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ABSTRACT

A “plan diagram” is a pictorial enumeration of the executfgan
choices of a database query optimizer over the relatiorlatse
tivity space. We have shown recently that, for industriadsgth
database engines, these diagrams are often remarkablylecomp
and dense, with a large number of plans covering the spacs- Ho
ever, they can often be reduced to much simpler picturesyrfea
ing significantly fewer plans, without materially affeajithe query
processing quality. Plan reduction has useful implicatifor the
design and usage of query optimizers, including quantifyedun-
dancy in the plan search space, enhancing useability ofryria
query optimization, identifying error-resistant and keespected-
cost plans, and minimizing the overheads of multi-plan apphes.

We investigate here the plan reduction issue from the@desta-
tistical and empirical perspectives. Our analysis shows dipti-
mal plan reduction, w.r.t. minimizing the number of plarsan
NP-hard problem in general, and remains so even for a storage
constrained variant. We then present a greedy reductiamitdm
with tight and optimal performance guarantees, whose cexityl
scales linearly with the number of plans in the diagram foivary
resolution. Next, we devise fast estimators for locating Ilest
tradeoff between the reduction in plan cardinality and thpdct
on query processing quality. Finally, extensive experiragon
with a suite of multi-dimensional TPCH-based query termgdain
industrial-strength optimizers demonstrates that corplen dia-
grams easily reduce to “anorexic” (small absolute numbetanfs)
levels incurring only marginal increases in the estimaisely pro-
cessing costs.

1. INTRODUCTION

A query optimizer's execution plan choices, for a given bate
and system configuration, are primarily a function of gedec-
tivities of the base relations in the query. In a recent paper [16],
we introduced the concept of a “plan diagram” to denote areolo
coded pictorial enumeration of the plan choices of the ogeém
for a parameterized query template over the relationalctele
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ity space. For example, consider QT8, the parameterized two
dimensional query template shown in Figure 1, based on Query
8 of the TPC-H benchmark, with selectivity variations on s>
PLIER andLINEITEM relations through the_acctbal :varies and

I_ extendedprice :varies predicates, respectively. The associated
plan diagram for QT8 is shown in Figure 2(a).

select ayear, sum(case when nation = 'BRAZIL' then volur+ne
else 0 end) / sum(volume)

from (select YEAR(oorderdate) as gear, Lextendedprice
(1 - I_discount) as volume, n2.name as nation

from part, supplier, lineitem, orders, customer,
nation n1, nation n2, region

where ppartkey = Lpartkey and suppkey = Isuppkey
and Lorderkey aorderkey and austkey I
c_custkey and mationkey = nl.mationkey ang
nl.nregionkey = rregionkey and siationkey =
n2.nnationkey and oname = 'AMERICA and
p-type ='ECONOMY ANODIZED STEEL and
s_acctbal :variesandl_extendedprice :varies

) as allnations

group by ayear
order by ayear

Figure 1: Example Query Template: QT8

In this picturé, produced with the Picasso tool [15] on a com-
mercial database engine, a set of 89 different optimal pl&ds
through P89, cover the selectivity space. The value assalweith
each plan in the legend indicates the percentage area dolgre
that plan in the diagram — P1, for example, covers about 228teof
space, whereas P89 is chosen in only 0.001% of the space.

As is evident from Figure 2(a), plan diagrams can be extrgmel
complex and dense, with a large number of plans covering the
space — several such instances spanning a representdtioé se
query templates based on the TPC-H benchmark, over a suite of
industrial-strength optimizers, are available at [15]. wduwer, it
was also shown in [16] that these dense diagrams could tigpica
be “reduced” to much simpler pictures featuring signifitafewer
plans,without adversely affecting the query processing quality

For example, if users were willing to tolerate a minor cost in
crease of at most 10% for any query point in the diagram veldti
its original (optimizer-estimated) cost, Figure 2(a) cbloé reduced
to that shown in Figure 2(b), where only 7 plans remain — that i

The figures in this paper should ideally be viewed from a color
copy, as the grayscale version may not clearly registergatifes.
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Figure 2: Sample Plan Diagram and Reduced Plan Diagram (QT8)

most of the original plans have been “completely swallowbg”
their siblings, leading to a highly reduced plan cardiyalit

The complete graph of the reduced diagram’s plan cardynasit
a function of the cost increase threshold is shown in Figure 3

Anorexic Plan Diagrams

In [16], it was concluded that “with a modest cost increas®-t
thirds of the plans in a dense plan diagram are liable to lmei<eli
nated through plan swallowing”. We make a stronger and signi
cantly more impactful claim in this paper: A cost increasesh-
old of only 20 percenis usually amply sufficient to bring down
the absolutenumber of plans in the final reduced pictureatithin
or around ten Further, that this applies not just to the 2D tem-
plates considered in [16], but alsohimher-dimensionaiemplates.
In short, that plan diagrams can usually be made “anorerieini
absolute sense while retaining acceptable query progepsirior-
mance. This observation is based on our experience with a wid
spectrum of dense plan diagrams ranging from tens to husdred
plans, across the suite of industrial-strength optimizemsr PC-H-
based multi-dimensional query templates.

Carrying out anorexic plan reduction on dense plan diagtzams
a variety of useful implications for improving both the eifiocy
of the optimizer and the choice of execution plan, as desdrib
Section 2. Further, itis possible to achieve this reduatificiently
since we limit our attention to only the set of plans appegitirthe
original plan diagram, ando notrevisit the exponentially large
search space of plan alternatives from which the optimizaden
these choices.

Contributions

We consider here the problem of reducing plan diagrams, fhem
oretical, statistical and empirical perspectives. We fifgiw that
finding the optimal (w.r.t. minimizing the plan cardinajityeduced
plan diagram is NP-Hard through a reduction from Set Cover.
This result motivates the design of CostGreedy, a greeadyritgn
whose complexity i€)(nm), wheren is the number of plans and
m is the number of query points in the diagrdm < m). Hence,

for a given picture resolution, CostGreedy'’s performaradeslin-
early with the number of plans in the diagram, making it much
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Figure 3: Plan Cardinality vs Cost Increase Threshold

more efficient than th&(m?) reduction algorithm of [16]. Fur-
ther, from the reduction quality perspective, CostGreeayiges
a tight performance guarantee Ofln m), which cannot be im-
proved upon by any alternative deterministic algorithm.

We also consider a storage-constrained variant of the @an r
duction problem and find that it retains the hardness of tneigé
problem. On the positive side, however, we provide Threshol
Greedy, a greedy algorithm that delivers a performanceagiee
of 0.63 w.r.t. the optimal.

Using extremely coarse characterizations of the costilolistr
tions of the optimal plans, we develop fast but effectivénestors
for determining the expected number of plans retained faveng
threshold. These estimators can also be used to predicoche |
tion of the best possible tradeoff (i.e. the “knee”) betwtenplan
cardinality reduction and the cost increase threshold.

