
On the Efficiency of Association-Rule Mining
Algorithms

Vikram Pudi1 and Jayant R. Haritsa1

Database Systems Lab, SERC
Indian Institute of Science
Bangalore 560012, India

{vikram, haritsa}@dsl.serc.iisc.ernet.in

Abstract. In this paper, we first focus our attention on the question of how much
space remains for performance improvement over current association rule min-
ing algorithms. Our strategy is to compare their performance against an “Oracle
algorithm” that knows in advance the identities of all frequent itemsets in the
database and only needs to gather their actual supports to complete the mining
process. Our experimental results show that current mining algorithms do not
perform uniformly well with respect to the Oracle for all database characteristics
and support thresholds. In many cases there is a substantial gap between the Ora-
cle’s performance and that of the current mining algorithms. Second, we present
a new mining algorithm, called ARMOR, that is constructed by making minimal
changes to the Oracle algorithm. ARMOR consistently performs within a factor
of two of the Oracle on both real and synthetic datasets over practical ranges of
support specifications.

1 Introduction

We focus our attention on the question of how much space remains for performance im-
provement over current association rule mining algorithms. Our approach is to compare
their performance against an “Oracle algorithm” that knows in advance the identities
of all frequent itemsets in the database and only needs to gather the actual supports
of these itemsets to complete the mining process. Clearly, any practical algorithm will
have to do at least this much work in order to generate mining rules. This “Oracle ap-
proach” permits us to clearly demarcate the maximal space available for performance
improvement over the currently available algorithms. Further, it enables us to construct
new mining algorithms from a completely different perspective, namely, as minimally-
altered derivatives of the Oracle.

First, we show that while the notion of the Oracle is conceptually simple, its con-
struction is not equally straightforward. In particular, it is critically dependent on the
choice of data structures used during the counting process. We present a carefully en-
gineered implementation of Oracle that makes the best choices for these design param-
eters at each stage of the counting process. Our experimental results show that there is
a considerable gap in the performance between the Oracle and existing mining algo-
rithms.

M.-S. Chen, P.S. Yu, and B. Liu (Eds.): PAKDD 2002, LNAI 2336, pp. 80–91, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

On the Efficiency of Association-Rule Mining Algorithms 81

Second, we present a new mining algorithm, called ARMOR (Association Rule
Mining based on ORacle), whose structure is derived by making minimal changes to
the Oracle, and is guaranteed to complete in two passes over the database. Although
ARMOR is derived from the Oracle, it may be seen to share the positive features of
a variety of previous algorithms such as PARTITION [6], CARMA [2], AS-CPA [3],
VIPER [7] and DELTA [4]. Our empirical study shows that ARMOR consistently per-
forms within a factor of two of the Oracle, over both real (BMS-WebView-1 [11] from
Blue Martini Software) and synthetic databases (from the IBM Almaden generator [1])
over practical ranges of support specifications.

Problem Scope The environment we consider, similar to the majority of the prior art
in the field, is one where the data mining system has a single processor and the pattern
lengths in the database are small relative to the number of items in the database. We
focus on algorithms that generate boolean association rules where the only relevant
information in each database transaction is the presence or absence of an item. That
is, we restrict our attention to the class of sequential bottom-up mining algorithms for
generating boolean association rules.

2 The Oracle Algorithm

In this section we present the Oracle algorithm which, as mentioned in the Introduction,
“magically” knows in advance the identities of all frequent itemsets in the database and
only needs to gather the actual supports of these itemsets. Clearly, any practical algo-
rithm will have to do at least this much work in order to generate mining rules. Oracle
takes as input the database, D in item-list format (which is organized as a set of rows
with each row storing an ordered list of item-identifiers (IID), representing the items
purchased in the transaction), the set of frequent itemsets, F , and its corresponding
negative border, N , and outputs the supports of these itemsets by making one scan over
the database. We first describe the mechanics of the Oracle algorithm below and then
move on to discuss the rationale behind its design choices in Section 2.2.

2.1 The Mechanics of Oracle

For ease of exposition, we first present the manner in which Oracle computes the sup-
ports of 1-itemsets and 2-itemsets and then move on to longer itemsets. Note, however,
that the algorithm actually performs all these computations concurrently in one scan
over the database.

