researchers can expect to find the tutorial providing
fresh and radical perspectives on a classical research topic, and
serving to stimulate work on the further development of stable and
efficient database engines. From the perspective of system develop-
ers and practitioners, the concepts and techniques presented in the
tutorial can serve as potent mechanisms for the redesign of their
systems. Finally, for database instructors and students, the cover-
age will help in comprehending and appreciating the complexities
and subtleties of industrial-strength query processing, going far be-
yond the toy examples typically covered in a classroom setting.

The primary source material for the tutorial consists of the papers
highlighted in the above presentation, complemented by supporting
inputs from the rich corpus of literature on query optimization and
processing. A sampling of relevant publications is given in the ref-
erence list, with emphasis on recent contributions to the field.
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Jayant Haritsa is on the faculty of the Dept. of Computational

& Data Sciences and the Dept. of Computer Science & Automa-
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