Last, through an experimental analysis on the plan diagpaos
duced by industrial strength optimizers with TPC-H-basadtim
dimensional query templates, we show that (a) plan reducizm
be carried out efficiently, (b) the CostGreedy algorithmi¢ggy
gives the optimal reduction or is within a few plans of thei-opt
mal, (c) the analytical estimates of the plan-reductiorsusicost-
threshold curve are quite accurate, and finally, that (d)% 20st
threshold is amply sufficient to bring the plan cardinal@ywtithin
or around 10, even for high dimensional query templatess-ishi
an especially promising result from a practical perspectiv



2. ANOREXIC REDUCTION BENEFITS

The production of anorexic reduced plan diagrams, thatiis, d

agrams whose plan cardinality is within/around a small kitso
number (10 is the yardstick used in this paper), has a vaagty
useful implications for improving both the efficiency of tbeti-
mizer and the choice of execution plan:

Quantification of Redundancy in Plan Search SpacePlan re-

duction quantitatively indicates the extent to which cotre
optimizers might perhaps be over-sophisticated in that the
are “doing too good a job”, not merited by the coarseness
of the underlying cost space. This opens up the possibility
of redesigning and simplifying current optimizers to dthgc
produce reduced plan diagrams, in the process lowering the
significant computational overheads of query optimization
An approach that we are investigating is based on modifying
the set of sub-plans expanded in each iteration of the dymami
programming algorithm to (a) include those within the cost
increase threshold relative to the cheapest sub-plan,@nd (
remove, using stability estimators of the plan cost funrctio
over the selectivity space, “volatile” sub-plans; the fiplan
choice is the stablest within-threshold plan.

Enhancement of PQO Usability: A rich body of literature exists

on parametric query optimizatio(PQO) (e.g.[5, 7, 10, 11,
13]). The goal here is to apriori identify the optimal set of
plans for the entire relational selectivity space at coepil
time, and subsequently to use at run time the actual selec-
tivity parameter settings to identify the best plan. A pract
cal difficulty with PQO, however, is the representation @& th
plan optimality boundaries, which could be of arbitrary com
plexity, making it difficult to identify specifically whichlgpn
from the set of optimal plans is to be utilized for a newly ar-
rived query. A workaround for this problem is suggested in
[11]: For the current user query, evaluate its estimated exe
cution cost witheach of the planén the optimal set. Then,
choose the lowest cost plan for executing the query. For this

workaround to be viable, the plan diagram must have, in an 3.
absolute sense, only a small number of plans — this is because

while plan-costing is cheap as compared to query optimiza-
tion [11], the total time taken for many such costings may

at (14%,1%), remains the preferred plan for a large range
of higher values, including (50%,40%). Quantitatively, at
(50%, 40%), plan P1 has a cost of 135, while P70 is much
more expensive, abothree timeghis value.

In short, the final plan choices become robust to errors that
lie within the optimality regions of the replacement plans.
Such stability of plan choices is especially important for i
dustrial workloads where often the goal is to identify plans
with stable good overall performance as opposed to setpctin
the best local plan with potentially risky performance ehar
acteristics [14].

Identification of Least-Expected-Cost Plans:When faced with

unknown input parameter values, today’s optimizers typi-
cally approximate the distribution of the parameter values
using some representative value — for example, the mean or
modal value — and then always choose this “least specific
cost” plan at runtime. It has been shown in [3, 4] that a better
strategy would be to instead optimize for the “least expbcte
cost” plan, where the full distribution of the input param-
eters is taken into account. Computing the least expected
cost plan not only involves substantial computational over
head when the number of plans is large, but also assumes that
the various plans being compared are all modeled at the same
level of accuracy, rarely true in practice. With plan redrct

on the other hand, both the efficiency and the quality of the
comparisons can become substantially better since there ar
fewer contending plans.

Minimization of Multi-Plan Overheads: Multi-plan approaches

that dynamically select the best plan at runtime by execut-
ing multiple different plans, either in parallel or sequatty,

were proposed in [1, 12] — plan reduction can help to reduce
the computational overheads of these approaches by mini-
mizing the number of alternative choices.

RELATED WORK

To the best of our knowledge, apart from the initial resutes-p
sented by us in [16], there has been no prior work on the reduc-

tion of plan diagrams with regard teal-world industrial-strength
. . query optimizers and query templates. However, similangss
ibse;sg)lti)ep(:lmal plans can be very large, unless plan reduction have been considered in the PQO literature in the contextref s
' plified optimizers and basic query workloads. Specificafiythe
Therefore, a direct benefit of plan reduction is that it makes pioneering work of [2], a System-R style optimizer with leftep
PQO viable from an implementation perspective even in the join-tree search space and linear cost models was builiyti-
highly complex world of industrial-strength optimizers. load comprising of pure SPJ query templates with star omline
join-graphs and one-dimensional selectivity variationgthin this
context, their experimental results indicate that, for eegicost
- T . increase threshold, plan reduction is more effective witlhéasing
regions of the selectlv[ty.space.. Thgrefoeer,ors in the un- join-graph complexity. They also find that “if the increabesshold
der_lyl_ng da@abase §tat|st|cs, asituation often encothby is small, a significant percentage of the plans have to benestd
optimizers In pr_actlce [.12]’ may have much_ less |mpact_a_s For example, with a threshold of 10%, more than 50% of thegplan
compared to using the fine-grained plan choices of the origi- | a1y have to be retained. However, this conclusion isibbs
na! pla_n diagram, which may have poor performance at other related to the low plan cardinality (less than 20) in all aittorigi-
points in the space. nal plan diagrams. In contrast, our results indicate thahemlense
For example, in Figure 2(a), estimated selectivities ofintb plan diagrams seen in real-world environments, where theben
(14%,1%) leads to a choice of plan P70. However, if the of plans can be in the hundreds, not only is the reduction seby
actual selectivities at runtime turn out to be significalify stantial even for a 10% cost increase, but even more sthkitiat
ferent, say (50%,40%), using plan P70, whose cost increasesthe reduced plan cardinality is smalldbsolute terms
steeply with selectivity, would be disastrous. In contriss Subsequently, in [10, 11], a Volcano-style optimizer wasdmo
error would have had no impact with the reduced plan dia- eled, and SPJ query templates with two, three and four-difaral
gram of Figure 2(b), since P1, the replacement plan choice relational selectivities were evaluated. In their forntiglia, the cost

become comparable. But, as shown in Figure 2(a), the num-

Identification of Error-Resistant Plans: Plan reduction can help
to identify plans that provide robust performance overdarg



increase threshold cannot be guaranteed in the presencalof-n
ear cost functions, a common feature in practice, and is osbd
as a heuristic. Even with this relaxation, the final numbeplahs
with a threshold of 10% can be large — for example, a 4D query
template with 134 original plans is only reduced to 53 witk th
DAG-AniPOSP algorithm and to 29 with AniPOSP. Our work dif-
fers in that (a) we guarantee to maintain the cost increasstibld
for every individual query point, and (b) the observed reituns
are substantially higher.

Finally, we provide for the first time, efficiency and qualgyar-
antees for the reduction algorithms, as well as cardinaktyma-
tors for the reduced plan diagram.

4. THE PLAN REDUCTION PROBLEM

In this section, we define the Plan Reduction Problem, hieneaf
referred to as PlanRed, and prove that it is NP-Hard through a
duction from the classical Set Cover Problem [8]. For easxpb-
sition, we assume in the following discussion that the s &QL
query template is 2-dimensional — the extension to higheedk
sions is straightforward.