Counting Singletons and Pairs

Data-Structure Description The counters of singletons (1-itemsets) are maintained in a
1-dimensional lookup array, A1, and that of pairs (2-itemsets), in a lower triangular 2-
dimensional lookup array, A2. (Similar arrays are also used in Apriori [1, 8] for its first
two passes.) The kth entry in the array A1 contains two fields: (1) count, the counter
for the itemset X corresponding to the kth item, and (2) index, the number of frequent
itemsets prior to X in A1, if X is frequent; null, otherwise.

82 Vikram Pudi and Jayant R. Haritsa

ArrayCount (T,A1,A2)
Input: Transaction T , Array for 1-itemsets A1, Array for 2-itemsets A2

Output: Arrays A1 and A2 with their counts updated over T
1. Itemset T f = null; // to store frequent items from T in Item-List format
2. for each item i in transaction T
3. A1[i.id].count + +;
4. if A1[i.id].index �= null
5. append i to T f

6. for j = 1 to |T f | // enumerate 2-itemsets
7. for k = j + 1 to |T f |
8. index1 = A1[T

f [j].id].index // row index
9. index2 = A1[T

f [k].id].index // column index
10. A2[index1, index2] + +;

Fig. 1. Counting Singletons and Pairs in Oracle

Algorithm Description The ArrayCount function shown in Figure 1 takes as inputs, a
transaction T along with A1 and A2, and updates the counters of these arrays over T .
In the ArrayCount function, the individual items in the transaction T are enumerated
(lines 2–5) and for each item, its corresponding count in A1 is incremented (line 3).
During this process, the frequent items in T are stored in a separate itemset T f (line 5).
We then enumerate all pairs of items contained in T f (lines 6–10) and increment the
counters of the corresponding 2-itemsets in A2 (lines 8–10).

Counting k-itemsets, k > 2

Data-Structure Description Itemsets in F ∪N of length greater than 2 and their related
information (counters, etc.) are stored in a DAG structure G, which is pictorially shown
in Figure 2 for a database with items {A, B, C, D}. Although singletons and pairs are
stored in lookup arrays, as mentioned before, for expository ease, we assume that they
too are stored in G in the remainder of this discussion.

Each itemset is stored in a separate node of G and is linked to the first two (in a
lexicographic ordering) of its subsets. We use the terms “mother” and “father” of an
itemset to refer to the (lexicographically) first and second subsets, respectively. E.g.,
{A, B} and {A, C} are the mother and father respectively of {A, B, C}. For each
itemset X in G, we also store with it links to those supersets of X for which X is a
mother. We call this list of links as childset. E.g., {BC, BD} is the childset of B.

Since each itemset is stored in a separate node in the DAG, we use the terms “item-
set” and “node” interchangeably in the remainder of this discussion. Also, we use G to
denote the set of itemsets that are stored in the DAG structure G.

Algorithm Description We use a partitioning scheme [6] wherein the database is logi-
cally divided into n disjoint horizontal partitions P1, P2, ..., Pn. In this scheme, itemsets
being counted are enumerated only at the end of each partition and not after every tuple.
Each partition is as large as can fit in available main memory. For ease of exposition, we

On the Efficiency of Association-Rule Mining Algorithms 83

father

mother

B C

AB

D

AC AD BC BD CD

ABC ABD ACD BCD

ABCD

A

Fig. 2. DAG Structure Containing Power Set of {A,B,C,D}

assume that the partitions are equi-sized. However, the technique is easily extendible to
arbitrary partition sizes.

The pseudo-code of Oracle is shown in Figure 3 and operates as follows: The Read-
NextPartition function (line 3) reads tuples from the next partition and simultaneously
creates tid-lists1 (within that partition) of singleton itemsets in G. The Update function
(line 5) is then applied on each singleton in G. This function takes a node M in G as
input and updates the counts of all descendants of M to reflect their counts over the
current partition. The count of any itemset within a partition is equal to the length of its
corresponding tidlist (within that partition). The tidlist of an itemset can be obtained as
the intersection of the tidlists of its mother and father and this process is started off using
the tidlists of frequent 1-itemsets. The exact details of tidlist computation are discussed
later.

We now describe the manner in which the itemsets in G are enumerated after reading
in a new partition. The set of links,

⋃
M∈G M.childset, induce a spanning tree of G

(e.g. consider only the solid edges in Figure 2). We perform a depth first search on
this spanning tree to enumerate all its itemsets. When a node in the tree is visited, we
compute the tidlists of all its children. This ensures that when an itemset is visited, the
tidlists of its mother and father have already been computed.

The above processing is captured in the function Update whose pseudo-code is
shown in Figure 4. Here, the tidlist of a given node M is first converted to the tid-vector
format2 (line 1). Then, tidlists of all children of M are computed (lines 2–4) after which
the same children are visited in a depth first search (lines 5–6).

The mechanics of tidlist computation, as promised earlier, are given in Figure 5.
The Intersect function shown here takes as input a tid-vector B and a tid-list T . Each
tid in T is added to the result if B[offset] is 1 (lines 2–5) where offset is defined in line
3 and represents the position of the transaction T relative to the current partition.

1 A tid-list of an itemset X is an ordered list of TIDs of transactions that contain X.
2 A tid-vector of an itemset X is a bit-vector of 1’s and 0’s to represent the presence or absence

respectively, of X in the set of customer transactions.

84 Vikram Pudi and Jayant R. Haritsa

Oracle (D, G)
Input: Database D, Itemsets to be Counted G = F ∪N
Output: Itemsets in G with Supports
1. n = Number of Partitions
2. for i = 1 to n
3. ReadNextPartition(Pi, G);
4. for each singleton X in G
5. Update(X);

Fig. 3. The Oracle Algorithm

Update (M)
Input: DAG Node M
Output: M and its Descendents with Counts Updated
1. B = convert M.tidlist to Tid-vector format // B is statically allocated
2. for each node X in M.childset
3. X.tidlist = Intersect(B, X.father.tidlist);
4. X.count += |X.tidlist|
5. for each node X in M.childset
6. Update(X);

Fig. 4. Updating Itemset Counts

Intersect (B, T)
Input: Tid-vector B, Tid-list T
Output: B ∩ T
1. Tid-list result = φ
2. for each tid in T
3. offset = tid + 1− (tid of first transaction in current partition)
4. if B[offset] = 1 then
5. result = result ∪ tid
6. return result

Fig. 5. Tid-vector and Tid-list Intersection

2.2 Optimality of Oracle

We show that Oracle is optimal in two respects: (1) It enumerates only those itemsets
in G that need to be enumerated, and (2) The enumeration is performed in the most
efficient way possible. These results are based on the following two theorems. Due to
lack of space we have deferred the proofs of theorems to [5].

Theorem 1. If the size of each partition is large enough that every itemset in F ∪
N of length greater than 2 is present at least once in it, then the only itemsets being
enumerated in the Oracle algorithm are those whose counts need to be incremented in
that partition.

On the Efficiency of Association-Rule Mining Algorithms 85

Theorem 2. The cost of enumerating each itemset in Oracle is Θ(1) with a tight con-
stant factor.

While Oracle is optimal in these respects, we note that there may remain some scope
for improvement in the details of tidlist computation. That is, the Intersect function
(Figure 5) which computes the intersection of a tid-vector B and a tid-list T requires
Θ(|T |) operations. B itself was originally constructed from a tid-list, although this cost
is amortized over many calls to the Intersect function. We plan to investigate in our
future work whether the intersection of two sets can, in general, be computed more
efficiently – for example, using diffsets, a novel and interesting approach suggested in
[10]. The diffset of an itemset X is the set-difference of the tid-list of X from that of
its mother. Diffsets can be easily incorporated in Oracle – only the Update function in
Figure 4 of Section 2 is to be changed to compute diffsets instead of tidlists by following
the techniques suggested in [10].

Advantages of Partitioning Schemes Oracle, as discussed above, uses a partitioning
scheme. An alternative commonly used in current association rule mining algorithms,
especially in hashtree [1] based schemes, is to use a tuple-by-tuple approach. A problem
with the tuple-by-tuple approach, however, is that there is considerable wasted enumer-
ation of itemsets. The core operation in these algorithms is to determine all candidates
that are subsets of the current transaction. Given that a frequent itemset X is present in
the current transaction, we need to determine all candidates that are immediate super-
sets of X and are also present in the current transaction. In order to achieve this, it is
often necessary to enumerate and check for the presence of many more candidates than
those that are actually present in the current transaction.

3 The ARMOR Algorithm

As will be shown in our experiments (Section 4), there is a considerable gap in the
performance between the Oracle and existing mining algorithms. We now move on
to describe our new mining algorithm, ARMOR (Association Rule Mining based on
ORacle). In this section, we overview the main features and the flow of execution of
ARMOR – the details of candidate generation are deferred to [5] due to lack of space.