4.1 Preliminaries
The input to PlanRed is a Plan Diagram, defined as follows:

Definition 1. Plan Diagram
A Plan DiagranP is a 2-dimensiondD, 100%)] selectivity space
S, represented by a grid of points where:

1. Each poing(z,y) in the grid corresponds to a unique query
with (percentage) selectivities, y in the X and Y dimen-
sions, respectively.

2. Each query poing in the grid is associated with an optimal
plan P; (as determined by the optimizer), and a cogy)
representing the estimated effort to exeauteith plan P;.

3. Corresponding to each pld® is a unique colod.;, which is
used to color all the query points that are assigne#;to

The set of all colors used in the plan diagr&nis denoted byl p.
Also, we useP; to both denote the actual plan, as well as the set of
query points for whichP; is the plan choice — the interpretation to
use will be clear from the context.

With the above framework, PlanRed is defined as follows:

Definition 2. PlanRed

Given an input plan diagra, and a cost increase threshold
(A > 0), find a reduced plan diagraR that has minimum plan
cardinality, and for every pla®; in P,

1. P, € R,or
2. VY query points; € P;, 3P; € R, such that% < (14N

That is, find the minimum-sized “cover” of plans that is suéfitt
to recolorP (using only the colors il p) without increasing the
cost of any re-colored query point (i.e. whose original gkare-
placed by a sibling plan) by more than the cost increasehbtes
Obviously, forA — 0, R will be almost identical td®, whereas for
A — oo, R will be completely covered by a single plan.

In the above definition, we need to be able to evaluate),
the cost of executing query poigtwith the substitute choic;.
However, this feature is not available in all database systeand
therefore we use a bounding technique instead to limit theevaf

¢j(g). This means that the reductions discussed hereamser-
vativesince, in principle, it may be possible to reduce the diagram
even more — such enhanced reductions will only further stippe
conclusions drawn later in this paper.

The specific bounding technique we use is based on assuming
the following:

Plan Cost Monotonicity (PCM): The cost distribution of each of
the plans featured in the plan diagrdPis monotonically
non-decreasing over the entire selectivity space S.

Intuitively, what the PCM condition states is that the quexgcu-
tion cost of a plan is expected to increase with base relatdec-
tivities. For most query templates, this is usually the csisee an
increase in selectivity corresponds to processing a lang@unt of
input data. In this situation, the following rule applies:

Definition 3. Cost Bounding Rule

Consider a pair of query pointg; (1, y1) with optimal planP;
having costci (¢1), and g2 (z2, y2) with optimal plan P> having
costez(g2). Then the cost of executing quegy with plan P, i.e.
c2(q1), is upper bounded by (g2) if z2 > x1,y2 > y1.

That is, when considering the recoloring possibilitiesgauery
point g1, only those plan colors that appear in ffirst quadrant
relative tog; as the origin, should be considered. The reason for
restricting attention to the first quadrant is that only arars state-
ment can be made about the costs of plans from other quadrants
namely that they lie in the intervat{(q1), o).

Moreover, if there exists a differently colored poiatin the first
quadrant whose cost is within thethreshold w.r.t. the optimal
cost ofq1, theng; can be recolored with the color g without
violating the query processing quality guarantee. Thatdegdition
2 of Definition 2 is replaced by the stronger requirement

V query pointsy € P;, 3P; € R, such thaBr € P;

&) < (14 ).

with r in first quadrant of; and J
ci(q)

Handling non-PCM templates. When a query template features
negation operators (e.g “set difference”) or short-ctrapera-
tors (e.g. “exists”), the PCM condition may not hold. Howeve
as long as the template exhibits monotonicity (non-dedngasr
non-increasing) along each of the selectivity axes, theral@nst
Bounding Rule still applies with an appropriate choice afuretion
quadrant, as shown in Table 1 for the 2D case.

Table 1: Reduction Quadrants

Cost Behavior [ Cost Behavior | Reduction
X dimension Y dimension Quadrant
Non-decreasing Non-decreasing ]
Non-increasing| Non-decreasing| Il
Non-increasing| Non-increasing 11}
Non-decreasing Non-increasing \Y]

In the remainder of the paper, we consider only the commen sit
uation of plan diagrams for which the PCM condition appliegt-
ther, any plan diagram that has more than 10 plans is chazate
asdense We usen andm to denote the number of plans and the
number of query points iR, respectively. The diagram resolutions
in the X and Y axes are denoted by, andm., respectively, with
m = m1 X mq. Lastly, BottomLeftis used to denote thel, 1)
point andTopRightis used to denote the point with coordinates
(m1, m2) in P.



4.2 The Set Cover Problem

The classical Set Cover problem is defined as follows:

Definition 4. Set Cover Problem

Given a finite universal sef/, and a collectionS
{51, 852,...Sn} of subsets ot/ such thal J;'_, S; = U, find the
minimum cardinality subsef’ C S, such thaiC coversU i.e. all
elements olJ belong to some subset (.

LetI = (U, S) denote an instance of a Set Cover problem. From
a given instancd, create a new instancE = (U’, Syew) Such
that:

1. 8" = {€'}, wheree’ is an element not i/
2. U ' =UUS", Snew = SU{S'}

Let C’ be an optimal solution of’. It is easy to see that' =

C’ \ {9’} is an optimal solution of the original instanée There-
fore, we will assume henceforth in this section that the Sete€
instance is of the fornd’.

LEMMA 1. Given a set cover instancE, addition of a new
elemente to U’, to subsetS’, and to zero or more subsets in
{51, 52,...,5,}, does not change the optimal solution/6f

PROOF LetC = {5, Si,, Sy, ..., S5, } be the optimal solu-
tion of I’ before the addition of the elementAfter addinge to I’,
C still coversU’, sincee € S’.

To see thatC continues to be the optimal solution &f after
addinge, assume the contrary. LEY be a cover fot/’ with |C’| <
|C|. Removee from all subsets i’ that contaire. Now C’ covers
U’'\{e}. This contradicts our selection 6fas the optimal solution
of I’ before the addition of. [

4.3 Reducing Set Cover to PlanRed

Algorithm Reduce in Figure 4 converts an instance of Set €ove
to an instance of PlanRed. It takes as input the instafice
and threshold\ and outputs a plan diagram and another instance
Iew = (Unew, Snew) Of Set Cover.

The data structures used in the algorithm are as follows:

1. cur(q): integer denoting smallessuch that query point €

S; (i.e. denotes current plan gfin the plan diagram)

. belong(q): list storing all j, such thaty € S; andj #
cur(q) (denotes the set of plans that can be used instead of
the current plan in the reduced plan diagram)

. cost(q): value indicating the cost af in the plan diagram

. color(q): integer denoting the color (equivalently, plan)qof
in the plan diagram

In addition, the value.+ 1 is used to denote the sgt, i.e. S, 1 =
S’ in cur andbelong.

Algorithm Reduce works as follows: Consider a Set Cover in-
stancel’ = (U’, Snew). For each subsef; € Spew, @ unique
color L; which represents the plaR; is created. Each element
q € U’ represents a query point iR, and letq be in sub-
sets S, , Siy, ... S, foreachS;; € Spew, j = 1,2,...k and
i1 < 2 < ... < 1. PlanP;, is chosen as the representative jor
and becomes the plan with whighis associated. For each of the
other subsets in whicl is present, a new query pointis created
and placed to the right afin the grid, with its color corresponding
to the subset it represents and its cost b¢ing- \) times the cost
of ¢. Intuitively this means that plaf®;, can be replaced by plans

Reduce (Set Coverl’)
1. Initialize I'new = I’; Vg € U’, setbelong(q) = NULL
2. For each elemenrte U’
(a) Letg belong to setsS;, , S, .- -
s < g <n+1
(b) Setcur(q) =11
(c) Addiz,is,.

Letm = |U”|; ma = maxq(|belong(q)]) +2,q € U's i=L;
Initialize cost

,Sik; 1< <12 <
.., ix to belong(q)

4. Createn + 1 colorsL1, Lo, ..., Ly4+1
5. Create amn x mx grid

6. For each elementc U’
(a) Addg at point(z, 1) in the grid
(b) Setcolor(q) = cur(q);cost(q) = cost; cost = cost
(I4+A)ip=2
(c) Foreacly € belong(q)
i. Create element. Setcur(r) =j
ii. Vz,z € belong(q) s.t.z > j, addz to belong(r)
ii. Add (n + 1) tobelong(r)
iv. Add r at position(z, p) inthe grid.p =p+1
v. Setcolor(r) = j, cost(r) = cost

vi. Add r to instancelpew S.t. 7 € Sj, if j = cur(r)
orj € belong(r)

(d) Create element. Setcur(t)
NULL

(e) cost = cost * (14 X)

(f) Add ¢ at position(z, p) in the grid

(9) Setcolor(t) = n + 1;cost(t) = cost;cost = cost
T+

(h) Addtto Inew

(i) Seti=i+1

n + 1, belong(t)

7. For every empty point in the grid:

n +

(a) Create a new elemeng.
1,belong(q) = NULL.

(b) Addgq to the empty point. Setolor(qg) =n+ 1

(c) Setcost(q) = cost of row's rightmost point with cold
Lny1
(d) AddgtoInew

8. End Algorithm Reduce

Set cur(q)

Figure 4: Algorithm Reduce

Pi,;,j =2,3...k. Then, a query pointis created having plaf’
corresponding to the subsgt with a cost(1 + \)? times the cost
of ¢ — this point is added to the right of all the points that were-pr
viously created fog. This means that can in turn replace all the
other points that were created f@rbut notq itself. (Note that this
process is identical to the element addition process of Larbrp
When moving from the last element of one row to the first eledmen
of the next row, the cost is further increased by a factqriof \).
Starting from the bottom row and moving upwards, the above
procedure is repeated for each element, resulting in eachesit
and its associated generated points being assigned teediff@ws
in the plan diagram. Finally, for each empty point in the gadew
guery pointg is created having plaf’ corresponding to the subset
S’ with a cost equal to the cost of the rightmost point in its row
with the planP’. An example of this reduction, with = 10%,



U=1{1,2,3,4,5}
Si=11,2} S;=12,3} S;3=1{3,4} S = {5}

Input Set Cover Instance

31.37[37.95[37.95
S 5
1
4 23.57|28.5228.52
S, 3 17.71] 19.48] 21.43
S, ) 13.31] 14.64| 16.1
10 [12.1 [12.1
s’ 1
Legend Output Plan Diagram

Figure 5: Example of Algorithm Reduce

is shown in Figure 5, where each point is represented by asqua
block. The blocks in the first column of the output plan diagra
represent the elements originallylifh while the remaining blocks
are added during the reduction process. The values in tldblo
represent the costs associated with the correspondingspaind
each subset is associated with a color, as shown in the legend

We now show that Algorithm Reduce does indeed produce a grid
(i.e. plan diagram) whose optimal solution gives the optista
lution to the Set Cover instance used, and hence that PlaisRed
NP-Hard.

LEMMA 2. The grid G produced by Algorithm Reduce is an
instance of PlanRed.

PROOFR

1. Each pointirG is associated with a color (equivalently, plan)
and a cost.

. For any point(z, y) on G, wherez andy represent the row
and column respectively, let= cost associated witfx, ).
At point (z, y+1), the cost associated is eithaor cx(1+M).
At point (z+1, y) the cost is greater tharx (1+ \) because
Algorithm Reduce increases the cost by a factotlof- \)
while moving from one row to the next. Therefore, the cost
bounding rule of Definition 3 holds.

Hence the grid5 satisfies the conditions necessary for the Plan
Diagram of PlanRed. [

LEMMA 3. The optimal solution for the instance of the plan
diagram generated by Algorithm Reduce gives the optimatisol
for the Set Cover instancE used as input to the algorithm.

PROOF Consider the plan diagram grid and the Set Cover
instancel e = (Unew, Snew) that is the output of the algorithm.
For every poing(z,y) on the grid that can be recolored, there must
exist a point with that color to the right gf z, y) with cost eitherc
orc* (14 X) wherecis the cost of(z, y). Also, the color’s index
will be in thebelong list of the element corresponding to that point.

For each such point(x, y), there is an elementin I,c.,, such
thatr belongs to the subsets € S;..,, wheneverur(q) = j or
J € belong(q). Hence, from the above property, if poiptz, v)
has colorZ; in the reduced plan diagraR, then the corresponding
element inl,.., will be an element of sef;.

Therefore, ifR has colors (plansLr = {Li,, Li,,..., Li, },
since every point is colored with some color ing, its corre-
sponding element itf,,c., wWill belong to some subset i6,c., =
{Si, Sis, ..., S, . Therefore,Crew coversUne,,. Hence, we
just need to show that if.z is the optimal color set (with least
number of colors), thef,., is the optimal set cover faf,c..

To prove the above, assume the contrary, i.e. tat, =
{Sj1,Sj5,---,55}, I < kis the optimal cover olUpc.,,. By
construction of the grid, every point in the grid correspagdto
an element inS;, ¢ € {1,2, ...} can be colored with colof;,.
Apply this color to the point in the grid and set the cost ofthi
point to be the cost of the point with the matching color taitt.
After recoloring the grid in this manner, we get a new colar se
Ly = {Lj, Lj,, ..., Lj;} that covers the whole grid with
|Lz] < |Lg|. This contradicts the assumption that was the
optimal color set. Hence, the optimal solution to the grickgithe
optimal solution for the set cover instantg.,, .

The newly created elements that are added tm createl,, .,
by the algorithm are in accordance with Lemma 1. Hence the op-
timal solution forI’ is the same as the optimal solution Bf..,.
Thus the optimal solution for the instance of plan diagramege
ated by Algorithm Reduce gives the optimal solution for theg S
Cover instancd’ used as its input. (]

Armed with the above lemmas, we now state the main theorem:

THEOREM 1. The Plan Reduction Problem is NP-Hard.