The guiding principle in our design of the ARMOR algorithm is that we consciously
make an attempt to determine the minimal amount of change to Oracle required to re-
sult in an online algorithm. This is in marked contrast to the earlier approaches which
designed new algorithms by trying to address the limitations of previous online algo-
rithms. That is, we approach the association rule mining problem from a completely
different perspective.

In ARMOR, as in Oracle, the database is conceptually partitioned into n disjoint
blocks P1, P2, ..., Pn. At most two passes are made over the database. In the first pass
we form a set of candidate itemsets, G, that is guaranteed to be a superset of the set of
frequent itemsets. During the first pass, the counts of candidates in G are determined
over each partition in exactly the same way as in Oracle by maintaining the candidates
in a DAG structure. The 1-itemsets and 2-itemsets are stored in lookup arrays as in

86 Vikram Pudi and Jayant R. Haritsa

ARMOR (D, I,minsup)
Input: Database D, Set of Items I , Minimum Support minsup
Output: F ∪ N with Supports
1. n = Number of Partitions

//—– First Pass —–
2. G = I // candidate set (in a DAG)
3. for i = 1 to n
4. ReadNextPartition(Pi, G);
5. for each singleton X in G
6. X.count += |X.tidlist|
7. Update1(X, minsup);

//—– Second Pass —–
8. RemoveSmall(G, minsup);
9. OutputFinished(G, minsup);
10. for i = 1 to n
11. if (all candidates in G have been output)
12. exit
13. ReadNextPartition(Pi, G);
14. for each singleton X in G
15. Update2(X, minsup);

Fig. 6. The ARMOR Algorithm

Oracle. But unlike in Oracle, candidates are inserted and removed from G at the end
of each partition. Generation and removal of candidates is done simultaneously while
computing counts. The details of candidate generation and removal during the first pass
are described in [5] due to lack of space. For ease of exposition we assume in the
remainder of this section that all candidates (including 1-itemsets and 2-itemsets) are
stored in the DAG.

Along with each candidate X , we also store the following three integers as in the
CARMA algorithm [2]: (1) X.count : the number of occurrences of X since X was
last inserted in G. (2) X.firstPartition : the index of the partition at which X was
inserted in G. (3) X.maxMissed : upper bound on the number of occurrences of X
before X was inserted in G.

While the CARMA algorithm works on a tuple-by-tuple basis, we have adapted the
semantics of these fields to suit the partitioning approach. If the database scanned so
far is d, then the support of any candidate X in G will lie in the range [X.count/|d|,
(X.maxMissed + X.count)/|d|] [2]. These bounds are denoted by minSupport(X)
and maxSupport(X), respectively. We define an itemset X to be d-frequent if
minSupport(X) ≥ minsup. Unlike in the CARMA algorithm where only d-frequent
itemsets are stored at any stage, the DAG structure in ARMOR contains other can-
didates, including the negative border of the d-frequent itemsets, to ensure efficient
candidate generation. The details are given in [5].

At the end of the first pass, the candidate set G is pruned to include only d-frequent
itemsets and their negative border. The counts of itemsets in G over the entire database

On the Efficiency of Association-Rule Mining Algorithms 87

are determined during the second pass. The counting process is again identical to that of
Oracle. No new candidates are generated during the second pass. However, candidates
may be removed. The details of candidate removal in the second pass is deferred to [5].

The pseudo-code of ARMOR is shown in Figure 6 and is explained below.

First Pass At the beginning of the first pass, the set of candidate itemsets G is initialized
to the set of singleton itemsets (line 2). The ReadNextPartition function (line 4) reads
tuples from the next partition and simultaneously creates tid-lists of singleton itemsets
in G.

After reading in the entire partition, the Update1 function (details in [5]) is applied
on each singleton in G (lines 5–7). It increments the counts of existing candidates by
their corresponding counts in the current partition. It is also responsible for generation
and removal of candidates.

At the end of the first pass, G contains a superset of the set of frequent itemsets.
For a candidate in G that has been inserted at partition Pj , its count over the partitions
Pj , ..., Pn will be available.

Second Pass At the beginning of the second pass, candidates in G that are neither
d-frequent nor part of the current negative border are removed from G (line 8). For
candidates that have been inserted in G at the first partition, their counts over the entire
database will be available. These itemsets with their counts are output (line 9). The
OutputFinished function also performs the following task: If it outputs an itemset X
and X has no supersets left in G, X is removed from G.