PrROOE It can be seen that

1. Algorithm Reduce has polynomial time complexi@nm).

2. ForI’ = (U’, Spew), the grid created has in the worst case
|U’| % (| Snew|) €lements with.Sy.. | plans. Itis a valid plan
diagram. (Lemma 2)

3. The optimal solution for Set Cover Instanfecan be ob-
tained by the optimal solution of the plan diagram generated
by the algorithm. (Lemma 3)

Hence the theorem.[

As an aside, restricting the above problem to permit a plan to
be swallowed only if it can be entirely replaced bgiaglesibling
plan does not lower the problem complexity [9].

4.4 Storage-budgeted Plan Reduction

In practice, it is often the case that a fixed storage budgebis
vided to hold the set of plans for a query template.

This problem can be viewed as tdeal of PlanRed, in terms
of exchanging the constraint and the objective, and is defase
follows:

Definition 5. Storage-budgeted Plan Reduction Problem

Given a plan diagran® and storage constraint of retaining at
mostk plans, find thek plans to be chosen so as to minimize the
maximum cost increase of the query points in the reducedditan
agramR.

A Karp Reduction [8] is used in [9] to prove the following theo
rem:

THEOREM 2. The Storage-budgeted Plan Reduction Problem
is NP-Hard.



CostGreedy (Plan DiagramP, Threshold X) Greedy Setcover (Set Cover)
1. For each poing from T'opRight to BottomLe ft do 1. SetC =10
(@) setcur(q) = color(q) 2. WhileU # () do:
(b) updatebelong(q) with plans that are i's first quadran (a) Selectseb; € S, suchthalS;| = max(|S;]);VS; € S
with cost within the given threshold (in case of tie, select set with smallest index)
2. Letrn = m1 X mao. (b) U=U\S;,S=S\{S;}
3. Createn setsS = {S1,S2,...S5,} corresponding to the. (€) C =CU{S;}
plans. 3. ReturnC
4. LetU = {1,2,...m} correspond to then query points. 4. End Algorithm Greedy Setcover

5. DefineVi = 1...n,S; = {j : i € belong(r) ori = cur(r)
for query pointr corresponding tg, vj = 1...m} Figure 7: Algorithm Greedy Setcover
6. Letl = (U, S), I be an instance of the Set Cover problem.

7. LetL, be the color of th& op Right point. Remove sef,, and . .
all its elements frond. n plans andn = mi X m2 query points. By scanning through

the grid, we can populate the:r andbelong data structures (in-

8. Apply Algorithm Greedy Setcover th Let C' be the solution. troduced in Section 4.3) for every point. This is done afed:

9. C=CU{Sn} For each query poinf with plan P; in the grid, setur(q) to bei,
10. Recolor the grid with colors corresponding to the set'iand and add tdelong(q) all 7 such thatP; can replace. Using this,
update new costs appropriately. If a point belongs to maaa|th a Set Cover instance= (U, S) can be created witfU| = m and
one subset, use color that results in least cost increase. |S| = n. HereU will consist of elements that correspond to all
11. End Algorithm CostGreedy the query points and will consists of sets corresponding to the
plans in the plan diagram. The elements of each set will beghe
Figure 6: CostGreedy of query points that can be associated (undetthenstraint) with

the plan corresponding to that set.
The following lemma shows that the reduction solutionFaran

5. GREEDY PLAN REDUCTION be obtained from the Set Cover instance created above.

Given the hardness results of the previous section, it arigle
infeasible to provide optimal plan reduction, and therefae turn
our attention to developing efficient greedy algorithms.

We first consider AreaGreedy, the reduction algorithm psego

LEMMA 4. The optimal solution of the created Set Cover in-
stancel gives the optimal reduction solution to the plan diagram
P that is used to create the instance.

in [16], where the greedy heuristic is based on plan areagnTh PrROOF LetC = {S;,,Si,,...Si, } be the optimal solution of
we present CostGreedy, a new reduction algorithm that isdyre . For each query poinf in P, if it belongs to a subsef;; € C,
on plan costs. Its computational efficiency and reductioaliyu then colorg with color L;;. This is a valid coloring because the
guarantees are quantified for PlanRed. We then presenthFhres elementg will be in subsetS;; only if ¢ can be replaced by plan
oldGreedy, a greedy reduction that has strong performangeds P;;. Hence,Lr = {Si;, Si,, ... Si, } colors all points irP.
for the storage-budgeted variant. As before, for ease afsitipn, To show thatLr is optimal, assume that there exigt§ =
we assume tha® is 2-dimensional — the algorithms can be easily {Li,; Li,, - - . L;, } which covers all plans in the plan diagram with
generalized to higher dimensions, while the theoreticslilte are I < k. The coverC’ = {S;,, Si,,...S: } is a cover ofl, since
independent of the dimensionality. if a point can be colored witlh;; € L'z, then it will belong to the
corresponding sef; ;. As L'z covers all points in the plan diagram,
5.1 The AreaGreedy Algorithm C’ coversU. This contradicts the assumption tigais the optimal

The AreaGreedy algorithm [16] first sorts the plans featyiin cover of[. Hence the lemma. []

P in ascending order of their area coverage. It then iteratesigh
this sequence, starting with the smallest-sized plan, kithgdn
each iteration whether the current plan can be completebji-sw
lowed by the remaining plans — if it can, then all its points eg-
colored using the colors of the swallower plans, and thesegare
added to the query sets of the swallowers. A detailed degmmipf

the algorithm is available in [9].

By inspection, AreaGreedy clearly has a time complexity of

O(m?), wherem is the number of query points . With respect : : : -

. . . . sponding set from the Set Cover instance (Line 7) befor |
to reduction quality, leAG denote the solution obtained by Area- Aﬁ)gorithr% Greedy Setcover, and then add(it to th)e solut}e{)‘txh'%)t
Greedy, and leOpt denote the optimal solution. Then, the upper end (Line 9) '
bound of the approximation factt%rA—G' is at leasD.5v/m [9]. In the above process, a swallowed point is recolored onbye

Opt| in marked contrast to AreaGreedy where a swallowed pointlmeay
recolored multiple times before settling on its final col®}. [

Lemma 4 is explicitly used in the design of CostGreedy, shown
in Figure 6. In Lines 1 through 6, an instanée= {U, S} of
Set Cover is created. Then, in Line 8, CostGreedy calls Atgor
Greedy Setcover, shown in Figure 7, which takes this infsiaimce
and outputs the cover C S.

By definition, the TopRight query point i cannot be re-colored
since there are no points in its first quadrant. Therefosegator
in P has to perforce also appeark Hence, we remove its corre-

5.2 The CostGreedy Algorithm

We propose here CostGreedy, a new greedy reduction algo- ©-2.1 Complexity Analysis
rithm, which provides significantly improved computatioedfi- In the following theorem we show that the time complexity of
ciency and approximation factor as compared to AreaGreedy. CostGreedy i) (nm). Since it is guaranteed that < m, and
Consider an instance of PlanRed that hasanx m. grid with typically n < m, this means that CostGreedy is significantly more



efficient than AreaGreedy, whose complexityiém?). Further, it
also means that for a given diagram resolution, the perfocais
linear in the number of plans iR.

THEOREM 3. The time complexity of CostGreedyi¥mn),
wherem andn are the number of query points and plans, respec-
tively, in the input plan diagrar®.