During the second pass, the ReadNextPartition function (line 13) reads tuples from
the next partition and creates tid-lists of singleton itemsets in G. After reading in the
entire partition, the Update2 function (details in [5]) is applied on each singleton in G
(lines 14–15). Finally, before reading in the next partition we check to see if there are
any more candidates. If not, the mining process terminates.

3.1 Memory Utilization in ARMOR

In the design and implementation of ARMOR, we have opted for speed in most de-
cisions that involve a space-speed tradeoff. Therefore, the main memory utilization in
ARMOR is certainly more as compared to algorithms such as Apriori. However, in the
following discussion, we show that the memory usage of ARMOR is well within the
reaches of current machine configurations. This is also experimentally confirmed in the
next section.

The main memory consumption of ARMOR comes from the following sources: (1)
The 1-d and 2-d arrays for storing counters of singletons and pairs, respectively; (2)
The DAG structure for storing counters of longer itemsets, including tidlists of those
itemsets, and (3) The current partition.

The total number of entries in the 1-d and 2-d arrays and in the DAG structure cor-
responds to the number of candidates in ARMOR, which as we have discussed in [5], is
only marginally more than |F ∪N |. For the moment, if we disregard the space occupied
by tidlists of itemsets, then the amortized amount of space taken by each candidate is a
small constant (about 10 integers for the dag and 1 integer for the arrays). E.g., if there

88 Vikram Pudi and Jayant R. Haritsa

are 1 million candidates in the dag and 10 million in the array, the space required is
about 80MB. Since the environment we consider is one where the pattern lengths are
small, the number of candidates will typically be comparable to or well within the avail-
able main memory. [9] discusses alternative approaches when this assumption does not
hold.

Regarding the space occupied by tidlists of itemsets, note that ARMOR only needs
to store tidlists of d-frequent itemsets. The number of d-frequent itemsets is of the
same order as the number of frequent itemsets, |F |. The total space occupied by tidlists
while processing partition Pi is then bounded by |F | × |Pi| integers. E.g., if |F | = 5K
and |Pi| = 20K , then the space occupied by tidlists is bounded by about 400MB. We
assume |F | to be in the range of a few thousands at most because otherwise the total
number of rules generated would be enormous and the purpose of mining would not be
served. Note that the above bound is very pessimistic. Typically, the lengths of tidlists
are much smaller than the partition size, especially as the itemset length increases.

Main memory consumed by the current partition is small compared to the above two
factors. E.g., If each transaction occupies 1KB, a partition of size 20K would require
only 20MB of memory. Even in these extreme examples, the total memory consumption
of ARMOR is 500MB, which is acceptable on current machines.

Therefore, in general we do not expect memory to be an issue for mining market-
basket databases using ARMOR. Further, even if it does happen to be an issue, it is easy
to modify ARMOR to free space allocated to tidlists at the expense of time: M.tidlist
can be freed after line 3 in the Update function shown in Figure 4.

A final observation to be made from the above discussion is that the main memory
consumption of ARMOR is proportional to the size of the output and does not “ex-
plode” as the input problem size increases.

4 Performance Study

In the previous section, we have described the Oracle and ARMOR algorithms. We have
conducted a detailed study to assess the performance of ARMOR with respect to the
Oracle algorithm. For completeness and as a reference point, we have also included the
classical Apriori in our evaluation suite. The performance of other algorithms including
VIPER and FP-growth are not presented here due to lack of space, but are available in
[5].

Our experiments cover a range of database and mining workloads, and include the
typical and extreme cases considered in previous studies. The performance metric in
all the experiments is the total execution time taken by the mining operation. Due to
space limitations, we show only a few representative experiments here – the others are
available in [5].

Our experiments were conducted on a 700-MHz Pentium III workstation running
Red Hat Linux 6.2, configured with a 1 GB main memory and three local 18 GB SCSI
10000 rpm disks. All the algorithms in our evaluation suite are written in C++. Finally,
the partition size in ARMOR and Oracle was fixed to be 20K tuples.