PROOF Let P be anm; x mq grid. While populating the
belong andcur lists, we maintain another two-dimensional array
mincost of dimensionm; x n. This array is used to store the
minimum costs of the query points corresponding to each gan
pearing in the partial-column located above each cell inrtve
above the one that is currently being processed. The ingiales
in mincost are alloco.

We start the scan of the grid from right to left, beginninghwit
the top row of the grid. For each poigtwith plan P, at column:
in the current row, if it can be replaced by any other pR3nthen
mincost[i][P;] should be within the increase threshold of the cost
of g. Hence, through a single scansefincost[i], we can populate
belong(q). Then the cost of is updated fornincost[i][Px]. Since
the values in colummnincost[i] are candidates for the minimum
values in column — 1, mincost[i — 1] is updated with the value
min(mincost[i], mincost[i — 1]).

With the above procedure, when moving to the next row to be
processed, eachincost[i] column will automatically contain the
minimum costs of all the plans appearing in the first quadodint
the query point at thé'™ column of the previous row. When a
query point at column is being processed, due to the cumulative
updation of the costs of the plans visited on that rowincost[i]
will be updated with the minimum costs of all the plans in that
point’s first quadrant.

So each query point requir@s processing iterations, and there
arem query points. Hence the time required for populating tha dat
structures:ur andbelonyg is of the ordeiO(mn).

Obtaining the Set Cover instance from the above data stestu
takesO(mn) time, and the Algorithm Greedy Setcover also has a
time complexity ofO(mn). Thus the CostGreedy has an overall
time complexity ofO(mn). Hence the theorem.[

5.2.2 Approximation Factor

We now assess the approximation factor that can always bre gua
anteed by CostGreedy with respect to the optimal.

LEMMA 5. CostGreedy has an approximation factor
lcal _
|Opt|

PROOF It has been shown in[6, 19] that Algorithm Greedy Set-

cover (GS) has an approximation fac GSt|| < H(m), where
p

m is the cardinality of the universal set, aht{m) is them!" har-
monic number. The input to GS can have at n{est- 1) elements
in its universal set (this occurs when the TopRight querypbas
a unique color not shared by any other point in the entirerdiag.
Therefore,

|CG| _ |GS]|

O(Inm), wherem is the number of query points

< H((m—1)) =

— O(lnm
Opt] ~ 10pt] = (lnm)

@)

O

Tightness of Bound. It is shown in [19] that given ank, [ where
|Greedy| = k and|Opt| = [, a Set Cover instance can be gen-
erated with(k + [) sets andn elements such that > G(k,1),

whereG(k, 1) is a recursively defined greedy number:
G(l,1) =1

l
-1
It is also shown in [19] that the following tight bound bf m for

Set Cover can be achieved using such a construction when
G(k,1):

Glk+1,0) = [—— « Gk, )]

Inm—Inlnm —0.31 <

%Slnm—lnlnm—&—O.?S 2)

These results are used in the following lemma.

LEMMA 6. The bound specified by Lemma 5 is tight.

PROOF The construction process in [19] of the above-
mentioned Set Cover instance, with= G(k, ), is such that every
element belongs to exacttyo sets. For a givertk, ), first con-
struct the Set Cover instance employing the constructidid 9
Using this instance create another Set Cover instance dbthe
I’ with (k+1+1) sets andm + 1) elements, as mentioned in Sec-
tion 4.2. When Algorithm Reduce is applied to this new instgiit
creates a grid withn’ = 3« (m+ 1) elements. This is because, for
each element, since it is in two sets, it can be colored by tlars
in the plan diagram. One of these will represent its currdauh,p
and for the other plan, a new element will be created and added
to its right. Then, yet another element will be created taight
which can replace this newly created element and havingdtue ¢
representing the plan corresponding to the&etHence, each of
them + 1 rows will have 3 elements.

From Equation 2 we know that

|Greedy]

> Inm —Inlnm — 0.31
|Opt|  —

®)

!
Sincem = m? — 1itis easy to see that

|Greedy| /
———= =06(lnm
o )

O

Optimality of the Bound. It has been shown in [6] that the
bound ofO(In m) for Set Cover is the best possible bound below
which Set Cover cannot be approximated efficiently, unleBsbis
slightly super-polynomial-time algorithms. This resudtused in
the following theorem:

THEOREM 4. The bound specified by Lemma 5 is the best pos-
sible threshold below which PlanRed cannot be approximatéd
ciently (unless NP has slightly super-polynomial-timeoaitpms).

PROOF Assume that there exists some deterministic algorithm,
DetX, that improves on the bounds ©f1n m) for PlanRed. Then,
for the instance of the grid created from a Set Cover instawee
will have a reduced bound. This means we can get a reduced boun
on Set Cover by reducing it into a plan diagram and applipegx
to it. But this would contradict the result of [6].]

5.3 The ThresholdGreedy Algorithm

We now turn our attention to developing an efficient greedp-al
rithm for the Storage-budgeted variant (Section 4.4) oRlamRed
problem. Specifically, we present ThresholdGreedy, a grakgb-
rithm that selects plans based on maximizing the benefitsrosd



ThresholdGreedy (PlanDiagramP, Budget k)
1. LetP; be the plan of th& opRight query point.
. SetC ={P1}

cost(TopRight)
cost(BottomLeft)

2
3. A=
4, fori =2tok do

(a) For each plan ifP calculate the benefit of choosing that

plan in addition to the plans i@’. Let P; correspond tq
the plan that gives the maximum benefit.

(b) LetBen correspond to the benefit provided By
(c) SetC =CU{P;}
(d) SetA\ =\ — Ben
5. Recolor the grid with colors corresponding to the set€'iand

update new costs appropriately. If a point has multiple @t
choices, use color resulting in least cost increase.

6. End Algorithm ThresholdGreedy

Figure 8: Algorithm ThresholdGreedy

by choosing them. The benefit of a plan is defined to be the £xten
to which it decreases the cost threshaldf R when it is chosen,
which means that at each step ThresholdGreedy greedilyseBoo
the plan whose selection minimizes the effective

The least number of plans that can beRnis a single plan
which corresponds to the plan of the TopRight query point
in P. This can be always achieved by setting the cost in-
crease threshold to equal the ratio between the costs of the
TopRight and BottomLeft query points iR, i.e. Asinpian =
cost(TopRight)/cost(BottomLe ft).

We bootstrap the selection algorithm, shown in Figure 8, by
first choosing this plan and subsequently choosing additioians
based on their relative benefits. LBen,,: and Bengreedy be the
total benefit of choosing plans by the optimal and greedy algo-
rithms, respectively. This means that the final cost in@¢hcesh-
old with the optimal selection i8s,pian — Benopt, and with the
threshold greedy solution iSs;»pian — Benra. The following
theorem quantifies the approximation factor of Threshokd@y
(proof in [9]):

THEOREM 5. Given a storage budget &f plans, letBenop:
be the benefit obtained by the optimal solution’s selectam
Benrc be the benefit obtained by the ThresholdGreedy algo-
rithm’s selection. Then

k—1

Benrg )k
k

Benopt 21—
For k = 10, which we consider to be a reasonable budget in prac-
tice, the above ratio works out to about 0.65, while for— oo,

the ratio asymptotically goes down to 0.63. In an overalksethis
means that ThresholdGreedy is always guaranteed to prokide

to two-thirds of the optimal benefit

6. ESTIMATORS FOR PLAN REDUCTION

AvgEst (Plan Diagram P, Threshold \)
1. LetCost(i),Vi = 1...n denote the average cost of PIEn
. SetU ={1,2,...n}
. SetS; ={1,2,...n},Vi=1...n
. for each planP; do

A W N

(a) Forall plansP; such thatC'ost(j) < Cost(i) or Cost(j)
is not within the threshold af'ost(i), setS; = S; \ {i}

5. Apply Algorithm Greedy Setcover th Let C' be the solution.
6. return|C|
7. End Algorithm AvgEst

Figure 9: Algorithm AvgEst

reduction and the cost threshold — that is, the location whiges
the maximum reduction with minimum threshold.

In the above situations, using the CostGreedy method regigat
to find the desired setting may prove to be cumbersome and slow
Therefore, it would be helpful to design fast but accuratéves
tors that would allow users to quickly narrow down their feco
the interesting range of threshold values. In the remainéénis
section, we present such estimators.

Ouir first estimator, AvgEst, takes as input the plan diagfeand
a cost increase threshol and returns the estimated number of
plans in the reduced plan diagra®nobtained with that threshold.

It uses the average of the costs of all the query points assaci
with a plan, to summarize the plan’s cost distribution. Alése
averages can be simultaneously computed with a single $dan o
AvgEst then sets up an instance of Set Cover, as shown ind=ggur
with the number of elements equal to the number of plans, lzead t
set memberships of plans is based on their representatérage/
costs satisfying the\ threshold. On this instance, the Greedy Set
Cover algorithm, introduced earlier in Figure 7, is exedut&he
cardinality of the solution is returned as an estimate ohti@ber

of plans that will feature infR.

Our second estimator, AmmEst, uses in addition to the agerag
value, the minimum and maximum cost values of the query point
associated with a plan. That is, each plan is effectivelyasgnted
by three values. Subsequently, the algorithm is ident@AVQESst,
the only change being that the check for set membership ddra pl
is based on not just the average value but on all three repatse
values (min, max and avg) satisfying the membership coiteri

By iteratively running the estimator for various cost ttelsls,
we can quickly plot a graph of plan cardinality against thodd,
and the knee of this curve can be used as the estimated knee. Ou
measurements show that this estimation process executes af
magnitude faster than calculating the knee using Cost@réed-
ther, this estimate can be used as a starting point to findctio@la
knee which is likely to be in the neighborhood, as shown in the
following experimental results.

7. EXPERIMENTAL RESULTS

Having considered the theoretical and statistical aspEqitan
reduction in the previous sections, we now move on to presgnt

Our experience has been that CostGreedy takes only about aour experimental results. The testbed is the Picasso qtimi-

minute to carry out a single reduction on plan diagrams thegin
the order of a million query points. While this appears sidfitdy
fast, it is likely that users may need to iteratively try oeweral re-
ductions with different cost increase thresholds in ordadéntify
the one appropriate for their purpose. For example, the msgr
wish to identify the “knee” of the tradeoff between plan daadity

sualization tool [15], executing on a Sun Ultra 20 workstativith
4GHz processor, 4GB main memory and 240GB hard disk, running
Windows XP Pro. Through the GUI of the Picasso tool, users can
submit a query template, the grid resolution at which théaimses
of this template should be uniformly distributed acrossslectiv-
ity space, the parameterized relations (axes) and theits on



Table 2: Computational Efficiency (QT8, Resolution=100) S S AreaGreedy
Algorithm | Original | Reduced | Time -©-CostGreedy
Plans | (\ = 10%) “ O

OptRed 50 7 4 hours 2
AreaGreedy 50 7 2.8 sec [
CostGreedy 50 7 0.1sec ;
£
z

which the diagrams should be constructed, and the choiceesl/q
optimizer. With this information, the tool automaticallgmerates &8
the associated SQL queries, submits them to the optimizgene ) 5 10 5 20

erate the plans, and finally produces the color-coded pkgrains. Cost Increase Threshold (%)
We conducted our plan reduction experiments over dense plan
diagrams produced from a variety of multi-dimensional TRCH Figure 10: Reduction Quality (QT8, Res=100)

based query templates evaluated over a suite of industriahgth
database query optimizers. The templates were instathtigeva-
riety of grid resolutions, based on the experimental objestand
ensuring viable diagram production times. We also confirthedl

producing reduced plan diagrams with 7 plans (in fact, tlEapl
themselves are also the same in this case). The closendss to t

all the plan diagrams were in compliance with the plan costano optimal holds across the entire operational range of casease
tonicity condition, described in Section 4.1. thresholds, as shown in Figure 10, which presents the reidulea

A gigabyte-sized database was created using the TPC-H bench cardinalities for the three algorithms as a function of #reshold
mark's synthetic generator — while the benchmark models mi- (only afew representative points were obtained for the@ptdue
formly distributed data, we extended the generator to alsdyze to its extremely high computational overheads).
skewed data distributions. The optimizers were all operateheir Another point to note in Figure 10 is the initial steep expene

default optimization levels and resource settings. To ettpihe tial decrease in the number of plans with increasing thielsho
making of informed plan choices, commands were issued to col W& have found this to be a staple feature of all the dense péan d

lect statistics on all the attributes featuring in the quemplates, ~ 9rams that we have investigated, irrespective of the spegifery
and the plan selections were determined using the “explaittire te_mplate, data distribution, memory availability, or dHae opti-
of the optimizers. It is important to note here that in all euper- mizer that produced the dense diagram. These settings may de

iments, the optimizers are treated as “black boxes” anctisano termine whether or not a dense plan diagram is produc_:ed,f but i
attempt to customize or fine-tune their behavior. produced, subsequently the reduction process producesstamt

As mentioned above, we have experimented with a variety of €sults. This trend is clearly seen in Tables 3 and 4, whigh ca
query templates — however, due to space limitations, weeptes ture the reduction behavior of two popular commercial ofgéers,

here the detailed results only for the sample two-dimemsion OPtimizetA and OptimizerB, with various TPC-H-based query
QT8 query template described in the Introduction, and - templates on which they produced dense plan diagrams.

dimensional variants, on a representative optimizer. Sammre- Further, while increasing the grid resolution may incretse
sults for other templates and optimizers, which are veryilairm number of plans in the original plan diagram (due to uneaghi
flavor. are also included. of new small-sized plans between the ones found at coarser re

olutions), virtually all of these new plans are swallowedadow
7.1 Computational Efficiency threshold itself. This follows from the fact that these labe-
ing optimal over a small region, tend to have costs close degh
of their neighbors and are therefore likely to be easily kwad.
This means that for practical threshold settings, the fitzal pardi-
nality in the reduced diagram is essentially “scale-freghwegard
to resolution.