The real dataset used in our experiments was BMS-WebView-1 [11] from Blue Mar-
tini Software, while the synthetic databases were generated using the IBM Almaden

On the Efficiency of Association-Rule Mining Algorithms 89

0
1
2
3
4
5
6
7
8
9

0.06 0.07 0.08 0.09 0.1

T
im

e
 (

s
e
c
o
n
d
s
)

Support (as a %)

(a) BMS-WebView-1

Oracle
ARMOR

Apriori

0
200
400
600
800

1000
1200
1400
1600

0 0.05 0.1 0.15

T
im

e
 (

s
e
c
o
n
d
s
)

Support (as a %)

(b) T10.I4.D10M

Oracle
ARMOR

Apriori

0

200

400

600

800

1000

1200

0 0.5 1 1.5 2

T
im

e
 (

s
e
c
o
n
d
s
)

Support (as a %)

(c) T20.I12.D10M

Oracle
ARMOR

Apriori

Fig. 7. Performance of ARMOR

generator [1]. Our synthetic databases were generated with parameters T10.I4 (follow-
ing the standard naming convention introduced in [1]) and T20.I12 with 10M tuples in
each of them. The number of items in the supermarket and the number of potentially
frequent itemsets was set to 1K and 2K, respectively.

We set the rule support threshold values to as low as was feasible with the available
main memory. At these low support values the number of frequent itemsets exceeded
sixty thousand! Beyond this, we felt that the number of rules generated would be enor-
mous and the purpose of mining – to find interesting patterns – would not be served.
In particular, we set the rule support threshold values for the BMS-WebView-1, T10.I4
and T20.I12 databases to the ranges (0.06%–0.1%), (0.035%–0.1%), and (0.4%–2%),
respectively. The results of these experiments are shown in Figures 7a–c. The x-axis
in these graphs represent the support threshold values while the y-axis represents the
response times of the algorithms being evaluated.

In these graphs, we first see that the response times of all algorithms increase ex-
ponentially as the support threshold is reduced. This is only to be expected since the
number of itemsets in the output, F ∪ N , increases exponentially with decrease in the
support threshold. We also see that Apriori is uncompetitive with ARMOR and Oracle.
In Figure 7b, Apriori did not feature at all since its response time was out of the range
of the graph even for the highest support threshold.

Next, we see that ARMOR’s performance is close to that of Oracle for high sup-
ports. This is because of the following reasons: The density of the frequent itemset
distribution is sparse at high supports resulting in only a few frequent itemsets with
supports “close” to minsup. Hence, frequent itemsets are likely to be locally frequent
within most partitions. Even if they are not locally frequent in a few partitions, it is
very likely that they are still d-frequent over these partitions. Hence, their counters are
updated even over these partitions. Therefore, the complete counts of most candidates
would be available at the end of the first pass resulting in a “light and short” second
pass. Hence, it is expected that ARMOR’s performance will be close to that of Oracle.

Since the frequent itemset distribution becomes dense at low supports, the above ar-
gument does not hold in this support region. Hence we see that ARMOR’s performance

90 Vikram Pudi and Jayant R. Haritsa

relative to Oracle decreases at low supports. But, what is far more important is that
ARMOR consistently performs within a factor of two of Oracle, the worst case being
1.94 times (at 0.035% support threshold for the T10.I4 database). As shown in [5], prior
algorithms do not have this feature – while they are good for some workloads, they did
not perform consistently well over the entire range of databases and support thresholds.

Memory Utilization In order to measure the main memory utilization of ARMOR, we
set the total number of items, N , to 20K items for the T10.I4 database – this environ-
ment represents an extremely stressful situation for ARMOR with regard to memory
utilization due to the very large number of items. The complete results of this experi-
ment are not shown due to lack of space. They are available in [5]. However, the worst
case was at the lowest support threshold of 0.1% where the memory consumption of
ARMOR for N = 1K items was 104MB while for N = 20K items, it was 143MB – an
increase in less than 38% for a 20 times increase in the number of items! The reason
for this is that the main memory utilization of ARMOR does not depend directly on the
number of items, but only on the size of the output, F ∪N , as discussed in Section 3.1.

4.1 Discussion of Experimental Results

We now explain why ARMOR should typically perform within a factor of two of Ora-
cle. First, we notice that the only difference between the single pass of Oracle and the
first pass of ARMOR is that ARMOR continuously generates and removes candidates.
Since the generation and removal of candidates in ARMOR is dynamic and efficient,
this does not result in a significant additional cost for ARMOR.