We start off by first quantitatively evaluating the runtingéghe
two greedy algorithms, AreaGreedy (from [16]) and Cost@yee
(proposed in this paper), as compared to the time taken thupeo
OptRed, the computationally-hard optimal solution. A stget
of results is shown in Table 2 for QT8 instantiated at a grigbre
lution of 100 per dimensidn and reduction carried out at a cost

increase threshold of 10%. We see here that even for this rela Table 3: Optimizer_A (Res=100)
tively coarse-grained situation, OptRed takes severalshtocom- TPC-H Query| Original | Reduced Plang Reduced Plang
plete. In contrast, AreaGreedy takes only a few secondsiewnhi Template Plans (A =10%) (A =20%)
CostGreedy is an order-of-magnitude better than AreaGréied 2 43 12 8
ishing in a small fraction of a second. 5 23 6 5

The substantial improvement of CostGreedy with regard &aAr S gg Z g
Greedy is, as per the discussion in Section 5, due t®{ism) 16 17 a 3

complexity being significantly lower than th@(m?) of Area-
Greedy, as: < m in practice (recall that is the number of plans

andm is the total number of query points ). The above results were obtained with uniformly distribudath.

When skewed data was used instead, the observed resultstdid n
7.2 Plan Reduction Quality materially change since data skew primarily affects thestaits
used to obtain a particular selectivity, but has compaebtilittle
impact on the optimizer’s selectivity-driven plan choices

2The QT8 plan diagram in the Introduction was obtained with a 7.3 Sca“ng with Dimensions
resolution of 300, resulting in a higher plan cardinality. The above results were obtained on a 2D query template, and we

Turning our attention to the reduction quality, we see inl@&b
that AreaGreedy and CostGreedy are identical to OptRethrak




Table 4: Optimizer_B (Res=100)

TPC-H Query| Original | Reduced Plang Reduced Plans
Template Plans (A =10%) (A =20%)
2 22 8 6
5 15 2 2
8 20 3 3
9 37 10 7
10 12 3 3

now move to evaluating the effect of increased template d#ioa-
ality. Specifically, evaluating the behavior with 3D and 4é¥sions
of the QT8 template (created through the addition of seliggti

Number of Plans

10
Cost Increase Threshold (%)

15

20

Figure 11: Scaling with Dimensions

predicates or_acctbal ando_totalprice).

The results are shown in Figure 11 for 2D with resolutions of
100 and 300 per dimension, 3D with resolution 100 per dingemsi
and 4D with resolution 30 per dimension. We see here thatewhil
the number of plans in the original plan diagram goes up bteep
with increasing dimensionality, the reduction behaviogislita-
tively similar across all the templates. Further, as shawreble 5,
the reduction behavior is remarkably stable: First, thation of
the knee varies only marginally, occurring in the neighlooidh of
10%. Second, the threshold required to bring the reducedgala
dinality down to 10 plans is within 20%, a very practical v@foom
a user perspective, even in a 4D setting. Again, this seemsgo
gest that for practical threshold settings, the final planlicality
in the reduced diagram is essentially “scale-free” witharelgto

dimension.

7.4 Estimator Performance

Our next experiment studies the quality of tkieee estimates
provided by the estimators. The results are shown in Figientl
indicate that AvgEst and AmmEst are reasonably accuratgitdes
using extremely coarse characterizations of the cosilaligions of
plans in their optimality regions. Further, their ordefsatagnitude
runtime efficiency relative to the CostGreedy algorithn, ifera-
tively computing the knee, is quantitatively captured itl€6.

Table 5: Multi-dimensional Query Templates

Dim- | Original | Knee Cost| Knee | 10-plan Cost
ension| Plans | Threshold| Plans| Threshold
2(100) 50 8% 9 7%
2(300) 89 9% 7 7%

3 190 11% 10 11%

4 243 13% 14 20%

20

-Angsl
-AmmEst
-CostGresdy

15

10

Cost Increase Threshold

2(100) 2(300) 3 4
Dimension

Figure 12: Knee Estimates

The estimator performance in characterizing the full pfotes
duced plan cardinality versusis shown in Figures 13(a)—13(d) for
2D-100, 2D-300, 3D-100 and 4D-30, respectively, the Cost@y
performance being used as the yardstick. We see here thggnin
eral, the simple AvgEst estimator provides estimates tleatlaser
to CostGreedy than AmmEst— however, an advantage of AmmEst
is that it producegonservativeestimates, whereas AvgEst can on
occasion slightly overestimate the degree of plan redncts is
seen in Figures 13(a) and 13(b).

Table 6: Running Time of Estimators vs CostGreedy

TPC-H Query| Estimator Time (ms)] CostGreedy Time (ms
Template (for Knee) (for Knee)
2 25 2733
5 8 1675
8 26 3648
9 71 2382
10 12 546

7.5 Effect of Memory Availability

In all the above results, the query parameterization wasen t
selectivities of the base relations. Another parametdrithaell-
known to have significant impact on plan choices is the amofint
system memory available for query processing (e.g. Nesteps
joins may be favored in low-memory environments, whereashHa
Joins may be a more attractive alternative in memory-rithasi
tions). In fact, plan costs can be highly non-linear or egieston-
tinuousat low memory availabilities [3, 4].

We conducted experiments wherein the memory was varied from
the full system memory to the minimum permitted by the engine
(in our setup, this corresponded to going from 4GB to 16MB).
We found that the memory budget certainly had significant im-
pact on the spatial layouts and cardinalities of the plagrdias
— for example, the plan diagram cardinalities went up sigaiftly
with decreased memory. However, the basic observatiordtrate
plan diagrams can be reduced to a few plans with low costasere
thresholds remained unchanged. In short, while memory ks a
nificant impact on theptimizationprocess, it does not seem to
materially affect theeductionprocess.

8. CONCLUSIONS

In this paper, we investigated from a variety of perspestitiee
problem of reducing the dense plan diagrams produced by mode
query optimizers, without adversely affecting the queryoessing
quality. Our analysis shows that while finding the optimalue-
tion is NP-hard, the CostGreedy algorithm proposed herbls a
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to efficiently provide a tight and optimal performance gudea.
Further, the experimental assessment on commercial qaimin-
dicates that in practice CostGreedy is always within a platwo
of the optimal, frequently giving the optimal itself. Thegfst and
AmmEst estimators are able to rapidly provide a fairly aateias-
sessment of the tradeoff between reduced plan cardinaldytize
cost threshold, helping users to focus on the interestirgstiold
ranges. Finally, the experimental study indicates thagtlgh of
cardinality versus threshold is typically steep and thatribmber
of plans in the reduced plan diagram is likely to be broughtrlo
to anorexic levels (within/around ten) with thresholds ofumnd
twenty percent even for high-dimensional query templaldgese
results are even more striking when we consider that thegare

servativesince a cost bounding rule was used, rather than the actual

costs of replacement plans at query points.

In closing, our study has shown that plan reduction can béechr
out efficiently and can bring down the plan cardinality to anage-
able number of plans while maintaining acceptable querggss-
ing quality. It has also shown that while the optimizationgess
is sensitive to many parameters including query constnctiata
distribution, memory resources, etc., the reduction pean the
other hand is relatively indifferent to these factors. Wpe=t that
these results would be of value to optimizer designers aasufn
our future work, we plan to extend the analysis to the richeryg
templates of the recently announced TPC-DS benchmark [22].
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