Since candidates in ARMOR that are neither d-frequent nor part of the current neg-
ative border are continuously removed, any itemset that is locally frequent within a
partition, but not globally frequent in the entire database is likely to be removed from
G during the course of the first pass (unless it belongs to the current negative border).
Hence the resulting candidate set in ARMOR is a good approximation of the required
mining output. In fact, in our experiments, we found that in the worst case, the number
of candidates counted in ARMOR was only about ten percent more than the required
mining output. The above two reasons indicate that the cost of the first pass of ARMOR
is only slightly more than that of (the single pass in) Oracle.

Next, we notice that the only difference between the second pass of ARMOR and
(the single pass in) Oracle is that in ARMOR, candidates are continuously removed.
Hence the number of itemsets being counted in ARMOR during the second pass quickly
reduces to much less than that of Oracle. Moreover, ARMOR does not necessarily per-
form a complete scan over the database during the second pass since this pass ends
when there are no more candidates. Due to these reasons, we would expect that the cost
of the second pass of ARMOR is usually less than that of (the single pass in) Oracle.

Since the cost of the first pass of ARMOR is usually only slightly more than that of
(the single pass in) Oracle and that of the second pass is usually less than that of (the
single pass in) Oracle, it follows that ARMOR will typically perform within a factor of
two of Oracle.

On the Efficiency of Association-Rule Mining Algorithms 91

5 Conclusions

In this paper, our approach was to quantify the algorithmic performance of association
rule mining algorithms with regard to an idealized, but practically infeasible, “Ora-
cle”. The Oracle algorithm utilizes a partitioning strategy to determine the supports of
itemsets in the required output. It uses direct lookup arrays for counting singletons and
pairs and a DAG data-structure for counting longer itemsets. We have shown that these
choices are optimal in that only required itemsets are enumerated and that the cost of
enumerating each itemset is Θ(1). Our experimental results showed that there was a
substantial gap between the performance of current mining algorithms and that of the
Oracle.

We also presented a new online mining algorithm called ARMOR, that was con-
structed with minimal changes to Oracle to result in an online algorithm. ARMOR
utilizes a new method of candidate generation that is dynamic and incremental and
is guaranteed to complete in two passes over the database. Our experimental results
demonstrate that ARMOR performs within a factor of two of Oracle for both real and
synthetic databases with acceptable main memory utilization.

Acknowledgments We thank Roberto Bayardo, Mohammed J. Zaki and Shiby Thomas for
reading previous drafts of this paper and providing insightful comments and suggestions.

References

[1] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proc. of Intl.
Conf. on Very Large Databases (VLDB), September 1994.

[2] C. Hidber. Online association rule mining. In Proc. of ACM SIGMOD Intl. Conf. on Man-
agement of Data, June 1999.

[3] J. Lin and M. H. Dunham. Mining association rules: Anti-skew algorithms. In Intl. Conf.
on Data Engineering (ICDE), 1998.

[4] V. Pudi and J. Haritsa. Quantifying the utility of the past in mining large databases. Infor-
mation Systems, July 2000.

[5] V. Pudi and J. Haritsa. On the optimality of association-rule mining algorithms. Technical
Report TR-2001-01, DSL, Indian Institute of Science, 2001.

[6] A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for mining association
rules in large databases. In Proc. of Intl. Conf. on Very Large Databases (VLDB), 1995.

[7] P. Shenoy, J. Haritsa, S. Sudarshan, G. Bhalotia, M. Bawa, and D. Shah. Turbo-charging
vertical mining of large databases. In Proc. of ACM SIGMOD Intl. Conf. on Management
of Data, May 2000.

[8] R. Srikant and R. Agrawal. Mining generalized association rules. In Proc. of Intl. Conf. on
Very Large Databases (VLDB), September 1995.

[9] Y. Xiao and M. H. Dunham. Considering main memory in mining association rules. In Intl.
Conf. on Data Warehousing and Knowledge Discovery (DAWAK), 1999.

[10] M. J. Zaki and K. Gouda. Fast vertical mining using diffsets. Technical Report 01-1,
Rensselaer Polytechnic Institute, 2001.

[11] Z. Zheng, R. Kohavi, and L. Mason. Real world performance of association rule algorithms.
In Intl. Conf. on Knowledge Discovery and Data Mining (SIGKDD), August 2001.

	Introduction
	The Oracle Algorithm
	The Mechanics of Oracle
	Optimality of Oracle

	The ARMOR Algorithm
	Memory Utilization in ARMOR

	Performance Study
	Discussion of Experimental Results

	Conclusions

